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Exzerpt 

Marginale Parodontitis, die multikausale Erkrankung des Parodonts ist in erster Linie eine 

Infektionskrankheit, modifiziert durch Wirtsfaktoren und äußere Einflüße. Die als pathogene 

Mischflora bezeichnete Kombination kommensaler Mikroorganismen, die opportunistische 

Infektionen und damit Immunreaktionen auslösen können, spielt die primäre Rolle in der 

Ätiopathogenese der Parodontitis. In der Aufstellung des Studienziels wurden einzelne, 

vermutlich pathogene Bakterienarten (Tannerella forsythensis, Porphyromonas gingivalis, 

Actinobacillus actinomycetemcomitans, Campylobacter rectus, Fusobacterium nucleatum, 

Fusobacterium spp., Prevotella intermedia, Eikenella corrodens, Veillonella parvula und 

Capnocytophaga ochracea) auf Grund der Evidenz von früheren Studien ausgewählt, die 

eventuell als "Markerkeime" in der aggressiven Form der Parodontitis betrachtet werden 

können. Dazu wurde eine Kontrollgruppe (die Senioren) untersucht, die eine gesunde 

parodontale Flora besitzen. Die angewandte Nachweismethode basiert auf eubakterieller 

PCR-Amplifikation von 16S rDNA und darauffolgender dot-blot Hybridisierung mit 

spezifischen Oligonukleotidsonden. Die entsprechenden Sonden wurden hergestellt und 

evaluiert. Die Optimierung der Hybridisierungsbedingungen einzelner Sonden folgte unter 

Einsatz von Positiv- und Negativkontrollen - PCR-Produkte von 42 gezüchteten Ziel- bzw. 

phylogenetisch nahliegenden Baktetrienstämmen. Für die epidemiologische Untersuchung 

wurde subgingivale Plaque von vier Parodontaltaschen und einer Kontrollstelle von 45 

Patienten mit aggressiver Parodontitis, sowie an fünf Stellen von 21 Senioren entnommen. 

Die Prävalenz der einzelnen Bakterienarten wurde mit Hilfe des Chi-quadrat-Tests 

verglichen. Die Ergebnisse dieser Studie bewiesen die erfolgreiche Einsetzbarkeit der 

hergestellten Oligonukleotidsonden. Es konnte gezeigt werden, daß alle untersuchten 

Bakterien in beiden Gruppen vorkommen. Obgleich eine hohe interindividuelle Variabilität 

der Kolonisationsmuster zu beobachten war, konnten T. forsythensis, P. gingivalis und F. 

nucleatum sehr häufig in den Parodontaltaschen nachgewiesen werden. Obwohl diese Arten 

auch an den gesunden Stellen der parodontal Erkrankten sowie der Senioren festzustellen 

waren,  blieb die Häufigkeit  dieser Besiedlung signifikant seltener.  

A. actinomycetemcomitans  konnte nur bei einzelnen Patienten mit aggressiver Parodontitis 

festgestellt werden. Die Ergebnisse für P. intermedia und E. corrodens ließen keine 

eindeutige Assoziation sowohl mit der aggressiven Parodontitis als auch mit dem gesunden 

Parodontalzustand zu. Bei Senioren wurde C. ochracea besonders häufig nachgewiesen. 

Zusammenfassend kann man die vermutlichen Parodontalpathogene wie T. forsythensis, P. 

gingivalis, F. nucleatum und C. rectus als Leitkeime aggressiver Parodontitis ansehen. 

Bezüglich der polymikrobiellen Natur der Parodontitis würde eine umfassende Untersuchung 

der oralen Mikroflora und deren Zusammenspiel mit den Wirtsfaktoren zur Aufklärung der 

Ätiopathogenese der Parodontitis eher beitragen als der Nachweis einzelner Arten. 
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Abstract 

A multifactorial risk pattern of periodontitis has been recognized, where in addition to host 

and environmental factors a pathogenic microbiota plays a primary role. At present no 

definite answer can be given to the question of whether the expression of either aggressive 

etiological agents (implying infection with a virulent microbiota), or a high level of individual 

susceptibility to periodontal disease, or a specific combination of both is the conductive factor 

in the etiopathogenesis of aggressive periodontitis. The purpose of the current research was 

to analyze the prevalence of periodontitis-associated microorganisms in patients with 

aggressive periodontitis and periodontally healthy elders by using molecular-biologic 

detection methods like eubacterial PCR-amplification of 16S rDNA in combination with dot-

blot hybridization. The oligonucleotide probes for the detection of Tannerella forsythensis, 

Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, Campylobacter rectus, 

Fusobacterium nucleatum, Fusobacterium spp., Prevotella intermedia, Eikenella corrodens, 

Veillonella parvula and Capnocytophaga ochracea were designed and evaluated. The PCR 

products of 42 cultivated target and closely related bacteria were obtained for the 

optimization of hybridization conditions. For the epidemiological study subgingival plaque 

was sampled from four pockets and one healthy site of 45 aggressive periodontitis patients 

as well as from five sites of 21 elderly. The differences in the prevalence of bacterial species 

was analyzed by chi-square test. The results of the study confirmed the reliability of the 

oligonucleotide probes in a specific and sensitive detection of the respective oral species. 

The data of the epidemiological study revealed frequent colonization by T. forsythensis, P. 

gingivalis, F. nucleatum and C. rectus in patients with aggressive periodontitis, however 

individual variations were obvious. These microorganisms could be predominantly identified 

in periodontal pockets, but were significantly less common in the healthy sites of the 

periodontitis patients and in the elderly subjects. A. actinomycetemcomitans could be 

detected in only a few patients, reducing its suspected importance in the etiopathogenesis of 

aggressive periodontitis. No direct association for P. intermedia and E. corrodens with 

aggressive periodontitis or periodontal health could be seen. C. ochracea was highly 

prevalent in the well-maintained elderly, being rarely found in the diseased group. The 

putative pathogens T. forsythensis, P. gingivalis, F. nucleatum and C. rectus can be 

conclusively suggested as the key-bacteria in patients with aggressive periodontitis. 

However, considering that periodontitis is a polymicrobial infection, the screening of the 

microbial population, rather than the isolation of single members of the subgingival flora, 

should give a more comprehensive perspective in etiopathogenetic research of periodontitis. 
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1 Introduction 

The most common diseases of the periodontal tissues are inflammatory processes of the 

gingiva and attachment apparatus of the tooth. The periodontal diseases are polymicrobial 

infections associated with local accumulation of dental plaque, a subgingival pathogenic 

periodontal flora, and calculus.  

Periodontitis is an important global public health problem which involves mostly the adult 

population over 35-40 years of age. It begins with gingivitis and without therapy leads to a 

progressing destructive periodontitis. The variance and severity of this disease is influenced 

up to 90% by age and oral hygiene (1, 2). However, in only about 10% of the population 

severe forms of periodontitis occur where no correlation exists between the supragingival 

plaque index and the severity of the disease. The proportion of these patients increases with 

age and reaches the highest prevalence at the age of 40-50 years (3-5).  

The aggressive periodontitis, a rare form of periodontitis, which often begins in childhood, is 

characterized by severe, rapidly progressing tissue destruction. The prevalence of juvenile 

periodontitis in 13-20 year olds is 0.1-0.5% (6-8). 

1.1 Classification of periodontal diseases 

According to the new classification, introduced in 1999 by the World Workshop of 

Periodontics (9), the following forms of periodontal diseases exist:  

• Gingival diseases 

• Chronic periodontitis (localized, generalized) 

• Aggressive periodontitis (localized, generalized 

• Periodontitis as a manifestation of systemic diseases 

• Periodontitis associated with hematological disorders 

• Periodontitis associated with genetic disorders 

• Not otherwise specified (NOS) 

• Necrotizing ulcerative gingivitis (NUG) 

• Necrotizing ulcerative periodontitis (NUP) 

• Abscesses of the periodontium 

• Gingival abscess 

• Periodontal abscess 

• Pericoronal abscess 

• Periodontitis associated with endodontic lesions 

• Developmental or acquired deformities and conditions 

The recent classification has united a broad panel of severe forms of periodontitis that are 

independent of age into a group of "aggressive periodontitis". In earlier literature this clinical 



entity is referred to as "severe periodontitis in young adults" (10), "advanced destructive" 

(11), "postjuvenile" (12), "early-onset" (13, 14) and "rapidly progressive periodontitis (RPP)" 

(15). 

The present study included patients with aggressive periodontitis, who according to the 

classification from 1989 belonged to a group of "early-onset periodontitis (EOP)" (16). The 

term was used as a collective designation for a group of dissimilar destructive periodontal 

diseases that affected young patients, i.e. prepubertal, juvenile and RPP. 

1.2 Bacterial etiology of periodontal diseases 

From earlier studies there is evidence for the primary role of bacteria in the etiology of 

destructive periodontal diseases (18-21).  

It has been previously estimated that about 500 bacterial species colonize the human oral 

cavity (17-19). The majority of these organisms are commensals and live in complex 

communities forming oral biofilms on tooth surfaces. In general these microorganisms live in 

harmony with a host, but under certain circumstances this dynamic interaction may lead to 

opportunistic infections resulting in breakdown of periodontium. The evidence for the 

infectious nature of periodontal disease comes from several sources, including: 

• Studies which correlate most forms of gingivitis and periodontitis with accumulated dental 

plaque.  

• Treatment studies which demonstrate that elimination of plaque microorganisms can be 

correlated with clinical improvement.  

• In vivo and in vitro studies demonstrating the relative virulence of different plaque 

bacteria. 

It has been observed that clinically most periodontal sites in most subjects do not appear to 

be undergoing breakdown at any given time, even though they are continuously colonized by 

varying numbers and species of bacteria. This suggests that there are remarkably effective 

host  defense mechanisms to be overcome and that only specialized uniquely talented 

bacterial species (with multiple virulence factors) may have the requisite set of properties to 

cause tissue damage. Thus, bacteria are important in the etiology of disease, but the 

outcome, protection or tissue damage, is affected by the nature and level of the immune 

response (22).  

While the infectious etiology of periodontal diseases is generally accepted, there is an 

ongoing discussion as to the relative importance of individual bacterial species within dental 

plaque. This is reflected in the distinction between the non-specific and the specific plaque 

hypothesis. 

The non-specific plaque hypothesis implicates the mere quantity of dental plaque, with any 

species having the possibility of causing disease. The bacterial mass causes a periodontal 



disease when it accumulates to the point of exceeding host-defense mechanisms. Variability 

was recognized, but the true extent of differences in bacterial composition was not 

acknowledged. This hypothesis is supported by studies of experimental gingivitis, e.g. by Löe 

et al. (23) showing that the cessation of oral hygiene is associated with the development of 

gingivitis. Resumption of oral hygiene resolved the gingivitis. 

Until as recently as the early 1970s, it was thought that any organism present in subgingival 

plaque contributed to periodontal destruction (23, 24). 

Studies carried out over the last 20 years questioned this hypothesis and contrasted it with 

the specific plaque hypothesis (25). It proposes that dental plaque isolated from periodontitis 

lesions is qualitatively distinct from that isolated from healthy sites. It assumes that clinically 

different forms of periodontitis are associated with distinct species and colonization patterns. 

For example, the composition of subgingival plaque from lesions of juvenile periodontitis is 

markedly different from that found in patients with adult periodontitis (26). However, the 

diversity of bacterial complexes, as well as the variation in host response to bacterial species 

are some of the major reasons that the specific etiology of periodontal disease has not been 

definitely established (27, 28).  

Originally the concept of "pathogen" was devised for specific microorganisms which caused 

specific diseases. This cannot be applied to periodontal diseases. At present, it appears 

unlikely that one single species is a sole agent of periodontal destruction, since no single 

species occurs as an important part of the flora in all cases of gingivitis or periodontitis (17). 

The more suitable term "pathogenic microbiota" acknowledges the fact that periodontal 

diseases have a polymicrobial etiology, and that a multitude of defense systems have to be 

mobilized by the host against these infections. However, the designation "periodontal 

pathogen" can be applied to those bacteria which have specific mechanisms to perturb the 

host defense and in that way cause an accelerated destruction of periodontal tissues. Such a 

pathogen will never work in isolation, it is always a member of a complex bacterial 

community.  

A set of criteria, derived from Koch's postulates of a monoinfection, has been developed to 

identify these specific microorganisms in a mixed microflora and apply to an opportunistic 

infection (29). These criteria are as follows: 

• The presence of high numbers of putative periodontal pathogens in periodontal lesions 

compared to either their absence or presence in low numbers in healthy or non-

progressing sites 

• Elimination of the microorganisms from periodontal lesions should result in clinical 

improvement 

• Induction of active immune responses in the host 

• Presence of virulence factors 



• Appropriate animal models demonstrating tissue destruction in the presence of the 

microorganisms. 

Periodontal research has attempted to define periodontopathic bacteria that induce 

periodontitis (20, 30-33). Relatively few, about 10-20 species, may play a causal role in the 

pathogenesis of destructive periodontal diseases. However, it is assumed that about 50 

percent of the total oral bacterial flora is still unknown. An attempt made by Paster et al. (19) 

to investigate the bacterial diversity in subgingival plaque using culture-independent 

molecular methods revealed 215 novel phylotypes. It is likely that yet-undiscovered bacteria 

may play a role in the etiology of the disease. 

1.2.1 Healthy flora 

The dental plaque associated with periodontal health is characterized by predominantly 

gram-positive facultative coccoid microorganisms, such as Streptococcus and Actinomyces 

species (17, 18). The presence of gram-negative cocci, rods and filaments is a frequent 

observation; however, they are in much lower proportions as compared to gram positive flora 

(30, 34-38). Similar species are associated with healthy subjects in cross-sectional studies, 

and as "beneficial" species in inactive periodontal pockets (39). 

1.2.2 Gingivitis  

Without oral hygiene the dental plaque grows in thickness forming a distinct organized 

structure (40, 41). Subsequent mineralization gives rise to calculus. The undisturbed growth 

of supragingival plaque results within few days in soft tissue alterations in the adjacent 

gingiva. It has been hypothesized that the transition between health and gingivitis is due to 

an overgrowth of gram-positive species (42, 43). However, other investigators have found an 

increased proportion of gram-negative species as the major determinant (40, 44). In fact, the 

inflammatory conditions provide a relatively anaerobic environment which favors the 

colonization by anaerobic motile rods and spirochetes. The species associated with 

experimental gingivitis include Actinomyces, Streptococcus, Veillonella, Fusobacterium and 

Treponema species. Additionally Prevotella intermedia and Campylobacter species have 

been cultivated from the plaque of chronic gingivitis (23, 40, 42). 

1.2.3 Periodontitis 

Subgingival plaque develops by apical progression of supragingival plaque. Alterations in the 

integrity of the junctional epithelium allow a gradual colonization of the tooth surface leading 

to the formation of periodontal pocket. The culture-based studies indicate that anaerobic 

microbiota predominate (10, 17, 31, 45). Although the bacterial composition changes, there 

is still no direct evidence to conclude which bacterial species initiate the first step of pocket 

development. 

Scanning immunoelectron microscopy showed that rods, filaments, and spirochete-shaped 



bacteria formed small aggregates at the bottom of the periodontal pockets in the so-called 

"plaque-free zone" (46). Investigations with fluorescence in-situ hybridization assay which 

analyzed artificial carriers from deep periodontal pockets found that gram-negative rods and 

treponemes dominate in the deepest part of the pocket, forming a confluent biofilm (47). 

These findings suggest that bacteria in the "plaque-free zone" may be critical 

periodontopathogens in the frontier area of apical plaque. 

Studies of the predominant subgingival flora in periodontitis lesions have revealed great 

microbial diversity. Different forms of periodontitis show variations in the microorganisms 

colonizing periodontal pockets (14, 31, 45, 48). For instance, patients with juvenile 

periodontitis have shown infection with A. actinomycetemcomitans (26, 49, 50). The 

frequently detected bacterial species in periodontal lesions in cases of chronic and 

aggressive periodontitis are listed in Table 1 (51). 

Table 1. Bacterial species associated with chronic and aggressive periodontitis. 

Chronic periodontitis Aggressive periodontitis 

Treponema spp. Porphyromonas gingivalis 

Prevotella intermedia Tannerella forsythensis 

Porphyromonas gingivalis Actinobacillus actinomycetemcomitans 

Tannerella forsythensis Eikenella corrodens 

Peptostreptococcus micros Campylobacter rectus 

Campylobacter rectus  

Actinobacillus actinomycetemcomitans  

Eikenella corrodens  

Fusobacterium spp.  

Selenomonas spp. 

Eubacterium spp. 

 

 

Although there are strong indications that certain species are likely etiological agents of 

periodontal diseases in distinct subject groups, it is still difficult to determine which of the 

likely candidates is the critical organism (or a set of bacteria) in a given subject. Recently 

Mombelli et al. (52) after reviewing cross-sectional and longitudinal studies by stringent 

criteria questioned the strict distinction of specific microbiota in patients with aggressive and 

chronic periodontitis. The presence or absence of A. actinomycetemcomitans, P. gingivalis, 



P. intermedia, T. forsythensis and C. rectus could not discriminate between subjects with 

different clinical disease entity. 

It is apparent that the mere presence of one or more pathogenic species in a subject is 

insufficient to produce significant deterioration in the periodontal status of the individual. 

Multiple other factors, such as host and environmental factors, as well as local bacterial 

interactions that can modulate the virulence of bacterial species contribute to the clinical 

outcome. 

1.2.4 Bacterial consortia 

The bacteria in subgingival plaque form an ecosystem where complex relationships exist 

between population members as well as between bacteria and the host. The microorganisms 

tend to form coaggregations where bacterial interactions play an important role in species 

survival (53, 54). So-called "beneficial" species can turn these interactions beneficial to the 

host by affecting disease progression in a number of ways: 

• by "passively" occupying a niche which might otherwise be colonized by a pathogen 

• by actively limiting a pathogen's ability to adhere to appropriate tissue surfaces 

• by adversely affecting the vitality or growth of a pathogen 

• by affecting the ability of a pathogen to produce virulence factors 

• by degrading virulence factors 

It has been observed that high levels of both P. gingivalis and C. ochracea diminish the risk 

of new attachment loss (27). In contrast, in subjects with high levels of P. gingivalis, but low 

levels of C. ochracea there was a tendency for disease progression. It has been shown that 

subjects who received an adjunctive antibiotic therapy showed a higher percentage of sites 

with attachment level gain and higher levels of the suspected beneficial species like C. 

ochracea and S. sanguis II post-therapy than subjects who did not get antibiotics (55). 

Therefore, the aim of the therapy must not be exclusively the reduction or elimination of 

pathogens, but also supporting colonization shift to high levels of beneficial species. 

The differences in subgingival microbial constellations between patients with similar clinical 

signs as well as spatio-temporal variations have been acknowledged (45). 

As yet it is not clear whether the individual differences in flora composition are controlled 

primarily by genetic disposition of the host or by environmental influences. Moore et al. found 

that the periodontal flora of twin children were significantly more similar than those of 

unrelated children of the same age, indicating that genetics as well as environment influence 

the composition of the flora (56). Once the oral microbiota is established in an individual, it 

may be more difficult to introduce new species or clonal types (57). 

1.2.5 Biofilm 

When supragingival hygiene is not maintained, dental plaque immediately develops by a 



dynamic intraplaque  interaction, which climaxes with the establishment of a well-structured 

community of microflora - a biofilm (58, 59). The formation of biofilm begins with attachment 

of planctonic cells (mostly gram-positive cocci) on the pellicle of the tooth surface. Auto-

aggregation  with each other or coaggregation with other planctonic cells or neighbors 

begins. Gradually the microenvironment of the inner community changes from 

aerobic/capnophilic to facultative anaerobic and to anaerobic. The community is re-

organized, new ecological niches are involved by spirochetes and motile organisms.  

The biological characteristics and growth rate of bacteria in a biofilm are different from their 

planctonic counterparts, and thus the gene expression of virulence factors may be different 

according to their living conditions (60). The biofilm mode of growth seems to be 

advantageous for microorganisms. These three-dimensional structured communities contain 

fluid channels for transport of substrates, waste products and signal molecules (59). 

Glycogalyx, the polymeric substances that make up the matrix of a biofilm, retard the 

diffusion of antibiotics and host-driven antimicrobial factors (58, 61). Thus, biofilms are more 

resistant to immune defense mechanisms, less susceptible to antibiotic therapy and even not 

easily controlled by mechanical means (62). 

1.2.6 Virulence factors 

The expression of virulence factors may be an important indicator of the potential of a 

species to contribute to disease progression; however, the virulence traits of individual 

species in vitro might bear little resemblance to their behavior in a microbial community and, 

indeed, in vivo (63). It is unlikely that a single virulence factor will be responsible for tissue 

damage. Often a series of virulence factors is expressed under coordinate regulation. Very 

often the pathogen's environment appears to regulate the expression of these virulence 

factors (53, 64). Environmental factors such as temperature, osmolarity, iron and Mg levels 

have been shown to affect the expression (63, 65, 66). Interbacterial relationships play an 

important role in species survival. Some relationships are favorable and others are 

antagonistic. The interspecies aggregation can enable attachment of some species. Co-

aggregation has been observed between P. gingivalis and F. nucleatum, C. ochracea and S. 

sanguis, P. gingivalis and A. viscosus, F. nucleatum and S. sanguis (67-69). Antagonistic 

substances may prevent aggregation or even kill other bacteria. For instance A. 

actinomycetemcomitans produces bacteriocin which inhibits the growth of S. sanguis. S. 

sanguis on the other hand produces H2O2 which kills A. actinomycetemcomitans (70). 

Inhibitory microbiota may help in preventing an infection by oral pathogens. 

In order to colonize subgingival sites, a species must be able to attach to available surfaces, 

multiply, compete against other species in this habitat, and defend itself against host defense 

mechanisms (53). Bacteria attach to specific receptors on the host cell or tooth pellicle by 

specific adhesion molecules (71). Fimbriae and other cell-associated proteins have been 



identified as adhesins in several subgingival species. Attachment of P. gingivalis to epithelial 

cells, gram-positive bacteria, basement membrane, and type I and IV collagen has been 

demonstrated (72-76). By using scanning immunoelectron microscopy it could be 

demonstrated that P. gingivalis participates in biofilm formation in the most apical part of a 

pocket, in so-called "plaque-free zone" probably using its attachment ability (46). Adhesins of 

E. corrodens and A. actinomycetemcomitans enable these species to attach to the epithelial 

cells (53, 77, 78, 88). It has been shown that strains of F. nucleatum adhere to red blood 

cells,  basement membrane, and type IV collagen (53, 72, 73). T. denticola adheres well to 

fibroblasts, fibronectin, basement membrane, as well as type I and IV collagen (79). 

Adherence to host cells might be the prerequisite for further invasion of deeper tissues (76, 

78, 80). 

Earlier the term "invasion" was taken to mean intercellular penetration, i.e. bacteria locating 

between the host cells. The introduction of optical sectioning by confocal scanning laser 

microscopy (CSLM) enabled a three-dimensional localization of the bacteria. An intracellular 

location of A. actinomycetemcomitans and P. gingivalis within buccal epithelial cells of 

healthy subjects was observed using this technique (81). The authors suggested that 

intracellular location may be a common ecological niche for these bacterial species in both 

health and disease. Intracellular invasion has also been documented for Prevotella 

intermedia (82), Fusobacterium nucleatum (83) and Tannerella forsythensis (84). However, 

this property is not universal, e.g. Treponema denticola does not invade epithelial cells (85). 

The closer proximity to host targets allows destructive bacterial products to cause greater 

havoc upon the structural integrity of the periodontal tissues (86).  

Some of the suspected pathogens produce an unusually wide spectrum of proteases 

including those which degrade collagen (like P. gingivalis. T. denticola and A. 

actinomycetemcomitans ) (73, 76, 79, 87-91), and fibronectin (like P. gingivalis and P. 

intermedia) (76, 91, 92). Trypsin-like activity has been demonstrated for P. gingivalis, T. 

forsythensis, T. denticola and Capnocytophaga spp. (79, 93-95). Also the metabolic end-

products (such as volatile sulfur compounds, NH3, fatty-acids and indole), produced by P. 

gingivalis and some by F. nucleatum, adversely affect mammalian cells (96, 97).  

It has been shown that lipopolysaccharide (LPS), the so-called endotoxin, which is an 

integral component of the cell wall of gram-negative bacteria, induces the production of 

biologically active molecules, such as IL-1, TNF-  and prostaglandins from monocytes or 

macrophages (98-101). Besides their proinflammatory properties, these cytokines are 

capable of stimulating bone resorption. Recently, it was discovered that the toll-like receptors 

play a crucial role in  transduction of the signals of LPS (102). Interestingly, LPS from P. 

gingivalis and C. ochracea showed antagonistic activity by not inducing human TLR4-

mediated signaling (103). Antagonistic activity would be of great advantage for the 

microorganisms to escape from the innate immune system. 



Several bacterial species possess mechanisms to overcome the defense of the host's 

immune system. IgG and IgA proteases of P. gingivalis, P. intermedia and Capnocytophaga 

spp. are able to specifically destroy antibodies (77, 104). A number of species have 

developed strategies to interfere with the killing mechanisms of the polymorphonuclear 

leukocytes and monocytes. These include the production of leukotoxin by A. 

actinomycetemcomitans (105, 106) and C. rectus (107). Additionally, leukotoxin from A. 

actinomycetemcomitans can induce apoptosis in a variety of host immune cells (108). 

1.3 Pathogenesis of periodontitis 

The indigenous oral microflora and the host are normally in a state of equilibrium. The 

interactions between the microorganisms and the host are very dynamic, thus allowing the 

complex interplay between host molecules and bacterial antigens (109). The exact 

mechanisms that allow the host to "tolerate" non-pathogenic microorganisms are largely 

unknown. Any disruption of the "established" state, whether by commensal bacteria, 

pathogenic bacteria or a compromise in the local or systemic health of the host will lead to an 

altered host condition, resulting in disease (110). The pathogenesis of periodontitis is thus 

mediated by interactions between host and microbial factors, complicated by genetic and 

environmental risk factors. 

Mixed consortiums of microorganisms are involved in periodontal disease, which develops as 

a consequence of imbalances in microbial biofilm inducing an inflammation in host tissues. 

The environment is altered by increased flow of gingival crevicular fluid and nutrients, as well 

as a pH rise  that favors growth of periodontopathic bacteria (111). The microorganisms 

increase in number and produce several bioactive end products, endotoxins and exotoxins 

(58). Protease-producing bacteria, such as P. gingivalis, T. forsythensis and T. denticola, 

may be involved as initiators of disease activity. 

The host has several defense strategies to protect its barriers against bacterial invasion. The 

defense mechanisms - innate and adaptive immunity - function in a complex way. Innate 

immunity is responsible for initiation of the inflammation process, acting as the first line of 

host defense against microbial pathogens (22). Adaptive immunity, mediated by B and T 

lymphocytes, which carry immunoglobulins and T-cell receptors, respectively, present a more 

effective defense against specific bacterial species, however, several steps are required 

before its efficient activation (102). Recently it was discovered that toll-like receptors (TLRs) 

play a crucial role in recognition of invading pathogens (102, 112). There are currently 10 

known TLRs, each of which recognizes a different spectrum of pathogen-associated 

molecular patterns (PAMPs), e.g. TLR2 recognizes bacterial peptidoglycan and lipoproteins, 

TLR3 recognizes double-stranded RNA, TLR4 lipopolysaccharide, TLR5 flagellin and 

flagellated bacteria, TLR9 procaryotic DNA (113). TLRs are known to be expressed in a 

number of tissues and by a variety of cell types including monocytes, neutrophils, endothelial 



cells, fibroblasts, osteoblasts and dendritic cells (110). Signaling through TLRs leads to a set 

of innate immune response - production of proinflammatory cytokines and upregulation of 

costimulatory molecules, and ultimately also induction of adaptive immunity (113, 114). The 

molecular basis of TLR-dependent signal transduction is an extremely active area of 

investigation, as these findings might explain different innate immune responses to various 

pathogens. 

One of the recent exciting discoveries was that TLRs are critical molecules in adaptive 

immune response as well. They are required for the upregulation of co-stimulatory molecules 

such as CD80/86 and major histocompatibility complex (MHC) on dendritic cells (DCs) (113). 

TLRs can also regulate T-cell differentiation status by producing proinflammatory cytokines 

such as IL-12.  

Genetic variations or polymorphisms associated with TLRs might explain to some extent the 

species-specific response and thereby different susceptibility of host to infections (113, 115). 

The primary function of the innate immune system is to provide a rapid response to bacterial 

pathogens. Bacterial products are chemotactic for neutrophils, activate the plasma 

proteinase cascade systems, trigger mast cells to release biogenic amines, and stimulate 

inflammatory cells and resident tissue cells to form cytokines (IL-1, tumor necrosis factor), 

platelet activating factor and prostanoids (e.g. prostaglandins, leukotrienes) (116-119). 

Polymorphonuclear leukocytes (PMNs) seem to play a central role in the pathogenesis of 

periodontitis (123). Specific adhesion molecules like ICAM-1, ELAM-1 promote the 

movement of PMNs from blood vessels into the connective tissue and sulcus, where they 

phagocytose the bacteria (120). The defects in vitality and function of PMNs are modifying 

factors for disease pattern or severity (121). 

Most of the tissue destruction results from direct effect of the bacteria, together with the 

resulting inflammatory and immunological host responses. Reactive oxygen products from 

inflammatory cells injure tissue cells, and proteases from both inflammatory cells and 

resident tissue cells degrade components of the extracellular tissue matrix (122, 123). In the 

periodontal tissues prostanoids, cytokines and thrombin directly or indirectly induce 

degradation of the extracellular matrix, activate osteoclasts and initiate bone resorption (116, 

124). An involvement of TLR4 in bone resorption was demonstrated with TLR4-deficient 

mice. It was observed that bone loss was significantly less in TLR4-deficient mice than in 

wild-type controls (125). This decrease was correlated with reduced expression of the bone 

resorptive cytokines IL-1  and IL-1  as well as the proinflammatory cytokine IL-12. An 

immunohistochemical investigation of gingival tissue of periodontitis patients showed the 

association of the expression of the TLR4 with severe periodontal disease (126). It becomes 

apparent that TLR levels influence the magnitude of inflammatory responses, underscoring 

the need to clarify the molecular mechanisms modulating TLR expression (113).  



Only now are we beginning to appreciate the complexities of the evolutionary conserved 

innate immune system, and the essential role it plays in maintaining homeostasis. The 

disruption of an intact innate immune system is detrimental to the health of the host in either 

a localized or a systemic manner. 

The adaptive immunity is based on specific antigen-antibody reaction, as well as specific T-

cell recognition. Antigens are presented by Langerhans cells to lymph tissue, where the B-

cells will be converted to plasma cells to produce antibodies. The reaction is supported by T-

cells. The antibodies induce aggregation of bacteria, inhibit adhesion of bacteria to 

epithelium, lead to antibody-complement-mediated bactericidal activity or through 

opsonisation to phagocytosis by neutrophils and macrophages (127). Persons able to 

provide an effective antibody reaction are supposed to be more resistant to periodontitis than 

those with a quantitatively or qualitatively ineffective response. It has been shown that the 

production of IgG2 predominates over IgG1 concentration by patients with early-onset 

periodontitis (128). This suggests that functionally less-effective IgG2 antibodies play an 

important role in susceptibility and dimension of periodontal destruction in those patients. 

Some authors have stressed the importance of testing the titer of antibodies to putative 

pathogens and the avidity of antibodies in determining the status of periodontal disease 

(129). 

The bacteria play an important role in the etiology of periodontitis, but the response of the 

host is the decisive factor for the susceptibility of periodontitis. Risk factors like smoking, 

diabetes, stress modify to a large extent the susceptibility of the host and progression of the 

disease (130, 131). It turns out that smoking has the highest impact on the course of the 

disease, modulated by all the other factors (132). Regardless of the different microbial 

profiles identified in smokers and non-smokers in the majority of the investigations it is 

unclear whether the increased presence of certain microorganisms is the cause or the 

consequence of a more severe disease condition. However, conflicting results have been 

reported about the influence of smoking on the subgingival microflora of periodontitis patients 

(133). It can be concluded that smoking and stress influence host-related factors, thereby 

modifying the microflora to be more pathogenic. Bergsröm et al. (134) proposed to regard 

destructive periodontal disease as a systemic disease in the same way as heart disease or 

lung disease. In smokers the periodontal disease is initiated and driven by smoking, where 

the elevated morbidity does not depend on particular microflora (134). 

1.4 Clinical studies seeking evidence for etiological role of bacteria 

A major limitation of many microbiological studies has resulted from the selection of 

appropriate patients and controls. Favored subjects most often chosen are those with the 

most advanced cases of periodontitis. Analysis of the complex microflora of these samples 

from cross-sectional studies did not reveal whether the investigated microorganisms initiated 



the disease or whether they colonized later. The presence of suspected pathogens may 

result from, rather than cause the disease. 

There are multiple forms of destructive periodontal disease that are difficult to define 

clinically. Combining subjects that represent two or more disease types into a single group 

diminishes the likelihood of discriminating the pathogens from other species. 

1.4.1 Prevalence studies 

A positive correlation between bacterial numbers and severity of gingivitis or periodontitis 

and amount of bone loss has been demonstrated in cross-sectional studies (135). A higher 

prevalence and increased proportions of P. gingivalis, T. forsythensis, P. intermedia, 

Fusobacterium spp., Campylobacter and Treponema spp. were detected in periodontitis 

patients as compared to periodontally healthy subjects (30, 32, 44). 

1.4.2 Progression of disease 

An important piece of evidence in defining periodontal pathogens comes from longitudinal 

studies examining the subgingival microflora in active sites undergoing attachment loss (27, 

33, 39, 135, 136). Several resident putative periodontal pathogens have been reported to be 

responsible for the progression of attachment loss. Haffajee et al. (137) followed 

longitudinally the changes in pockets that subsequently lost attachment. Significantly higher 

levels of P. gingivalis, C. rectus and significantly lower levels of C. ochracea were found in 

active subjects prior to breakdown. 

By studying the microbiota of active destructive periodontal lesions and inactive sites, 

species such as T. forsythensis, P. gingivalis, P. intermedia, E. corrodens, F. nucleatum, Str. 

intermedius, P. micros,  A. actinomycetemcomitans were found frequently in high numbers, 

suggesting that they may represent causative agents. In inactive sites S. mitis, S. sanguis, 

Actinomyces spp., C. ochracea and V. parvula were elevated (33, 39, 49, 138 -142). 

Liljenberg et al. however, compared periodontitis patients with progressive and non-

progressive disease in a cross-sectional study and found no differences in the subgingival 

microbiota between groups (143). Furthermore, even patients with progressive disease did 

not show differences between progressive and non-progressive sites (144). 

1.4.3 Risk factor studies 

Risk assessment studies were used to confirm etiological agents in periodontal diseases. A 

periodontal site in a carrier-state with bacterial pathogens was considered to be a future risk 

indication of periodontal breakdown. It has been observed that subgingival colonization with 

T. forsythensis, P. gingivalis and A. actinomycetemcomitans was associated with a risk for 

attachment and severe bone loss (3, 145 -147). Similarly an increase in levels of bacteria 

was associated with an increased risk of attachment loss, however, different threshold levels 

were reported for different bacterial species. Additionally, several combinations of species 



were associated with an increased risk for disease progression (48). However, some authors 

refer to periodontal pathogens as minor risk indicators due to the fact that the odds ratios 

between the presence of these specific bacteria individually and periodontitis are not high 

enough to classify them as risk factors (148). 

1.4.4 Treatment studies 

Successful therapy is aimed at diminishing the level of pathogens, supporting the 

colonization with beneficial species and leading to an attachment level gain (55, 149-151). 

The prerequisite for an efficient therapy is an excellent oral hygiene. Scaling and root planing 

is considered the standard therapy of periodontitis. Combined with a regular maintenance 

program the supra- and subgingival debridement has been shown to be effective in most 

cases of periodontal therapy (152 -154). 

Surgical intervention in the form of modified Widman flap surgery or apically repositioned flap 

may be needed if non-surgical therapy was not effective and deep pockets still persist. It 

provides better access to the roots for the debridement. Comparison between the surgical 

and non-surgical therapy demonstrated higher attachment gain in deep pockets after the 

surgery (149). 

The mechanical debridement not only decreases plaque mass but also radically changes the 

composition of the subgingival microbiota (139, 149, 152). The disruption of biofilm is 

effective in altering the biofilm's composition so that the putative pathogens are eliminated or 

reduced to nonpathogenic levels, and bacteria associated with health are positively selected. 

The qualitative shift may be mediated not only through the direct effect of mechanical 

debridement but also indirectly through an altered immune response (155). 

Patients with aggressive or refractory periodontitis often need an adjunctive systemic 

antibiotic therapy. Refractory periodontitis is characterized by ongoing deterioration of 

periodontal sites and associated with a continued presence of T. forsythensis, P. gingivalis, 

C. rectus, P. intermedia, P. micros, spirochetes, enterococci (147, 156, 157). Predictable 

results have been achieved with the administration of a metronidazole / amoxicillin 

combination (158, 159). The strictly anaerobic gram-negative species and A. 

actinomycetemcomitans are the main targets of this antibiotic combination.  

Although some success has been reported due to antibiotic therapy, several limitations have 

become evident. Most of these limitations are due to the fact that periodontal infections result 

from the formation of biofilm. Therefore, disrupting the biofilm mechanically is still the basis 

for successful periodontal treatment (160). 

The clinical stability of periodontal status means a dynamic balance between the presence of 

opportunistic bacteria and immune response. The maintenance therapy is thus aimed at 

keeping the bacterial colonization under control. 



1.5 Detection methods 

A variety of methods have been developed and applied for the detection and identification of 

microorganisms. Bacterial culture has long been regarded as the "gold standard". However, 

culture-based techniques suffer the limitation that they are highly delicate and time-

consuming, requiring experienced personnel and strict quality assurance procedures. Many 

organisms will not grow on currently available culture media. Several studies showed that 

culture-based analyses of complex microbiota do not reflect the true composition of the 

microbial population as often only these species which grow easily in vitro are cultured (161). 

Additionally, identification based upon phenotypic characterization has been found to be 

unreliable. One disadvantage of culture techniques is that only small numbers of samples 

can be studied. More rapid unbiased techniques are required for examining large numbers of 

samples and  reflecting more reliably the real diversity of the flora. These techniques include 

immunofluorescence using monoclonal or polyclonal antibodies, hybridization using either 

whole-genomic DNA probes or oligonucleotide probes, and PCR amplification assays. 

The 16S rRNA with its altering conserved and variable domains has been found to be the 

most reliable and stable molecule for identification, enumeration and phylogenetic 

classification of procaryotes (162, 163). 

Molecular biologic methods have a higher sensitivity and specificity as compared to bacterial 

culture hence increasing the accuracy of the analysis (161, 164). They are especially 

valuable for the detection of slow-growing, fastidious or yet uncultured bacteria. 

In the situation where the putative pathogens belong to an indigenous flora, the detection of 

minute amounts of bacteria is irrelevant. In epidemiological studies, however, estimation of 

accurate prevalence of these bacteria in different population groups allows the assessment 

of their possible association with the disease. 

New techniques like transmission or scanning electron microscopy, fluorescence-in-situ 

hybridization help to visualize, identify, localize and enumerate the microorganisms in 

biological samples. The development of a real-time PCR-amplification assay allows reliable 

quantification of bacterial species and assessment of their proportions in a total flora (165). 

1.6 Aggressive periodontitis 

1.6.1 Clinical diagnosis 

It has become popular to speak about different periodontal disease entities, which may have 

different specific etiology. However, only necrotizing periodontal diseases and localized 

aggressive periodontitis (earlier LJP) are well-defined disease entities. Most periodontitis 

cases are difficult to classify clinically in the gradual range from gingivitis to more-or-less 

advanced or aggressive periodontitis. This makes statistical associations between the 

disease status and microflora problematic. 

According to the new classification aggressive periodontitis is a specific form of periodontitis 



with distinct clinical and laboratory characteristics (166). These include: 

• Besides periodontitis subjects systemically healthy 

• Rapidly progressing periodontal destruction 

• Familiar aggregation  

Often, but not always: 

• Disproportion between dental plaque and tissue destruction  

• High prevalence of A. actinomycetemcomitans or P. gingivalis 

• Abnormal function of neutrophils or monocytes 

• Hyperresponsive macrophage-phenotype with increased production of PGE2 and IL-1ß 

• The destructive process may cease spontaneously or greatly slow down 

The localized form: 

• Begins in puberty 

• First molars and central incisors are affected  

• High level of antibodies against putative pathogens in serum 

The generalized form (GAP): 

• Patients younger than 30 years 

• Generalized destruction of the dentition 

• At least 3 teeth are affected 

• Intermittent course of the disease 

• Low level of antibodies against putative pathogens in serum 

1.6.2 Microorganisms associated with aggressive periodontitis 

There have been few studies concerning the associated pocket microflora of generalized 

aggressive periodontitis, but the available data implicate P. gingivalis, T. forsythensis,  A. 

actinomycetemcomitans, P. intermedia, E. corrodens, F. nucleatum, C. rectus, C. ochracea, 

V. parvula, spirochetes, Eubacterium spp., P. micros as important suspected pathogens. 

They have been found in higher proportions and more frequently in aggressive periodontitis 

patients (10, 13, 15, 17, 167 -169, 170). However, aggressive periodontitis is considered a 

distinct form of periodontitis, microbiological criteria are not regarded as primary features in 

defining the disease entity (52). 

1.7 Control group (Elderly) 

A well-documented epidemiological study, the so-called "New England Elders Dental Study", 

revealed a high prevalence of periodontal destruction among older adults (171). Moderate 

pockets with pocket depth (PD) 4-6 mm were found in 66% of the study sample, and severe 

periodontal pockets (PD>6 mm) were observed in 21% of subjects. Only 8% of that 

population had no pockets. The authors drew the conclusion that age was significantly 



associated with periodontal destruction within this elders' population. 

The only study investigating subgingival microbiota of an elderly population and comparing it 

with healthy and periodontitis patients was performed by Haffajee et al. (34). The mean 

probing depth of the 35 elders was 2.6±0.4 mm and as few as 6% of the sites revealed PD 4-

6 mm. No pocket >6mm was documented. Several subjects had periodontal treatment in the 

past. At the time of the study all the subjects were on regular maintenance (mean duration 

14.2 years). These individuals exhibited minimal evidence of disease progression and tooth 

loss. Marked similarities in the subgingival microbiotas of the healthy and well-maintained 

elders was observed. 



2 Aim of the study 

Although a strong association between various bacteria and the etiology of periodontitis has 

been shown, etiopathogenesis is still not resolved. One way to prove the etiologic relevance 

of putative pathogens would be the performance of a series of epidemiological and 

longitudinal investigations with all population groups using a uniform detection method. If 

"marker species" which play an important role in initiation or exacerbation of periodontitis are 

existing, their identification should be made easily applicable in dental practice.  

From the technical point an easier, less biased, and more specific and sensitive 

microbiological detection method is needed in order to investigate large number of samples 

and patients with different clinical conditions. 

Clinically, the GAP population reveals a high risk of periodontal breakdown and tooth loss. A 

comprehensive microbiological and immunological investigation is necessary in order to 

define the critical factors responsible for disease development, and 

also regarding control of patient's oral health during the treatment and maintenance phase. A 

comparison of the microbiological status between different diseased patient groups and 

healthy subjects may be of help to critically assess the importance and role of certain 

putative periodontal pathogens. Unfortunately several past clinical studies are missing a 

control group. In the present investigation the elderly subjects represent a control group, 

revealing microflora compatible with periodontal health in advanced age. 

The aim of this study was to design, optimize and evaluate 10 oligonucleotide probes for the 

identification of putative periodontal pathogens, Actinobacillus actinomycetemcomitans, 

Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythensis, Campylobacter 

rectus, Eikenella corrodens, Fusobacterium nucleatum, Veillonella parvula, Capnocytophaga 

ochracea and Fusobacterium spp. The probes were used in an epidemiological study to 

analyze and compare the subgingival colonization of the target species in both untreated 

GAP patients and elderly subjects with a well-maintained periodontium.  

The current investigation is part of a larger epidemiological study comprising the identification 

of known as well as not-yet cultivable suspected pathogens (treponemes) in various patient 

populations using a uniform molecular genetic detection method. 



3 Materials and methods 

3.1 Probe design 

The oligonucleotides were designed on the basis of the first 530 basepairs of the 16S rRNA. 

Hypervariable regions were identified and species-specific oligonucleotide probes were 

selected by alignment of the sequences. The following criteria for probe design were applied: 

• minimum length of at least 15 bases 

• at least one mismatch between the probe and closely related species  

• no self-complementarity (checked by the program OLIGO, version 4.0, National 

Biosciences, Plymouth, MN) 

• G/C content between 30-60% 

The species-specific oligonucleotides were used as 16S rRNA/DNA directed probes. 

Previously published oligonucleotides (172, 173) were re-evaluated. In order to assess the 

specificity, the target sequences were compared with those of all entries of procaryotes at 

the EMBL and Genbank databases accessible (July 2002) by using the program BLASTN of 

the Husar program package (version 4.0; Heidelberg Unix Sequence Analysis Resources; 

DKFZ, Heidelberg, Germany). All probes were checked with the aid of the program OLIGO 

4.0 for their practical use in a hybridization assay. 

3.2 Culturing of target- and phylogenetically closely related species 

To ensure the specificity of the probes 42 phylogenetically closely related and target species 

were cultivated as negative and positive controls, respectively. The species were obtained 

from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen), CCUG (Culture 

Collection University of Göteborg) and kindly provided by R. Mutters, Marburg, Germany; G. 

Conrads, Aachen, Germany; C. Wyss, Zürich, Switzerland; A. Mombelli, Bern, Switzerland 

and E. Esdorn, Charité, Campus Virchow Clinic, Berlin, Germany.  

The strain designations and the original sources used in the study are listed in Supplement, 

Table 1. 

Positive controls for the probe for A. actinomycetemcomitans were 3 isolates of the species, 

ATCC 43718, ATCC 33384, and a serotype a. The closely related oral species Leptotrichia 

buccalis (MCCM 00448), Pasteurella haemolytica (ATCC 33396) and Haemophilus 

paraphrophilus (ATCC 29241) are all colonizers of the oral cavity and with at least one 

mismatch in the target sequence served as negative controls. 

The probes for P. gingivalis and P. intermedia were checked by using the target species P. 

gingivalis (ATCC 33277) and P. intermedia (ATCC 25611) and related oral species  such as 

Porphyromonas asaccharolytica (ATCC 25260), Prevotella nigrescens (NCTC 9336), 

Prevotella oralis (MCCM 00684) and Prevotella buccalis (ATCC 33690) with more than one 



basepair difference. P. asaccharolytica has been implicated in pelvic inflammatory disease, 

endometritis, and bite wound infections (183). 

Capnocytophaga ochracea (ATCC 27872) served as a positive control in optimizing the 

respective probe. It was checked against Capnocytophaga sputigena (ATCC 33612) which 

has 95% similarity within the 16S rRNA with the target species (172) and one mismatch in 

the respective probe sequence. 

The specificity of the probe for C. rectus was tested by including the reference strain 

Campylobacter rectus (ATCC 33238) and a very closely related periodontal species 

Campylobacter concisus (ATCC 33236).  

Eikenella corrodens (CCUG 2138) and the frequently detected oropharyngeal species 

Kingella kingae (ATCC 23330) which has one mismatch with the target species, enabled the 

optimization of the respective probe. 

The strain Veillonella parvula (ATCC 10790) served as a positive control for the respective 

probe and Veillonella dispar (ATCC 17748) which contains one ambiguity in the target region 

was applied as a negative control. 

Five strains of the genus Fusobacteria were cultivated to prove the specificity of the genus-

specific probe and of the probe for F. nucleatum. 

The bacteria were delivered either in lyophilized form or on agar plates. Lyophilized bacteria 

were suspended in TS-medium (Suppl. 1.5.), incubated at 37°C in anaerobic or aerobic 

conditions as required and after 3 days aliquots (3 µl) were plated onto the respective agar 

plates (pre-reduced for anaerobic strains). Columbia agar with 5% sheep blood (Becton 

Dickenson, Meylan Cedex, France) (Suppl. 1.2.) was used for the cultivation of aerobic 

bacteria. Either Columbia agar with vitamin K and hemin or ETSA  - agar (Suppl. 1.4.) was 

used for the culturing of anaerobic bacteria. Some species were cultivated in fluid-universal-

medium (FUM) (Suppl. 1.1.). Anaerobic species were incubated anaerobically at 37°C in jars 

within an atmosphere containing 80% nitrogen, 10% carbon dioxide, and 10% hydrogen 

provided by AnaerogenTM35 (Oxoid, Hampshire, England) for 3-5 days. The microaerophilic 

bacteria were incubated in an atmosphere with 10% CO2 for 2-4 days. Anaerobic bacteria 

were grown at 37°C for 2-3 days. 

The bacterial species, respective culture media and growth conditions are listed in 

Supplement, Table 2. 

The DNA of Tannerella forsythensis was kindly provided by Dr. Olson, Institute of Oral 

Biology, Oslo University. 

The identity of target bacteria and closely related species was verified by 16S rDNA 

sequencing or biochemical tests using the rapid ID32A system (bioMérieux, Marcy-l'Etoile, 

France) (Suppl., Table 1). 

Sequencing was carried out by the Sanger dideoxy-mediated chain-termination method (174) 



using the Thermo Sequenase fluorescent labelled primer cycle sequencing kit with 7-deaza-

dGTP (Amersham Pharmacia Biotech, England). After DNA extraction (s. 3.3.) 16S  rRNA 

genes or parts thereof were amplified using eubacterial primers (s. 3.4.). The PCR-products 

were purified on a silica-matrix (2.5 g Silica, 25 ml PBS) (Suppl. 2.9.).  

The following tubes were prepared: 

- 16 µl 2.5% DMSO (in H2O) 

- 8 µl purified DNA 

- 2 µl Primer (5'-IR- labeled) 

The mixture was divided into 4 tubes, 6 µl in each. The reaction buffer (2 µl) which contained 

sequenase, all 4 deoxynucleotides (dNTPs) and one of the dideoxynucleotide (ddATP, 

ddCTP, ddGTP or ddTTP) was added into each tube. The tubes were covered with 30 µl 

mineral oil to avoid evaporation. 

The sequencing was performed in a thermal cycler (Trioblock; Biometra, Göttingen, 

Germany) by repeated 29 cycles of denaturation at 95°C for 30 seconds, followed by 

annealing of the primer at 60°C for 30 sec. and extension/termination at 70°C for 40 sec. At 

the end of the program stopping-buffer (5 µl) (Suppl. 2.11.) was added to each tube to stop 

the reaction. The tubes were held on ice prior to loading onto the gel. 

Reaction products were separated by electrophoresis on a polyacrylamide gel  (Suppl. 3.2.) 

and detected with a laser-detector in a LICOR DNA-Sequencer (Model 4000, MWG Biotech). 

The automated analysis of the sequences was performed by an attached computer using the 

IBM OS/2 Base ImageIR Software with Data Collection and Image Analysis programs. The 

sequences were evaluated using the Husar software program package (version 4.0; Unix 

Sequence Analysis Resources, DKFZ, Heidelberg, Germany). 

3.3 DNA isolation 

A single bacterial colony grown on agar was suspended and washed in 100 µl phosphate-

buffered-saline (PBS) (Suppl. 2.9.). Alternatively a 100µl aliquot of bacterial culture from a 

liquid-medium was removed into a 0.5 ml Eppendorf tube. The suspension was centrifuged 

in a Labofuge 400 R centrifuge (Hereus, Hanau, Germany) at 13 000 x g for 10 min at 4°C. 

The supernatant fluid was removed and the pellet suspended in 100 µl PBS, vortex-mixed 

and recentrifuged under the described conditions. The resulting pellet was resuspended in 

100 µl of ice-cold lysis buffer (Suppl. 2.10.), vortex-mixed and stored at -20°C. No further 

purification of the nucleic acids was performed. 

3.4 PCR amplification of 16S rDNA 

A commercial kit (AmpliTaq  DNA Polymerase with GeneAmp , Perkin Elmer, Branchburg, 

NJ, USA) was used for the amplification. The amplification was carried out in a volume of 

100 µl containing:  



- 1 µl of dissolved bulk DNA  

- 1.5 mM MgCl2  

- 1 x PCR buffer (50 mM KCl, 10 mM Tris; pH 8.3) 

- 200 µM dNTPs 

- 0.2 µM each primer 

- 2.5 U Taq polymerase 

- finally 50 µl sterile mineral oil was added. 

The eubacterial primers used for the 16S rRNA gene amplification were: 

• TPU 1 (5'-AGA GTT TGA TCM TGG CTC AG-3', corresponding to positions 8 to 27 in the 

Escherichia coli 16S rRNA gene) 

• RTU 3 (5'-GWA TTA CCG CGG CKG CTG-3', corresponding to positions 519 to 536 in 

E. coli 16S rDNA). 

As negative control a tube containing 1 µl sterilized PCR-water instead of a sample was 

included in every amplification run. 

Amplification (30 cycles) was performed in an automated thermal cycler (Trioblock; Biometra, 

Göttingen, Germany). Initial DNA denaturation was carried out for 5 min at 95°C. During this 

step the Taq-Polymerase was added (hot-start). Each of the following cycles consisted of 

three steps: denaturation for 1 min at 95°C, primer annealing for 1 min at 56°C, and strain 

extension for 1 min at 72°C. The 30th extension step was prolonged to 3 min.  

A 3.5 µl aliquot of the PCR-amplified product was mixed with 1 µl loading dye for the 

electrophoresis. The correct size and amount of the amplicons was verified by 1.2% agarose 

gel (Suppl. 3.1.) electrophoresis at 120 V for 1 hour. The resulting DNA bands were 

visualized under ultraviolet light. 

After denaturation of the PCR products at 95° for 5 minutes the tubes were quickly chilled on 

ice and aliquots of 1 µl were spotted onto nylon membranes (Hybond N; Amersham, 

Buckinghamshire, UK) in 80x45 mm size. The DNA was immobilized on the membrane by 

ultraviolet-crosslinking, done by exposing both sides of the membrane to UV light (254 nm) in 

"UV-Crosslinker" (MWG Biotech, Ebersberg, Germany) for 3 min. 

3.5 Probe labeling 

Commercially synthesized oligonucleotide probes were diluted with sterilized distilled water 

to a concentration of 25 pmol/µl. 

The nonradioactive DIG system was used for labeling the probes (Boeringer Mannheim, 

Mannheim, Germany). Digoxigenin, a steroid hapten, coupled to ddUTP was incorporated by 

terminal transferase to the 3'-end of the oligonucleotide probe. 



The labeling reaction mixture consisted of the following: 

- 4 µl     5 x buffer (1 M potassiumcacodylat, 125 mM Tris-HCl, 1.25 mg/ml BSA) 

- 4 µl     CoCl2  (25 mM) 

- 1 µl     DIG-ddUTP 

- 4 µl     Oligonucleotide (25 pmol/µl) 

- 1 µl     Terminal transferase (50 U/µl) 

- 20 µl   distilled water 

After incubation at 37° for 15 min 2 µl of stop-solution   1 µl glycogen (20 µg/ml) with 200 µl 

EDTA (0.2 mM) , 2.5 µl LiCl, and 75 µl ethanol (absolute) was added. The subsequent 

precipitation took place at -20°C for about 24 hours. Additional purification was performed by 

precipitation with 50 µl ethanol (absolute). The oligonucleotide was vacuum dried, diluted in 

20 µl distilled water and stored at -20°C.  

The probes were immunodetected with anti-digoxigenin and then visualized with the  

chemiluminescence substrate CSPD . The light emission was recorded on X-ray films. 

3.6 Optimization of hybridization conditions 

The hybridization was performed in glass tubes by continuous rotation in hybridization ovens 

(Micro 4, MWG-Biotech). 

Hybridization consisted of the following steps: 

(for the composition of reagents see Supplement, Buffers) 

1. Prehybridization at 54°C (40°C) in a prehybridization solution (Suppl. 2.1.) (10 ml) for 30 

min.. 

2. Hybridization at 54°C (40°C) with a heat denaturated labeled probe (3.6 pmol) in a 

hybridization solution (Suppl. 2.4.) for 2 hours. 

3. Washing under stringent conditions with respective salt buffers (Suppl. 2.5.-2.7.) (10 ml) 

and temperatures 2 x 15 minutes 

4. Blocking reaction with 1% blocking solution (Suppl. 2.2.) at 37°C for 30 minutes 

5. The hybrids were detected by adding anti-digoxigenin alkaline phosphatase conjugate 

(75 mU/ml corresponds to v/v 1:10000 in 1% blocking solution) with binding at 37°C for 

30 minutes 

6. Washing at 37°C 2 x 15 min with maleic acid buffer (Suppl. 2.1.) (10 ml) 

7. Equilibration in detection buffer (Suppl. 2.3.) (5 ml) at 37°C for 2-5 minutes 

8. Luminescence reaction with (chemiluminescent substrate) CSPD  (1:100 in detection 

buffer) at 37°C for 15 minutes.  

The wet membrane was sealed in a plastic foil and exposed to X-ray film (Hyperfilm, 

Amersham Life Science, Buckinghamshire, UK) for 2 hours at 37°C. An additional film was 

exposed for 12 hours at 24°C. The films were developed automatically in CURIX 60 (AGFA). 

The membranes were washed with stripping buffer (Suppl. 2.8.) (10 ml) for 2 x 15 min at 



37°C to remove the probe and rinsed thoroughly in 2 x SSC (10 ml). Identical membranes 

were used for multiple hybridization experiments. 

3.7 Patient populations 

3.7.1 GAP patients 

A total of 45 GAP patients were included into the epidemiological analyses. 

All patients were previously untreated and referred to the Department of Periodontology and 

Synoptic Dentistry, Charité, Berlin, between 1997-1998. Patients were diagnosed according 

to their advanced clinical and radiographic signs, considering their age and history of 

periodontal disease. 

Patients with chronic periodontitis or those who had received anti-inflammatory or 

antimicrobial therapy within the previous 6 months were excluded from the study. The 

average age of GAP patients was 34.7 years.  

Four subgingival plaque samples per patient were taken prior to any therapy from the 

deepest periodontal pockets (PD 4 mm) which bled on probing, preferably one from each 

quadrant. Additionally, one control sample from a clinically unaffected site was obtained. 

After supragingival plaque removal with a sterile curette and cotton pellet, three sterile paper 

points (ISO 35; Becht, Offenburg, Germany) were inserted into the pocket. After 10 seconds 

the paper points were removed and placed into 1 ml of reduced transport fluid (RTF, Suppl. 

1.6.) (175), transferred to the laboratory and processed immediately. 

A total of 224 subgingival plaque specimens (180 from periodontal pockets and 44 from 

healthy control sites) from the GAP population was investigated. The mean pocket depth of 

the sampled sites was 8.7±1.8 mm and the mean probing depth of the control sites was 

2.7±0.8 mm. 

3.7.2 Elderly subjects 

The second group of the epidemiological study consisted of 21 healthy senior subjects. 

These individuals represented a population with a well-maintained periodontium and served 

as a control group for the periodontitis patients. 

The inclusion criteria were as following: 

- age 65 years  

- presence of at least 20 teeth 

- no history of severe periodontitis  

- no site with PD > 5 mm 

The exclusion criteria were the presence of gingivitis, severe periodontitis, chronic systemic 

disease or anti-inflammatory or antimicrobial therapy within the previous 6 months. The 

subjects did not receive regular periodontal maintenance care. Five randomly chosen 



periodontal sites of elderly subjects were sampled. 

3.8 Dot-blot hybridization of patient material 

The bacteria were eluted from the paper points by vortex-mixing them for 30 sec. in a tube 

containing 1 ml RTF (Suppl. 1.6.). Aliquots (100 µl) of the plaque specimen were centrifuged 

at 13 000 x g for 10 min in a Labofuge 400 R centrifuge (Hereus, Hanau, Germany) for the 

DNA isolation. Resulting bacterial pellets were placed in 100 µl of ice-cold lysis buffer (Suppl. 

2.10.), vortex-mixed and stored at -20°C until further processing. The PCR amplification with 

1 µl of bulk DNA was performed as described above (3.4). The amount and correct size of 

the amplicons were checked by agarose-gel electrophoresis. The PCR products were 

denaturated and blotted onto nylon membranes (Hybond N; Amersham, Buckinghamshire, 

UK).  

Dr. Moter kindly provided the prepared membranes with processed samples of both study 

groups for the dot-blot hybridizations. 

The dot-blot hybridizations of patient plaque material were performed sequentially with every 

probe under the respective hybridization conditions. Negative and positive controls were 

included in each run of the assay.  

The membranes were washed with stripping buffer (10 ml) for 2 x 15 min at 37°C to remove 

the probe and rinsed in 2 x SSC (10 ml). Identical membranes were used for multiple 

hybridization experiments with all of the reported probes. 

Dot-blot hybridization of PCR-amplified plaque material was used to detect small amounts of 

target periodontal bacteria in patients. The PCR-amplification enables the detection of at 

least 100 bacterial cells in a sample (168). The detection limit of PCR-amplification and 

subsequent hybridization has been reported to be about 20 CFU/ml using a pure culture 

(176). 

4 Statistical analysis 

Statistical analyses was supported by Ms. Siebert, Institute of Medical Biometrics, Humboldt 

University. For all calculations SPSS software v. 10.0 was used. 

All 45 GAP patients and 21 elderly subjects were included in the statistical analysis. The 

patient served as a statistical unit. A difference of p<0.05 was considered statistically 

significant.  

The differences in prevalence (number of positive subjects) between the two groups was 

computed for each species with chi-square test. A patient was considered positive when at 

least one sampled site was positive. 

When comparing the colonization of periodontal pockets and control sites of the GAP 

patients, only one arbitrary chosen pocket and one shallow site per patient was analyzed and 

evaluated using the chi-square test. 



Assessment of the prevalence of the species in periodontal pockets of the GAP patients 

versus sampled sites of the elderly was performed by including four sites per subject and 

using the chi-square test. 

As only one control site was available from each GAP patient, the comparison of the 

presence of bacteria in similar shallow sites in elders was carried out using a single arbitrary 

site per elderly subject and the chi-square test. 

The analysis of the presence of bacteria at different pockets depths was performed with the 

data of only 23 GAP patients using the chi-square test.  

The non-parametric Mann-Whitney test for two independent samples was used to test the 

null hypothesis that the load of bacteria per patient, i.e. the number of positive sites per 

patient, is the same in both subject groups. Four pockets per patient from the GAP group and 

four sites per subject from the elderly population were analyzed. 

The relationship between two bacterial species, i.e. the frequency of co-existence, was 

analyzed by odds ratio (OR) calculations as suggested by Socransky  (177). The odds of an 

event are defined as the ratio of the probability of the event to the probability of its 

complement. For each pair of the investigated species within the GAP patient group, 2x2 

contingency tables were constructed. The magnitude of the association between two species 

is indicated by the amount OR differs from 1.0, the indication of no association. OR<0.5 

shows a negative association and OR>2 a positive one.  

5 Results 

5.1 Design of species-specific oligonucleotide probes 

It was possible to select unique sequences about 16-30 basepair in length that discriminated 

each species (except F. nucleatum) down to the level of one mismatch when compared to 

the respective target sequences of all other species described so far. The Fusobacterium 

nucleatum probe also cross-hybridized with the respective sequence of Fusobacterium 

periodonticum. These species exhibit a 100% homology in the 528 initial basepairs of the 

16S rRNA (178). Besides F. nucleatum the genus Fusobacterium comprises a wide range of 

species, such as F. necrophorum, F. mortiferum, F. simiae, F. gonidoformans, F. alocis, F. 

varium, F. russi, F. ulcerans, F. periodontiticum, F. perfoetens, all complementary to the 

respective probe. Most of the species are considered a part of the indigenous oral flora. 

All probes are non-self-complementary and with low G-C content (checked with the program 

OLIGO). 

The oligonucleotide probe sequences are listed in Table 1. 



 

Table 1. Probe sequences (5'-3') with respective hybridization conditions. Washing buffers 

listed in Suppl., 2.5.-2.7. 

PROBES 5' - 3' T°C 

(Hyb) 

T°C 

(Wash) 

Washing 

buffer 

Actinobacillus actinomycetemcomitans (A.a.) 
TCC-ATA-AGA-CAG-ATT-C  

  

40° 

 

47° 

 

WP 0 

Tannerella forsythensis (T.f.) 
CGT-ATC-TCA-TTT-TAT-TCC-CCT-GTA  

 

54° 

 

64° 

 

WP 0 

Campylobacter rectus (C.r.) 
TTA-ACT-TAT-GTA-AAG-AAG  

 

40° 

 

40° 

 

WP 0 

Capnocytophaga ochracea (C.o.) 
TCG-GGC-TAT-CCC-CCA-GTG-AAA-GGC-AGA-T  

 

54° 

 

61° 

 

WP 2 

Eikenella corrodens (E.c.) 
AGT-TAT-CGG-CCG-CTC-GAA-TAA-CGC 

 

54° 

 

62° 

 

WP 1+2 

Fusobacterium nucleatum/F. periodonticum (F.n.) 
GCC-TCA-CAG-T(C,G)TA-GGG-ACA-ACA-T 

 

54° 

 

67° 

 

WP 1 

Fusobacterium spp. (Fuso) 
GAG-AGC-TTT-GCG-TCC-CAT-TAG 

 

54° 

 

62° 

 

WP 1 

Porphyromonas gingivalis (P.g.) 
CAA-TAC-TCG-TAT-CGC-CCG-TTA-TTC 

 

54° 

 

62° 

 

WP 1+2 

Prevotella intermedia (P.i.) 
CTT-TAC-TCC-CCA-ACA-AAA-GCA-GTT-TAC-AA 

 

54° 

 

62° 

 

WP 1 

Veillonella parvula (V.p.) 
TCT-AAC-TGT-TCG-CAA-GAA-GGC-CTT-T 

 

54° 

 

56° 

 

WP 0 

 

In order to obtain positive and negative controls for the probe optimization and evaluation, 

the reference bacterial strains were cultured and their identity was checked by sequencing 

the PCR products or by biochemical tests (Suppl., Table 1). 16S rDNA of these strains was 

amplified in the PCR and the products were dotted onto the nylon membranes which were 

further used for the optimization and evaluation of the constructed probes. 



5.2 Optimization of the hybridization conditions and evaluation of the 
oligonucleotide probes 

Membranes were initially hybridized with eubacterial probe (EUB 338) to demonstrate 

successful PCR-amplification and immobilization for all samples investigated. 

Oligonucleotide probes were able to distinguish between complementary and nearly 

complementary sequences on the basis of single mismatch achieving the expected 

specificity. However, this requires stringent hybridization conditions which often results in a 

reduction of the quantitative probe binding to the target nucleic acid (179). The intention of 

this study was to achieve an optimal balance between probe sensitivity and specificity by 

optimizing hybridization parameters, such as the washing temperature and the ionic strength 

of the washing buffer.  

Each probe was tested against a panel of PCR products isolated from 42 reference 

microorganisms common to the oral cavity or extra-oral regions (Suppl., Table 1). The 

analysis indicated that all probes (except for Fusobacterium nucleatum) were specific and did 

not cross-hybridize with closely related species. The hybridization conditions for each probe 

are listed in Table 1. 

Using the described assays the detection of target bacteria in multiple samples could be 

performed rapidly (1h DNA isolation, 4 h PCR-amplification, 5 h dot-blot hybridization, 1 h 

film exposure). 

5.3 Epidemiological study - GAP patients and healthy elderly individuals 

A total of 224 subgingival samples from 45 GAP patients and 84 samples from 21 elderly 

subjects were analyzed.  

All investigated species were detected in the subgingival plaque of GAP patients and well-

maintained elderly (for the prevalence calculation one GAP patient was excluded because of 

a missing control site). All GAP patients and elders were colonized by the members of genus 

Fusobacterium, however, F. nucleatum/F. periodonticum were detected in 91% of GAP 

patients but significantly less (57%) in elders (Fig.1). T. forsythensis occurred in 95.5% of 

GAP patients and in 85.7% of the elders showing no significant difference between both 

groups. The microorganism appears to be a common colonizer even in well-maintained 

individuals. The prevalence of P. gingivalis and P. intermedia in the GAP patients was 63.6% 

and 70.5%, respectively. In this study no significant difference was observed between the 

groups. From the GAP patients 36.4% harbored A. actinomycetemcomitans. In contrast, only 

two out of 21 elderly subjects were colonized by this species. As compared to healthy 

controls, significantly more GAP patients were colonized by E. corrodens (75%) and C. 

rectus (56.8%) than the elderly. The prevalence of V. parvula was moderate in both groups 

(GAP 25.4%, elderly 42.9%), without statistically significant difference. A highly significant 

difference (p<0.0001) was observed for C. ochracea. As much as 95.2% of the elders were 



positive, while the prevalence in GAP population was only 15.9%. The prevalence 

calculations suggest the evidence of colonization with target species in both groups (Fig.1). 
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Fig. 1 Bar chart showing the prevalence of the respective species in 44 GAP patients (one GAP 

patient was excluded because of a missing control site) and 21 elderly subjects. A patient was 

regarded positive when at least one site harbored the respective species. The significance of 

differences between the groups was calculated using the chi-square test.  

The detection frequency of the bacteria in periodontal lesions and healthy control sites of 44 

GAP patients was studied (Fig. 2). One arbitrarily chosen pocket and one control site per 

patient was included in the analysis. The patients revealed a high number of pockets 

colonized by Fusobacterium spp. (97.7%), F. nucleatum/F.p. (70.5%), T. forsythensis 

(88.6%) and P. gingivalis (59%) (Fig. 2). P. intermedia, E. corrodens and C. rectus could be 

identified in 30%-40% of the pockets. The comparison between positive pockets and control 

sites demonstrated a highly significant difference (p<0.001) for Fusobacterium spp., F. 

nucleatum, T. forsythensis and P. gingivalis. These species, as well as C. rectus and P. 

intermedia, were more frequently detected in diseased sites as compared to clinically healthy 

sites. Low detection frequencies in periodontal lesions were observed for A. 

actinomycetemcomitans (20.5%), V. parvula (6.8%) and C. ochracea (2.4%). However, all 

the investigated species (except V. parvula) could be identified in the control sites, but less 

frequently (Fig. 2).  

Colonization of sites without clinical signs of a disease is still remarkable. T. forsythensis 

could be identified in 34%, F. nucleatum in 25%, P. gingivalis and E. corrodens in 22.7%, P. 

intermedia and A. actinomycetemcomitans in 15.9% of the control sites of GAP patients (Fig. 

2). 
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Fig. 2. Percent of positive periodontal pockets and control sites in 44 GAP patients. The significance of 

differences was evaluated using the chi-square test.  

More detailed information about the differences in the prevalence of species between the two 

groups could be gained from the comparison of the number of positive pockets of GAP 

patients and positive sites of the elderly (Fig. 3). From every subject four sites were included 

(from GAP patients only pockets) into the calculations. Pronounced discrepancies were 

observed between the groups. All species, except V. parvula, were significantly more 

frequently detected in the pockets of GAP patients as compared to the elderly (Fig. 3). For 

most of the species (except P. intermedia) the difference was highly significant (p<0.0001).  

Interestingly, T. forsythensis was identified in as much as 48.8%, P. gingivalis in 32.1%, F. 

nucleatum in 25% and P. intermedia in 28.6% of the sites of elderly. The prevalence of V. 

parvula was similar in both groups (15% positive sites). In the elders E. corrodens, C. rectus 

and A. actinomycetemcomitans were detected with lowest frequency (8.3%, 9.5% and 3.6%, 

respectively). Only C. ochracea was found significantly (p<0.0001) more frequently in the 

control group (54.8% positive sites) (Fig. 3). 
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Fig. 3. Site-prevalence of the species in 45 GAP patients and 21 elderly (4 sites per subject were 

included). The significance of the differences between the groups was determined using the chi-

square test.  

The comparison of shallow sites (PD 1-3 mm) of GAP patients and the elderly revealed no 

significant difference for most of the species (Fig. 4). 
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Fig. 4. Comparison between the colonization of shallow sites (PD 1-3 mm) in 44 GAP patients and 17 

elderly. Only one site per subject could be included. The significance of differences was evaluated 

using the chi-square test.  

The exception was C. ochracea, which was more often detected in the elderly subjects 

(70.6% in elderly versus 6.8% in GAP patients). The difference was highly significant 

(p<0.0001). V. parvula could be detected more frequently from the shallow sites of the elderly 

as well (p<0.05). However, the total number of shallow sites in the control group was very 



small (n=17). As only one control site was sampled from the GAP patients only one arbitrary 

chosen site from the elderly subjects could be included in the statistics. 

Comparison of the presence of the bacteria between sites with PD 1-3 mm and pockets with 

PD 4-7 mm in the GAP patients demonstrated a significant difference for most of the species. 

Only 23 patients with available samples from every pocket depth category could be included 

in the statistics. The 4-7 mm pockets of the GAP patients were colonized significantly more 

frequently by the investigated bacteria than the control sites, with the exception for A. 

actinomycetemcomitans, C. ochracea, and V. parvula (Fig. 5). 
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Fig. 5. Bar chart of the percent of positive sites with probing depth 1-3 mm, 4-7 mm and 8-12 mm in 

GAP patients (n=23). The significance of differences was determined using the chi-square test.  

The presumption that the putative pathogens occur mostly in deep pockets of periodontitis 

patients could not be confirmed. No significant difference was observed between the number 

of deep and moderate lesions positive for any species in the GAP patients. C. ochracea was 

never detected in deep pockets (Fig. 5).  

The bacterial load in a patient was determined by the number of positive sites. In general, 

fewer sites in a patient were colonized by putative periodontal pathogens in the healthy 

elderly than in the GAP group (Fig. 6).  The data for T. forsythensis and F. nucleatum 

showed highly significant difference (p<0.0001). 
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Fig.6. The bars depict the percent of subjects with either 0, 1, 2, 3 or 4 positive sites for T. 

forsythensis, P. gingivalis, F. nucleatum, P. intermedia, E. corrodens and C. ochracea in GAP group 

(n=45) and elderly (n=21). The significance of differences between the groups were determined using 

the Mann-Whitney test.  

The load of T. forsythensis, P. gingivalis and F. nucleatum was high in the GAP patients. The 

number of patients with four positive pockets was 73.3%, 53.3% and 51.1%, respectively. 

The load of these species was significantly lower in the elderly. However, 37.7% of the GAP 

patients revealed no colonization of P. gingivalis in any sampled pocket. In comparison with 

the elderly significantly more pockets per patient in the GAP group were positive for E. 

corrodens, C. rectus and A. actinomycetemcomitans (p<0.05). Interestingly, A. 



actinomycetemcomitans occurred in all four sampled pockets in 11% of the GAP patients. 

The load of P. intermedia and V. parvula showed no significant difference between the 

groups. 

C. ochracea consistently was detectable in more than one site in the healthy subjects. The 

load of this species was significantly (p<0.0001) higher in the elderly subjects than in the 

GAP patients (Fig. 6). 

5.4 Bacterial consortia 

An attempt to investigate bacterial profiles in subgingival areas and assess how complexes 

of bacteria relate within an ecosystem was made by Socransky et al. (177). A simplified 

approach using the 2x2 contingency tables was applied in the current study to quantify 

strengths of associations between two bacterial species. Odds ratio (OR) >2 shows a 

positive and <0.5 a negative association. 

Table. 2. Odds ratios of associations among investigated species. The value 0 is the result of 

the absence of one species in any site in one group. 

 P.g. P.i. F.n. Fuso T.f. C.r. E.c. A.a. V.p. C.o. 

P.g. -- -- -- -- -- -- -- -- -- -- 

P.i. 2,7 -- -- -- -- -- -- -- -- -- 

F.n. 1,5 1 -- -- -- -- -- -- -- -- 

Fuso 12,9 14,3 -- -- -- -- -- -- -- -- 

T.f. 23,5 10,7 9,1 0 -- -- -- -- -- -- 

C.r. 2 2,3 10,5 0 35,6 -- -- -- -- -- 

E.c. 0,2 0,7 6,3 3,6 1,4 0,2 -- -- -- -- 

A.a. 0,5 0,9 2 0,8 0,6 0,8 5,8 -- -- -- 

V.p. 0,8 0,7 0 0 2,3 3,5 5,7 1,6 -- -- 

C.o. 0,4 0,5 0 0 0,3 1,5 4 2,7 8,9 -- 

 

A strong positive association exists between T. forsythensis and C. rectus (OR 35.6), P. 

gingivalis (OR 23.5) or P. intermedia (OR 10.7). Fusobacterium spp. occurred frequently 

together with P. gingivalis (OR 12.9) and P. intermedia (OR 14.3). F. nucleatum was 

observed frequently with C. rectus (OR 10.5). E. corrodens and A. actinomycetemcomitans 

occurred together relatively often (OR 5.8). 

A negative association was observed between E. corrodens and C. rectus (OR 0.2) or P. 



gingivalis (OR 0.2). 

6 Discussion 

The oral cavity presents an ecosystem where the members of the indigenous microbiota 

have no adverse effects on the host as long as the host-bacterial relationship is in balance. 

The same flora, or some members of this flora, may cause periodontal disease if the general 

resistance of the host or the local resistance of the gingival tissues is reduced. Bacteria can 

be considered the primary etiological agents in the periodontal disease process, but the 

clinical extent and severity of the disease is modified by both environmental and host risk 

factors. Most of the tissue destruction comes from the direct effect of the bacteria, together 

with the resulting inflammatory and immunological host responses. Understanding these 

interrelations between microbial activity and host response is crucial for preventive or 

therapeutic measures. A number of possible etiologically relevant pathogens have been 

suggested based upon the strength of the evidence of their association with disease, animal 

pathogenicity, and virulence factors. Attempts have been made to find etiological 

associations of certain bacterial pathogens with clinically different forms of periodontitis. A 

small subset of microorganisms has been suggested as primary etiological agents in the 

pathogenesis of aggressive periodontitis. However, the epidemiological studies have not yet 

revealed any constant correlation between the different bacteriological parameters that lead 

to a diagnosis of aggressive periodontitis (52, 180).  

The aim of the present investigation was to study the associations of the suggested 

pathogens with generalized aggressive periodontitis and the periodontal status of healthy 

elderly individuals using molecular biological methods. 

6.1 Detection methods 

A variety of methods with different sensitivity and specificity have been used to detect and 

identify microorganisms complicating the comparability of studies.  

Selective bacterial culture has been the classical method used to identify and enumerate the 

most probable number of specific microorganisms in clinical specimens. However, this 

approach is hampered by the fact that it does not accurately reflect true microbial 

populations, as many species, especially anaerobes, cannot be grown in vitro due to their 

fastidious nature or that they are unable to survive the stress of sampling, dispersion, oxygen 

exposure, or lack of suitable nutrients in the culture media (181, 182). An additional 

disadvantage of the cumbersome culturing technique is the limited number of samples and 

subjects that can be investigated. 

In earlier research an inadequate identification and taxonomy could have led to 

misinterpretation. For instance, the common term "black-pigmented Bacteroides species" 

comprises a broad category of gram-negative anaerobic rods that form black-pigmented 



colonies, only some of which are species relevant in gingivitis, periodontitis, endodontic 

infection and odontogenic abscesses (183,184). The development in phylogenetic analysis of 

16S rRNA has clarified the position of the Bacteroides subgroup and its clusters in the 

phylogenetic classification (185). The use of inaccurately identified and characterized type 

strains raises problems not only in taxonomic studies, but also for the subsequent 

identification, classification, and characterization of clinical isolates (186). 

Culture-based techniques, though not adequate, are often used as a reference against which 

other tests like nucleic acid hybridization assay, PCR amplification, or immunological 

methods are compared and validated (161, 173, 187-189). Often the culture-independent 

methods showed the presence of the bacterium, but the bacterial culture was negative (11, 

161, 164). It has been assumed that the culture-based method especially underestimates the 

presence of A. actinomycetemcomitans, P. gingivalis, and T. forsythensis (11, 161, 173, 189-

192). Conrads however, demonstrated high conformity between the bacterial culture and the 

hybridization assay for the detection of P. intermedia and P. gingivalis (193). The culture-

independent methods are definitively superior in detecting fastidious anaerobes, as well as in 

identification of cultivable bacterial strains with phenotypically divergent behaviour. 

Because of the absence of an indisputable reference standard, no definitive conclusions may 

be drawn on the capability of any given method to better reflect reality. However, the use of 

inadequate uncontrolled detection methods has often resulted in an incorrect microbiologic 

analysis.  

Immunoassays which use either species-specific polyclonal antiserum or monoclonal 

antibodies (mAb) are sensitive, and allow enumeration of bacterial cells, but need exhaustive 

microscopy. The disadvantage is that some members of a given species can be non-reactive 

with the serological agents available so far or that other bacteria express cross-reacting 

epitopes (181, 194).  

Gmür reported about the frequent detection of T. forsythensis in high numbers by 

immunofluorescence, but the culture analysis was consistently negative (195). It was 

necessary to use three mAbs for distinct epitopes of T. forsythensis in order to rule out false 

negative results (182). For P. gingivalis and P. intermedia culture scores were similar or 

lower than those obtained with the serological technique.  

Microbiology has recently entered a state of transition, changing from traditional culture-

based methods towards the identification of specific nucleic acid sequences by applying 

more sensitive nucleic acid hybridization and in vitro amplification techniques (161, 164). 

Besides culturable organisms the methods enable the detection and identification of yet 

uncultured bacteria (168). However, false positive as well as negative reactions of the 

molecular genetic methods have to be considered (187, 188, 196). On the other hand, the 

higher sensitivity of the culture-independent assays can explain the discrepancies between 



the methods (173). The specificity of the assays is obviously dependent on the accuracy and 

completeness of the database, as well as the selection of the target sequence. This seems to 

be an inherent limitation of the experimental design since probe design relies on the extent 

and the availability of bacterial DNA sequences (197). 

The polymerase chain reaction (PCR) can detect as few as 10-50 CFU/ml in a pure culture 

and has, therefore, the highest sensitivity of any microbiological method (181, 198). The 

detection limit in artificially infected subgingival plaque is approximately 102-103 CFU/ml 

(199, 200). The detection of minute amounts of bacteria with ultrasensitive methods is 

probably clinically irrelevant. Bacterial amounts below the detection level of 102 CFU/ml are 

produced by transient rather than by colonizing microorganisms (201). 

The PCR-amplification using species-specific primers has been broadly used for the 

detection of periodontal bacteria. Several targets for primer annealing have been reported, 

as for example A. actinomycetemcomitans' leukotoxin gene-directed primers (199), for P. 

gingivalis collagenase gene-directed primers (200), and for several periodontal species 16S 

rRNA gene (rDNA)-directed primers (11). False-positive results with the PCR method can not 

be excluded. Phylogenetically closely related species might have 16S rRNA genes that differ 

in only a few nucleotides and might not be distinguishable by 16S rRNA gene analysis. Also 

the conditions of PCR performance (annealing temperature, magnesium concentration) are 

crucial in order to avoid cross-reactivity (198, 199). Bacterial species not thoroughly studied 

can contain genes with some homology with the target gene. Therefore, the identity of an 

amplicon has to be confirmed by an additional detection assay, e.g. hybridization with a 

probe different from the primers or by sequencing (162). The PCR-amplification method is 

prone to contamination, possibly leading to false positive results. 

False-negative results can emerge from PCR performance failures due to inhibitors or from 

an incomplete knowledge of heterogeneity of the target genes. Molecular analysis of 16S 

rRNA genes gained from subgingival bacterial samples revealed a diversity of clones for the 

investigated species (202). Only 70% of all the analyzed sequences showed a similarity of at 

least 99% identical to investigated periodontal pathogens.  

The sequence analysis of the collagenase gene of P. gingivalis clinical isolates verified the 

genetic heterogeneity among the clinical strains (203). Furthermore, not all P. gingivalis 

strains contain the selected fragment of the collagenase gene (200). As a consequence, not 

all strains of a given species will be the targets of the detection assay. This can be of 

advantage in detecting virulent strains. However, the biological relevance still remains 

unclear.  

Nucleic acid probe assays use a piece of DNA or RNA - either a whole-genomic probe, a 

cloned probe, or a synthetic oligonucleotide probe - to hybridize to a complementary nucleic 

acid sequences in the target microorganism.  



The whole-genomic probes are widely used in the detection of periodontal species (36, 191, 

204-206). Socransky et al. introduced a checkerboard DNA-DNA hybridization assay for 

hybridizing large numbers of DNA samples with multiple whole-genomic DNA probes on a 

single support membrane (207). This method requires sophisticated laboratory equipment 

and expertise. The disadvantage of genomic probes is the cross-reactivity of 1%, as well as 

their undefined composition from pooling the probes (193, 205). The simultaneous use of 

multiple (up to 45) probes under identical hybridization conditions in the checkerboard DNA-

DNA hybridization assay leads to doubts about the accuracy of its performance. The 

sensitivity of the assay is not high, 103-104 bacterial cells are necessary for a positive 

identification (207). 

In 1988 Chuba, Göbel et al. introduced the 16S rRNA-directed oligonucleotide probes, to 

detect P. gingivalis, P. intermedia II, P. assacharolytica, and A. actinomycetemcomitans 

(208). The specificity of the probes was 100% and the detection limit using isotopical labeling 

was less than 5x103 organisms. Dix, Moncla et al. developed species-specific 16S rRNA-

directed oligonucleotide probes for further periodontal species and demonstrated their higher 

specificity and sensitivity upon the genomic probes (209). The oligonucleotide probes are 

able to distinguish between closely related species which contain homologous sequences, 

for example, H. aphrophilus and A. actinomycetemcomitans. The whole-genomic probes 

failed to differentiate between these species (209). An additional advantage is the high 

detection sensitivity because the number of rRNA target molecules is larger, being at least 

100 times greater than that of bacterial DNA targets (210). However, the isolation of nucleic 

acids plays a crucial role for maximum sensitivity of the DNA/RNA hybridization procedure 

(211). The oligonucleotide probes are suitable for specific detection of bacterial species in 

highly heterogeneous plaque samples. The short oligonucleotide probes complementary to 

hypervariable regions of 16S rRNA have been used frequently (172, 173, 176, 212-214).   

The culture - independent molecular genetic method used in the present study was based 

upon the combination of PCR-amplification and dot-blot hybridization with species-specific 

16S rDNA-directed oligonucleotide probes. The PCR-amplification was performed within the 

conserved region of 16S rDNA of bacterial cells using eubacterial primers. The amplification 

step increases the sensitivity of the detection method over the conventional nucleic acid 

hybridization.  

The issue of heterogeneity within a species was considered by the design of the probes. The 

appropriate target sequence had to have 100% homology to the sequences of all strains of a 

species deposited in a database (as of July 2002). Thorough control was considered crucial 

to ensure the quality of the hybridization results. Therefore, all probes were checked in dot-

blot hybridization against a wide range of possible cross-reacting strains. 

Only the probe for F. nucleatum additionally detected a related species, F. periodonticum. 

This was also reported by Dix et al. (209) and Socransky et al. (215). Sequence homology of 



16S rRNA between these two species is exceedingly high, 97.3% - 99.5% (178). F. 

periodonticum has been detected infrequently in periodontitis patients and healthy 

individuals, thus the role of that species is unclear (34, 216). 

With the described method it is possible to investigate large numbers of samples in a 

reasonable time. This allows comprehensive epidemiological studies of the subgingival 

microbiota in subjects with different clinical status. The methods used in the present study 

represent qualitative data. No quantification attempt has been undertaken. 

In several studies the quantitative detection of microorganisms has been performed. 

However, quantification in fact proves nothing more than the mere presence of a 

microorganism. It is obvious that the mean numbers of bacteria increase as the pocket depth 

progresses. Therefore, it is more informative to know the proportion of the target species in a 

total bacterial mass. It has long been known that there is a shift in the proportions of 

microorganisms in the flora as a site progresses from a healthy to a diseased state (217). 

The culture-based method and immunoassays are not adequate for the proportional 

estimation. The competitive PCR method has been used for  the quantification, however the 

amplification distorts the endpoint proportions of amplicons of target species (218). The 

recently developed real-time PCR assay has overcome the so-called "plateauing effect" by 

measuring the PCR-products throughout the reaction (165). Simultaneous PCR-amplification 

and hybridization by this method allows quantification of a single species and total number of 

bacterial cells in a sample using specific controls of known quantity. However, the exact copy 

number of 16S rRNA operons within each cell of the numerous species of oral bacteria has 

not been clarified and doubling time varies among bacterial species. This represents the 

major limitation to the absolute determination of bacterial numbers by real-time PCR based 

on the 16S rRNA gene sequence (197, 219). The requirement of expensive and 

sophisticated technology besides mentioned shortcomings in accuracy limits the application 

of this method as a routine clinical diagnostic tool. 

Generally, the evaluation of quantitative aspects is complicated by the fact that amounts of 

bacteria depend on the method of sampling, the number of samples taken in a subject, the 

site selection criteria, the method used to calculate counts based on sampling volumes and 

sample dilution, and the way mean counts are determined (physical vs. mathematical pooling 

of multiple samples) (52).  

Although different methods have been applied for the detection and quantification of 

periodontal bacteria in microbiological diagnosis, there is no single assay that has 

demonstrated ideal characteristics.  

Nevertheless, besides methodological differences, the study design i.e. site selection, and 

the number of samples taken in a subject, influences the microbiological results of the study 

(52). 



6.2 Epidemiological study 

6.2.1 Tannerella forsythensis 

Initially, Tannerella forsythensis was thought to be a relatively uncommon subgingival 

species. The studies of Gmür et al. using monoclonal antibodies to enumerate the species 

directly in plaque samples suggested that the species was more common than previously 

found in culture-based studies (182). According to the extensive literature bacterial culture is 

considered inadequate for the detection of T. forsythensis (161, 192). Therefore, studies 

using this method will not be discussed here.  

Recently, 16S rDNA sequence analysis confirmed that T. forsythensis (formerly Bacteroides 

forsythus) was not a species within the genus Bacteroides sensu stricto. A new genus, 

Tannerella, was proposed for B. forsythus, with one species, Tannerella forsythensis (220). 

Interestingly, the nearest genetic neighbour, oral clone BU063, has been associated with oral 

health (221). The oligonucleotide probe used in the present study is not complementary with 

that clone. It is conceivable that earlier studies mistakenly pooled several strains of T. 

forsythensis with different pathogenic potentials.  

In the current study T. forsythensis was one of the species with a high prevalence (96%) in 

patients with generalized aggressive periodontitis (Fig.1). Additionally, the patients showed 

high load of T. forsythensis, i.e. 73.3% of patients had all pockets sampled positive for this 

species (Fig.6). T. forsythensis could be detected significantly more often in periodontal 

pockets than in healthy control sites (88.6% and 34.1% respectively) (Fig.2). However, no 

significant differences in detection frequency between different pocket depths could be seen 

(Fig. 5). Gmür et al. using a quantitative approach could demonstrate that the levels of T. 

forsythensis were strongly related to increasing pocket depth (182). Young patients with 

aggressive periodontitis studied by Kamma et al. (170) revealed a similarly high prevalence 

of T. forsythensis (98.5%). In that investigation indirect immunofluorescence assay was 

used. The site prevalence (83% positive pockets) was in good agreement with our study. 

However, no control sites were sampled. 

In young adults with advanced periodontitis a high prevalence of T. forsythensis (60-70%) 

has been reported by using DNA probe approach (191, 206, 212). Similar results were 

obtained with a PCR-assay (11, 14). 

Studies with the aim of correlating clinical parameters and the presence of certain bacterial 

species concluded that T. forsythensis was positively correlated with the clinical signs of a 

disease and can be regarded as a risk indicator for attachment and bone loss (145, 146, 

222). Persistence of T. forsythensis post-therapy and the subsequent deterioration of 

periodontal conditions suggests evidence for the species association with recurrent 

periodontitis (156). It has been shown that with the reduction of T. forsythensis below the 

detectable level clinical improvement was significant (151). However, clinical improvement is 



never a consequence of a reduction / elimination of single species. 

Choi et al. used a detection method similar to our study for the evaluation of the prevalence 

of T. forsythensis in patients with chronic periodontitis and in healthy persons (176). High 

prevalence (96.6%) was reported in chronic periodontitis patients. The prevalence was 

significantly lower in healthy persons. However, the comparison between the groups is 

unreliable because of incorrect statistics. 

More sensitive microbiological tests have been of advantage for detecting T. forsythensis in 

healthy subjects. The current study particularly identifies T. forsythensis as a much more 

frequent member of the microflora of healthy sites than previously suspected on the basis of 

culture investigations. This contradicts the hypothesis that the mere presence of T. 

forsythensis may be taken as an indicator of active periodontal breakdown. T. forsythensis 

could be detected in 85.7% of the elderly (Fig.1). Almost half of the sampled sites in this 

patient group were positive (Fig.3). It has been reported that the colonization of supragingival 

plaque of healthy subjects, even in early childhood, is frequent (34, 35, 223-226). These data 

suggest the indigenous nature of T. forsythensis. However, in special periodontal / host 

conditions or specific proportional bacterial constellations T. forsythensis can induce 

periodontal breakdown. The presence of putative pathogens increases the risk of disease 

development. The presence of T. forsythensis has been especially correlated with 

attachment loss, increasing the risk by a factor of 2.45 - 5.3 (36, 145, 227). Even 8.16 times 

greater odds of attachment loss by presence of T. forsythensis has been reported in a 

longitudinal study (222). A significant increase in the proportions of T. forsythensis has been 

observed in sites with periodontal breakdown (182). 

Little information is available on the virulence of T. forsythensis. Beside the LPS and the 

production of a trypsine-like protease (228) its ability to penetrate host cells and to induce 

apoptosis has received attention (84, 229). Recently, a cysteine protease gene (prtH) has 

been identified (226). It was shown that 85% of T. forsythensis isolates from diseased sites 

revealed a prtH genotype, however only 10% of such strains could be detected in healthy 

sites. There is a need for more comprehensive research of the virulence and taxonomic 

variability of T. forsythensis.  

The evidence for associating T. forsythensis with severe periodontal disease has mainly 

been based on epidemiological data and evaluation of the correlation between the presence 

of the species and clinical conditions.  

The data of the present study support the evidence of T. forsythensis being a 

periodontopathogen. The species was significantly more frequently detected in periodontal 

pockets than in control sites of GAP patients (Fig. 2). Also, the significantly higher prevalence 

and load of T. forsythensis in GAP patients than in healthy elders (Fig. 3, 6) indicates its 

strong association with aggressive periodontitis in young adults. 



6.2.2 Porphyromonas gingivalis 

Porphyromonas gingivalis is the most intensively investigated periodontal species. It has 

frequently been associated with severe periodontitis (10, 15, 31, 167, 230). The culture-

based approach can be considered adequate for the detection of P. gingivalis, as was shown 

by Conrads through comparative analysis using DNA hybridization (193). 

The prevalence of P. gingivalis in the generalized aggressive periodontitis group was high, 

63.6% in the present study (Fig.1). Interestingly, most of these positive subjects showed 

colonization with P. gingivalis in all sampled pockets (Fig.6). The species was significantly 

more frequently detected in periodontal pockets than in control sites (59.1% and 22.7%, 

respectively) (Fig. 2). The site-prevalence was significantly lower in the elderly group than in 

the GAP population (Fig.3). Porphyromonas gingivalis could hence be associated with the 

development of aggressive periodontitis.  

Loesche et al. recovered high proportions of P. gingivalis along with high proportions of 

spirochetes from one EOP patient group, so-called "type B" patients (13). This group 

resembles the GAP entity as derived from clinical descriptions. These patients had 

significantly higher proportions of P. gingivalis than in four other patient categories. Also 

Alabandar et al. associated P. gingivalis and Treponema denticola with more severe and 

progressive forms of EOP (230). Kamma et al. recovered more frequent and significantly 

higher proportions of P. gingivalis from deeper periodontal pockets as compared to shallow 

sites in RPP patients (15). Her recently published data obtained by using indirect 

immunofluorescence technique revealed higher detection frequency of P. gingivalis in 

aggressive periodontitis group than the results of our study (170). The subject prevalence 

was as high as 89.4%, and 80% of the sampled pockets were positive for P. gingivalis.  

P. gingivalis has also been strongly associated with chronic periodontitis (176, 231, 232) and 

recurrent periodontitis (142). Several investigators have found a significant correlation 

between proportions of P. gingivalis and attachment loss (39, 137, 182, 233).  

Contradictory data exists on the presence of P. gingivalis in healthy periodontal conditions. In 

the current study, a relatively high prevalence (62%) was observed in the elderly with no 

significant difference to the periodontitis group (Fig.1). However, only 32% of the sampled 

sites of elderly were positive (Fig. 3), showing infrequent colonization of P. gingivalis in the 

control group. The difference to the periodontitis group was highly significant (p<0.0001). The 

species was rarely found in shallow sites (Fig.4).  

Healthy persons investigated by Tanner et al. were not colonized by P. gingivalis (36). This 

was proven by bacterial culture and checkerboard hybridization methods. Healthy subjects 

and the elderly investigated by Haffajee et al. showed very low site-prevalence of P. 

gingivalis (4% and 5% respectively) (34). Absence of P. gingivalis in pre-school children and 

students confirmed by PCR assay demonstrates that this bacterium is usually not part of the 



resident oral flora in young healthy people (201, 224). Other authors have found a 

prevalence of 10-30% in older healthy subjects (232, 234). It raises the question whether 

these individuals may carry different, possibly less-virulent strains of P. gingivalis, or does 

the host response determine the outcome? 

There is extensive evidence of the pathogenic nature of P. gingivalis (s. 1.2.6.). However, it 

is complicated to prove the relevance of the reported virulence factors in vivo. Additionally, it 

has been proven that virulence varies among strains. P. gingivalis is able to invade human 

gingival epithelial cells in vitro (76). In a mouse model different strains of P. gingivalis 

exhibited varying levels of invasiveness (235). Proteolytic enzymes have been suggested as 

a possible virulence factor. However, no differences in proteolytic enzyme production 

between invasive and non-invasive strains could be demonstrated (236). 

As yet it is unknown which virulence factor correlates with more virulent P. gingivalis strain. 

In animal studies, strains W 50 or W 83 were highly virulent. Various strain-typing 

approaches (RFLP, ribotyping, serotyping, multilocus enzyme electrophoresis) have been 

used to identify highly virulent genotypes and to correlate them with disease. As yet, there is 

still no convincing evidence to associate specific genetic clone clusters with periodontal 

disease and hence numerous P. gingivalis genotypes were associated with disease (234, 

237). Several studies confirm that patients are usually colonized by a single, unique 

genotype, present in sites with different clinical status. (237, 238). Healthy subjects were 

likely to harbour several strains (234).  

Obviously, there are various virulence factors of P. gingivalis playing a role in the 

etiopathogenesis of periodontitis. Therefore, an attempt of epidemiological studies to detect 

virulent P. gingivalis strains by targeting only one suspected virulence gene is questionable. 

Currently it is not possible to associate any genotype with aggressive periodontal disease. P. 

gingivalis can hence be regarded as an opportunistic pathogen. This evidence is supported 

by the low prevalence of P. gingivalis in healthy adults. Under suitable yet unknown 

environmental / host conditions certain strains of P. gingivalis can multiply and express 

virulence factors inducing disease development. Frequent detection of P. gingivalis together 

with T. forsythensis in active/deep periodontal pockets supports the evidence that certain 

consortia are of particular importance in progressive disease. The present epidemiological 

data have confirmed a strong association of T. forsythensis and P. gingivalis with generalized 

aggressive periodontitis. 

6.2.3 Actinobacillus actinomycetemcomitans 

Actinobacillus actinomycetemcomitans is considered to be of major etiologic relevance in the 

localized form of aggressive periodontitis (LAP) (14, 26, 49, 50, 239). The role of A. 

actinomycetemcomitans in generalized aggressive periodontitis is still unclear. The study 

presented here showed a low prevalence of this species (36.4%) in GAP patients (Fig.1). 



However, in 11% of the patients A. actinomycetemcomitans was present in all sampled 

pockets (data not shown). Generally, the species was evenly distributed in periodontal 

pockets and shallow sites (Fig.2). There is no preferential niche in diseased sites (Fig.5). In 

patients with a high load of A. actinomycetemcomitans the species can play an important role 

(240). It cannot be ruled out that some of the GAP patients previously had the localized form 

of aggressive periodontitis. 

Kamma et al. (170) found a low prevalence (25%) of A. actinomycetemcomitans in patients 

with aggressive periodontitis, similarly to our results. Tanner et al. detected high proportions 

of A. actinomycetemcomitans in young adults with advanced disease (241). Older subjects 

with advanced disease did not harbour this organism. Similarly, older GAP patients 

investigated by Loesche et al. were negative for A. actinomycetemcomitans (13). Slots et al. 

observed that the prevalence of A. actinomycetemcomitans decreased significantly with age. 

The authors reported that 74.4% of the 15-24 year-age group were colonized by the 

microorganism compared to 38.7% of those 25-34 years of age (242).  

Van Winkelhoff et al. observed a negative association between A. actinomycetemcomitans 

and Fusobacterium spp. in subgingival plaque (243). The authors followed LJP patients and 

found that A. actinomycetemcomitans was not recovered after these patients reached 

middle-age and developed more widespread periodontal breakdown. It may be that 

fusobacteria possess the capability to inhibit the colonization of A. actinomycetemcomitans 

as the genus Fusobacterium emerges as a prominent taxon of generalized EOP (243). 

Similarly, in the study presented here Fusobacterium spp. showed a high site-prevalence 

(96.7%) and negative association with A. actinomycetemcomitans  (Table 2).  

There are, however, studies demonstrating a low prevalence of A. actinomycetemcomitans 

even in LJP patients (13, 244). Obviously, A. actinomycetemcomitans plays an important role 

in some cases of localized and generalized forms of aggressive periodontitis. The evidence 

of this association can be traced back to the virulence of the species, epidemiological data 

and correlation with improvement after treatment. 

Single clones of exceedingly high virulence may be implicated in etiopathogenesis of 

periodontitis. A. actinomycetemcomitans strains differ in their ability to produce leukotoxin. 

This exotoxin lyses polymorphonuclear leukocytes and macrophages (106). Highly leukotoxic 

strains produce 10-20 times more leukotoxin than other strains (245). Bueno et al. found that 

subjects harbouring A. actinomycetemcomitans with a 530-bp deletion in the leukotoxin 

promoter region were more likely to convert to LJP than subjects who had A.a.-variants 

containing the full-length leukotoxin promoter region (246). In addition to the predominant 

colonization of A. actinomycetemcomitans in younger patients, it has been observed that 

very young patients (mean age 12.7 y.) harboured highly toxic strains (245). Young adults 

(mean age 25.5 y.) were colonized by minimal toxic strains. However, since the strains 

without the 530-bp deletion have been recovered from LJP lesions as well (245), high 



leukotoxin production may not be a prerequisite for pathogenicity. No epidemiological study 

looking of the distribution of highly virulent strains has been performed with GAP patients. 

A. actinomycetemcomitans strains also vary in their capability to invade epithelial cells (247). 

The failure of non-surgical therapy to effectively control A. actinomycetemcomitans from 

subgingival sites may stem from the ability of the organism to invade gingival tissue and 

thereby evade the effect of mechanical debridement and periodontal healing (248). 

Investigation of biofilm formation in a plaque-free-zone of the bottom of a pocket 

demonstrated no participation of A. actinomycetemcomitans (46). 

Studies evaluating the correlation between treatment outcome and the presence of bacteria 

in LJP and "severe periodontitis" found a clear association between the improvement of 

periodontal conditions and the elimination of A. actinomycetemcomitans (249, 250). The 

failure to eliminate the combination of A. actinomycetemcomitans and T. forsythensis 

resulted in attachment loss (151). These microorganisms have been detected frequently in 

refractory periodontal lesions (231). An exceedingly high proportion of subgingival A. 

actinomycetemcomitans in periodontal sites undergoing active breakdown gives substantial 

credence to the notion of it being a key bacterial pathogen in certain cases of LJP (231). In 

chronic periodontitis patients the microorganism was not found to be related to an increased 

risk of disease recurrence (137). 

Healthy elderly individuals in our study showed a very low prevalence (9.5%) of A. 

actinomycetemcomitans (Fig.1, 3), demonstrating that the species is not a common colonizer 

in healthy periodontal conditions. This is in agreement with other reports about healthy 

individuals (34, 176, 231). Healthy children were shown to be negative for A. 

actinomycetemcomitans by PCR (201, 251). Even patients with chronic periodontitis are 

seldom colonized with this species (34, 192). Gmür et al. studied dental hygienists and 

observed a prevalence of 33% in supragingival plaque in spite of their better than average 

personal plaque control. However, the detected cell numbers were <1% of the sampled 

microbiota (35). A. actinomycetemcomitans has also been found in tongue and saliva 

samples, even without subgingival colonization (252). 

The strains identified in healthy subjects or patients with chronic periodontitis were shown to 

be minimal leukotoxic strains(245).  

Chronic periodontitis patients investigated within the comprehensive epidemiological study 

with the identical methods described here showed a site-prevalence of only 7% (Dr. Moter, 

personal communication). Interestingly, Choi et al. could detect this organism in almost 90% 

of chronic periodontitis patients in a Korean population using a similar detection method 

(176). The high prevalence can be explained by ethnic, immunological, nutritional factors. 

Apparently, A. actinomycetemcomitans (probably special strains) can be regarded as 

etiologically relevant in aggressive periodontal disease in young adults, however, the 

evidence is not as strong as for the localized form (14, 230, 239, 240, 253). 



6.2.4 Campylobacter rectus 

Campylobacter rectus could be detected in more than half of the GAP patients; however, 

only 31.8% of the pockets were positive (Fig.1,2). Still a significant difference was observed 

in the colonization pattern of periodontal pockets and control sites in the study population 

(Fig. 2). When compared to the occurrence in the healthy elderly group a highly significant 

difference could be seen in site-prevalence (Fig. 3). The species could be rarely detected in 

healthy population (prevalence 23.8%) (Fig.1).  

High levels of C. rectus, especially when found together with T. forsythensis have been 

related to an increased risk of disease progression (31, 33, 36, 39, 137, 138, 254). The 

highest association among all organisms in the current study was observed for these two 

species (Table 2).  

Kamma et al. recovered C. rectus exclusively in the deep pockets of GAP patients (15). The 

microorganism has been seen predominately in the middle and deep pocket zones forming 

large clumps when examined by scanning immunoelectron microscopy (46). C. rectus may 

advance to the most apical border of plaque area by the use of its motility and associate with 

biofilm formation in the plaque-free-zone and with disease progression.  

The high prevalence of C. rectus in aggressive periodontitis patients has been reported in the 

literature in contrast to low detection in healthy populations (14, 15, 30, 170, 255). The data 

of Gmür et al. confirm that supragingival plaque is a natural habitat for C. rectus in 

periodontally healthy persons with good oral hygiene (35, 225). The species could be 

identified in 48% of the investigated subjects using an immunoassay. Between the elderly 

and the healthy control group no difference was seen (34). C. rectus was identified in less 

than 20% of the subgingival samples. The site-prevalence was not higher in patients with 

chronic periodontitis (19.3%) (Dr. Moter, personal communication). 

Patients with aggressive periodontitis showed significantly higher and more frequent 

elevation of serum IgG antibody to this organism as compared to chronic periodontitis 

patients or healthy controls (256).  

C. rectus may be considered as a putative pathogen that occasionally, probably in 

constellation with T. forsythensis, contributes to the development of aggressive periodontitis. 

It may need to exceed relatively high critical threshold values in the subgingival flora to lead 

to a progression of the disease (257). 

6.2.5 Fusobacterium nucleatum 

According to the literature Fusobacterium nucleatum is the most commonly isolated 

organism in subgingival samples, especially in deep periodontal pockets. It has often been 

recovered in high proportions in different patient groups (10, 31, 33, 241). 

The data of the present study suggest a strong association of F. nucleatum with GAP. The 

species was present in 91% of the GAP patients (Fig.1) and significantly more frequently in 



periodontal pockets than in shallow sites (Fig. 2). All 4 sampled pockets were positive for this 

organism in half of the patients (Fig.6). The load in the elderly subjects was significantly 

lower. The site-prevalence in the elderly was only 25% (Fig. 3). Haffajee et al. in contrast, 

identified F. nucleatum ss. polymorphum in 58% of the sites of the elderly subjects using 

checkerboard hybridization method (34). 

It is however, difficult to interpret the role of F. nucleatum from our data, as the probe 

simultaneously detected F. periodonticum. There are reports of F. periodonticum being a 

frequent colonizer of the supra- and subgingival plaque of healthy individuals and 

periodontitis patients (30).  

Furthermore, the phenotypic and genetic heterogeneity of F. nucleatum has led to an attempt 

to classify the strains into taxonomically relevant groups, such as subspecies, but these 

efforts have not resulted in a widely accepted taxonomy (258). Within the species F. 

nucleatum, a number of investigators have identified a range of distinct genetic clusters 

which have subsequently been designated as subspecies. Unfortunately the results often do 

not correlate with each other. Morris et al. could demonstrate that the species F. nucleatum 

consists of at least three distinct species (186). There is a need for revision of the previously 

designated genetic divisions as well as phenotypic characterization of F. nucleatum and 

genus Fusobacterium as a whole.  

Therefore, no differentiation between the subspecies was undertaken in the present study. 

Loesche et al. did not associate F. nucleatum with GEOP, because the species formed only 

ca. 3% of the total bacterial count (13). In the study of Kamma et al. F. nucleatum was 

detected most often in the medium and deep lesions of GAP patients (15). Chronic 

periodontitis patients exhibited high prevalence of F. nucleatum (204). A prevalence of 81.3% 

was observed in the reported epidemiological study (Dr. Moter, personal communication). 

The adherence factors of F. nucleatum have been attributed to the potential pathogenicity of 

certain strains, however, no correlation could be established between any particular 

subspecies (259). F. nucleatum could not be detected in the plaque-free zone at the bottom 

of periodontal pockets suggesting that this microorganism does not primarily participate in 

the apical progression of plaque (46). The species was usually located in the middle and 

deep pocket zones in an unattached plaque area. 

F. nucleatum has been implicated in disease progression, as significantly higher proportions 

were detected in active lesions than in inactive sites (39, 140). 

Our data provide evidence that F. nucleatum might be associated with aggressive 

periodontitis. The species is only infrequently detected in healthy subjects (Fig.1, 3). 

6.2.6 Prevotella intermedia 

Contradictory reports exist about Prevotella intermedia. This microorganism has been found 

in high proportions in adults with moderate to severe periodontal breakdown and in EOP 



patients (13, 183). At the same time, a high prevalence has been reported in treated and 

maintained patients, in some of them in high proportions (13). Colonization of P. intermedia  

in children has also been observed (201, 224). 

Recently, strains of Bacteroides intermedius with similar phenotypic traits have been 

classified into two species, Prevotella intermedia and Prevotella nigrescens. This distinction 

makes earlier studies on these organisms difficult to interpret, since data from two different 

species may have been inadvertently pooled (260). It has been reported that P. intermedia is 

associated with periodontitis, whereas P. nigrescens is a natural inhabitant of the gingival 

sulcus and the supragingival plaque (35, 40, 201, 261). 

In the present study no clear association for P. intermedia with GAP or periodontal health 

was found. There was no significant difference in subject-based prevalence and load of P. 

intermedia between the groups (Fig.1, 6). The species was more often detected in the 

pockets of GAP patients than in the control sites (Fig. 2), and when compared to the positive 

sites of elderly (Fig. 3). The difference however, was always only moderately significant 

(p<0.05).  

Mullally et al. (14) associated P. intermedia with GEOP because of its high prevalence 

(58.8%), which is lower than in our study. However, no control group was included in the 

study, reducing the relevance of the results.  

Kamma et al. (15) found no difference in the detection frequency of P. intermedia between 

shallow sites and deep pockets, however, the proportions were significantly higher in deep 

pockets. 

Earlier studies using unreliable "predominant cultivable microbiota" method recovered higher 

proportions of P. intermedia in active sites when compared to inactive sites, however, without 

significant difference (39).  

Concerning the probable differences in virulence of P. intermedia clones no correlation could 

be found since the same genotypes were found at both diseased and non-diseased sites 

(237). 

Choi et al. reported a high prevalence of P. intermedia (90%) in patients with chronic 

periodontitis and significantly lower in healthy subjects (only 5%) in a Korean population 

(176).  

The data of the elderly group in our study revealed frequent detection of the species in well-

maintained subjects (prevalence 66.7%) (Fig.1) incriminating P. intermedia as a common 

colonizer of the oral cavity in healthy oral conditions. Conrads et al. (201) found P. intermedia 

very frequently in plaque samples from children with PCR detection assay.  

However, contradictory results have been gained. Molecular genetic analysis revealed no 

significant difference in site-prevalence between healthy, elderly and chronic periodontitis 

groups (34). Interestingly, despite more frequent supra- and subgingival colonization of P. 

intermedia in periodontitis patients than in healthy persons, the quantitative assessment 



showed no significant difference in proportions (30).  

Although in some studies the etiologic role of P. intermedia in periodontitis was considered to 

be high (11, 13, 30, 230), a relatively low risk (1.6) for periodontal breakdown in the presence 

of P. intermedia has been reported (48). It seems that higher mean counts of P. intermedia 

than for P. gingivalis are needed for the progression of the disease. Rams et al. assessed 

the relative risk for periodontal breakdown with respect to the proportions of certain species 

and found that much higher proportions of P. intermedia are needed to reach a 2.5 relative 

risk for periodontitis recurrence when compared to other putative pathogens (233). Analysis 

of the humoral host response against P. intermedia has shown similar antibody levels in 

individuals with and without periodontal disease (262). This lack of association with 

periodontal disease could be explained in part by the frequent colonization of P. intermedia in 

locations other than periodontal pockets (183). 

It is difficult to evaluate the role of P. intermedia given the variable and contradictory 

literature. Our data incriminates this organism as one of moderate importance in GAP 

patients, but it is obviously not a key putative pathogen. The majority of data implicates P. 

intermedia as a common part of oral microflora in healthy persons. According to the literature 

an increase of its proportions is considered critical in etiopathogenesis of periodontal 

disease. 

6.2.7 Eikenella corrodens 

Since Eikenella corrodens has been suggested in earlier research as a pathogen because of 

its assotiation with initiation and progression of the disease in juvenile and refractory cases 

(49, 241, 263, 264), it was of interest to compare its distribution in GAP patients and the 

elderly. E. corrodens was more frequently identified in GAP patients than in elderly subjects 

(Fig.1, 3, 6). In the majority of the elderly only one sampled site was positive for E. corrodens 

(Fig.6). Interestingly, no significant difference was found between the number of colonized 

pockets and control sites in the diseased group (Fig.2). E. corrodens tends to colonize GAP 

patients, probably when the environmental conditions become favorable. It is questionable 

whether it plays a role in disease progression. 

The results are consistent with the data of Kamma et al. who could not find significant 

qualitative and quantitative difference between colonization of deep pockets and shallow 

sites by E. corrodens in RPP patients either (15). Albandar et al. detected this species in 

91% of EOP patients and in 89% of subjects without disease (230). Similar relations between 

chronic periodontitis and health has been observed frequently (11, 34, 36). The level of this 

bacterium seems to be independent of disease classification or the rate of progression. 

In conclusion, E. corrodens is a commensal species that does not play a significant role as a 

primary opportunistic periodontal pathogen. 



6.2.8 Veillonella parvula 

Veillonella parvula was an infrequently detected species in the GAP and elderly groups, with 

a prevalence of 25% and 43%, respectively (Fig. 1). No significant difference in detection 

frequency between the two groups (Fig. 1, 3) or between diseased and healthy sites in 

periodontitis patients could be demonstrated (Fig. 2, 5). This is in accord with the results of 

Kamma et al. that revealed a similar presence of this bacterium in shallow and deep sites 

(53% and 33%, respectively) of RPP patients, however, as comparison to our study with a 

much higher site-prevalence (15). 

Studies of experimental gingivitis included V. parvula in the group of species which increased 

in proportion as inflammation developed (23). However, a majority of publications show only 

a weak association between periodontitis and this microorganism (39, 140). V. parvula 

together with E. corrodens and Capnocytophaga spp. was shown to be a common member 

of microbiota in subgingival sites of diseased and healthy subjects and was detected in 

similar proportions in both groups (36, 217). V. parvula has been detected more frequently in 

inactive sites when compared to active sites (39, 137, 140). Haffajee et al. showed the site-

prevalence of V. parvula in the elderly (60%) being higher than in the younger healthy group 

(48%), however without significant difference (34). Low detection frequency of the species in 

our study raises the question of the accuracy of the performed identification. Low sensitivity 

of the oligonucleotide probe cannot be ruled out.  

Results of our study suggest that V. parvula should not be regarded as an adequate marker 

of healthy flora. 

6.2.9 Capnocytophaga ochracea 

The prevalence of Capnocytophaga ochracea in the GAP patients of the current study was 

distinctly lower (16%) than of the elderly (95%) (Fig. 1). As few as 3% of the pockets of the 

GAP subjects were positive, in contrast 55% of the sites of the elderly demonstrated 

colonization by C. ochracea (Fig. 3). The differences were highly significant. Even the 

shallow sites of GAP patients were rarely colonized, while 70% of the 1-3 mm sites of the 

elderly were positive (Fig. 4). Interestingly, patients with aggressive periodontitis exhibited 

seldom C. ochracea in subgingival plaque. 

Frequent detection of C. ochracea in gingival sulci of children by Conrads et al. was 

interpreted as a physiological condition (201). 

Increased levels of the species appeared to be consistent with a decreasing risk of new 

attachment loss. Similarly lower levels were found prior to breakdown (36, 137, 140, 265). 

In several studies, contradictory to our results, C. ochracea tends to be a common colonizer 

in bacterial plaque regardless of whether the samples were obtained from supra-or 

subgingival plaque of diseased or healthy subjects, from active or inactive sites (15, 30, 34, 

39). In some medical case reports C. ochracea has been made responsible for endocarditis 



and cervical abscess (266). Tanner et al. in earlier research has associated C. ochracea with 

juvenile periodontitis as high proportions of the species were recovered from diseased sites 

in young adults (241). Our data clearly confirm the association of C. ochracea with 

periodontal health. The use of this species may be a good indicator for periodontal health. 

6.2.10 Colonization of healthy sites 

The comparison of the microflora of shallow sites from GAP patients with the flora from 

subjects with healthy periodontium can give valuable information as to whether 

microorganisms originate from the adjacent pockets as a consequence of a "spill over", or 

belong to the resident microflora. Both hypotheses are presented in literature (267). Riviere 

et al. tested the hypothesis that certain bacteria at healthy sites would be detected more 

frequently in subjects with periodontitis than in subjects without periodontitis (255). Using an 

immunological assay he could show statistically significant differences only for P. gingivalis 

and Treponema spp. The data reported by Ximenez-Fyvie et al. support Riviere's hypothesis 

(30). The authors obtained quantitative data using checkerboard hybridization with whole-

genomic probes. Higher mean counts of periodontitis-associated bacteria were observed in 

shallow sites of periodontitis patients when compared to healthy subjects. Similarly Haffajee 

et al. using the same detection method showed that T. forsythensis, P. gingivalis, T. 

denticola and Selenomonas noxia were found more frequently, and at higher levels, in 

shallow pockets of periodontitis subjects than at similar sites in the healthy group (34). The 

data of the present study contradicts this hypothesis. We found no significant difference 

between the groups for any species, except for C. ochracea, in colonization of shallow sites 

(Fig. 4). The results suggest rather that the putative periodontopathogens belong to a 

resident flora. Thus, the mere presence of a putative pathogen has limited value as an 

adjunct to clinical diagnosis and treatment planning. However, the risk that the disease may 

occur at these sites is highly dependent on the host, as well as the variation in bacterial 

virulence. 

6.2.11 Bacterial consortia 

"Profiles" of microbial complexes have been recognized upon clustering of the detected 

species from distinct clinical conditions (140, 177). A high degree of association between 

organisms may indicate a symbiotic relationship in periodontal pockets. A pathogen may 

more readily colonize subgingival sites already occupied by other organisms, due to gingival 

inflammation or growth factors produced by other organisms. However, some organisms may 

occur together in periodontitis lesions merely because they both induce destructive disease 

without interacting with each other. Putative pathogens acting together may produce additive 

or even synergistic damage to the periodontal tissues. Therefore a therapeutic regimen 

leading to concomitant suppression or elimination of symbiotic microorganims may achieve 

particularly great clinical benefits.  



The definition of five subgingival plaque bacterial complexes by Socransky et al. (215) was 

based on the analysis of the microbial community of over 13,000 plaque samples from 185 

subjects (EOP patients excluded) by using whole-genomic DNA probes in checkerboard 

hybridization assays. 5 clusters were formed:  

1. Red cluster - P. gingivalis, T. forsythensis, T. denticola 

2. Orange cluster - F. nucleatum, P. intermedia, P. nigrescens, Peptostreptococcus micros, 

Campylobacter spp., E. nodatum, S. constellatus 

3. Green cluster - Capnocytophaga spp., Campylobacter concisus, Eikenella corrodens, A. 

actinomycetemcomitans serotype a 

4. Yellow cluster - Streptococcus spp. 

5. Purple cluster - Actinomyces odontolyticus, Veillonella parvula 

The members of the red complex have frequently been detected together and exhibit a very 

strong correlation with pocket depth (215). The biological basis of the association among 

these species is not known. However, strong interspecies adherence has been demonstrated 

among these putative pathogens (268). 

The co-existence of T. forsythensis and P. gingivalis has been frequently reported (11, 151, 

177, 182, 192, 215, 223). Slots et al. (269) showed an odds ratio of 18.6. It has been 

speculated that T. forsythensis precedes the colonization by P. gingivalis, since T. 

forsythensis alone is detected more frequently (182, 191). The data of the present study are 

consistent with this report. P. gingivalis was detected alone in only 4 samples. The odds ratio 

of detecting these species together was 23.5. Since T. forsythensis and P. gingivalis were 

strongly associated with GAP, a co-infection with both microorganisms may lead to a 

particularly aggressive form of periodontal disease.  

The red complex was shown to be closely associated with the orange cluster (215). The 

odds ratios of the present study show mutual relationships among the species belonging to 

these 2 complexes. T. forsythensis and C. rectus were most frequently detected together in 

periodontal pockets (OR 35.6). Colonization by these two bacterial species has often been 

associated with the induction of a shift from periodontal health to disease (17, 31, 33, 36, 39, 

48, 144, 254). Similarly to our results Kamma et al. (170) observed the strongest positive 

association between T. forsythensis and C. rectus (OR 109.5). 

The statistical analysis of Haffajee et al. revealed that combinations of species are better 

predictors of new attachment loss. Significantly higher levels of T. forsythensis and C. rectus, 

and significantly lower levels of C. ochracea were found in active subjects prior to breakdown 

(265). 

T. forsythensis is often detected together with F. nucleatum (36, 223). In culture F. nucleatum 

enhances the growth of T. forsythensis (228). These species were frequently identified in the 

same pockets (OR 9.1) (Table 2). The species mentioned, together with C. rectus, have 



often been found in sites which exhibited active disease and those which responded poorly 

to therapy (140). 

Mullally et al. demonstrated a strong association between P. intermedia and E. corrodens in 

EOP patients (14). This constellation however could not be confirmed in our study. Rather E. 

corrodens was associated with A. actinomycetemcomitans (OR 5.8) (Table 2). According to 

Socransky et al. they both belong to a green cluster (215). This pair has frequently been 

identified in lesions of LJP (33, 49). 

Ashimoto et al. found positive associations between C. rectus and E. corrodens, as well 

between P. gingivalis and E. corrodens when investigating heterogeneous patient groups 

(11). Our results and those of Socransky et al. (177) indicated a negative association 

between these species. The evaluation of heterogeneous population groups and the use of 

different detection methods may explain these discrepancies to some extent. 

6.3 Additional species associated with periodontitis 

The present investigation of the microbial profile of aggressive periodontitis was confined to a 

few putative pathogens which have earlier been associated with etiopathogenesis of the 

disease. However, the disease process is related to a complex microbiota, where a large, still 

undefined number of microorganisms might play a role.  

With the advent of molecular biology, especially the utilization of 16S rRNA molecule, it has 

become available to study mixed bacterial communities in their entirety. Research has 

revealed that about 50% of the oral flora is unculturable, certainly including novel pathogens 

(270). The analysis of 2,522 clones obtained from the sites with various periodontal 

conditions by Paster et al., revealed an unexpected diversity (19). About 60% of the clones 

fell into known species and 215 novel phylotypes were identified. Associations with chronic 

periodontitis and healthy periodontium were observed for several new species and 

phylotypes by Kumar et al. (271). Several uncultivated phylotypes showed a very strong 

relationship to disease, suggesting that there may be previously unrecognized organisms 

that play an important role in the pathogenesis of periodontitis. 

Spirochetes, an example of as yet uncultivated bacteria, have been found in subgingival 

plaque samples of periodontitis patients at high frequencies. Their role in the pathogenesis of 

periodontal diseases is less clear, due to the difficulties of culturing them in vitro. Along with 

dark-field microscopy results, culture-independent techniques have shown an association of 

treponemes with the severity of periodontal disease and provided strong evidence for a 

particular role in patients with aggressive disease (17, 168, 230, 290). 

The investigation of subgingival samples of the RPP population (identical with the present 

study) has revealed great discrepancies between the prevalence of cultivable and hitherto 

uncultivable treponemal species (168). Treponema denticola, a cultivable species, was 

identified in only 40% of the samples, whereas the as yet uncultured group II treponemes 



was present in 72% of the pockets. Group IV treponemes were found in each patient and in 

97.5% of the samples. The in situ hybridization results indicated that these organisms were 

present in high proportions and thus are part of the predominant flora (168).  

Several other microbial species and genera have been implicated to be associated with 

destructive periodontal diseases. These include Micromonas micros (formerly 

Peptostreptococcus micros), Selenomonas spp., Eubacterium spp., Streptococcus 

intermedius, enteric rods, pseudomonads (17, 18).  

Recently, the role of viruses has been discovered. Various herpesviruses, human 

cytomegalovirus (HCMV) and Epstein-Barr virus type-1 (EBV-1) have been detected in 

subgingival samples from patients with aggressive periodontitis (58, 272, 273). The virus-

infected inflammatory cells can reduce host defense mechanisms, giving periodontopathic 

bacteria the opportunity to overgrow in the subgingival area and to invade tissues and cells 

more efficiently (272). 

Kumar et al. (271) reported about associations of new species and phylotypes with chronic 

periodontitis, including uncultivated clones from the Deferribacteres and Bacteroidetes 

phylum, Megasphaera clone BB166 and the named species Eubacterium saphenum, 

Porphyromonas endodontalis, Prevotella denticola, and Cryptobacterium curtum. 

The microbial diversity involved in periodontitis has become more complex than previously 

thought. In the future, a reevaluation of the present knowledge about the composition and 

mutual associations of the oral microflora in disease and health may be necessary. 

6.4 Host factors 

Remarkable improvements in understanding the microbial / host interactions, intrinsic host 

defense ability, evaluation of individual immune responsiveness and susceptibility to 

infectious diseases have been made in recent years. It has been suggested that patients with 

a genetic predisposition to an altered level of inflammatory response may be less capable of 

tolerating the presence of putative pathogens, thereby putting certain patients at higher risk 

of periodontitis (148). There is evidence for specific hyper-inflammatory traits present in 

patients affected with severe periodontitis (274). Specific immune response results in much 

greater destruction in periodontal tissues. Aggressive periodontitis aggregates in families, 

suggesting that genetic variations in host responses play an important role in disease 

susceptibility (275). Also studies in twins showed that a significant part of the variance in 

clinical parameters of periodontitis may be attributable to genetic factors (276). 

Aggressive periodontitis patients represent susceptible hosts for periodontal disease, in 

which various host risk factors may be amplified. A recent comprehensive study aiming to 

define a characteristic immunological profile of different disease entities failed to explain the 

pathogenesis of aggressive periodontitis based on a single host risk factor (277). A wide 

heterogeneity was observed even in subgroups. The association of host immunological risk 



factors in patients with aggressive periodontitis is widely varied and more complex than 

previously thought.  

Recent evidence has indicated that patients with severe periodontitis have a perturbation of 

their systemic inflammatory status manifested by increased local and systemic levels of IL-1, 

IL-6, IL-8, TNF- , C-reactive protein, fibrinogen and moderate leukocytosis when compared to 

unaffected control groups (133, 278, 279, 280). 

Immunohistochemical and in-situ hybridization research showed enhanced accumulation of 

PMNs in gingival specimens of aggressive periodontitis patients, which is associated with the 

upregulation of IL-8, ICAM-1, IL-1  and TNF-  expression (281). Beside the hyperreactivity of 

PMNs, dysfunctions, mainly depressed chemotaxis and phagocytosis in patients with 

aggressive periodontitis has been demonstrated (277).  

Data on antibody responses in severe periodontitis patients are, however, inconsistent. In 

periodontitis patients the levels of antigen-specific serum antibodies are usually elevated 

(277). Alabander et al. found that patients with generalized aggressive periodontitis and very 

high levels of anti-LPS IgG had significantly less attachment loss than similar patients with 

lower levels of these antibodies (282). However, depressed antibody response against 

bacterial species has been observed in aggressive periodontitis cases, probably indicating 

high-risk subjects (277).  

A major portion of antibody to periodontitis-associated bacteria form the IgG2-subclass (109). 

It has been shown that the production of IgG2 predominates over IgG1 concentration by 

patients with early-onset periodontitis (128). It suggests that the functionally less-effective 

IgG2 plays an important role in susceptibility and dimension of periodontal destruction in 

those patients. 

Also, lower percentages of pan T, suppressor/cytotoxic T cells, and pan B cells have been 

found in some patients with aggressive periodontitis (277, 283). 

Gene polymorphisms have been acknowledged as genetic mechanisms by which some 

individuals, if challenged by bacterial accumulations, may have a more vigorous immuno-

inflammatory response leading to more severe periodontitis. Kornman et al. (284) showed 

the association between severity of periodontitis and carriage of a composite genotype that 

included allele 2 of the IL-1  -889 and IL-1  +3953. Functionally the IL-1 genotype is 

associated with high levels of IL-1 production. The IL-1 gene polymorphism has been 

regarded as a genetic marker for increased susceptibility for aggressive periodontitis (285). 

However, inconsistent results have been reported. A study of a Brazilian family with 

aggressive periodontitis showed a lack of relationship between the genetic parameter and 

disease susceptibility discussed above (169).  

Recently a gene-environmental interaction between smoking and the IL-1 genetic 

polymorphism has been shown (132). Smokers bearing the genotype-positive IL-1 allele 

combination have an increased risk of periodontitis. The authors stated that the IL-1 



genotype has no influence on non-smokers. 

Genetic polymorphisms in human TLR genes have been associated with physiologically 

important traits. Recently, two common cosegregating missense mutations, Asp299Gly and 

Thr399Ile, affecting the extracellular domain of the TLR4 protein have been characterized 

(115). Both mutations lead to an impaired efficacy of LPS signaling and reduced capacity to 

elicit inflammation. Consistently, a significantly increased risk for gram-negative infections 

was found for individuals carrying these mutations (286). However, not all the subjects who 

were hyporesponsive to LPS had the polymorphisms in TLR4 gene. And as well, not 

everyone with the TLR4 mutations was hyporesponsive to inhaled LPS (287). This suggests 

high complexity of the involvement of genes in host response. Interestingly, various 

mutations of the TLR2 and TLR4 genes could not be associated with chronic periodontitis so 

far (288). Further investigations with patients with aggressive periodontitis are necessary. 

Rapid development in automated high-throughput genetic assay techniques and databases 

allows large-scale investigation of genotypes and to determine single-nucleotide 

polymorphisms (SNPs). An Increasing number of possible genetic risk factors for severe 

periodontitis has been reported, like single nucleotide polymorphisms in genes of IL-10, Fc- , 

TNF-receptor-associated factor-1, CD14, etc. (110, 289). As the research is mostly based on 

statistical comparison of genotypes between healthy subjects and patients with severe 

periodontitis, the translation of these observations into reproducible genotype-phenotype 

associations stays limited. So far the suggested SNPs cannot be regarded as true 

susceptibility indicators for aggressive periodontitis. 

In conclusion, several defects within the immune system could act separately or 

synergistically, creating a dysfunctional inflammatory response that disables the protective 

mechanisms of the host, increasing host susceptibility to periodontal disease. It still needs to 

be clarified to what extent the microbiological factors influence the progression of the 

disease. It is evident that bacteria are necessary to initiate the disease, but the genetic 

background of the host appears to have much higher modifying impact than thought before. 

7 Summary 

In general, periodontal destruction results from imbalances in an individual's innate and 

acquired immune responses to their oral microbiota. A multifactorial risk pattern of 

periodontitis is recognized, including bacterial challenge, smoking, age, diabetes, and 

socioeconomic and genetic factors. In the initial phase pathogenic microbiota rather than 

single periodontal pathogens seem to play an important role. Despite the improvement of 

microbiological detection methods the actual  bacterial dimension and their mutual 

relationships in an oral ecosystem is still unclear. At present no definite answer can be given 

to the question of whether the expression of either aggressive etiological agents (implying 



infection with a highly virulent microbiota), or a high level of individual susceptibility to 

periodontal disease, or a specific combination of both is the conducive factor in the 

etiopathogenesis of aggressive periodontitis. 

The purpose of the current research was to analyze the prevalence of periodontitis-

associated microorganisms in patients with generalized aggressive periodontitis and 

periodontally healthy elders using molecular-biologic detection methods like eubacterial 

PCR-amplification in combination with dot-blot hybridization. The oligonucleotide probes for 

the detection of periodontitis-associated bacteria Tannerella forsythensis, Porphyromonas 

gingivalis, Fusobacterium nucleatum, Fusobacterium spp., Campylobacter rectus, 

Actinobacillus actinomycetemcomitans, Prevotella intermedia, Eikenella corrodens, 

Veillonella parvula and Capnocytophaga ochracea were designed and evaluated. The results 

of the epidemiological study revealed frequent colonization by T. forsythensis, P. gingivalis, 

F. nucleatum and C. rectus in patients with aggressive periodontitis, however, individual 

variations were obvious. These microorganisms could predominantly be identified in 

periodontal pockets, but were significantly less common in healthy sites and in the elderly 

subjects. The putative pathogens T. forsythensis, P. gingivalis, F. nucleatum and C. rectus 

can hence be suggested as the key-bacteria in patients with aggressive periodontitis. A. 

actinomycetemcomitans could be detected in only a few patients, reducing its suspected 

importance in the etiopathogenesis of generalized aggressive periodontitis. Only a weak 

association for P. intermedia and E. corrodens with aggressive periodontitis or periodontal 

health could be seen. The results support earlier findings that generalized aggressive 

periodontitis is associated with a complex microbiota. 

It is still controversial whether the presence of putative pathogens in periodontal sites without 

clinical disease increases the risk for future periodontal breakdown. The periodontitis-

associated microorganisms are part of the indigenous oral microflora. In certain 

circumstances they are induced by environmental and host genetic factors to increase in 

proportions and unfold their virulent nature. The frequently observed co-infection of T. 

forsythensis and P. gingivalis or T. forsythensis and C. rectus in patients with aggressive 

periodontitis can implicate constellations of species which have the synergistic effect of 

enhanced virulence. Microbiological detection tests for putative periodontal pathogens are 

not of themselves diagnostic for periodontal disease, as periodontitis is a consequence of an 

opportunistic infection caused by microorganisms belonging to the resident microflora. 

Obviously, the influence of host immunity factors modifies the clinical outcome to a high 

extent. Patients with an altered inflammatory response may be less capable of tolerating the 

presence of specific organisms. Individuals with apparently low risk of developing destructive 

periodontal disease may have established a protective, so-called beneficial subgingival flora. 

In the present research C. ochracea was highly prevalent in the well-maintained elderly, 

being rarely found in GAP patients. This is evidence for regarding C. ochracea as a marker 



organism for periodontal health.  

Considering that periodontitis is a polymicrobial infection, the screening of the microbial 

population, rather than the isolation of single members of the subgingival flora, should give a 

more comprehensive perspective in research of etiopathogenesis of the different forms of 

periodontitis.  

The described oligonucleotide probes allow, in combination with PCR-amplification and dot-

blot hybridization, a specific and sensitive detection of the respective oral species. 

Subsequent epidemiological studies using identical molecular genetic detection methods, as 

well as the investigation of complex subgingival biofilms by applying oligonucleotide probes 

in a fluorescence-in-situ hybridization, are in progress. 

8 Zusammenfassung 

Die Ätiopathogenese der aggressiven Parodontitis beruht auf einem bislang noch nicht im 

Detail verstandenen Ungleichgewicht zwischen der oralen Mikroflora einerseits und 

Entzündungs- bzw. Immunreaktionen andererseits. Neben Wirtsfaktoren (u.a. 

immunorelevante Genpolymorphismen) und äußeren Einflüssen (wie z. B. Mundhygiene, 

Rauchen) spielt eine als pathogene Mischflora bezeichnete Kombination kommensaler 

Mikroorganismen, die opportunistische Infektionen und damit Immunreaktionen auslösen 

können, eine bedeutende Rolle. Obgleich die rasante Entwicklung der molekulargenetischen 

Nachweismethoden in der Mikrobiologie eine zunehmend detaillierte Charakterisierung der 

Besiedlungsmuster der oralen Mischflora erlaubt, fehlt bislang ein umfassendes Bild der 

bakteriellen Kolonisation und der Zusammenhänge im gesamten oralen Ökosystem. 

Im Mittelpunkt der vorliegenden Arbeit steht die Untersuchung der subgingivalen Mischflora 

bei Patienten mit generalisierter aggressiver Parodontitis und bei gesunden Senioren. Dabei 

wurde Material aus Zahnfleischtaschen und gesunden parodontalen Abschnitten untersucht. 

Zur Analyse der Parodontitis-assoziierten Mikroorganismen wurden eubakterielle PCR-

Amplifikationsverfahren und die dot-blot-Hybridisierung mit Oligonukleotidsonden 

angewendet. Die Oligonukleotidsonden für den Nachweis von Tannerella forsythensis, 

Porphyromonas gingivalis, Fusobacterium nucleatum, Fusobacterium spp., Campylobacter 

rectus, Prevotella intermedia, Actinobacillus actinomycetemcomitans, Eikenella corrodens, 

Veillonella parvula und Capnocytophaga ochracea wurden hergestellt und kontrolliert. 

Obgleich eine hohe interindividuelle Variabilität der oralen Kolonisation nachweisbar war, 

konnten bei Patienten mit aggressiver Parodontitis einige Keime (T. forsythensis, P. 

gingivalis und F. nucleatum) sehr häufig in den Zahnfleischtaschen identifiziert werden; sie 

sind in hohem Maße mit der aggressiven Parodontitis assoziiert und sind daher als Leitkeime 

für diese Erkrankung anzusehen. Obwohl diese Arten auch in den gesunden Stellen 

festzustellen waren, blieb die Häufigkeit der Besiedlung signifikant seltener. Außerdem hat 

man eine Koinfektion von T. forsythensis und P. gingivalis, sowie T. forsythensis und C. 



rectus in den erkrankten Stellen beobachtet. A. actinomycetemcomitans  konnte nur bei 

einzelnen Patienten mit generalisierter aggressiver Parodontitis festgestellt werden. Die 

Ergebnisse für P. intermedia und E. corrodens ließen als Schlußfolgerung keine eindeutige 

Assoziation sowohl mit der aggressiven Parodontitis als auch mit dem gesunden 

Parodontalzustand zu. 

Bestimmte äußere und Wirtsfaktoren können die Vermehrung dieser opportunistischen 

Pathogene fördern; möglicherweise wird durch Stämme mit hoher Virulenz bzw. bestimmter 

Artzusammensetzung das Risiko einer aggressiven Parodontitis zusätzlich gesteigert.  

Bei Gesunden wurde C. ochracea sehr häufig nachgewiesen; möglicherweise handelt es 

sich hier um eine Spezies einer im Hinblick auf die Entwicklung einer Parodontitis- 

protektiven Mundflora.  

Bezüglich der polymikrobiellen Natur der Parodontitis würde eine umfassende Untersuchung 

der oralen Mikroflora und deren Zusammenspiel mit den Wirtsfaktoren zur Aufklärung der 

Ätiopathogenese der verschiedenen Formen der Parodontitis eher beitragen als der 

Nachweis einzelner Arten. 

Die PCR-Amplifikation in Kombination mit der dot-blot Hybridisierung ermöglicht einen 

spezifischen und sensitiven Nachweis der untersuchten oralen Keime. Weitere 

epidemiologische Studien mit diesen Nachweismethoden, sowie Untersuchungen des 

subgingivalen Biofilms mittels Fluoreszenz-in-situ Hybridisierung, werden zur Zeit auch unter 

Einsatz der beschriebenen Oligonukleotidsonden durchgeführt. 



 

9 Supplement 

9.1 Tables 

Table 1. Strain designations, original sources, control identification method used in the study. 

1) Actinobacillus actinomycetemcomitans ATCC 43718 DSM sequencing 

2) Actinobacillus actinomycetemcomitans ATCC 33384 Conrads sequencing 

3) Actinobacillus actinomycetemcomitans serotyp a Mombelli -- 

4) Leptotrichia buccalis MCCM 00448 Mutters sequencing 

5) Pasteurella haemolytica ATCC 33396 Mutters sequencing 

6) Haemophilus influenzae ATCC 33391 Mutters sequencing 

7) Haemophilus influenzae klin. Isolat Conrads -- 

8) Haemophilus aphrophilus NCTC 55906 Gmür sequencing 

9) Haemophilus paraphrophilus ATCC 29241 Mutters sequencing 

10) Porphyromonas gingivalis ATCC 33277 DSM sequencing 

11) Prevotella intermedia ATCC 25611 DSM sequencing 

12) Porphyromonas asaccharolytica ATCC 25260 Gmür sequencing 

13) Prevotella nigrescens NCTC 9336 Gmür sequencing 

14) Prevotella oralis MCCM 00684 Mutters -- 

15) Prevotella buccalis ATCC 33690 Mutters API 

16) Capnocytophaga ochracea ATCC 27872 Gmür sequencing 

17) Capnocytophaga sputigena ATCC 33612 Gmür sequencing 

18) Capnocytophaga gingivalis ATCC 33624 Conrads sequencing 

19) Campylobacter rectus ATCC 33238 Mombelli sequencing 

20) Campylobacter concisus ATCC 33236 Gmür sequencing 

21) Tannerella forsythensis ATCC 43037 Olson sequencing 

22) Bacteroides gracilis ATCC 33236 Gmür sequencing 

23) Bacteroides fragilis ATCC 25285 Charité -- 



24) Eikenella corrodens CCUG 2138 Gmür sequencing 

25) Kingella kingae ATCC 23330 DSM sequencing 

26) Veillonella parvula ATCC 10790 Gmür sequencing 

27) Veillonella dispar ATCC 17748 DSM -- 

28) Klebsiella pneumoniae ATCC 23357 Charité -- 

29) Fusobacterium nucleatum ATCC 25586 Mombelli sequencing 

30) Fusobacterium odoratum MCCM 02932 Mutters sequencing 

31) Neisseria lactamica ATCC 23970 Charité -- 

32) Streptococcus mutans ATCC 35668 Virchow -- 

33) Streptococcus intermedius ATCC 27335 Virchow -- 

34) Actinomyces pyogenes ATCC 19411 Virchow -- 

35) Actinomyces israelii ATCC 10048 Virchow -- 

36) Actinomyces naeslundii ATCC 12104 Virchow -- 

37) Actinomyces viscosus ATCC 15987 Virchow -- 

38) Eubacterium lentum ATCC 25559 Mutters -- 

39) Selenomonas sp. Clin. strain Mutters -- 

40) Fusobacterium simiae CCUG 16798 CCUG sequencing 

41) Fusobacterium periodonticum CCUG 14345 CCUG -- 

42) Fusobacterium necrophorum NCTC 25286 Mombelli sequencing 

 



 

Table 2. The bacterial species, respective culture media and growth conditions. 

1) Actinobacillus actinomycetemcomitans ATCC 43718 fac. anaerob. TSBV 

2) Actinobacillus actinomycetemcomitans ATCC 33384 fac. anaerob. TSBV 

3) Actinobacillus actinomycetemcomitans serotyp a fac. anaerob. TSBV 

4) Leptotrichia buccalis MCCM 00448 anaerobic Fluid thyogl. 

5) Pasteurella haemolytica ATCC 33396 aerobic Col. agar 

6) Haemophilus influenzae ATCC 33391 microaerophil. anaer. Col. agar 

7) Haemophilus influenzae Clinical strain microaerophil. anaer. Col. agar 

8) Haemophilus aphrophilus NCTC 55906 microaerophil. anaer. Col. agar 

9) Haemophilus paraphrophilus ATCC 29241 microaerophil. anaer. Col. agar 

10) Porphyromonas gingivalis ATCC 33277 anaerobic anaer. Col. agar 

11) Prevotella intermedia ATCC 25611 anaerobic anaer. Col. agar 

12) Porphyromonas asaccharolytica ATCC 25260 anaerobic anaer. Col. agar 

13) Prevotella nigrescens NCTC 9336 anaerobic anaer. Col. agar 

14) Prevotella oralis MCCM 00684 anaerobic anaer. Col. agar 

15) Prevotella buccalis ATCC 33690 anaerobic anaer. Col. agar 

16) Capnocytophaga ochracea ATCC 27872 anaerobic anaer. Col. agar 

17) Capnocytophaga sputigena ATCC 33612 anaerobic anaer. Col. agar 

18) Capnocytophaga gingivalis ATCC 33624 anaerobic anaer. Col. agar 

19) Campylobacter rectus ATCC 33238 anaerobic FUM+supplem. 

20) Campylobacter concisus ATCC 33236 anaerobic FUM +supplem. 

21) Bacteroides gracilis ATCC 33236 anaerobic anaer. Col. agar 

22) Bacteroides fragilis ATCC 25285 anaerobic anaer. Col. agar 

23) Eikenella corrodens CCUG 2138 anaerobic Col. Agar 

24) Kingella kingae ATCC 23330 aerobic Col. agar 

25) Veillonella parvula ATCC 10790 anaerobic FUM +supplem. 



26) Veillonella dispar ATCC 17748 anaerobic anaer. Col. agar 

27) Klebsiella pneumoniae ATCC 23357 aerobic Col. Agar 

28) Fusobacterium nucleatum ATCC 25586 anaerobic ETSA 

29) Fusobacterium odoratum MCCM 02932 anaerobic anaer. Col. agar 

30) Neisseria lactamica ATCC 23970 microaerophil. Col. Agar 

31) Streptococcus mutans ATCC 35668 aerobic Col. Agar 

32) Streptococcus intermedius ATCC 27335 aerobic Col. Agar 

33) Actinomyces pyogenes ATCC 19411 anaerobic anaer. Col. agar 

34) Actinomyces israelii ATCC 10048 anaerobic anaer. Col. agar 

35) Actinomyces naeslundii ATCC 12104 anaerobic anaer. Col. agar 

36) Actinomyces viscosus ATCC 15987 anaerobic anaer. Col. agar 

37) Eubacterium lentum ATCC 25559 anaerobic anaer. Col. agar 

38) Selenomonas sp.  anaerobic anaer. Col. agar 

39) Fusobacterium simiae CCUG 16798 anaerobic ETSA 

40) Fusobacterium periodonticum CCUG 14345 anaerobic ETSA 

41) Fusobacterium necrophorum NCTC 25286 anaerobic ETSA 

 



 

9.2 List of used mediums and chemicals 

9.2.1 Mediums 

9.2.1.1 FUM - Fluid Universal Medium 

(R. Gmür, B. Guggenheim, Infect. Immun. 1983; 42: 459-470) 

Stock-solutions (stored at 4°C) 

Hemin: 0.1 M KOH 

Ethanol conc. 

Dist. Water 

Hemin-chlorid 

100ml 

50ml 

50ml 

200mg 

  

Menadione: Menadione 

Ethanol conc. 

25mg 

50ml 

  

     

Reduced transport fluid RTF 1: K2HPO4 

dist. water ad 

6g 

1000ml 

  RTF 2: NaCl 

(NH4)2SO4 

KH2PO4 

MgSO4 x 7 H2O 

distilled water ad  

12g 

12g 

6g 

2.5g 

1000ml 

 

Solution A: Solution B: 

Bacto Tryptone 

Yeast extract 

KNO3 

NaCl 

Hemin solution   1 ml 

10g 

5g 

1g 

2g 

1ml 

Glycose 

Cysteine-HCl 

Na2CO3 

Dist. Water 

Filter-sterilized 

3g 

0.5g 

0.5g 

50ml 

Autoclaved 20 min. at 120°C and stored at 4°C   

 

Production of FUM: 

RTF 1 75 ml 

RTF 2 75 ml 

Menadione solution 2 ml 

Filter-sterilized. Pooled into Solution B and added to Solution A.  

5 % heat inactivated (30 min at 56°C) horse serum (GIBCO) was added. 



Additional components: 

For T. forsythensis : 1% N-Acetylmuramic acid C11H19NO8 10mg in  

1 ml dist. water 

For C. concisus, C. rectus : Fumaric acid disodiumsaline  C4H2Na2O4 1 g + 

Sodiumformiat CHNaO2 1 g in 10 ml dist. water 

For V. parvula :   Putrescin C4H12N2 4,5 mg in 10 ml dist. water 

9.2.1.2 Columbia agar 

40 mg/l Columbia agar (Becton-Dickenson) 

5 mg/l Hemin 

50 µg/l Vitamin K 

5% Sheep blood 

9.2.1.3 TSBV - Trypticase-Soy-Bacitracin-Agar (J. Slots, J Clin Microbiol 1982: 15: 606) 

40g/l Trypticase soy agar 

75 mg/l Bacitracin 

5 mg/l  Vancomycin 

1 g/l Yeast extract 

2g/l Glycose 

10% Horse serum 

9.2.1.4 ETSA - Enriched-Trypticase-Soy-Agar 

Bulk preparation A 

20 ml 

4 ml  

4 ml  

Distilled water ad 

4 g  

2 g  

2 g  

Autoclaved, cooled, freezed 

10% Potassium nitrate 

Sodium lactate syrup 

Hemin 

2000 ml 

Yeast extract 

Sodium succinate 

Sodium formate 

Bulk preparation B 

25 g 

19 g 

Dist. water ad 500 ml 

Trypticase soy broth 

Agar 



Autoclaved, cooled in 50°C water bath, 

added to prep. A 

Filter sterilized ingredients added: 

25 ml 

2 ml 

2 ml 

0.4 g 

0.1 g 

1 g 

0.4 g 

30 ml 

 

Dist. water 

Menadione 

Fumarate 

Cysteine 

Dithiothreitol 

Glycose 

Sodium carbonate 

Sheep blood 

9.2.1.5 Trypticase Soy Yeast Extract Medium 

30 g  

3.0 g  

15.0 g  

Distilled water  ad 1000 ml 

pH adjusted to 7.0 - 7.2 

Trypticase soy broth 

Yeast extract   

Agar 

9.2.1.6 RTF 

A) Standard medium 1 

6 g/l K2HPO4 autoclaved 

B) Standard medium 2 

12 g/l 

12 g/l 

6 g/l 

2.5 g/l 

Autoclaved 

NaCl 

(NH4)2SO4 

KH2PO4 

MgSO4 

 

C) 38 g/l 0.1M EDTA 

D) 8 g/100 ml Na2CO3 

E) 0.2 g/20 ml 1% Dithiothreitol (DTT) 

F) 0.1 g/100 ml Resazurin 

 



Preparation: 

75 ml 

75 ml 

10 ml 

5 ml 

20 ml 

1 ml 

25% Glycose 

Distilled water ad 1000 ml, filter-sterilize 

Standard medium 1 

Standard medium 2 

Portion C 

Portion D 

Portion E 

Portion F 

 

9.2.2 Buffers 

9.2.2.1 Maleic acid buffer 

0.1 M Maleic acid 
0.15 M NaCl 
Adjust pH 7.5 with solid NaOH 

9.2.2.2 1%  Blocking solution 

Blocking reagent 1g 
Maleic acid buffer 100 ml 
Dilute by stirring at 65°C, autoclave, store at 4°C 

9.2.2.3 Detection buffer 

0.1 M Tris-HCl 
0.1 M NaCl 
Adjust pH 9.5 with solid NaOH 

9.2.2.4 Hybridization buffer 

5 x SSC 
1% Blocking solution 
0.1% N-lauroylsarcosine 
0.02% Sodium dodecyl sulfate (SDS) 

9.2.2.5 Washing buffer 0: 

5 x SSC 
0.2% SDS 

9.2.2.6 Washing buffer 1: 

2 x SSC 
0.1% SDS 

9.2.2.7 Washing buffer 2: 

0.1x SSC 
0.1% SDS 

9.2.2.8 Stripping solution 

0.2 M NaOH 
0.1% SDS 



9.2.2.9 Phosphate buffered saline (PBS) 

NaCl 8 g 
KCl 0.2 g 
Na2HPO4 1.44 g 
KH2PO4 0.24 g 
ad 1 l distilled water, adjust pH 7.4 

9.2.2.10 Lysis buffer 

500 mM Tris-HCl  pH 9.0 
20 mM EDTA 
10 mM NaCl 
1% SDS 

9.2.2.11 Stop-Solution 

9,5 ml Formamid 
0.4 ml EDTA (500 mM) 
5.0 mg Bromphenolblau 
5.0 mg Xylencyanol FF 
0.1 ml Dist. water 

9.2.3 Gels 

9.2.3.1 1.2% Agarose gel 

1.2 mg Agarose 
100 ml TBE buffer 
1µl Ethidiumbromid 

9.2.3.2 Polyacrylamidegel 

21 g Urease 
6 ml 10xTBE buffer 
4.5 ml Long-Ranger (40%) 
Dist. water ad 50 ml 
Stirred at 50°C, filter-sterilized 
240 µl APS (10%) 
24 µl TEMED 
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