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Consistent initial values for DAE systems in
circuit simulation
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Abstract

One of the difficulties of the numerical integration methods for differen-

tial-algebraic equations (DAEs) is computing consistent initial values be-
fore starting the integration, i.e. , calculating values that satisfy the given
algebraic constraints as well as the hidden constraints if higher index prob-
lems are considered.
This paper presents an approach to calculate consistent initial values for
index-2 DAEs starting up from possibly inconsistent ones. Firstly, the
idea is exposed for linear DAEs and then it is shown how the results can
be applied to those systems arising from modified nodal analysis (MNA)
in circuit simulation. This article starts up from [8] and [6]. Several
denotations and results we use were introduced there in more detail.
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1 Introduction

Roughly speaking, the problem of determining consistent initial values for diffe-
rential-algebraic equations can be described as follows. For ordinary differential
equations, initial values have to be prescribed for all variables to determine a
unique solution. However, differential-algebraic equations consist of differential
equations coupled with derivative-free equations, i.e., not all components appear
in dynamic form. Indeed, some of them are determined by algebraic constraints.
In Section 2 a convenient characterization of consistent initial values is intro-
duced.

One approach to determine consistent initial values is to locate a selection of
variables for which we may prescribe initial values and to construct a nonsingu-
lar system that provides the values for the remaining ones. In this context, we
have to consider two problems:

1. The selection of variables is not arbitrary.
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2. The values that are assigned to the selected variables have to be chosen
in such a way that the nonlinear system is solvable.

In [6] it was analyzed how to construct a nonsingular system and how to treat
(1) for systems arising from circuit simulation by means of modified nodal anal-
ysis, while (2) was not discussed. Nevertheless, the practical realization of that
approach leads to new insights, provided that the values from (2) are suitably
chosen. These results will be presented in the present paper.

To illustrate the approach before considering the special systems arising from
circuit simulation, we describe the basic ideas for linear DAEs in Section 3.
Then, in Section 4 we introduce the equations of the modified nodal analysis.
The structural properties of these systems, which were pointed out in [8] and
[6], are summarized in Section 5. The new results are presented in Section 6.
Since, in circuit simulation, the operating point is frequently used for starting
the integration, it is separately analyzed in Section 6.1. In Section 6.2 the
approach is described for a more general case. In practice, the values obtained
in the Sections 6.1 and 6.2 can be calculated by solving relatively small linear
systems as described in Section 6.3.

Finally, in Section 7 it is shown how this approach may be combined with an
initialization strategy that takes into account possible initialization preferences
of the user of a simulation package.

2 About consistent initial values for DAEs

We consider differential-algebraic equations, i.e. , equations of the form

f(‘/'v’7‘/'v7 t) = 07 (2'1)
where jg{ - is singular. In this article, % is assumed to have a constant nullspace.
Note that, if we define a projector @ onto ker jg{, and P := I — (@, then equation
(2.1) may be written as

f(Pz',x,t) = 0.

Definition 2.1 A vector xo € R™ is a consistent initial value of (2.1) if there
exists a solution of (2.1) that fulfils x(ty) = xo.

Taking into account that the singularity of ;dxﬂ, implies that (2.1) contains some
algebraic equations, a consistent initial value has to fulfil precisely those alge-
braic equations. Moreover, the differentiation of these algebraic equations may
lead to further algebraic equations, called hidden constraints, which a consistent
initial value has to fulfil, too. This fact is closely related to the index concept.

Actually, we are also interested in the corresponding values of the derivatives
appearing in the DAE, i.e., in the values of Px' if P is defined as P := [ — @

for a projector Q onto ker ;lg{,.




Definition 2.2 A vector (zo, Pyo) is a consistent initialization of (2.1) if xq is
a consistent initial value and (xo, Pyo) fulfils the equation f(Pyo,xo,to) = 0.

For simplicity, we will first present the approach for linear differential-algebraic
equations (DAEs). In the course of the article, it will be shown how it can
be extended to those quasi-linear systems obtained by modified nodal analysis
(MNA).

3 An overview of the approach for linear DAEs

For a short outline of the main ideas presented in this article, the tractability
index and the spaces related to its definition are introduced.

Consider a linear DAE of the form:
Ax' + Bx = q(t), (3.1)

where A is singular.
For the tractability index we define N :=ker A and S :={z: Bz € im A}.

Definition 3.1 The DAE (3.1) is called index-1-tractable if the matriz Ay =
A+ BQ is nonsingular for a constant projector Q onto N.!

Remarks:
1. The matrix A is nonsingular if and only if N NS = {0}.
2. The definition does not depend on the choice of the projector @.

For the definition of the index two we define Ny := ker 4; and Sy := {z: BPz €
im A} for P:= (I — Q).

Definition 3.2 The DAE (3.1) is called index-2-tractable if

1. it is not index-1-tractable,

2. Ay := Ay + BPQ, is nonsingular for a projector Q1 onto N;.?
Remarks:

1. The matrix A, is nonsingular if and only if Ny N S; = {0}.

2. The definition does not depend on the choice of the projector Q1.

Definition 3.3 In the following, the canonical projector Q1 := QlAngP onto
N1 along S is considered.

lef. [10].
Z¢f. [10].



In the index-2 case the space NNS represents all the components that are deter-
mined neither by a differential nor by an algebraic equation. These components
can be determined only by inherent differentiation.

Furthermore, for index-2 equations hidden constraints appear if we derive a part
of the system’s equations. This implies that an initial value has to be chosen in
such a way that not only the system’s equations, but, additionally, the hidden
constraints have to be fulfilled.

An efficient approach?® to calculate a consistent initialization for index-2 DAEs
at t; consists in solving the system®:

Ay, + Bz = q(t), (3.2)
PP (z; — a) + PQiy — PQ1A5 ' (t) + Qui

I
o

for an arbitrary @ and Py :=1 — Q1.

Note that PP, (z;—a) = 0 fixes the dynamic components, PQy; = PQ, A5 ¢ (t;)
describes the hidden constraints, and Qy; = 0 precisely fixes the values we are
not interested in, obtaining a nonsingular system.

The results presented in [8] imply that, for nonlinear circuits, this approach
has the disadvantage that the projectors PP, and PQ; depend on the solution.
Nevertheless, in [6] it was pointed out how the method could be reformulated
in terms of other constant projectors.

In this article we will suppose that we already know values (z!,y!) that fulfil
the equations of the system (3.1) at t; that are not necessarily consistent °, i.e.,
which probably do not fulfil the hidden constraints.® Without loss of generality,
we also assume that Qy' = 0 is fulfilled.

We denote by (;,y;) the consistent value we obtain from (3.2) - (3.3) by setting
a :=z! and define:

xf = — !, ler =y -y (3.4)

From (3.2) - (3.3) it follows that:
Ay' + Bz = 0, (3.5)
PPz} + PQuy + PQiy' — PQ1Ay ¢ (t) +Qui = 0,

i. e., we can calculate the value (z;,y;") from that system. Note that (3.6)
implies

PPzf = 0, (3.7)
PQiy} = PQiAy'd(t) — PQ1y, :
Qy = 0. (3.9)

3cf. [7]. Note that this approach can also be extended to some nonlinear cases.

4We introduce the index I to distinguish the values at an arbitrary time ¢; from to, which
represents the time we start the integration process.

5These values may be known from an integration process.

6In the following we consider only the index-2 case, because in the index-1 case a value
that fulfils the system’s equations is automatically consistent.



The task of determining values for (z;",y;") by making use of (3.5) - (3.6) may
look very similar to the direct computation of (x;,y;) from (3.2) - (3.3), but, in
fact, if we know a description of the N N S-components and/or the expressions
for the equations corresponding to (3.8) and (3.9), the calculation costs can be
reduced considerably.

From the equations (3.5) - (3.9) it can be deduced that =7 € NNS. This follows
because (3.5) implies xf € S and, if we multiply (3.5) by PQ; A, ", we obtain
PQiz;" = 0. Taking into account (3.7), z;* € N has to be given.

This property will be of special interest with regard to circuit simulation.

Remarks

1. At first glance, this approach seems not to be very helpful, because a value
that fulfils the system’s equations has to be given a priori. Fortunately,
in circuit simulation we can take advantage of the structural properties
that guarantee the existence of the DC operating point to compute such
a value.

2. The circuit simulation by means of MNA leads to quasi-linear DAEs. The
described projectors, spaces and index definitions of the tractability in-
dex can be extended to nonlinear systems (cf. [10]). The definitions for
the equations arising from circuit simulation by means of modified nodal
analysis were discussed in detail in [8]. There it was proved that, under
certain restrictions on the controlled sources (see Tables 5.1 and 5.2), the
space N NS is constant and the N N S-component appears only in linear
relations of the DAE. Therefore, the above approach can be successfully
extended.

3. In [6] it was already pointed out how to transcribe topologically the equa-
tions that describe the hidden constraints analogously to (3.8) with the
aid of constant projectors. Nevertheless, the topological initialization pre-
sented there is finally based on the idea of fixing only the dynamic com-
ponents and calculate the values for the remaining variables by means of
the system’s equations. This approach has the advantage that no specific
(2',y") has to be given, but the disadvantage that the obtained values
depend on the choice of the variables for which initial values have been
prescribed.

4. In the course of this article it will be shown that an electrical explanation
for the rearrangement from (z!,y') to (x;,3;) can be given.

4 The MNA equations

Let us analyze the DAE system obtained by the application of the MNA from
lumped networks containing nonlinear and possibly time-variant resistances,
capacitances, inductances, independent voltage and current sources, and some
specific controlled sources.



We denote by ¢ and ¢ the charge associated with the capacitances and the fluxes
associated with the inductances, by j;, and jy the current vector of inductances
and voltage sources and by e the vector of node potentials.

On the other hand, i(-), and v(:) represent functions of current and voltage
sources. In this paper, we will assume special prerequisites for the controlled
sources.

Analogously to [8], n-terminal resistances, capacitances and inductances are
completely described by (n —1) currents entering the (n — 1) terminals and then
(n — 1) branch voltages across each of these (n — 1) terminals and the reference
terminal n.

To write down the MNA 7 equations, we split the reduced incidence Matrix
A into the element-related incidence matrices A = (AcALArAy Ar), where
Ac, A, Agr, Ay, and A; describe the branch-current relation for capacitive
branches, inductive branches, resistive branches, branches of voltage sources
and branches of current sources, respectively.

If we define

2 9 06(j 09(j
Clu,t) = qut)’ dh(u,t) == e L(j,t) := qﬁé?t)7 AVRIRE ¢é]t7 t)7

the DAE system we obtain from networks by the conventional MNA reads

d
AcC(ALe, t)Agd—: + Acqi(ALe,t) + Agr(A%e, t)

+ALjL + Avijv + Ari(-) = 0, (4.1)
LS + 6,0 - Afe = 0, (42)
Ale—v() = 0. (4.3)
Later on we will also need G(u,t) := %.

We first analyze the network with respect to the conventional MNA and, af-
terwards, extend the results to the systems obtained by charge-oriented MNA.
These systems are 8:

d
Ao+ Apr(Ahe,t) + Arji + Avjv + Ari() =0, (4.4)
o ur

— —Aje= 4.
dt L€ 07 ( 5)
ATe —v(-) =0, (4.6)
q— qC’(Agev t) =0, (4.7)
¢~ o(jL.1) = 0. (48)

TA detailed discussion on how we set up the system’s equations can be found in [8] and
[12].
8¢f. again [8] and [12].



Analogously to [8] and [6], we suppose that the capacitance matrix C(ALe,t),
inductance matrix L(jr,t), and conductance matrix G(Ake,t) of all capaci-
tances, inductances and resistances, respectively, are positive definite °.

We will also make use of the fact that the reduced incidence matrix (Ac A, ArAy)
has full row rank and that Ay has full column rank, because cutsets of current
sources only and loops of voltage sources only are forbidden (cf. [18], [8]).

5 Index analysis and consistent initialization
for circuit simulation

5.1 Some definitions and results

In this section we repeat some of the results presented in [8] and [6] concerning
the index of the DAE system and the expressions for the hidden constraints in
terms of appropriate projectors. To this end, we need the following definitions
and results.

Definition 5.1 To characterize the topological properties of the network, we

define the projectors Qc, Qv—c, Qv-c, and Qr—cy onto kerAL, kerALQc,
kerQL Ay, and kerALQcQv_c, respectively.

Note that Qcrv = QcQv_cQr_cv is a projector onto ker(AcArAv)T.

The complementary projectors will be denoted by Py := I — Q4x, with the cor-
responding subindices.

Definition 5.2

1. An L-I cutset is a cutset consisting of inductances and/or current sources
only.

2. A C-Vloop is a loop consisting of capacitances and voltage sources.
In [8] , [18] the following was shown to hold:
Lemma 5.3

1. If the network does not contain L-I cutsets, then Qcry = 0.

2. If the network does not contain C-V loops, then Qy_c = 0.

In this article, we suppose that the controlled sources that form part of the
network fulfil the conditions exposed below in the Tables 5.1 and 5.2.

Regarding equations (5.3), (5.5), and (5.7) from Table 5.2, the assumptions
made for the controlled current sources imply that

QErvAri(AcAvAR) e, jr,jv.t) = QEryv Artis (5.9)

90f course, the same restriction on the positive definiteness of the conductance matrix from
Corollary 2.2 of [8] can be made here. Therefore, for the resistances with incidence nodes that
are connected to each other by capacitances and/or voltage sources, no positive definiteness
of the corresponding conductance matrix has to be assumed.




If we consider the element-related splitting of Qv _c, i. e.,

Ov_c = (( (Qv-_o)t ) :

QV—C)contr.

then we can summarize the prerequisites we assume for the controlled volt-
age sources as follows:

~ dg(ALe t) . . _
Qb coaTe M ) = Qb cnl, ()
dg(ALe t) . . ]
o(aTe, WACED ity = waesn  (62)

for a suitable function v, and for a vector v;(t) that contains the functions of
independent voltage sources and zeros instead of the functions of controlled
voltage sources. Analogously as in [8] and [6], in the following we will drop
the index *.

Table 5.1: Condition for controlled voltage sources

is always fulfilled. Thus, we generally assume that the controlled sources do not
form part of the C-V loops or L-I cutsets.
To shorten denotations we write

i(AcAvAR) e, jr, Pv_cjv,t) (5.10)

when we do not distinguish between (5.4), (5.6), and (5.8).1°

Lemma 5.4 The matrices

Hi(Alet) = AcC(Ale, )AL +QLQo,
Hy = QLAVATQc+QV_cQv_c,
Hy = A{QcQGAv + Qi _cQv_c,
Hy(Alet) = QL_oATH ' (Ale,t)AvQv_c + PE_oPyv_c,
Hs(jr,t) == QLpyALL™'(jr,t)AL Qorv + PlryPorv,
He = Qu_cAVAVQv_c+ P} _oPv_c,
H: = QLrvALALQcrv + PlryPerv,

are nonsingular.'!

10These assumptions can be transcribed into topological criteria analogously as it was done
in [8]. The result would be similar, with the only difference that now the branch potentials
of branches that form part of L-I cutsets would not be allowed to control controlled current
sources.

et [8], [6].



For controlled current sources we suppose that at least one of the following
characterizations holds:

()
QgRVAIi(AT%%%e,”JL,jv,t) = Qv Ariit, (5.3)
i(ATe,%%’t),jL,jv,t) = i (Ale, Ale ji,t) (5.4)
for a suitable function i,.
(b)
QLA = 0, (5.5)
i(ATe, %%“”7 Jpdvit) = in(AcAvAR)Te. jr, Py_cjv.t)(5.6)
for a suitable function iy.
(c)
QV_cQbA. = 0, (5.7)
i(ATe7dQ(147M7jL7jv,t) = i ((AcAvAR)Te,jr,t)  (5.8)

dt

for a suitable function i..

Table 5.2: Conditions for controlled current sources

In [8] the following result was obtained:

Theorem 5.5 Consider lumped electric circuits satisfying the assumptions of

the Tables 5.1 and 5.2. Then it holds:

1. If the network contains neither L-I cutsets nor controlled C-V loops, then
the conventional MNA leads to a DAE system with index-1 and the con-

straints are only the explicit ones:

Q& [Arr(ARe,t) + Apjr + Avijv

+Ala,cia,c((ACARAV)T67ijt)] = 07 (511)

Ale —v(ALe, j1,1)

Il
e

(5.12)

2. If the network contains L-I cutsets or C-V loops, then the conventional
MNA leads to a DAFE system with index-2. With regard to the constraints,

we distinguish the following three possibilities.

(a) If the network does not contain an L-I cutset (but contains controlled
C-V loops), then the constraints are the explicit ones, (5.11) and



(5.12), and, additionally, the hidden constraint:

7570‘45}];1(‘4567 t)Pg ACQé(Agea t) + ART(Agev t) + ALjL

. . . 5 . ~ dv
-l-Avjv + A[Z((AcARAv)Te,]L, Pvcjv,t):| + Qg_cd_tt = 0(513)

(b) If the network does not contain controlled C-V loops, but contains
L-I cutsets, the constraints are the explicit ones, (5.11) and (5.12),
and, additionally, the hidden constraint:

Qry <ALL1(jL7t) (Afe—¢,(jrL,t)) + Alt%) =0. (5.14)

(c) If the network contains L-I cutsets and C-V loops, then the con-
straints are the explicit ones, (5.11) and (5.12), and the hidden ones
(5.13) and (5.14).

Remark: In [8] it was proved that the hidden constraint (5.13) resulted from

T de dvy

QxT/—cAv% = QxT/—c% (5.15)
and that (5.14) arose from
dj di
QErv <AL% + Altd_;) =0. (5.16)

For the sake of simplicity, we will sometimes drop the arguments of the H
matrices in the following and write a dot if they are not constant.

In [6] it was shown that a splitting of the system can be performed in such a way
that consistent initial values can be calculated successively as described below.

Corollary 5.6 Let the values (Pce®, %) be given. If the network contains con-
trolled sources that fulfil the conditions of the Tables 5.1 and 5.2, we can deter-
mine consistent initial values for the system (4.1)-(4.3) gradually.

We split e = Poeg + QcPv—ceo + QcQv-cPr-cveo + QcQv-cQr-cveo
and jvo = Qv_cjvo+Pv_civy, and obtain the corresponding consistent values
from

Pceg = Pceo + PcAva,oHﬁ_lég_c (’Ut(tg) — Aapceo) ,
jro = Ji +ALQcrvH: 'Qbry (—Anic(te) — ALj7),
QcPyv_cey = QcHy'QLAVP] o (—A Poeo +v(Afeo,jrg,to))

whereas the value of QcQv_cPr—_cveo can be obtained by solving the equation
P cvQi_cQE|Arr(AR(Pc + QcPy—c + QcQv_cPorv )eo)

+Apjro + Ar,ia(Aleo, Aleo, jro, to)| = 0.

10



Then we calculate

Py_cjve = —Hi'AVQcPE_oQF |Arr(Afeo, to)

+Arjro+ An, iac(AcAvAr) e, ji1, t)] .

Next, we can determine the remaining values by means of

Qcrveo = —(QervHs'()Q¢ry) -

<ALL1(jL07 to)AY (Pc + QcPy ¢ + QcQv_cPr_cv) eo
1y - 1y - dlt
—ALL " (jro,to)®;(Jro,to) + A, E(t[)) )
Qv_cjve = —H'(VQV_cAVH'(\PE <Acq{(Ageovto) + Agr(Akeo, to)

+Arjry + AvPy_civ, + Ari((AcAvAr)Teo, jros Pv—civo, to))

_ = dv
—H; () gfcd—tt (to)-

If the charge-oriented MNA is considered, we set additionally:

w0 = qc(Abeo,to),
¢ = or(jro,to)

Remarks:

e Note that each time the matrices H, '(-) = H, '(Aleo, to), H; '(-) =
Hy'(ALeq, to) or Hy*(-) = Hi'(jro,t0) appear, we already know the
corresponding values ALeg or jr, and, therefore, can insert them. On the
other hand, the conditions of the Tables 5.1 and 5.2 imply precisely that
this holds analogously for the controlled sources.!?.

e Of course, if the network contains no C-V-loops and no L-I cutsets, then
the corresponding equations defined with the aid of the projectors Qv _¢
and QcRry, respectively, do not appear.

e Corollary 5.6 implies that the choice of (€°,;9,5%) is arbitrary as long as
the nonlinear equation that leads to the expression for QcQv_cPr_cveo
is solvable.

From the results presented in [8] it follows directly that, for the controlled
sources we consider here, the space N N S(-) is constant and can be described
by

NNS() =im Qcrv x {0} xim Qv_c¢

I2Note that the controlled sources we permit do not change the spaces associated with the
DAEs and, in this context, imply that we do not need to alter the order, as it was done in [6].

11



for the conventional MNA and
NN S() = {0} X {0} X im QCRV X {0} X im QV—C

for the charge-oriented MNA. Observe that Qcrye and Qy_cjy appear only
in linear expressions of the equations (4.1) - (4.3) and (4.4) - (4.8).

5.2 Topological analysis of the network

Let us analyze the topology of a given circuit to locate the equations corre-
sponding to (5.15) and (5.16), i. e., to the equations that lead to the hidden
constraints'®. In [6] it was shown that these equations can be obtained directly
from the network by making use of the following two procedures. They pre-
cisely determine the linearly independent equations that describe the hidden
constraints arising from C-V loops and L-I cutsets, respectively.

PROCEDURE 1

1. Search a C-V loop in the given network graph. If no loop is found, then
end.

2. Write the equation resulting from the sum of the derivatives of the charac-
teristic equations of the voltage sources contained in the C-V loop, taking
into account the orientation of the loop and the reference direction of the
considered branches.

For instance, if the voltage sources vy, ..., v form a part of the C-V loop
and we define

P {4—1 if the orientation of the loop coincides with that of v;
-1 else,

then the equation we write in this step is Zle a;((Ale), — i) =0.

3. Form a new network graph by deleting the branch of one voltage source
that forms a part of the loop, leaving the nodes unchanged.

4. Return to 1, considering the new network graph.

The following procedure starts again from the initial graph.

PROCEDURE 2

1. Search an L-I cutset. If one is found, then pick an arbitrary inductance of
this cutset. Realize that we can always find such an inductance because
cutsets of current sources only are forbidden. If no cutset is found, then
end.

13 A similar topological analysis of the network can be found in [3].

12



2. Write a new equation resulting by derivation of the cutset equation arising
from 1.
For instance, if the current sources i1, ..., iy and the inductances jr.,, ..., jrj,
form a part of the L-I cutset and we define

P {+1 if the orientation of the cutset coincides with that of i;
7o -1 else,

& — {+1 if the orientation of the cutset coincides with that of jy ;
i -1 else,

then the equation obtained in this step reads 25:1 a;t'; +Ef:1 a;jr. =0.

3. Delete the chosen inductance from the network contracting its incident
nodes.

4. Return to 1, considering the new network graph.

In [6], an extension of these procedures determines how to fix the dynamic
components for calculating consistent initial values. The result permits to assign
specific values to a selection of variables, and to determine the remaining by
making use of the system’s equation'#. Nevertheless, the values obtained in
that way depended on the choice of variables selected.

6 Calculating a consistent value starting up from
a value fulfilling the system’s equations

The approach presented in this section distributes the index-2 property along
all affected elements. It results from the approach presented in Section 3 and
can be summarized as follows:

Theorem 6.1 For networks that contain only controlled sources as specified
in the Tables 5.1 and 5.2 we obtain consistent initial values starting up from
possibly inconsistent ones that fulfil the system’s equations in the following way:

1. Add additional currents that flow through the C-V-loops as a consequence
of the hidden constraints described by PROCEDURE 1 to the values of the
currents through the branches that form a part of C-V-loops.

2. Add convenient values to the node potentials to fulfil the additional volt-
age across the L-I cutsets defined by the hidden constraints described by
PROCEDURE 2.

The meaning of this theorem becomes clear in the course of the article. The
Theorems 6.5 and 6.6 describe the statement properly.
In this chapter, we first give an overview of our aim, explaining the approach

M4 Therefore, this result is similar to the one obtained in [16].

13



for a special case, the DC operating point, and then we generalize the results to
apply them for arbitrary points. The proofs will be pointed out for the general
case only.

In Section 6.4 we illustrate why the class of controlled sources for which this
approach holds cannot be extended if no further topological considerations are
made.

6.1 An initialization related to the DC operating point

A common way for obtaining values to start the numerical integration in circuit
simulation is to calculate the DC operating point. Therefore, we consider this
point separately. We calculate the DC operating point by setting the current
through the capacitances and the voltages across the inductances equal to zero.
Note that for calculating the DC operating point for the charge-oriented MNA |
the matrix % has to be nonsingular.

Topologically, this implies that:

1. Cutsets of capacitances and/or current sources are forbidden, i.e., that
(A, AR, Ay) has full row rank.

2. Loops of inductances and/or voltage sources are forbidden, i.e., (Ar, Ay)
has full column rank.

Furthermore, the non-singularity of % implies assumptions on the resistances
and on the controlled sources.

Similar considerations hold for the conventional MNA, whereas ¢;(-) and &}(-)
have to be considered separately . Observe that, if time-dependent capacitors or
inductors appear in the network, then the existence of the DC operating point
and the non-singularity of the corresponding matrix % are not equivalent for
the conventional MNA.

In the index-2 case the DC operating point has not to be consistent. Neverthe-
less, the values obtained for the DC operating point, (e°,5?, j%), fulfil Kirchoff’s
laws, and precisely the equations

Apr(Afe to) + ALj) + Aviy + Ari(Porve®, 1% Py_cjv® to) = 046.1)
—ATeY = 0(6.2
Al e —v(ALe, i1 ty) = 0,63

for the conventional MNA, and, additionally, the equations
q— QC(Ag€07 tO) = 07 (64)
¢ — o1(j7,to) =0, (6.5)

if the charge-oriented MNA is considered.

Theorem 6.2 For the conventional MNA we obtain a consistent initialization
(€0, L0, v, Poel,iro) related to the DC operating point (€°, 39, 4%) in the fol-
lowing way:
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1. Set Porveo := Porve®, jrg =%, Pv_cjvy = Pv_cj) 1°.
2. Calculate Qcryeog making use of the above setting and solving the equation

Qi (4127 Gnesto) (AT o = 640inor o)) + An G 00) ) 0. (6)

3. Calculate Qv _cjv, making use of the above setting and solving the equa-
tion

Qv_cAVHT ' (Aleo, to) Pl |Acqi(Aleo, to) + Arr(Ageo,to) + ALjLg
. . . — . ~ dv
+Avive + AI'L(PCRV(va]LOvPV—C]VOvto)] + QxT/—cd—tt(to) =0.(6.7)

4. Calculate the values of the derivatives of the voltages across the capaci-
tances and of the derivatives of the currents through the inductances ac-
cording to (4.1) and (4.2) .

For the charge-oriented MINA the result can be directly adapted by calculating
@0 = ¢° and ¢o = ¢° with (4.7) and (4.8) and by making use of (4.4) and
(4.5) to calculate the derivatives of the charges and fluzes associated with the
capacitances and inductances, respectively.

Proof:
This result is a direct consequence of Corollary 5.6. The equations (6.1)-(6.3)
guarantee that

QlrvIALIY + Arir(ty)] = 0 and
Qv_cAve’ = Qi _cuilto)
are fulfilled.
Therfefore, the regults from Corollary 5.6 lead to Porveg = PoRyeo, jLo =
3%, Py_cjve = Py_cjY, and to the equations for Qcrveo and Qv_cjv, as
described.
q.e.d.

Corollary 6.3 The consistent initial values defined in Theorem 6.2 can be cal-
culated in the following way:

1. di 1. .
€ = 60 - HS 1(]27t0)QgRV (Alt d—tt(tg) - ALL 1(]27t0)¢2(]27t0)) )
jLo = .7([),7
. -0 —1/ 4T 0 AT du
Jve = Jv—Hy (Age”,t0)Qy ¢ %(to)

+A‘T/Hf1 (ALe® to)Acqi(ALe, t0)> )

I5Note that this implies precisely 2+ € N N S(-), (cf. Sections 3 and 5.1).
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Then, the corresponding values of the derivatives of voltages across the capaci-
tances and currents through the inductances can be computed by:

Peej = —Hl_l(AgeO,to)Ang(AgeO,tg)

~ dv
FHT (A o) Av HT (4B, 100QF o (G (o

+ALHT (AL to) Acqi(ALeL, t0)> ,

diy

jro = —L7'(jL%to)si (i’ to) — L7 (L% to) AL H: ' (L% to) QL Ry <A1i%(t0)

—ALL*(jg,to)aa;(j&to)).

For the charge-oriented MNA we set qo := ¢° and ¢o := ¢°, whereas the cor-
responding values of the montrivial derivatives of charges associated with the
capacitances and fluzes associated with the inductances can be obtained by:

d’l)t

Poqy = HG'AvH['(ALeE ty) Q‘T,_Cﬁ(to)

+QV_cAVHT (ALe% to) Acqi (AL, to) |,

diy

dh = —ATH; 10 to) Qv An G o) — Qi ALL™ s, t)oh %10 )

for Ho == ALAc + QTQ.

Note that Hy(-) and Hs(-) were defined in Section 5.1. An example is given in
Figure 6.1.

Proof: The corollary is a special case of the Theorems 6.5 and 6.6.

Corollary 6.4 The values obtained in Theorem 6.2 imply that, at time to, the
sum of the additional power delivered to the network by the C-V-loops and L-1
cutsets is equal to the sum of the additional power absorbed by the branches of
the C-V-loops and L-I-cutsets.

Proof: The corollary is a special case of Corollary 6.7.

In Figure 6.2 we can observe how this approach can be carried out for the
NAND-Gate described e.g. in [19]. We consider the case that it contains linear
capacitances. The result shows that there is a current that flows through V7,
through the MOSFET that is incident with node 6, and through Vpp. Note
that inside the MOSFET the current is divided.

16



v ()

DC operating point:
er =v(to), e2=0 ,jv =0.

Consistent initial value:

er = u(ty), ea=0,
. 1
: v o= 1),
Conventional MNA: ot
' . ro= 1 71 "(t
Cies+jv = 0, € = _C_IOL _{_CLU (o),
1 1 2
—iv + C el + —e = 0 1 1
Jv 2€o R 2 9 6’2 — C_L L’U’(tO)'
el —ey = U(t()). 2 + Ca

Figure 6.1: Circuit with C-V loop

6.2 Computing consistent values starting up from possibly
inconsistent ones

For any value (z!, Py') fulfilling the DAE equations but being not necessarily
consistent, a consistent (z;, Py;) can be computed in an analogous way as for
the operating point'®.

Instead of (6.1) - (6.3), (or (6.1) - (6.5), correspondingly) the possibly inconsis-
tent values fulfil:

AcC(ALE 1) ALe + Acqi(ALe ) + Arr(ALel t))

+ALJL + Avjl + Ari((AcAvAgr) e it Py_cjvi, ) = 0,
L(ji, t)jf +¢4(jL. 1) = Afe' = 0, (6.9)
AlLel —v(ALe it t) = 0, (6.10)
for the conventional MNA and
Acq" + Apr(ARe' ) + ALjl, + Avjl
+Ari((AcAvAr)Te  jit, Py_cjvi )i = 0, (6.11)
ol — AT = o, (6.12)
Al —v(ALe' i ') = 0, (6.13)
¢ —qo(ALet) = 0, (6.14)
¢ —or(jp.tr) = 0, (6.15)

for the charge-oriented MNA.
Consequently, for these values Corollary 5.6 implies, analogously as in Theorem

16We introduce the index [ to distinguish the values at an arbitrary time t; from tg, which
was introduced to start the integration process. The results presented in this chapter may
be of special interest to calculate consistent values starting up from the possibly inconsistent
values for the solution an integration method supplies at t;.
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Vbp

12 —

0o ... 0
0
1 0
= 0 1
1 Qc = s Qv-c=1|g o
0
0 0
1 0
0 0o 1
c 0 0 0 0 0 0 0 0 0 0 0
0 el 0 0 0 0 0 0 0 0 0 0
0 0 el 0 0 0 0 0 0 0 0 0
0 0 0 c0 0 0 0 0 0 0 0 0
0 0 0 0 c0 0 0 0 0 0 0 0
c 0 0 0 0 0 cl 0 0 0 0 0 0
T CcC =10 0 0 0 0 0 cl 0 0 0 0 0
0 0 0 0 0 0 0 c0 0 0 0 0
0 0 0 0 0 0 0 0 c0 0 0 0
0 0 0 0 0 0 0 0 0 cl 0 0
0 0 0 0 0 0 0 0 0 0 el 0
0 0 0 0 0 0 0 0 0 0 0 c0
0 0 0 0 0 0 0 0 0 0 0 0

The additional current for correcting the DC operating point is:

- _ 2c0cl 2¢0cl ’
Jvi cO+cl 0 c0+cl 0 i
4 0 _ 2c0cl 2¢0cl 0 VI
Jva c0+cl 20Fcl 2
-+ 2¢c0cl 2¢c0cl _ 2c0c1(4c0cl+3c(c0+cl)) 0 V/
J_EB cOFcl cOFcl (cOFc1)(2¢c0c1+c(cO+cl)) BB
JpD 0 0 0 -1 0
N  N———
~ dv
—Hy ! Qv-ct

For c=05-10"13,¢c0=024-10""%,¢c1 =0.6-107'%, V{ =10°, V43 = V§5 = 0 we obtain:

qlo 0

q’lgdo 0

Tgs 0

q:ubo 0
e -5 Qisbo 0
o T i S TR o W ey
-+ = -5 ) q2gs = . .
T5m0 3-42857142858142793 10 oo 1.71428571428571396 - 107
JbDo Tosbo 1.71428571428571396 - 10~°

qégdo 0

Bgsg 0

qubo 0

qést 0

Figure 6.2: Computation of j;7, and ¢'¢ for the NAND-Gate from [19].
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6.2, that only the values of Qorye! and Qv_cjv' have to be properly changed
to obtain consistent values (e;,jr;,jv;). As a consequence, the values of the
appearing derivatives have to be adapted to get consistent (z;, Py;) that fulfils
the systems corresponding to (4.1) - (4.2), or (4.4) - (4.5).

Theorem 6.5 For the conventional MNA we obtain consistent values (er, jr;, jv;)
starting up from the possibly inconsistent values (€', it ji,, Pcel, j}!) that fulfil
the DAE equations as follows:

L di .
e = e — H; 1(JlL,tl)Qng <A1td—;(tl) + ALJLI> )
le = ]lLv
. .l —1/ 4T 1 AT dv Tl
jvi = Jv —Hy (Age, t)Qy ¢ %(tl) —Aye’ ).

Furthermore, the corresponding values of the derivatives can be calculated by
means of

1 — d 1

Poe; = Poe'+H;'(ALe', t)AvH (ALe! 1)QT ¢ (%(tl) — Aje l) )

. X 1. 1. di y

o= L AT 0@y (41 G0 + AL )
Proof:
If, for a fixed I, we define

ef = e—e,
i = dvi— v

then it holds that elJr = QCRV(B;r and jvl = Qv_cj\/;r, because of Porye =
Pcrve' and Py_cjy; = Pv_cjl,.

If we insert e; = el + e?‘ and jy, = ji, + jvl+ into the hidden constraints (5.13)
and (5.14), which precisely have to be fulfilled additionally by a consistent value,
we obtain

. X di
Qry <ALL_1(.7L[775!)A€QCRV€1+ + Arjl + Ap d—tt(tl)) =0
_ o — 3 ! d’l}v
and QU _¢ <AxT/H1 YALe, t)AvQv_cijv) — AU Poe' + d—tl(tl)) = 0.

The expressions for e; and jy,; follow then by multiplying these expressions by
H;'(-) and H; ' (%) to calculate ;" and jy .
Defining now

’ ’
Pcel+ .= Pce;— Pce L
!

+ . 1
Jr; Joy —Jr»
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and making use of the fact that (e, jr;,jv;, Pce;,jr,) has also to fulfil the
system (4.1) - (4.2), we obtain

AcC(ALe,t)Ale, " + Avjv]| = 0,
L(jr )iy — Alef

I
o

which leads to the presented expressions.
q.e.d.

Theorem 6.6 For the charge-oriented MNA we obtain conszstent values (el,jL,,
jvl, Q, ¢1) starting up from the possibly inconsistent values (e! ,]L,jv, ¢, ¢, ch ,
gzﬁ Y that fulfil the DAE equations as follows:

e = ¢ —H 0L, 0)Q Ry (Asz;t(tlHALL Higat) (aﬁ”—d(ji,tl))),

Jo = U

. . — d’l)t
jvi = gy — HiY(ALe t)QF_ c(

pm (t1)

—AVH (AL 1) Ac (q’l - QQ(Agelvtl)))
q = qlv
o = ¢

Furthermore, the values of the derivatives of the charges and the fluzes associated
with the capacitances and the inductances, respectively, are determined by

> 5 r— — ~ dv
Poqp = Pogq Ly HCIAVH4 1(Agel,t,)Q‘T/C<dt (t1)
~ATHT (B 0 Ao (e - i(afel 1)),

d’Lt

¢ = ¢l— ATHI' (51, t) Q¢ ry <AI¢ 7t (t1)

~

+ALLT Gt (0 - ¢2(j27tl)))

fOT‘ HC = AgAC + Qch
Proof: Theorem 6.6 follows similarly to Theorem 6.5.

Proof of Corollary 6.3: Corollary 6.3 can be interpreted as a special case of
the Theorems 6.5 and 6.6. For k£ = 0 and

’

PCeO = —Hfl(AgeO,to)Acqé(AgeO7t0)7
jLO _L_l(jg,to)(b;(j%,to),
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or, if the charge-oriented MNA is considered, ¢© = 0 and ¢° = 0.
q.e.d.

Corollary 6.7 The values obtained in Theorem 6.5 (or 6.6, correspondingly)
imply that, at time t;, the sum of the additional power delivered by the C-V
loops and L-I cutsets is equal to the sum of the additional power absorbed by the
branches of the C-V loops and L-I cutsets.

Proof:

First of all, let us consider the elements that are affected by the corrections of
the values. Taking into account j;,rl = Qvfcj‘tl, it follows from the projector
analysis made in [6] that only the currents through those voltage sources that
form a part of C-V loops are affected. Considering now that the expressions of
Theorem 6.6 imply

Acq'f + Avj$l =0

for q;+ =q—-d ! it follows that only the currents through capacitances that
form a part of C-V loops change.

Taking into account that Kirchoff’s laws are valid for the (z!, Py!) and for
(x7, Py;) because both fulfil the MNA equations, Tellegen’s theorem!” implies

b b b b

. 1 -l . . 1 -l
Zulk]lk =0 and E upjp =0, le, 0= E Uigdiy — E Ui
k=1 k=1 k=1 k=1

if b is the number of branches, u;, and j;;, are the voltages and currents ob-
tained for the network from the consistent value (z;, Py;), and uic and j,lc are
the voltages and currents obtained from (z!, Py').

Setting u;" = e; — e, jvf = jv; — j{,, Poel"' = Pce) — Pce’l, and le"' =
jr; — ji for a fixed I, for the conventional MNA this leads to

— ; AR l T T, +
0 = > (L(Jletl)Juc i+ Y u (C(Ale,t)Ale
L's from Cls from
L—I—cutsets C—V—loops
+ > eaivit + YL wli(t).
V's from I's from
C—V—loops L—TI—cutsets

and, if q2+ = ql’ — ¢! and ¢;+ = q&; — ¢! is defined, the charge-oriented MNA

implies
’ 'l l ’
0 = E ¢1k+]k + E Up q”:r

L's from Cls from

LI cutsets C—V—loops
. + + .
+ E ve(t) vy + E wry ek (tr)-
Vv's from I's from
C—V—loops L—I—cutsets

17¢f. for instance [5].
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q.e.d.

Proof of Corollary 6.4: Corollary 6.4 can be interpreted as a special case of
Corollary 6.7 for k = 0.

Remark: If 2! denotes a value that fulfils the equations of the system and
x; the corresponding consistent value, then the above results imply that, if we
start the integration process with an implicit Euler method, then we will obtain
the same results when starting up from 2! and from ;. This is due to the fact
that, on the one hand, the dynamic components of z! and x; coincide, and,
on the other hand, the same Jacobian for the Newton method results in both
cases, because of the linear occurrence of the correction. Observe that this is
not the case for integration methods that utilize the values of all variables from
the preceding steps, as for instance the trapezoidal rule.

6.3 The relevant linear system to calculate the consistent
values

The expressions from the Sections 6.1 and 6.2 can be transformed in a way that
we only have to solve a relatively small linear system. We present the results
for an arbitrary point.

Recall that we have denoted the n-terminal capacitances, inductances and re-
sistances by capacitances, inductances and resistances . In this way, we do not
have to distinguish if some of them control others or are controlled by others.
In the following our aim is to define equations that permit the calculation of the
values defined in the last section, but that do not require the direct calculation
of the inverses of the complete matrices H(-), Hy4(-), L(-), and H;(-). Note
that these matrices were constructed by complementing the relevant matrices
that described the C-V loops and L-I cutsets to obtain the non-singularity. In
practice, considerably smaller matrices can be considered.

Definition 6.8 Denote by Ac, and Ay, the incidence matrices of the capaci-
tances and the voltage sources that form a part of C-V loops, respectively, and
denote by q* and C’*(Ag*e,t) the charges and the capacitance matriz corre-
sponding to them.

Further let Ap. denote the incidence matriz of the inductances that form a part
of L-I cutsets, and ¢*, jr« and L*(jp«,t) the fluzes, currents and the inductance
matriz corresponding to them.

Theorem 6.9 For the conventional MNA the solution (Qv*,o*jv*f',Pc*e;+)
of the linear system:

Ac.C” (Ag*el7 tl)Ag*(i;Jr + AV*QV*—C’*].V*T = 0, (6.16)

_5*7C*A€*el+ + QE*fC*Ag*e L Qg*fo*v*i(tl) =0 (617)
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and the solution (QCRVej' , jL*;+) of the linear system

L*(jlf,*v tl)jL*;Jr - A}j*QCRVef = 07 (618)
QERVAL*J'L# + QL pvALeire '+ QorvALiL(t) = 0 (6.19)

provide the values that permit us to calculate the consistent values from Theorem
6.5. ,
Note that Poye ! and L+ U are considered to be constant vectors.

Remarks:

1. Equations (6.17) and (6.19) can be obtained by making use of Procedures
1 and 2 from Section 5.2.

2. A practicable realization of the calculation of suitable values can be carried
out making use of the projectors Qv _¢ and Qcry defined in [6].

Theorem 6.10 For the charge-oriented MNA the solution of the linear sys-

tem!®
AcuCH (AL )AL e + AvuQuacujvaf = 0, (6.20)
_v*fo*AxT/*eer + Qa*fC*Ag*e,l - Qg*fo*v*i(tl) = 07 (621)
§" - (AL )AL — (AR ) = 0 (622)

and the solution of the linear system

%/ - g+
L*(jhut)ite — AL.Qcrve; = 0,  (6.23)
QngAL*jL*lJr+QgRVAL*jL*Il+Q0RVAIi2(t1) = 0, (6.24)
0" — L*(jl )ity — 051G t) = 0 (6.25)

provide the values required to calculate the consistent values e; and jyv; from
Theorem 6.6. The corresponding values of the concerned derivatives can be
fixed then by:

! % 1% * T 1 T '
q = (q +C (AC’*e 7tl)AC*el+7
! % "% Y !
o) = ¢7+L (]L* 7tl)]Ltl
Note that now q’l* and gzﬁ”* are considered to be constant vectors.

Proof: The theorems follow by straight-forward computation.

Remark: The remarks we made for the conventional MNA hold for the charge-
oriented MNA analogously.

I8Note that we expand the system considered in Theorem 6.9 to avoid the calculation of the
! ’
inverse matrices to establish the relation between the given values ¢ *, ¢ '* and the values

_afer*e’l, jL« ! that appear in (6.21) and (6.24), respectively.
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i(®)

€ DC operating point:
er = 0, ea=w2(to), es =vi(to),
L i (&) Jvio = 0, jv2=i(to) —ic(0) , jr = —i(to),
¢! ji = 0, C(ey—e5) =0
2 Consistent initial value:
‘}7 €1 = —Li’(to), €y = U2(t0)7 €3 = Ul(to)
wo o c jvi = C(va(to) = vi(to)) |
3
(e b v = i) (L () — Cb o)~ 1)
jo = —i(to),
jo = —i'(to), C(eh —e5) = C(vi(to) — vi(to)).
v, ()
[

Figure 6.3: Circuit with VCCS

6.4 Considering more general controlled sources

For arbitrary controlled sources, the index may change in various ways'®. There-
fore, we restrict our considerations to those presented in [8] to notice that the
results of the latter section cannot even be applied to all sources considered
there. As it was proved in that paper, some of the controlling sources change
the structure of the spaces associated with the DAE-system. Indeed, it was
proved there that the alteration of the order in which we solve the equations in
Theorem 3.2 of [8] became also recognizable in terms of the space N N .S(-) of
the tractability index. For the approach presented in the above section, we use
that this space is constant. Furthermore, we utilize that precisely the N N S(-)-
components occur only linearly in the equations (4.1) -(4.3) (or (4.4) -(4.6),
respectively) and that, if we modify their values, this changes only the values
of the derivatives of the capacitances and inductances that form a part of C-V
loops or L-I cutsets.

Unless these assumptions are fulfilled, the presented approach to calculate a
consistent value starting from a value fulfilling the system’s equations fails. The
example of Figure 6.3 illustrates the problem for a class of sources described in
[8]. Note that, if, in Figure 6.3, we replace vy by a resistance, then, even if there
appears no C-V loops, the current through v is affected by a hidden constraint.
Therefore, jy1 and C(ey, — e}) have to be rearranged, too.

Nevertheless, the sources described in the Tables 5.1 and 5.2 include, for in-
stance, the controlled sources contained in the MOSFET.

9¢f. for instance [13] and [17].
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7 A combined possibility of initialization

In the following, we present an initialization approach that may allow the user of
a simulation package to prescribe the values of some voltages across capacitances
and currents through inductances, and then to calculate an initial value that
is still related to a DC operating point. This approach is only possible if the
selected elements fulfil some topological restriction described below. In this
chapter we will present the approach successively and summarize the result
finally.

Recall that for multi-terminal elements with n terminals, we consider each pair
of terminals [,n, with 1 < [ < n — 1 as branches, if n denotes the reference
terminal®®. In the following, we assume that, if n-terminal capacitances and
inductances appear in the network, then for each one the user either assigns
values to all or to none of its branch potentials and currents, respectively. 2!

Denotation 7.1 Suppose that the user wants to prescribe the values of the
branch voltages across some capacitive branches and the values of the currents
through some inductive branches of a network G.

Denote by G the graph of the network we obtain when substituting, in G, all
capacitances and inductances for which the user wants to prescribe an initial
value by independent constant wvoltage and current sources, respectively. Let
the constant values characterizing these sources be precisely the values the user
wants to assign.

If the user wants to prescribe the values of an n-terminal, then, to construct é,
we introduce voltage or current sources that connect the reference node of that
n-terminal with each of the other terminals.

Let the matrices (AcArALAvAr) and (ApApA; Ay Aj) denote the incidence
matrices of the original and the modified graphs, respectively.

We denote by:

e Ac- the incidence matrix of those capacitances across which the user
wants to assign an initial branch voltage.

e A;- the incidence matrix of those inductances through which the user
wants to assign a initial current.

e Note that then A and A; denote the incidence matrices of capacitances
and inductances for which the user does not assign an initial value.

e Ay, the incidence matrix of the voltage sources we introduce into the
network instead of capacitances.

e A;, the incidence matrix of the current sources we introduce into the
network instead of inductances.
20¢f. [8].
211f this restriction is not kept, then further topological considerations concerning controlling
and the controlled elements have to be made.
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With these denotations, the following relations follow directly if we suppose that
the incidence matrices are defined considering the elements of the same shape
successively:

Ac- = Ayy, Ap- = Apy,
Ay = (AvAyy) = (AvAc-), Aj = (Ard;s) = (A1AL-),
Ao = (ApAc-) = (ApApy), Ap = (A;Ap-) = (A; AL).

To apply the approach presented in this section, the choice of capacitances and
inductances made has to fulfil the topological restrictions of Table 7.1.

TOPOLOGICAL RESTRICTIONS

In this section, a specific choice of inductances and capacitances for which
the user wants to prescribe initial values has to fulfil the following topological
conditions:

1. The matrix (Ay Ac-) = Ay has full column rank.

2. The matrix (AcA- ArAv) = (ApApA; Ap) has full row rank.

3. The matrix (A;- Ay Ac-) = (4;, Ay ) has full column rank.
4. The matrix (A;- ApAvAc-) = (Ap, A;, Ay) has full row rank.

If these conditions are fulfilled, we go on looking at G.

Table 7.1: Topological restrictions

Remarks about Table 7.1:

e Note that the conditions (1) - (2) mean that G does not contain loops of
voltage sources only nor cutsets of current sources only.
If these conditions are not fulfilled, then the initialization the user wants
to perform is not possible. On the one hand, if (1) is not fulfilled, then
it is not possible to assign a value to all chosen capacitances. On the
other hand, if (2) is not fulfilled, we cannot prescribe values for all chosen
inductances. (cf. [6]).

e Furthermore, the conditions (3) - (4) have to be fulfilled if G is DC-
solvable. If these conditions are not met, this approach cannot be carried
out for the selected inductances and capacitances. In this case, some
further or fewer inductances and/or capacitances have to be considered.

e Indeed, these conditions are necessary but not sufficient to guarantee the
DC-solvability of G. For the approach of this section we require that G is
DC solvable.
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From now on, let us suppose that G is DC solvable and that we calculate the
DC operating point for G.

In the following we will show how and why we can make use of the values com-
puted in this way to obtain a value that fulfils the MNA equations corresponding
to G.

We denote by
e (g, b, (AGARAiAV)Te,ji,jV) the variables corresponding to G:

e vy, and ¢;, the voltage and the current of the introduced independent
constant voltage and current sources, respectively;

e O and i the complete voltage and current vectors of the voltage and current
sources of G.

Making use of the equations that are fulfiled for the DC operating point of é,
we define initial values for G by the following possible relations:

Apr(Afe )+ A;j; + Apdy + Aji() = 0, (7.1)
S~—— S——
:AVjV+A‘7+j"/+ :AIZ()+Af+Zf+
T —
—ATe = 0, (72
T ~
Ape—9() = 0, (7.3
—_——
= Ale—v(-)=0, A€+efvv+_0

6—01(jp,t) = 0. (7.5)
Of course, if the conventional MNA is considered, the equations (7.4) - (7.5)
will not appear.
Assignment 7.2 Denote by (¢°, ¢°, (AC,ARAﬁAV)TeO,j%j%) the operating point
of G. Let us fix then the following values for the variables of G by means of:

AT 0 AT
T ._ _
Aoe = <A%ireo) = ( Cj > , (76)

Vp4
-0

. J:

jbo= <L> . (7.7
For the remaining values of ATe! and for ji, we apply the values obtained for
G directly.
If we denote by jlc the vector that contains the values of!j?,Jr for the capacitances
for which we prescribed initial branch voltages and zero else, then we can set:

’

Pee ! = C_I(Agelv tl)(]lc’ - q;,(Agelv tl))v (78)
jp o= LT t)(ALe = 61 (7. 1)
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for the conventional MNA and

dql ol
E o ]Cv
det
W = A%€l7
ql = qC’(Agelvtl)v

¢l = ¢L (.]lLv tl)
for the charge-oriented MNA .

(7.10)

(7.11)

(7.12)
(7.13)

Note that the derivatives of the charges and fluzes can only be distinct from zero
for the capacitances and inductances for which we prescribed an initial value.

Lemma 7.3 The values determined by Assignment 7.2 fulfil the MNA equations

for G.

Proof: For the charge-oriented MNA the equations

d
Ao—q + Arr(Ake t) + ApjL + Avijv + Agi(-) =0,

dt
do
E — Afe = 0,
Ale —v(-) =0,
q— qC(Agevt) = 07
¢—ér(jr,t) =0

have to be fulfilled. We discuss each of them.

e Equation (7.14) is fulfilled because of (7.1), taking into account that we

obtain
dg! ) ) )
AC’W = ACJIC = AC’—]?/+ = AV+.7?7+7
Arjy = Aﬁjg + Ajiire,

making use of (7.10), (7.7), and Arr(Afe’,t) = Apr(ALe 1) .
e Equation (7.15) is fulfilled because of (7.2) and the setting (7.11).
e Equation (7.16) is fulfilled because of (7.3).
)

e Equation (7.17) and (7.18) are fulfilled because of (7.12) and (7.13).

Therefore, this value fulfils the system’s equations.
q.e.d.

For the conventional MNA, the proof is analogous.
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Consider now the following procedure to calculate a consistent initial value that
meets the demands of the user of the simulation package.

PROCEDURE 3

Suppose that the user wants to prescribe values for the branch potentials across
the capacitances C1, ..., C,, and values for the currents through the inductances
Ly,...,Lp.

1. Check if the graph G resulting according to Denotation 7.1 for the selection
of capacitances and inductances is DC-solvable. If not, this procedure
cannot be applied.

2. Compute the DC operating point for G.
3. Fix the values for G as described in Assignment 7.2.

4. Compute a consistent value related to the value obtained in Step 3 as
described in the Theorems 6.5 and 6.6 for the conventional and the charge-
oriented MNA| respectively.

We summarize the results of this section in the following theorem:

Theorem 7.4 If a selection of capacitances and inductances is permissible ac-
cording to step 1, then Procedure 3 yields consistent initial values with the prop-
erties:

e The branch potentials across the selected capacitances and the currents
through the selected inductances are the prescribed ones.

e The values of the currents that flow through the capacitances that are nei-
ther selected nor form a part of C-V loops are zero.

e The values of the voltages across the inductances that are neither selected
nor form a part of L-I cutsets are zero.

An example is given in Figure 7.1. There we consider the example of Figure 6.1
and suppose the user wants to prescribe the value v¢, for the voltage across the
capacitance C7. Observe that the value obtained for the current through the
capacitive branch of C'y depends also on the value v¢, .

8 Conclusion

In this article we have presented how to make use of the special structure of
the equations obtained by means of the MNA in electric circuit simulation to
compute consistent values. This may give new insight into how to deal with
these structural properties with regard to numerical circuit simulation.
Nevertheless, these results are only valid if we make restrictions on the controlled
sources that appear in the network. For arbitrary controlled sources, no such
general results seem to be possible.
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v ()

DC operating point for G:
e1 = vo, e2=uve —v(ty),

. . 1
Jv. = —Jjve, = E(Uol —v(to))-

Definition of values for G:

MNA equations for G:

€1 = Vo, €2=7vCc; — U(to)v
ey tiv = 0, v o= E(Uol - ’U(to)),
1
—jv +Caey + —es = 0, 11
2 R 611 = _C_E(UCI — ’U(to))
er —es = w(t), 1
e1 = vg- These values are not consistent for G.
Consistent initialization for G:
e1 = vo, e2=uvc, —v(t).
With
1 11
4 /
it = o (V) - g e - vl
C_l C_z Ol R !
we obtain
. 1 1 11
Jjv = E(Ucl —v(to)) + % (U'(to) - C—lﬁ(vcl - U(to))> )
1 1 1 11
L= —— | =(ve, — ot ——— (V' (to) = 5= (ve, —o(t
¢ = o (chl 000 + = (Vi) ~ g e, o o>>)>,
1 1 11
! !
€9 = A1 1 (’U (t()) — ——(’Ucl — ’U(t[)))) .
02 C_l + 0—2 Cl R

Figure 7.1: Example of Procedure 3 if we prescribe the value of the branch
potential of the capacitance C; in Figure 6.1.
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