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Abstract The availability of software systems can be increased by preventive measures
which  are  triggered by  failure  prediction  mechanisms.  In  this  paper  we  present  and
evaluate  two  non-parametric  techniques  which  model  and  predict  the  occurrence  of
failures as a function of discrete and continuous measurements of system variables. We
employ  two modelling  approaches:  an extended Markov chain  model  and a function
approximation  technique  utilising  universal  basis  functions  (UBF).  The  presented
modelling methods are data driven rather than analytical and can handle large amounts
of variables and data. Both modelling techniques have been applied to real data of a
commercial  telecommunication  platform. The data includes  event-based  log  files  and
time continuously measured system states. Results are presented in terms of precision,
recall, F-Measure and cumulative cost. We compare our results to standard techniques
such as linear ARMA models. Our findings suggest significantly improved forecasting
performance  compared  to  alternative  approaches.  By  using  the  presented  modelling
techniques the software availability may be improved by an order of magnitude. 
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1 Introduction

Failures of  software have been identified as the single largest source of unplanned downtime and

system failures  [Grey 1987],  [Gray et  al.  1991],  [Sullivan et  al.  2002]. Another study  by  Candea

suggests that over the past 20 years the cause for downtime shifted significantly from hardware to

software  [Candea et  al.  2003].  In  a  study  undertaken  in  1986  hardware  (e.g.,  disk,  motherboard,

network and memory) and environment issues (e.g., power and cooling) caused an estimated 32% of

incidents [Gray J. 1986]. This number went down to 20% in 1999 [Scott 1999]. Software in the same

period rose from 26% to 40%, some authors even suggesting 58% of incidents are software related

[Gray J. 1990]. As software is becoming increasingly complex, which makes it more bug-prone and

more difficult to manage. In addition to efforts concerning reduction of number of bugs in software –

like  aspect  oriented  programming or  service  oriented  computing  to  name only  a  few -  the  early

detection of failures while the system is still operating in a controllable state thus has the potential to

help reduce system failures by time optimised triggering of preventive measures. It builds the basis for

preventive maintenance of  complex software systems.  In this paper we propose two non-intrusive

data-driven  methods  for  failure  prediction  and  their  application  to  a  complex  commercial

telecommunication software system.

The paper is organised as follows: In Chapter 2 we review related work on modelling software

systems and further motivate our approach and we introduce the modelling task in Chapter 3.  In

Chapter 4 we introduce the two proposed modelling techniques, describe the modelling objectives and

introduce the two important concepts of feature detection and rare event predictions. In Chapter 5 we

introduce the metrics used in our modelling approaches. Before we report results in Chapter 7 we

describe  the  data  retrieval  procedures  and  the  specific  data  sets  in  Chapter  6.  Chapter  8  briefly

discusses the theoretic impact of our findings on availability  of the telecommunication system we

model. Chapter 9 includes conclusions and lays out a path for future research.
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2 Related Work and Motivation 

Widely  accepted  schemes  to  increase  the  availability  of  software  systems  either  make  use  of

redundancy  in  space  (including  failover  techniques)  or  redundancy  in  time  (check-pointing  and

restarting techniques). Most frequently these schemes are triggered following a reactive post mortem

pattern. This means after an error has occurred, the method is triggered and tries to reset the system

state to a known error free state and/or limit the damage to other parts of the system. However, the cost

associated with a reactive scheme can be high. Redundancy in time exhausts resources like I/O and

CPU capacity while redundancy in space is expensive due to extra hard- and software. Clearly there

are limits to increasing system availability using reactive schemes. Promising approaches to overcome

these limitations  are  proactive methods.  One approach  that  has  received  considerable  attention  is

rejuvenation of system parts [Huang  et al. 1995]. This scheme anticipates the formation of erroneous

states  before it actually materialises into a failure. The listed schemes to increase system availability

can be a more effective weapon if applied intelligently and preventively. The question remains when

should we apply checkpointing and rejuvenation techniques. 

To answer this question we need a way to tell if the current state of the system is going to evolve

into a failure state. We can extend this concept to include parts or the entire history of the systems
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Figure  1: Increased software availability by employing a model driven proactive
preventive  scheme.  Solid  lines  represent  currently  employed  techniques  dotted
lines signal the approach favoured in this paper. The boldness of lines signals the
prevalence of the methods in current research.
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state transitions. So to answer the question of the ideal trigger timing for high availability schemes we

need to develop a model of the system in question which allows us to derive optimised triggering

times.

To increase availability of a software system during runtime basically three steps are involved:

The method to (re)-initiate a failure free state-space, the trigger mechanism to select and start a method

and the type of model which is employed by the trigger mechanism. In the following paragraphs we

will briefly review these steps.

2.1 Modelling Schemes 

General  schemes  to  improve  software  availability  include  check-pointing,  recovery  and  failover

techniques which have been review extensively in literature. More recently software rejuvenation has

been established.  This procedure counteracts  the ageing process of  software by restarting specific

components. Software ageing describes misbehaviour of software that does not cause the component

to fail immediately. Memory leaks but also bugs that cannot be completely recovered from are two

examples.  Rejuvenation  is  based  on  the  observation,  that  restarting  a  component  during  normal

operation is more efficient than frequently check-pointing the systems state and restarting it after the

component has failed.

Clearly, we favour proactive preventive schemes over reactive schemes, because of their promise

to increase system availability without waiting for an error to happen. But how do we know when a

failure is to occur so that we can employ any of the general techniques to avoid the lurking error? One

approach is to build a model of the software system in question. Ideally, this model tells us in which

state the real system should be so we can compare and base our  decision on employing an error

avoidance strategy based on the model.  In a less ideal world the model should give us at least  a

probabilistic measure to estimate the probability of an error occurring within a certain time frame.

Indeed this is the approach described in this paper. 
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2.2 Analytical Modelling

Analytical  continuous  time  Markov  chain  model  for  a  long  running  server-client  type

telecommunication system where investigated by Huang et al.  [Huang  et al.  1995]. They express

downtime and the cost induced by downtime in terms of the models parameters. Dohi et al. relax the

assumptions made in Huang of exponentially distributed time independent transition rates (sojourn

time) and build a semi-Markov model [Dohi  et al. 2000]. This way they find a closed form expression

for the optimal rejuvenation time. Garg et al. develop Markov regenerative stochastic Petri Nets by

allowing the rejuvenation trigger to start in a robust state  [Garg  et al. 1995 ]. This way they can

calculate the rejuvenation trigger numerically. 

One of  the major challenges with analytical  approaches is  that  they do not  track changes in

system dynamics. Rather the patterns of changes in the system dynamics are left open to be interpreted

by the operator. An improvement on this type of fault detection is to take changes into account and use

these residuals to infer faulty components  [Frank 1990],  [Patton  et al. 1989]. However, analytical

approaches are not practical when confronted with the degree of complexity of software systems in

use.

2.3 Data-based Modelling

Literature on measurement-based approaches to modelling software systems has been dominated by

approaches limited to a single or few observable variables not considering feature detection methods.

Most models are either based on observations about workload, time, memory or file tables. Garg et al.

propose a time-based model for detection of software ageing  [Garg  et al. 1998]. Vaidyanathan and

Trivedi  propose a workload-based model for prediction of resource exhaustion in operating systems

and  conclude  that  measurement-based  software  rejuvenation  outperforms  simple  time  statistics

[Vaidyanathan  et al. 1999]. Li et al. collect data from a web server which they expose to an artificial

workload [Li et al. 2002]. They build time series ARMA (autoregressive moving average) models to

detect ageing and estimate resource exhaustion times. Chen et al.  propose their Pinpoint system to

monitor  network  traffic  [Chen   et  al.  2002].  They  include  a  cluster-based  analysis  technique  to

correlate failures with components and determine which component is most likely to be in a faulty
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state. Salfner et. al build on log files as a valuable resource for system state description [Salfner et al.

2004]. We apply pattern recognition techniques on software events to model the system’s behaviour in

order to calculate probability distribution of the estimated time to failure. 

3 Learning Task

The learning task in our scenario is straightforward. Given a set of labelled observations we compute a

classifier by a learning algorithm that predicts the target class label which is either “failure” or “no

failure”. As the classifier mechanism, we employ universal basis functions (UBF) and discrete time

Markov chain (DTMC) with time as additional state information. 

We say a prediction at time 1t  is correct if the target event occurs at least once within the prediction

period pt . The prediction period occurs some time after the prediction is made, we call this the lead

time lt . This lead time is necessary for a prediction to be of any use. The prediction period defines

how far the prediction extents into the future. The value of the lead time lt  critically depends on the

problem domain, e.g., how long does it take to restart a component or to initiate a fail over sequence.

The value of the prediction period can be adapted more flexibly. The larger this value becomes the

easier  the  prediction  problem,  but  the  less  meaningful  the  prediction  will  be.  The  embedding

dimension et  specifies how far the observations extend into the past. 
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Figure 2: The embedding dimension specifies how far the labelled observations
extend into the past. The lead time specifies how long in advance a failure is
signalled. A prediction is correct if the target event occurs at least once within
the prediction period.
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4 Modelling Objectives

Large software systems can become highly complex and are mostly heterogeneous, thus we assume

that not all types of failures can be successfully predicted with one single modelling methodology.

Therefore,  we  approached  the  problem  of  failure  prediction  from  two  directions.  One  model  is

operating on continuously evolving system variables (e.g.,  system workload or memory usage).  It

utilizes  Universal  Basis  Functions  (UBF)  to  approximate  the  function  of  failure  occurrence.  The

DTMC  model  operates  on  event  triggered  data  (like  logged  error  events)  and  predicts  failure

occurrence events. 

Both models use  time-delayed embedding.  We chose et  to be ten minutes.  Despite of their

principle focus on continuous / discrete data both models can additionally handle data of the other

domain. Another important aspect is that neither approach relies on intrusive system measurements

which becomes especially important for systems built from commercial-of-the-shelf (COTS) software

components.

4.1 Universal Basis Functions Approach (UBF)

To model continuous variables we employ a novel data-based modelling approach we call Universal

Basis Functions (UBF) which was introduced in [Hoffmann 2004]. UBF models are a member of the

class of non-linear non-parametric data-based modelling techniques. UBF operate with linear mixtures

of bounded and unbounded activation functions such as Gaussian, sigmoid and multi quadratics. Non-

linear  regression  techniques  strongly  depend  on  architecture,  learning  algorithms,  initialisation

heuristics  and  regularization  techniques.  To  address  some  of  these  challenges  UBF  have  been

developed. These kernel functions can be adapted to evolve domain specific transfer functions. This

makes them robust to noisy data and data with mixtures of bounded and unbounded decision regions.

UBF  produce  parsimonious  models  which  tend  to  generalise  more  efficiently  than  comparable

approaches such as Radial Basis Functions [Hoffmann 2004b]. 
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4.2 Discrete Time Markov Chain Approach

Our approach for modelling discrete, event triggered data starts from a training data set consisting of

logged events together with additional knowledge when failures have occurred. Events preceding each

failure are extracted and aligned at the failure's occurrence times (t=0). For illustrative purposes we

map the multidimensional event feature vector onto a plane in Figure 3. 

Starting at t=0 we apply a clustering algorithm to join events with similar states. Each group forms a

state cluster defined by the event states and the time to failure of the constituting events.  Figure 4

depicts the clustering result.

For clustering we use the sections of data preceding failures. This yields conditional probabilities

of failure occurrences. In order to drop this limitation the overall training data set is used to estimate

relative frequencies for each state cluster transition. 

Online failure  prediction is about  calculating the  probability  of  and the time to any failure's

occurrence.  Therefore,  the  calculation's  result  is  a  function PF t . The  first  step  to  determine

PF t  is to  identify the set of potential  state clusters the system might be in, depending on past

events (time delayed embedding). From the backward clustering algorithm we can assure the Markov

property that future states depend only on the current state. Therefore, the probability PF t  can be
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Figure  3:  Preceding  events  of  three  failures.  For
illustrative  purposes  we  map  the  multidimensional
event feature vector onto a plane.
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calculated with a discrete time Markov chain (DTMC). We take only state clusters into account which

contribute to a failure at time t.

4.3 Variable Selection / Feature Detection 

Generalisation performance of  a model is  closely related to  the number of  free parameters in  the

model. Selecting too few as well as selecting too many free parameters can lead to poor generalisation

performance [Baum  et al. 1989], [Geman  et al. 1992]. For a complex real-world learning problem,

the number of variables being monitored can be prohibitively high. There is typically no a-priori way

of determining exactly the importance of each variable. The set of all observed variables may include

noisy, irrelevant or redundant observations distorting the information set gathered. In the context of

optimal rejuvenation schedules for example, the variables load and slope of resource utilisation are

frequently employed as explanatory variables [Trivedi  et al. 2000], [Dohi  et al. 2000]. But how do we

know which variables contribute most to the model quality?

In general we can distinguish between two approaches: the filter and the wrapper approach. In

the filter approach the feature selector serves to filter out irrelevant attributes [Almuallim et al. 1994].

It is independent of a specific learning algorithm. In the wrapper approach the feature selector relies on

the learning algorithm to select the most important features. Although the wrapper approach is not as

general as the filter approach, it takes into account specifics of the underlying learning mechanism.

This  can  be  disadvantageous  because  of  possible  biasing  towards  certain  variables.  The  major

advantage of the wrapper approach is that it utilizes the induction algorithm itself as a criterion and the

purpose is to improve the performance of the underlying induction algorithm. In each category feature

selection can be further classified into exhaustive and heuristic searches. Exhaustive search is, except

for a very few examples,  infeasible.  So we are  basically  limited to  heuristic approaches trying to

include as much information about the variable set as possible.

In this paper we employ the probabilistic wrapper approach as developed in  [Hoffmann 2004].

Basically  this  procedure starts  with a random search in the variable  space and keeps the  variable

combinations which yield better than average model quality. These variable combinations are fed back
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into the pool of available variables thus increasing the probability that they will be drawn again. This

procedure has been shown to be highly effective. 

4.4 Rare Event Prediction

Large volumes of data containing small numbers of target events have brought importance to the

problem of effectively mining rare events. In domains such as early fault detection, network intrusion

detection and fraud detection a large number of events occur, but only very few of these events are of

actual  interest.  This  problem is  sometimes  also  called  the  skewed  distribution problem.  Given  a

skewed distribution of observations, we would like to generate a set of labelled observations with a

desired distribution.  The desired distribution is  the  one we assume would maximize our classifier

performance, without removing any observations. We found that determining the right distribution is

somewhat of  an experimental  art  and requires extensive empirical  testing.  One frequently  applied

approach is replicating the minority class to achieve a desired distribution of learning pattern [Chan  et

al.  1999].  This  approach  is  intuitively  comprehensible;  it  fills  up  the  missing  observations  by

replicating known ones until we get a desired distribution of events. Another approach are  boosting

algorithms which iteratively learn differently  weighted,  respectively skewed samples  [Joshi  et  al.

2001A], [Freund  et al. 1997]. In our approach we focus on evenly distributed sets of observations and

re-sample the minority class to get evenly distributed classes.

5 Metrics

In measuring the performance of our models we must distinguish between the performance of the

statistical model and the performance of the classifier. In many instances we create models that do not

directly tell us if and when a failure is to occur in the observed system, even though this may be our

primary goal. The model may predict, for instance, that the likelihood of an error occurring within a

certain future time frame may be 10%, but it is up to our interpretation if we take any action on that

result or not. Thus we adopt two different sets of performance measures: one to assess the statistical

model quality and the second set to assess the performance with respect to the number of correctly

predicted  failures  (true  positives),  missed  failures  (false  negatives)  and  also  to  the  number  of
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incorrectly predicted failures (false positives). To assess statistical properties of our models we employ

a root-mean-square error [Weigend et al. 1994], [Hertz et al. 1991], [Bishop 1995]. 

In our sample data we count 96 failure occurrences within 1080 observations. The majority class

thus contains 984 observations not indicating any failure; the minority class contains 96 entries. By

always considering the majority class we would achieve a predictive accuracy of roughly 89%. Thus

the predictive  power  of the widely used quality  metric  predictive accuracy is  of  limited use in a

scenario where we would like to model and forecast rare events – they yield an overly optimistic

model  quality.  Therefore,  we  need  a  metric  optimised  for  rare  event  classification  rather  than

predictive accuracy. We employ precision, recall, the integrating F-Measure and cumulative cost as

described in the next sections.

5.1 Precision, Recall and F-Measure

Precision and recall, originally defined to evaluate information retrieval strategies, are frequently used

to express the classification quality of a given model. They have even been used for failure modelling.

Applications can be found for example in Weiss [Weiss 1999] and [Trivedi  et al. 2000]. Precision is

the ratio between the number of correctly identified failures and predicted failures:

 positives false  positives true
positives true


precision

Recall is defined as the ratio between correctly identified faults and actual faults. Recall sometimes is

also called sensitivity or positive accuracy. 

 negatives false  positives true
positives true


recall

Following Weiss [Weiss 1999] we use reduced precision. There is often tension between a high

recall and a high precision rate. Improving the recall rate, i.e. reducing the number of false negative

alarms, mostly  also decreases the number of true positives, i.e. reducing precision. A widely used

metric which integrates the trade-off between precision and recall is the F-Measure [Rijsbergen 1979]. 
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recallprecision
recallprecision





2Measure-F

5.2 Cost-based Measures

In many circumstances not all prediction errors have the same consequences. It can be advantageous

not to strive for the classifier with fewest errors but the one with the lowest cost. Cost-based metrics

have been explored by [Joshi  et al. 2001A], [Stolfo et al. 2000] and [Chan  et al. 1999] for intrusion

detection  and  fraud detection  systems.  Trivedi  et  al.  explore  a  cost-based  metric  to  calculate  the

monetary savings associated with a certain model by assigning monetary savings to a prevented failure

and cost to failures and false positive predictions [Trivedi  et al. 2000]. This type of metric takes into

account that failing to predict a rare event can impose considerably higher cost than making a false

positive prediction. I.e.,  cost can be associated with monetary or time units.  Assume that a failure

within  a  telecommunication  platform causes  the  system to  malfunction  and  to  violate  guaranteed

characteristics  such  as  response  times.  If  the  failure  can be forecast  and  with a  probability  P be

avoided, that prediction would decrease potential liabilities. If the failure had not been forecast and the

system had gone down then it would have generated higher costs. Vice versa each prediction (both

false and correct) also generates additional costs. For example, due to many unnecessary restarts the

platform may be busy and would reject calls.

6 Modelling a Real-world System

Both  modelling  techniques  presented  in  this  paper  have  been  applied  to  data  of  a  commercial

telecommunication platform. The primary objective was to predict failures in advance. 

The main characteristics of the software platform investigated in this paper are its component-

based software architecture running on top of a fully featured clustering environment consisting of two

to eight nodes.  We measured test data of a  two  node cluster non-intrusively using existing logfiles:

Error logs served as source for event triggered data and logs of the operating system level monitoring

tool SAR for time continuous data. To label the data sets we had access to the external stress generator

keeping track of both the call load put onto the platform and the time when failures occurred during
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system tests. We have monitored 53 days of operation over a four month period providing us with

approximately 30GB of data. Results presented in the next section originate from a three days excerpt.

We split the three days of data into equally proportioned segments (one day per segment). One data

segment we use to build the models, the second segment we use to cross validate the models, the third

segment is our test data which we kept aside. Our objective is to model and predict the occurrence of

failures up to five minutes ahead (lead time) of their occurrence.

We gathered the numeric values of 42 operating system variables once per minute and per node.

This leaves us with 84 variables in a time series describing the evolution of the internal states of the

operating system, thus in a 24-hour period we collect n = 120.960 readings. Figure 6 Depicts plots of

two variables over a time period of six hours. Logfiles were concurrently collected with continuous

measurements  and  the  same three  days  were  selected  for  modelling  and  testing.  System logfiles

contain events of all architectural layers above the cluster management layer.  The large variety of

logged information includes 55 different, partially non-numeric variables in the log files as can be seen
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Figure  6: Showing two SAR system variables over a sample period of six
hours. (a) shows page faults per second on node one, (b) shows pages-in per
second
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Figure 5: One error log record consisting of three log lines

2004/04/09-19:26:13.634089-29846-00010-LIB_ABC_USER-AGOMP#020200034000060|

0201010444300000|0000000000000000-020234f43301e000-2.0.1|0202000003200060|00000001

2004/04/09-19:26:13.634089-29846-00010-LIB_ABC_USER-NOT: src=ERROR_APPLICATION 

sev=SEVERITY_MINOR id=020d02222083730a

2004/04/09-19:26:13.634089-29846-00010-LIB_ABC_USER-unknown nature of address value specified



in  Figure 5. The amount of log data per time unit varies greatly: The frequency ranges from two to

30.000 log records per hour. A noteworthy result is that there is no one-to-one mapping between log-

record frequency and the failure probability suggesting that trivial models would not  work in this

environment. 

7 Results

Results presented in this paper are based on a three day observation period. We investigate the quality

of our models regarding failure prediction performance. In order to rank our results we compare them

with two straightforward modelling techniques applied to the same data:  Naive forecasting after a

fixed time interval and forecasting using a linear ARMA model.

7.1 Precision, Recall and F-Measure

We calculated precision, recall and F-measure for predictions with the  test data.  The linear ARMA

was fed with SAR data. The model did not correctly predict any failure in the observation period,

precision and recall values could thus not be calculated. The naive model was calculated by using the

mean delay between failures in the training data set which was 65 minutes. We used this empirical

delay to predict failures on unseen test data. 

7.2 Cumulative Cost of Operations

To  evaluate  the  cost  associated  with  each  model  we  assign  a  value  to  failure  prevention  (true

positive = 100), false prediction (false positive = 100) and missed failures (false negative = 1.000).
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Model Type of
Data

Lead time
[min]

Embedding
dimension 

Precision Recall F-Measure

DTMC log files 1 30 s 0.8000 0.9230 0.8571

UBF SAR 5 5 min 0.4912 0.8295 0.6088

ARMA SAR 5 5 min nil nil nil

naive 5 not appl. 0.2500 0.2000 0.2222

Table  1: Precision, recall and F-Measure for discrete time Markov chain (DTMC), universal basis
function approach (UBF), auto regressive moving average (ARMA) and naive model. In the case of
UBF we report mean values. The linear ARMA model did not correctly predict any failure in the
observation period, precision and recall values could thus not be calculated.  The reported results
where generated on previously unseen test data. 



These  values  are  admittedly  somewhat  arbitrary  and  can  be  adjusted  to  reflect  the  individual

characteristics of the system in question. In a production system one may assign monetary values to

indicate  the  economic  benefit  of  failure  prediction  and  prevention.  By  integrating  over  time and

failures we arrive at a function indicating the accumulated cost introduced by the respective modelling

procedure as depicted in  Figure  7. Clearly,  UBF and DTMC outperform the naive and the linear

ARMA approach.  In  the  case  of  perfect  foresight  we  would  arrive  at  the  cost  function  labelled

“perfect”. All values reported are calculated with previously unseen test data.

7.3 Statistical Assessment of the UBF model

To assess statistical stability of our UBF models we calculate the median and quantiles of the expected

model error. We employ a stochastic optimisation procedure as discussed in  [Hoffmann 2004]. We

report statistical assessment of precision, recall and F-Measure as Box-Whisker plots in  . All values

were calculated on previously unseen test data. 
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Figure 7: Cost scenario for our system if we apply hypothetical costs to correctly, incorrectly
and not  at  all predicted failures.  “Perfect” is our hypothetical  cost model if  we had perfect
foresight.  The  UBF  and  DTMC  models  clearly  outperform  the  naive  and  linear  ARMA
approach .
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8 Availability Improvement

In  theory  forecasting  failures  can  help  to  improve  availability  by  increasing  mean-time-to-failure

(MTTF). Based on the results presented in Section 6 we calculate the effects of our prediction results

on MTTF and availability respectively. As reported in Table 1 we get values for precision and recall of

49% and 82% for a five minute lead-time. Assuming that an arbitrary system exhibits one tenth of an

hour  (six  minutes)  downtime per  1000  hours  of  operation  (which  corresponds  to  a  “four  nines”

availability)  the application of  our  failure prediction  technique  would increase MTTF from 999.9

hours to 5555 hours of operation. Given the increased MTTF we get:

A= MTTF
MTTFMTTR

= 5555
55550.1

≈0.999982

which is close to an order of magnitude better than without failure prediction. Where MTTR is mean

time to repair and A is availability.  In complex real systems, failure prevention will of course not be

able to avoid all failures even if they had been  predicted correctly. Even worse, false alarms may

evoke additional failures. It will be a challenge for future investigations to find out more about these

effects. 
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Figure 8: Box-Whisker plots of recall, precision and F-Measure for the UBF model applied to
previously unseen test data. Shown are the mean, minimum, maximum and quantiles of the
respective measure The F-Measure is a cumulative measure integrating precision and recall into a
single value.
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9 Conclusion and Future Work

The objective of this paper was to model and predict failures of complex software systems. To achieve

this we introduced two novel modelling techniques. These are a discrete time Markov chain (DTMC)

models with time as additional state information and Universal Basis Functions (UBF). DTMC are

easier  to  interpret  than  UBF while  the  latter  are  more robust  to  noisy  data  and  generalize  more

efficiently. 

We measured data from a commercial telecommunication platform. In total we captured 84 time

continuous variables and 55 error log file variables. For modelling purposes an excerpt of three days

has been taken.  To reduce the  number of  variables we employed a probabilistic  feature detection

algorithm.  Event  driven  error  log  files  were  modelled  with  DTMC and  time continues  operating

system observations with the UBF approach. We reported the models' quality as recall, precision, F-

Measure and cumulative cost. Our results were compared with a naive and a linear ARMA modelling

approach. 

Our  results  indicate  superior  performance  of  the  DTMC and  UBF  models.  In  particular  we

outperform the naive approach by a factor of three to four in terms of the F-Measure and by a factor of

five with respect to cumulative cost. Assuming that all forecast failures can be avoided our modelling

techniques may lead to an order of magnitude improvement of system availability. The DTMC model

achieves best performance for smaller lead times. Larger lead times are best captured by the UBF

model. 

Future  work  will  include  research  on  the  validity  of  our  models  depending  on  system

configuration. Additional benefits may also arise from interpreting our models for root cause analysis.

Both modelling techniques have the potential to integrate continuous and event driven data and may

additionally  be combined  into a  single  model.  Future  research will  have to  show if  this  leads  to

improved model quality. 
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