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Abstract

The interplay between string and gauge theory has led to many new
insights in recent years. The most prominent example is the AdS/CFT
correspondence, a duality between string theory on Anti-de Sitter (AdS)
spaces and conformal gauge theories defined on their boundary. The study
of string theory on plane wave backgrounds, which are connected to AdS by
the Penrose limit, opens up the possibility of testing this duality beyond the
low-energy supergravity approximation. Generalized plane wave geometries
are interesting in themselves, as they provide a large class of exact classical
space-time backgrounds for string theory.

In this thesis aspects of string theory on plane wave backgrounds are stud-
ied, with an emphasis on the connection to gauge theory. String interactions
in the plane wave space-time with maximal supersymmetry are investigated
in the framework of light-cone string field theory. In the process, many results
that had been found for the case of flat Minkowski space-time are general-
ized to the more complex plane wave background. The leading non-planar
corrections to the anomalous dimensions of gauge theory operators dual to
string states are recovered within light-cone string field theory.

Keywords: String theory, AdS/CFT correspondence, Penrose limit and
pp-wave background, Light-cone string field theory



Zusammenfassung

Das Wechselspiel zwischen String- und Eichtheorien hat in den letzten
Jahren zu vielen neuen Einsichten geführt. Das herausragendste Beispiel ist
die sogenannte AdS/CFT Korrespondenz, eine Dualität zwischen Stringtheo-
rien auf Anti-de Sitter-Räumen (AdS) und konformen Eichtheorien auf deren
Rand. Die Untersuchung von Stringtheorie auf ebenfrontigen Gravitations-
wellen, die sich im sogenannten Penrose-Limes aus AdS-Raumzeiten gewin-
nen lassen, erlaubt es, diese Dualität über die niederenergetische Supergravi-
tationsnäherung hinausgehend zu überprüfen. Verallgemeinerte ebenfrontige
Gravitationswellen sind auch für sich gesehen interessant, da sie eine grosse
Klasse von Raumzeiten bilden, die exakte klassische Lösungen der Stringtheo-
rie sind.

In dieser Arbeit werden Aspekte der Stringtheorie auf ebenfrontigen Gra-
vitationswellen untersucht. Besonderes Interesse gilt dabei der Verbindung
dieser Stringtheorien zu Eichtheorien. Wechselwirkungen von Strings in der-
jenigen Gravitationswellen-Raumzeit mit maximaler Supersymmetrie werden
im Rahmen der Lichtkegel-Stringfeldtheorie behandelt. Viele Ergebnisse, die
für den Fall der flachen Minkowski-Raumzeit bekannt sind, werden dabei
vollständig auf die komplizierteren ebenfrontigen Gravitationswellen verallge-
meinert. Die führenden nicht-planaren Korrekturen zu den anomalen Dimen-
sionen von Operatoren in der Eichtheorie, die eine duale Beschreibung von
Stringzuständen liefern, werden innerhalb der Lichtkegel-Stringfeldtheorie re-
produziert.

Schlagwörter: Stringtheorie, AdS/CFT Korrespondenz, Penrose-Limes
und ebenfrontige Gravitationswellen, Lichtkegel-Stringfeldtheorie
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Chapter 1

Introduction

1.1 Motivation

The intimate connection between string and gauge theories has been one of
the dominant themes in theoretical high energy physics over the last years. A
famous example is the equivalence (duality) of string theory on Anti-de Sitter
spaces with conformal field theories, the AdS/CFT correspondence [1, 2, 3],
see [4] for a review.

Several arguments support the expectation of a duality between string and
gauge theories or, even more generally, gravitational and non-gravitational
theories. For example, a qualitative one comes from the fact that QCD, the
SU(3) gauge theory of strong interactions, confines chromoelectric flux to flux
tubes – the QCD string – at low energies. After all, this is how string theory
was originally discovered. A quantitative argument is ’t Hooft’s analysis
of the large N limit of SU(N) gauge theories [5]. ’t Hooft showed that
for large N and fixed ’t Hooft coupling λ = g2

YMN , the Feynman diagram
expansion can be rearranged according to the genus g of the Riemann surface
which the diagram can be drawn on and every amplitude can be written in
an expansion of the form

∑∞
g=0N

2−2gfg(λ), i.e. 1/N2 is the effective genus
counting parameter. This is like the perturbation series of a string theory,
where the string coupling gs is identified with 1/N and λ corresponds to
the loop-counting parameter of the string non-linear σ-model. This a very
general argument for the large N duality between gauge theories and certain
string theories, but it does not give an answer to what kind of string theory
one should look for.

Further hints come from the study of black holes. The simplest exam-
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ple is the Schwarzschild solution of general relativity depending on a single
parameter, the mass M of the black hole. They have a horizon and are
black classically, everything crossing the horizon is inevitably pulled into the
black hole singularity. However, semi-classical analysis shows that due to
quantum processes black holes start to emit Hawking radiation: the emis-
sion spectrum is roughly that of a blackbody with temperature T ∼ 1/M ;
the deviation of the pure blackbody spectrum is encoded in the so called
‘greybody factor’. As radiating systems black holes are expected to obey the
laws of thermodynamics. If one defines the black hole entropy, as first pro-
posed by Bekenstein and Hawking by S = 1

4
A ∼M2, A the area of the black

hole horizon, these laws are in fact satisfied. A quantum theory of gravity
should e.g. provide the framework for a microscopic derivation of the black
hole entropy via a counting of states and predict its greybody factor. As the
Bekenstein-Hawking entropy involves the area instead of the volume, as is
the case for statistical mechanics and local quantum field theories, one may
wonder if one can find a holographic description in terms of local quantum
field theories ‘living’ on the horizon, such that SQFT ∼ A. More generally,
the holographic principle [6, 7] asserts that the number of degrees of freedom
of quantum gravity on some manifold scales as the area of its boundary: this
suggests that a field theory on the boundary of space-time might capture
the physics of gravity in the bulk. For reviews of the holographic principle
see [8, 9]; for an introduction on black holes in string theory see e.g. [10].

The AdS/CFT correspondence explicitly realizes the general principles of
large N duality and holography. The simplest and best understood example
is the equivalence of string theory on AdS5 × S5 and the maximally super-
symmetric gauge theory in four dimensions, N = 4 SU(N) super Yang-Mills
(SYM). The latter arises as the low-energy (i.e. energies much smaller than
the string scale 1/

√
α′) effective theory on the world-volume of N D3-branes.

As these are charged under the R-R four-form potential [11], their presence
generates a five-form flux in the (flat) transverse six-dimensional space. This
flux contributes to the energy-momentum tensor, so the geometry backreacts
and curves. The backreaction is negligible if the effective gravitational cou-
pling is small, which is the case if gsN ∼ g2

YMN � 1. In this regime the gauge
theory is weakly coupled. In the regime of strong coupling, the large N limit,
the backreaction is no longer small and the geometry will change significantly.
To be more precise, for 1 � gsN < N we can use the dual description of
D3-branes in terms of extremal three-branes in type IIB supergravity [11]:
in this picture, considering low-energy excitations on the D3-brane, trans-
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lates to going to the near-horizon region of the three-brane since energies are
red-shifted for an asymptotic observer [1]. The near-horizon region has the
geometry of AdS5 × S5 with radii R4/α′2 = g2

YMN and the five-form flux on
the S5 equals N , the number of colors in the gauge theory. Strongly coupled
N = 4 SYM is identified with supergravity (since the curvature α′/R2 � 1)
on AdS5 × S5. It is believed that this duality is true for all values of param-
eters and extends to the full string theory; this however is difficult to verify
with the present technology, though there are some exceptions, see [4]. For
a review of attempts to use AdS/CFT as a starting point to obtain a string
description of QCD or at least of pure N = 1 SYM, see [12].

It was realized by Berenstein, Maldacena and Nastase (BMN) [13] that
plane (or pp) wave backgrounds provide an interesting example where the
string/gauge correspondence can be studied beyond the supergravity approx-
imation. As will be explained in detail in what follows, on the geometric
side this involves the Penrose limit [14] applied for example to AdS5 × S5;
roughly speaking, one focuses on the neighborhood of the geodesic of a mass-
less particle, in the center of AdS5 and rotating on the S5. String theory in
the resulting plane wave background can be exactly quantized in light-cone
gauge [15]. On the other hand, in the gauge theory this limit singles out
composite operators carrying a large charge [13]. Though I will not discuss
this here, let me mention that one can also consider macroscopic rotating
strings vs. large spin operators [16].

1.2 Outline

This thesis is organized as follows: chapter 2 starts with a fairly general
introduction to pp-wave backgrounds in ten/eleven-dimensional supergravi-
ties. I discuss various basic aspects of these backgrounds, in particular their
(super)symmetries, emphasizing the emergence of special maximally super-
symmetric solutions that will play a major role in the rest of the thesis.
Then I introduce the notion and properties of the Penrose limit of a space-
time and show that this connects maximally supersymmetric pp-waves to the
AdS × S spaces. Having introduced the necessary background material, the
correspondence between IIB string theory on the maximally supersymmetric
plane wave and a double scaling limit of N = 4 SU(N) super Yang-Mills will
be derived from the AdS/CFT correspondence. Several features of this novel
BMN correspondence, for example symmetries, the comparison of states and



4

spectra, and holography, will be discussed in detail both from the (free) string
theory and the gauge theory point of view.

Chapter 3 presents extensions of the BMN duality. First an overview over
various possible approaches is given to provide a feeling for the general picture
that emerges. The ingredients are then used to describe in detail the specific
example of the duality between strings on supersymmetric orbifolds of the
plane wave background and N = 2 quiver gauge theories. In addition to
these generalizations, further issues to be discussed include D-branes on the
plane wave and more complicated pp-wave backgrounds leading to interacting
world-sheet theories.

We return to string theory on the plane wave background in chapter 4,
where string interactions are introduced. These correspond to non-planar
corrections in the (interacting) dual gauge theory. I explain why it is natural
to describe string interactions in the setup of light-cone string field theory
and discuss its principles, in particular additional complications arising in
the superstring as compared to its bosonic version. To make the presentation
self-contained a review of the free string is included. In the following, the
full construction of the cubic interaction vertex as well as the dynamical
supercharges is presented; the focus is mostly on the general methods and
technical details are relegated to two appendices. The results thus obtained
are applied to compute the mass shift of certain string states induced by
interactions. In an approximation to be specified, the leading non-planar
corrections to the anomalous dimension of the dual gauge theory operators
are exactly recovered within string theory.

Finally, I conclude in chapter 5 and discuss some open problems and
possible directions for further research.

***

This thesis is based on the publications [17, 18, 19].



Chapter 2

Strings on the plane wave from
gauge theory

2.1 pp-waves in supergravity

It is known that maximally supersymmetric backgrounds of 11-dimensional
supergravity include flat Minkowski space, AdS4 × S7 and AdS7 × S4 [20].
In addition to these three spaces there is another maximally supersymmetric
solution discovered by Kowalski-Glikman [21]. This solution – which will be
referred to as the KG space – arises as a special case of the more general
pp-wave1 solutions [22] of the form

ds2 = 2dx+dx− +H(xI , x+)
(
dx+

)2
+ dxIdxI ,

F4 = dx+ ∧ ϕ(xI , x+) ,
(2.1)

where I labels the transverse nine-dimensional space, F4 is the four-form field
strength of 11d supergravity and H obeys

∆H = −ϕ2 , ϕ2 ≡ 1

3!
ϕIJKϕ

IJK . (2.2)

∆ is the Laplacian in the transverse space E9 and ϕ is closed and co-closed
in E9. ∂/∂x− is a covariantly constant null vector. For constant ϕ this
solution preserves at least 16 supercharges [22, 23]. An important subclass
of solutions are the homogeneous plane wave space-times, where the field

1pp-wave geometries are space-times admitting a covariantly constant null vector field.
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strength is constant and H is independent of x+ and quadratic in the xI

H(xI) = AIJx
IxJ , (2.3)

with A a constant, symmetric matrix. In this case the metric describes a
Lorentzian symmetric space G/K with K = R9 and G a (solvable) Lie group
depending on A [24, 23]. Solutions of this kind are space-times with a null
(F 2

4 = 0) homogeneous flux and were referred to as Hpp-waves in [23]. Up
to the overall scale and permutations these solutions are parameterized by
the eigenvalues of A. Modulo diffeomorphisms, there is precisely one choice
for A for which the solution is maximally supersymmetric. This is the KG
solution

AIJ =

{
−1

9
δIJ , I, J = 1, 2, 3

− 1
36
δIJ , I, J = 4, . . . , 9

ϕ = dx1 ∧ dx2 ∧ dx3 . (2.4)

Let me briefly sketch the derivation of some of the statements that I made
above. It is possible to verify that the pp-wave geometry in equation (2.1) is a
solution of the supergravity equations of motion provided the conditions on ϕ
andH are satisfied. To analyze the number of preserved supersymmetries one
has to consider the Killing spinor equation. A solution to the supergravity
equations of motion is supersymmetric if it is left invariant under some non-
trivial supersymmetry transformation. If the fermions have been put to
zero in the solution non-trivial conditions following from the requirement
of unbroken supersymmetry only arise in the transformation of the fermions
themselves. The gravitino transformation law gives rise to the Killing spinor
equation

δεψM = DMε = 0 , (2.5)

where the supercovariant derivative is

DMε = ∇Mε−
1

288

(
ΓPQRSM + 8ΓPQRδSM

)
FPQRSε . (2.6)

Iterating the first order Killing equation implies the second order supergrav-
ity equations of motion. In other supergravities containing additional bosonic
and fermionic fields the number of unbroken supersymmetries may be fur-
ther constrained by algebraic equations arising from the variations of other
fermions, such as for example the dilatino in type IIB supergravity. Com-
puting the supercovariant derivative in the background equation (2.1) and
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solving the Killing equation leads to [22]

∂+ε =
1

24
ϕIJKΓIJKε , Γ−ε = 0 , (2.7)

where ε = ε(x+) is only a function of x+ and ϕ is assumed to be constant.
This is a first order ordinary differential equation, which has a unique solution
for each initial value. Hence, for constant field strength, the background in
equation (2.1) generically preserves 16 supersymmetries. If one chooses the
three-form ϕ and the matrix A to be of the form given in equation (2.4)
spinors satisfying Γ+ε = 0 solve the Killing equation as well [25, 23] and
hence the KG solution is maximally supersymmetric. The fact that the Hpp-
wave geometry is a Lorentzian symmetric space can be seen as follows [23]:
consider the 20-dimensional Lie algebra

[e+, eI ] = e∗I , [e+, e
∗
I ] = AIJeJ , [e∗I , eJ ] = AIJe− , (2.8)

which is isomorphic to h(9) o R, h(9) the Heisenberg algebra generated by
{eI , e∗I , e−}, e− being the central element, and e+ an outer automorphism
which rotates coordinates {eI} and momenta {e∗I}. The Hpp-wave space-
time can then be constructed as the coset G/K, where G is the Lie group
with the algebra in (2.8) and K is generated by {e∗I} [23]. To verify this
one proceeds in the standard way by choosing a representative of the coset
and solving the Cartan-Maurer equations. Notice that the inclusion of the
form flux respects these symmetries as F4 is parallel. For a generic Hpp-wave
background these are all the isometries, in special cases however, the number
of isometries is enlarged due to symmetries of A and F4. For example, for
the KG solution the isometry is enhanced to a semi-direct product

h(9) o
(
so(3)⊕ so(6)⊕ R

)
, (2.9)

due to the degeneracy of the eigenvalues of A. Notice that the dimension of
the isometry algebra of the KG solution is 38, which equals the dimension of
the isometry algebras of the two other non-trivial maximally supersymmetric
solutions AdS4 × S7 and AdS7 × S4 (so(3, 2) ⊕ so(8) and so(6, 2) ⊕ so(5),
respectively). One suspects that this is not merely a coincidence. Recall
that flat space and AdS4 × S7 (AdS7 × S4) play the role of asymptotic and
near-horizon limits of the M2-brane (M5-brane) and as such are related to
each other. Is there a connection to the KG solution as well? I will say more
about this in the next section. The full superalgebra can be obtained by
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utilizing the fact that for ε1, ε2 Killing spinors, ε̄1Γ
Mε2 is a Killing vector

and by analyzing the transformations of Killing spinors induced by the action
of the Killing vectors. This has been done in [23] to which I refer for details.

The story is similar for type IIB supergravity [26]. The analogue of equa-
tion (2.1) is

ds2 = 2dx+dx− +H(xI , x+)
(
dx+

)2
+ dxIdxI ,

F5 = dx+ ∧ ϕ(xI , x+) ,
(2.10)

with the dilaton being constant and all other supergravity fields set to zero.
The equations of motion for F5 require that the four-form ϕ is self-dual and
closed in E8 and hence also co-closed. Again, H has to satisfy the Poisson
equation in transverse space

∆H = −1

2
ϕ2 , ϕ2 ≡ 1

4!
ϕIJKLϕ

IJKL . (2.11)

For ϕ constant, this solution preserves as least 16 supersymmetries [26]. In
analogy with the 11d case, the subclass of solutions in which H is of the
form (2.3), describe Lorentzian symmetric space-times with homogeneous
five-form flux. There is again one exceptional, maximally supersymmetric
solution [26]

AIJ = −µ2δIJ , ϕ = 4µ
(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)
.

(2.12)
Here µ is a parameter with dimension of mass, which by a rescaling of x+ and
x− can be set to any non-zero value. It has become common in the literature
to refer to this solution as the plane wave background. The isometry algebra
of the plane wave solution is

h(8) o
(
so(4)⊕ so(4)⊕ R

)
. (2.13)

Notice that the metric by itself has an so(8) symmetry, which however, is
broken by the R-R field strength to so(4) ⊕ so(4). The isometry group also
contains a discrete Z2 exchanging the two transverse R4’s. The dimension
of the isometry algebra is 30 – again the same as of the so(4, 2) ⊕ so(6) of
AdS5 × S5. Let me be more explicit about the Killing vectors of the plane
wave solution generating the algebra h(8)oR. A convenient parametrization
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is [26] 2

P− = −i∂+ , P+ = −i∂− ,
P I = −i cos(µx+)∂I − iµ sin(µx+)xI∂− ,

J+I = −iµ−1 sin(µx+)∂I + i cos(µx+)xI∂− .

(2.14)

They obey the algebra

[P−, P I ] = iµ2J+I , [P I , J+J ] = iδIJP
+ , [P−, J+I ] = −iP I , (2.15)

and transform in the obvious way under the transverse so(4) ⊕ so(4). The
generators {P I , J+I , P+, P−} are hermitian and related to {eI , e∗I , e−, e+}
by trivial rescaling. It is convenient to work with the former to make the
flat space limit µ → 0 manifest. I will present some of the remaining
(anti)commutation relations of the plane wave superalgebra in chapter 4
when I need them, see [26] for the full algebra.

One might wonder if there are any further maximally supersymmetric
solutions of ten/eleven-dimensional supergravities, however, as was proved
in [27] by careful analysis of the constraints arising from the supersymme-
try variations, this is not the case. It is instructive to discuss the issue of
supersymmetry in Hpp-wave backgrounds in more detail, in particular the
dependence of the Killing spinors on the coordinate x+. For ϕ constant and
hence H independent of x+, the Killing spinors of the background (2.10) are
independent of x− and can be expressed as [26]

ε =

(
1 +

i

2
xIΓ−[ΓI ,W ]

)
χ , W ≡ 1

4!
ϕIJKLΓIJKL , (2.16)

where χ has only x+ dependence determined by(
∂+ + iW

)
χ = 0 . (2.17)

Additionally one has the requirement that(
xIW 2 + 32∂IH

)
ΓIΓ−χ = 0 . (2.18)

This equation determines the number of Killing spinors. As χ = Γ−χ0 is
a solution for any H satisfying equation (2.11), the generic Hpp-wave back-
ground has 16 standard Killing spinors [28]. By equation (2.16) these are also

2Strictly speaking one should write P+ instead of P− since indices are raised and
lowered with the plane wave metric and g++ is non-zero. So P− ≡ P+ by definition.
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independent of the xI . Generically the standard spinors depend on the coor-
dinate x+ but they are independent of it if Wχ = 0. This equation may or
may not have solutions depending on the explicit form of the four-form ϕ. If
H is quadratic in xI the above equation may admit additional Killing spinors
χ that are annihilated by Γ+. These supernumerary spinors are always inde-
pendent of x+ [28] but depend on the xI via equation (2.16). Performing a
T-duality along x+, those Killing spinors which are independent of x+ will
survive at the level of the low-energy effective field theory and the resulting
type IIA solution will also be supersymmetric.3 So in the generic case (only
standard Killing spinors, all depending on x+), performing a T-duality along
x+ results in a non-supersymmetric solution of type IIA supergravity. In spe-
cial cases like the plane wave background (16 supernumerary spinors), the
IIA solution will be supersymmetric. Lifting this solution to 11 dimensions
gives rise to a supersymmetric deformed M2-brane with additional four-form
flux [28]. One can also revert this logic [29] and analyze the Killing spinors
of the 11d Hpp-waves. In this case the supernumerary Killing spinors gener-
ically also depend on x+. Dimensionally reducing the Hpp-wave on x+ or
xI (provided the latter is a Killing direction) one gets a D0-brane or IIA
pp-wave, respectively and the number of preserved supersymmetries is again
determined by the coordinate dependence of the Killing spinors in 11 dimen-
sions.

2.2 The Penrose-Güven limit

We have seen in the previous section that ten/eleven-dimensional supergrav-
ities admit maximally supersymmetric solutions of the pp-wave type, the
plane-wave background and the KG solution, respectively. These are on
equal footing with the other more standard maximally supersymmetric back-
grounds, that is flat space and the AdS×S solutions. But whereas the latter
are connected being the asymptotic and near-horizon regions respectively of
fundamental branes, no such connection was known for the pp-waves. I have
already mentioned that the dimensions of the superalgebras of the KG and
plane wave solutions agree with those of AdS × S, so one might expect that
there exists a connection between the two. In fact it does [30] and the con-
nection is the Penrose-Güven limit as defined originally by Penrose [14] and

3In the full string theory including winding states, all supersymmetries must survive
as T-duality is an exact symmetry.
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extended to supergravity by Güven [31]. I review this limit below.
Consider a Lorentzian space-time and a null geodesic γ in it. According

to [14, 31] for a sufficiently well-behaved geodesic one can introduce local
coordinates U , V and Y I such that the metric in the neighborhood of γ
takes the form

ds2 = dV
(
dU + αdV + βIdY

I
)

+ CIJdY
IdY J , (2.19)

where α, βI and CIJ are functions of the coordinates. The coordinate U is
the affine parameter of γ and for γ to be well-behaved C must be invertible,
otherwise the coordinate system breaks down. Supergravities contain addi-
tional fields besides the metric, such as the dilaton Φ and p-form potentials
Ap. In particular the p-forms have a gauge symmetry and this gauge free-
dom can be used to eliminate some of the components of Ap. Indeed, one
can choose locally [31]

AUV I1···Ip−2 = 0 = AUI1···Ip−1 . (2.20)

This is the starting point of the Penrose-Güven limit: a null geodesic γ
which locally is described by the metric in equation (2.19) plus (possibly)
additional background fields which are gauge fixed to have the local form
in equation (2.20). The next step consists in introducing a real, positive
constant Ω and rescaling the coordinates as

U = u , V = Ω2v , Y I = ΩyI . (2.21)

This diffeomorphism results in a Ω-dependent family of fields g(Ω), Ap(Ω)
and Φ(Ω) and the coordinate choices in equations (2.19) and (2.20) ensure
that the following Penrose limit [14], extended by Güven [31] to fields other
than the metric, is well-defined:

ḡ = lim
Ω→0

Ω−2g(Ω) , Āp = lim
Ω→0

Ω−pAp(Ω) , Φ̄ = lim
Ω→0

Φ(Ω) . (2.22)

Due to the rescaling of coordinates in (2.21) the limiting fields only depend
on u and the background takes the form

ds2 = dudv + C̄IJ(u)dy
IdyJ ,

F̄p+1 = du ∧ Ā′
p(u) .

(2.23)

Here F̄p+1 is the (p + 1)-form field strength of Āp and ′ denotes d/du. This
background describes a pp-wave with null flux in Rosen coordinates [30]. It
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is possible to change to Brinkmann coordinates, where the resulting metric
takes the form

ds2 = 2dx+dx− + AIJ(x
+)xIxJ

(
dx+

)2
+ dxIdxI , (2.24)

considered in the previous section. For more details, see [30]. Before I explic-
itly show that this mechanism connects the KG and plane wave solutions with
the AdS ones, it is instructive to discuss some important hereditary proper-
ties of the Penrose limit [32]. As we have seen, the Penrose limit basically
consists of two steps, performing a diffeomorphism and gauge-fixing with a
subsequent rescaling of the supergravity fields. It is a general property of
supergravity actions that they transform homogeneously under the rescaling
of fields in equation (2.22). Hence, if the original background is a solution to
the supergravity equations of motion, so is the new Ω-dependent one for any
Ω > 0 and by continuity the limiting configuration (2.22) is a valid super-
gravity background [14, 31]. The Penrose limit inherits further properties of
its parent solution, involving for example the curvature tensor; the Penrose
limit of a conformally flat space-time is conformally flat, that of an Einstein
space is Ricci-flat and another hereditary property is that of being locally
symmetric, see for example [32]. One may also wonder about the fate of
isometries and supersymmetries; these are hereditary in the sense that the
resulting background has at least as many isometries and supersymmetries
as the parent background [32]. Let me show that this is the case. Consider
a Killing vector ξ of the metric g. Performing the rescaling of coordinates
and fields in equations (2.21) and (2.22), ξ → ξ(Ω) and ξ(Ω) is a Killing
vector for the transformed metric Ω−2g(Ω) for non-zero Ω. The question is
if a weight ∆ξ exists such that the limit

ξ̄ = lim
Ω→0

Ω∆ξξ(Ω) , (2.25)

is both non-singular and non-zero. In the local coordinates adapted to the
null geodesic ξ can be written as

ξ = α(U, V, Y I)∂U + β(U, V, Y I)∂V + γI(U, V, Y I)∂Y I . (2.26)

Performing the rescaling of coordinates one can expand ξ(Ω) around Ω = 0
as

Ω2ξ(Ω) = β̄(u)∂v + Ω
(
γ̄I(u)∂yI + yI∂yI β̄(u)∂v

)
+ · · · (2.27)
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Then for Ωkξ being the coefficient of the first non-vanishing term in this
expansion

ξ̄ = lim
Ω→0

Ω2−kξξ(Ω) (2.28)

is finite and non-zero. Now suppose we have two linearly independent Killing
vectors ξ1 and ξ2. Then it might happen that their leading order terms in
a small-Ω expansion are linearly dependent, for definiteness assume they are
equal. Do we loose a Killing vector here? Consider the difference

ξ−(Ω) = ξ1(Ω)− ξ2(Ω) . (2.29)

By construction the leading order term is zero. The next to leading term
defines a new Killing vector ξ̄−. If ξ̄− and ξ̄1 are linearly independent we
are done, if not one has to iterate the procedure. One can show [32] that
eventually one ends up with two linearly independent Killing vectors of the
limiting space-time. Hence the number of Killing vectors never decreases in
the Penrose-Güven limit. Notice however that it may very well happen that it
increases. This is because we have seen that the resulting space-time is of the
Hpp-wave form and as we know from the previous section this space-time has
always an isometry algebra isomorphic to a (2D−3)-dimensional Heisenberg
algebra plus outer automorphism (in D dimensions). So some isometries need
not have a counterpart in the original space-time and can arise only in the
limit Ω → 0. It is also important to realize that because different Killing
vectors ξ may have to be rescaled with different weights ∆ξ the original
isometry algebra may get contracted in the limit. The discussion of the
hereditary properties of Killing spinors is similar. Again, no supersymmetries
are lost in the limit, though the number of Killing spinors may increase (as
we have seen Hpp-waves preserve at least 16 supersymmetries). For a more
detailed and rigorous discussion see [32].

The information acquired above is already quite powerful. Consider for
example the Penrose limit of AdS. Anti de-Sitter is a conformally flat, locally
symmetric, Einstein space. The limiting space-time is Ricci-flat, conformally
flat and locally symmetric and hence isometric to flat Minkowski space. We
are primarily interested in the maximally supersymmetric AdS × S back-
grounds. Now the result depends on the geodesic: if it lies purely in AdS
we get Minkowski space (the sphere is blown up to flat space in the limit as
well); if not it follows from the hereditary properties that we have to get the
KG solution and the plane wave background as limiting space-times [30, 32].
I will also show this explicitly below for the case of AdS5×S5. For AdS4×S7
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and AdS7 × S4 the Penrose-Güven limits are isomorphic to each other and
result in the KG solution [30].

The spaces AdSp+2×SD−p−2 with radii of curvature related byRAdS/RS =
ρ provide an example which illustrates the above behavior of isometries [32].
The original isometry algebra is so(2, p+1)⊕ so(D−p− 1). The so(2, p+1)
factor is contracted to h(p + 1) o so(p + 1). The p + 1 creation- and p + 1
annihilation operators transform as vectors under so(p+1). Similarly so(D−
p−1) contracts to h(D−p−3)oso(D−p−3). The central elements of the two
Heisenberg algebras coincide; this is due to the fact that two Killing vectors
of the parent space-time agree to leading order in small Ω. Thus the two
Heisenberg algebras combine into h(D− 2). The remaining Killing vector ξ̄−
becomes an outer automorphism and the resulting contracted algebra is [32]

h(D − 2) o
(
so(p+ 1)⊕ so(D − p− 3)⊕ R

)
. (2.30)

If the radii of curvature are equal (as is the case for p = 3) the subalgebra
so(p + 1) ⊕ so(D − p − 3) is enlarged to the full so(D − 2). This has no
counterpart in the original background.

Finally, consider the Penrose-Güven limit of AdS5 × S5 explicitly. The
dilaton is constant and in global coordinates the metric and five-form flux is

ds2 = R2
[
− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2

3 + cos2 θdψ2 + dθ2 + sin2 θdΩ′2
3

]
,

F5 = 4R4
[
cosh ρ sinh3 ρdt ∧ dρ ∧ dΩ3 + cos θ sin3 θdψ ∧ dθ ∧ dΩ′

3

]
,

(2.31)

where R4 ≡ 4πgsα
′2N and ρ ≥ 0, t ∈ R, ψ ∈ [0, 2π] and θ ∈ [0, π

2
]. As

alluded to above, in order that the limiting space-time will be non-trivial the
null geodesic must not lie purely within AdS5; so consider a massless particle
sitting at the origin of AdS5 (ρ = 0) and rotating around the circle of the
S5 parameterized by ψ and θ = 0 [30, 13]. To focus on the geometry in the
neighborhood of this geodesic the coordinates are rescaled such that a tube
around the geodesic is blown up. Explicitly, introduce light-cone coordinates
x± and perform a rescaling

x+ =
1

2µ
(t+ ψ) , x− = −µR2(t− ψ) , ρ =

r

R
, θ =

y

R
, (2.32)

where µ is an arbitrary (non-zero) mass parameter. Blowing up the neigh-
borhood of the geodesic is equivalent to taking R → ∞ and the metric and
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five-form flux become

ds2 = 2dx+dx− − µ2~x2
(
dx+

)2
+ d~x2 ,

F5 = 4µdx+ ∧
(
dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8

)
.

(2.33)

This is the plane wave solution of type IIB supergravity [30].

2.3 The BMN correspondence

In the previous section I reviewed the connection of AdS5×S5 and the plane
wave background via the Penrose-Güven limit. This has far reaching conse-
quences. First of all it turns out that strings on the plane wave can be exactly
quantized in light-cone gauge [15], in spite of the presence of the constant
R-R flux. Moreover, as IIB string theory on AdS5 × S5 is dual to N = 4
SU(N) super Yang-Mills by the AdS/CFT correspondence [1, 2, 3, 4] the im-
plications of the Penrose-Güven limit on the dual CFT can be studied. One
may hope that this simpler setup allows to extend our understanding of the
AdS/CFT duality beyond the supergravity approximation by the inclusion of
string states on the plane wave. This is indeed the case as was demonstrated
by Berenstein, Maldacena and Nastase in [13]. The formulation of the BMN
correspondence is the subject of this section.

Following the construction of the type IIB superstring action on AdS5×S5

using superspace coset methods [33], the action on the plane wave background
was constructed by Metsaev in [15]. Let me briefly sketch this construction.
The action has to obey the following conditions: its bosonic part is the σ-
model with the plane wave geometry being the target space; it is globally
supersymmetric with respect to the plane wave superalgebra and locally κ-
symmetric; it reduces to the standard Green-Schwarz action in the flat space
limit. As shown in [15] this conditions uniquely specify the action, which as
in flat space can be written as a sum of a ‘kinetic’ σ-model term and a Wess-
Zumino term. The latter is needed to obey the condition of κ-symmetry.
To find the explicit form of the superstring action in terms of the coordi-
nate (super)fields a parametrization of the coset representative has to be
specified and the Cartan-Maurer equations have to solved. Not surprisingly,
the resulting covariant action is non-polynomial [15]. The simplest way to
proceed is to study the action in light-cone gauge. As in flat space the light-
cone gauge-fixing procedure consists of two steps, first κ-symmetry is fixed
by the fermionic light-cone gauge choice Γ+S = 0, then the diffeomorphism
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and Weyl-symmetry on the world-sheet is fixed by the bosonic light-cone
gauge

√
−ggab = ηab and x+(σ, τ) = τ . The resulting action is quadratic in

both bosonic and fermionic superstring 2d fields, and hence can be quantized
explicitly [15]. In fact, from the form of the metric in equation (2.33), it
is obvious that the action for the eight transverse directions in light-cone
gauge is just that for eight bosons of mass µ. Similarly the fermions acquire
masses due to the coupling to the R-R background [34]. Masses of bosons
and fermions are equal due to world-sheet supersymmetry: after imposing
the light-cone gauge conditions the world-sheet κ-symmetry and space-time
supersymmetries transmute into rigid world-sheet supersymmetries. As in
flat space 16 of the 32 supersymmetries are linearly realized in light-cone
gauge and commute with the Hamiltonian [15]. It was shown in [35] that the
linearly realized supersymmetries correspond to the supernumerary Killing
spinors of the pp-wave backgrounds. This is in agreement with their inde-
pendence of x+ [28] (cf. section 2.1).

After gauge-fixing the light-cone action becomes [15, 34]

Sl.c. =
1

2πα′

∫
dτ

∫ 2πα′p+

0

dσ

[
1

2
ẋ2 − 1

2
x′ 2 − 1

2
µ2x2 + iS̄

(
∂/+ µΠ

)
S

]
,

(2.34)
where Π = Γ1Γ2Γ3Γ4 and S is a Majorana spinor on the world-sheet and a
positive chirality SO(8) spinor under rotations in the eight transverse direc-
tions. It is not difficult to quantize this action and the resulting light-cone
Hamiltonian is [15, 34]

H = µ
∑
n∈Z

Nn

√
1 +

n2(
µα′p+

)2 . (2.35)

Here n is a label for the Fourier mode andNn is the occupation number of that
mode including bosons and fermions. The ground state energy is cancelled
between bosons and fermions. In contrast to flat space, modes with n = 0
are also harmonic oscillators due to the mass terms on the world-sheet and
string theory on the plane wave has a unique ground state |v, p+〉, p+ the
light-cone momentum. The single string Hilbert space is built by acting with
the bosonic and fermionic creation oscillators (for all n) on |v, p+〉 subject to
the level-matching condition for physical states∑

n∈Z

nNn = 0 . (2.36)
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Truncation to the zero-mode sector gives rise to the spectrum of IIB super-
gravity on the plane wave [34]. I will provide more details on the quantization
of strings on the plane wave in section 4.1, where I need them.

To understand the effect of the Penrose-Güven limit on the dual CFT,
consider the scaling behavior of the energy E = i∂t and angular momentum
J = −i∂ψ of a state in AdS5×S5. Recall that the AdS/CFT correspondence
relates the energy of a string state in AdS5 × S5 to the energy of a state in
N = 4 SYM living on R × S3 [2, 3], which is the (conformal) boundary of
AdS5 × S5 in global coordinates. By the operator-state map, the energy of
a state on R× S3, where the S3 has unit radius, translates to the conformal
dimension ∆ of an operator on R4. Likewise, the angular momentum J
on the S5 translates to the R-charge under a U(1)R subgroup of the full
SU(4)R ' SO(6)R R-symmetry of N = 4 SYM. Then we have the following
relations

H = −p+ = i∂+ = iµ(∂t + ∂ψ) = µ(∆− J) ,

p+ = p− = −i∂− =
i

2µR2
(∂t − ∂ψ) =

∆ + J

2µR2
.

(2.37)

Now what happens if we apply the limit R → ∞? Firstly, R → ∞ means
N → ∞, the string coupling gs and hence also g2

YM = 4πgs should be kept
fixed. Then a configuration with fixed, non-zero p+ requires to scale ∆,
J ∼
√
N . In fact, the plane wave superalgebra implies thatH and p+ are non-

negative or equivalently ∆ ≥ |J |; this also follows from the representation
theory of the 4d superconformal algebra. So the Penrose-Güven limit induces
the following double-scaling or BMN limit in N = 4 SU(N) SYM [13]

N →∞ and J →∞ with
J2

N
fixed , gYM fixed . (2.38)

As a first check consider how the bosonic part of the plane wave superalgebra
h(8)o (so(4)⊕so(4)⊕R) is realized in the gauge theory on R×S3. The con-
formal group SO(4, 2) is generated by the seven Killing vectors of R×SO(4)
and eight additional conformal Killing vectors. By singling out a U(1)R sub-
group with generator J the SO(6)R symmetry is broken to SO(4)R×U(1)R.
So we see that the transverse symmetry corresponds to SO(4)R and the isom-
etry group of the S3 [13, 36]. In the BMN limit, the eight conformal Killing
vectors together with the eight broken generators of R-symmetry give rise to
a Heisenberg algebra h(8) with central element J and outer automorphism
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E − J , see for example [37, 38]. In other words the N = 4 superalgebra
contracts to the plane wave superalgebra in the Penrose-Güven limit. In the
previous section I have argued that this is the case, see also [39] for an ex-
plicit demonstration. It is an important question how the unitary irreducible
representations – e.g. composite operators in N = 4 SYM – behave under
the contraction [40]. In the limit they should form representations of the
plane wave superalgebra. In particular, as the conformal dimension diverges
in the BMN limit, the space-time dependence of their correlation functions
is ill-defined and hence requires special treatment. One way to achieve this
was proposed in [40] and requires to combine space-time with an auxiliary
R-symmetry space much in the same way that ∆ and J combine into the
finite quantity ∆ − J . The manifestation of the discrete Z2 exchanging the
two transverse R4’s in the gauge theory is somewhat mysterious.

The BMN limit is different from the ’t Hooft limit of SU(N) gauge theo-
ries and at first sight puzzling. To see why this is so, recall that the ’t Hooft
limit takes N → ∞, gYM → 0, such that the ’t Hooft coupling λ ≡ g2

YMN
is fixed. As shown by ’t Hooft [5], away from the strict N → ∞ limit all
Feynman diagrams which contribute to a given order in 1/N can be drawn
on a Riemann surface whose Euler number is precisely the power of N to
which these diagrams contribute. So 1/N2 is identified with the genus count-
ing parameter and the perturbation series of the gauge theory may then
be organized in a double series expansion in the effective coupling λ and the
genus counting parameter 1/N2. This is the standard lore why large N gauge
theories are expected to be dual to some weakly coupled string theory with
coupling 1/N . The AdS/CFT correspondence provides a concrete example
where this is realized. The above reasoning breaks down because operators in
the field theory are not held fixed in the limit but acquire an infinite charge
as N → ∞. Indeed, using equation (2.37) and (∆ − J) � J , in the BMN
limit

1(
µα′p+

)2 =
g2
YMN

J2
≡ λ′ , 4πgs

(
µα′p+

)2
=
J2

N
≡ g2 . (2.39)

These relations are quite suggestive. It looks like a new effective coupling λ′

and a new effective genus counting parameter g2
2 might develop as a conse-

quence of the simultaneous infinite scaling of N and J . This is in some sense
correct as I will explain in more detail below.

While most of the (unprotected) operators acquire infinite anomalous
dimension and decouple in the BMN limit, it is conceivable that some (BMN)
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operators with a suitable scaling of charge survive and be dual to string
states in the plane wave background (for a general discussion, see [41]). At
the planar level this class of operators has been identified in [13]. Recall
that N = 4 SYM contains six scalar fields φr of conformal dimension one
transforming in the 6 of SO(6)R. Take J to be the U(1)R generator rotating
the 5-6-plane and define Z = 1√

2

(
φ5 + iφ6

)
. Z carries unit J-charge and

the remaining four scalars φi, i = 1, . . . , 4 are invariant under U(1)R. For
simplicity, consider only single-trace operators for the moment. The operator
corresponding to the string ground state should carry large J charge and have
∆−J = 0. There is a unique single-trace operator satisfying this requirement
which subsequently is identified with |v, p+〉 [13]

1√
JNJ

Tr
[
ZJ
]
←→ |v, p+〉 , (2.40)

where the trace is over color indices. At weak coupling the dimension of
this operator is J since each Z field has dimension one. As the operator
is a chiral primary [13] it is protected by supersymmetry and ∆ − J = 0
for all values of the coupling. The normalization is chosen such that the
operator has normalized two-point function when we restrict ourselves to
planar diagrams. However, non-planar diagrams do give a non-vanishing
contribution in the BMN limit and the two-point function of Tr

[
ZJ
]

can be
computed exactly for all genera [42, 43]. This can be understood by noting
that at genus h diagrams are weighted by 1/N2h as expected, but at the
same time the number of diagrams grows as J4h, see also [36, 44]. So we see
the quantity g2

2 emerging as the effective genus counting parameter for the
above operator. This will also be true for more general BMN operators, to be
described below. There is an additional complication: at finite g2 single-trace
operators are no longer orthogonal to multi-trace operators and it is therefore
no longer justified to restrict attention to single-trace operators only. To
simplify matters let me assume g2 = 0 in what follows; then equation (2.40)
is a precise identification. I will return to the issue of operator mixing below.

Next consider the supergravity states obtained by acting with the eight
bosonic and fermionic zero-mode oscillators aI †0 and Sa †0 on the plane wave
vacuum. Each oscillator raises the energy by µ. In the gauge theory these
are obtained by the action of the broken symmetries on the trace of Z’s [13].
For example we can rotate Z into φi by a broken SO(6)R transformation.
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Applying this to Tr
[
ZJ+1

]
one obtains [13]

1√
NJ+1

Tr
[
φiZJ

]
←→ ai †0 |v, p+〉 , (2.41)

where the cyclicity of the trace was used. Acting a second time with such a
transformation changes another Z to φj or, if i = j, φi to Z̄. For i 6= j

1√
JNJ+2

J∑
l=0

Tr
[
φiZ lφjZJ−l]←→ ai †0 a

j †
0 |v, p+〉 . (2.42)

Similarly the action of broken superconformal symmetries give rise to in-
sertions of DiZ = ∂iZ + [Ai, Z] and the components of the gaugino with
J = 1/2, χaJ=1/2, in the trace of Z’s [13]. In this way one obtains a precise

correspondence between supergravity states on the plane wave and (at the
planar level) single-trace chiral primary operators. This is already known
from the AdS/CFT correspondence [2, 3]. One of the crucial insights of [13]
was to extend this identification to ‘massive’ string states. These are con-
structed similarly to the above but now each insertion is accompanied with
a phase. For example, the operator

J∑
l=0

e
2πinl
J+1 Tr

[
Z lφiZJ−l] (2.43)

reduces to the supergravity state considered above for n = 0, but it vanishes
for nonzero n due to the cyclicity of the trace. This is precisely how it should
be: a single non-zero-mode acting on the vacuum does not satisfy the level-
matching condition (2.36). So the next-simplest possibility is to consider [13]

1√
JNJ+2

J∑
l=0

e
2πinl

J Tr
[
φiZ lφjZJ−l]←→ ai †n a

j †
−n|v, p+〉 , (2.44)

where i 6= j, the cyclicity of the trace was used to put one operator at the
first position and 1/J contributions have been neglected in the power of the
phase factor. The general rule is quite simple, each insertion of an ‘impurity’
is accompanied with a phase depending on the world-sheet momentum; those
operators where the momenta do not sum to zero vanish due to cyclicity of the
trace, in this way implementing the level matching condition; the dictionary
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between impurity insertions and string oscillators is thus roughly (cf. the
discussion below) as follows [13]

ai † ←→ φi , i = 1, 2, 3, 4 ,

ai
′ † ←→ Di′−4Z , i′ = 5, 6, 7, 8 ,

Sa † ←→ χa
J= 1

2
.

(2.45)

To check this identification it is useful to expand the string theory Hamilto-
nian (2.35) for large µα′p+ or equivalently for small λ′ (cf. equation (2.39))

1

µ
H '

∑
n∈Z

Nn

(
1 +

1

2

n2(
µα′p+

)2
)

=
∑
n∈Z

Nn

(
1 +

1

2

λ

J2
n2

)
. (2.46)

We see that for µα′p+ � 1 all string states have approximately the same
energy; this is reproduced by the construction of the BMN operators: in free
field theory the inclusion of the phases does not make a difference, it is only
in the interacting theory that this gets important because these operators
are no longer protected. Notice however, that the BMN operators proposed
to be dual to string states are built by sewing together protected operators
with varying phases. One might imagine that these operators are nearly
BPS in the sense that a delicate cancellation of renormalization and large
J effects protects them from leaving the spectrum in the BMN limit. This
is exactly what happens [13]. Remarkably it turns out that the anomalous
dimensions of these operators are not just finite in the BMN limit, but as
has been argued in [13], they are perturbatively computable with λ′ playing
the role of the effective coupling. Indeed, notice that the first correction
in (2.46) involves the ’t Hooft coupling λ so it seems one might reproduce
this from a perturbative (in g2

YM or λ) field theory computation. Consider for
example the operator in (2.44). Taking into account interactions the relevant
diagrams arise from the quartic vertex

∼ g2
YMTr

(
[Z, φi][Z̄, φi]

)
. (2.47)

The effect of this vertex can be analyzed as follows. The above interaction
can be split into two parts, depending on whether the position of the op-
erator φ in the ‘string’ of Z’s is effectively moved to a neighboring position
or not. Since at the planar level operators with φ’s sitting at different po-
sitions are orthogonal to each other, contracting all the fields gives a result
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which, for the first class, does not depend on the insertion of the phases,
whereas for the second class it does. Combining the relevant contributions,
utilizing the fact that other interactions involving gauge bosons and scalar
loops cancel due to supersymmetry and taking the large N and J limit one
precisely reproduces the first non-trivial correction in (2.46) [13]. For a care-
ful treatment see for example [42]. Notice that the computation was done
perturbatively in λ, but to take the BMN limit requires to send λ → ∞.
But the result for small λ equals the one for large λ obtained from the string
Hamiltonian and it is tempting to assume that it is correct for all λ at the
planar level. Further support to this conjecture comes from [45] which ex-
tended the above computation to two loops and presented arguments for
higher loops, again matching the expectation coming from the expansion of
the square root in (2.46). In [46] superconformal representation theory was
used to argue that the full square root is reproduced; alternatively this was
seen to be the case in [13] by exponentiating the quartic vertex; let me sketch
how this works. SYM on R × S3 can be expanded in spherical harmonics
on the S3. In particular the zero-modes of scalar fields on the S3 have unit
energy and the ‘string’ of oscillators corresponding to the zero-mode of Z
carries ∆− J = 0. To raise the energy we insert for example the zero-mode
of φ ∼ b + b† at some position along the string of Z oscillators. In the free
theory the position of φ is unchanged and operators with φ inserted at differ-
ent positions are orthogonal in the planar approximation. So we can think
of the J Z’s as defining a lattice with J + 1 sites and an insertion of φ at
different positions corresponds to the excitations b†l at the l-th site of the
lattice. As alluded to above, the interaction in (2.47) can move an operator
φ to a neighboring position, so when acting on the string of Z oscillators the
effective Hamiltonian for φ consisting of the free and interacting parts is [13]

H ∼
∑
l

(
b†l bl +

λ

4π2

[
(bl+1 + b†l+1)− (bl + b†l )

]2)
. (2.48)

In the large N and J continuum limit the discretized Hamiltonian reduces
to

H ∼
∫ L

0

dσ
[
φ̇2 + φ′

2
+ µ2φ2

]
, L =

2π√
λ

J

µ
= 2πα′p+ . (2.49)

This is the bosonic part of the string light-cone Hamiltonian on the plane
wave. Consequently the full square root is reproduced from planar gauge
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theory in the BMN limit and the ‘string’ of Z’s plus insertion of impurities
becomes equivalent to the physical string [13]. So there is evidence that λ′

emerges as a new effective coupling in the BMN limit and one might think
that the perturbation series of SYM in the BMN limit can be reorganized
as a double series expansion in the effective coupling λ′ and the effective
genus counting parameter g2

2. If true, the BMN duality has the interesting
property that regimes in string theory on the plane wave and SYM in the
BMN limit are simultaneously perturbatively accessible. This is in contrast
to the usual AdS/CFT correspondence, where due to our limited ability to
perform calculations for finite λ in SYM – or equivalently in the full string
theory on AdS5 × S5 – the relation is a strong/weak coupling duality. Note
however, while perturbative calculations in λ of BMN operator two- and
three-point functions can be reorganized in λ′ [13, 42, 43, 45, 46] – and
hence an extrapolation to large λ seems viable – this is no longer the case for
higher point functions: computing for example the 4-point function of tr

[
ZJ
]

perturbatively in λ, a naive extrapolation to large λ leads to divergences [47].
The above heuristic discussion is in fact oversimplifying. Consider for

example the BMN operators with ∆− J = 2, that is a defect charge of two.
Instead of inserting two impurities (defects) into the trace of Z’s we could also
insert one Z̄, Dφi, D2Z etc., that is fields carrying multiple defect charge.
Indeed, all of these are present, even at the planar level [48]. However,
they do not give rise to additional string states (there are none) but are
hidden within the ordinary operators with single charge defects by operator
mixing [48]. One example where this happens is the SO(4) singlet [47, 48]

OJn ∼
J∑
l=0

cos
πn(2l + 3)

J + 3
Tr
[
φiZ lφiZJ−l]− 4 cos

πn

J + 3
Tr
[
Z̄ZJ+1

]
. (2.50)

Written like this it is in fact an exact one-loop eigenstate of ∆ even for finite
J [48]. Roughly speaking the above mixing is needed to cancel singularities
that occur when the two φ impurities collide [47]. For non-zero n the above
operator is the primary of a long N = 4 superconformal multiplet and all
the other defect charge two operators dual to string states in the BMN limit
are contained in this multiplet as descendants [48]. All fields with defect
charge two do appear in these generalized BMN operators. Analogously,
for n = 0 the operator in equation (2.50) is the primary of a half BPS
multiplet; all operators dual to supergravity states with up to two oscillators
are descendants. One might conjecture that this pattern generalizes to higher
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defect charge [48].
At finite g2 mixing of single-trace with multi-trace operators has to be

taken into account [42, 43]. For example, to compute the anomalous dimen-
sion on the torus single- and double-trace operators have to be redefined
(mixed) in order to normalize and diagonalize their two-point functions. For
the (redefined) operator in (2.50) one finds at order O(g2

2λ
′) [47, 49](

∆− J
)
n

= 2 + λ′
[
n2 +

g2
2

4π2

(
1

12
+

35

32π2n2

)]
. (2.51)

In fact, the above result holds for all BMN operators with defect charge two
transforming in the various irreducible representations of SO(4) × SO(4);
this is a consequence of superconformal symmetry [48]. For the explicit
form of some of the redefined operators at this order see [47, 49]. It is ac-
tually simpler to consider directly the dilatation operator, work with the
‘bare’ operators and diagonalize the resulting anomalous dimension matrix.
This approach was followed in [50, 51] and results in a simple derivation of
equation (2.51). Further results on higher genus correlators include [52, 53],
scalar/vector, vector/vector and multi-trace BMN operators have also been
considered in [54, 55, 56, 50]. For an extension of equation (2.51) to or-
der O(g4

2λ
′) see [50]. The contribution of higher genus corrections to the

anomalous dimension is related to a mass-shift of the dual string states due
to interactions. A detailed study of string interactions will be deferred to
chapter 4. Let me however mention a route – which will not be pursued in
what follows – to study interacting strings on the plane wave, the string-
bit formalism [57]. Inspired by the emergence of the free string, discretized
into J bits along the string coordinate σ as in (2.48) and from matrix string
theory [58, 59, 60], one interprets the J small strings as describing the quan-
tization of the J-th symmetric product of the plane wave target space. This
leads to a quantum-mechanical orbifold model. In a spirit reminding of the
matrix string, string splitting and joining is then realized by an operator
that roughly speaking exchanges two string bits; see [57] for details. This
approach was further studied in [61, 62, 63] and led to results in agreement
with field theory. Very recently, doubts on the consistency of this model
have been voiced in [64]. The reason for this is the so-called fermion dou-
bling problem, which leads to the loss of supersymmetry – inevitably broken
by the discretization – even in the continuum limit. Moreover, repeating the
above derivation of the string Hamiltonian (2.49) by truncation to the lowest
modes corresponding to the operators DZ and the fermions, apparently does
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not lead to the correct string Hamiltonian [37].
Finally, let me briefly discuss the issue of holography on the plane wave.

As already mentioned, the conformal boundary of AdS5 × S5 in global co-
ordinates is R × S3 on which the dual SYM theory lives. However, in the
Penrose-Güven limit one focuses on the neighborhood of a null geodesic lo-
cated at the origin of AdS5 and rotating around a great circle of the S5.
It was shown in [36] that the conformal boundary of the plane wave is a
one-dimensional null line. This can be seen by a conformal mapping of the
plane wave to the Einstein static universe R× S9. Since the Einstein static
universe is regular, the boundary consists of the space-time region for which
the Weyl factor is divergent. This is the case for a null line, a S7 inside the
S9 shrinks to zero size and the spatial projection of the null line is a circle
on the S9 [36]. One can picture this as a line winding in time on the Ein-
stein cylinder, see [36]. For a thorough discussion of the causal structure of
more general pp-wave geometries, which are not conformally flat and hence
the above trick of identifying the boundary by a conformal mapping does
not work, see [65, 66]. For a large class of pp-waves satisfying certain con-
ditions, the boundary is again one-dimensional. The conformal boundaries
and geodesics of AdS5×S5 and the plane wave and how the former approach
the latter in the Penrose limit have been analyzed in [67].

So the boundary of the plane wave is a null line, whereas SYM lives on
R×S3 before the limit is taken. Here one should recall again that the geodesic
is rotating on the S5, so when projected on the boundary it is time-like and
can be identified with t. As the S3 has disappeared in the process this sup-
ports the expectation [36] (see also [68]) that the holographic dual of string
theory on the plane wave is a quantum mechanical matrix model obtained
by a truncation of SYM on the S3. It would be nice to gain a precise under-
standing in which sense such a truncation can be consistently performed. An
alternative approach, the construction of a holographic screen consisting of
a four-dimensional hypersurface in the plane wave, was followed in [69, 70].
It would be interesting to understand if this has some connection to [71],
where supersymmetric D3-branes and N = 4 SYM on a four-dimensional
plane wave, arising from a Penrose limit of R× S3, was studied. One would
also like to go beyond the comparison of masses vs. anomalous dimensions
in both theories. Some ideas in this respect have been formulated in [36] (see
however, also [72]), a consistent truncation of SYM in the BMN limit would
suggest to compare finite time transition amplitudes in this model to string
amplitudes on the plane wave.



Chapter 3

Extensions of the BMN duality

3.1 Various approaches

It is an interesting question whether the BMN proposal is applicable to other
less trivial backgrounds. Can the string spectrum in less supersymmetric
situations again be deduced from a subsector of a dual gauge theory with
reduced, possibly even no supersymmetry? This question was addressed in
several publications [73, 74, 75, 76, 17] appearing shortly after [13]. Recall
that orbifolds of type IIB string theory on AdS5 × S5 [77] provide a simple
way to reduce the amount of supersymmetry in the AdS/CFT correspon-
dence. For example, the world-volume theory of kN D3-branes located at
the Zk orbifold singularity of an ALE space is a N = 2 [U(N)]k quiver gauge
theory [78] which is dual to string theory on AdS5×(S5/Zk) [77]. N = 1 field
theories can arise from D3-branes on orbifold singularities of the form C3/Γ,
with Γ a discrete proper subgroup of SU(3). These are dual to strings on
AdS5× (S5/Γ) [77]. One can also consider N D3-branes located at a conifold
singularity of a Calabi-Yau three-fold. In this case the world-volume theory
is a N = 1 SU(N) × SU(N) field theory coupled to four bi-fundamental
chiral multiplets with a IR fixed point and an exactly marginal superpoten-
tial [79]. This theory is dual to string theory on AdS5 × T 1,1, T 1,1 being the
base of the conifold.

What happens if we apply the Penrose-Güven limit to these situations?1

1I remind the reader that in general there exist distinct classes of geodesics which give
rise to different space-times in the limit. The statements I make usually refer to the generic
case if not stated otherwise.

26
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Let me sketch the case of AdS5×T 1,1 which was studied in [73, 74, 75]. Topo-
logically T 1,1 is a U(1) bundle over S2 × S2 and its SU(2) × SU(2) × U(1)
isometry is identified with a SU(2) × SU(2) global symmetry and U(1)R
symmetry of the dual superconformal field theory [79]. The surprising result
found in [73, 74, 75] is that blowing up the neighborhood of a null geodesic
rotating around the U(1) fiber one ends up with the maximally supersym-
metric plane wave background again. Consequently a subsector of the gauge
theory with enhancement from N = 1 to N = 4 supersymmetry should
emerge in the BMN limit. Indeed, one finds that the string Hamiltonian in
this case is related to that of the plane wave by a twisting [73, 74, 75]

HT 1,1 = HS5 + J1 + J2 , (3.1)

where J1 and J2 are rotation generators of a R2 × R2 subspace of the plane
wave transverse geometry. From the gauge theory perspective HT 1,1 is iden-
tified with ∆ − 3

2
R, where R is the generator of the U(1)R symmetry and

Ja = Qa − 1
2
R, where Qa are the Cartan generators of the SU(2) × SU(2)

global symmetry. All these combinations remain fixed in the limit, similarly
to ∆ − J in the N = 4 case. In particular the sector in the N = 1 theory
with supersymmetry enhancement is specified by [73, 74, 75]

HS5 = ∆− 1

2
R−Q1 −Q2 . (3.2)

One can explicitly identify these operators in the gauge theory. The mat-
ter content consists of chiral multiplets Ai and Bi with R-charge 1/2 and
conformal dimension 3/4 transforming as (2,1) and (1,2) under the global
symmetry. Then the unique operator corresponding to the string ground
state is tr(A1B1)

R, analogous to trZJ in N = 4. Oscillators in the R2 × R2

direction are roughly speaking identified with the action of the raising op-
erators of SU(2) × SU(2) on the ground state and a possible addition of
phases. For more details, see [73, 74, 75]. Another example where N = 1
is enhanced to N = 4 arises from the Penrose-Güven limit of the dual pair
obtained from N D3 branes on a C3/Z3 orbifold singularity [74]. Further
discussion of supersymmetry enhancement in N = 1 theories arising from
various orbifolds of S5 and T 1,1 can be found in [80].

However, supersymmetry enhancement is not a generic feature, as can be
seen from the examples involving N = 2 [U(N)]k quiver gauge theory [76,
17, 81] (the case k = 2 has also been discussed in [73]). The reason for this
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is that in the generic case the Penrose-Güven limit of AdS5× (S5/Zk) yields
the Zk orbifold of the plane wave background and hence breaks half of the
supersymmetry. This example will be discussed in more detail in the next
section. Penrose-Güven limits of various orbifolds and orientifolds of AdS×S
spaces have also been considered in [82]. I have said above that generically
supersymmetry is not enhanced in the Penrose limit of AdS5 × (S5/Zk). A
precise statement is the following: if the null geodesic is fixed by the group
action, the resulting space-time will be an orbifold of the plane wave; if this
is not the case one recovers the pure plane wave again [76]. Following the
logic above this means that strings on plane waves can also arise in a sector
of N = 2 theory with enhancement to N = 4. This observation leads to a
further interesting development. Suppose we have N1 D3-branes placed on a
C2/ZN2 singularity. Blowing up the region around a null geodesic not fixed
by the group action one can also take N1, N2 → ∞ and keep the R charge
finite [83, 84]. How does this affect the resulting geometry? Again, introduce
light-cone coordinates

x+ =
1

2µ
(t+ ψ) , x− = −µR2(t− ψ) , R4 ≡ 4πgsα

′2N1N2 , (3.3)

however, this time ψ ∼ ψ+ 2π
N2

since the geodesic is not fixed by ZN2 . Taking
N1 ∼ N2 →∞ yields the standard plane wave geometry with the difference
that due to (3.3) the light-like coordinate x− becomes compact with period

x− ∼ x− + 2πR− , R− ≡ µα′
√

4πgs
N1

N2

. (3.4)

Consequently the light-cone momentum p+ is quantized in units of 1/R−

and we have a description of discrete light-cone quantization of strings on
the plane wave in terms of a quiver gauge theory [83, 84]. An interesting new
feature is for example the appearance of momentum and winding states along
the compact direction. These are also realized in the gauge theory [83, 84]:
the dual gauge theory is a [U(N1)]

N2 quiver gauge theory, in particular it
contains N2 bi-fundamental hypermultiplets [78] or, in N = 1 language,
2N2 chiral multiplets in the bi-fundamental. Denote their scalar components
by (AI , BI). The operator tr(A1 · · ·AN2) has precisely the correct quantum
numbers to describe a state with one unit of light-cone momentum and zero
winding. This looks like a ‘string’ winding once around the quiver diagram
(which is a circle). Similarly an operator with k units of momentum winds
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k times around the quiver. Winding states are shown to be dual to oper-
ators with insertions of adjoint scalars from the vector multiplet together
with a phase. The picture that emerges is quite suggestive: strings carrying
momentum are described by operators winding around a large quiver circle,
whereas strings with non-zero winding are dual to operators which carry ‘mo-
mentum’ (the phase). Indeed it was argued in [83, 84], using T-duality, that
the ‘strings’ winding the quiver circle are so called non-relativistic winding
strings in the T-dual description. I refer the reader to [83, 84] for more details.
One can also study compactifications of string theory on the plane wave along
space-like circles [85]. The plane wave with a manifest space-like isometry
is related to the standard one by a coordinate transformation, resulting in a
shift of the Hamiltonian by a rotation generator. For a classification of the
preserved supersymmetry under toroidal compactifications see [85]. Plane
waves with space-like isometries can also arise from non-standard Penrose
limits of AdS5×S5 and AdS5×S5/Zk and are dual to triple scaling limits of
N = 4 or N = 2 gauge theories [86]. The identification of momentum and
winding states along the space-like circle with operators in the dual gauge
theory is similar in spirit to [83, 84], see [86] for the details.

A further interesting direction is the generalization of the BMN corre-
spondence to non-conformal backgrounds [75]. In particular one can consider
examples known to be dual to RG flows from N = 4 in the UV to N = 1
IR fixed points and take the Penrose-Güven limit ‘along the flow’ [87, 88].
Non-conformal backgrounds do, however, not lead to solvable string theories,
rather they share the generic feature that the Penrose limit leads to time-
dependent mass terms for the world-sheet theory in light-cone gauge [75].
Despite of this fact it has been argued in [87] that some features of the RG
flow, such as the branching of a given operator in the UV into operators of
the IR, can be captured by studying the corresponding problem of a point
particle propagating in this time dependent background. This system is ex-
actly solvable [87]. One may also focus on the geometry in the IR [88, 89]
and the resulting background will be one of a deformed Hpp-wave containing
additional constant three-form fluxes. This leads again to a solvable string
theory, see also [90]. By choosing a non-standard geodesic, one use the re-
sulting string theory to study heavy hadrons with mass proportional to a
large global charge in the confining dual IR gauge theory [89]. An interest-
ing solvable example of a time-dependent plane wave background supported
by a non-constant dilaton was considered in [91].
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3.2 Strings on orbifolded plane waves from

quiver gauge theory

In the previous section I tried to give a flavor of the possible extensions of the
BMN duality. In this section the case of the plane wave orbifold [76, 17, 81]
will be discussed in more detail. Specifically, I will consider a Zk orbifold
of one of the two R4 subspaces transverse to the propagation null vector
and show that first-quantized free string theory is described correctly by the
large N , fixed gauge coupling limit of N = 2 [U(N)]k quiver gauge theory.
Apart from being an interesting example with less supersymmetry, a further
motivation comes from the fact that, as shown in [13, 15, 34], the plane
wave background acts as a harmonic potential to the string, and hence the
dynamical distinction between untwisted and twisted states is less clear. It
is thus of intrinsic interest to see if one can find a precise map between
type IIB string oscillation modes and quiver gauge theory operators, both
for untwisted and twisted sectors. Indeed, we will see that operators dual to
untwisted and twisted sector states are quite similar.

3.2.1 IIB superstring on plane wave orbifold

As explained in the previous chapter, the dynamics of superstrings on the
maximally supersymmetric plane wave geometry supported by homogeneous
R-R 5-form flux and constant dilaton

ds2 = 2dx+dx− − µ2(~x2 + ~y2)(dx+)2 + d~x2 + d~y2 ,

F+1234 = F+5678 = 4µ ,
(3.5)

(~x, ~y) ∈ R4 × R4, is governed by an exactly solvable light-cone world-sheet
theory of free, albeit massive fields [15]. The isometry group of the eight-
dimensional space transverse to the null propagation direction is SO(4)1 ×
SO(4)2: while the space-time geometry is invariant under SO(8), the 5-form
field strength breaks it to SO(4)1 × SO(4)2. In the Green-Schwarz action
on the plane wave background, the reduction of the isometry is due to the
coupling of spinor fields to the background R-R 5-form field strength.

One is interested in reducing the number of supersymmetries preserved
by the background. As alluded to above, one can break one half of the 32
supersymmetries by taking a Zk orbifold of the R4 subspace parameterized
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by ~y. The orbifold action is defined by

g : (z1, z2) −→ ω(z1, z2) , ω = e
2πi
k , (3.6)

where

z1 ≡ 1√
2
(y6 + iy7) , z2 ≡ 1√

2
(y8 − iy9) , (3.7)

and g acts on space-time fields as

g = exp

(
2πi

k
(J67 − J89)

)
. (3.8)

J67 and J89 are the rotation generators in the 6-7 and 8-9 planes, respectively.
Defined so, the orbifold of the plane wave background is actually derivable
from the Penrose limit of AdS5 × S5/Zk taken along the great circle of the
S5 that is fixed by the Zk action.

In the light-cone gauge, the superstring on the background (3.5) is de-
scribed by eight world-sheet scalars xI and eight world-sheet fermions Sa, all
of which are free but massive. The masses of scalars and fermions are equal
by world-sheet supersymmetry (which descends from the light-cone gauge fix-
ing of the Green-Schwarz action, cf. the remark above equation (2.34)) and
equal the R-R 5-form field strength µ. S is a positive chirality Majorana-
Weyl spinor of SO(9, 1), obeying the light-cone gauge condition Γ+S = 0
and hence transforming as a positive chirality spinor of SO(8) under ro-
tations in the transverse directions. Decompose the world-sheet fields into
representations of SO(4)1 × SO(4)2

xI = (~x, ~y)→ (~x, z1, z2) , Sa → (χα, ξα̇) , (3.9)

where α and α̇ are spinor indices of SO(4)2, ranging over 1, 2 and I have
suppressed the spinor indices of SO(4)1 under which χα and ξα̇ carry positive
and negative chirality, respectively. Then the fields ~x and χα transform
trivially under g whereas

g : zm −→ ωzm , ξα̇ −→ Ωα̇
β̇ξ

β̇ , (3.10)

and Ω = diag(ω, ω−1), that is ξ1̇ and ξ2̇ transform oppositely under the Zk

action. It is convenient to combine ξ1̇, ξ̄ 2̇ into a Dirac spinor ξ, and ξ̄ 1̇ and
ξ2̇ into its conjugate ξ̄ and analogously for χ and χ̄. As the world-sheet
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theory is free, it is straightforward to quantize the string in each twisted
sector, the only difference among various sectors being the monodromy of
the world-sheet fields sensitive to the orbifolding, that is zm and ξ. The
other world-sheet fields remain periodic. The monodromy conditions in the
q-th twisted sector, q = 0, . . . , k − 1, are

zm(σ + 2πα′p+, τ) = ωqzm(σ, τ) , ξ(σ + 2πα′p+, τ) = ωqξ(σ, τ) , (3.11)

and the corresponding oscillator modes depend on n(q) = n+ q
k

(n ∈ Z).
Physical states are obtained by applying the bosonic and fermionic cre-

ation operators to the light-cone vacuum |v, p+〉q of each twisted sector. They
should satisfy additional constraints ensuring the level-matching condition:∑

n∈Z

nNn = 0 ,
∑
n∈Z

n(q)
(
Nn(q) − N̄−n(q)

)
= 0 , (3.12)

and Zk invariance. The bosonic creation operators are

~a†n , and α†mn(q) , ᾱ†mn(−q) , (n ∈ Z) . (3.13)

Here, ~an are the ~x oscillators, whereas αmn(q) and ᾱmn(−q) are zm and z̄m os-
cillators, respectively. The fermionic creation operators consist, in obvious
notation, of

χ†n , χ̄†n and ξ†n(q) , ξ̄†n(−q) . (3.14)

Acting with the fermionic zero-mode oscillators on the light-cone vacua and
projecting onto Zk invariant states, one fills out N = 2 gravity and tensor
supermultiplets of the plane wave background. The action of the bosonic
zero-mode oscillators on these gives rise to a whole tower of multiplets [34],
much as in the AdS5×S5 case. As an example, we have four invariant states
with a single bosonic oscillator

~a †0 |v, p+〉q , (3.15)

and states with two bosonic oscillators are

a†µn a
† ν
−n|v, p+〉q , α† ln(q)ᾱ

†m
−n(q)|v, p

+〉q . (3.16)

In the Z2 case there are additional invariant states built from two zm or
two z̄m oscillators. However, they do not satisfy the level matching condi-
tion (3.12). The light-cone Hamiltonian in the q-th twisted sector is

Hq =
∑
n∈Z

Nn

√
µ2 +

n2

(α′p+)2
+
∑
n∈Z

(
Nn(q) + N̄−n(q)

)√
µ2 +

n(q)2

(α′p+)2
. (3.17)



33

The first sum is over those oscillators which are not sensitive to the orbifold
and Nn (Nn(q) and N̄−n(q)) is the total occupation number of bosons and
fermions. The ground state energy is cancelled between bosons and fermions.
This corresponds to a choice of fermionic zero-mode vacuum that explicitly
breaks the SO(8) symmetry, which is respected by the metric but not the
field strength background, to SO(4)1 × SO(4)2 [34].

3.2.2 Operator analysis in N = 2 quiver gauge theory

It is known [77] that type IIB string theory on AdS5 × (S5/Zk) is dual to
N = 2 [U(N)]k quiver gauge theory, the world-volume theory of kN D3-
branes placed at the orbifold singularity. In light of the discussion in the
previous section, one can anticipate that string theory on the plane wave
orbifold is dual to a new perturbative expansion of the quiver gauge theory
at large N and fixed gauge coupling g2

YM = 4πgsk. The factor of k in
the relation between the string and the gauge coupling is standard and can
be deduced by moving the D3-branes off the tip of the orbifold into the
Higgs branch, see also [92]. In the new expansion, one focuses primarily
on states with conformal weight ∆ and U(1)R charge J which scale as ∆,
J ∼
√
N , whose difference (∆−J) remains finite in the large N limit. U(1)R

is the subgroup of the original SU(4)R symmetry of N = 4 super Yang-
Mills theory, which on the gravity side corresponds to the S1 fixed under the
orbifolding; this U(1)R together with the SU(2)1 subgroup of the remaining
SO(4) ' SU(2)1 × SU(2)2 that commutes with Zk ⊂ SU(2)2 forms the
R-symmetry group of N = 2 supersymmetric gauge theory.

The reason for the above scaling behavior is that (∆−J) is identified with
the light-cone Hamiltonian on the string theory side, whereas2 J√

kN
∼ p+, p+

being the longitudinal momentum carried by the string. When (∆−J)� J ,
the light-cone Hamiltonian in (3.17) implies that on the gauge theory side
there are operators obeying the following relation between the dimension ∆
and the U(1)R charge J

(∆− J)n =
√

1 + λ′n2 and (∆− J)n(q) =

√
1 + λ′ (n(q))2 . (3.18)

In the gauge theory, before orbifolding we have N ×N matrix valued fields,

2Since
∫

S5/Zk
F5 = N , the radius of AdS5 is proportional to (kN)1/4.
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that is the gauge field and three complex scalars

Aµ , Z =
1√
2
(φ4 + iφ5) , ϕm = (ϕ1, ϕ2) ≡ 1√

2
(φ6 + iφ7, φ8− iφ9) , (3.19)

and in addition their superpartners, fermions χ and ξ. The fields χ and ξ are
spinors of SO(5, 1), transforming as 4 and 4′, respectively. To define the Zk

orbifolding in the gauge theory, we promote these fields to kN×kN matrices
Aµ, Z, Φm, X and Ξ and project onto the Zk invariant components. The
projection is ensured by the conditions

SAµS−1 = Aµ , SZS−1 = Z , SXS−1 = X (3.20)

and
SΦmS−1 = ωΦm , SΞS−1 = ωΞ . (3.21)

where S = diag(1, ω−1, ω−2, . . . , ω−k+1), each block being proportional to the
N ×N unit matrix.

The resulting spectrum is that of a four-dimensional N = 2 quiver gauge
theory [78] with [U(N)]k gauge group, containing hypermultiplets in the bi-
fundamental representations of U(N)i × U(N)i+1, i ∈ Z mod(k). More pre-
cisely, Aµ, Z and X fill out k N = 2 vector multiplets with the fermions
transforming as doublets under SU(2)R (as its Cartan generator is propor-
tional to (J67 + J89)). The Z field has the block-diagonal form

Z =


Z1

Z2

Z3

·
·
Zk

 (3.22)

with zeros on the off-diagonal and the diagonal blocks being N ×N matrices
of U(N)i’s. The Aµ and X fields take an analogous form. Likewise, the Φm

and Ξ fields fill out k hypermultiplets, in which the scalars are doublets under
SU(2)R, whereas the fermions are neutral. The Φm fields take the form

Φm =


0 ϕm12

0 ϕm23
0 ·

· ·
· ·

ϕmk1 · ·

 (3.23)
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and analogously for Ξ.
The light-cone vacua of string theory on the plane wave orbifold ought

to be described by Hq = 0 and in the quiver gauge theory this translates to
operators with ∆−J = 0. One can build k mutually orthogonal, Zk invariant
single-trace operators Tr[SqZJ ] and associate these operators to the vacuum
in the q-th twisted sector

1√
kJNJ

Tr[SqZJ ]←→ |v, p+〉q , (q = 0, . . . , k − 1) . (3.24)

In what sense is this identification unique? After all, in the quiver gauge the-
ory it appears that the operators Tr[SqZJ ] for any q stand on equal footing.
However, the orbifold action renders an additional ‘quantum’ Zk symmetry
(see for example [93]) that acts on fields in the quiver gauge theory.3 Specif-
ically, one can take an element g in this quantum Zk to act on an arbitrary
field Tij, i, j ∈ Z mod(k), as g : Tij −→ Ti+1,j+1. In particular, one notes
that g : Tr[SqZJ ] −→ ωqTr[SqZJ ]. So one can indeed distinguish classes
of operators on the quiver gauge theory side by their eigenvalues under the
quantum Zk symmetry.

Next, consider the eight twist invariant operators with ∆− J = 1. They
are

1

k
√
NJ+1

Tr[SqZJDµZ]←→ a†µ0 |v, p+〉q , (3.25)

1

k
√
NJ+1

Tr[SqZJXJ=1/2]←→ χ†0|v, p+〉q , (3.26)

1

k
√
NJ+1

Tr[SqZJX̄J=1/2]←→ χ̄†0|v, p+〉q . (3.27)

These are identified with IIB supergravity modes built out of a single zero-
mode oscillator acting on the q-th vacuum. Here, DµZ = ∂µZ + [Aµ,Z] .
Operators corresponding to higher string states on the plane wave orbifold
arise as follows. Oscillators of non-zero level n corresponding to the fields
not sensitive to the orbifold are identified with insertions of the operators
DµZ, XJ=1/2 and X̄J=1/2 with a position dependent phase factor in the trace
Tr[SqZJ ]. For instance, for ∆− J = 2, µ 6= ν,

1√
kJNJ+2

J∑
l=0

e
2πiln

J Tr[SqZ lDµZZJ−lDνZ]←→ aµ †n a
ν †
−n|v, p+〉q . (3.28)

3This Zk should not to be confused with the space-time Zk used for constructing the
orbifold. By construction, under the orbifold action all the fields are invariant.
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This is exactly the same as in the unorbifolded case – the insertion of the
position-dependent phase factor ensures that the level-matching condition
is satisfied and that the light-cone energy of the string states is reproduced
correctly [13].

The remaining string states involving oscillators with a fractional mod-
ing n(q) in the twisted sectors, should be identified with insertions of the
operators Φm and ΞJ=1/2 together with position-dependent phase factors of
the form e2πiln(q)/J . Similarly, insertions of Φ̄m and Ξ̄J=1/2 are accompanied
with the phase factor e2πiln(−q)/J . Again, the prescription implements the
level-matching condition and yields the correct energy of the corresponding
string states. For r 6= s

1√
kJNJ+2

J∑
l=0

e
2πiln(q)

J Tr[SqZ lΦrZJ−lΦ̄s]←→ αr †n(q)ᾱ
s †
−n(q)|v, p

+〉q . (3.29)

For the Z2 orbifold, the operator corresponding to αr †n(q)α
s †
m(q)|v, p+〉1, though

being Z2 invariant, vanishes for all m, n due to the cyclicity of the trace, as
it should, cf. the remark below equation (3.16).

Finally, operators with insertions such as D2Z, Z̄ or XJ=−1/2 are expected
to be hidden by operator mixing, much in the same way as discussed in the
previous chapter, section 2.3. One can compute the leading order anomalous
dimensions of the ∆− J = 2 operators in equation (3.29), perturbatively in
N = 2 quiver gauge theory and confirm that the proposal for the twisted
sector operators reproduces the correct light-cone string energy spectrum.
In fact, in the setup I have outlined above one can proceed with the com-
putations essentially parallel to those of [13], see for example [17] for more
details.

3.3 Further directions

So far I mainly considered closed strings in IIB string theory on the plane
wave background, their duality toN = 4 SYM in the BMN limit and general-
izations thereof. In this section I would like to discuss two further interesting
issues: D-branes on the plane wave and string theory on more general pp-
wave backgrounds.
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3.3.1 D-branes on the plane wave

Since D-branes capture non-perturbative effects in string theory, their under-
standing in the plane wave background is important. They can be studied
by various means: in perturbative string theory they are defined as hyper-
surfaces on which open strings end and hence can be analyzed by finding
consistent boundary conditions for open strings; alternatively they can be
described using boundary states, that is coherent states in closed string the-
ory. The boundary state imposes certain gluing conditions on the closed
string fields that arise through the presence of the D-brane. Interactions
between two static D-branes through the exchange of closed strings at tree
level can then be computed by sandwiching the closed string propagator be-
tween two boundary states. The same process can be re-interpreted as an
open string one-loop diagram, i.e. the open string partition function. This is
open-closed duality, which has to be satisfied for a D-brane to be consistent.
Yet another way to describe D-branes is by considering their world-volume
theory, consisting of a Dirac-Born-Infeld and a Wess-Zumino term. Solutions
to the resulting field equations describe the embedding of the D-brane into
the target space. Finally, at low energies D-branes arise as solitonic solutions
to the supergravity equations of motion.

All of these different approaches have been used to obtain a rather detailed
picture of supersymmetric D-branes in the plane wave background via open
strings in light-cone gauge [94, 95, 96], covariant open strings [97], boundary
states [98, 99, 100, 96] and the open-closed consistency conditions [99, 100],
D-brane embeddings [101] and supergravity solutions [102]. I will summarize
these results below, overviews over many aspects on D-branes on the plane
wave can be found in [103, 104]. For a discussion of open strings in the plane
wave with a constant B-field turned on, see [105].

Let me start with the open string analysis. The covariant action for
strings in the plane wave [15] is invariant under local κ-symmetry. For open
strings additional boundary terms arise under κ-variations and for super-
symmetry preserving configurations these have to be cancelled by imposing
suitable boundary conditions. In [97] this analysis was performed for longitu-
dinal Dp-branes (+,−,m, n), i.e. branes whose world-volume is along x+, x−

and m and n denote the number of coordinates along the two transverse R4’s.
Branes with p = 3, 5, 7 and |m−n| = 2 are half-supersymmetric4 if they are

4This means that half of the kinematical as well as half of the dynamical supercharges
are preserved. Kinematical (non-linearly realized) supercharges square to P+, whereas



38

located ‘at the origin’, whereas ‘outside the origin’ only one quarter of the
supercharges, namely half of the kinematical ones, are preserved [97]; these
results agree with the analysis of open strings in light-cone gauge performed
previously in [94], as well as the supergravity analysis [102] and D-brane
embeddings [101]. Moreover, the D1-brane (+,−, 0, 0) at any position only
preserves half of the dynamical supercharges [97]. As the plane wave is a ho-
mogeneous space it is rather counterintuitive that the number of preserved
supersymmetries may depend on the position of the brane. In fact, a more
precise statement is that these branes are flat in Brinkmann coordinates. As
the P I are time dependent in these coordinates and do not simply generate
translations along the xI (cf. equation (2.14)), a half-supersymmetric brane
related to a flat brane at the origin by a translation is curved [102]. Hence flat
branes at different transverse positions do not fall in the same equivalence
class with respect to translations generated by the P I , see also [95].

In light-cone gauge boundary states can only describe instantonic D(p+
1)-branes [106]. These are formally related to the longitudinal branes dis-
cussed above by a double Wick rotation and will be denoted by (m,n).
Boundary states in the plane wave preserving half of both kinematical and
dynamical supercharges were first constructed in [98] closely following the
flat space description of [106]. Assume as in flat space that the D-brane
preserves half of the dynamical supersymmetries, i.e.(

Q+ iηMQ̃
)
ȧ
|| (m,n),yt, η〉〉 = 0 , (3.30)

where η = ±1 distinguishes a brane from an anti-brane, yt is the transverse
position and

Mȧḃ =

(∏
I∈N

γI

)
ȧḃ

. (3.31)

Here γI are the gamma-matrices of SO(8) and the product is over the Neu-
mann directions. Together with standard Neumann and Dirichlet boundary
conditions on the transverse bosons this implies that half of the kinematical
supersymmetries are preserved (see e.g. [103])(

Q+ iηMQ̃
)
a
|| (m,n),yt, η〉〉 = 0 . (3.32)

dynamical (linearly realized) supercharges square to the Hamiltonian plus additional gen-
erators.
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Here Mab is analogous to Mȧḃ. The structure of the boundary state and
consistency of the corresponding brane is crucially dependent on the choice
of M . It is useful to distinguish the cases ΠMΠM = ∓1, the resulting
branes will be sometimes called D−- and D+-branes, respectively. Boundary
states for D− were constructed in [98, 99]. The condition on M is equiva-
lent to |m − n| = 2 and thus leads to an analogous splitting of transverse
coordinates as found from the open string analysis [94]. The allowed values
for p are p = 1, 3, 5 and moreover, the condition (3.30) is only satisfied if
yt = 0, otherwise only half of the kinematical supercharges are preserved.
A detailed analysis and proof of the open-closed consistency conditions was
given in [99]. In flat space the cylinder diagram can be expressed in terms of
certain standard ϑ-functions and open-closed duality arises as a consequence
of the properties of ϑ-functions under modular transformations. In the plane
wave the cylinder diagram involves deformed ϑ-functions, where the defor-
mation depends on the mass parameter [99]. It has been proven in [99] that
these deformed ϑ-functions satisfy certain transformation properties that as-
sure that the open-closed consistency conditions are precisely satisfied for the
half-supersymmetric branes. On the other hand, branes away from the ori-
gin, i.e. those preserving only half of the kinematical supercharges, appeared
to violate open-closed duality and hence be inconsistent. It is also worth-
while to note, that the kinematical conditions (3.32) are not preserved as
a function of time x+ [99]. Indeed, the open string kinematical supercharge
does not commute with the Hamiltonian and hence is spectrum generating as
is the case for closed strings. The open string ground state is an unmatched
boson [94] and it follows that the open string partition function does not
vanish [99].

Boundary states for D+ and the analysis of open-closed duality was con-
sidered in [100]; independently this class was studied in detail in [95] from
the open string side. As mentioned above, these branes also arose in the
supergravity analysis [101, 102] and from the covariant open string [97]. In
this case the condition on M is equivalent to |m − n| = 0, 4, however the
coupling of (0, 4) and (4, 0)-branes to the background R-R flux induces a flux
on the world-volume [101] and correspondingly the boundary conditions for
bosons have to be modified. From the analysis of [100] it seems that the only
consistent boundary state with standard bosonic boundary conditions is the
(0, 0) at any position, i.e. the D-instanton. Again, this is in agreement with
the open string analysis of [101, 102, 97] where the corresponding object, the
D1-brane, is found to preserve half of the dynamical supersymmetries at any
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position. In this case the kinematical conditions (3.32) are preserved as a
function of time x+ [99], corresponding to a vanishing mass term for the open
string zero-modes. Hence in this case the ground states form a degenerate
supermultiplet and the open string partition function vanishes [100].

However, it appears that this is not yet the full story [95, 96]. The reason
for this is that the world-sheet theory being free, it possesses an countably
infinite set of world-sheet symmetries. These simply correspond to transfor-
mations shifting the fields by a parameter satisfying the free field equations.
For the open string such a shift changes the action by a boundary term, so it is
a symmetry if it satisfies appropriate boundary conditions. As shown in [95]
the dynamical supercharges broken by D−-branes located outside the origin
and the kinematical supercharges broken by the D1-brane can be combined
with world-sheet transformations that generate a non-vanishing boundary
term in such a way that the combined transformation is a symmetry of the
open string. Together with open string symmetries originating from closed
string symmetries compatible with the boundary conditions they generate
a superalgebra similar to that of the other half-supersymmetric branes [96].
An analysis of the boundary states for D−-branes located outside the origin
showed that these do preserve a combination of eight dynamical and kinemat-
ical closed string supercharges in addition to the eight standard kinematical
ones. It would be very interesting to see whether these D−-branes turn out
to be consistent with open-closed duality.

The BMN correspondence can be extended to open strings [107, 108,
101, 109]. It was shown in [101] that the D−-branes located at the origin,
descend from supersymmetric AdS embeddings in AdS5 × S5 through the
Penrose limit; these originate from the near-horizon limit of supersymmetric
intersections of the Dp-branes with a stack of D3-branes. For example, in
the near-horizon limit, a suitable D3-D5 system leads to a D5 wrapping a
AdS4×S2 submanifold in AdS5×S5. AdS/CFT is then supposed to act twice
and the holographic dual is SYM coupled to a three-dimensional defect. The
defect theory lives on the boundary of AdS4 and as such is a CFT. The
physics of closed strings and 5-5 open strings is described by the bulk theory,
whereas the boundary theory captures 3-3, 3-5 and 5-3 strings [110, 111, 112].
In particular, the 3-5 and 5-3 strings give rise to hypermultiplets in the
fundamental of the gauge group. Applying the Penrose limit results in the
D5 (+,−, 3, 1) brane at the origin. The dual description is through the BMN
limit of SYM coupled to the three-dimensional defect. The closed string
vacuum is dual to the trace of Z’s and intuitively one expects the open string
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vacuum also to be dual to a large number of Z’s, but instead of the trace with
‘quarks’ at the end of the ‘string’. This is indeed the case, the ‘quarks’ are
scalars in the hypermultiplet originating from 3-5 and 5-3 strings and q̄ZJq
represents the open string vacuum [108]. Open string excitations are then
dual to insertions of defect fields and, for non-zero-modes, in analogy with
the insertion of phases for the closed string, cosines and sines for Neumann
and Dirichlet boundary conditions, respectively [108]. The D7 (+,−, 4, 2)
was discussed in [107], this is more involved as orientifold planes have to be
added to have a consistent theory, but the basic idea remains the same. A
further interesting example is the giant graviton, i.e. a D3-brane wrapped
on a S3 in the S5, which in the Penrose limit gives rise to the (+,−, 0, 2)
brane. Here the open string fluctuations arise from subdeterminant operators
in SYM with large R-charge, see [109] for details.

3.3.2 Strings on pp-waves and interacting field theories

So far we have seen that we can get solvable string theories in light-cone
gauge turning on null, constant R-R field-strengths in a plane wave geome-
try. As first discussed in [113], a large class of interacting string models with
world-sheet supersymmetry, can be engineered in more general pp-wave ge-
ometries with non-constant fluxes and possibly transverse spaces with special
holonomy; for example

ds2 = −2dx+dx− +H(xi)
(
dx+

)2
+ ds2

8 ,

F5 = dx+ ∧ ϕ(xi) ,
(3.33)

and all other background fields set to zero. It is convenient to split the
candidate Killing spinor ε into two parts of opposite SO(8) chiralities, ε =
ε+ + ε−. Analyzing the gravitino variation, one finds that ε+ is independent
of all the coordinates; at lowest order in ϕ this is the supernumerary spinor
we encountered before and gives rise to linearly realized supersymmetry on
the world-sheet in light-cone gauge. On the other hand, it is useful to split
ε− into two parts as well: one, independent of x+ (and x−) is determined
through ε+ by the Killing equation, see [113] for the explicit solution. This
completes the supernumerary Killing spinor for non-constant ϕ, however, as
it is annihilated by Γ+ it does not survive as part of the linearly realized
supersymmetry in light-cone gauge. Depending on ϕ one might also have a
number of kinematical supersymmetries; these correspond to the part of ε−
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depending only on x+ and solving the Killing equation with ε+ = 0; they
imply that an even number of fermions (and hence also bosons) are free on the
world-sheet and decouple from the remaining interacting fields. Generically
there will be no kinematical supersymmetries. If the transverse space is
curved, space-time supersymmetry requires it to have special holonomy. For
example, for solutions with at least N = (2, 2) world-sheet supersymmetry
the most general possibility is a Calabi-Yau four-fold. The Killing spinor
equation determines the bosonic potential H in terms of ϕ and imposes
additional constraints on the allowed four-forms. For N = (2, 2) the solution
is parameterized in terms of a holomorphic function W and a real, harmonic
Killing potential U . Moreover, the Lie-derivative of W along the holomorphic
Killing vector Vµ = i∇µU has to vanish [113]. Explicitly, the general solution
leading to N = (2, 2) world-sheet theories in light-cone gauge is [113]

ds2 = −2dx+dx− − 32
(
|dW |2 + |V |2

)(
dx+

)2
+ 2gµν̄dz

µdz̄ν̄ , (3.34)

ϕµν ≡
1

3!
ϕµρστε

ρστ
ν = ∇µ∇νW , ϕµν = ϕ∗µν , (3.35)

ϕµν̄ ≡
1

2
ϕµν̄ρ

ρ = ∇µ∇ν̄U . (3.36)

Holomorphicity of W follows because the (1, 3) forms in the 10 of SU(4)
are co-closed, whereas U is harmonic due to tracelessness of the (2, 2) forms
in the 15. To get interesting interacting world-sheet theories the transverse
space needs to be non-compact [113]. As the geometry is that of a pp-
wave, one can still choose the light-cone gauge; the form of the resulting
world-sheet theory is dictated by supersymmetry [114]. Notice that, pp-
wave string theories do not lead to the most general 2d supersymmetric field
theories: the target space is always eight-dimensional of special holonomy
and the Killing potential U has to be harmonic due to the self-duality of
F5. Turning on an additional null R-R three-form leads to a second Killing
vector (commuting with the first one), and again the corresponding potential
is harmonic as a consequence of the variation of the dilatino [115]. In the
case of N = (1, 1) the transverse space has Spin(7) holonomy, one gets a real
harmonic superpotential [113] and, if the R-R three-form is non-zero, one
harmonic Killing potential [115].

This general class of pp-wave solutions of type IIB supergravity is in-
teresting for several reasons. They are exact string solutions, i.e. they do
not receive α′ corrections. In particular this is true for the plane wave back-
ground, see [116] for a proof based on the pure spinor approach for a covariant
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description of strings in R-R backgrounds. As shown in [117], for the pp-wave
space-times it is more advantageous to use the U(4) formalism, where strings
are governed by exact interacting N = 2 superconformal world-sheet theo-
ries. This proves the exactness of this general class of solutions, see also [118]
for an extension to a larger class of R-R backgrounds, some of which can-
not be studied in light-cone gauge. For an alternative argument, based on
space-time properties, essentially the existence of a covariantly constant null
vector, see [119]. Another interesting feature is the possibility to choose the
superpotential such that the world-sheet theory becomes integrable [113];
in that case one may hope to use known properties of integrable models to
learn about strings propagating in these backgrounds, see also [119, 120] for
further discussions and examples.

D-branes in these backgrounds have been analyzed in [121], for example
forN = (2, 2) branes are supersymmetric if they wrap complex manifolds and
the superpotential (and Killing potential) are constant on the world-volume;
one can also have supersymmetric D5-branes wrapped on special Lagrangian
submanifolds and appropriate conditions on the potentials. These results
were derived in [121] in two ways, in the same spirit I described in the previ-
ous chapter: by analyzing supersymmetry preserving boundary conditions in
the world-sheet theory and by finding supersymmetric embeddings in target
space. Interestingly, for the special case of the plane wave, the branes found
in [121] are ‘oblique’, that is they are oriented in directions that couple the
two transverse R4’s; these however, preserve less supersymmetry than the
branes considered in the previous section.



Chapter 4

String interactions in the plane
wave background

In the previous two chapters I have among other things discussed and ex-
plained how free strings on the plane wave background and its orbifold arise
in a double-scaling limit of N = 4 SYM and N = 2 quiver gauge theory,
respectively. A computation of the anomalous dimensions of BMN single-
trace operators in interacting planar N = 4 SYM [13, 45, 46] reproduces the
mass spectrum of free string theory [15, 34]. It is obviously an interesting
question how string interactions and the non-planar sector of (interacting)
gauge theory will fit into this picture. Before dwelling on the details let me
first make a few general remarks. The proposed duality between free string
theory and planar, interacting N = 4 SYM in the BMN limit

1

µ
H ∼= ∆− J (4.1)

should encompass interactions and non-planar effects, respectively. This fol-
lows from the fact that the global symmetries of both sides of the dual-
ity are not expected to be broken by quantum effects and hence the rela-
tion (4.1) should hold to all orders in the string coupling as a consequence
of the AdS/CFT correspondence [44]. As the two operators act on differ-
ent Hilbert spaces, this identity should be interpreted with some care. One
information encoded in (4.1) is the identification of eigenvalues of the two
operators. This is a basis-independent statement, on both sides of the du-
ality we can choose any suitable basis, compute the matrix elements of the
operator and obtain the eigenvalues by diagonalization. Subsequently the

44
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corresponding eigenstates can be identified (up to degeneracy ambiguities).
Recall once more the relations

1

(µα′p+)2
= λ′ , 4πgs(µα

′p+)2 = g2 . (4.2)

As already stated, considering planar (g2 = 0) gauge theory for small λ′ is
equivalent to free (gs = 0) string theory for large µα′p+. Now what happens
if we take g2 to be non-zero in the free gauge theory? We see from (4.2) that
this means to take µα′p+ → ∞, gs → 0, such that gs(µα

′p+)2 is finite. As
single- and multi-string states are orthogonal to each other, whereas single-
trace BMN operators start to mix with multi-trace ones at finite g2 in the free
gauge theory [42, 43, 47, 44, 49], the identification of states with operators
is modified for finite g2. The fact that the required transformation is not
unique [47, 44, 49, 62, 122] can be intuitively understood from string theory,
because string states become highly degenerate for µα′p+ = ∞. Taking into
account string interactions is equivalent to considering non-planar, interact-
ing gauge theory. Then the freedom of mixing is getting more constrained
because the dual operators now have to be eigenstates of the interacting
dilatation operator. The ambiguity is still present for protected operators
or ones where the interaction does not lift degeneracies present in the free
theory.

As we are only able to obtain the free string spectrum in light-cone gauge,
we should ask how interactions can be studied in this picture. In flat space,
the usual strategy is the vertex operator approach and the difficulties asso-
ciated with the fact that x− is quadratic in the transverse coordinates are
circumvented by using the ten-dimensional Lorentz invariance to set p+ = 0
in general scattering amplitudes. However, in the plane wave background
transverse momentum is not a good quantum number due to the harmonic
oscillator potential confining the string to the origin of transverse space.
Moreover ten-dimensional Lorentz invariance is broken by the non-zero R-R
flux, in particular there is no J+− generator. This obstruction significantly
hinders the vertex operator approach to string interactions. There is only one
other known way of studying string interactions in light-cone gauge, namely
light-cone string field theory pioneered by Mandelstam [123, 124] for the
bosonic string, see also [125, 126, 127, 128], and extended to the superstring
in [129, 130, 131, 132]. The construction of light-cone string field theory in
the plane wave geometry [133, 134, 18, 19] and the derivation of the leading
non-planar correction to the anomalous dimension of BMN operators with



46

two defects (cf. equation (2.51)) from string theory [135, 136] is the main
subject of this chapter and will be discussed in detail in the following sec-
tions. For a qualitative discussion of closed and open string interactions from
the gauge theory point of view see [36].

Further studies of string interactions and their comparison with gauge
theory in the BMN limit include [137, 138], where an alternative construction
of the string field theory vertex is pursued, however a complete solution is
still lacking. I will discuss this issue in more detail in section 4.3. In [139,
140] cubic interactions of IIB supergravity scalars arising from the dilaton-
axion sector and the chiral primary sector – corresponding to mixtures of the
metric and the five-form – were analyzed, the role of the bosonic prefactor
in string field theory on the plane wave was studied in [141, 142]. For an
investigation of the S-matrix for strings in the plane wave see [143]. In [144,
145] interactions of supergravity and string states were computed to leading
and subleading order in µα′p+ and agreement with the planar three-point
functions of BMN operators was established. For an extension to non-planar
corrections and higher string interactions see [146, 147]. Here the comparison
was based on the earlier proposal of [43] that the coefficient of the three-point
function of BMN operators is proportional to the matrix element of the cubic
interaction in the plane wave. With the work of [44] (see also [148]) this
proposal has been replaced by the more rigorous expression in equation (4.1),
see however [149, 150] for a revival and [72] for a derivation of a vertex-
correlator duality slightly different from [43]. By identifying single string
states with mixtures of single and multi-trace BMN operators – defined such
that the redefined single/multi-trace operators are orthogonal in the non-
planar, free gauge theory – general matrix elements of the two sides in (4.1)
have been compared in [44, 62, 63, 122].

The algebraic structure of the cubic interaction vertex, in particular its
expansion in powers of µα′p+ was first examined in [134, 151] and subse-
quently studied in [152, 18]. For comments on a non-trivial dependence of
the string coupling on µα′p+ see [153]. Most notably, closed expressions for
all the quantities appearing in the interaction vertex as functions of µα′p+

were provided in [154].
This chapter is organized as follows. To make the presentation self-

contained and to introduce necessary notation I briefly review the free string
on the plane wave in section 4.1. In section 4.2 I discuss the general features
of light-cone string field theory. The construction of the kinematical and dy-
namical parts of the vertex and the (dynamical) supercharges in the number
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basis is described in detail in sections 4.3 and 4.4. The functional expres-
sions for the dynamical generators are given in section 4.5. The results are
applied in section 4.6 to recover in light-cone string field theory the leading
non-planar correction to the anomalous dimension . Several technical details
that are not included in this chapter are given in appendices A and B.

4.1 Review of free string theory on the plane

wave

In this section I briefly review some basic properties of free string theory on
the plane wave background [15] and introduce some notation. After fixing
fermionic κ-symmetry and world-sheet diffeomorphism and Weyl-symmetry
in light-cone gauge, the r-th free string propagating on the plane wave is
described by xIr(σr) and ϑar(σr)

1 in position space or by pIr(σr) and λar(σr)
in momentum space, where I = 1, . . . , 8 is a transverse SO(8) vector index,
a = 1, . . . , 8 is a SO(8) spinor index. I will often suppress these indices in
what follows. The bosonic part of the light-cone action is [15]

SB(r) =
e(αr)

4πα′

∫
dτ

∫ 2π|αr|

0

dσr
[
ẋ2
r − x′ 2r − µ2x2

r

]
, (4.3)

where

ẋr ≡ ∂τxr , x′r ≡ ∂σrxr , αr ≡ α′p+
r , e(αr) ≡

αr
|αr|

. (4.4)

In a collision process p+
r will be negative for an incoming string and positive

for an outgoing one. The mode expansions of the fields xIr(σr, τ) and pIr(σr, τ)
at τ = 0 are

xIr(σr) = xI0(r) +
√

2
∞∑
n=1

(
xIn(r) cos

nσr
|αr|

+ xI−n(r) sin
nσr
|αr|

)
,

pIr(σr) =
1

2π|αr|
[
pI0(r) +

√
2

∞∑
n=1

(
pIn(r) cos

nσr
|αr|

+ pI−n(r) sin
nσr
|αr|

)]
.

(4.5)

1ϑr are the non-vanishing components of the SO(9, 1) spinor S satisfying the light-cone
gauge Γ+S = 0.



48

The Fourier modes can be re-expressed in terms of creation and annihilation
operators as

xIn(r) = i

√
α′

2ωn(r)

(
aIn(r) − a

I †
n(r)

)
, pIn(r) =

√
ωn(r)

2α′
(
aIn(r) + aI †n(r)

)
, (4.6)

where

ωn(r) =

√
n2 +

(
µαr

)2
. (4.7)

Canonical quantization of the bosonic coordinates

[xIr(σr), p
J
s (σs)] = iδIJδrsδ(σr − σs) (4.8)

yields the usual commutation relations

[aIn(r), a
J †
m(s)] = δIJδnmδrs . (4.9)

The fermionic part of the light-cone action in the plane wave is [15]

SF(r) =
1

8π

∫
dτ

∫ 2π|αr|

0

dσr[i(ϑ̄rϑ̇r+ϑr
˙̄ϑr)−ϑrϑ′r+ϑ̄rϑ̄′r−2µϑ̄rΠϑr] , (4.10)

where ϑar is a complex, positive chirality SO(8) spinor and

Πab ≡ (γ1γ2γ3γ4)ab (4.11)

is symmetric, traceless and squares to one.2 The matrix Π breaks the trans-
verse SO(8) symmetry of the metric to SO(4)×SO(4) and induces a projec-
tion of SO(8) spinors to subspaces of positive (negative) chirality under both
SO(4)’s. The mode expansion of ϑar and its conjugate momentum iλar ≡ i 1

4π
ϑ̄ar

at τ = 0 is

ϑar(σr) = ϑa0(r) +
√

2
∞∑
n=1

(
ϑan(r) cos

nσr
|αr|

+ ϑa−n(r) sin
nσr
|αr|

)
,

λar(σr) =
1

2π|αr|
[
λa0(r) +

√
2

∞∑
n=1

(
λan(r) cos

nσr
|αr|

+ λa−n(r) sin
nσr
|αr|

)]
.

(4.12)

2In comparison with chapter 2, here γI are the gamma-matrices of SO(8). Throughout
this chapter I use the gamma matrix conventions of [131].
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The Fourier modes satisfy

λan(r) =
|αr|
2
ϑ̄an(r) , (4.13)

and, due to the canonical anti-commutation relations for the fermionic coor-
dinates

{ϑar(σr), λbs(σs)} = δabδrsδ(σr − σs) , (4.14)

they obey the following anti-commutation rules

{ϑan(r), λ
b
m(s)} = δabδnmδrs . (4.15)

It is convenient to define a new set of fermionic operators [133]

ϑn(r) =
cn(r)√
|αr|

[
(1 + ρn(r)Π)bn(r) + e(αr)e(n)(1− ρn(r)Π)b†−n(r)

]
, (4.16)

which explicitly break the SO(8) symmetry to SO(4)× SO(4). Here

ρn(r) = ρ−n(r) =
ωn(r) − |n|

µαr
, cn(r) = c−n(r) =

1√
1 + ρ2

n(r)

. (4.17)

These modes satisfy

{ban(r), b
b †
m(s)} = δabδnmδrs . (4.18)

The free string light-cone Hamiltonian is

H2(r) =
1

αr

∑
n∈ZZ

ωn(r)

(
a†n(r)an(r) + b†n(r)bn(r)

)
. (4.19)

In the above the zero-point energies cancel between bosons and fermions.
Since the Hamiltonian only depends on two dimensionful quantities µ and
αr, α

′ and p+
r should not be thought of as separate parameters.

The single string Hilbert space is built out of creation operators acting
on the vacuum |v〉r defined by

an(r)|v〉r = 0 , bn(r)|v〉r = 0 , n ∈ Z . (4.20)

Physical states have to satisfy the level-matching constraint∑
n∈Z

n
(
a†n(r)an(r) + b†n(r)bn(r)

)
= 0 , (4.21)
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which expresses the fact that there is no physical significance to the choice
of origin for σr.

The isometries of the plane wave background are generated by H, P+,
P I , J+I , J ij and J i

′j′ . The latter two are angular momentum generators
of the transverse SO(4) × SO(4) symmetry of the plane wave. The 32 su-
persymmetries are generated by Q+, Q̄+ and Q−, Q̄−. The former corre-
spond to inhomogeneous shift symmetries on the world-sheet (’non-linearly
realized’ supersymmetries), whereas the latter generate the linearly realized
world-sheet supersymmetries. In sigma models the isometries of the target
space-time result in conserved currents on the world-sheet. These have been
obtained in [15] by the standard Noether method. I will need the following
expressions (at τ = 0)

P I
(r) =

∫ 2π|αr|

0

dσr p
I
r , J I+(r) =

e(αr)

2πα′

∫ 2π|αr|

0

dσr x
I
r . (4.22)

Conservation of (angular) momentum at the time of interaction (τ = 0) will
then be achieved by local conservation of

∑
pIr(σr) and

∑
e(αr)x

I
r(σr), see

equation (4.47) below. The supercharges are

Q+
(r) =

√
2

α′

∫ 2π|αr|

0

dσr
√

2λr , (4.23)

Q−
(r) =

√
2

α′

∫ 2π|αr|

0

dσr
[
2πα′e(αr)prγλr − ix′rγλ̄r − iµxrγΠλr

]
, (4.24)

and Q̄±
(r) = e(αr)

[
Q±

(r)

]†
. Conservation of the non-linearly realized super-

charges by the interaction is established by local conservation of
∑
λr(σr)

and
∑
e(αr)ϑr(σr), cf. equation (4.62). Expanding Q− in modes one finds

Q−
(r) =

e(αr)√
|αr|

γ
(√

µ
[
a0(r)(1 + e(αr)Π) + a†0(r)(1− e(αr)Π)

]
λ0(r)

+
∑
n6=0

√
|n|
[
an(r)P

−1
n(r)b

†
n(r) + e(αr)e(n)a†n(r)Pn(r)b−n(r)

])
,

(4.25)

where

Pn(r) =
1√

1− ρ2
n(r)

(1− ρn(r)Π) . (4.26)
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4.2 Principles of light-cone string field theory

The basic object in string field theory is an operator Ψ that, roughly speak-
ing, creates or annihilates strings and is acting on a Hilbert space H.3 In
light-cone string field theory Ψ is a functional of the light-cone time x+,
the string length |α| and the momentum densities pI(σ) and λa(σ) specify-
ing the configuration of the created/annihilated string. Observables of the
free theory are expressed in terms of Ψ, for example for the free light-cone
Hamiltonian

H2 =
1

2

∫
d|α|D8p(σ)D8λ(σ)Ψ†

(
α′2

4
p2 − µ2α2

4

δ2

δp2
+ µ|α|α

′

2
λΠ

δ

δλ

)
Ψ .

(4.27)
To add interactions to the theory we have to ask the following question:
what are the guiding principles in the construction of the interaction? For
the bosonic string the answer is very intuitive and geometric [123, 124], the
interaction should couple the string world-sheets in a continuous way. For
example, the interaction vertex for the scattering of three strings depicted
in Figure 4.1 is constructed with a Delta-functional enforcing world-sheet
continuity. The functional approach [123, 124, 127, 128] can be extended to

3

1

2

Figure 4.1: The world-sheet of the three string interaction vertex.

the superstring [129, 130, 131, 132]. Here the situation is slightly more com-
plicated, but the basic principle governing the construction of interactions is
very simple: the superalgebra has to be realized in the full interacting theory.

3H is the direct sum of m-string Hilbert spaces Hm, the latter being the direct product
of the single-string Hilbert space H1.
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It is easy to understand why this complicates matters, as the supercharges
that square to the Hamiltonian have to receive corrections as well when
adding interactions. This is the essential difference to the bosonic string and
modifies the form of the vertex [129, 130]. In a way the picture remains quite
geometric, but in addition to a Delta-functional enforcing continuity in su-
perspace, one has to insert local operators at the interaction point [129, 130].
These operators represent functional generalizations of derivative couplings.

To be more precise, consider the plane wave geometry and the behavior
of the various generators of its superalgebra [26] when interactions are taken
into account. In fact, one can distinguish two essentially different sets of
generators. The first set consists of the kinematical generators

P+ , P I , J+I , J ij , J i
′j′ , Q+ , Q̄+ , (4.28)

which are not corrected by interactions, in other words the symmetries they
generate are not affected by adding higher order terms to the action. Hence
these generators remain quadratic in the string field Ψ in the interacting field
theory and act diagonally on H. On the other hand, as alluded to above, the
dynamical generators

H , Q− , Q̄− , (4.29)

do receive corrections in the presence of interactions and couple different
numbers of strings. The requirement that the superalgebra is satisfied in
the interacting theory, now gives rise to two kinds of constraints: kinemat-
ical constraints arising from the (anti)commutation relations of kinemati-
cal with dynamical generators and dynamical constraints arising from the
(anti)commutation relations of dynamical generators alone. As I will ex-
plain below, the former will lead to the continuity conditions in superspace,
whereas the latter require the insertion of the interaction point operators. In
practice these constraints will be solved in perturbation theory, for example
H, the full Hamiltonian of the interacting theory, has an expansion in the
string coupling

H = H2 + gsH3 + · · · , (4.30)

and H3 leads to the three-string interaction depicted in Figure 4.1. To illus-
trate the procedure, consider the commutator

[H,P I ] = −iµ2J+I , (4.31)

which is of course different from the one in flat space. In the plane wave
geometry transverse momentum is not a good quantum number due to the
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confining harmonic oscillator potential. However, expansion in gs implies the
same kinematical constraint as in flat space

[H3, P
I ] = 0 , (4.32)

and, therefore, the interaction is translationally invariant. In fact, the rela-
tion (4.32) is also valid for all higher order interactions and as it is identical
to the one in flat space many of the techniques developed in [130, 131] may
be used in the plane wave case as well. In momentum space the conserva-
tion of transverse momentum by the interaction will be implemented by a
Delta-functional (cf. (4.22))

∆8

[
3∑
r=1

pr(σ)

]
, (4.33)

for a precise definition of this functional see Appendix A, equation (A.1).
Here the coordinate σ of the three-string world-sheet is related to the coor-
dinates σr of the r-th string as

σ1 = σ − πα1 ≤ σ ≤ πα1 ,

σ2 =

{
σ − πα1 πα1 ≤ σ ≤ π(α1 + α2) ,

σ + πα1 −π(α1 + α2) ≤ σ ≤ −πα1 ,

σ3 = −σ − π(α1 + α2) ≤ σ ≤ π(α1 + α2)

(4.34)

and α1+α2+α3 = 0, α3 < 0, i.e. the process where the incoming string splits
into two strings. The joining of two strings into one is the adjoint of this
process, see also section 4.6. In general, when I write an expression like pr(σ)
it is understood that the function has support only for σ within the range
that coincides with that of the r-th string. So, for example pr(σ) actually
denotes pr(σ) = pr(σr)Θr(σ), where

Θ1(σ) = θ(πα1 − |σ|) , Θ2(σ) = θ(|σ| − πα1) , Θ3(σ) = 1 . (4.35)

Analogously from

[H,Q+] = −µΠQ+ =⇒ [H3, Q
+] = 0 , (4.36)

and, since light-cone momentum is a good quantum number, [H,P+] = 0,
one concludes that the cubic interaction contains (cf. (4.23))

∆8

[
3∑
r=1

λr(σ)

]
δ

(
3∑
r=1

αr

)
. (4.37)
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Most interesting is the supersymmetry algebra

{Q−
ȧ , Q̄

−
ḃ
} = 2δȧḃH − iµ

(
γijΠ

)
ȧḃ
J ij + iµ

(
γi′j′Π

)
ȧḃ
J i

′j′ , (4.38)

which also differs from the one in flat space. Expanding the supercharges
Q−
ȧ = Q−

2 ȧ + gsQ
−
3 ȧ + · · · , and analogously for Q̄−, the dynamical constraint

following from (4.38) at O(gs)

{Q−
2 ȧ, Q̄

−
3 ḃ
}+ {Q−

3 ȧ, Q̄
−
2 ḃ
} = 2δȧḃH3 , (4.39)

is again the same as in flat space. This constraint will be solved by inserting
a prefactor h3(αr, pr(σ), λr(σ)) into the ansatz for H3 and analogously for
Q−

3 and Q̄−
3 . As I have already mentioned, the prefactors are operators

inserted at the interaction point as required by locality, see also section 4.5. In
summary, the structure of the superalgebra implies that the cubic interaction
can formally be written in the form

H3 =

∫
dµ3 h3(αr, pr(σ), λr(σ))Ψ(1)Ψ(2)Ψ(3) , (4.40)

where Ψ(r) is the string field for the r-th string, h3 is the prefactor determined
by the dynamical constraints and the measure is

dµ3 ≡
3∏
r=1

dαrD
8λr(σ)D8pr(σ)δ

(∑
s

αs
)
∆8
[∑

s

λs(σ)
]
∆8
[∑

s

ps(σ)
]
.

(4.41)
The expressions for Q−

3 and Q̄−
3 are similar with different prefactors but the

same measure dµ3.
To give a precise meaning to the above functional expressions and in par-

ticular, to solve the dynamical constraints, it is essential to do computations
in the number basis [125, 126]. For simplicity consider the bosonic part, also
the dependence on (and integration over) αr will be suppressed in what fol-
lows. The bosonic part of the string field Ψ can be expanded in the number
basis as

Ψ =
∑
{mk}

φmk

∏
k∈Z

ψmk
(pk) , (4.42)

where φmk
is an operator that creates/annihilates a number basis state |mk〉

and ψmk
(pk) is the mk-th oscillator wave function in momentum space. Sub-

stituting this into (4.40) yields the cubic coupling C(mk(1),mk(2),mk(3)) of
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three fields φmk(r)
. It is convenient to express H3 not as an operator mapping

H1 → H2 (or the adjoint process) but as a state in the 3-string Hilbert space
via

C(mk(1),mk(2),mk(3)) = 〈mk(1)|〈mk(2)|〈mk(3)|H3〉 . (4.43)

Analogously the operators Q−
3 and Q̄−

3 will be identified with states |Q−
3 〉 and

|Q̄−
3 〉 in H3. Then we can write

|H3〉 ≡ ĥ3|V 〉 , (4.44)

where ĥ3 is the prefactor (operator) and the kinematical part of the vertex
|V 〉, common to all the dynamical generators, is

|V 〉 ≡ |Ea〉|Eb〉δ

(
3∑
r=1

αr

)
, |Ea〉 ≡

3∏
r=1

∫
Dpr ∆8

[ 3∑
s=1

ps(σ)
]
|pr〉 ,

(4.45)
and a similar expression for the fermionic contribution |Eb〉. Here |p〉 is the
momentum eigenstate

|p〉 =
∏
k∈Z

|pk〉 =
∑
{mk}

∏
k∈Z

ψmk
(pk)|mk〉

=
∏
k∈Z

(ωkπ
α′

)−1/4

exp

(
− α′

2ωk
p2
k +

√
2α′

ωk
a†kpk −

1

2
a†ka

†
k

)
|0〉 ,

(4.46)

and |0〉 is annihilated by an. Using (4.6) one can check that this is indeed a
momentum eigenstate. It is not too difficult to derive the analogous expres-
sion for the fermionic contribution, but I will not need it in what follows.

4.3 The kinematical part of the vertex

In the previous section I have explained the general ideas underlying light-
cone string field theory and presented formal expressions for the cubic cor-
rections to the dynamical generators of the plane wave superalgebra. In
particular we have seen that the solution to the kinematical constraints can
be constructed as a functional integral, which is common to all the dynamical
generators, cf. (4.45). To obtain the full solution we still need to determine
the explicit form of the prefactors and for this it is necessary to explicitly
compute the functional integral in the number basis.
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The bosonic contribution |Ea〉 to the exponential part of the three-string
interaction vertex has to satisfy the kinematic constraints [130, 131]

3∑
r=1

pr(σ)|Ea〉 = 0 ,
3∑
r=1

e(αr)xr(σ)|Ea〉 = 0 . (4.47)

These are the same as in flat space and arise from the commutation rela-
tions of H with P I and J+I . They guarantee momentum conservation and
continuity of the string world-sheet in the interaction. The solution of the
constraints in (4.47) can be constructed as the functional integral (cf. (4.45))

|Ea〉 =
3∏
r=1

∫
Dpr ∆8

[ 3∑
s=1

ps(σ)
]
|pr〉

=
3∏
r=1

∏
n∈Z

∫
dpn(r)δ

8
[ 3∑
s=1

(
X(s)ps

)
n

]
|pn(r)〉 .

(4.48)

In the second equality the precise definition of the Delta-functional in terms
of an infinite product of delta-functions for the individual Fourier modes of
its argument was used, see appendix A, equations (A.1)–(A.7) for details and
the explicit expressions of the X(r). As the resulting integrals are Gaussian
(cf. (4.46)) the evaluation is straightforward and the result is [133]

|Ea〉 ∼ exp

(
1

2

3∑
r,s=1

∑
m,n∈Z

a†m(r)N̄
rs
mna

†
n(s)

)
|0〉123 , (4.49)

where |0〉123 = |0〉1⊗|0〉2⊗|0〉3 is annihilated by an(r), n ∈ Z. Apart from the
zero-mode part, the determinant factor coming from the functional integral
will be cancelled by the fermionic determinant. In (4.49) the non-vanishing
elements of the so called bosonic Neumann matrices N̄ rs

mn for m, n > 0
are [133]

N̄ rs
mn = δrsδmn − 2

√
ωm(r)ωn(s)

mn

(
A(r)TΓ−1A(s)

)
mn

, (4.50)

N̄ rs
m0 = −

√
2µαsωm(r)ε

stαtN̄
r
m , s ∈ {1, 2} , (4.51)

N̄ rs
00 = (1− 4µαK)

(
δrs +

√
αrαs
α3

)
, r, s ∈ {1, 2} , (4.52)

N̄ r3
00 = −

√
−αr
α3

, r ∈ {1, 2} . (4.53)
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Here

α ≡ α1α2α3 , Γ ≡
3∑
r=1

A(r)U(r)A
(r)T , (4.54)

where

U(r) ≡ C−1
(
C(r) − µαr

)
, Cmn ≡ mδmn ,

(
C(r)

)
mn
≡ ωm(r)δmn . (4.55)

The matrices A(r) are related to the X(r) in a simple way, see equation (A.8).
The terms in N̄ rs

00 and N̄ r3
00 that are not proportional to µ give the pure

supergravity contribution to the Neumann matrices. The part of N̄ rs
00 that is

proportional to µ is induced by positive string modes of p3. I also defined

N̄ r ≡ −C−1/2A(r)TΓ−1B , K ≡ −1

4
BTΓ−1B . (4.56)

An explicit expression for the vector B is given in (A.9). The quantities Γ, N̄ r

andK manifestly reduce to their flat space counterparts, defined in [130, 131],
as µ→ 0. The only non-vanishing matrix elements with negative indices are
N̄ rs
−m,−n. They are related to N̄ rs

mn via [133]

N̄ rs
−m,−n = −

(
U(r)N̄

rsU(s)

)
mn

, m, n > 0 . (4.57)

As such the above expressions are already quite useful, though still formal
in the sense that I did not present their explicit expressions as functions of
µ, αr yet. As the inverse of the infinite-dimensional matrix Γ appears in the
expressions for the Neumann matrices this is a formidable problem. In flat
space the results were known [123, 124] due to the identity4

N̄ rs
mn = −α (mn)3/2

αrn+ αsm
N̄ r
mN̄

s
n , (4.58)

and the explicit expressions

N̄ r
m =

1

αr
fm

(
−αr+1

αr

)
emτ0/αr , K = − τo

2α
, (4.59)

where α4 ≡ α1 is understood and

fm(γ) =
Γ(mγ)

m!Γ
(
m(γ − 1) + 1

) , τ0 =
3∑
r=1

αr ln |αr| . (4.60)

4Notice that in comparison with [130] we have N̄rs
here = C1/2N̄rs

thereC
1/2.



58

The generalization of equation (4.58) to the plane wave background is [152,
18]

N̄ rs
mn = −(1− 4µαK)−1 α

αrωn(s) + αsωm(r)

×

×
[
U−1

(r)C
1/2
(r) CN̄

r
]
m

[
U−1

(s)C
1/2
(s) CN̄

s
]
n
,

(4.61)

and reduces to equation (4.58) as µ→ 0. This factorization theorem can also
be used to verify directly [18] that |Ea〉 satisfies the kinematic constraints in
equation (4.47), see also appendix A.3. It will also prove essential throughout
the next section. The remaining problem of deriving explicit expressions for
K and N̄ r as in equation (4.59) has been solved in [154], however as I will
not need these results in the remainder of this chapter I shall not give them
here and refer the reader to [154].

Analogously to the bosonic case, the fermionic exponential part of the
interaction vertex has to satisfy [130, 131]

3∑
r=1

λr(σ)|Eb〉 = 0 ,
3∑
r=1

e(αr)ϑr(σ)|Eb〉 = 0 . (4.62)

These constraints arise from the commutation relations of H with Q+ and
Q̄+, cf. equation (4.36). As in the bosonic case its solution could be obtained
by constructing the fermionic analogue of the wavefunction (4.46) and then
performing the resulting integrals over the non-zero-modes. The pure zero-
mode contribution has to be treated separately. Instead of using the func-
tional integral the exponential can be obtained (up to the normalization)
by making a suitable ansatz and imposing the constraints (4.62) [130, 131].
The solution is [18] (cf. appendix A.3 for the details; the notation is defined
below)

|Eb〉 ∼ exp

[
3∑

r,s=1

∞∑
m,n=1

b†−m(r)Q
rs
mnb

†
n(s) −

√
2Λ

3∑
r=1

∞∑
m=1

Qr
mb

†
−m(r)

]
|E0

b 〉 ,

(4.63)
where

Λ ≡ α1λ0(2) − α2λ0(1) (4.64)

and |E0
b 〉 is the pure zero-mode part of the fermionic vertex

|E0
b 〉 =

8∏
a=1

[
3∑
r=1

λa0(r)

]
|0〉123 (4.65)
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and satisfies
∑3

r=1 λ0(r)|E0
b 〉 = 0 and

∑3
r=1 αrϑ0(r)|E0

b 〉 = 0. Notice that |0〉r
is not the plane wave vacuum defined to be annihilated by the b0(r). Rather,
it satisfies ϑ0(r)|0〉r = 0 and H2(r)|0〉r = 4µe(αr)|0〉r. In the limit µ → 0 it
coincides with the flat space state that generates the massless multiplet by
acting with λa0(r) on it. The fermionic Neumann matrices can be expressed

in terms of the bosonic ones as [18]

Qrs
mn = e(αr)

√∣∣∣∣αsαr
∣∣∣∣[P−1

(r)U(r)C
1/2N̄ rsC−1/2U(s)P

−1
(s)

]
mn
, (4.66)

Qr
n =

e(αr)√
|αr|

(1− 4µαK)−1(1− 2µαK(1 + Π))
[
P(r)C

1/2
(r) C

1/2N̄ r
]
n
. (4.67)

Let me comment on the choice of zero-mode vertex in equation (4.65). In fact,
it was proposed in [137] to use a different zero-mode vertex built on the plane
wave vacuum |v〉r annihilated by all the b0(r). This also modifies the non-zero-
mode part of |Eb〉, a complete solution to the kinematic constraints was given
in [138, 18]. The motivation for this proposal originally was twofold. First,
it was shown in [54] that the torus anomalous dimension of BMN operators
with mixed scalar/vector impurities is the same as that for scalar/scalar
impurities. This was in disagreement with the proposal of [43] that the
coefficient of the three-point function of BMN operators is proportional to
the matrix element of the cubic interaction in the plane wave, which would
predict vanishing anomalous dimension for these class of operators at the
torus level. This statement is not obvious, it follows from the structure of the
cubic vertex, see also section 4.6. One possible resolution of this discrepancy
was to think about a modification of the string vertex. Another possibility
is of course to replace the proposal of [43] which was not derived from first
principles. In fact, I will show in section 4.6 that using the identification in
equation (4.1), the anomalous dimension of BMN operators transforming as
(4,4) under SO(4)× SO(4) is reproduced in string theory using the vertex
with fermionic zero-mode part as in (4.65). A second motivation was based
on the fact that the plane wave has a discrete Z2 symmetry that exchanges
the two transverse R4’s. This discrete symmetry should be preserved by the
interaction. It was shown in [137] that the Z2 parity of |v〉 is opposite to
the one of |0〉, and, therefore, we have to assign positive parity to |0〉 in
order to preserve the full transverse symmetry. This seems strange, as |v〉
has negative parity although it is the ground state of the theory. How can we
decide if this assignment is correct? The spectrum of type IIB string theory
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on the plane wave was analyzed in detail in [34], in particular the precise
correspondence between the lowest lying string states and the fluctuation
modes of supergravity on the plane wave was established. It turns out that
the state |0〉 corresponds to the complex scalar arising from the dilaton-
axion system, whereas the state |v〉 corresponds to a complex scalar being
a mixture of the trace of the graviton and the R-R potential on one of the
R4’s, that is the chiral primary sector. As dilaton and axion are scalars
under SO(8) and the discrete Z2 is just a particular SO(8) transformation,
we see that the assignment of positive parity to |0〉 is correct. Moreover,
analysis of the interaction Hamiltonian for the chiral primary sector shows
that invariance of the Hamiltonian under the Z2 requires the chiral primaries
to have negative parity [140]. This does not mean that it is impossible to
construct a vertex on |v〉 but it appears that it should be physically equivalent
to the one presented here, i.e. related to it by a unitary transformation.
Solving the dynamical constraints for the proposal of [137] turns out to be
difficult and no complete solution has been presented so far. So this remains
an interesting open problem.

4.4 The complete O(gs) superstring vertex

In the previous section I reviewed the exponential part of the vertex, which
solves the kinematic constraints. The remaining dynamic constraints are
much more restrictive and are solved by introducing prefactors [130, 131],
polynomial in creation operators, in front of |V 〉 (cf. (4.44)). Within the
functional formalism, the prefactors can be re-interpreted as insertions of
local operators at the interaction point [129, 130]. In this section I present
expressions for the dynamical generators in the number basis and prove that
they satisfy the superalgebra at order O(gs) [19]. The functional form of the
leading order corrections to the dynamical generators [133, 18, 19] will be
discussed in section 4.5.

Define the linear combinations of the free supercharges (η = eiπ/4)

√
2η Q ≡ Q− + iQ̄− ,

√
2η̄ Q̃ = Q− − iQ̄− (4.68)

which satisfy

{Qȧ, Qḃ} = {Q̃ȧ, Q̃ḃ} = 2δȧḃH ,

{Qȧ, Q̃ḃ} = −µ
(
γijΠ

)
ȧḃ
J ij + µ

(
γi′j′Π

)
ȧḃ
J i

′j′ .
(4.69)
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Since J ij and J i
′j′ are not corrected by the interaction, it follows that at

order O(gs) the dynamical generators have to satisfy

3∑
r=1

Qȧ(r)|Q3 ḃ〉+
3∑
r=1

Qḃ(r)|Q3 ȧ〉 = 2δȧḃ|H3〉 , (4.70)

3∑
r=1

Q̃ȧ(r)|Q̃3 ḃ〉+
3∑
r=1

Q̃ḃ(r)|Q̃3 ȧ〉 = 2δȧḃ|H3〉 , (4.71)

3∑
r=1

Qȧ(r)|Q̃3 ḃ〉+
3∑
r=1

Q̃ḃ(r)|Q3 ȧ〉 = 0 . (4.72)

In order to derive equations that determine the full expressions for the dy-
namical generators one has to compute (anti)commutators of the free super-

charges Qȧ(r) and Q̃ȧ(r) with the prefactors appearing in |Q3 ȧ〉 and |Q̃3 ȧ〉.
Moreover, the action of the supercharges on |V 〉 has to be known. Here
the factorization theorem (4.61) for the bosonic Neumann matrices and the
relation between the bosonic and fermionic Neumann matrices given in equa-
tions (4.66) and (4.67) prove to be essential.

4.4.1 The bosonic constituents of the prefactors

An important constraint on the prefactors (that I will collectively denote by
P) is that they must respect the local conservation laws ensured by |Ea〉 and
|Eb〉. For the bosonic part this means that it must commute with [130, 131]

[ 3∑
r=1

pr(σ),P
]

= 0 =
[ 3∑
r=1

e(αr)xr(σ),P
]
. (4.73)

Consider first an expression of the form

K0 +K+ =
3∑
r=1

∞∑
m=0

Fm(r)a
†
m(r) . (4.74)

The Fourier transform of (4.73) leads to the equations [134]

3∑
r=1

[
X(r)C

1/2
(r) F(r)

]
m

= 0 =
3∑
r=1

αr
[
X(r)C

−1/2
(r) F(r)

]
m
. (4.75)
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Here the components m = 0 and m > 0 decouple from each other. It is
convenient to write the solution for m = 0 in a form which makes the flat
space limit manifest [18]

K0 = (1− 4µαK)1/2
(
P− iµ α

α′
R
)
. (4.76)

Here

P ≡ α1p0(2) − α2p0(1) , α3R ≡ x0(1) − x0(2) , [R,P] = i , (4.77)

that is (no sum on r)

F0(r) = −(1− 4µαK)1/2

√
2

α′
εrs
√
µαrαs , F0(3) = 0 . (4.78)

The overall normalization of K0 is of course not determined by (4.75). The
inclusion of the overall factor (1−4µαK)1/2 will be convenient in what follows.
For m > 0 we have

3∑
r=1

[
A(r)C−1/2C

1/2
(r) F(r)

]
m

=
1√
α′
µαBm =

3∑
r=1

µαr
[
A(r)C−1/2C

−1/2
(r) F(r)

]
.

(4.79)
These equations can be solved using the identities (A.12) and (A.19) given
in appendix A. One finds [134, 18]

Fm(r) = − α√
α′αr

(1− 4µαK)−1/2
[
U−1

(r)C
1/2
(r) CN̄

r
]
m
. (4.80)

In the limit µ→ 0

lim
µ→0

(
K0 +K+

)
= P− α√

α′

3∑
r=1

∞∑
m=1

1

αr

[
CN̄ r

]
m

√
ma†m(r) (4.81)

coincides with the flat space result of [131]. Now take into account the
negatively moded creation oscillators, i.e. consider

K− =
3∑
r=1

∞∑
m=1

F−m(r)a
†
−m(r) . (4.82)
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This leads to the equations

3∑
r=1

1

αr

[
A(r)C1/2C

1/2
(r) F(r)

]
−m = 0 =

3∑
r=1

[
A(r)C1/2C

−1/2
(r) F(r)

]
−m . (4.83)

Comparing the second equation with the difference of the two equations
in (4.79) it follows

F−m(r) ∼ Um(r)Fm(r) . (4.84)

However, if one substitutes this into the first equation one actually sees that
the sum is divergent [130, 131, 134]. This phenomenon already appears in
flat space and it is known [130] that the function of σ responsible for the
divergence is δ(σ − πα1) − δ(σ + πα1). However, since ±πα1 are actually
identified this divergence is merely an artifact of our parametrization. I will
argue in section 4.4.3 that the appropriate relative normalization is [18]

F−m(r) = iUm(r)Fm(r) . (4.85)

4.4.2 The fermionic constituents of the prefactors

The fermionic constituents of the prefactors have to satisfy the conditions

{ 3∑
r=1

λr(σ),P
}

= 0 =
{ 3∑
r=1

e(αr)ϑr(σ),P
}
. (4.86)

Consider

Y =
2∑
r=1

G0(r)λ0(r) +
3∑
r=1

∞∑
m=1

Gm(r)b
†
m(r) . (4.87)

For the zero-modes we can set the coefficient of, say, λ0(3) to zero due to the

property of the fermionic supergravity vertex that
∑3

r=1 λ0(r)|E0
b 〉 = 0 . The

Fourier transform of (4.86) leads to the equations

3∑
r=1

1√
|αr|

[
A(r)CC

−1/2
(r) P(r)G(r)

]
m

= 0 , (4.88)

3∑
r=1

e(αr)
√
|αr|
[
C1/2A(r)C

−1/2
(r) P−1

(r)G(r)

]
m

=
3∑
r=1

αrX
(r)
m0G0(r) . (4.89)
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The components m = 0 and m > 0 decouple from each other. For m = 0 the
solution is

Y = (1− 4µαK)−1/2(1− 2µαK(1 + Π))

√
2

α′
Λ + · · · (4.90)

As in the previous subsection the normalization is not determined and is
chosen for further convenience. Form > 0 we can rewrite the second equation
as

3∑
r=1

e(αr)
√
|αr|
[
A(r)C

−1/2
(r) P−1

(r)G(r)

]
m

=
α√
α′
Bm . (4.91)

Then the solution can be expressed in terms of F(r) as [18]

G(r) =
√
|αr|P−1

(r)U(r)C
−1/2F(r) . (4.92)

As µ→ 0 we have

lim
µ→0

Y =

√
2

α′
Λ +

3∑
r=1

∞∑
m=1

Fm(r)√
m

√
|αr|b†m(r) . (4.93)

Taking into account that
√
|αr|b†m(r) ←→ QI

−m(r) in the notation of [131]
this is exactly the flat space expression. We will see below that as in flat
space [130, 131], it turns out that the prefactors do not involve negatively
moded fermionic creation oscillators.

4.4.3 The dynamical generators at order O(gs)

Below I present the results [19] necessary to verify the dynamical constraints
in equations (4.70) and (4.71), given the ansatz (4.98)-(4.100) for the cubic
vertex and dynamical supercharges. Computational details are relegated to
appendix B. We need

√
2η

3∑
r=1

[Q(r), K̃
I ] |V 〉 =

√
2η̄

3∑
r=1

[Q̃(r), K
I ] |V 〉 = µγI(1 + Π)Y |V 〉 , (4.94)

where
KI ≡ KI

0 +KI
+ +KI

− , K̃I ≡ KI
0 +KI

+ −KI
− (4.95)
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and

√
2η

3∑
r=1

{Q(r), Y }K̃I |V 〉 = iγJKJK̃I |V 〉 − iµ α
α′

(1− 4µαK)γI(1− Π)|V 〉 ,

√
2η̄

3∑
r=1

{Q̃(r), Y }KI |V 〉 = −iγJK̃JKI |V 〉+ iµ
α

α′
(1− 4µαK)γI(1− Π)|V 〉 .

(4.96)

Notice that the above identities are only valid when both sides of the equation
act on |V 〉. The action of the supercharges on |V 〉 is

√
2η

3∑
r=1

Q(r)|V 〉 = −α
′

α
KIγIY |V 〉 ,

√
2η̄

3∑
r=1

Q̃(r)|V 〉 = −α
′

α
K̃IγIY |V 〉 .

(4.97)

The latter two equations actually lead to the insight that one has to consider
the combinations KI and K̃I , as they are solely determined by the kinemati-
cal part of the vertex and the quadratic pieces of the dynamical supercharges.
In this way it is then possible to fix the relative normalization as has been
done in equation (4.85) [18]. The results summarized in equations (4.94)-
(4.97) motivate the following ansatz for the explicit form of the dynamical
supercharges and the three-string interaction vertex [19, 133]

|H3〉 =
(
K̃IKJ − µ α

α′
δIJ
)
vIJ(Y )|V 〉 , (4.98)

|Q3 ȧ〉 = K̃IsIȧ(Y )|V 〉 , (4.99)

|Q̃3 ȧ〉 = KI s̃Iȧ(Y )|V 〉 . (4.100)

Substituting the above ansatz into (4.70) and (4.71) and using (4.94)-(4.97),
one gets the following equations for vIJ , sIȧ and s̃Iȧ

5

δȧḃv
IJ =

i√
2

α′

α
γJa(ȧD

asI
ḃ)
, δȧḃv

IJ = − i√
2

α′

α
γIa(ȧD̄

as̃J
ḃ)
, (4.101)

5Here (ȧḃ) denotes symmetrization in ȧ, ḃ.
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which originate from terms proportional to K̃IKJ andKIK̃J and are identical
to the flat space equations of [131]. Two additional equations, arising from
terms proportional to µδIJ , are

−δȧḃv
II =

i√
2

α′

α
γIa(ȧ

(
Da + i

[
ΠD̄
]a)

sI
ḃ)
,

−δȧḃv
II = − i√

2

α′

α
γIa(ȧ

(
D̄a − i

[
ΠD
]a)

s̃I
ḃ)
.

(4.102)

As in flat space [131] one defines

Da ≡ ηY a + η̄
α

α′
∂

∂Ya
, D̄a ≡ η̄Y a + η

α

α′
∂

∂Ya
. (4.103)

Recall first the solution of the flat space equations (4.101) [131]. One intro-
duces the following functions of Y a

wIJ = δIJ +

(
α′

α

)2
1

4!
tIJabcdY

aY bY cY d +

(
α′

α

)4
1

8!
δIJεabcdefghY

a · · ·Y h ,

(4.104)

iyIJ =
α′

α

1

2!
γIJab Y

aY b +

(
α′

α

)3
1

2 · 6!
γIJab ε

ab
cdefghY

c · · ·Y h , (4.105)

sI1 ȧ = 2γIaȧY
a +

(
α′

α

)2
2

6!
uIabcȧε

abc
defghY

d · · ·Y h , (4.106)

sI2 ȧ = −α
′

α

2

3!
uIabcȧY

aY bY c +

(
α′

α

)3
2

7!
γIaȧε

a
bcdefghY

b · · ·Y h . (4.107)

Here
tIJabcd ≡ γIK[ab γ

JK
cd] , uIabcȧ ≡ −γIJ[abγ

J
c]ȧ . (4.108)

tIJabcd is traceless and symmetric in I, J , hence wIJ is a symmetric tensor of
SO(8), whereas yIJ is antisymmetric. Apart from the coefficients, in flat
space the structure of the individual terms is completely fixed by the SO(8)
symmetry. The solution of equations (4.101) is [131]

vIJ ≡ wIJ + yIJ , sIȧ ≡ −
2

α′
i√
2

(
ηsI1 ȧ + η̄sI2 ȧ

)
, s̃Iȧ ≡

2

α′
i√
2

(
η̄sI1 ȧ + ηsI2 ȧ

)
.

(4.109)
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Next consider the additional equations (4.102). Using the flat space so-
lution, these can be rewritten as

0 = γIa(ȧ
[
ΠD̄
]a
sI
ḃ)

0 = γIa(ȧ
[
ΠD
]a
s̃I
ḃ)
. (4.110)

The proof that these equations are also satisfied by (4.109) is given in ap-
pendix B.

The proof [19] of equation (4.72) is more involved and provides an impor-
tant consistency check of the ansatz (4.98)-(4.100). It leads to the equations
(cf. appendix B.3)

δIJmȧḃ −
1√
2

α′

α
γ

(I
aȧD

as̃
J)

ḃ
= 0 , (4.111)

δIJmȧḃ −
1√
2

α′

α
γ

(I

aḃ
D̄as

J)
ȧ = 0 , (4.112)

√
2
(
γIaȧηs̃

I
ḃ
− γI

aḃ
η̄sIȧ
)
− 4imȧḃYa = 0 , (4.113)(

γIaȧD̄bs̃
I
ḃ
+ γI

aḃ
Dbs

I
ȧ

)
(1− Π)ab = 0 . (4.114)

Here

mȧḃ = δȧḃ +
i

4

α′

2α
γIJ
ȧḃ
γIJab Y

aY b − 1

4 · 4!

(
α′

2α

)2

γIJKL
ȧḃ

tIJKLabcd Y aY bY cY d

− i

6!

(
α′

2α

)3

γIJ
ȧḃ
γIJab ε

ab
cdefghY

c · · ·Y h − 2

7!

(
α′

2α

)4

δȧḃεabcdefghY
a · · ·Y h

(4.115)

and
tIJKLabcd ≡ γ

[IJ
[ab γ

KL]
cd] . (4.116)

The first three equations are identical to those in flat space and have been
proven in [131]. The additional equation (4.114) is proved in appendix B.2.

The dynamical constraints do not fix the overall normalization of the
dynamical generators which can depend on µ and the αr’s. In flat space, the
fact that the J−I generator of the Lorentz algebra is also dynamical imposes
further constraints on the other dynamical generators and apart from trivial
rescaling uniquely fixes their normalization [132]. As the J−I generator is not
part of the plane wave superalgebra this procedure cannot be applied to our
setup. A comparison with a supergravity calculation fixes the normalization
for small µ to be ∼ (α′µ2)/(α4

3) [139], whereas a comparison with the dual
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field theory implies that for large µ it is ∼ α′/α2 [62, 122, 19]. It was
conjectured in [19] that the normalization valid for all µ is

16πα′µ2α−4
3 (1− 4µαK)2 , (4.117)

which has the correct small- and large-µ behavior [152]. On the other hand,
the non-trivial normalization of Y (cf. equation (4.90)) and the fact that

the terms K̃IKJ and µδIJ in equation (4.98) involve different powers of
1 − 4µαK is fixed by requiring the closure of the superalgebra at O(gs). In
order to obtain the supergravity expressions for the dynamical generators
from equations (4.98)-(4.100), one should set K to zero, as it originates from
massive string modes, cf. the remark below equation (4.55). Together with
[RI ,PJ ] = iδIJ , one can check that the supergravity vertex obtained in this
way agrees with the supergravity vertex presented in section 4 of [133].

I would like to stress that the part in the cubic interaction vertex propor-
tional to µδIJ was originally not present in [133, 134] and plays an essential
role in the above proof of the superalgebra in the interacting string field
theory. In [133], functional expressions for the constituents of the prefac-
tors were used to argue that the vertex of [133] satisfied the superalgebra.
It is known [130, 131] that these functional expressions do not in general
agree with those in the number basis, and as explained in the next section,
it would appear that this subtlety is the origin of the original absence of the
µδIJ term in [133]. In summary the oscillator expressions (4.98)-(4.100) have
been shown explicitly to satisfy the superalgebra at O(gs) [19].

4.5 Functional expressions

The functional expressions for the cubic corrections to the dynamical gener-
ators can be provided by defining the operator analogues for the constituents
of the prefactor. These operators depend on pr(σ), x′r(σ) and λr(σ) and since
pr(σ) and λr(σ) correspond to functional derivatives with respect to xr(σ)
and ϑr(σ) the only physically sensible value of σ to choose is the interaction
point σ = ±πα1. As operators at this point are singular the prefactor must
be carefully defined in the limit σ → |πα1| [130]. Rewriting the operators in
the number basis one obtains expressions containing both creation and an-
nihilation operators of the various oscillators. Eliminating the annihilation
operators by (anti)commuting them through the exponential factors of the
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vertex one recovers the number basis expressions for the constituents of the
prefactors [130, 131, 18].

As in flat space [130, 131] consider the following operators

P (σ) ≡ −2π
√
−α(πα1 − σ)1/2

(
p1(σ) + p1(−σ)

)
, (4.118)

∂X(σ) ≡ 4π

√
−α
α′

(πα1 − σ)1/2
(
x′1(σ) + x′1(−σ)

)
, (4.119)

Y (σ) ≡ −2π

√
−2α√
α′

(πα1 − σ)1/2
(
λ1(σ) + λ1(−σ)

)
. (4.120)

One also defines P |V 〉 ≡ lim
σ→πα1

P (σ)|V 〉 and analogously for ∂X. Acting on

the exponential part of the vertex and taking the limit σ → πα1 we have [18]

lim
σ→πα1

KI(σ)|V 〉 ≡
(
P I +

1

4π
∂XI

)
|V 〉 = KI |V 〉 , (4.121)

lim
σ→πα1

K̃I(σ)|V 〉 ≡
(
P I − 1

4π
∂XI

)
|V 〉 = K̃I |V 〉 , (4.122)

lim
σ→πα1

Y (σ)|V 〉 = Y |V 〉 . (4.123)

Here I prove only the last equation, for more details see [18]. Substituting
the mode expansion for λ1(σ) into (4.120) one gets

lim
σ→πα1

Y (σ)|V 〉 = −
√

2

α′

√
−2α

α1

lim
ε→0

ε1/2

∞∑
n=1

(−1)n cos(nε/α1)×

×

[
√

2ΛQ1
n +

3∑
r=1

∞∑
m=1

Q1r
nmb

†
m(r)

]
|V 〉 . (4.124)

Now the singular behavior of the sum as ε → 0 can be traced to the way it
diverges as n → ∞. Therefore to take the limit ε → 0 we can approximate
the summand for large n and using the factorization theorem (4.61) one
finds [18]

lim
σ→πα1

Y (σ)|V 〉 = f(µ)(1− 4µαK)−1/2Y |V 〉 , (4.125)

where

f(µ) ≡ −2

√
−α
α1

lim
e→0

ε1/2

∞∑
n=1

(−1)nn cos(nε/α1)N̄
1
n . (4.126)
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The identity
f(µ) = (1− 4µαK)1/2 (4.127)

was conjectured to hold on general grounds (the closure of the superalgebra)
in [19] and shown to be true in [154]. This concludes the proof of equa-
tion (4.120).

So up to the overall normalization one can write the functional equivalent
of equations (4.98), (4.99) and (4.100) as

H3 = lim
σ→πα1

∫
dµ3

(
K̃I(σ)KJ(σ)− µ α

α′
δIJ
)
vIJ(Y (σ))Ψ(1)Ψ(2)Ψ(3) ,

(4.128)

Q3 ȧ = lim
σ→πα1

∫
dµ3K̃

I(σ)sIȧ(Y (σ))Ψ(1)Ψ(2)Ψ(3) , (4.129)

Q̃3 ȧ = lim
σ→πα1

∫
dµ3K

I(σ)s̃Iȧ(Y (σ))Ψ(1)Ψ(2)Ψ(3) , (4.130)

where dµ3 is the functional expression leading to the kinematical part of the
vertex, cf. equation (4.41).

Finally, I would like to point out the following subtlety. One can check
for example that

√
2η̄

3∑
r=1

[Q̃(r), lim
σ→πα1

KI(σ)] |V 〉 = µγIΠY |V 〉 . (4.131)

However, this is not equal to the commutator of
∑

r Q̃(r) with KI . Using
equation (4.97) and

[ lim
σ→πα1

KI(σ), K̃J ]|V 〉 = −µα
α′

(1− 4µαK)−1/2δIJ |V 〉 , (4.132)

leads to [19]

√
2η̄

3∑
r=1

[Q̃(r), K
I ]|V 〉 = µγI(1 + Π)Y |V 〉 , (4.133)

which is equivalent to equation (4.94) of section 4.4. It is this appearance
of the matrix 1 + Π as opposed to just Π, that is responsible for the term
proportional to µδIJ in the cubic interaction vertex.
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4.6 Anomalous dimension from string theory

In this section I discuss how the result for the anomalous dimension in equa-
tion (2.51) can be recovered in string theory. This has been done for the
symmetric-traceless 9 and antisymmetric 6 = 3 + 3̄ of either one of the
SO(4)’s in [135] and for the trace 1 in [136]. Here I review this work and
also extend the analysis to the (4,4)±

6 of SO(4)×SO(4). These correspond
to BMN operators with mixed scalar/vector impurities and superconformal
symmetry of the gauge theory implies that they have the same anomalous
dimension as the other representations [48]. As there has been some doubt if
the vertex presented in this chapter correctly reproduces this fact, this also
constitutes a check of our results.

To compute the mass shift of the single string state due to interactions

|n〉 ≡ αI †n(3)α
J †
−n(3)|v〉3 , (4.134)

non-degenerate perturbation theory was used in [135, 136]. In principle one
should use degenerate perturbation theory as the single string state can mix
with multi-string states having the same energy. The same caveat holds for
the computation in gauge theory and we will ignore this complication here.
At lowest order the eigenvalue correction comes from two contributions; one-
loop diagram and contact term

δE(2)
n 〈n|n〉 = g2

2

∑
1,2

[
1

2

|〈n|H3|1, 2〉|2

E
(0)
n − E(0)

1,2

+
1

8

∑
ȧ

|〈n|Q3 ȧ|1, 2〉|2
]
. (4.135)

Factors different from g2 in the normalization (cf. (4.117)) are absorbed in
the definition of H3 and Q3, the extra factor of 1/2 in the first term is due
to the reflection symmetry of the one-loop diagram. The sum over 1, 2 is
over physical double-string states, that is those obeying the level-matching
condition and for the case at hand Q2

3 is the only relevant contribution to
the quartic coupling. As the generators are hermitian we take the absolute
value squared of the matrix elements. In fact, time-reversal in the plane wave
background consists of the transformation

x+ → −x+ , x− → −x− , µ→ −µ , (4.136)

6We define the states in (4,4)± as 1
2

(
αi †

n(3)α
j′ †
−n(3) ± αi †

−n(3)α
j′ †
n(3)

)
|v〉3. The change of

basis αn = 1√
2

(
a|n| + ie(n)a−|n|

)
for n 6= 0 is convenient and an analogous transformation

will be made for the fermions.
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in particular the reversal of µ is needed due to the presence of the R-R flux.
In the previous sections I have always assumed that µ is non-negative and
α3 < 0, α1, α2 > 0. This is, say, the process where a single string splits into
two strings. One can show that for the process in which two strings join
to form a single string, i.e. α1, α2 < 0 and α3 > 0, one should make the
additional replacements

µ→ −µ , Π→ −Π (4.137)

in equations (4.98)-(4.100) and (4.117). This is in agreement with equa-
tion (4.136). Notice that the transformation of Π is needed to leave the
fermionic mass term invariant, cf. (4.10). From the formal expressions for the
Neumann matrices it is not manifest that the cubic corrections to the dynam-
ical generators are hermitian as they have to be. However, from the explicit
expressions for the Neumann matrices [154] one can see that all the quanti-
ties are in fact invariant under the time-reversal. The string states obey the
delta-function normalization 〈n|n′〉 = N|α3|δ(α3−α4), where N = 1

2
(1+δij)

for the 9, N = 1
4

for the 1 and N = 1
2

otherwise. The sum over double-
string states includes a double integral over light-cone momenta, one integral
is trivial due to the string-length conservation of the cubic interaction and
the factor of |α3|δ(α3−α4) can be cancelled on both sides of equation (4.135).
The remaining sum is then the usual completeness relation for harmonic os-
cillators projected on physical states and we have (β ≡ α1/α3)

N δE(2)
n = −g2

2

∫ 0

−1

dβ

β(β + 1)

∑
modes

[
1

2

|〈n|H3|1, 2〉|2

E
(0)
n − E(0)

1,2

+
1

8

∑
ȧ

|〈n|Q3 ȧ|1, 2〉|2
]
.

(4.138)
The measure arises due to the fact that string states are delta-function nor-
malized.

It is important to note that in gauge theory the dilatation operator was
diagonalized within the subspace of two-impurity BMN operators in pertur-
bation theory in the ’t Hooft coupling λ and then extrapolated to λ, J →∞.
But it is not obvious that the large J limit of the perturbation series in λ
has to agree order by order with the perturbation series in λ′, see for exam-
ple [151]. Indeed there is evidence from string theory that this is not the case:
for large µ the denominator of the first term in equation (4.138) is of order
O(µ−1) in the impurity conserving channel, whereas it is of order O(µ) in the
impurity non-conserving one. However, as already noticed in [134], matrix
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elements where the number of impurities changes by two are of order O(1)
and, therefore potentially can contribute to the mass-shift at leading order,
that is O(µg2

2λ
′). Notice that impurity non-conserving matrix elements be-

ing of order one, means actually O(µg2

√
λ′) and as the overall factor of µ is

simply for dimensional reasons and should not be counted when translating
to gauge theory (cf. equation (4.1)) implies contributions ∼ g2

√
λ′ to ma-

trix elements of the dilatation operator. It was observed in [135] that the
contribution of the impurity non-conserving channel to (4.138) is linearly di-
vergent. This is due to the fact that the large µ limit does not commute with
the infinite sums over mode numbers; for finite µ the divergence is regular-
ized. So a linear divergence reflects a contribution ∼ µg2

2λ
′(−µα3) = µg2

2

√
λ′

and hence of order g2
2

√
λ′ to the anomalous dimension. This constitutes a

non-perturbative, ‘stringy’ effect. It remains a very interesting challenge to
investigate the contribution of the impurity non-conserving channel in detail.
In principle, it is possible that besides a divergent contribution there is also
a finite one; this would then scale as µg2

2λ
′. However, to reproduce the re-

sult (2.51) for the anomalous dimensions of two-impurity BMN operators in
string theory one is led to a truncation of equation (4.138) to the impurity
conserving channel [135]. This analysis will be performed below.

4.6.1 Contribution of one-loop diagrams

The matrix element 〈n|H3|1, 2〉 in the impurity conserving channel is non-zero
only if the double-string state contains either two bosonic or two fermionic
oscillators. The relevant projection operator is∑

K,L

α†K0(1)α
†L
0(2)|v〉〈v|α

L
0(2)α

K
0(1) +

1

2

∑
k∈ZZ

∑
r,K,L

α†Kk(r)α
†L
−k(r)|v〉〈v|α

L
−k(r)α

K
k(r)

+
∑
a,b

β† a0(1)β
† b
0(2)|v〉〈v|β

b
0(2)β

a
0(1) +

1

2

∑
k∈ZZ

∑
r,a,b

β† ak(r)β
† b
−k(r)|v〉〈v|β

b
−k(r)β

a
k(r) .

For the first case the fermionic contribution to the matrix elements is simple
to determine. Using a γ-matrix representation in which Π = diag(14,−14),
the plane wave vacua r〈v| are related to r〈0| (up to an irrelevant phase) via

r〈v| = r〈0|
(αr

2

)2
8∏

a=5

ϑa0(r) , 3〈v| = −3〈0|
(α3

2

)2
4∏

a=1

ϑa0(r) . (4.139)
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Directions 1, . . . , 4 and 5, . . . , 8 correspond to positive and negative chiral-
ity under SO(4) × SO(4), respectively. Eight of the zero-modes in equa-
tion (4.139), namely ϑa0(3), a = 1, . . . , 4 and, say, ϑa0(2), a = 5, . . . , 8 are

saturated by |E0
b 〉, so to give a non-zero contribution the remaining four

zero-modes must be contracted with the O(Y 4) term in vMN(Y ). Hence, the
fermionic contribution is(

α′

α

)2
1

4!
tMN
abcd123〈v|Y abcd|E0

b 〉 = −
(α3

2

)4

(1− 4µαK)−2tMN
5678 . (4.140)

One can show that tMN
5678 = (δmn,−δm′n′) in the γ-matrix basis used here.

The bosonic part of the matrix element is not difficult to evaluate and I will
not go into details. Using the large µ expansions for the bosonic Neumann
matrices [152, 154] (see also appendix A) one finds, for example for (I, J) =
(i, j),

〈n|H3|α† k0(r)α
† l
0(s)|v〉12 ∼ µλ′

sin2 nπβ

2π2

(
δrs +

√
αrαs
α3

)
Sijkl ,

〈n|H3|α†Kk(r)α
†L
−k(r)|v〉12 ∼ µλ′β(β + 1)

α3

αr

sin2 nπβ

2π2
Sijkl ,

(4.141)

and the analogous expression for (I, J) = (i′, j′) with an (inessential) overall
minus sign. Here

Sijkl ≡ T ijkl +
1

4
δijT kl , T ijkl = δikδjl + δjkδil − 1

2
δijδkl , T kl = −2δkl

(4.142)
can be split into a symmetric-traceless and a trace part. There is no contri-
bution to the 6 nor to (4,4)±. The sum over k and the integral over β can
be done and the complete contribution of the impurity conserving channel
with bosonic excitations at one-loop is

µg2
2λ

′

4π2

15

16π2n2

{
1
4

∑
k,l T

ijklT ijkl = 1
2
(1 + 1

2
δij)

1
64

∑
k,l T

klT kl = 1
4

. (4.143)

The factors of 1
2
(1 + 1

2
δij) and 1

4
equal the normalization N of the string

states. Thus the contribution to the 9 and 1 is in both cases [135, 136]

µg2
2λ

′

4π2

15

16π2n2
. (4.144)
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The second case with two fermionic oscillators in the double-string was not
analyzed in [135, 136]. For example, one has to evaluate the tensor tMN

abcd

for spinor indices belonging to different chiralities of SO(4) × SO(4). Then
tMN
abcd is non-zero only if M and N are not in the same SO(4). The resulting

contribution is the same as in equation (4.144) for the representation (4,4)+.

4.6.2 Contribution of contact terms

To have a non-zero contribution from Q2
3 the intermediate states need to have

an odd number of bosonic oscillators and an odd number of fermionic oscil-
lators. Thus the simplest contribution comes from the impurity conserving
channel. In this case the projector is∑
K,a

α†K0(1)β
† a
0(2)|v〉〈v|β

a
0(2)α

K
0(1) + (1↔ 2) +

∑
k∈ZZ

∑
r,K,a

α†Kk(r)β
† a
−k(r)|v〉〈v|β

a
−k(r)α

K
k(r) .

At leading order in µ one finds that for the bosonic part of the matrix
element the zero-modes contribute only to the antisymmetric representa-
tions, whereas the non-zero-modes contribute to all representations. For
the fermionic part of the matrix element a simple counting of zero-modes
shows that only terms of order O(Y 3) and O(Y 5) in vMN(Y ) can contribute.
One also needs to evaluate the tensor uIabcȧ and the large µ expansion of
the fermionic Neumann matrices, which due to the relation to the bosonic
Neumann matrices [18] can be inferred from the latter. The final result is

1

2

µg2
2λ

′

4π2

(
1

12
+

35

32n2π2

)
, (4.145)

for the antisymmetric 6 and (4,4)− and

µg2
2λ

′

4π2

(
1

12
+

5

32n2π2

){1
2

(
1 + 1

2
δIJ
)

1
4

, (4.146)

for the 1, 9 and (4,4)+. Summing the contributions of one-loop and contact
diagrams we see that all (bosonic) two-impurity irreducible representations of
SO(4)×SO(4) get the same contribution to the mass-shift from the impurity-
conserving channels

δE(2)
n =

µg2
2λ

′

4π2

(
1

12
+

35

32n2π2

)
. (4.147)

This is in exact agreement with the gauge theory result of [47, 49], cf. (2.51).



Chapter 5

Summary and outlook

The realization of BMN that the Penrose limit of AdS5 × S5 and the knowl-
edge of the full string spectrum on the plane wave, allowed for the first time
to study AdS/CFT – albeit in a special limit – beyond the supergravity ap-
proximation, has ignited a lot of activity. Apart from presenting my own
contributions, the goal of this thesis was to give an overview over various
developments that have taken place.

In chapter 2 I gave an introduction to the BMN correspondence. Several
aspects of this duality were discussed in some detail both from the string
theory as well as the gauge theory point of view.

Extensions of the BMN duality to less trivial backgrounds have been the
topic of chapter 3. Having first considered several illustrative examples, we
studied supersymmetric Zk orbifolds of the plane wave space-time and showed
that free string theory in the orbifolded plane wave is dual to a subsector
of planar N = 2 [U(N)]k quiver gauge theory. In particular, we gave an
explicit identification of gauge theory operators and string states both in the
untwisted and twisted sectors. As interesting examples of further aspects
of string theory on pp-wave space-times, I discussed D-branes on the plane
wave and string theory on pp-waves with non-constant R-R fluxes and curved
transverse spaces.

To investigate the BMN correspondence beyond the free string/planar
gauge theory level, string interactions and the non-planar gauge theory sec-
tor have to be taken into account. In chapter 4 string interactions in the
plane wave background were studied in the framework of light-cone string
field theory. At first order in the string coupling, interactions in this setup
are encoded in a cubic vertex. We analyzed in detail the construction of this
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vertex as well as the dynamical supercharges and presented their complete
expressions both in the oscillator as well as the continuum basis. We proved
that these satisfy the plane wave superalgebra to first order in the string
coupling. In the process, several results that had been known in flat space
light-cone string field theory, e.g. a factorization theorem for the bosonic
Neumann matrices, were generalized to the plane wave space-time. We used
the vertex and supercharges to compute the leading order mass shift of cer-
tain string states in a truncation to the impurity-conserving channel. The
result exactly agreed with the leading non-planar correction to the anomalous
dimension of the dual operators in N = 4 SYM.

There are a number of interesting open problems we have encountered: for
example, it would be nice to extend the computation of the mass shift for the
simplest string states in section 4.6 beyond the contribution of the impurity-
conserving channel. As I have explained, in the large µ limit this presumably
translates to non-perturbative effects in the dual gauge theory. Indeed, a non-
vanishing contribution of order g2

2

√
λ′ to the anomalous dimension would

only constitute the leading term in a power series in fractional powers of λ′;
verifying the presence of such a contribution could eventually lead to better
understanding the nature of the BMN limit in N = 4 SYM. One should be
aware, however, that even a computation of the leading order ‘stringy’ effect
along the lines of section 4.6 seems unfeasible, as infinitely many intermediate
states have to be taken into account. So the way out seems to be to perform
a full-fledged one-loop/contact term computation. Again, this is difficult, as
one has to compute the inverse of infinite-dimensional matrices (involving
e.g. the product of two Neumann matrices) exactly, before taking the large µ
limit. Nevertheless, some progress might be achieved along the lines of [154]
using the techniques developed there.

It would also be interesting to go beyond the comparison of masses vs.
anomalous dimensions in both theories, that is to establish a vertex-correlator
duality. Some promising results in this direction based on a ‘phenomenologi-
cal’ string theory vertex have been reported in [149, 150]. This vertex is built
on the plane wave vacuum, see the discussion in section 4.3. A derivation of
its ‘phenomenological’ part is so far missing and certainly desirable. It would
also be important to derive the vertex-correlator duality used in [149, 150]
and originally proposed in [43] from first principles.1 Possibly the ideas of [36]
to relate transition amplitudes in the matrix model truncation of SYM on S3

1A vertex-correlator duality slightly different from [43] was recently derived in [72].
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to string theory amplitudes are of importance in that respect. The precise
nature of such a truncation deserves further study as well.

It would be natural to extend the research on light-cone string field theory
to include open strings, i.e. D-branes on the plane wave. In particular, as
explained in section 3.3.1, D−-branes outside the origin preserve dynamical
supercharges which involve certain world-sheet symmetries [95]. One way to
understand the consistency of these branes in the presence of interactions is
to construct the corresponding cubic open string interaction vertex.2 As a
more direct approach, one could try to prove open/closed duality using the
boundary states proposed in [96]. It would also be nice to shed light on the
covariant origin of these non-standard supercharges. Of course, open/closed
string interactions would be interesting as well, given the expected duality
to the BMN limit of N = 4 SYM coupled to defect conformal field theories.

As we have seen, the light-cone GS action is well-suited to obtain the
spectrum of string theories in simple backgrounds with R-R flux. Although
the construction of the cubic interaction vertex is technically quite involved,
it is a viable possibility to study simple tree- and – at least in the approxima-
tion described in section 4.6 – one-loop interactions. However, as discussed
in [116], even for studying higher point tree-amplitudes in flat space this
approach is not useful, as the vertex explicitly depends on the interaction
point. Moreover, it is difficult to describe physical states with vanishing p+

in the light-cone formalism. These caveats become even more problematic
for backgrounds without the full Lorentz isometry, such as the plane wave.
Thus it is a worthwhile prospect to use the U(4) formalism as advocated
in [117, 118] to overcome some of these drawbacks. In this approach strings
on the plane wave are described by an exact interacting N = 2 superconfor-
mal field theory and standard CFT techniques may be used for computations.
One can also naturally describe strings in the more general pp-wave geome-
tries of section 3.3.2 in this setup, which makes this approach potentially
even more interesting. A comparison of scattering amplitudes computed in
world-sheet perturbation theory with results obtained in the light-cone gauge
is of interest and a good starting point for further studies of string theory in
backgrounds with R-R flux.

2For the D7-brane at the origin this has recently been done in [155].



Appendix A

The kinematical part of the
vertex

A.1 The Delta-functional

The precise definition of the Delta-functional is

∆8
[ 3∑
r=1

pr(σ)] ≡
∏
m≥0

δ8

(∫ π|α3|

−π|α3|
dσ eimσ/|α3|

3∑
r=1

pr(σ)

)
. (A.1)

The pure zero-mode contribution decouples from the Delta-functional, so

∆8
[ 3∑
r=1

pr(σ)
]

= δ8
( 3∑
r=1

p0(r)

) ∞∏
m=1

δ8

(∫ π|α3|

−π|α3|
dσeimσ/|α3|

3∑
r=1

pr(σ)

)
. (A.2)

We need the following integrals for m > 0, n ≥ 0 (β ≡ α1/α3)

1

πα1

∫ πα1

−πα1

dσ cos
mσ

α3

cos
nσ

α1

= (−1)n
2mβ

π

sinmπβ

m2β2 − n2
≡ X(1)

mn ,

1

πα1

∫ πα1

−πα1

dσ sin
mσ

α3

sin
nσ

α1

=
n

mβ
X(1)
mn ,

(A.3)

and

2

πα2

∫ −πα3

πα1

dσ cos
mσ

α3

cos
n

α2

(σ − πα1) =
2m(β + 1)

π

sinmπβ

m2(β + 1)2 − n2
≡ X(2)

mn,

2

πα2

∫ −πα3

πα1

dσ sin
mσ

α3

sin
n

α2

(σ − πα1) = − n

m(β + 1)
X(2)
mn .

(A.4)
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Then the delta-functions over the non-zero-modes contribute

∞∏
m=1

δ8

(
1√
2

3∑
r=1

[
∞∑
n=1

X(r)
mn

(
pn(r) − i

α3

αr

n

m
p−n(r)

)
+

1√
2
X

(r)
m0p0(r)

])
(A.5)

and I have defined X
(3)
mn = δmn. We see that negative and non-negative

modes decouple from each other. We can extend the range of m,n to Z by
introducing

X(r)
mn ≡



X
(r)
mn , m , n > 0

α3

αr

n
m
X

(r)
−m,−n , m , n < 0

1√
2
X

(r)
m0 , m > 0 , r ∈ {1, 2}

1 , m = 0 = n

0 , otherwise

(A.6)

Then the Delta-functional takes the form

∆
[ 3∑
r=1

pr(σ)
]
∼
∏
m∈Z

δ

(
3∑
r=1

∑
n∈Z

X(r)
mnpn(r)

)
. (A.7)

Here I ignored factors of
√

2 which can be absorbed in the measure. It is
convenient to introduce the matrices for m, n > 0

Cmn = mδmn ,

A(1)
mn = (−1)n

2
√
mnβ

π

sinmπβ

m2β2 − n2
=
(
C−1/2X(1)C1/2

)
mn
,

A(2)
mn =

2
√
mn(β + 1)

π

sinmπβ

m2(β + 1)2 − n2
=
(
C−1/2X(2)C1/2

)
mn
,

A(3)
mn = δmn

(A.8)

and the vector (m > 0)

Bm = − 2

π

α3

α1α2

m−3/2 sinmπβ (A.9)

related to X
(r)
m0 via

X
(r)
m0 = −εrsαs

(
C1/2B

)
m
. (A.10)
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These satisfy the following very useful identities [130]

−α3

αr
CA(r)TC−1A(s) = δrs1 , −αr

α3

C−1A(r)TCA(s) = δrs1 , A(r)TCB = 0

(A.11)
valid for r, s ∈ {1, 2} and

3∑
r=1

1

αr
A(r)CA(r)T = 0 ,

3∑
r=1

αrA
(r)C−1A(r)T =

α

2
BBT . (A.12)

In terms of the big matrices X
(r)
mn, m,n ∈ Z the relations (A.11) and (A.12)

can be written in the compact form

(
X(r)TX(s)

)
mn

= −α3

αr
δrsδmn , r, s ∈ {1, 2} ,

3∑
r=1

αr
(
X(r)X(r)T

)
mn

= 0 .

(A.13)

A.2 Structure of the bosonic Neumann ma-

trices

Evaluating the Gaussian integrals in equation (4.48) one finds the following
expressions for the bosonic Neumann matrices [133]

N̄ rs
mn = δrsδmn − 2

(
C

1/2
(r) X

(r)TΓ−1
a X(s)C

1/2
(s)

)
mn
, Γa =

3∑
r=1

X(r)C(r)X
(r)T .

(A.14)
From the structure of the X(r) given in equation (A.6) it follows that Γa
is block diagonal and using the identities (A.12) one can write the blocks
as [133]

[
Γa
]
mn

=


(
C1/2ΓC1/2

)
mn
, m , n > 0 ,

−2µα3 , m = 0 = n ,(
C1/2Γ−C

1/2
)
−m,−n , m , n > 0 ,

(A.15)

where

Γ− ≡
3∑
r=1

A
(r)
− U−1

(r)A
(r)T
− , A

(r)
− =

α3

αr
C−1A(r)C . (A.16)
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The matrix Γ (which reduces to the flat space Γ of [130, 131] for µ→ 0) exists
and is invertible, whereas Γ− is ill-defined since the above sum is divergent.
Nevertheless it is possible to derive a well-defined identity for Γ−1

− [133]

Γ−1
− = U(3)

(
1− Γ−1U(3)

)
. (A.17)

Since Γ−1
− is related to Γ−1 it is possible to relate the Neumann matrices with

positive and negative indices. This results in equation (4.57). To derive the
factorization theorem (4.61) [152, 18] introduce

Υ ≡
3∑
r=1

A(r)U−1
(r)A

(r)T = Γ + µαBBT , (A.18)

where I have used equation (A.12). Its inverse is related to Γ−1 by

Υ−1 = Γ−1 − µα

1− 4µαK

(
Γ−1B

) (
Γ−1B

)T
. (A.19)

For r, s ∈ {1, 2} one can derive the following relations

A(r)TC−1U(3)Γ
−1 = A(r)TC−1 +

αr
α3

C−1U(r)A
(r)TΓ−1 , (A.20)

Υ−1U−1
(3)C

−1A(r) = C−1A(r) +
αr
α3

Υ−1A(r)U−1
(r)C

−1 , (A.21)

2C−1 = Γ−1U(3)C
−1 + C−1U(3)Γ

−1 + Υ−1U−1
(3)C

−1 + C−1U−1
(3) Υ

−1

− α1α2Υ
−1B

(
Γ−1B

)T
. (A.22)

Using equations (A.19) and (A.11) results in the factorization theorem (4.61).

A.3 The kinematical constraints at O(gs)

A.3.1 The bosonic part

The bosonic constraints the exponential part of the vertex has to satisfy are

3∑
r=1

∑
n∈Z

X(r)
mnpn(r)|V 〉 = 0 ,

3∑
r=1

∑
n∈Z

αrX
(r)
mnxn(r)|V 〉 = 0 . (A.23)
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For m = 0 this leads to
3∑
r=1

p0(r)|V 〉 = 0 ,
3∑
r=1

αrx0(r)|V 〉 = 0 . (A.24)

Substituting (4.6) and commuting the annihilation operators through the
exponential this requires

3∑
r,s=1

√
|αr|
[(
N̄ rs

00 + δrs
)
a†0(s) +

∞∑
n=1

N̄ rs
0na

†
n(s)

]
|V 〉 = 0 , (A.25)

3∑
r,s=1

e(αr)
√
|αr|
[(
N̄ rs

00 − δrs
)
a†0(s) +

∞∑
n=1

N̄ rs
0na

†
n(s)

]
|V 〉 = 0 . (A.26)

Using the expressions given for N̄ rs
0n and N̄ rs

00 in (4.51), (4.52) and (4.53) one
can check that the above equations are satisfied trivially, i.e. without further
use of additional non-trivial identities. For m > 0 we find the following
constraints

B +
3∑
r=1

A(r)C1/2U(r)N̄
r = 0 , (A.27)

A(s)C
−1/2
(s) U−1

(s) +
3∑
r=1

A(r)C
−1/2
(r) U(r)C

1/2N̄ rsC−1/2 = 0 , (A.28)

−αsA(s)C
−1/2
(s) +

3∑
r=1

αrA
(r)C

−1/2
(r) C−1/2N̄ rsC1/2 = αB

[
C

1/2
(s) C

1/2N̄ s
]T
.

(A.29)

Equation (A.27) is satisfied by the definition for N̄ r. Equations (A.28)
and (A.29) are proved by substituting the expression for N̄ rs given in (4.50).
For m < 0 there is one additional constraint

A(s)C
−1/2
(s) U−1

(s) − αs
3∑
r=1

1

αr
A(r)C

1/2
(r) U(r)C

1/2N̄ rsC−1/2C−1
(s) = 0 (A.30)

which is verified by subtracting it from equation (A.27) and using (4.61).
Here I used the identity

3∑
r=1

αrA
(r)C−1/2N̄ r = 2αKB . (A.31)
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A.3.2 The fermionic part

The fermionic constraints the exponential part of the vertex has to satisfy
are

3∑
r=1

∑
n∈Z

X(r)
mnλn(r)|V 〉 = 0 ,

3∑
r=1

∑
n∈Z

αrX
(r)
mnϑn(r)|V 〉 = 0 . (A.32)

For m = 0 this leads to
3∑
r=1

λ0(r)|V 〉 = 0 ,
3∑
r=1

αrϑ0(r)|V 〉 = 0 . (A.33)

These equations are satisfied by construction of the zero-mode part of |V 〉.
For m > 0 we get

B +
3∑
r=1

e(αr)
√
|αr|A(r)C

−1/2
(r) P(r)Q

r = 0 , (A.34)

√
|αs|A(s)C

−1/2
(s) P−1

(s) +
3∑
r=1

e(αr)
√
|αr|A(r)C

−1/2
(r) P(r)Q

rs = 0 , (A.35)

−
√
|αs|A(s)C

−1/2
(s) P(s) +

1

αs

3∑
r=1

|αr|3/2A(r)C
−1/2
(r) P−1

(r)C
−1QrsC = αBQs T ,

(A.36)

whereas for m < 0 the constraints are
3∑
r=1

1√
|αr|

A(r)CC
−1/2
(r) P−1

(r)Q
r = 0 , (A.37)

A(s)CC
−1/2
(s) P(s) − e(αs)

√
|αs|

3∑
r=1

1√
|αr|

A(r)CC
−1/2
(r) P−1

(r)Q
rs = 0 . (A.38)

Now equations (A.34) and (A.37) uniquely determine

Qr =
e(αr)√
|αr|

(1− 4µαK)−1(1− 2µαK(1 + Π))P(r)C
1/2
(r) C

1/2N̄ r . (A.39)

Furthermore comparing equations (A.35) and (A.28) we see that

Qrs = e(αr)

√∣∣∣∣αsαr
∣∣∣∣P−1

(r)U(r)C
1/2N̄ rsC−1/2U(s)P

−1
(s) (A.40)
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solves (A.35). Using

P−2
(r)U(r)N̄

rsU(s)P
−2
(s) = N̄ rs + µα(1− 4µαK)−1C

1/2
(r) N̄

r
[
C

1/2
(s) N̄

s
]T

(1− Π)

(A.41)
establishes (A.36) by virtue of (A.29). Finally, equation (A.38) is satisfied
due to the identity

A(s)C
−1/2
(s) − αs

3∑
r=1

1

αr
A(r)C

−1/2
(r) C3/2N̄ rsC−3/2 = 0 (A.42)

which can be proved using the expression for N̄ rs given in (4.50). This
concludes the determination of the fermionic contribution to the kinematical
part of the vertex.

A.4 Neumann matrices at leading order

It is convenient to perform the change of basis for n 6= 0

αn =
1√
2

(
a|n| + ie(n)a−|n|

)
, βn =

1√
2

(
b|n| + ie(n)b−|n|

)
. (A.43)

In this basis the bosonic Neumann matrices are

Ñ rs
mn =


1
2
N̄ rs
|m||n|

(
1 + Um(r)Un(s)

)
,m , n 6= 0

1√
2
N̄ rs
|m|0 ,m 6= 0

N̄ rs
00 ,

(A.44)

and the components of the bosonic prefactor in an obvious notation

Kn(r) =

{
F0(r) , n = 0
1√
2
F|n|(r)

(
1− Un(r)

)
, n 6= 0

,

K̃n(r) =

{
F0(r) , n = 0
1√
2
F|n|(r)

(
1 + Un(r)

)
, n 6= 0

.

(A.45)
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Using the results for the large µ expansions given in [152, 154] the leading
order expressions can be summarized as (r, s ∈ {1, 2})

1− 4µαK ∼ 1

4πβ(β + 1)µα3

, (A.46)

Ñ r3
mn ∼

(−1)(|m|+1)r

π

√
−αr
α3

sinnπβ

nαr

α3
+m

, (A.47)

Ñ rs
mn ∼ (−1)(|m|+1)r+(|n|+1)s 1

4πµ
√
αrαs

, (A.48)

Ñ33
mn ∼

1

πµα3

sinnπβ sinmπβ , (A.49)

Kn(r) ∼ K̃n(r) ∼ −(−1)(|n|+1)r

√
2µαr
α′

ersαs , (A.50)

Kn(3) ∼ −K̃n(3) ∼
√
−2µα3

α′
sinnπβ

π
. (A.51)

For the fermions we write

|Eb〉 = exp

[
1

2

3∑
r,s=1

∑
m,n6=0

β†m(r)Q̃
rs
mnβ

†
n(s) + Λ

3∑
r=1

∑
m6=0

Q̃r
mβ

†
m(r)

]
|E0

b 〉 , (A.52)

Y =

√
2

α′
Λ

[
(1− 4µαK)

1 + Π

2
+

1− Π

2

]
+

3∑
r+1

∑
m6=0

G̃m(r)β
†
m(r) , (A.53)

where

Q̃rs
mn =

i

2
e(m)Qrs

|m||n|

(
1−

∣∣∣ n
m

∣∣∣ αr
αs

)
,

Q̃r
m = −ie(m)Qr

|m| , G̃m(r) =
1√
2
G|m|(r) .

(A.54)
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Using the relations between bosonic and fermionic quantities [18] we have

Q̃rs
mn = i

e(m)e(αr)

|n|

√∣∣∣∣αsαr
∣∣∣∣
√

(ωm(r) − µαr)(ωn(s) − µαs)
1 + Um(r)Un(s)

Ñ rs
mn×

×
(

1−
∣∣∣ n
m

∣∣∣ αr
αs

)[
1 + Π

2
+ U|m|(r)U|n|(s)

1− Π

2

]
, (A.55)

Q̃r
m = −ie(m)e(αr)√

|αr|

√
(ωm(r) − µαr)ωm(r)N̄

r
|m|×

×
[
1 + Π

2
+ (1− 4µαK)−1U−1

|m|(r)
1− Π

2

]
, (A.56)

G̃m(r) = − e(αr)√
|αr|

α√
2α′

√
(ωm(r) + µαr)ωm(r)N̄

r
|m|×

×
[
1 + Π

2
+ U|m|(r)

1− Π

2

]
. (A.57)

With the help of (r ∈ {1, 2})

N̄ r
n ∼

(−1)(n+1)r

4πµ2α

α3

αr
, N̄3

n ∼
1

πµα1α2

sinnπβ

n
(A.58)

one can extract the leading order expressions of the fermionic quantities.



Appendix B

The dynamical constraints

B.1 More detailed computations

Here I give the details leading to equations (4.94), (4.96) and (4.97). The
following identities prove very useful (α3Θ ≡ ϑ0(1) − ϑ0(2))

R|V 〉 = i
√
α′

[
2K
√
α′
(
P− iµα

α′
R
)

+
∑
r,n>0

C
1/2
n(r)N̄

r
na

†
n(r)

]
|V 〉 , (B.1)

Θ|V 〉 = −
√

2
∑
r,n

Qr
nb

†
−n(r)|V 〉 . (B.2)

Using the mode expansions of Q−
(r), Q̄

−
(r), K0 +K+, K− and Y one finds

3∑
r=1

{Q−
(r), Y } = −γ

3∑
r=1

1√
|αr|

∞∑
n=1

[
P(r)C

1/2G(r)

]
n
a†−n(r) , (B.3)

3∑
r=1

{Q̄−
(r), Y } = (1− 4µαK)−1/2(1− 2µαK(1− Π))

(
Pγ − iµα

α′
RγΠ

)
+ γ

3∑
r=1

1√
|αr|

∞∑
n=1

[
P−1

(r)C
1/2G(r)

]
n
a†n(r) , (B.4)
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3∑
r=1

[Q−
(r), K0 +K+] = µγ(1 + Π)(1− 4µαK)1/2

√
2

α′
Λ

+ γ
3∑
r=1

e(αr)√
|αr|

∞∑
n=1

[
P−1

(r)C
1/2F(r)

]
n
b†n(r) , (B.5)

3∑
r=1

[Q−
(r), K−] = iγ

3∑
r=1

e(αr)√
|αr|

∞∑
n=1

[
P−1

(r)C
1/2U(r)F(r)

]
n
b†−n(r) , (B.6)

3∑
r=1

[Q̄−
(r), K0 +K+] = − µα√

2α′
γ(1− Π)(1− 4µαK)1/2Θ

+ γ

3∑
r=1

e(αr)√
|αr|

∞∑
n=1

[
P(r)C

1/2F(r)

]
n
b†−n(r) , (B.7)

3∑
r=1

[Q̄−
(r), K−] = −iγ

3∑
r=1

e(αr)√
|αr|

∞∑
n=1

[
P(r)C

1/2U(r)F(r)

]
n
b†n(r) . (B.8)

Using (4.92), (B.1) and (B.2) leads to equations (4.94) and (4.96). The action
of the supercharges on |V 〉 given in equation (4.97) can be proven similarly.
One needs

N̄ rs
nm + e(αs)

(
m

n

∣∣∣∣αrαs
∣∣∣∣)3/2

Pn(r)Pm(s)Q
rs
nm = − α

αs
(1− 4µαK)−1×

×
[
C

1/2
(r) N̄

r
]
n

[
U−1

(s)C
1/2
(s) CN̄

s
]
m
,

N̄ rs
−n,−m + e(αr)

(
m

n

∣∣∣∣αrαs
∣∣∣∣)1/2

Pn(r)Pm(s)Q
rs
nm = 0 ,

(B.9)

N̄ rs
nm − e(αr)

(
m

n

∣∣∣∣αrαs
∣∣∣∣)1/2

P−1
n(r)P

−1
m(s)Q

rs
nm = −µα(1− 4µαK)−1×

× (1− Π)
[
C

1/2
(r) N̄

r
]
n

[
C

1/2
(s) N̄

s
]
m
,

N̄ rs
−n,−m − e(αs)

(
m

n

∣∣∣∣αrαs
∣∣∣∣)3/2

P−1
n(r)P

−1
m(s)Q

rs
nm =

α

αs
(1− 4µαK)−1×

×
[
P−2

(r)C
1/2
(r) N̄

r
]
n

[
C

1/2
(s) CN̄

s
]
m

(B.10)

which follow from (4.61) and (4.66).
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B.2 Proof of the dynamical constraints

In this appendix I prove that

γIa(ȧ
[
ΠD̄
]a
sI
ḃ)

= 0 , (B.11)

γIa(ȧ
[
ΠD
]a
s̃I
ḃ)

= 0 , (B.12)(
γIaȧD̄bs̃

I
ḃ
+ γI

aḃ
Dbs

I
ȧ

)
(1− Π)ab = 0 . (B.13)

Equations (B.11) and (B.12) are equivalent to(
γIa(ȧYbs

I
1 ḃ)

+
α

α′
γIa(ȧ

∂

∂Y b
sI
2 ḃ)

)
Πab = 0 , (B.14)(

γIa(ȧYbs
I
2 ḃ)
− α

α′
γIa(ȧ

∂

∂Y b
sI
1 ḃ)

)
Πab = 0 , (B.15)

The first equation has terms of order O(Y 2) and O(Y 6), whereas the second
one has terms of order O(Y 0), O(Y 4) and O(Y 8). There are two contribu-
tions to the order O(Y 2) in equation (B.14) , both vanish separately. The
first one is

γIa(ȧYbs
I
1 ḃ)

Πab = 2γIa(ȧγ
I
cḃ)
Y bY cΠab = −2δȧḃΠabY

aY b = 0 , (B.16)

whereas the second one is

α

α′
γIa(ȧ

∂

∂Y b
sI
2 ḃ)

Πab = −γIa(ȧuIbcdḃ)Y
cY dΠab =

1

16

(
γIJγKL

)
(ȧḃ)

γIJa[bγ
KL
cd] ΠabY cY d =

1

24

(
γIJγKL

)
(ȧḃ)

(
γIJΠγKL

)
cd
Y cY d = 0 .

(B.17)

Here I have used equations (B.29) and (B.32). From the Fourier identi-
ties [131]

s1 ȧ(φ) =
( α
α′

)4
∫
d8Y sI2 ȧ(Y )e

α′
α
φY ,

s2 ȧ(φ) =
( α
α′

)4
∫
d8Y sI1 ȧ(Y )e

α′
α
φY ,

(B.18)

it follows that the terms of order O(Y 6) vanish as well. This proves equation
(B.14). The O(Y 0) term in equation (B.15) is

γIa(ȧγ
I
bḃ)

Πab = δȧḃtr(Π) = 0 , (B.19)
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and the order O(Y 8) term vanishes by (B.18). The terms of order O(Y 4) in
equation (B.15) are

Πa
bγ
I
a(ȧu

I
cdeḃ)

(
Y bY cY dY e +

1

24
εcdebghijY

gY hY iY j

)
= − 1

16
Πa

b

(
γIJγKL

)
(ȧḃ)

γIJa[cγ
KL
de]

(
Y bY cY dY e +

1

24
εcdebghijY

gY hY iY j

)
= − 1

16
Πa

b

(
γIJKL
ȧḃ

− 2δȧḃδ
IKδJL

)
γIJa[cγ

KL
de]

(
Y bY cY dY e

+
1

24
εcdebghijY

gY hY iY j

)
= − 1

16
Πa

bγ
IJKL
ȧḃ

tIJKLacde

(
Y bY cY dY e +

1

24
εcdebghijY

gY hY iY j

)
= 0 . (B.20)

In the last step I used that Π is symmetric and traceless and

tIJKLabcd = − 1

24
εabcd

efghtIJKLefgh . (B.21)

This proves equation (B.15). Finally, equation (B.13) is equivalent to(
γIa(ȧYbs

I
1 ḃ)
− α

α′
γIa(ȧ

∂

∂Y b
sI
2 ḃ)

)
(1− Π)ab = 0 , (B.22)(

γIa[ȧYbs
I
2 ḃ]

+
α

α′
γIa[ȧ

∂

∂Y b
sI
1 ḃ]

)
(1− Π)ab = 0 . (B.23)

The first equation is symmetric in ȧ, ḃ and contains terms of order O(Y 2)
and O(Y 6). These vanish for the same reason as those in equation (B.14).
The second equation is antisymmetric in ȧ, ḃ and contains terms of order
O(Y 0), O(Y 4) and O(Y 8). The O(Y 0) contribution to equation (B.23) is

γIa[ȧγ
I
bḃ]

(1− Π)ab =
1

4
γIJ
ȧḃ
γIab(1− Π)ab = 0 . (B.24)

From equation (B.18) it follows that the term of order O(Y 8) vanishes as
well. Finally, there are two contributions to the terms of order O(Y 4), both
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of them vanish separately. The first one is

α

α′
γIa[ȧYbs

I
2 ḃ]

(1− Π)ab = −1

3
γIa[ȧu

I
cdeḃ]

(1− Π)abY
bY cY dY e =

1

12

(
γIJ
ȧḃ
δa[cγ

IJ
de] +

1

4

(
γIJγKL

)
[ȧḃ]

γIJa[cγ
KL
de]

)
(1− Π)abY

bY cY dY e =

1

12
γIJ
ȧḃ
γIKa[c γ

KJ
de] (1− Π)abY

bY cY dY e =
1

6
γIJ
ȧḃ
γIJbc (1− Π)deY

bY cY dY e = 0 .

(B.25)

In the last step I have used equation (B.30). The second contribution of
order O(Y 4) then vanishes by equation (B.18). This concludes the proof of
equation (B.23).
Apart from symmetry and tracelessness of Π I have used the following iden-
tities

γIJab = −γIJba , (B.26)

γIaȧγ
I
bḃ

= δabδȧḃ +
1

4
γIJab γ

IJ
ȧḃ
, (B.27)(

γIJγKL
)
ab

= γIJKLab + δILγJKab + δJKγILab

− δIKγJLab − δJLγIKab +
(
δJKδIL − δJLδIK

)
δab , (B.28)

γIaȧu
I
bcdḃ

= −1

4
γIJ
ȧḃ
δa[bγ

IJ
cd] −

1

16

(
γIJγKL

)
ȧḃ
γIJa[bγ

KL
cd] , (B.29)

γIKa[b γ
JK
cd] = tIJabcd − 2δa[bγ

IJ
cd] , (B.30)

γIJab γ
IJ
cd = 8

(
δacδbd − δadδbc

)
, (B.31)

γIJKL
ȧḃ

(
γKLΠγIJ

)
[ab]

= 0 . (B.32)

B.3 {Q, Q̃} at order O(gs)

Here I demonstrate that equation (4.72) leads to the constraints (4.111)-
(4.114) given in section 4.4. To this end, I adopt a trick introduced in [131].
Namely, associate the world-sheet coordinate dependence with the oscillators
as (

an(r)

a−n(r)

)
−→ e−iωn(r)τ/αr

(
cos nσr

αr
− sin nσr

αr

sin nσr

αr
cos nσr

αr

)(
an(r)

a−n(r)

)
, (B.33)
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and analogously for the fermionic oscillators. Then integrate the constraint
equation (4.72) over the σr. In dealing with the resulting expressions one
can integrate by parts since the integrand is periodic. In addition to the
identities in equations (4.96),1and (4.97) we have to calculate the commutator
of
∑

rQ(r) with KI and its tilded counterpart. One gets

√
2η

3∑
r=1

[Q(r), K
I ] |V 〉 = −2iγI

[
Ẏ + Y ′ +

i

2
µ(1− Π) (Y − 2Y0)

]
|V 〉 ,

√
2η̄

3∑
r=1

[Q̃(r), K̃
I ] |V 〉 = −2iγI

[
Ẏ − Y ′ +

i

2
µ(1− Π) (Y − 2Y0)

]
|V 〉 .

(B.34)

Here Y0 is the zero-mode part of Y , I suppressed the τ , σr dependence and

Ẏ ≡ ∂τY , Y ′ ≡
3∑
r=1

∂σrY . (B.35)

The fact that the above equations have a term which only depends on the
zero-mode Y0 is important. Combining the various contributions to equa-
tion (4.72), removing the σr derivatives from Y by partial integration and
using the further identity [131]2(

γIaȧηs̃
I
ḃ
+ γI

aḃ
η̄sIȧ

)
Y ′a = −23/2α

α′
m′
ȧḃ

(B.36)

and

3∑
r=1

∂σr |V 〉 = − i
4

α′

α

((
K2 − K̃2

)
+ 4
(
Y Ẏ + iµ(1− Π)Y Y0

))
|V 〉 , (B.37)

1In fact, here we need the analogue of equation (4.96) with KI ↔ K̃I .
2There are some minor typos in appendices D and E of [131] which I correct for the

interested reader to facilitate the comparison with the results given here. The right-hand-
side of equation (D.25) in [131] should be multiplied by 1

2α ; on the r.h.s. of equations
(D.26) and (D.27) it should be 1

23/2 instead of 1√
2
; the r.h.s. of equation (E.8) should

be multiplied by 1
α . These corrections modify equation (E.9) of [131] slightly, which is

now in agreement with our equations (4.111)-(4.113). These typos do not affect the proof
presented in appendix E of [131].
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we find that equation (4.72) is equivalent to([√
2
(
γIaȧηs̃

I
ḃ
− γI

aḃ
η̄sIȧ
)
− 4imȧḃYa

](
Ẏ a − Ẏ a

0

)
− µ√

2

(
γIaȧD̄bs̃

I
ḃ
+ γI

aḃ
Dbs

I
ȧ

)
(1− Π)ab − iKIKJ

[
δIJmȧḃ −

α′√
2α
γJaȧD

as̃I
ḃ

]
+ iK̃IK̃J

[
δIJmȧḃ

− α′√
2α
γJ
aḃ
D̄asIȧ

])
|V 〉 = 0 . (B.38)

This results in equations (4.111)-(4.114).
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