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Summary: A mathematical theory of competitive labelled-ligand assays was developed with the intention of
theoretically re-evaluating the optimal assay conditions and precision data of assay Systems established by
experiment. Our theory is based upon the assumptions of a simple bimolecular reaction mechanism, homo-
geneous reactants, äs well äs kinetically indistinguishable labelled and non-labelled ligands. The general case
of two-step (non-equilibrium) assay was considered including the one-step (equilibrium) assay äs a special
case. The solution of the System of corresponding kinetic differential equations was used to mathematically
construct Standard curves. Furthermore, intraassay precision profiles and indices äs well äs detection limits
were calculated considering solely the pipetting error, , äs a source of experimental error. A procedure was
outlined to mathematically determine the optimal incubation conditions for any assay System targeted to a
given analyte concentration, P, at which the Standard deviation of assay results is to be minimized. Estimates
of both the content of binding sites and the equilibrium constant, K, of the specific binding agent are necessary,
and these can be derived from Scatchard plots. For six RIA Systems, of which three were one-step and three
were two-step assays, experimental assay conditions and precision data were compared with theoretical
predictions. Experimentally determined antibody binding site concentrations agreed fairly well with those
independently evaluated by mathematical optimization. Mean precision indices, defined äs constituting an
average over the complete precision profile, were fotind to be within the theoretically predicted ränge, i. e.
two- to threefold the pipetting error. Detection limits (Standard deviation near concentration 0) differed from
theoretical values at most by a factor of two in the case of two-step assays and were nearly identical with
theoretical values for one-step assays. Generally, they were Of the order of , approaching a lower limit by
the order of , when P falls to the order of K. Comparing the advantages of the one-step and two-step
technique of competitive labelled ligand assays, the following results were obtained: The one-step method
provides a möre fävoürable pfecision profile, especially a better detection limit, and a higher specificity of
analyte recogiütion. The quantity of reagents needed (specific binding agent äs well äs labelled ligand) is three
to four times lower than in the two^step method. On the other hand, the higher amount of reagents employed
for the two-step technique resülts in ä considefably higher measuring signal, which is important where activity
of the labelled ligand is low. We conclude that mathematical modelling of labelled-ligand assays should be
useful in re-evaluating assay conditions and precision data obtained by experiment. Furthermore, it permits
some general assertions concenüng the principal limits of assay precision äs well äs the advantages and
disadvantages pf different assay protocols.

n o uc on named labelled-ligand assays, have found wide appli-
Since the introduction of their basic analytical prin- cation in clinical chemistry and biochemistry. To
ciple in 1959 (1), radioiiiimunoassays (RIA), enzyme quantify a certain analyte in a biological fluid, com-
immunoassays and other related methods, generally petitive or non-competitive (sandwich) immunoassays
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may be used. The latter have been shown to be more
sensitive by s much s orders of magnitude (2, 3).
Nevertheless, because of their lower technical require-
ments, competitive assays are at present more com-
mon. If a certain r nge of analyte concentrations is
to be assayed, an optimization of assay conditions is
needed which allows the determination of these con-
centrations with maximal precision. For this purpose
the following parameters and conditions have to be
adjusted:
(1) concentration of specific binding sites

(2) concentration of labelled ligand

(3) duration of incubation Steps

(4) the incubation protocol, i.e. labelled and unla-
belled ligand are added simultaneously or the
labelled ligand is added after a period during
which unlabelled ligand is allowed to preincubate
with the binding agent (delayed addition of la-
belled ligand). In the following, these different
incubation protocols will be designated s the one-
step or two-step method, respectively.

Usually, optimal conditions of incubation are deter-
mined by experiment. Several authors (2, 4—9) have
calculated optimal conditions of incubation by using
mathematical models which describe the assay reac-
tions by kinetic differential equations (two-step assay)
or algebraic equations derived from the mass action
law (one-step assay). However, the actual determi-
nation of the inevitably necessary reaction parameters
(kinetic and equilibrium c nstants) needs empirically
optimized assay conditions. Thus the predictive value
of mathematical models is restricted to more or less
general assertions or to subsequent corrections of
experimentally obtained assay conditions. The aim of
our study was therefore to calculate optimal assay
conditions and precision data, not in advance, but
with the purpose of validating them when they have
already been obtained by experiment. As an example,
this was undertaken for six RIA Systems for peptide
antigens. In addition, the one-step and two-step in-
cubation techniques were compared with respect to
their influence on intensity of the measuring signal
and accuracy of assay results.

Methods

Mathematical theory of competitive labelled-ligand
assays
To mathematically describe the kinetics of the assay reactions,
"several strictly simplifying assumptions must be made:

i) There is a simple bimolecular mechanism of the reaction of
a specific binding site, Q, with both labelled (P*) and non-
labelled ligand (P). Consequently, this means that all binding
sites are kinetically homogeneous and bind independently
of each other.

ii) Labelled and non-labelled ligand are considered kinetically
indistinguishable.

For the assay reactions the law of mass action can then be
written s

K [PQ] [P*Q]

where K is the equilibrium constant of the backward (dissocia-
tipn) reaction. Its physical dimension is the concentration unk.

Further defmitions used are:

p actual concentration of non-labelled ligand in the incu-
bation mixture

χ ligand concentration in a sample, s established s an
assay result

p* concentration of the labelled ligand in the incubation
mixture

q concentration of binding sites in the incubation mixture

t! duration of the flrst incubation step (in the absence of
labelled ligand)

t2 duration of the secohd incubation step (after addition of
labelled ligand)

k kinetic decay constant of the complexes PQ or P*Q, resp.:
d[PQ]/dt= ^

B bound activity of the labelled ligand

S specific activity of the labelled ligand, i.e. activity per
eoncentration unit

a non-specifically bound fraction of the labelled ligand,
which is assumed to be tirne-independent (10)

v dilution factor of the non^labelled ligand in the incubation
mixture

ΔΒ intraassay Standard deviation of B

Δχ intraassay Standard deviation of χ

ε Variation coefficient of a single pipetted volume

Concerning the kinetic equations of the assay reactions, it is
very convenient for practical purposes to use k"1 s a time unit
and K s a concentration unit. An analytical solution of these
equations is provided by Rodbard & Weiss (8). This solution
actually represents a rather complex mathematical expression
and has the generalized form [P*Q] = f (p, p*, q, ti, t2), i. e.
bound labelled ligand concentration s a function of reaction
parameters. The concentration of totally bound labelled ligand
(B/S) can then be calculated from the surn of its specifically
([P*Q]) and non-specifically (a · (p* - [P*Q])) bound fraction:

B/S = (l - a) · [P*Q] -f ap* Eq-,(l)

Provided the reaction parameters k and K s well s reactant
concentrations are known, bound activity of the labelled ligand
s a function of analyte concentration B = f (vp) (Standard

curve) can be calculated by using Eq. (1).
The intraassay Standard deviation Δχ of an unknown concen-
tration is connected with the error ΔΒ of measurement of B via
the steepness of the calibration curve (5):,,

Δχ = v - ΔΒ / (6B/8p) Bq.<2)

The error ΔΒ is usually apprpximated by empirical expressions,
°ΔΒ = f(B) (4,11—21), and implicatescontributions'by different
errors: :

Eur. J. Clin. Chem. Clin. Biochem. / Vol. 29,1991 / No. 9



Keilacker et al.: Mathematical modelling of compelitive labellcd-ligand assay Systems 557

(i) the pipctting error,
(ii) the error of activity measurement and
(iii) errors derived from sample and reagent handling.

meaningless for the purposc of this
follows:

Δχ2 (p = 0) =

study.) From Eq. (4) i t

Assuming that the work is performed carefully, that modern
measuring devices with low noise are uscd, and that tracer
materials with high spccific activity are used, the pipctting error
becomes dominant in practical terms. It contributes thrcefold
to the total crror (pipetting of Q, P*, P), whereas the measuring
error contributes only once. Therefore, assuming that the latter
is of an Order not greater than ε, its influcnce on the total error
will be neglected for the purposc of this work. (Assuming a
Poisson counting error of (BT)~1/2, it can bc minimized by
applying a sufficiently high counting time, T.). The error ΔΒ
can then be calculated from the absolute pipetting errors
Δρ = ερ, Δρ* = ερ*, and Aq = zq by quadratic summation of
their respective contributions:

ΔΒ2 =
ε2 [(ΘΒ/δρ)2 ρ2 + (6B/dp*)2 p*2 + ( B/8q)2 q2].

Substitution of Eq. (3) into Eq. (2) results in:

CVrel (χ)2 = (ε-1 V1 Δχ/p)2 »

Eq. (3)

l +
(δΒ/δρ*)2 p*2 + (eB/eq)2 q2

OB/3p)2p2 Eq. (4)

where CVrel (x) is the Variation coefficient of the determination
of χ expressed in units of ε. Together with Eq. (1), Eq. (4)
permits the calculation of the intraassay precision at each point
of the Standard curve. The mathematical model presented com-
prises the general case of the two-step (non-equilibrium) assay,
including the special case of the one-step assay by setting tt = 0.

Calculation of the precision index, λ
Intraassay precision may easily be estimated by considering the
deviations of experimental points from a suitably fitted Stand-
ard curve, B = f (vp). Supposing a linear relationship between
the appointed Standard concentrations, vp{, and their values,
Χι, re-estimated from the fitted Standard curve, the precision
index of the linear correlation χ = a + b (vp) is statistically
defined by:

λ2 = sj/b2 bv Σ (PJ - p;) Αχ; + Σ Δχ?
(n - 2) v2 Σ (pj - p,)2 Eq. (5)

where sb is the Standard deviation of the regression coefficient
(b ~ 1), n is the number of the different Standard concentra-
tions with the mean value fr, and Δχ,· are the deviations of x{
from their appointed values. Averaging over several assay runs,
j, the tenn Σ (ρί - p,·) Σ Axy will vanish because Σ Δχ^ = 0, if
the Standard curve is properly fitted. Thus the statistically
expected value of λ2 should be

λ2 = (n - 2) v2 Σ (Pi -
Eq.(6)

According to Eq. (6), λ defines an overall precision and can be
interpreted s the precision of measurement of χ at n different
points of the vp-axis which is centred at the point p{. It can be
pre-calculated by using Eq. (1) and (4).

Calculation of detection limit
As a measure the Standard deviation, Δχ at p = 0 can be used.
(Customarily the two- or threefold value is used, but this is

ε2 ν: (8Β/6ρ*)2 p*2 + (6B/aq)2 q2

(8B/6p)2 p = 0 Eq. (7)

Mathemat ica l op t imiza t ion of assay condi t ions

In solving the optimization task it is impraclicablc to simulta-
neously minimize the complete precision profile, i. e. the Stand-
ard deviations or Variation coefficients in dependencc on ana-
lyte concentration. Therefore, a target concentration, P, is cho-
sen which is situated in the midrange of the concentrations to
be assayed, the Standard deviation of which is to be minimized.
The optimization problem in hand is multivariate, because four
Parameters (q, p*, t|, t2) have to be varied. Certain considera-
tions may, however, enable its simplification. First, t2 will be
infinite in the case of the one-step method (equilibrium), and
ti will be infinite in the case of the two-step method (equilibrium
reached aftcr completing the first incubation Step). Secondly,
to cnsure an effective competition between P* and P, the con-
centration p* should be of the order of P or less. The remaining
variant q is then the main determinant of achieving an optimal
precision profile (9). As a critcrion for determination of the
Optimum q value, minirnization of Δχ at p = P is taken. The
actual optimal values of p*, tj, t2 will now depend on q. They
should properly be defined by attaining the minimum detection
limit at the q value selected. This represents a more preferable
criterion for optimizing these parameters than minimization of
Δχ at p = P, because a good precision profile should provide
an agreeable Δχ not only at p = P but also at p = 0. In this
way, the multivariate optimization problem can be solved by a
stepwise quasi-univariate strategy. This is especially important
with regard to an experimental optimization strategy which, in
principle, can be performed in the same way.

An iterative procedure is recommended, starting with a one-
step incubation protocol during which a very low (tracer) p*
value and a sufficiently high value of t2 are employed, while q
is being varied. With the established optimal q value, p* can
now be adjusted to its ultimate value. The optimization cycle
can then be repeated. Changing to the two-step method, a
sufficiently high value of ti should be used and optimal para-
meters (q, p*) of the one-step method may serve s starting
values for further optimization. Beginning with the determi-
nation of an Optimum value of 12, the new values of q and p*
can be obtained s in the one-step method. Because of their
dependence on q, it is not obligatory to explicitly evaluate p*
and t2 s given in their conventional physical units. They can
rather be handled s implicit optimization parameters, knowl-
edge of which is only important in the context of the mathe-
matical procedure. Thus, mathematically s well s experimen-
tally, optimization centres on the evaluation of q values. In
particular, it is unnecessary to experimentally determinc kinetic
dissociation constants, k, unless dependency on time of any
assay parameters is considered.

Radioimmunoassay Systems
Six radioimmunoassay Systems have been developed for the
determination of:
(1) human C-peptide (22)
(2) glucagon (23)
(3) rat insulin (24)
(4) human growth hormone (25)
(5) free insulin (26)
(6) human insulin (27)
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S tandard-curve f i l t ing
A model function vp = a.iy"1 4- a0 + atf (28) was used,
where vp are Standard concentrations, y is the response variable
of the assay minus non-specific binding, and aj are constants.
This function is derived from Ihe mathematical model described
above, but in a strictly simplified form. The coefficients aj were
evaluated by a least-square method taking into account the
secondary conditions a_i > 0 and at < 0, which follow from
theoretical reasoning,
It must be pointed out that at higher values of vp (where y
becomes near zero), statistical deviations of y will gain a rela-
tively high vveight because of the inverse form of our model
function. This refiects the high degree of uncertainty of assay
results in this region. The ränge of measurement should there-
fore not be extended to more than 2P. Keeping that in mind, a
theoretically based three-parametric model function is superior
to any ernpirical regression function using a high number of
Parameters. Such regression functions tend to follow experi-
mental fluctuations and, in our experience, statistical quality
Parameters often fail to meet their theoretically expected values.

Determination of equilibrium binding parameters,
K and q

Competition curves utilizing trace (but known) concentration
of labelled äntigen and a wide ränge of concentrations of non-
labelled äntigen were established at an appropriate antibody
düution. K values äs well äs antibody binding site concentra-
tions, q, were derived from the left-hand (steeply declining)
part of the Scatchard plot, where the working ränge of the
antibody is normally situated.

When determined in this way, especially q values may be afr
fected by uncertainty. Therefore we alternatively calculated q
values from the parameters of the fitted Standard curve (28).
The resulting expressions are

q = a_, / yT

for one-step assays and

q = 1/1/4 ai - a, a., - 1/2 a0

Eq. (8)

Eq.(9)
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ployed in the assay.
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Fig. l. Optimal antibody binding site concentrations, q, in de-
pendence on target äntigen concentrations, P, (both
referred to the pertineiit equilibrium constants, K) for
six RIA Systems (from left to right: RIA for human C-
peptide, glucagon, rat insulin, human growth hormone,
free insulin in human sera, insulin in human sera, see
Methods). For each pair of cohimns, the left one was
calculated from parameters of Standard curve fitting,
whereas the right one was derived frorn the Scatchard
plot of a binding curve for either antiserum. Broken
lines indicate the values obtained by mathematical op^
timization. Open and hatched bars represent one-step
or two-step assays, respectively,

Results

As illustrated in figure l, there was an excellent agree-
ment between the optimal concentration of antibody
binding sites obtained by experiment and, indepen-
dently, by mathematical modelling of the 6 RIA Sys-
tems investigated. Experimental q values were very
similar, whether they were derived from Scatchard
plots or from the parameters of the fitted Standard
curves. Optimal q values depend on target concentra-
tions, P, both P and q being expressed in units of the
equilibrium constants, K. Optimal q values of the
two-step method, ranging from P/2 to P, were 3 to 4-

. fold higher than those of the one-step method, which
ränge from P/8 to P/4. As a result of higher reagent
concentrations, the calculated response variable of the
assay is about four times higher in the case of the
two-step method äs presented in figure 2. Precision

indices, , of the 6 RIA Systems investigated are
shown in figure 3. In order to refer to the precision
of a single measurement, they were multiplied by
l/N (n — 2) = / 5, because each Standard curve was
established by using n = 7 Standard concentrations,
each being measured in triplicate (N == 3). On· the
whole, experimentally obtained precision indices com-
pare well with those expected by theory. Up to P/K
values äs low äs two, the vahies barely depend on
target concentrations, and they ränge between two-
to threefold of the relative pipetting error, . The
detection limit is nearly proportional to P iri the ränge
of P/K values considered (fig. 4). rfowever, when P/K
becomes about two, (p = 0) already appröaches
the value of 1/2 , which is the Ipwest attainable limit

-predicted by our theory. For a given value of P,
detection limits of two-step assays are generally about
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Fig. 2. Theoretically calculated response variable at zero ligand
concentration (p = 0) of competitive labelled ligand
assays (upper curve: two-step assays. lower curve: one-
step assays). Bach point of either curve represents bound
activity of the labelled ligand, B (p = 0), for an assay
targeted to antigen concentration P. Calculations were
made according to Eq. (1). B is referred to the product
of specific activity, S, and equilibrium constant, K,
whereas P is referred to K.
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Fig. 3. Precision indices, λ, calculated by Eq. (5) or (6), resp.,
and given in units of the pipetting error, ε. Το make
them comparable with the precision of a single meas-
urement, λ values were multiplied by factor l/fs (see
Results). For each pair of columns, the left one repre-
sents the mean value of 20 assay runs, whereas the right
one was calculated by mathematical modelling.

twice s high (Δχ (p = 0) = εΡ...2εΡ) s those of
one-step assays (Δχ (p == 0) = 0.5 εΡ,.,εΡ). Agree-
ment between experimental vs. theoretical values
seems to be better for one-step assays.

Figure 5 depicts Standard curves and precision profiles
of the one-step and two-step variant for an insulin
radioimmunoassay. Target concentration was 600
pmol/1 (P/K = 92). From 150 up to 600 pmol/1, in
practical terms there was no difference in the precision
of both forms of the assay. This is the very concen-
tration r nge where the steepest decline of the Stand-
ard curve of the two-step assay is situated. However,
outside this r nge the precision of the one-step variant
is remarkably better. This corresponds to the lower
detection limit of the one-step methpd s shown in

gure 4. On the whole the precision profile of the
one-step assay is more favourable than that of the
two-step assay.
Cqncerning assay specificity, we have calculated the
cross-reactivity of a ligand B with 100-fold lower

affmity to the specific binding site Q than the ligand
A (KB/ΚΑ = 100), which is designated to be both
analyte and labelled ligand (fig. 6). In the one-step
assay the potency of B s a competitor for binding
sites is more than 50 times lower than that of A.
However, if the two-step incubation protocol is ap-
plied, the reactivity of B is considerably higher. Its
potency in comparison with A is now increased and
amounts to 1/20 to 1/5 of that of A. Hence, in their
ability to discriminate between analyte and cross-
reacting substances, one-step assays are superior to
two-step assays, when considering the usual case of a
cross-reacting ligand of lower affinity than the ligand
to be ass yed. Table l shows the results of the deter-
mination of insulin immunoreactivity in samples with
rodent insulins when using an RIA System for human
insulin. In all cases, immunoreactivity of cross-react-
ing rodent insulins was significantly lower when de-
termined by the one-step method instead of the two-
step method. This demonstrates the higher relative
specificity of the assay if the one-step method is used.
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Fig. 4. Standard deviation Δχ of the determination of zero
ligand concentration (p = 0) for the six RIA Systems
named in figure 1. Δχ is expressed in units of the product
of the pipetting error, ε, and the equilibrium constant,
K, whereas P is referred to K. For each pair of columns
the left one represents the mean value of 20 assay runs,
whereas the right one was calculated by Eq. (7). For
comparison, the relationship Δχ/ε (p = 0) = P is indi-
cated by the broken line.
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Fig. 5. Experimentally obtained (circles) and theoretically com-
puted Standard curves (upper panel) and precision prq-
files (lower panel) of the one-step (open circles) and
two-step variant (closed circles) of an RIA f r insulin
(non-^specific binding: a = 0.9%, pipettirig eiror:
ε = 2.8%, P/K = 92).

1.00-

0.80-

0.60-
ω
m

0,40-

0.20

2.44
i

39.1
—T"
6259.77 39.1 156.2 625 2 500

Antigen concentration [KA]
10000 40000

Fig. 6. Competition curves of two ligands, A and B, with different affmities for the specific binding sites, Q, (KB/KA = 100)
usmg A* s a tracer ligand. F ll lines, one-step assay; dotted lines, two-step assay. Antigen concentrations are expressed
m units of the equilibrium constant, KA, of the reaction between A and Q.
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Tab. 1. Determination of insuiin concentrations ( ± S.D.) in
samples containing insuiin from diiTerent species, using
an RIA for human insuiin.

Insulin
species

Human

Wistar rat

Sand rat

One-step
method
(pmol/1)

502 ± 50
865 ± 118

288 + 38
486 ± 46

222 ± 26
446 ± 60

Two-step
method
(pmol/1)

507 ± 84
891 ± 83
384 ± 32
712 ± 47

258 ± 38
633 ± 30

Signifi-
cance

N. S.
N. S.

p < 0.001
p < 0.001

p < 0.025
p < 0.001

Discussion

The present mathematical theory of competitive la-
belled-ligand assays contains several most restrictive
assumptions concerning the kinetic behaviour of the
reactants (see part "Methods"), which are normally
not fulfilled. Neither are the reactants kinetically ho-
mogeneous (monoclonal antibodies excepted), and in
general, labelled and non-labelled ligand are not ki-
netically identical, although this would be desirable.
Also, non-specific binding may actually be time-de-
pendent inasmuch äs Separation of bound and free
ligand does not always take place instantaneously and
can affect the proportion between both forms of the
ligand. Nevertheless, it was the goal of our work to
prove whether such a simple model can provide results
which are acceptable in practice. We have shown our
theory to be capable of providing estimates of optimal
assay conditions and precision data. After establishing
an assay by experiment, it is possible to mathemati-
cally re^evaluate the assay conditions. This helps to
ensure that they trüly result in both optimal reagent
(especially antibpdy) cpncentf ation and minimum val-
ües of the intraassay precision index and the detection
limit. In principle, precalculation of assay conditions
requires knowledge of kinetic and equilibrium con-
stants, k and K. Furthejmpre, to compare theoreti-
cally evaluated optimal reagent concentrations with
those obtained by experiment, the concentration of
both the binding sites of the giveii äntiserum and the
antigen content Pf the labelled ligand solution must
be known. As emphasized in the Methods section,
however, the main determinant of optimal assay de-
sign is the concentration of binding sites, q. While its
optimal value is a function of the target concentration,
P, the optimal incubation times like the labelled an-
tigen concentration, p*, depend directly on q. As
demonstrated in the Methods seetion, the latter pa-
rameters may thus directly be adjusted to the selected
antibody concentration not pnly experimentally but

also theoretically. It is therefore neither necessary to
experimentally determine the kinetic dissociation con-
stant, k, nor the antigen content of the labelled ligand
solution, if comparison of the calculated estimates of
t2 and p* with their experimental values is not in-
tended. An estimate of K, however, has inevitably to
be established in order to adjust P and other concen-
tration variables to a K-based concentration scale
(Scatchard analysis). Similarly, the binding site con-
centration of the äntiserum needs to be determined
for the purpose of comparing experimental with the-
oretical q values.

Precalculated q values compared well with those ob-
tained by experiment (fig. 1). Similar results were
obtained when theoretical q values were evaluated,
not by the iterative procedure described in the Meth-
ods section, but directly by approaching stepwise the
minimum of at p = P (with the boundary condi-
tion of attaining the best detection limit at the given
q value) (data not shown). If the target concentration,
P, is higher than the equilibrium constant, K, intraas-
say precision data can be assessed without knowledge
of any kinetic or thermodynamic reaction parametes
(figs. 3 and 4), but simply by knowing the relative
pipetting error, , which may easily be determined. If
P becomes of the order of K or lower, intraassay
precision indices will, however, rise markedly, and the
Standard error (p = 0), äs a measure of the in-
traassay detection limit, will reach its lowest possible
value of |/2 predicted by theory. It is thus essential
to know at least an approximate value of K in order
to assess whether a given intraassay precision index
or detection limit may exceed the estimates of figures
3 and 4 for either theoretical or other reasons. It
should be pointed out that interassay precision data,
which normally are distinctly higher than intraassay
data (12), cannot be precalculated by a simple theory,
because interassay precision is determined by complex
factprs such äs sample and reagent handling, thermic
and time instabilities and others which cannot be
assessed without considerable difficulty. On the other
band, interassay precision is a decisive criterion for a
useful assay System, and statistical quality control
based on interassay data is absolutely necessary.

The ränge of concentrations where the assay shows
the greatest precision is distinctly narrower for the
two-step assay (fig. 5), thus favouring the one-step
assay for achievement of a good precision profile.
This contradicts the common opinion that the em-
ployment of the two-step incubation protocol would
result in an improved sensitivity of the assay (29).
The latter would only be true if identical concentra-
tions of reagents were applied. In fact the optimal
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reagent concentrations of a onc-step assay are lower
than those of the corresponding two-step assay (fig.
1). Keeping that in mind, a better sensitivity of one-
step assays than of two-step assays can be predicted
when both are targeted to the same analyte concen-
tration, P. When assay sensitivity is limited not by the
magnitude of P or the equilibrium constant, K, but
by the specific activity of the tracer, the employment
of the two-step assay protocol may really increase the
sensitivity of the assay. Under this condition, optimal
reagent concentrations are only defmed by specifie
activity in that they must be high enough to ensure a
still measurable physical signal. In that case, reagent
concentrations are identical for both types of the assay
protocol and are further from their " Optimum values"
when the one-step method is applied, resulting in a
lower sensitivity. A relatively low tracer activity will
thus favour the employment of the two-step incuba-
tion protocol, either because the attainable higher

measuring signal is higher (fig. 3), or the sensitivity is
better. On the other band, the higher binding site
concentration, which is used in two-step assays, causes
a lower specificity compared with one-step assays (fig.
6). The excess of binding sites in relation to bound
non-labelled ligand molecules existing over a wide
ränge of concentrations, leaifs to an insufficient com-
petition between molecules of the analyte and of cross-
reacting substances. The latter therefore have a sta-
tistically greater chance of binding than in the one-
step assay, where the number of binding sites is more
restricted. Conversely, because of their normally lower
affmity, cross-reacting molecules are handicapped in
their binding when the one-step technique is applied,
resulting in a higher specificity of that method, Thus,
it deserves consideration that the relatively high meas-
uring signal provided by the two-step method is ul-
timately associated with loss of precision, sensitivity
and specificity.
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