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Abstract

Let �K � U���� ���OK� be the full Picard modular group of the imag�
inary quadratic number �eld K� For all natural congruence subgroups
�K�m��m � 	
 acting freely on the two�dimensional complex unit ball

we prove an explicit polynomial formula for the dimensions of spaces of
cusp forms of weight n � �� The coe�cients of these polynomials in the
natural variables m
 n are expressed by higher third and �rst Bernoulli
numbers of the Dirichlet character �K of K and by values of Euler factors
of the Riemann Zeta function and such factors of the L�series of �K at
� or 	
 respectively� The proof is based on detailed knowledges about
classi�cation of Picard modular surfaces� It combines algebraic geomet�
ric methods �Riemann�Roch
 Vanishing� and Proportionality Theorem

curvature
 structure of algebraic groups� with modern and classical num�
ber theoretic ones �representation densities
 Tamagawa measure
 strong
approximation
 functional equation for L�series��

� Basic notions� de�nitions and the main result

We denote by

B � f�z�� z�� � C � � jz�j� � jz�j� � �g

the two�dimensional complex unit ball� Up to biholomorphic equivalence it is the
only irreducible symmetric domain of complex dimension �� Its group of biholo�
morphic automorphisms is the projective group PU���� ��� C � � PSU���� ��� C �
of fractional linear transformations� With obvious notations the corresponding
�special� unitary group is de	ned by

U���� ��� C � 
� fA � G l� �C �� t �A � diag��� ����� �A � diag��� �����g�

SU���� ��� C � 
� U���� ��� C � � Sl��C ��

�
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All these real Lie groups

U���� ��� C �� SU���� ��� C �� PSU���� ��� C � � PU���� ��� C �

act transitively on B � Mainly we prefer to work with G � G R � SU��� ��� Then
G �R� � SU���� ��� C � is a simple simply�connected Lie group� see 
Hel�� Basic
de	nitions and results can be also transfered to other Lie groups� The ball B
can be identi	ed with the coset space G �R��K� where K � S�U���� U���� is
the maximal subgroup of G �R� stabilizing the zero point O � ��� �� � B � In
order to describe the action of the Lie groups above in a convenient algebraical
manner we remark that the notation U���� ��� C � can be used more generally for
the unitary group U�V � of a hermitian vector space �V����� with dimC �V � � �
and a hermitian form ��� of signature ��� ��� The ball B appears as subspace

B � Pfv � V �� v� v �� �g � PV �� P��C �

of all complex lines in V generated by a �negative� vector v� The group
U���� ��� C � acts on B via the natural composition

U���� ��� C � � G l�V � �� PG �V � � Authol�PV � �� PG l��C � �� AutholP
��C ��

���

Let K � Q�
p�d� be an imaginary quadratic number 	eld� d a square�free

positive integer� Then there exists a Q�de	ned algebraic group G � G �d� such
that G �Q � � SU���� ���K�� Using the hermitian metric on C � de	ned by the
diagonal matrix diag��� ����� we can choose in a natural and explicit manner
for each d a model of G �d� de	ned over Z� The arithmetic groups

��d� � G �d� �Z� � SU���� ���OK�� ���

OK the ring of integers in K� are called special Picard modular groups� Moreover
we call also U���� ���OK �� all congruence subgroups � of them and their images
P� in PU���� ��� C � Picard modular groups� sometimes more precisely full� special
or projective Picard modular groups� respectively� with obvious meanings� For
�K � U���� ���OK � and an OK�ideal a with �a � a the principal congruence
subgroup �K�a� is de	ned by the exact sequence

� �� �K�a� �� �K �� U���� ���OK�a��

Especially� for each positive integer m the natural principal congruence sub�
groups �K�m� � �K�mOK� are de	ned� As discrete subgroups of U���� ��� C �
�or PU���� ��� C �� the Picard modular groups � act on B � The action of P� is
e�ective� All Picard modular groups are ball lattices� This means that they
act proper discontineously on B and the volume of a ��fundamental domain
with respect to the G �R��invariant hermitian �Bergmann� metric on B � which
is uniqely determined up to a nontrivial constant factor� is 	nite� The quotient
surface ��B can be compacti	ed by means of 	nitely many cusp singularities

�



to a �normal complex projective� algebraic surface ���B � the Baily�Borel com�
pacti	cation� By Baily�Borel�s theorem 
B�B� one has

���B � Proj R����

where

R��� �

�M
n��


�� n�

is the ring of ��automorphic forms with the 	nitely dimensional C �vector spaces

�� n� of all ��automorphic forms of weight m as summands� These forms are
de	ned as follows� The lattice � acts viaAutholB � PU���� ��� C � on the C �vector
space H��B �OB � of holomorphic functions on B corresponding to each f�z�� z��
the function ���f��z�� z�� � f���z�� z���� For each n one gets a representation

�n 
 � �� AutH��B �OB �� � � � 
 f 	� j�n� � ���f� ���

with the Jacobi determinants

j��z�� z�� � det�
���z�� z��

��z�� z��
�

Then 
�� n� � H��B �OB � is de	ned to be the eigensubspace of �n��� of the
eigenvalue �� that means


�� n� � ff � H��B �OB �� ���f� � jn� � f for all � � �g ���

For instance� 
�� �� � C because ��invariant holomorphic functions on B factorize

through ��B and extend to holomorphic functions on ���B because the 	nitely
many added cusp singularities are normal and we dispose on Hartog�s extension
theorem� hence

C 
 
�� �� 
 H�����B �O���B � � C �

In order to 	nd the ring structure of R��� it is important to know dim
�� n�
for each n � �� For reasons of proof technics we concentrate our attention
to the subspace 
�� n�� � 
�� n� of cusp forms� Roughly speaking cusp forms
are automorphic forms which vanish at in	nity �at the cusps�� To be more
precise� let us 	rst interprete automorphic forms as holomorphic sections of
sheaves of higher di�erential form bundles K � KnB 
� K�nB with the sheaf KB of
holomorphic di�erential forms on B � The canonical action of � on B is de	ned
by

� 
 � � fdz� � dz� 	� ����� � ���f����dz� � dz�� � ���f� � j�n� � dz� � dz��

�



The embeddings

H��B �OB � �� H��B �Kn �� f 	� f � �dz� � dz���n ���

are compatible with the corresponding ��actions ��n on the preimage space�
and


�� n� �� H��B �Kn ��� ���

The latter space has the advantage to go down to the quotient space ��B 


H��B �KnB �
� 
 H����B �Kn��B �� ���

if we assume that � acts freely on B � that means B �� ��B is a universal
covering� The space of cusp forms 
�� n�� 
 
�� n� is de	ned by corresponding
to forms � � H����B �Kn��B � which can be extended to zero at all boundary

�cusp� points P � ���B n ��B �
The aim of this paper is to present a universal dimension formula for cusp

forms essentially for all natural congruence subgroups ��m� of all Picard mod�
ular groups � � �K and for all weights n with the restrictions m � � to
ensure that B acts freely on B � and n � �� For its 	nal formulation we need
generalized Bernoulli numbers� �semilocal� Zeta functions and�or L�series� Let
D � DK�Q � � be the discriminant K�Q and

	 � 	K � 	D 
 Z�� f����g� m 	� �
D

m
� �Jacobi symbol�

be the corresponding multiplicative function �Dirichlet character� see 
I�R�� XVI�
x�� factorizing �precisely� through Z�DZ with quadratic rest values �Dp � at

primes p �� i� pjD�� The generalized Bernoulli numbers Bn�� are de	ned as
coe�cients of a power series F��t� � Q

t��� namely

�X
n��

Bn��
tn

n�
� F��t� 
�

jDjX
a��

	�a�teat

ejDjt � �
� ���

Remark ��� For jDj � � in the sums �which doesn�t occur for quadratic num�
ber �elds� and 	 � id one gets the usual Bernoulli numbers Bn � Bn�id corre�
sponding to the trivial �eld extension Q�Q �

The Dedekind Zeta function of any number 	eld K is de	ned by


K�s� �
Y

p�SpecO
���N�p��s��� �

X�
a�I�O�

N�a��s� ���

where O � OK � I�O� is the semigroup of ideals of O� N�a� � N denotes the
absolute norm of a and

P�
means that the zero ideal is excluded from the sum�

For K � Q one gets the Riemann Zeta function


�s� � 
Q�s� �
Y

p
��� p�s��� �

�X
n��

n�s� ����

�



For simplicity we will restrict ourselves to imaginary quadratic number 	elds
K� The Zeta function 
K�s� converges absolutely for Re s � �� It has a mero�
morphic extension to the whole complex plane C with precisely one pole� namely
at s � �� and the pole order there is equal to �� We refer to 
I�R�� XVI� x� in�
cluding the literature given there� to 
B�S� V� and to 
Lan�� XIV� The Dirichlet
L�series of the 	eld K or of the Dirichlet character 	 is de	ned by

L�s� 	� �
Y

p
��� 	�p�p�s��� �

�X
n��

	�n�n�s� ����

It has an analytic extension �without poles� on C � Taking into account that
	�p� � � i� pjD one gets the relation


K�s� � 
�s�L�s� 	�� ����

We set



�m�
K �s� 
�

Y
pjm

���N�p��s��� ����

and


�m��s� 
�
Y

pjm
��� p�s��� for all integers m 
� ����� ����

see 
B�S�� V� x� ����� We need also the m�th Euler factor of the L�series

L�m��s� 	� �
Y

pjm
��� 	�p�p�s��� ����

Main Theorem ��� With the above notations for all imaginary quadratic�
number �elds K � Q�

p�d�� d a natural squarefree number� and for all natural
numbers n � ��m � � �except for the cases �jm�D but � � m�� the following
dimension formulas for spaces of Picard modular cusp forms hold�

dim
�K�m�� n�� �

�
����m


�m������L�m���� 	D�
��
h
B�����n

� � �n� ��m� � 	�D
�D

B���m
	
i

Thereby and later we use the following

elementary �eld constants

� � �D � �K 
� jDj
d � f�� �g

�m � �m�D 
�

�
�� if �jm�D
�� else

�



� � �D � �K 
�

�
�� if D � �� �K is the field of Eisenstein numbers�

�� else

The proof of the Main Theorem consists of a long sequence of conclusions�
using strong methods of algebraic geometry and number theory� The structure
of the formula is re�ected by the main steps of proof


I� Polynomial structure
 � Riemann�Roch theory on algebraic surfaces� �
Hirzebruch�Mumford proportionality theory� � Kodaira�Mumford vanishing the�
orem�

II� First higher Bernoulli number
 � cusp geometry� � sel	ntersections of
compactifying curves via local euclidean volumina� � cusp numbers via class
numbers�

III� Values of Euler factors of Zeta� and L�series
 � 	nite unitary groups�
� representation densities and their splitting� � index formula for local congru�
ence subgroups� � strong approximation� � index formula for global congruence
subgroups�

IV� Third higher Bernoulli numbers
 � p�adic volumes� � adele groups� � Tam�
agawa measure and �number� � curvature calculations� � non�euclidean �Euler�
Bergmann� volume of fundamental domains� � functional equation for L�series�

The proof has been well�prepared by the classi	cation theory of Picard mod�
ular surfaces� For instance� a basic reference for the cusp part is 
Ho���� which
is not everywhere available� A new and broader basic reference will be the
monograph 
Ho���� where also more detailled calculations can be found� In this
article the reader may regard thouse omitted here as exercises� We started with
the de	nition of cusp form spaces� wash the dimensions stepwise by the proce�
dures announced in I ��� IV� take care on each appearing constant and come to
the beautyful explicit and purely Q�rational end formula of the Main Theorem�
not disturbed by longer but straightforward calculations�

� Cusp Geometry

Let � be a neat Picard modular group� for instance � � ��d��m�� m � �� see

Ho���� Lemma ���� In order to determine cusp contributions to our formulas
we look for uniformizations of small open analytic punctured neighbourhoods
 U n f 
g around cusp singularities  
 on ���B � The set of boundary points of the
ball B is denoted by �B � There are biunivoque correspondences with the set
P � PR�G � of minimal parabolic R�de	ned subgroups of G �Borel subgroups�
and with the set U � UR�G � of maximal unipotent R�de	ned subgroups of G �
Each boundary point 
 corresponds to the parabolic stabilizer subgroup P� � G �
or to the unipotent radical U� of P�� respectively� The Lie group G �R� acts
transitively on P and U via conjugation by their elements� For details we refer
to 
Ho���� IV� The ball B can be moved in P��C � by a projective transformation
g to the unbounded Siegel domain

V 
� f�z� u� � C � � ��Imz � juj� � �g ����

�



with special boundary point � 
� t��� �� ��� The group gG g���R� acting on V
is denoted by G� the corresponding transform of � is denoted by � again� The
isotropy group �� of � at � is a lattice in U� � P�� see ��� below� Explicitly
the unipotent Lie group is described by

U� �

��
�
�
� � i�a ijaj�

� � r
� � a
� � �

�
A �
 
a� r�� a � C � r � R

��
	 � ����

For U 
� U� we have an exact sequence

� �� !�U� 
� 
U�U � �� R �� U �� C �� U�
U�U � �� �

a� r� 	� a

����

and the rule


a� r��
b� s� � 
a� b� r � s� i
�ab� �ba

�
� � 
a� b� r � s� Im �ab� ����

from which follows that !�U� is the center of U�
Now we change over to ball lattices � and their maximal unipotent sub�

groups�

De�nitions ��� Let U � U� be the �maximal� unipotent subgroup group of
G associated to 
 � �B � The discrete subgroup ��� of U is called a neat ball
cusp lattice� if ��� is a sublattice of U or� equivalently� if ����U is compact� A
discrete subgroup �� of P � P� is a ball cusp lattice� if ��� 
� U � �� is a neat
ball cusp lattice� For a discrete sublattice in G �R� we call 
 � �B a �� cusp� if
�� 
� P� � � is a ball cusp lattice� The set of ��cusps is denoted by ��B �
The ��conjugation class ����B is a �nite set called the set of cusp points of

�� It coincides with ���B n ���B �� Its cardinality is denoted by h���� If � is a
sublattice of �K � then ��B coincides with �KB 
� �B � �K �K��

Theorem ��� ��Fe	
���Zin��� The number h��K� of cusp points of the full
Picard modular group �K of the imaginary quadratic number �eld K coincides
with the class number h�K��

�

Now let �� be a neat ball cusp lattice� Then the sequence ���� extends to the
commutative diagram ���� of group homomorphisms�

� �� R �� U� �� C �� �x
 x
 x

� �� !� �� �� �� "� �� �

����

where !�
�� Z and "� �� Z� are lattices in the additive groups of R or C �

respectively� We restrict our attention now to 
 � �� Coming from a ball

�



lattice� �� acts on the Siegel domain V � C � de	ned in ����� By ���� the action
extends linearly to C � � In two steps we factorize C � 	rst by !� and then the
quotient by "�� The group !� acts on the 	rst factor of C � C by translations�
Therefore !��C � �� C � � C � C � C � We will see that the action of "� on
C � � C extends to C � C � On the second factor it acts by translation �see
������ Therefore F� � F���� � F ���� 
� "��C � is a line bundle F��T� over
an elliptic curve T� � T���� � T ���� 
� "��C � The situation is described in
diagram �����

C � C �� F� � "��C � Cx
 x

C � C �� C � � C ���Vx
 x
 x

V �� !��V �� ���V

����

On this way we can 	nd explicitly the �local� toroidal compactifacation of ���V
corresponding to the cusp 
 	lling in the elliptic curve T� as image of ��� C �
along the "��quotient morphism� The quotient ���V appears as bundle of
punctured discs in F� around �over� the zero section T�� The �Baily�Borel� point

compacti	cation ����V � ���V�f 
g is received by contracting T� to the cusp
point  
� In order to be more precise we de	ne !��invariant neighbourhoods

VC � f�z� u� � C � � � Imz � juj� � Cg�
For C �� � the subgroup of a ball lattice � acting on VC is nothing else but
��� for other elements � � � it holds that �VC � VC � �� Therefore ���VC is

an open analytic neighbourhood of the cusp singularity  
 � ���V� The diagram
���� can be extended to �����

F�x

���V �� ���VC �� ��Vx
 x
 x

���V �� ���VC �� ��V

����

We want to calculate the sel	ntersection �T �
� � of T� in ��V by means of eu�

clidean volumes of fundamental domains of !� in R and "� in C � see ����� First
we characterize ball cusp groups � � �� � U � U� as abstract groups� � is a
non�commutative torsion free nilpotent group of rank � �� generators�� By ����
it is a central extension of Z���� "� by Z �with ! �� Z as center��

Proposition ��� ��Ho
	�� IV����

�i� The abstract group structure of a neat ball cusp lattice � is uniquely de�
termined by the negative integer t satisfying

�������� � �t ����

with generators �� �� � of �� � � !�

�



�ii� If vol�"� and vol�!� denote the positive euclidean volume of a fundamental
domain of " � C or ! � R� respectively� then

t � �� vol�"�
vol�!�

� ����

�iii� Let F � F ��� be the cusp bundle over the elliptic curve T constructed
above� see ��
�� ����� Identifying T with the zero section of F it holds that

t � �T �� � �� ����

where �T �� � �T ��F is the sel�ntersection number of T in F�

�

Now let K � Q�
p�d� be a 	xed imaginary quadratic number 	eld as above�


 � �KB �

� 
� ��� ���u 
� � � U� � �� � U�
the corresponding unipotent ball cusp lattice� Feustel proved in 
Fe��� that the
sel	ntersection of the elliptic zero section T� in the cusp bundle F ����u� does
not depend on 
 but only on d mod �� At the special cusp ��
�
�� one can
calculate

Proposition ��� ��Ho���� ����� With the above notations it holds that

�T �
�� � ��K �

D

d
� f�����g�

where D � DK�Q is the discriminant of K�

�

Let �� be a neat normal sublattice of �� Then ��� is unipotent� With obvious
notations we get from ���� a commutative diagram

� �� !� �� ���u �� "� �� �
� � �

� �� !�
� �� ��� �� "�� �� �

It is not di�cult to 	nd the relation

�T
��
� �

�T �
� �

�

"� 
 "���

!� 
 !�

��
� ����

see 
Ho���� proof of ���� We calculated also there �Lemma ���� for �� �
��m��!�m� �
 !� that in any case


!� 
 !�
�� � m� ����

�



� Riemann�Roch on Neat Ball Quotient Sur�

faces

Following the basic ideas of Hirzebruch 
Hi� and a generalization of Mumford

Mu��� to non�compact algebraic quotient varieties of symmetric domains by
neat lattices we ex�plain the proportionality principle relating di�erent Chern
numbers of the toroidal com�pacti	cation X 
� ��B of ball quotient sur�
faces� For details we refer to 
Ho��� IV��� Consider pairs �E�� h�� of holo�
morphic G�vector bundles E� on B with G�invariant hermitian metric h� with
G � SU���� ��� C �� It can be canonically extended to a metrized holomorphic

Sl��C ��invariant hermitian vector bundle � #E� #h� on P� � P��C �� Since � acts
freely on B � the ��equivariant pair �E�� h�� descends to a hermitian holomorphic
vector bundle �E�h� on the quotient variety Xf 
� ��B ��	nite part��� By a
theorem of Mumford 
Mu��� this pair can be extended in a unique manner to a
hermitian vector bundle � �E� �h� on X� Around each boundary points t � X� the
sheaf of holomorphic sections of �E consists of the sections of E around t �outside
X�� underlying a logarithmic growth condition� More precisely� a holomorphic
base 	eld e�� ���� er of �E over a small complex analytic coordinate neighbourhood
U of t where X� is de	ned by w � �� has to satisfy the conditions

jh�ei� ej�j� jdet�h�ei� ej�����j � C��logjwj��M
outside X� for suitable positive constants C� M� The connection of the Mum�
ford extension �E with the equivariant bundles we started with is illustrated in
diagram �����

restriction factorization extension
#E � � � � � � � � � � E� � � � � � � � � � � � � � E � � � � � � � � � �E
y 
y 
y 
y
P� �� B �� Xf �� X

����

For instance� the construction applies to the G�equivariant hermitian tangent
bundle TB with Bergmann metric� but also to its dual �equivariant hermitian�
cotangent bundle �E�� h�� � �T �B � h

�� and to the canonical bundle �K �� k��� K � �
KB � T �B �T �B � k� � h��h�� Explicitly� the Bergmann metric �gj
k� on B is de	ned
by the Kaehler form

� �
i

��

X
gj
kdz

jd�zk � � i

��
� ��logN�z�� z�� ����

on B � whereN�z�� z�� � ��jz�j��jz�j is the distance function from the boundary
of B � The corresponding Ricci form

�� � �
X ��log det�gj
k�

�zj��zk
dzjd�zk ����

satis	es the Kaehler�Einstein condition �� � �� with � � ��� As volume form
we will use the corresponding Euler form

�� � �� � � �
�

�
��� �

�

�
�� � ��� ����

��



For these explicit details we refer to 
BBH�� Appendix B� Starting from �E� h�� �
�T �B � h

�� or �KB � k
�� one gets as �E� �K on X � ��B the logarithmic bundles

corresponding to the sheaves

O� �E� � $��logT � or O� �K� � $��logT ��
T � X� as �compactification� divisor�

����

respectively� coinciding on Xf with $� or $�� and are de	ned locally on U
around t � X� 
 w � � by

$��logT ��U� � fa�w�u�w dw � b�w� u�du� a� b � OX�U�g�
$��logT ��U� � fa�w�u�w �dw � du�� a � OX�U�g�

The correspondence �E�� h�� 	� �E described in diagram ���� is compatible with
tensor products� Therefore to �Kn

B � k
n� is corresponded �KX � fTg�n� where

the upper index n means tensor power� KX is the canonical bundle on X and
fTg denotes the vector bundle corresponding to compacti	cation divisor T�
The corresponding sheaves �of holomorphic sections� are denoted by KX or T�
respectively� An easy local coordinate calcultion along the 	rst factorisation in
diagram ���� �z� u� 	� �w � exp� ��iq z�� u�� with w � � as de	nig equation for
the compactifying torus� shows that


�� n� �� H��X� �KX � T�n�� 
�� n�� �� H��X�KnX � Tn���� ����

compare with ���� These presentations have been 	rst found by Hemperly 
Hem��
One has only to know that dz and �

wdw coincide up to a constant and to change
from z�u� to w�u�coordinates in sections f�z� u��dz � du�n with ��automorphic
form f�z�u� of weight n� Let F be a holomorphic vector bundle of rank r on X� In
the cohomology groups on X with constant coe�cients we consider the Chern
classes ci�F � � H�i�X�R�� see e�g� 
Wel�� Together they form the total Chern
class

� � c��F � � c��F � � Heven�X�R�� ����

the Chern classes ci�F � are represented by the closed real �i�forms �i�F � on X�
Consider the Chern forms

����F � 
� ���F � � ���F � � ���F �� ����

The latter is called the Euler�Chern form of F� The corresponding volumes

c���F �
X � 
�

Z
����F � � c��F �
X � 
�

Z
���F � ����

are called the Cern numbers of the bundle F� If F � TX is the tangent bundle on
X� then one writes shortly c���X�� c��X� instead of c���TX� or c��TX�� respectively
and calls them the Chern numbers of X� Especially� c��X� is called the Euler
number of X� With the additional notations of diagram ���� there is a remark�
able relations between the Chern numbers of of #E and �E� for neat arithmetic

��



groups � and bounded symmetric domains in general� the Hirzebruch�Mumford
proportionality relations� Restricting our attention to our two�dimensional case
one gets

Proposition ��� �see �Ho
	�� IV���� For two�dimensional neat ball quotient
surfaces X � ��B it holds that

c��� �E� �
c���

�E�
c��P��

volEB��� � �
�volEB���c

�
�� #E��

c�� �E� � c�� �E�
c��P��

volEB��� � �
�volEB���c��

#E��

where volEB��� 
�
R
F���

�� denotes the Euler�Bergmann volume of a ��funda�

mental domain F��� on B de�ned by the Euler�Chern form �� of the Bergmann
metric on B �

�

Proposition ��� ��Ho
	�� IV���� Let � be a neat ball lattice� T �
P

�mod� T��
supp T � X�� the compacti�cation divisor of Xf � ��B consisting of �nitely

many elliptic curves T�� Then the Chern numbers of X � ��B are related with
the Euler volume of a ��fundamental domain on B by

c��X� � volEB��� � c���X� � �volEB��� � �T ���

�

Since the arithmetic genus 	�X� �
P

i����idimH i�X�OX� of smooth com�
pact complex algebraic surfaces is connected with the Euler numbers by Noe�
ther�s formula 	 � �

�� �c
�
� � c�� it follows immediately that

	�X� �
�

�
volEB��� �

�

��
�T �� ����

Remark ��� The global volume parts of both Chern numbers are related as ��

and ��� in ��
�� which� together with
c���P

��
c��P��

� �� is the origin of this proportion�

ality�

Since T is a sum of disjoint elliptic curves resolving the cusp singularities�
we have

�T �� �

h���X
i��

�T �
i � ����

By ���� and ���� the sel	ntersections �T �
i � can be calculated by euclidean vol�

umes of lattices sitting in the corresponding cusp lattices� This has been done
partly at the end of the previous section for the natural congruence subgroups
�K�m�� m � �� see ����� ����� Fixing K� these formulas enable us to deter�
mine the whole corresponding cusp contribution �T �m��� of X�m� � XK�m� �

��



�K�m��B � Denote by �� the projective arithmetic group P�K� acting e�ectively
on B � and use analogous notations for the subgroups� ���m� and ��m� and their
subgroups will be identi	ed� The factor group �����m� acts on the set  X��m�
of cusp points of the Baily�Borel compacti	cation  X�m� of Xf �m� � ��m��B �
Let  
 be a 	xed cusp point� 
 � �KB � The isotropy subgroup of this point is
�������m�� Therefore� the number of components of T�m� is

%  X��m� �

�� 
 ��m��


��� 
 ���m��
h���� �


�� 
 ��m�� � h�K�


��� 
 ���u� � 
���u 
 ���m��

By a result of Feustel 
Fe��� for all cusps the factor group �������u is the same
�for 	xed K�� It is cyclic of 	nite order� more precisely it holds that

�������u �� Z�CKZ� CK 
� %funitrootsofKg � f�� �� �g�
Taking also into account the diagram before ���� we get together with obvious
notations

%  X��m� �

�� 
 ��m�� � h�K�

CK � 
"� 
 "��m�� � 
!� 
 !��m��

On the other hand we have by ����

�T��m��� �

"� 
 "��m��


!� 
 !��m��
�T �

���

Since all �T �
�� are the same� namely equal to ��K by Prop� ����� and


!� 
 !��m�� � m by ����� we get

Theorem ��� ��Ho����� For the natural Picard modular congruence subgroup
�K�m�� m � �� of ��K � P�K the sel�ntersection of the compacti�cation divisor
TK�m� on XK�m� � �K�m��B is determined by

�TK�m��� � � 
��K 
 �K�m�� � h�K� � �K
CKm�

�

Corollary ���

c��XK�m� � 
��K 
 �K�m��volEB��K�

c���XK�m� � 
��K 
 �K�m�� � 
volEB��K�� h�K���K
CKm� ��

�

The rest of this section will be used to 	nd the formulas for dimensions
of cusp forms in the above style� Comparing with ���� we calculate 	rst the
arithmetic genus of the bundles KnX � Tn�� by the Riemann�Roch formula for
bundles F on surfaces X


	�F� �
X

j
����jhj�X�F� � �

�
�F � F� K��X �� � 	�X�

��



We apply it to neat ball quotient surfaces X � ��B with compacti	cation
divisor T �

P
i Ti as above and to F � Fn � KnX � Tn��� With a canonical

divisor K � KX the Riemann�Roch formula translates to

	�Fn� � �
� �
nK � �n� ��T � � 
�n� ��K � �n� ��T �� � 	�X�

� �n���
� �
nK � �n� ��T � � �K � T �� � 	�X��

The adjunction formula for curves on surfaces yields

� � �e�Ti� � ��K � Ti� � Ti�

because the Euler number of an elliptic curve vanishes� It follows that

�T � �K � T �� �
X

i
�Ti � �K �

X
j
Tj�� �

X
i
�Ti � �K � Ti�� � ��

hence

	�Fn� � �n���
� ��nK � nT � � �K � T �� � 	�X� �

�
n
�

�
��K � T ��� � 	�X�

�
�
n
�

�
�K � �K � T �� � 	�X� �

�
n
�

�
�c���X�� �T ��� � 	�X�

Using c�� � �c���T ��� see Proposition ���� and 	 � �
�� �c

�
��c�� �

�
�� ��c���T ���

for our surface X� it follows that

	�Fn� � �
�
n
�

�
c��X� � �

�c��X� � �
�� �T

��
� 
�

�
n
�

�
� �

� �c��X� � �
�� �T

��
� 
�

�
n
�

�
� �

� �volEB��� �
�
�� �T

���

Especially for � � �K�m�� m � �� and n � � one obtains with help of ��� and
���

	�Fn� � 
��K 
 �K�m��f
�


n

�

�
�

�

�
�volEB��K�� h�K� � �K

��CKm�
g� ����

Proposition ��� For a neat ball quotient surface X � ��B the invert
ible sheaves Fn � KnX � Tn��� n � � are cohomologically trivial in the sense
that the �higher� cohomology groups Hj�X�Fn�� j � �� vanish�

Proof� We have only to check the vanishing of H� and H�� For the latter case
we apply Serre duality to get

H��X�Fn� �� H��X�KX � F�n� � H��X�KX � T��n���� � ��

Namely� assume that there exists a non�zero section� Then ��n����KX�T � is
linearly equivalent to an e�ective divisor D on X� But then the positive powers
of KX � T cannot have non�zero sections� This is a contradiction to the next
proposition�

�

��



Proposition ��� �Baily�Borel�� For a suitable N � � the sheaf �KX � T�N is
generated by global sections� The corresponding morphism X �� PM � M �� �

h���KX�T�N� factorizes through the Baily�Borel embedding  X � ���B �� PM �

�

For the vanishing of H� we need the following

Theorem ��	 �Kodaira�Mumford �Mu�	��� Let V be a complete normal variety
over a �eld of characteristic �� dimV � ��L an invertible OV �sheaf such that
LN is generated by its global sections for a suitable N � �� Then it holds that

H��V�L�n� � � for all n � � � dim&N �V � � ��

where &N 
 V �� PM denotes the morphism corresponding to a basis of the
space of global LN �sections�

By Proposition ��� the vanishing conclusion for H� holds for L � KX � T�
Via Serre duality we get

H��X�Fn� � H��X�KnX � Tn��� �� H��X�KX � �KnX � Tn�����

� H��X� �KX � T���n��� � ��

�

Since 	 � h� � h� � h� one obtains

Corollary ��


h��X�Fn� � 
�



n

�

�
�

�

�
�volEB��� �

�

��
�T ��

for n � ��

�

Together with ���� we get 	nally the

Theorem ���� For the natural Picard modular congruence subgroups of level
m � � of an arbitrary imaginary quadratic number �eld K the dimension of the
space of cusp forms of weight n � � is determined by

dim
�K�m�� n�� � 
��K 
 �K�m��f
�


n

�

�
�

�

�
�volEB��K�� h�K� � �K

��CKm�
g�

�

��



� Index formulas for congruence subgroups

Finite hermitian modules and cardinality of their unitary groups

Let O � OK �K � Q�
p�d�� D � DK�Q� p a natural prime� & a hermitian form

on On represented by a hermitian matrix with coe�cients in O denoted by the
same letter� descends to the hermitian module �O�pkO�n� �&� over the artinian
ring �O�pkO�n� Write & instead of �& and let also ' be such a hermitian form
on Om� Set

Apk �&�'� 
� %fM �Matn�m�O�p
kO�� tM& �M � 'g

Apk �&� 
� Apk �&�&� � %U�&�O�pkO��

The local densities

�p�&�'� 
� pkm�m��n�Apk�&�'� for k �� ��
�p�&� 
� �p�&�&��

are correctly de	ned� see 
Bra��
The following recursion properties for diagonal forms are known


�p�diag�d�� ���� dn�� � �p�diag�d�� ���� dn�� di��p�diag�d�� ���  di� ��� dn��

if p � �d� � ��� � dnD

�p�En� � �p�En� ���p�En���� if � �D�

where En denotes the unit matrix with n rows� The main role for our purposes
plays & � diag��� ������ Here we have the important local splittings

�p�&� � �p��&�����p�E�� � �p�&�����p�E�� ���p���

For the proof we used additionally the classi	cation of hermitian lattices over
local rings due to Jacobowitz 
Jac��

Theorem ��� ��Ho
	�� Appendix of V�� For & � diag��� ������O � OK � D �
DK�Q it holds that

%SU�&�O�pkO� � p�k��� �
D

p
�p������ p���

for all k � � if not � � pjD and for k � � in any case�

�

��



Local indices

Let G �Z be an irreducible linear group scheme� p a natural prime� �p 
�
G �Zp�� We introduce the following notations for �relative� reduction maps


redm 
 �p �� G �Zp�pmZp� for m � ��
rednm 
 G �Zp�pnZp� �� G �Zp�pmZp� for n � m�

The kernel of redm is denoted by �p�m�� This is the pm� congruence subgroup
of �p�

Theorem ��� ��Ho
	�� Appendix of V�� There exist natural numbers k� �
�� e � �� such that for all k � k� the left�exact commutative diagram

� �� �p�k� �� �p � redk��p�� G �Zp�pkZp�x
 �� x
redk�ek

� �� �p�k � e� �� �p �� G �Zp�pk�eZp�

has a commutative extension factorizing redk�ek through redk��p�

�

Corollary ���


�p 
 �p�k�� � %redk��p� � 
G �Zp�p
kZp� 
 Ker�redk�ek ���

�

De�nition ��� We call a pair �e� k�� satisfying the properties of Theorem ���
a Neron pair of �p�

We look for minimal Neron pairs with respect to the lexicographical order�
For given G �Z as above the minimal Neron pairs of the local groups �p depend
on p� So it is precise to write ep instead of e� if p is not clearly 	xed� The notion is
motivated by a more general existence theorem of Neron� 
Ner� Prop���� about
polynomial maps over henselian discrete valuation rings R in characteristic �
for certain pairs �e� k��� We can restrict ourselves to the cases R � Zp� A
polynomial map over R

F � �F�� ���� Fm� 
 Rn �� Rm� x � �x�� ���� xn� 	� F �x�

is given by m polynomials Fi � R
X�� ���� Xn�� Neron�s general theorem says
that their exist pairs �e� k�� of natural numbers such that for each x � Rn with
F �x� � � mod pk�e� k � k�� �approximative solution� one can 	nd a solution
Rn � x� � x mod pk of F �X� � �� For application to a�ne group schemes
over Zp one has to write the de	ning equations in the form F �X� � � with
polynomial map of the above type�

��



Example ��� The linear algebraic Z�groups G � G �d� of the �eld K � Q�
p�d�

are de�ned by F 
 O
 �� O��� sending

A �Mat��O� �� O
 to �tA& �A� &� detA� ���

By means of a Z�basis of O it can be written as a polynomial map from Z�� to
Z�� which extends for each prime p to a p�adic polynomial map Fp 
 Z��

p �� Z��
p �

The equation Fp � � describes the local group �p � G �Zp�� The elements of
G �Zp�pmZp� are represented by the pm�th approximative solutions of the equa�
tion Fp�X� � ��

Now the transfer of Neron pairs of F to Neron pairs of �p� whose existence
is stated in ���� is obvious� In 
Ho��� we succeeded to 	nd fairly low Neron
pairs expressed by highest exponents of Zp�polynomial maps� In order to de	ne
them� let d�jd�j���jdr 
� � be a chain of elementar divisors of a matrix � 
� A �
Matn�m�Zp�� Then we call e the highest exponent of A� i� pe is the highest
p�power dividing dr� It is denoted by ep�A�� The de	nition transfers correctly
to polynomial maps between free 	nite Zp�modules and to polynomial maps
F 
 A n �Zp� �� Am �Zp� representing rational �algebraic� morphisms of a�ne
spaces A n �� Am de	ned over Zp� For the latter map at each point Q � A n �Zp�
the di�erential map dQF 
 Znp �� Zmp is de	ned �the linearization of F at
Q�� If� for instance� F ��� � �� then d�F is represented by the Jacobi matrix
��F��X�� � ��Fi�X���Xj�����

De�nition ��� With the above notations we call ep�Q�F � 
� ep�dQ�F � the high�
est exponent of F at Q�

For the special unitary Zp�polynomial maps Fp of example ��� extending the
Z�polynomial map F we dispose now on highest exponents ep�E�F � � ep�Fp� at
the unit element E�

Proposition ��� ��Ho
	�� Appendix of V� section ��� Let F � F �d� be the
special unitary Z�polynomial map de�ning G �d��Z as described in ����

�i� e � ep�E�F
�d�� �

�
�� if � � pjD
�� otherwise

�ii� �e� e� �� is a Neron pair of the local group �p � G �d� �Zp��

The proof of the 	rst part is a simple calculation via Jacobian matrices� For �ii�
one has to apply to F � F �d� and Q � E the following

Proposition ��	 �generalized Hensel lemma� �Ho
	�� Appendix of V� Prop�
��
�� Let F 
 A n �� Am be an algebraic morphism of a�ne spaces de�
�ned over Zp� Q � A �Znp �� e � ep�Q�F �� If the residue of Q is a solution of

F �X� � � mod pk�e and k � e� then there exists a solution Q� � A n �Zp� of
F �X� � � such that Q� � Qmod pk�

��



By de	nition ��� the second part of Proposition ��� means that we have
left�exact commutative diagrams

� �� ���k� �� �� � redk����� G �Z���
kZ��x
 �� x
redk�ek

� �� ���k � e� �� �� �� G �Z���
k�eZ��

for all k � � factorizing redk�ek through redk��� in the exceptional cases �jD�
and otherwise exact sequences

� �� �p�k� �� �p �� G �Zp�p
kZp� �� �

for all k � �� Together with Corollary ���� Theorem ��� and a little calculation
in the case � � pjD to determine %Ker�redk��

k � � ��� for all k � � one gets
	nally

Theorem ��
 ��Ho
	�� Appendix of V� Prop� ��
��� Let �p be the local group
G �d� �Zp�� For the congruence subgroups �p�k� holds


�p 
 �p�k�� �
p�k

�p
��� �

D

p
�p������ p���

for k � � in general and k � � if not � � pjD�

�

Global indices

Corollary ���� �global index formula� �Ho
	�� Appendix of V� Prop� ������
For the special Picard modular groups � � G �d� �Z� and all natural numbers m�
except for �jm�D � � � m� it holds that


� 
 ��m�� �
m�

�m

Y
pjm

��� p������ �
D

p
�p����

For the proof one needs the strong approximation theorem for simple simply�
connected algebraic groups G over Q with non�compact G �R� due to Platonov
and others� see 
Pla� and the references there� Our special unitary groups are
simple� see 
Hel�� IX� x�� Lemma ���� and simply� connected� Strong approxi�
mation means that

���� For given primes pi� natural numbers mi and elements Ai � G �Q pi ��
i � �� ���� r� there exists A � G �Q � such that A � G �Zp� for all p 
� p�� ���� pr and
A � Ai mod p

mi for i � �� ���� r�

For algebraic groups de	ned over Z it is easy to show that from the strong
approximation property one gets exact sequences for global and local congruence
subgroups

� �� G �Z��m� �� G �Z� ��
rY
i��

�pi��pi�mi� �� �

��



for m � pm�
� � ��� � pmr

r � see 
Ho���� App� of V� Lemma ����� Now the corrollary
follows immediately from Theorem ����

�

� The Euler�Bergmann volume

Local volumina

The Lie algebra g of the Lie group G � G �R� � SU���� ��� C � is a subalgebra
of the Lie algebras sl��C � � gl��C � �Mat��C �� The imaginary quadratic num�
ber 	eld K endows g with a K�structure �Q�structure� setting gK �
g �Mat��K� containing gO 
� g �Mat��O�� Tensoring with Qp we get the

local Lie algebra gp � g
�d�
p � For natural numbers m we de	ne the local con�

gruence subalgebras gp�m� consisting of all A � gO � Zp � Mat��Op� with
A � �modm� As a vector space� the Lie algebra gp of our special unitary local
group Gp � G �d� �Qp � is isomorphic to Q�

p � The exponential map

exp 
 gp�m� �� �p�m� � A 	�
�X
n��

�

n�
An

is a homeomorphism for m � � and even for m � � if p 
� � with respect to the
usual local topologies� see 
H����� App� of V� Lemma ���� The Haar measure on
Qp normalized by �

p on Zp extends to gp and transfers via the exponential map

to a Haar measure on the topological group G �Q p �� normalized with respect to

the canonical Z�lattice gO � g
�d�
O of g � TeG �R�� Together with a �normalized�

invariant algebraic di�erential form � on G of highest order de	ned over Q
the local volumina �p��p� are well�de	ned as integrals over �p� We normalize
� � ��d� by the volume � on a gO�fundamental domain of �� Then one gets
�
Ho����

�p��p�m�� � p��m

after some di�erential geometric considerations of linearization and shiftings of
the exponential map as described in 
Hel�� II� in terms of Taylor series� Then
the local index formula of ��� yields the following

Proposition ��� ��Ho
	�� App� of V� Prop� ��
��

�p��p� � ��� p������ �
D

p
�p�����p�

�

According to real di�erential geometry the volume form � de	nes also a
normalized Haar measure �� on G � G� � G �R�� We want to determine the
��volume

��G �Z��G� 
� ���G �Z��G�

��



of a G �Z��fundamental domain of G� This global volume and the local volumina
come together on the adele group G �A � � G�

Q
p G �Q p �� where A � A Q �

R � Qp Qp denotes the adele ring of Q� It is a locally compact topological
group� Via in	nite products the form � de	nes a �normalized� Haar measure �A
on G �A �� see e�g� 
Kne�� using the fact that the in	nite product

Q
p �p�G �Zp�

converges� It is called the Tamagawa measure on G �A �� The group G �Q �
appears as discrete subgroup of G �A � by diagonal embedding� Consider the
topological quotient space G �Q ��G �A �� Its volume with respect to �A is called
the Tamagawa number ��G � of G � It does not depend on the �normalization�
choice of �� It is not di�cult to verify that the strong approximation property
implies �generally for semisimple algebraic groups de	ned over Z� the following

Lemma ��� ��Ho
	�� App� of V� �����

��G �Z��G� � ��G �
Y

p
�p�G �Zp��

���

For the proof one has only to use the toplogical translation of the strong approx�
imation property� It says that G� � G �Q � is dense in G �A �� see 
Pla�� It has the
decomposing consequence G �A f � � G �Q � �

Q
p G �Zp�� where A f �

Q
p G �Q p � is

the ring of 	nite adeles� The rest is trivial�

�

The most striking fact is the following

Theorem ��� �see �Kot��� The Tamagawa number ��G � is equal to 
�

�

Together with Lemma ��� and Proposition ��� we get the global volume

Theorem ��� ��Ho
	�� App� of V� ����

���d��G �Z��G� � �D
Y

p
��� p�������� �

D

p
�p����� � �D
���L��� 	��

�

In order to change to the Euler�Bergmann metric on the ball B we compare
	rst the forms ��d� with a 	xed one� say ����� Being G � invariant� they di�er
by a constant factor only� So one has only to compare the normalizing lattices
gOforallO � OQ�

p�d�� It turns out that

��d� �
��D
jDj����

���� ����

In the next steps we set � � ���� and O � Z
i� for abbraviaty� Let g �
k � p a Cartan decomposition� k � LieK�K the maximal compact subgroup

��



S�U����U���� of G� p � T�B � In both summands we de	ned in 
Ho��� explicitly
canonical Z�lattices kO or pO with O�structure such that gO � kO � pO� The
volume form � splits into � � 
 � �� where 
 is a K�invariant and � a G ��R���
invariant volume form on B � Both forms are normalized by means of kO or pO�
respectively� By an elementary di�erential geometric calculation� mainly on a
��dimensional sphere S� � R� one gets the volume


�K� � ����

For each ball lattice �� � G acting freely on B the decomposition of � yields via
	brewise integration �G �� G�K � B � the splitting

�����G� � 
���� � �����B � � ��� � �����B ��
see 
Hel�� X��� where the latter factor denotes the ��volume of ��� fundamental
domain on B � The formula extends to ball lattices � � G acting e�ectively on
B � One has to divide both sides by the index 
� 
 ��� using a suitable torsionfree
sublattices �� of �� For ball lattices � � G not acting e�ectively on B one has to
multiply additionally the left�hand side by the correcture factor %C���� where
C��� denotes the center of ��� � � C�G l� �C ��� Thus

%C��� � ����G� � ��� � ����B �
Together with ���� we get for all our unimodular ball lattices �

%C��� � ��d����G� �
�����

jDj�������B ��

The Lemma ��� below compares the G�invariant volume forms � and ��� the Eu�
ler form of the Bergmann metric on B � see ����� The corresponding substitution
yields

%C��� � ��d����G� �
�����

�jDj��� �����B ��

The left hand�side has been determined in Theorem ��� for all special Picard
modular groups � � ��d�� It turns out that

%C���d�� � �D
���L��� 	� � ���D�
�

�jDj��� ����
�d��B �

Remember that we used the notation volEB for the ���volume of a fundamental
domain and that the e�ective acting projective groups of �K and ��d� are the

same� Using also 
��� � ��

	 � see e�g� 
Ser�� II� x�� one gets alltogether

Theorem ��� ��Ho
	�� App� of V��

volEB��K� � �
�	��%C���d�� � jDj���
���L��� 	D�

� �D�jDj���
���� L��� 	D��

with

��



�D � %C���d�� �

�
�� if D � �� �K is the field of Eisenstein numbers�

�� else

It remains to verify the following

Lemma ��� � � ��

	 ���

Proof �idea�� Let � � h���h be the connection of a hermitian vector bundle
�V�h� on a complex manifold and ( � d�� � � � its curvature tensor� Both are
explicitly well�understood for the universal hermitian bundles �U� h� on Grass�
mann varieties� see 
Wel�� III� Working with canonical coordinates at a canonical
origin O� the curvature matrix there can be written as (�O� � td �Z � dZ� Espe�
cially� on the projective space Pn � Grass��� n��� one gets (�O� � �d�zj �dzk�
at the natural origin O of A n �C � � Pn� The Chern forms �i are determined by

� � �� � �� � ���� � det�E � �

��i
�(jk��

with corresponding unit matrix E� Therefore the 	rst Chern form �� is nothing
but i

�� times the trace of the curvature matrix� For instance� for Pn one gets

���O� � � i

��

nX
j��

dzj � d�zj �

The canonical and the universal bundle are related by K �� Un��� The corre�
sponding Chern forms are denoted by #�i� Especially for the projective plane
one gets

#���O� � � �i
�� �dz� � d�z� � dz� � d�z���

#����O� � � 

��dz�d�z�dz�d�z��

Up to sign the 	rst Chern form of the canonical bundle and of the tangent
bundle on P� coincide� Using the relation c�� � �c� on P� we get

#���O� � � �

��
dz�d�z�dz�d�z� � ���O� ����

as second Chern form of the tangent bundle at O� At the same time �see e�g�

Ho���� end of section IV��� this is the Euler�Chern form �� of the Bergmann
metric �of tangent bundle� on the two�ball B at O� we look for� Using the
normalization of the volume form � coming from normalization of 
 and ���� �

 � � and following also exercise ���� in 
K�N�� vol� �� XI� x��� one gets

��O� � ��

�
dz�d�z�dz�d�z��

Now compare with ���� and remember that both volume forms � and �� are
equivariant�

�

��



� Functional transfer

Assume that �m�n� is an admissible pair of natural numbers in the sense of the
Main Theorem� see end of section �� In our geometric dimension formula of
Theorem ����

dim
�K�m�� n�� � 
��K 
 �K�m��

�

�



n

�

�
�

�

�

�
volEB��K�� h�K� � �K

��CKm�

�

we can substitute now� using the global index formula �����


��K 
 �K�m�� � 
P��d� 
 ��d��m�� � ���d����d��m��
�C���d��

� 
��d� 
 ��d��m����D � 
�m������L�m���� 	D�
��m���m�D�

but also the Euler�Bergmann volume expression of Theorem ���

volEB��K� �
�D � jDj���

����
L��� 	D��

We arrive at the arithmetic dimension formula

dim
�K�m�� n�� � ����

�

�m

m�����Lm��� 	D�

��
�


�



n

�

�
�

�

�

� jDj���
����

L��� 	D�� h�K� � �D
���DCKm�

�
m��

We have to transfer the L�value and class number part inside of the braces to
higher Bernoulli numbers� This will be done by means of the functional equation
of L�series and some related classical relations� The corresponding formulas can
be found in modern textbooks� We refer to 
I�R�� 
B�S�� 
Lan��

Functional Equation ��� for Dirichlet characters 	 with Fuehrer N �smallest
natural number such that 	 factorizes through Z�NZ� 


L�s� 	� � L��� s� �	��
��

N
�s
S�	�

��s�

e�is�� � 	����e��is��
e�is � e��is

Here �	 denotes the complex conjugate character and

S�	� �

NX
a��

	�a�e��ia�N �Gauss sum��

For 	 � 	D it is clear that �	 � 	� Moreover� it is known that N � jDj�
	���� � ��� S�	� � i

pjDj and
L��� n� 	� � �Bn��

n
for n � � ����

��



�see 
Lan�� XIV� Th� ����� So one calculates

L��� 	D� �
�i��

jDj�S�	D�L��� �� 	� �
���

�jDj���B���� ����

Furthermore� we dispose on the well�known class number formula

h�K� �
CK
��

p
jDj � L��� 	D�� �CK � %funit roots of Kg�

which transfers by means of ��� and ���� to

h�K� � �CK
�
B���� ����

With ���� and ���� The braces part of the starting formula of this section
becomes �

��n���
�
�

�� B��� �
B�����D
���Dm�

�
m� �

�
���

n
B�����n

� � �n� ��m� � 	�D
�D

B���m
	
o
�

Thus we get the 	nal dimension formula

dim
�K�m�� n�� �

�
����m


�m������L�m���� 	D�
��
h
B�����n

� � �n� ��m� � 	�D
�D

B���m
	
i

as stated in the Main Theorem in section ��

�

Using ���� backwards one gets the L�value formula

dim
�K�m�� n�� �

� �

	�m


�m������L�m���� 	���
�
L���� 	���n� � �n� ��m� � ��

� L��� 	�m
	
�

and by ���� it can be written in pure zeta value terms


dim
�K�m�� n�� �

� ��m����


	�m��m�����
�m�
K ���

h
�K ����
����� ��n� � �n� ��m� � ���K ���

����� m	
i

�

By the way of proof we are also able to express the Euler�Bergmann volume
of a �K�fundamental domain explicitly as rational multiple of the third Bernoulli
number combining the formulas of Theorem ��� and of the functional equation
���� One gets

volEB��GammaK� �
�

��
B��� � ��

�
L���� 	�

�

��
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