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Abstract

In this work, the near bandgap linear optical properties of semiconductor
quantum structures under applied magnetic field are investigated. These
properties are determined mainly by a quasi-particle consisting of one elec-
tron and one hole called exciton.

First, the exciton theory is developed starting with the one-electron Ha-
miltonian in a crystal, continuing with the Luttinger and Bir-Pikus Hamil-
tonian, and ending with the exciton Hamiltonian in the envelope function
approximation. Further, concentrating on the quantum well and thus as-
suming strong confinement in the growth (z-) direction, the motion parallel
and perpendicular to the xy-plane is factorized leading to the well-known
single sublevel approximation. A magnetic field perpendicular to the xy-
plane is applied, and a general theorem describing the behavior of the energy
eigenvalues is derived. This theorem is generally valid for any many-particle
system. Last but not least, the strain calculation within the isotropic elas-
ticity approach is described in detail.

Second, disorder is taken into account. After discussing its properties,
the standard ansatz of factorizing exciton relative and center-of-mass motion
is introduced. The Schrödinger equation is solved numerically for both the
full model and the factorization with artificially generated disorder poten-
tials showing that the differences between them are pronounced especially
for tail states. From the physical point of view it is shown that (i) the
diamagnetic shift, i. e. energy change with magnetic field, is inversionally
proportional to the localization of the wave function, (ii) the distribution of
the diamagnetic shifts of individual exciton states exists and these shifts are
non-monotonic in energy, (iii) the average value of the diamagnetic shift in-
creases with energy, and (iv) absorption and consequently photoluminescence
spectra become wider with increasing magnetic field.

Furthermore, having structural information from the cross-sectional scan-
ning tunneling microscopy of a given sample avaible, the statistical properties
of the disorder in a real quantum well have been analyzed. This analysis en-
abled the numerical generation of new lateral disorder potentials which served
as input in the simulation of exciton optical properties. In particular, temper-
ature dependent photoluminescence spectra and diamagnetic shift statistics,
have been compared with the experimental ones and very good agreement
has been found.

The second part of this thesis deals predominantly with highly symmet-
rical structures embedded in the quantum well: namely quantum rings and



dots. First, adopting an ansatz for the wave function, the Hamiltonian ma-
trix is derived discussing which matrix elements are non-zero according to
the symmetry of the potential. Additionally, the expectation values of the
current and magnetization operators are evaluated. Then, concentrating on
the case of the highest (circular) symmetry, the model of zero width ring
is introduced. Within this model the close relation between the oscillatory
component of the exciton energy (exciton Aharonov-Bohm effect) and the
persistent current is revealed. Examples for different material systems follow
revealing the importance of the relation between exciton Bohr radius and
ring diameter for oscillations and persistent current to be observed. The cir-
cular quantum dot is treated briefly. Finally, a case of the non-circular ring
is discussed and it is shown that oscillations can be observed although with
lower amplitude compared to circular case.

Finally, the exciton emission kinetics is calculated, too. The limitations
of the experimental observability of energy oscillations, photoluminescence
quenching, caused by non-zero non-radiative channels are disclosed.

Keywords:
Exciton, Magnetic field, Nanostructures, Optical properties, Kinetics
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Zusammenfassung

In dieser Arbeit werden die linearen optischen Eigenschaften von Halbleiter-
Nanostrukturen in der Nähe der Bandlücke im Magnetfeld untersucht. Diese
Eigenschaften werden hauptsächlich vom Quasiteilchen Exziton, das aus ei-
nem Elektron und einem Loch besteht, bestimmt.

Zuerst wird die Exziton-Theorie entwickelt: Beginnend mit dem Hamil-
ton-Operator eines Elektrons im Kristall wird der Luttinger- und Bir-Pikus-
Hamilton-Operator entwickelt, und schließlich wird der Hamilton-Operator
eines Exzitons in der Enveloppen-Näherung aufgestellt. In weiteren wird ein
Quantengraben betrachtet, wo eine starke Beschränkung der Wellenfunktion
in der Wachstumsrichtung (z-Richtung) angenommen werden kann, und die
Bewegung parallel und senkrecht zur xy-Ebene faktorisiert. Das führt zur
bekannten Näherung des isolierten Sublevels. Für ein senkrecht angelegtes
Magnetfeld wird ein allgemeines Theorem für das Verhalten der Energie-
Eigenwerte abgeleitet. Dieses Theorem gilt auch für mehrere Teilchen. Die
Berechnung der Verzerrung des Halbleitermaterials in der Näherung der iso-
tropen Elastizität wird im Detail beschrieben.

Zweitens wird die Unordnung berücksichtigt und ihre Eigenschaften dis-
kutiert. Der übliche Ansatz für die Faktorisierung in Schwerpunkt- und Rela-
tiv-Bewegung des Exzitons wird eingeführt. Die Schrödinger-Gleichung wird
für das volle Modell und die Faktorisierung mit künstlich generierten Poten-
tialen numerisch gelöst. Die Lösung zeigt, daß die Unterschiede zwischen bei-
den Modellen hauptsächlich für Zustände im Ausläufer der optischen Spek-
tren wichtig sind. Weiter wird gezeigt, daß (i) die diamagnetische Verschie-
bung, d. h. Änderung der Energie mit einem Magnetfeld, umgekehrt pro-
portional zur Lokalisierung der Wellenfunktion ist, (ii) eine Verteilung der
diamagnetischen Verschiebungen der lokalisierten Zustände des Exzitons exi-
stiert, (iii) der Mittelwert der diamagnetischen Verschiebung mit der Energie
anwächst, und (iv) Absorptions- und Photolumineszenz-Spektren mit dem
Magnetfeld breiter werden.

Drittens werden die statistischen Eigenschaften der Unordnung in einem
realen Quantengraben analysiert, von dem strukturelle Informationen verfüg-
bar waren, die mit dem Raster-Tunnelmikroskop an einer Querschnittsfläche
gewonnen wurden. Diese Analyse ermöglicht die numerische Erzeugung neuer
Unordnungspotentiale, die dann für die Simulation der optischen Eigenschaf-
ten benutzt wurden. Insbesondere temperaturabhängige Photolumineszenz-
Spektren und die Statistik der diamagnetischen Verschiebungen wurden mit



den experimentellen Daten verglichen, wobei eine sehr gute Übereinstimmung
gefunden wurde.

Der zweite Teil dieser Dissertation beschäftigt sich überwiegend mit hoch-
symmetrischen Strukturen eingebettet im Quantengraben, nämlich Quanten-
ringen und Quantenpunkten. Mit einem Ansatz für die Wellenfunktion wird
die Hamilton-Matrix abgeleitet, wobei der Zusammenhang zwischen nichtver-
schwindenden Matrixelementen und der Symmetrie des Potentials diskutiert
wird. Zusäztlich werden die Erwartungswerte des Stromoperators und der
Magnetisierung ausgewertet. Dann wird die höchste (zirkuläre) Symmetrie
angenommen und das Modell eines Ringes mit verschwindender Breite ein-
geführt. Im Rahmen dieses Modells wird der enge Zusammenhang zwischen
der oszillatorischen Komponente der Exziton-Energie (Aharonov-Bohm Ef-
fekt des Exzitons) und dem persistenten Strom aufgezeigt. Es folgen einige
Beispiele für unterschiedliche Materialien, die den engen Bezug zwischen dem
Bohr-Radius des Exzitons und dem Durchmesser des Ringes im Hinblick auf
die Beobachtbarkeit der Oszillationen und des persistenten Stroms zeigen.
Zirkuläre Quantenpunkte werden kurz behandelt. Schließlich wird der Fall
eines nichtzirkulären Ringes diskutiert und gezeigt, daß Oszillationen be-
obachtbar sein sollten, obwohl mit kleinerer Amplitude im Vergleich zum
zirkularen Ring.

Zum Schluß wird die Kinetik der Emission des Exzitons behandelt. Ein-
schränkungen der Beobachtbarkeit der oszillatorischen Komponente der Ex-
ziton-Energie werden aufgezeigt, die mit der Unterdrückung der Photolumi-
niszenz durch nichtradiative Prozesse zusammenhängen.

Schlagwörter:
Exziton, Magnetfeld, Nanostrukturen, Optische Eigenschaften, Kinetik
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Introduction 3

Figure 1: The schematic picture of the molecular beam epitaxy [YC94].

The semiconductor nanostructures like quantum wells, wires or dots have
been investigates now for more than 30 years. They have found a giant
number of applications in the technology, just to mention few of them: lasers,
light emitting diodes, light detectors or transistors. This number is still
increasing and these structures are nowadays considered to be even more
perspective for future applications e.g. for quantum computing. This is one
of the reasons why after such a long time the amount of research performed
on this field does not decrease but grows further.

The scientific interest and technological progress would not be thinkable
without the key invention: molecular beam epitaxy (MBE) [CA75]. This
method (schematically plotted in Fig. 1) enables to grow structures layer by
layer with very high quality. The structures with excellent properties like very
high carrier mobility or optical yield are grown in this way. Unfortunately,
due to many reasons these structures are even with this advanced method
far from being ideal due to e. g. the rough interfaces between two materials
or random position of atoms in an alloy. Among other methods used to
grow such structures metal oxide chemical vapor deposition [Dap82] should
be mentioned.

Due to the strong dependence of transport and optical properties on the
applied magnetic and electric field, the two-dimensional planar structures
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Figure 2: The schematic picture of the ideal quantum well. The conduction
(CB) and valence (VB) band profiles with electron (-) and hole (+) are
indicated.

(quantum wells, schematically shown in Fig. 2), coupled quantum wells and
multiple quantum wells) have been under focus. The mostly used material
for fabricating these structures is GaAs/AlGaAs thanks to its properties: (i)
direct bandgap of the ternary alloy (up to 40% of the Aluminum concentra-
tion) and (ii) practically the same lattice constant of GaAs and AlAs, which
reduces the strain substantially.

The technological importance of the quantum wells and related structures
makes it necessary to investigate the influence of imperfections on physical
properties. There is the well-known model of disorder introduced by Ander-
son [And58] which predicts that according to the strength of disorder the
transition (mobility edge) between conducting (delocalized wave function of
the carrier) and non-conducting (localized wave function) regime exists.

Like transport also optical properties give information about disorder.
The linear optical properties near the bandgap of the semiconductor are
dominated by the quasi-particle called exciton, consisting of the electron
in the conduction band and the hole in the valence band. The sensitiv-
ity to the disorder of the magnetic field dependent exciton properties like
inhomogeneous line-width of the absorption and photoluminescence spec-
tra and diamagnetic shift of the localized excitons enable to learn a lot
of about underlying structure. Several experimental techniques have been
developed to obtain as much detailed information as possible like: Micro-
photoluminescence [ZBH+94; BAB+94; GSK95], scanning near-field optical
spectroscopy [HBH+94], and cathodoluminescence [RMJ+95]. The theoreti-
cal approaches to this phenomena, which will be discussed in detail in Chap-
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r
1
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Figure 3: The schematic picture of the ideal quantum ring in xy-plan. Two
materials A and B are distinguished.

ter 2, have been developed successfully. There is an excellent agreement
between theory and experiment showing how much about disorder has been
understood.

However, it may seem surprising that there is only a little experimental
work that directly confirms the connection between structure and optics in
simple situations. By "directly" we mean that the structural properties of a
given sample are measured as precisely as possible (e. g. by transmission
electron microscopy [OTC89], X-ray diffraction [Fle80], or scanning tunnel-
ing microscopy [LZY+98]) and predictions on the optical properties are made
from the structural data, and that those are contrasted by an optical exper-
iment.1 We will address this open question in Chapter 2, too.

The second part of this thesis deals with ideal structures (like quantum
ring2 which is schematically plotted in Fig. 3) embedded in the quantum well.
Unlike in the first part, magnetic field is not a tool to get some information
about disorder but induces qualitatively new effects: exciton Aharonov-Bohm
effect (ABE) [AB59] and exciton persistent current. Even though we focus
on the structures which are very hard to grow [GMRS+97; MKS+05] and
we find effects which are hard to observe experimentally, they are surprising
on the first glance since the exciton as a neutral (composite) particle should
interact with magnetic field only weakly.

The original ABE is found only for charged particles [AB59] as a purely
quantum mechanical effect showing the important role of the vector po-
tential. The ground state energy of a charged particle oscillates with the
magnetic flux ΦB =

∮
B · dS. If the particle orbits in a ring around an

1Relaxing mentioned criteria there are methods that investigate experimentally and
theoretically semiconductor optical properties near bandgap like e.g. comparative studies
of ion-beam induced defect formation in crystalline solids [WMBW94].

2We will use throughout this thesis the names quantum ring and nanoring equivalently.
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infinitely long solenoid with radius r0 where the magnetic field B is con-
centrated then the magnetic flux is ΦB = πr2

0B. The oscillation period is
given in units of the magnetic flux quantum h/e. Shortly after its theoreti-
cal prediction the ABE has been confirmed experimentally [Cha60; MB62].
Furthermore, even recently ABE has been observed e.g. in mesoscopic metal
rings [vODNM98], carbon nanotubes [BSS+99], and in doped semiconductor
InAs/GaAs nanorings [LLG+00]. Last but not least, the persistent current,
induced by an electron orbiting in a cylindrical film of a normal metal, has
been measured for the first time in Ref. [SS81] and recently in mesoscopic
metals [LDDB90; CWB+91] and semiconductor rings [MCB93]. Moreover,
also interacting electrons in the ring exhibit both ABE and the persistent
current [WF95; WFC95].

This thesis is divided into two parts: The first one deals with excitons
in quantum well under applied magnetic field. First, we start with the de-
scriptions of our theoretical approach (Chapter 1) and then we focus on the
exciton in the disordered quantum wells (Chapter 2), performing demanding
numerical simulations. In the second part we add another nanostructures,
either quantum dot or ring, into the ideal quantum well. We concentrate on
the energy, persistent current, and magnetization as a function of the mag-
netic field in Chapter 3. The emission kinetics is investigated in Chapter 4.
The results are summarized in Chapter 5. Many calculations are described
in detail in the appendices.
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Chapter 1

Theoretical approach

The theory of exciton in the quantum well is developed in this chapter. We
start with the crystal structure and adopting justified approximations we suc-
ceed to reduce the dimensionality and complexity of the problem enormously.
Finally, we end with the rather simple two-particle and two dimensional ex-
citon Hamiltonian which we solve without any further approximations and
lateron compare the results with the experiment in Chapter 2.

1.1 Crystalline and electronic properties

The III-V compounds which are the object of our interest crystallize in the
zincblende structure. The first Brillouin zone of the reciprocal lattice is a
truncated octahedron (see Fig. 1.1). Several high symmetry points or lines
of the first Brillouin zone have received specific notations, e.g. X, L and Γ
points. In a III-V binary material like GaAs, there are 8 electrons per unit
cell (3 from Ga and 5 from As) which contribute to the chemical bounds.
We can say that the orbital of every atom hybridize (due to interaction with
his neighbors) to form bonding and antibonding state which broaden into
bands because of a great number of unit cells interacting. Two electrons fill
the s-band and remaining six electrons occupy the p-bands. Antibonding
bands are empty and the lowest lying one forms the conduction band (rep-
resentation Γ6

1 in the Γ point). All III-V compounds have the top of the
valence band in the center of Brillouin zone. The spin-orbit coupling lowers
the sixfold degeneracy in the point Γ, and gives rise to a quadruplet with

1There are five irreducible representations of the cubic symmetry group Td. Taking
into account spin-orbit coupling this number is increased since the spin is not invariant
to the rotation by the angle 2π. The eight representations Γ1−8 of double groups are
formed [YC94].

9
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Figure 1.1: First Brillouin zone of face-centred cubic lattice, taken from
[Bas92].

J = 3/2 (representation Γ8) and a doublet J = 1/2 (representation Γ7). The
conduction band edge of the III-V materials is situated near one of the points
Γ, L or X. The heavier the cation the more likely it is to find band edge in
the point Γ.

1.2 k.p analysis

The starting point of our approach is the one-electron Schrödinger equation
in a bulk crystal which takes the form of[

p2

2m0

+ V (r) +
h̄2

4m2
0c

2
(σ ×∇V ) · p +Hr

]
Ψ(r) = EΨ(r), (1.1)

where V (r) is the crystalline potential which includes an average of the
electron-electron interaction and is periodic with the period of the Bravais
lattice. The third term is the spin-orbit coupling and the fourth term is
the relativistic correction (mass-velocity and Darwin term). The solution of
Eq. (1.1) can be written in the Bloch form:

Ψnk(r) = Nunk(r) exp(ik.r), (1.2)

where N is a normalization coefficient and unk(r) is a periodic function of
r with the period of the lattice. The periodic parts of the Bloch functions
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unk(r) are the solutions of (dropping the relativistic corrections)[
p2

2m0

+ V (r) +
h̄2

4m2
0c

2
(σ ×∇V ) · p+

+
h̄2k2

2m0

+
h̄k

2m0

·
(
p +

h̄2

4m2
0c

2
(σ ×∇V )

)]
unk(r) = εnkunk(r). (1.3)

The k-dependent terms in (1.3) vanish at k=0 and commute with the trans-
lation operator. The functions um0(r) form a complete basis and can be to
used to investigate the energy dispersion εnk and wave function properties
for small k

unk(r) =
∑
m

cm(k)um0(r). (1.4)

By inserting (1.4) into (1.3), multiplying by u∗n0(r) and integrating over a
unit cell we obtain:∑

m

{(
εn0 − εnk +

h̄2k2

2m0

)
δnm +

+
h̄k

m0

· 〈n0|p +
h̄2

4m2
0c

2
(σ ×∇V )|m0〉

}
cm(k) = 0, (1.5)

where
〈n0|A|m0〉 =

∫
unit cell

u∗n0(r)Aum0(r)d
3r. (1.6)

The Eq. (1.5) is well suited for the perturbation approach. Supposing that
the nth band edge is non-degenerate, we can then assume for small k:

cn(k) ∼ 1; cm(k) = α.k, (1.7)

which inserted in Eq. (1.5), results in

cm(k) =
h̄k

m0

·Πnm
1

εn0 − εm0

, (1.8)

and gives the second order correction to εn0:

εnk = εn0 +
h̄2k2

2m0

+
h̄2

m0

∑
m6=n

|Πnm · k|2

εn0 − εm0

. (1.9)

The vector Π is defined as:

Π = p +
h̄2

4m2
0c

2
(σ ×∇V ). (1.10)
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As long as k is small (εnk−εn0 remains much smaller than all band edge gaps
εn0−εm0) the dispersion relations of the non-degenerate bands are parabolic
in k in the vicinity of the Γ point.

εnk = εn0 +
h̄2

m0

∑
α,β

kα
1

µαβ
n

kβ, (1.11)

where
1

µαβ
n

=
1

m0

δαβ +
2

m2
0

∑
m6=n

Πα
mnΠβ

nm

εn0 − εm0

, (1.12)

µαβ
n is the effective mass tensor which describes the carrier kinematics in the

vicinity of the zone center and for the energy close to the nth band edge.
Assuming the validity of Eq. (1.12) the overall effects of the band structure
are embodied in the use of an effective mass instead of the free electron mass.
This approach is well suited for the lowest conduction band (Γ6).

1.3 Luttinger and Bir-Pikus Hamiltonian
In the case of degenerate bands the simple perturbation theory cannot be
used. Instead a different approach is developed. The most important is the
case of the topmost 6 valence bands which are treated exactly in the k · p
approach and the coupling to higher conduction bands is included within
the perturbation theory [YC94]. Taking into account the spin-orbit coupling

h̄2

4m2
0c2

(σ ×∇V ) only the total angular momentum

J = L+ S, (1.13)

where L is the orbital angular momentum and S is the spin, remains the
good quantum number. There are two values of J = 3/2 and 1/2 for the
valence bands and corresponding basis function can be found with the help
of Clebsch-Gordan coefficients |JJz〉∣∣∣∣32 +

3

2

〉
= −1

2
|(X + iY ) ↑〉 ,

∣∣∣∣32 +
1

2

〉
=

1√
6
|−(X + iY ) ↓ +2Z ↑〉 ,∣∣∣∣32 − 1

2

〉
=

1√
6
|(X − iY ) ↑ +2Z ↓〉 ,

∣∣∣∣32 − 3

2

〉
=

1

2
|(X − iY ) ↓〉 ,∣∣∣∣12 +

1

2

〉
=

1√
3
|(X + iY ) ↓ +Z ↑〉 ,

∣∣∣∣12 − 1

2

〉
=

1√
3
|(X − iY ) ↑ −Z ↓〉 ,

(1.14)
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where ↑(↓) is spin up (down), |X〉, |Y 〉, and |Z〉 are p-like functions and their
combinations 1

2
(X + iY ), Z, and 1

2
(X − iY ), which are eigenfunctions of L

and Lz, are analogous to spherical harmonics. The Hamiltonian Eq. (1.1) is
projected on the basis Eq. (1.14) and the coupling with the lowest conduction
bands is included within the perturbation theory.

There is also a different approach where the Hamiltonian is derived using
symmetry of the cubic or zinc blend lattice with effective parameters which
are related to the energies coming from the k·p calculation. This Hamiltonian
has been derived for the first time by Luttinger and Kohn [LK55] and the
parameters are thus called Luttinger-Kohn parameters. Furthermore, Bir
and Pikus have introduced strain into this Hamiltonian [BP74] which has
the following complex form of [CC92]

H =



P +Q −S R 0 − 1√
2
S

√
2R

−S† P −Q 0 R −
√

2Q
√

3
2
S

R† 0 P −Q S
√

3
2
S†

√
2Q

0 R† S† P +Q −
√

2R − 1√
2
S†

− 1√
2
S† −

√
2Q

√
3
2
S −

√
2R P + ∆ 0

√
2R†

√
3
2
S†

√
2Q − 1√

2
S 0 P + ∆


, (1.15)

where

P = Pk + Pε, Q = Qk +Qε,

R = Rk +Rε, S = Sk + Sε,

Pk =

(
h̄2

2m0

)
γ1(k

2
x + k2

y + k2
z),

Qk =

(
h̄2

2m0

)
γ2(k

2
x + k2

y − 2k2
z),

Rk =

(
h̄2

2m0

)√
3[−γ2(k

2
x − k2

y) + 2iγ3kxky],

Sk =

(
h̄2

2m0

)
2
√

3γ3(kx − iky)kz],

Pε = −av(εxx + εyy + εzz),

Qε = − b
2
(εxx + εyy − 2εzz),

Rε =

√
3

2
b(εxx − εyy)− idεxy,

Sε = −d(εzx − iεyz), (1.16)
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where εij is the strain tensor, γ1, γ2, and γ3 are Luttinger-Kohn parameters,
av, b, and d are Bir-Pikus deformation potentials, and ∆ is the spin-orbit
split-off energy. The energy zero is taken at the top of unstrained valence
band.

Further assumptions can be made: Since the spin-off offsets is of order of
eV, much larger than tens of meV in which we are interested, we neglect cou-
pling between these bands and the rest. This reduces the matrix of Eq. (1.15)
to 4×4 (the first submatrix). Since the hydrostatic and biaxial strain are the
most important in III-IV semiconductors we restrict ourselves only to them
in the following, which means

εxx = εyy 6= εzz,

εyx = εyz = εzx = 0,

and then

Rε = Sε = 0. (1.17)

The eigenenergies of the reduced 4× 4 Eq. (1.15) are

E1(k) = −P − sgn(Qε)
√
Q2 + |R|2 + |S|2, (1.18)

E2(k) = −P + sgn(Qε)
√
Q2 + |R|2 + |S|2. (1.19)

The sign of Qε is important for the type of the strain: negative (positive) for
compressive (tensile). The equation (1.18) can be expanded for small k and
the dispersion relation can be obtained

E1(k) = −Pε −Qε −
(
h̄2

2m0

)
[(γ1 + γ2)(k

2
x + k2

y) + (γ1 − 2γ2)k
2
z ],

(1.20)

E2(k) = −Pε +Qε −
(
h̄2

2m0

)
[(γ1 − γ2)(k

2
x + k2

y) + (γ1 + 2γ2)k
2
z ],

(1.21)

and band edges are

E1(0) = −Pε −Qε, E2(0) = −Pε +Qε. (1.22)

The typical situation in the semiconductors is that the valence band is almost
filled and only few electrons are found in the conduction band. We may look
on this as there were empty places in the valence band called holes. The hole
has positive charge and effective mass (mh = −mv) and it can be treated
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as a quasi-particle. Since there are two dispersion relations, Eq. (1.20), two
types of holes have to be distinguished according to their effective masses

m∗
hh,⊥ = (γ1 − 2γ2)

−1m0, m∗
hh,|| = (γ1 + γ2)

−1m0, (1.23)

m∗
lh,⊥ = (γ1 + 2γ2)

−1m0, m∗
lh,|| = (γ1 − γ2)

−1m0, (1.24)

where ‖ (⊥) stands for the motion in (perpendicular to) the xy-plane. Com-
paring the hole masses in the z-direction (perpendicular ones) the hole with
larger (smaller) mass is called heavy (light). The heavy hole has smaller
parallel mass then the light hole. The importance of the z-direction will be
clear when discussing the quantum wells. The heavy and light hole dispersion
relation can be written for clarity (omitting the superscript ∗ from now)

Ehh(k) = Pε +Qε +

(
h̄2

2m0

)(
k‖

mhh,‖
+

k⊥
mhh,⊥

)
, (1.25)

Elh(k) = Pε −Qε +

(
h̄2

2m0

)(
k‖
mlh,‖

+
k⊥
mlh,⊥

)
. (1.26)

1.4 Envelope function approximation
We have treated only the ideal bulk so far. Now we introduce an additional
potential U(r) into the original Hamiltonian H0 Eq. (1.1). This potential
stands for e.g. impurities, donors, acceptors, the quantum well profile or
magnetic2 and electric field. We assume that U(r) is a weak and slowly
varying potential so that the perturbation theory can be applied. We may
suppose that an additional non-periodic potential localizes the wave function
and that’s why the application of the delocalized periodic Bloch functions
Ψnk(r) is not the best choice. More appropriate is to use the localized func-
tions for a complete basis. These can be obtained by Fourier transformation
of the Bloch functions, these are called the Wannier functions an(r,Ri)

an(r,Ri) =
1√
N

∑
k

e−ikRiΨnk(r), (1.27)

Ψnk(r) =
1√
N

∑
Ri

eikRian(r,Ri), (1.28)

where N is the number of unit cells of the crystal3 and Ri is a lattice vector.
Since these functions are the eigenfunction of the lattice vector operator R̂

R̂ an(r,Ri) = Ri an(r,Ri), (1.29)
2The vector potential A(r) is meant here.
3Periodic (Born-Karmán) boundary conditions are assumed.
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the application of this operator on the wave function

ψ(r) =
∑
n,k

An(k)Ψnk(r) (1.30)

can be approximated by

R̂ψ(r) ≈
∑
n,k

(
i
∂

∂k
An(k)

)
Ψnk(r). (1.31)

The equality is not found here since both k and R are discrete.
Having found this useful correspondence,

R ↔
(
i
∂

∂k

)
and k ↔

(
i
∂

∂R

)
, (1.32)

we may start to search for the solution of the Schrödinger equation in the
form of

ψ(r) =
1√
N

∑
n,i

Φn(Ri)an(r,Ri), (1.33)

where Φn(Ri) are envelope functions. Applying this ansatz in the Eq. (1.1)
with additional U(r) and multiplying with a∗m(r,Rj) on the lefthand side,
the unperturbed part gives

〈m,Rj|H0|n,Ri〉 = δn,mδi,jEn

(
i
∂

∂R

)
, (1.34)

where En(k) is a dispersion relation of the nth band. The second contribution
can be approximated by

〈m,Rj|U(r)|n,Ri〉 = δn,mδi,jUn(R). (1.35)

The Schrödinger equation for the envelope functions can be thus written as[
En

(
i
∂

∂R

)
+ Un(R)

]
Φn(R) = E Φn(R). (1.36)

This approach is one of the mostly used in the theory of nanostructures
since the Bloch functions (and consequently Wannier functions) of many
semiconductors are almost identical. The values of the following matrix
element

P =
−i
m0

〈S|px|X〉 =
−i
m0

〈S|py|Y 〉 =
−i
m0

〈S|pz|Z〉, (1.37)

where S represents s-function, which are listed in Tab. 1.1, reveal it clearly.
When combining different materials, the envelope function approximation
is sufficient as the first approximation where Un(R) can be the position-
dependent bandgap.
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Table 1.1: Values of Ep = 2m0P
2 in eV in some III-V materials, taken from

[Bas92].
material Ep (eV)
InP 17.00
InAs 21.11
InSb 22.49
GaAs 22.71
GaSb 22.88

1.5 Exciton in ideal bulk
Our approach has focused on the one-electron problem up to now, which is,
of course, a very crude approximation since there are many electrons in a
crystal. In order to deal with them the many body theory should be used:
either Green’s functions or density matrix approximation. Nevertheless, in
some special cases the problem can be reduced substantially.

Let us assume that all valence bands are full, only one electron from the
topmost one has been excited into the conduction band leaving a hole in the
valence band. These two particles interact via Coulomb interaction and the
Schrödinger equation for the electron-hole envelope function reads(

− h̄2

2me

∂

∂re

− h̄2

2mh

∂

∂rh

− e2

4πε0εS|re − rh|

)
Φ(re, rh) = E Φ(re, rh), (1.38)

where subscript e stands for an electron in the conduction band and h is either
heavy or light hole (if they are decoupled) in the valence band, εS is dielectric
constant. This is a somewhat heuristic derivation but gives the same result
as the density matrix approach in the Hartree-Fock approximation. The
solution of the Eq. (1.38) is straightforward since it is exactly the hydrogen
problem for the quasi-particle called exciton. Transforming coordinates to
relative r and center-of-mass R ones

r = re − rh, R =
reme + rhmh

M
, (1.39)

where M = me +mh is the total exciton mass, the Eq. (1.38) changes into(
− h̄2

2M

∂

∂R
− h̄2

2µ

∂

∂r
− e2

4πε0εSr

)
Φ(r,R) = E Φ(r,R), (1.40)

where µ = memh/M is the reduced exciton mass. The wave function is
written easily

Φν,K(r,R) =
1√
Ω
eiK·Rφν(r), (1.41)
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where Ω is a volume of the semiconductor and φν(r) is the solution of(
− h̄

2

2µ

∂

∂r
− e2

4πε0εSr

)
φν(r) = ξνφν(r), (1.42)

which has the simple form for the ground state

ξ1s = −µ
2

(
e2

4πε0εSh̄

)2

, φ1s =
1√
πa3

0

e−r/a0 , (1.43)

where

a0 =
h̄24πε0εS

µe
(1.44)

is the effective exciton Bohr radius. The details of the calculation of the
ξν and φν(r) of excited states can be found e.g. in Ref. [HK94]. The total
exciton energy is

Eν,K =
h̄2K2

2M
+ ξν . (1.45)

The absorption coefficient α(ω) which determines the decay of the light
intensity per unit volume is related to the optical susceptibility χ(ω) as

α(ω) =
ω

n(ω)
Imχ(ω), (1.46)

where n(ω) is a refractive index of the semiconductor which is typically only
weakly frequency dependent and the optical susceptibility describes the re-
sponse of the dielectric medium on the applied electric field

P(t) = χ(ω)ε0Eω(t); Eω(t) = E0e
−iωt. (1.47)

The simple picture of the photon absorption near the bandgap energy is that
an electron in the valence band is excited by the photon and the electron-
hole pair is created. This pair under certain conditions4 forms an exciton
which changes the absorption profile from the well-known square-root law in
the bulk. Within the second quantization it can be shown that the induced

4The most important role plays the density of electron and holes, if too high then
electron-hole plasma forms. The presented theory is valid in the limit of nexca

3
B � 1

where nexc is the exciton density. For higher densities (especially in the case of possible
Bose-Einstein condensation of exciton) the exciton-exciton interaction ∼ n2

exc cannot be
neglected.
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interband polarization per unit volume is the solution of the inhomogeneous
Schrödinger equation [HK94][

h̄ω + i0+ − Ĥ(re, rh)
]
P(re, rh, ω) = −dcvE0δ(re − rh), (1.48)

where Ĥ(re, rh) is electron-hole Hamiltonian for envelope functions and

dcv = 〈c|d̂|v〉 (1.49)

is the interband dipole (d̂ = ex̂) matrix element between conduction |c〉 and
valence |v〉 band Bloch functions (see also Eq. (1.37)). The linear electron-
hole susceptibility is then calculated from its definition Eq. (1.47) integrating
the polarization P(re, rh, t) = P(re, rh, ω)e−iωt over the volume Ω

χ(ω) =
1

ε0|E0|

∫
Ω

dr |P(r, r, ω)|. (1.50)

This can be also expressed using the eigenvalues Eα and eigenvectors Φα of
the Hamiltonian Ĥ(re, rh) as

χ(ω) = |dcv|2
∑

α

|
∫

Ω
dr Φα(r, r)|2

h̄ω + i0+ − Eα

. (1.51)

The knowledge of the solution of the Eq. (1.38) enables to rewrite Eq. (1.51)
as

χ(ω) = |dcv|2
∑

ν

|φν(0)|2

h̄ω + i0+ − ξν − Eg

, (1.52)

where Eg is the bandgap energy. This can be calculated explicitly and Som-
merfeld enhancement of the absorption coefficient is obtained (see e.g. the
classical paper by Elliott [Ell57]).

The oscillator strength of individual exciton states α may be defined from
the Eq. (1.51) as

Mα =

∫
dr Φα(re = r, rh = r), (1.53)

which has an intuitive interpretation: an exciton can be created (annihilated)
only if the electron and the hole are found on the same spot. We define the
optical density as

D(ω) = π
∑

α

M2
αδ(h̄ω − Eα), (1.54)
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which is proportional to Imχ(ω). We will refer to D(ω) as to the absorption
from now neglecting thus the constant prefactor dcv and the factor ω in
Eq. (1.46) which is almost constant and equal to Eg/h̄.

Nevertheless, the quantity which is easily accessible in the experiment is
photoluminescence (PL). This is similar to the absorption but the occupation
Nα of a state α is not constant for all states but has some distribution, it
would be Maxwell-Boltzmann distribution in a thermal equilibrium, and is
defined as

P (ω) = π
∑

α

M2
αNαδ(h̄ω − Eα). (1.55)

In general, the calculation of the occupation function is a demanding task
since the interaction between excitons or better electron-hole plasma and
optical and acoustic phonons have to be taken into account.

1.6 Exciton in ideal quantum well in zero mag-
netic field

As has been already mentioned in the introduction the idea of combining
two materials in such a way that a thin slab of small bandgap material
A is sandwiched between large bandgap material B, has turned out to be
extremely fruitful. The motivation behind is to confine the carriers in the
thin slab in order to increase their mobility.

Here the envelope function formalism comes into play: the difference
between bandgaps of both material divided between electron and hole5 can
be interpreted as the slowly varying potential U(R)

Ua(R) = (Eg,B − Eg,A)faθB(R), (1.56)

where a stands for either electron or hole, Eg,B(A) is bandgap of material B
(A), fa is bandgap ratio (fe + fh = 1), and θB(R) is the Heavyside function
which is unity in material B.

The exciton Hamiltonian for the envelope function can be formulated
using the results of previous sections

Hexc = He(re) +Hh(rh)−
e2

4πε0εS|re − rh|
, (1.57)

5The most widely used theoretical model is the electron affinity rule which calculates
the conduction band discontinuity ∆Ec as the difference between electron affinities of
the two semiconductors. The valence band discontinuity is then found from the relation
∆Eg = ∆Ec + ∆Ev [Ada94].
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where the electron and hole Hamiltonians are generalized compared to the
Eq. (1.38). The conduction band modification due to the strain has to be
included

He(re) = − h̄2

2me

∂

∂re

+ ac(εxx + εyy + εyy) + Ue(re), (1.58)

where ac is conduction band deformation potential. Moreover, taking into
account the energy dispersion of the topmost valence bands Eq. (1.15) and
applying the rule for the envelope function Eq. (1.36) the hole Hamiltonian
may be written as

Hh(rh) = Hv

(
i
∂

∂rh

)
+ Uh(rh)I, (1.59)

where I is the identity matrix. The matrix Hv(k) neglecting spin-orbit band
and replacing γi (a, b, d) with −γi (−a, −b, −d) has the form of

Hv(k) =


P +Q −S R 0
−S† P −Q 0 R
R† 0 P −Q S
0 R† S† P +Q

 . (1.60)

The solution of the Schrödinger equation with exciton Hamiltonian Eq. (1.57)
is possible only numerically and is rather demanding [SRZ00].

Nevertheless, justified simplifications are possible. First, since we restrict
ourselves only to the vicinity of the Γ point where the heavy and light hole
decoupling Eq. (1.25) is valid, the hole part of the Hamiltonian Eq. (1.57)
decouples into two diagonal terms

Hhh = Pε(rh) +Qε(rh)−
(

h̄2

2mhh,‖

∂2

∂r2
h

+
h̄2

2mhh,⊥

∂2

∂z2
h

)
+ Uh(rh, zh),

(1.61)

Hlh = Pε(rh)−Qε(rh)−
(

h̄2

2mlh,‖

∂2

∂r2
h

+
h̄2

2mlh,⊥

∂2

∂z2
h

)
+ Uh(rh, zh),

(1.62)

where ra is two-dimensional vector in the xy-plane from now. This means
that there are two kinds of excitons: heavy and light hole excitons.

Second, we assume that (i) the confining potential Ua(ra, za) is only func-
tion of za and (ii) the potential is strong enough that the expansion of the
total wave function

Φ(re, rh, ze, zh) =
∑
µ,ν

Ψµ,ν(re, rh)ve,µ(ze)vh,ν(zh) (1.63)
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can be limited only to the ground state functions va,0(za) and thus the one-
particle motion in the z-direction and in the xy-plane can be separated (omit-
ting the subscript 0)

Φ(re, rh, ze, zh) = Ψ(re, rh)ve(ze)vh(zh), (1.64)

where the confinement wave functions satisfy(
− h̄2

2ma,⊥

∂2

∂z2
a

+ Ua(za)

)
va(za) = EC,avh(za), (1.65)

and where heavy and light hole is comprised in h and EC,a is the confinement
energy. This is the well-known single sublevel approximation. If the mass
ma,⊥ was a function of z then the kinetic term in Eq. (1.65) would not be a
hermitian operator. There are several possibilities how to write the operator

1
ma,⊥

∂2

∂z2
a

in a hermitian way. The requirement that the operator is hermitian
and homogeneous is satisfied by

m
(β−1)/2
a,⊥ (z)

∂

∂za

m−β
a,⊥(z)

∂

∂za

m
(β−1)/2
a,⊥ (z), (1.66)

which implies the continuity conditions:

m
(β−1)/2
a,⊥ (z)va(za), and m

(−β−1)/2
a,⊥ (z)

∂

∂za

va(za). (1.67)

Only the choice of β = 1 gives the continuous density of probability |va(za)|2,
which is the most used variant in the literature and is called Ben Daniel-Duke
model [Bas92]

1

ma,⊥

∂2

∂z2
a

→ ∂

∂za

1

ma,⊥(z)

∂

∂za

. (1.68)

This allows to write down the exciton Hamiltonian in the compact way

Ĥ =
∑
a=e,h

(
− h̄2

2ma,‖
∆r,a −

∂

∂za

h̄2

ma,⊥(z)

∂

∂za

+ Ua(za)

)
− e2

4πε0εS
√

(re − rh)2 + (ze − zh)2
, (1.69)

where the dependence of the in-plane mass ma,‖ on z was neglected.6 Sep-
arating the motion in the z-direction Eq. (1.65), the xy-plane Hamiltonian

6Due to the confinement taking just the effective mass of the quantum well material is
a very good approximation.
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reads

Ĥ = −
∑
a=e,h

h̄2

2ma,‖
∆r,a − VC(re − rh), (1.70)

where VC is the averaged Coulomb potential

VC(r) =

∫
dzedzhv

2
e(ze)v

2
h(zh)

e2

4πε0εS
√

r2 + (ze − zh)2
. (1.71)

Even though the effective mass of the lowest conduction band is a scalar,
we distinguish between me,⊥ and me,‖ since the quartic correction of the dis-
persion relation plays a role due to the confinement as we will see in Sec. 1.8.
Eq. (1.65) should also contain strain dependent terms but we suppose that
the confinement Ua(za) is dominant (which is not obvious).

Moreover, it has been assumed so far that the static dielectric constant εS
is the same in the barrier εbS and in the well εwS , which is not generally true.
In order to take it into account the Poisson equation has to be solved first,
which is usually done with the help of image charges. Nevertheless, if the
difference εbS − εwS is small (as in the case of GaAs/AlGaAs) then the exciton
binding energy changes negligibly [TTZGB90; WH91].

1.7 Exciton in ideal quantum well in non-zero
magnetic field

Let us continue including a perpendicular magnetic field B = Bez
7 into the

Hamiltonian Eq. (1.69) which is modified to

Ĥ =
∑
a=e,h

(
1

2ma,‖

[
−ih̄ d

dra

− eqaA(ra, za)

]2

− h̄2

2

d

d za

1

ma,⊥(za)

d

d za

+Ua(za)

)
+ (g∗eµBBσ

z
e − g∗hµBBσ

z
h)−

∑
i=x,y,z

ciσ
i
eσ

i
h

− e2

4πε0εS
√

(re − rh)2 + (ze − zh)2
, (1.72)

where A(r, z) is the vector potential which is related to the magnetic field as

B = ∇×A(r, z), (1.73)
7Precisely, B is magnetic induction and H is the magnetic field. They are related in

linear materials as B = µH where µ is the magnetic permeability.
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and one possible choice is e. g. A(r, z) = B
2
(−y, x, 0). The prefactor qa

gives the sign of the charge: positive (negative) for hole (electron), g∗a are
effective g-factors for electron and hole, µB is the Bohr magneton, σz is the
Pauli spin matrix, and ci is the coupling constant which represents the short-
range electron hole exchange interaction and is a function of the quantum
well width [BSH+94].

1.7.1 General properties

Here we investigate general properties of an exciton under an applied homoge-
nous magnetic field going beyond the variational arguments for the ground
state presented in Ref. [WR98].

First, the Hamiltonian Eq. (1.72) is rewritten dropping spin-dependent
parts as

Ĥ =
∑
a=e,h

1

2ma

(p̂a − qaeAa(re, rh))
2 + V(re, rh), (1.74)

where ra is a three-dimensional vector, p̂a = −ih̄∇a is the momentum oper-
ator, and the spatial dependence of masses is neglected for simplicity. The
two-particle potential V(re, rh) includes the Coulomb interaction, disorder,
and lateral confinement. Aa(re, rh) is the vector potential in an arbitrary
two-particle gauge linear in B where the second coordinate (e.g. rh in the
case of electron) can be regarded as a parameter. The magnetic field is
obtained as before via

B = ∇e ×Ae(re, rh) = ∇h ×Ah(re, rh). (1.75)

A general gauge transformation reads8

Ăa(re, rh) = Aa(re, rh) + qa
h̄

e
∇aλ(re, rh) (1.76)

with an arbitrary two-particle function λ(re, rh). Consequently, the wave
function is transformed as

Ψ̆(re, rh) = eiλ(re,rh)Ψ(re, rh). (1.77)

8In order to become more familiar with a two-particle gauge Aa(re, rh) one can start
with the one-particle one A(r). Changing the gauge using Eqs. (1.76) one sees immediately
that Eq. (1.75) is fullfilled.
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Next, the Hamiltonian terms can be sorted according to powers of B

H0 =
∑
a=e,h

p̂2
a

2ma

+ V(re, rh), (1.78)

H1 =
∑
a=e,h

1

2ma

[p̂a, qaeAa(re, rh)]+, (1.79)

H2 =
∑
a=e,h

1

2ma

e2A2
a(re, rh), (1.80)

where [Â, B̂]+ = ÂB̂ + B̂Â is the anticommutator, H1 is purely imaginary
and linear in B, and H2 is non-negative and quadratic in B.

Second, our aim is to derive a general statement on the B-dependence of
the exciton ground state energy E0(B). Let us separate the wave function of
the ground state into amplitude and phase9

Ψ0(re, rh) = eiξ0(re,rh)χ0(re, rh), (1.81)

where both ξ0(re, rh) and χ0(re, rh) are real and well-behaved continuous
functions. According to Eq. (1.77), this corresponds to a special gauge trans-
formation. Redefining the Hamiltonian parts Eqs. (1.79) and (1.80) as

Ĥξ0
1 =

∑
a=e,h

1

2ma

[p̂a, {qaeAa(re, rh) + p̂aiξ0(re, rh)}]+, (1.82)

Ĥξ0
2 =

∑
a=e,h

1

2ma

{qaeAa(re, rh) + p̂aiξ0(re, rh)}2 , (1.83)

the Schrödinger equations for the imaginary and real part read

Ĥξ0
1 |χ0(re, rh)〉 = 0, (1.84)(

H0 + Ĥξ0
2

)
|χ0(re, rh)〉 = E0(B)|χ0(re, rh)〉. (1.85)

Next, the expectation value of Eq. (1.85) is formed

E0(B) = 〈χ0|H0|χ0〉+ 〈χ0|Ĥξ0
2 |χ0〉. (1.86)

Applying variational arguments the inequality 〈χ0|H0|χ0〉 ≥ E0(0) holds
where E0(0) is the ground state energy at B = 0 T. Since the second term

9We thank E. A. Muljarov for pointing out the usefullness of such a separation. Never-
theless, the necessary analytic behavior of ξ0(re, rh) for B → 0 holds only for the ground
state in general. Details go beyond the scope of this work.
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gives always a positive contribution, we have derived a lower boundary for
the ground state for any magnetic field,

E0(B) ≥ E0(0). (1.87)

Further, the general property of the Hamiltonian H(B) = H∗(−B) im-
plies

Ψα(B) = Ψ∗
α(−B) + 2πn(re, rh), (1.88)

where n(re, rh) is function having only integer values. This leads to the
following expansion of the phase and the amplitude for the ground state for
which n(re, rh) is identically zero

ξ0(re, rh) =
∞∑

i=2k+1

Biξ
(i)
0 (re, rh), (1.89)

χ0(re, rh) =
∞∑

i=2k

Biχ
(i)
0 (re, rh) k being non-negative integer. (1.90)

Now, adopting perturbation theory for non-degenerate states10, the zeroth
order in B of Eq. (1.85) gives H0ξ

(0)
0 = E0(0)ξ

(0)
0 , the first order is zero, and

the second one gives

(H0 − E0(0))|χ(2)
0 〉+ (Ĥξ0

2 − E
(2)
0 )|χ(0)

0 〉 = 0, (1.91)

where only the first term of the phase ξ(1)
0 is considered in Ĥξ0

2 . Multiplying
this equation from left with 〈χ(0)

0 | the perturbed eigenenergy may be written
as

E0(B) = E0(0) + γ2,0B
2, (1.92)

where the diamagnetic shift coefficient of the ground state has been intro-
duced (Ãa(re, rh) = Aa(re, rh)/B)

γ2,0 =

〈
χ

(0)
0

∣∣∣∣∣∑
a=e,h

1

2ma

(
qaÃa(re, rh) + p̂aiξ

(1)
0 (re, rh)

)2

∣∣∣∣∣χ(0)
0

〉
, (1.93)

which is by construction a non-negative quantity.
Therefore, in order to obtain the value of the diamagnetic shift coefficient

the knowledge of the wave function at B = 0 T is generally not sufficient and
10Assuming thus that the potential V(re, rh) plays a dominant role, which excludes e.

g. highly degenerate free-electron Landau levels.
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additionally Eq. (1.84) has to be solved. This is equivalent to the solution of
the Schrödinger equation with the Hamiltonian Eq. (1.74) for small B.

Generally, the diamagnetic coefficients of the state α are defined as

γ1,α = lim
B→0

dEα(B)

dB
(1.94)

γ2,α = lim
B→0

1

2

d2Eα(B)

dB2
, (1.95)

and may have positive or negative values for excited states. However, due to
the reality of the wave function belonging to non-degerate states their linear
term is zero. In the case of degenerate states at B = 0 T, the degeneracy
can be lifted at B 6= 0 T as easily follows from perturbation theory and
consequently, a linear term in B may appear.

It should be noticed that these theorems are generally valid for any many
particle state. This can be shown adopting the same steps but changing
arguments (re, rh) → (r1 . . . ri . . . rN).

1.7.2 Optical activity

Let us now concentrate on the optical activity of different exciton states.
First, the total angular momentum J of the Bloch function has to be

considered: J = 1/2 for electrons (see Sec. 1.1), J = 3/2, Jz = ±3/2 for
heavy, and J = 3/2, Jz = ±1/2 for light holes (see Eq. (1.14)). Selection
rules imply that only dipole matrix element Eq. (1.49) between states with
difference in the total angular momentum ∆J = 1 are non-zero. Two kinds
of excitons (apart from heavy and light ones) can be distinguished: optically
active (bright) ones with Jexc = 1 and non-optically active (dark) ones with
Jexc = 2.

Second, although the spin-orbit coupling is neglected spin degrees of free-
dom can be factorized only in the case of heavy hole Eq. (1.14). Nevertheless,
this is relevant for us as we will see in the next Chapter. Thus regarding the
spin four different exciton states with Jexc = 1 can be distinguished |σz

eσ
z
h〉

|χ1〉 =

∣∣∣∣12 ,−1

2

〉
, |χ2〉 =

∣∣∣∣−1

2
,
1

2

〉
,

|χ3〉 =

∣∣∣∣12 , 12
〉
, |χ2〉 =

∣∣∣∣−1

2
,−1

2

〉
. (1.96)

In zero magnetic field these states are energetically separated by the electron-
hole exchange interaction into two doublets χ1,2 and χ3,4 in which spins are
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antiparallel and parallel. Optically active are only states χ1,2 because the
following selection rule applies

σz
exc = σz

e + σz
h = 0. (1.97)

They emit circularly polarized light σ+ and σ− in the z-direction. In non-zero
magnetic field both doublets are further splitted

∆12 = |g∗e + g∗h|µBB, ∆34 = |g∗e − g∗h|µBB, (1.98)

and an effective exciton g-factor of optically active states can be defined
[SBMH92]

gexc = g∗e + g∗h. (1.99)

In the following only (heavy hole) excitons with Jexc = 1 and spin component
χ1,2 are treated. The oscillator strength Eq. (1.53) within the approximation
Eq. (1.64) takes the form of

Mα =

∫
dr Ψα(r, r)

∫
dz ve(z)vh(z), (1.100)

since the second part is state independent (gives only prefactor), we concen-
trate on the first part when dealing with quantum wells.

1.8 Electron effective mass enhancement
The change of the electron effective mass due to the confinement (e. g. in
quantum wells) has been investigated in detail by Ekenberg [Eke89]. We
follow his ideas.

It turns out to be necessary to go beyond the quadratic dispersion of the
conduction band in order to study the influence of the confinement on the
dispersion relation. Thus, it follows from the symmetry arguments that a
dispersion relation of the lowest conduction band in the point Γ in the bulk
up to the fourth order reads

E(k) =
h̄2

2m
k2 + α0k

4 + β0(k
2
xk

2
y + k2

yk
2
x + k2

zk
2
x)

±γ0[k
2(k2

xk
2
y + k2

yk
2
x + k2

zk
2
x)− 9k2

xk
2
yk

2
z ]

1/2, (1.101)

where m is the effective mass in material and α0, β0, and γ0 are coefficients
which can be determined from k · p calculation. The last term describes the
spin-splitting due to the lack of inversion symmetry in III-V semiconductors.
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In order to calculate new confinement energies, the kinetic operator in
Eq. (1.65) has to be modified. Assuming translational symmetry in the xy-
plane the ground state energy is found if kx = ky = 0 and according to
Eq. (1.32) kinetic energy operator changes to

− h̄2

2m

∂2

∂dz2
a

→ − h̄2

2m

∂2

∂dz2
a

+ α0
∂4

∂dz4
a

. (1.102)

Let us look on this from a different angle. The relation between confinement
energy Ec and quasi-momentum K

Ec =
h̄2

2m
K2 + α0K

4 (1.103)

can be easily inverted to

K =

(
m

α′h̄2 [1− (1− 4α′Ec)
1/2]

)1/2

, α′ ≡ −2m

h̄2 α0. (1.104)

Comparing this with the parabolic case K =
√

2m⊥Ec/h̄
2 the idea is, instead

of applying Eq. (1.102), to adopt the standard kinetic operator but with
enhanced effective mass which takes the form of

m⊥(Ec) =
m

2α′Ec

[1− (1− 4α′Ec)
1/2]. (1.105)

This mass cannot be measured, it has been only introduced to obtain the
correct confinement energy.

The enhancement of the parallel mass is more intuitive since the confine-
ment energy fixes the value of kz = K, which changes the in-plane dispersion
relation to

E‖(k‖) =

(
h̄2

2m
+ (2α0 + β0)K

2

)
k2
‖. (1.106)

Performing the second derivative with respect to the quasi-momentum k‖ the
effective mass is enhanced as

m‖(Ec) = m[1 + (2α′ + β′)Ec], β′ ≡ −2m

h̄2 β0. (1.107)

The mass enhancement which is usually a few percent can be experimentally
confirmed only in special cases, mainly if a magnetic field is present as it is
demonstrated in the next Chapter.
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1.9 Strain

Finally, since the strain plays an important role in many materials it should
be calculated and included in the Hamiltonian Eqs. (1.61) and (1.62). Al-
though what is presented in this Section is not directly related to the semi-
conductor theory and it is almost only classical mechanics, due to its validity
it is widely used in the numerical simulation of the semiconductor properties.

1.9.1 Basics

We start with the general definition of the strain tensor in the limit of the
small deformation and linear elasticity

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (1.108)

where ui is a displacement from the equilibrium position. The relation be-
tween deformation energy (or better free energy F ) density per unit volume
and strain can be found following the analogy with the harmonic oscillator11

E =
1

2

∑
ijkl

Cijklεijεkl, (1.109)

where Cijkl is a tensor of elastic constants which has 21 independent entries.
This number is drastically reduced if the symmetry is increased, e. g. in the
case of the cubic symmetry there are only three independent constants12

C11 = Cxxxx = Cyyyy = Czzzz,

C12 = Cxxyy = Cyyzz = Czzxx,

C44 = Cxyxy = Cyzyz = Czxzx. (1.110)

If the isotropic medium is taken into account the Eq. (1.109) can be simplified
to

E =
1

2

∑
ij

(
2µεij + λδij

∑
i

εii

)
εij, (1.111)

11In order to see it the stress tensor (force per area) is defined as σij =
∑

kl Cijklεkl.
Since the force of the harmonic oscillator is defined as F = kx and the energy as E = 1

2kx2

the same arguments may be used to derive Eq. (1.109).
12The Voigt notation, reducing four indices to two according to the following key: 1 ≡

xx, 2 ≡ yy, 3 ≡ zz, 4 ≡ yz, 5 ≡ xz, and 6 ≡ xy, has been introduced.
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where λ and µ are Lamè constants. The relations between these and elastic
constants Eq. (1.110) can be found easily

C11 = 2µ+ λ, C12 = λ, C44 = µ, (1.112)

which reveals a relation between elastic constants for the isotropic medium13

C11 − C12 − 2C44 = 0. (1.113)

The Lamè and elastic constants can be related to the other well-known con-
stant: Poisson ratio14 ν which gives the ratio of the relative contraction
strain, or transverse strain (normal to the applied load), divided by the rel-
ative extension strain

ν =
λ

2(µ+ λ)
=

C12

C11 + C12

. (1.114)

1.9.2 Isotropic elasticity

The calculation of the strain profile in the nanostructures is not an easy
task in general. Different approaches have been developed to calculate the
strain profile. There are atomistic models like valence force field [Kea66] with
phenomenological expressions for the elastic energy which depends on atomic
coordinates and two empirical parameters which are easily derived from the
experimental elastic constants. Another approach is to apply continuum
mechanics: the functional form of the elastic energy is minimized to obtain
the distribution of the displacement in the structure and consequently the
strain.

Let us assume that there is a object O of an arbitrary shape made up
from material A inside material B. These two materials have different lattice
constants (λA > λB) which leads to the misfit strain ελ = (λA − λB)/λB.
Due to this misfit there is a hydrostatic pressure which tries to reduce the
lattice constant of material A. Thus, the strain may be decomposed into two
parts

εij(r) = −δijελθ(r ∈ O) + ε̃ij(r), (1.115)

13Such a relation can be also derived directly from the Eq. (1.109) taking into account
infinitesimal rotation which does not change this expression.

14Another well-known constant is the Young modulus which is defined as the ratio,
for small strains, of the rate of change of stress σ with strain ε and can be expressed as
Y = µ(2µ+3λ)

2µ+3λ .
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where ε̃ij describes an unknown relaxation of the medium upon the applied
pressure. Substituting Eq. (1.115) into the Eq. (1.109) and integrating over
volume the elastic energy takes form of (omitting tilde from now)

Eel =

∫
V

dV

[
1

2
C11(ε

2
xx + ε2yy + ε2zz) + C12(εxxεyy + εyyεzz + εzzεxx)

+ 2C44(ε
2
xy + ε2yz + ε2zx)− 2α(εxx + εyy + εzz)ελ + 3αε2λ

]
, (1.116)

where V is equilibrium volume and α = C11/2 + C12. The elastic energy is
minimized with respect to the displacement

dEel

dux

=
dEel

duy

=
dEel

duz

= 0, (1.117)

which has to be solved numerically.
Recently, an efficient method to calculate the strain distribution in an

isotropic and homogeneous material has been proposed [Dav98]. The equa-
tion of equilibrium can be derived for the displacement u(r) taking into
account Newton’s laws, which for an isotropic medium has a compact form
of [LL59]15

3(1− ν)

1 + ν
∇∇ · u− 3(1− 2ν)

2(1 + ν)
∇×∇× u = αT∇T, (1.118)

where αT is the thermal expansion coefficient and T is a vector of tem-
perature. Here the trick can be used, instead of assuming any tempera-
ture gradient we take as a source term the volume change due to the misfit
strain αTT = 3ελ(r) ≡ 3 ελθ(r ∈ O). We look for the solution which fulfills
∇× u = 0 and

∇ · u(r) =
1 + ν

1− ν
ελ(r), (1.119)

which can be found integrating over volume16

u(r) =
1

4π

1 + ν

1− ν
∇
∫

O

ελ(r
′)

|r− r′|
dV ′. (1.120)

15The equations of equilibrium disregarding gravity are ∂σij

∂xj
= 0 which can be further

treated using σij = 2µεij + λδij

∑
i εii and identities of vector analysis. The thermal

contribution can be added expanding the free energy F (T ) = F (T0)−KαT (T −T0)
∑

i εii,
where K = λ + 2/3µ, and adopting σij = ∂F

∂εij
16Introducing Lamè potential u = ∇χ the Poisson equation is found ∆χ(r) = 1+ν

1−ν ελ(r)

whose solution χ(r) = 1
4π

1+ν
1−ν

∫
O

ελ(r′)
|r−r′|dV ′ is well-known from the electrostatics.
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By using the Gauss divergence theorem the strain coming from the relaxation
under applied pressure has the form of

εij(r) = − ελ
4π

1 + ν

1− ν

∮
S′

(xi − x′i)dS
′
j

|r− r′|3
, (1.121)

where S ′ is the surface of the object O. The total strain Eq. (1.115) is thus

εij(r) = −δijελθ(r ∈ O)− ελ
4π

1 + ν

1− ν

∮
S′

(xi − x′i)dS
′
j

|r− r′|3
. (1.122)

If the elastic constants satisfy Eq. (1.113) then the strain distribution for the
isotropic crystal is reproduced by the continuum elasticity. We have assumed
so far that the Poisson ratio ν is identical in both materials A and B, which
is not generally true. The conditions for the displacement vector u on the
interface between materials A and B follow from the Eq. (1.119) and with
direct analogy with electrostatics17 we obtain

uA,n
1− νA

1 + νA

= uB,n
1− νB

1 + νB

,

uA,t = uA,t, (1.123)

where un(t) is the normal (tangential) component of the u to the interface.
There are severals works comparing the quality of different approaches

[TPJ+02; JPP03]. It turns out that despite its simplicity the isotropic elas-
ticity gives results which are comparable with more elaborate approaches.
From this reason we adopt this method to calculate the strain profile.

17The analogy can be seen from the Maxwell equation ∇ ·D = ρ, boundary conditions
DA,n = DB,n and EA,t = EB,t, and the relation between electric displacement field and
electric field D = εrε0E.
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Chapter 2

Disordered Quantum Well

There is a long-standing interest in understanding the effects of disorder on
the excitons in the quantum wells where the interface and alloy disorder dom-
inate, as indicated in Fig. 2.1. Even though the huge amount of work has
been devoted to exciton in quantum wells there is still a lot of to be done.
Here we leave the standardly used factorization approximation of the exci-
ton wave function which leads to numerically very demanding calculations.
The purpose of this is to describe correctly the behavior of exciton in the
perpendicular magnetic field.

2.1 Hamiltonian

We may continue where we have stopped in Sec. 1.7. First, the gauge of the
magnetic field has to be chosen. A Coulomb gauge in relative coordinates

Ae(re) =
B

2
(ye − yh,−(xe − xh), 0) , Ah(r) = −Ae(r),

which induces oscillating terms in the wave function of type e−ieA(r)·r/h̄, has
been selected. These oscillations are restricted to the wave function exten-
sion in relative space, which is of the order of the exciton Bohr radius (see
appendix B for details of gauge transformation and numerical implementa-
tion).

Second, the spin dependent part of the Hamiltonian Eq. (1.72) will not be
written explicitly further and our results are valid for the spin averaged en-
ergies Eq. (1.98). This linear contribution may be estimated for a 4 nm wide
GaAs/AlGaAs quantum well which is investigated lateron. Taking gexc ∼ 1.4
the splitting is ∆12 = 58 µeV at B = 1 T.

35
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Figure 2.1: Schematic picture of the exciton in the quantum well with inter-
face and alloy disorder. Perpendicular magnetic field, relative and center-of-
mass coordinates are indicated.

Third, as we know no quantum well is, of course, perfect. The real po-
tential Ua(ra, za) can be divided into two parts

Ua(ra, za) = Ua(za) +Wa(ra, za),

Ua(za) = 〈Ua(ra, za)〉xy, (2.1)

where 〈〉xy means averaging over xy-plane. The first part Ua(za) is a confining
potential and the second part Wa(ra, za) is due to disorder whose properties
are analyzed in the next Section.

Finally, staying within the single sublevel approximation Eq. (1.64), the
in-plane Hamiltonian Eq. (1.72) in the relative and center-of-mass coordi-
nates Eq. (1.39) can be rewritten in the following way

Ĥexc = − h̄
2

2µ
∆r −

h̄2

2M
∆R +

eB

2

(
1

me

− 1

mh

)
ih̄(y∂x − x∂y) +

e2B2

8µ
r2

+
eB

M
ih̄(y∂X − x∂Y ) +We

(
R +

mh

M
r
)

+Wh

(
R− me

M
r
)
− VC(r).

(2.2)

where Wa(ra) is the averaged in-plane disorder (compare with Eq. (1.71))

Wa(ra) =

∫
dzav

2
a(za)Wa(ra, za). (2.3)

The eigenenergies are solutions of the stationary Schrödinger equation

ĤexcΨα(r,R;B) = Eα(B)Ψα(r,R;B), (2.4)
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at a given magnetic field B. Zero of energy is taken at the quantum well gap
plus electron and hole confinement energy.

In the Hamiltonian Eq. (2.2) there are three magnetic field dependent
terms: The first term (∼ B) is proportional to the angular momentum in the
growth direction

ih̄(y∂x − x∂y) = L̂z. (2.5)

Without disorder lz (eigenvalue of the operator L̂z) is a good quantum num-
ber and only states with lz = 0 (s-states) are bright. The second one (∼ B2)
gives rise to the well-known quadratic energy shift, which without disorder
is equal to

γ =
e2

8µ
〈|r2|〉 ∝ a2

B

µ
. (2.6)

This term gives always a positive contribution to the energy. The last term
describes the B dependent mixing of relative and center-of-mass motion,
which is again zero for bright states without disorder. The first and the
third term together contribute negatively to the ground state energy for
small magnetic fields.

Apart from the diamagnetic shift coefficient Eq. (1.95) γα
1 (dropping

subscript 2 from now) a state dependent diamagnetic shift ∆Eα is defined
for our purposes as

∆Eα(B) = Eα(B)− Eα(0). (2.7)

The exciton diamagnetic shift has been already calculated in idealized
quantum structures [WR98]. It gives additional information about the in-
terplay between Coulomb interaction and transversal confinement. The in-
fluence of a perpendicular magnetic field on the dispersion relation of the
exciton was investigated, too: The transition from a hydrogen like exciton
towards the magneto-exciton (with increased electron-hole separation pro-
portional to center-of-mass momentum and 1/B) was predicted leading to
the increase of the total mass of the exciton [LOV+02].

2.2 Disorder
The physical processes responsible for disorder in quantum wells are the
island formation and random positions of the atoms in the ternary alloy
since most of the barriers consist of ternary alloys as e.g. GaAs/AlGaAs.

1Since the parabolic dependence of the eigenvalue Eα on B holds pretty well up to
B = 1 T, we have calculated it numerically in as the energy difference γα = Eα(B =
1 T)− Eα(0).



38 2.2 Disorder

In order to model disorder the bandgap fluctuations are introduced as a
suitable average with averaging function A(ri, zj) over a white noise random
potential U(ri, zj) on the discrete (lattice) grid

W (ri, zj) =
∑
k,l

A(ri − rk, zj − zl)U(rk, zl), (2.8)

〈U(rk, zl)〉 = 0, 〈U(ri, zj)U(rk, zl)〉 = δikδjl, (2.9)

where ri is a two-dimensional vector on a square grid. The statistical infor-
mation is fully contained in the (three-dimensional) potential autocorrelation

C(ri, zj) = 〈W (ri+l, zj+l)W (rl, zl)〉l, (2.10)

which simplifies in Fourier space to

C(ki, kz,j) = |A(ki, kz,j)|2. (2.11)

The bandgap fluctuation are then divided between electron and hole (see
Eq. (1.56))

Wa(ri, zj) = faW (ri, zj). (2.12)

A fully correlated electron and hole disorder potential can be modelled in this
way, other sources of disorder like charge impurities do not allow to separate
disorder into one-particle ones and are neglected by this approach.

Two disorder parameters are usually regarded as the most relevant for its
description: (i) variance σ2

D of the disorder potential

σ2
D = 〈W 2(ri, zj)〉 = C(0, 0), (2.13)

and (ii) the correlation lengths, which depend on the precise form of the
averaging function A(ri, zj). If a Gaussian averaging function is assumed
then

A(ri, zj) =
σD

η
e−|xi|2/(2l2c,x)−|yi|2/(2l2c,y)−|zj |2/(2l2c,⊥), (2.14)

η2 =
∑
ij

e−|xi|2/l2c,x−|yi|2/l2c,y−|zj |2/l2c,⊥ , (2.15)

where lc,x(y) (lc,⊥) is the x (y) in-plane (perpendicular) correlation length.
The existence of more than one correlation lengths is reasonable since the
growth in z and xy direction is different, and due to the surface reconstruction
also x and y correlation lengths may differ.

The adoption of ad hoc parameters for the disorder should be avoided
by calculating the exciton properties in structures which have been mod-
elled by state-of-the-art growth simulations. Surprisingly enough, to our
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best knowledge there is only one such an attempt with rather simple growth
simulations [ZGR97]. Unfortunately this attempt concentrated only on the
testing of the validity of the rigid exciton approximation which is described
in the next Section.

2.3 Rigid exciton approximation
This approximation is well established in the literature due to its simplicity
and reliability. The motivation behind is intuitive: an unperturbed relative
motion can be assumed for weak disorder since the strength of the Coulomb
interaction dominates. The influence of the disorder is seen mainly by the
center-of-mass part since the translational invariance has been broken. The
total wave function is factorized into relative and center-of-mass part [ZGR97]

Ψα(r,R;B) = φ1s(r;B)ψα(R;B), (2.16)

where φ1s(r;B) is the solution of the relative motion Schrödinger equation
without disorder,(

− h̄
2

2µ
∆r +

e2B2

8µ
r2 − VC(r)− E1s(B)

)
φ1s(r;B) = 0. (2.17)

As mentioned before, the term linear in B is zero for s-states. Proceeding
further, the center-of-mass equation reads(

− h̄2

2M
∆R +W (R;B)

)
ψα(R;B) = Eα(B)ψα(R;B) (2.18)

with the disorder potential averaged by the relative wave function

W (R;B) =
∑
a=e,h

∫
draβ

2
aφ

2
1s(βa(ra −R);B)Wa(ra), (2.19)

where βe = M/mh and βh = M/me. In the limiting case when the correlation
length of the disorder potential Wa(ra) fulfills λW = λW,e(h) � aB and the
wave function φ1s(r) is approximated by φ2

1s(r) = 2
πa2

B
e−2r/aB , the variance

of the averaged potential Eq. (2.19) is

σD,R =
λ2

W

a2
B

(β2
e 〈W 2

e (0)〉+ β2
h〈W 2

h (0)〉+ 8〈We(0)Wh(0)〉). (2.20)

This expression shows that the potential fluctuation are reduced substan-
tially by the factor λ2

W

a2
B

after averaging. The more explicit expression can be
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obtained if models for alloy2 and interface3 disorder are taken into account
(see e. g. [Run02]).

Within the factorization ansatz the oscillator strength Eq. (1.53) reduces
to

M fact
α (B) = φ1s(0;B)

∫
dR ψα(R;B). (2.21)

The state dependent diamagnetic shift Eq. (2.7) takes the following form

∆Eα(B) = E1s(B)− E1s(0) + Eα(B)− Eα(0). (2.22)

The first part E1s(B) − E1s(0) is state independent and proportional to B2

for small B. The second part Eα(B) − Eα(0) is state dependent and also
proportional to B2 for small B. Since B tends to shrink the wave function
φ1s(r;B), averaging is less effective: Potential minima become deeper, and
have greater curvature. The center-of-mass potential change is quadratic for
small B as can be easily checked by inserting a wave function from the second
order perturbation theory (∼ B2) into Eq. (2.19).

Within this factorization scheme, good agreement between theory and
experiment could be achieved if the variance σ2

D and the in-plane correlation
lengths lc,x(y) of the disorder were adjusted. The statistics of the oscilla-
tor strength was studied with two distinct regimes where Anderson localized
states or Lifshitz tail states are dominant [RZ00]. Further, the enhanced res-
onant backscattering [LRSZ02], the resonant Rayleigh scattering [KLW+03],
and quantum mechanical level repulsion [IEL+01] provided relevant informa-
tion about disorder.

2.4 Analysis of the wave function
The complicated behavior of the four coordinate wave function can be better
investigated by focusing on the projections of the wave function

φ2
α(r;B) =

∫
dR Ψ2

α(r,R;B), (2.23)

ψ2
α(R;B) =

∫
dr Ψ2

α(r,R;B). (2.24)

2The alloy disorder can be modeled by the expression Wa(ra) =
∑

i(ni(ra)− x)dEa

dx ∆i

where ni(ra) is equal to 1 (0) if the atom of the third element (Al in AlGaAs) is (not)
found in the ith unit cell, dEa

dx is the first derivative of the conduction or valence band
offset with respect to the average concentration x, and ∆i is non-zero only in the ith unit
cell.

3The interface disorder can be modelled by the the well width fluctuations Wa(ra) =
(L(ra)− L̄)dEa

dL where L(ra) is the local well width, L̄ is the average well width, and dEa

dL is
the first derivative of the conduction or valence band offset with respect to the well width.
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The projected relative wave function φ2
α(r;B) does not vary much qualita-

tively between different local ground states: It is nodeless and rather isotropic
due to the strength of the Coulomb interaction. Therefore, the value φ2

α(0;B)
is sufficient to characterize φ2

α(r;B) and gives information about the exten-
sion of the relative wave function. We define a relative measure related to
the no-disorder and zero B field case by

ρα =
φ2

α(0;B)

φ2
1s(0; 0)

, (2.25)

where φ2
1s(0; 0) is structure specific and has the value of

φ2
1s(0; 0) = 0.00582 nm−2 (2.26)

for parameters descrived below. The larger the value ρα, the smaller is
the relative projection extension Eq. (2.23). The center-of-mass projections
Eq. (2.24) are plotted using contour plots. The localization of the wave
function can be visualized in this way.

2.5 Comparison between full solution and fac-
torization

In this more technical section we compare the factorization and the full solu-
tion and show where the limitations of the factorization lie. We investigate
a 4 nm wide GaAs/Al0.3Ga0.7As quantum well whose material parameters
are listed in Tab. A.1. Up to now all derivations were valid for both heavy
and light hole supposing that they are decoupled.4 Fig. 2.2 shows the con-
finement profile of a quantum well with two confinement wave functions and
their energies. Since the energy difference between heavy EC,hh = 29.1 meV
and light hole confinement energies EC,lh = 60.7 meV is 30 meV, which is
large compared with heavy hole exciton binding energy of ≈ 12 meV, we take
into account only the heavy hole in what follows.

As a model for disorder we have chosen Gaussian distributed and spatially
uncorrelated fluctuations of the bandgap W (ri) on a square grid with a grid
step of 4 nm, neglecting thus the averaging Eq. (2.3). One example of W (ri)
is shown in Fig. 2.3

2.5.1 No magnetic field
Absorption spectra Eq. (1.54) calculated with and without factorization are
compared for a single disorder realization in Fig. 2.4. Good agreement is

4Apart from the spin which is not written explicitly in this Chapter.
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Figure 2.2: The quantum well hole confinement profile with the heavy and
light hole wave function positioned at their confinements energies EC,hh =
29.1 meV and EC,lh = 60.7 meV.

Figure 2.3: An example of the one disorder realization, 40×40 points with
4 nm step.
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Figure 2.4: Calculated absorption spectra for two different strengths of the
disorder (σD = 0.5 EB (a) and σD = 1.0 EB (b)). The full solution (solid)
and factorization (dashed) are plotted. Two optically active states for each
calculation are marked (with 0’, 1’ for factorization in b). Corresponding
wave functions are shown in Fig. 2.5. Total simulation size is 160×160 nm2

with a grid step of 4 nm.

expected in the case of weak disorder where the factorization assumption of
unperturbed relative motion is almost valid. Indeed, this is found in Fig. 2.4
a, seemingly approving the factorization. However, the ground state energy
in the full solution is lower than in the factorization, which is consistent
with variational arguments. The different effective (numerical) averaging in
the full solution and factorization also contributes to the 0.2 meV rigid shift
of all states in Fig. 2.4 a. Our calculations have shown that these shifts
are magnetic field independent. The spectrum agreement worsens above the
ideal exciton position EX,0 (line in Fig. 2.4: EX,0 = −EB = −11.4 meV)
where states mix with the ideal 2s state. Due to orthogonality, these states
are modified by different local ground states, even if their relative parts in the
full solution and factorization were similar. In the case of stronger disorder
(Fig. 2.4 b) even the qualitative agreement is lost. A correspondence between
wave functions may be expected only for the first few tail states since they
are local ground states in deep minima.

For a better understanding it is important to distinguish between the
local potential shape relevant for the localized exciton state and the global
disorder given by the variance σ2

D. The local potential is characterized by
a limited number of parameters, e.g. discrete values on grid points close
to the position of the localized exciton. The change of the (global) disor-
der strength modifies the potential statistics. A relatively shallow minimum,
which is highly probable in case of weak disorder, is less likely in a case
with stronger disorder, where more deeper minima with strong curvatures
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exist. The disorder strength determines only the probability of highly local-
ized states which are not well described by a simple factorization ansatz since
the effective compression of the relative part is neglected. The stronger the
global disorder, the higher the probability that the factorization fails.

Next, we concentrate on the wave function properties. The center-of-
mass projection Eq. (2.24) and the relative wave function measure ρα are
shown in Fig. 2.5 for the same disorder realization used in Fig. 2.4. Sev-
eral interesting features turn up. The values of ρα vary in the full solution
between states: The most localized center-of-mass states have also the most
compressed relative parts (greatest values ρα). This is physically understand-
able since a stronger localization of electron and hole leads to an effectively
stronger Coulomb interaction, which is then state dependent.

Another appealing feature is the (dis)agreement of center-of-mass parts
in the full solution and the factorization. The projections Eq. (2.23) and
Eq. (2.24) play a different role: The relative part averages the disorder po-
tential for the center-of-mass motion. This means that a small alteration in
the relative part leads to a small alteration in the effective center-of-mass
disorder potential and further in the center-of-mass localization (Fig. 2.5).
This simple picture is not valid in the case of stronger disorder (Fig. 2.4 b).
The ideal relative wave function φ1s(r;B) averages so that some minima can
become too shallow (or even disappear), since φ1s(r;B) is more extended in
size compared with the full solution. The energetic position can be shifted
and the center-of-mass wave function can be changed (see specifically Fig. 2.5
f and h).

Using the wave function projections Eq. (2.23) and Eq. (2.24) we compare
the localization of the center-of-mass projection in Fig. 2.5 and the oscillator
strength of these states plotted in Fig. 2.4. The correspondence is found for
the two plotted states: the most localized center-of-mass projection has the
smallest oscillator strength. The contribution of the relative projection grows
with the compression unlike the center-of-mass contribution which decreases
with localization. This implies that the oscillator strength is predominantly
determined by center-of-mass localization for local ground states.

2.5.2 Diamagnetic shift

So far only the disorder effect on the exciton was discussed. Now we include
the perpendicular magnetic field in our comparison between the full solution
and the factorization.

We focus again on the wave function projections Eq. (2.23) and Eq. (2.24)
for a deeper understanding: The relative projection is affected proportional
to its extension (∼ 〈r2〉). Since in the factorization the ideal relative wave
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Figure 2.5: The probability densities of the center-of-mass part (projection)
of the total wave functions Eq. (2.24) calculated for states (0, 1) of Fig. 2.4
as contour plots. [Inc01] Full solution (a, b, e, f) and factorization (c, d, g,
h) for σD = 0.5 EB (a - d) and σD = 1.0 EB (e - h). The values ρα Eq. (2.25)
are shown for each wave function in the full solution (in the factorization
ρα ≡ 1.00 per definition). Total simulation size is 160×160 nm2 with a grid
step of 4 nm.
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Figure 2.6: Schematic drawing of the exciton relative wave function (fac-
torization a and full solution b) and original (solid) and averaged potential
(dashed) as a functions of magnetic field. Energy levels are also depicted.
The arrows indicate the negative center-of-mass contribution to the diamag-
netic shift, the positive contribution from the relative motion is not shown.
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Figure 2.7: The distribution of the diamagnetic shifts at B = 5 T calculated
with the full solution (full symbols) and factorization (open symbols) for
different strengths of disorder. The grid step of 4 nm is used.

function φ1s(r;B) is used, it changes more with magnetic field than in the full
solution, which is already shrunk due to localization as discussed above. This
is schematically depicted in Fig. 2.6 a and b. The effective averaged center-
of-mass potential minimum is then more shallow in the factorization, and the
bound state has a higher energy (Fig. 2.6 c and d). The magnetic field has a
greater impact on the effective center-of-mass potential in the factorization
(Fig. 2.6 e) than in the full solution (Fig. 2.6 f). In the factorization both
contributions to the diamagnetic shift are overestimated: The relative one
proportional to 〈r2〉 (not shown in Fig. 2.6) and the downshift of the center-
of-mass energy. If full solution and factorization agree without magnetic
field, then also the diamagnetic shift agrees. In other cases (depending on
local disorder), agreement is not to be expected. Unfortunately, looking at
the potential landscape it is not clear from the beginning, to which extent
the factorization and the full solution agree.

Furthermore, taking calculations for different realizations and disorder
strengths, a statistics of the diamagnetic shift can be obtained as shown in
Fig. 2.7. The analysis is always performed only for the first few tail states.
The increase of the average diamagnetic shift with eigenenergy is obvious.
The no-disorder case is marked as a star, and is properly positioned on the
trend line. The existence of the trend line for the diamagnetic shift going
through several disorder strengths is non trivial. In the present case, value
and shape of minima are mainly fixed by the eigenenergy and depend much
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Figure 2.8: Absorption spectra calculated for two different magnetic fields
(solid 0 T, dashed 5 T) and for a single disorder realization (a) (Gaussian
broadening of single line σ = 0.1 meV Eq. (C.8)) and averaged over 12 realiza-
tions of disorder (b) (Gaussian broadening of single line σ = 1.0 meV). Disor-
der strength in both cases σD = 1.5 EB. Total simulation size is 160×160 nm2

with a grid step of 4 nm..

less on the global disorder strength.
The deviations between the full solution and the factorization increase

with decreasing eigenenergy. This is well understood since highly localized
states are not properly described in the factorization. The state indepen-
dent relative wave function in the factorization may even lead to negative
diamagnetic shifts in very deep potential minima, which is never observed in
the full solution and is according to Sec. 1.7.1 forbidden. This is the strongest
argument against the factorization.

2.6 Diamagnetic shift and wave function lo-
calization

Now we may turn our attention towards the relation between the localization
of the wave function and the diamagnetic shift.

First, we start with literature overview since the combined effect of a per-
pendicular magnetic field and alloy disorder has been already investigated.
The shift of the maximum of the photoluminescence peak towards higher en-
ergies was calculated together with a modification of the lineshape. The cal-
culation was based on the factorization scheme, but center-of-mass wave func-
tions were treated phenomenologically [Lyo94]. Also recent PL measurements
reveal interesting features with magnetic field, namely the change of the PL
peak shape and shift of the maximum [SBJ+03]. The calculation explaining
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Figure 2.9: The probability densities of the center-of-mass projection of the
total wave functions Eq. (2.24) calculated for the energetically lowest three
states of the full solution for σD = 1.5 EB (a B = 0 T, b B = 5 T) as contour
plots. [Inc01] A grid step of ∆ = 2 nm is used. The values ρα Eq. (2.25)
are shown for each wave function. The diamagnetic shift ∆Eα(B) in meV is
given, too (without disorder, ρ1s = 1.123 and ∆1s = 1.08 meV).

the experimental observations was performed with a rather simplified theory
assuming a complete localization of holes in the GaAsSbN/GaAs structure
under study. The well-known near-field optical experiment [HBH+94] and
recent micro-photoluminescence spectra [ERW+06] have demonstrated on
GaAs/AlGaAs quantum wells that the diamagnetic shift differs between lo-
calized excitons. Even negative diamagnetic shifts or spin splitted triplets
were observed.

Second, the change of the absorption spectra Eq. (1.54) with magnetic
field is shown in Fig. 2.8. The first few localized states can be recognized
unambiguously, and the diamagnetic shift can be read off easily from Fig. 2.8
a. The changes of the oscillator strength Mα(B) with magnetic field can be
extracted, too, but are marginal. The effects of the magnetic field on aver-
aged (over several disorder realizations) spectra (Fig. 2.8 b) are the shift of
the maximum and a widening since the diamagnetic shift ∆Eα(B) increases
in average with energy Eα(0). This average increase can also explain the
changes in PL spectra. Here, the occupation of states enters in addition.
Since higher states have lower occupation, the effect is weaker with respect
to absorption spectra. Our simulations predict the widening with magnetic
field in accordance with [SBJ+03] and [Lyo94].

Third, the influence of the magnetic field on the wave functions can be
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seen in Fig. 2.9. The correlation between center-of-mass and relative projec-
tion is observed again. A new feature is the correlation between the diamag-
netic shift and wave function extension. The diamagnetic shift for the three
states is given in Fig. 2.9 b. As mentioned above the relative part is affected
proportionally to its extension (〈r2〉), which is illustrated by the change of
ρα values in Fig. 2.9, where the smallest change with magnetic field is found
for the ground state. In general, the diamagnetic shift ∆Eα is inversely cor-
related to the relative measure ρα. The positive relative contribution ∼ 〈r2〉
is dominant. The center-of-mass contribution is negative but not necessarily
small in absolute value. Minor modifications of the relative part may induce
substantial modifications of the center-of-mass energy.

From the application side a very important question evolves: Is it possible
to reconstruct local potential properties from the diamagnetic shift? The
correlation between the diamagnetic shift and localization could be a way
to access information about the local potential landscape and therefore the
underlying structure. The Section 2.8 focuses on this open question.

2.7 Enhanced electron effective mass

After we have understood the relation between disorder, localization and
diamagnetic shift we may look on the influence of the enhanced electron mass
on the exciton properties as promised in Sec. 1.8. We take into account two
masses (i) the bulk one m(1)

e = 0.067m0 as used so far and (ii) the enhanced
one according to the Eq. (1.107) m(2)

e = 0.078m0. This choice enables to see
where the limitations of the experimental observation of the enhanced mass
lie.

First, the absorption spectra Eq. (1.54) are compared in Fig. 2.10. The
differences between both spectra are only minor and seen mainly for the tail
states. This is caused by the weak dependence of the exciton binding energy
on the electron mass. The binding energies are E(1)

B = 11.4 meV and E
(2)
B =

12.4 meV, respectively. Such a small difference makes it difficult to confirm
the mass enhancement by measuring the absorption or photoluminescence
spectra since excited exciton states (which are needed to extract the binding
energy) are hard to observe.

Second, we turn our attention towards the diamagnetic shift coefficient
γ2. As the disorder-free case Eq. (2.6) suggests, the dependence of the factor
γ2 on the mass me is more pronounced. The exciton Bohr radius is reduced
due to the mass enhancement from a

(1)
B = 9.0 nm to a(2)

B = 8.2 nm, thus by
10%. Taking into account Eq. (2.6), we may deduce that the diamagnetic
shift reduction is proportional to the mass enhancement to the third power
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Figure 2.10: Exciton absorption spectra in the disordered quantum well for
two effective electron masses: solid m(1)

e and dashed m(2)
e (see text). Simula-

tion size is 96 × 96 nm2 for 7 realizations (the numerical grid ∆ = 1.6 nm)
and zero of the energy is the exciton binding energy.

approximately. This means that the slight increase of the electron mass by
about 15%, as in our case, reduces the factor γ2 by 40%. Such a behavior is
clearly depicted in the Fig. 2.11a, where ideal cases (γ(1)

2 = 50 µeV/T2 and
γ

(2)
2 = 37 µeV/T2) are plotted as lines and the disordered ones with markers

for localized excitons states.
These results suggest that the correct theoretical interpretation of the ex-

perimental γ2 factors measured on narrow quantum wells cannot be achieved
without taking into account the mass enhancement. This is in contrast with
many other exciton properties in disordered quantum wells which are not so
sensitive to the electron mass.

Finally, the localization of the wave function can be compared in Fig. 2.11
b and c. There are only tiny differences seen in the localization of the plotted
local ground state since its localization is proportional to the total exciton
mass M = me +mh, which changes only by few per cent (M (1) = 0.3m0 and
M (2) = 0.311m0).

2.8 Real quantum well

Now it is the right moment to compare our theory with experiments. Unlike
in all other cases in the literature we are not going to adjust the parameters of
the disorder but we deduce them from the experiment. Having these disorder
parameters we may apply our theory as before and compare calculated pho-
toluminescence spectra with the measured ones. The fact that the structural
data, which is our input into the calculation, and the optical measurements
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a) b)

c)

Figure 2.11: Statistics of the diamagnetic shift γ2: diagonal crosses using
m

(1)
e , circles m(2)

e , solid (dashed) line: no disorder for m(1)
e (m(2)

e ). The center-
of-mass projection of the wave functions Eq. (2.24) of the local ground state
using b) m(1)

e and c) m(2)
e .

were performed on the same spot of the sample enables to verify the validity
of the theory.

2.8.1 Experiment

The investigated heterostructure contained five intrinsic GaAs quantum wells
of 4, 6, 8, 10 and 20 nm nominal widths, separated by 15 nm wide barri-
ers of intrinsic Al0.3Ga0.7As. The structure was grown by molecular beam
epitaxy. The cross-sectional scanning tunneling microscopy (XSTM) mea-
surements were performed on an atomically smooth (110) surface, which had
been prepared by in-situ cleavage of the sample in an ultra high vacuum.
Cross-sectional constant-current topographs of all five quantum wells were
taken with atomic resolution over lateral lengths of typically 200 nm. After
the XSTM measurements, the sample was transferred into a confocal micro-
scope setup with a lateral spatial resolution of 500 nm at a wavelength of
800 nm. The accuracy with which the optical focus and the position of the
XSTM measurements coincided was better than 200 µm. Further details of
the samples and the experiment can be found in Ref. [REW+07].

A section of the constant-current topograph of the 4 nm quantum well is
displayed in Fig. 2.12 (the entire topograph is ∼ 200 nm long). The image
gives the height h(x, z) in linear gray scale which is related to the variations of
the Aluminum concentration with atomic precision. Strictly speaking, single
Aluminum atoms were not imaged, since at the applied negative bias voltages
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Figure 2.12: Top: Constant-current XSTM topograph of the 4 nm wide quan-
tum well, recorded at a bias voltage of UB = −2 V and a tunneling current
IT = 100 pA. The crystallographic axes are indicated. The z-confinement
wave functions v2

a(z) for the electron (black curve) and the heavy hole (white
curve). Bottom: Deduced bandgap profile as a function of z, averaged along
the x-direction and after removal of the atomic corrugation.
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only the group-V sublattice is visible [SA93]. Nonetheless, the topographic
variation on an atomic scale demonstrates the sensitivity to the Aluminum
distribution. There is a clear difference in the average height 〈h(x, z)〉x be-
tween the well and the barrier regions of about 25 pm. We presume that
this height difference not only reflects the global difference in the average
Aluminum concentrations, but that it can also serve as a local gauge for the
Aluminum distribution in the barriers and at the interfaces.

2.8.2 Potential reconstruction and generation
The atomic-scale contrast of the images allows us to extract the structural
properties in the cleavage plane that are needed as input in the calculation
of optical spectra.

The topographs are assumed to be a direct representation of the local
Aliminum concentration and therefore the alloy bandgap in the structure,
and a linear scaling of the topography height h(xi, zj) to the local band gap
is applied,

EG(xi, zj) = EG,GaAs + b h(xi, zj) . (2.27)

The scaling factor b is determined by taking a gap difference of 500 meV [VS]
to the Al0.3Ga0.7As alloy in the barrier, and was found to be b = −19.8
meV/pm. The local band gap is distributed with the band offset ratio fe/fh =
0.65/0.35.

Applying perturbation theory, the effective in-plane bandgap fluctuations
are then given by

W̃ (xi) =
∑

j

EG(xi, zj)
(
fev

2
e(zj) + fhv

2
h(zj)

)
. (2.28)

Here, the va(zj) are the single particle wave functions Eq. (1.64) in the
one-dimensional potential derived from the x-averaged confinement poten-
tial Ua(za,j) = fa〈EG(xi, zj)〉x (Fig. 2.12 bottom). The XSTM measurement
gives the disorder potential in the cleavage plane (y = 0) only, W̃ (xi, 0).
Therefore, the experimental information on the strength and the correlation
of the lateral disorder is restricted to the x-direction alone.

However, the disorder in both in-plane directions (x and y) is relevant for
the inhomogeneous broadening of excitonic transitions. Although both direc-
tions are crystallographically equivalent in zinc blend symmetry, the growth
takes place on reconstructed surfaces which can lead to anisotropic growth in
the quantum well plane. For instance, the appearance of elongated islands or
one-monolayer-deep "holes" has been reported [GVG+97]. Any anisotropy of
the interfaces shows up clearly in a preferential linear polarization direction
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B

A

Figure 2.13: The experimental potential autocorrelation (solid black), its fit
with ansatz A (blue) and B (red), and an example of the autocorrelation of
the numerically generated potential (dotted, for clarity shifted upwards by
400 meV). Inset: The reconstructed one-dimensional potential W̃ (xi) from
the experiment.

of the emission from exciton doublets. This has been confirmed by optical
measurements on growth-interrupted samples [GSS+96]. The same kind of
fine structure splitting but without preferred orientation has been observed.
Consequently, we assume that the correlations of the bandgap fluctuations
are isotropic in the xy-plane, and the reduced information from the XSTM
cut along x is sufficient.

The experimental XSTM topograph gives not only a one-dimensional
subset of the potential, but is restricted to a limited number of data points
(N = 400 covering 160 nm, inset of Fig. 2.13). Consequently, the one-
dimensional autocorrelation

C(xi) =
1

N

N∑
l=1

W̃ (xi + xl, 0)W̃ (xl, 0) (2.29)

shows large fluctuations at all distances (solid black curve in Fig. 2.13)
which do not reflect a statistically relevant correlation. In order to reveal the
true correlation we have to seek for a fit of the averaging function. Two fit
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Table 2.1: Fitted parameters for fit ansatz A and B Eq. (2.30).
ansatz A ansatz B

σ1 (meV) 33.4 11.7
σ2 (meV) X 29.8
lc1 (nm) 0.4 1.7
lc2 (nm) X 0.2

χ2 (meV2) ×109 1.82 1.71

functions are considered

A: A(rj) =
σ

η
e−|rj |/lc , η2 =

∑
j

e−2|rj |/lc ,

B: A(rj) =
σ1

η1

e−|rj |/lc1 +
σ2

η2

e−|rj |/lc2 , η2
i =

∑
j

e−2|rj |/lci , (2.30)

where σi (lci) is the weight (the correlation length) of ith component for the
fit ansatz B. In the case of ansatz A σ2 = 〈W̃ 2(rj)〉 = C(0) is the potential
variance and lc the correlation length. The obtained values are summarized
in Tab. 2.1. The corresponding correlation fits are shown as blue (A) and red
(B) curves in Fig. 2.13. The knowledge of the averaging function A(rj) allows
an effective generation of the potential in (discrete) Fourier space [GB94]

W̃ (kl) = Ã(kl)Ũ(kl), 〈Ũ∗(kl)Ũ(kj)〉 = δlj. (2.31)

where Ũ(kl) is a complex-valued Gaussian distributed white noise. The side
condition Ũ∗(kl) = Ũ(−kl) guarantees the reality of the generated potential
in real space. Examples of the generated potentials are shown in Fig. 2.14.
The difference in the correlation lengths can be clearly observed.

A comparison between the experimental input (solid curve in Fig. 2.13)
and numerically generated examples (dotted curves) for the autocorrelation
function reveals the existence of fluctuations (speckling) in both cases. Their
typical shape, however, matches only in the case of ansatz B, which points
to a sub-optimal model for the averaging function A(rj) of ansatz A. At
this point the conclusion should be made that ansatz B describes better the
experiment data. However, a problem is the very limited statistics obtained
from the experiment which limits the reliability of the ansatz with four fitting
parameters. In the following both ansatz A and B will be discussed since they
represent a sort of limiting cases of the short and longer correlation and none
of them is prefect in all criteria (comparing theory and experiment).

The interesting aspect is that the information on the correlations in the
growth-direction (z) is qualitatively contained in the value of σ =

√
C(0).
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Figure 2.14: Examples of the generated two-dimensional potentials according
to the Eq. (2.31).

This can be seen as follows: The value of σ is completely insensitive to
lateral (x) correlations as it only represents the standard deviation of the
potential. If there are, however, correlations of the local bandgap in the
growth-direction, this will result in increased fluctuations of the weighted
z-average in Eq. (2.28), compared with a completely uncorrelated Aluminum
distribution. The effect of z-correlations in the Aluminum distribution can
be quantified by comparing the determined σ-value with that obtained after
an intentional removal of all z-correlations from the XSTM-image. This
can be done, e.g., by randomly shifting the individual atomic rows in the
barriers along the x-direction with respect to each other. For this situation,
one obtains a σ of about 30 % smaller than the actual one. Therefore, z-
correlations contribute significantly to the inhomogeneous broadening of the
optical spectra. In fact, certain z-correlations are already discernible by close
inspection of the topograph in Fig. 2.12, where weak stripe-like contrasts in
the z-direction are visible, especially in the right barrier regions.

2.8.3 Micro-photoluminescence

A useful comparison between experiment and theory requires the knowledge
of the exciton occupation Nα. Unfortunately, a proper calculation of Nα

solving kinetic equations [Run02] is technically very demanding in this case,
since too many states have to be included. 5 Instead of calculating these non-
equilibrium occupations, we make some physically justified assumptions: At

5The main problem is the evaluation of the scattering matrix elements between dif-
ferent exciton states α, β, and acoustic phonons. The exciton wave functions have four
coordinates, calculations are performed for 604 = 12960000 grid points.
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elevated temperatures, we are pretty sure that the excitons are in thermal
equilibrium with a temperature TX close to the lattice one. As a consequence,
absorption Eq. (1.54) (Fig. 2.15 black) and photoluminescence Eq. (1.55)
(Fig. 2.15 magenta) are simply related by a Maxwell-Boltzmann occupation
factor,

P (ω) = e−h̄ω/kBTXD(ω) . (2.32)
Such a procedure has been used successfully before, e.g. in Ref. [GVMPC94].

However, the occupation of the tail states calculated using Eq. (2.32)
would be overestimated at low temperatures [MZKL03]. We circumvent this
assuming that all states with the energy lower than a hypothetical PL max-
imum have a constant occupation. The hypothetical PL maximum is deter-
mined as the absorption maximum minus the Stokes shift S which can be
approximately calculated as [GVMPC94]

S =
σ2

A

kBT
, (2.33)

where σA is obtained by the Gaussian fit of the absorption. This occupation
will be called quasi-thermal (Fig. 2.15 orange).

In the optical experiments, micro-photoluminescence (µPL) with a spa-
tial resolution of 600 nm was measured. Fig. 2.16 shows µPL spectra of the
4 nm wide quantum well, recorded at a temperatures of 4 K (a) and 50 K
(b). Typical features of exciton spectra from disordered quantum wells can
be seen [ZBH+94; HBH+94]: The spectrum shows an inhomogeneous broad-
ening with individual bright peaks on the low-energy side due to strongly
localized excitons. On the high-energy side, a more continuous spectrum
with many closely spaced peaks is seen.

The temperature dependent change in transition energy due to bandgap
reduction [Ada94] was taken into account in the calculations of the spectra
at the higher temperature. A bandgap difference of 2.5 meV between the
lattice temperatures TL = 4 K and TL = 50 K was precisely determined in the
experiment from the shift of individual localized states when the temperature
was continuously raised.

The agreement between measured and calculated PL spectrum depends
on the used ansatz for the fit function: Excellent agreement is found for
ansatz A (Fig. 2.16 blue). Although equilibrium does not hold at T = 4 K,
the high energy tail of the µPL can be fitted using Eq. (2.32) with an effective
exciton temperature of TX = 20 K (Fig. 2.15a). The overall spectral shape
and the inhomogeneous width are well modeled – they are characteristic for
the disorder potential considered. Naturally, the individual peak positions
cannot be compared due to the inherent randomness of the potential gener-
ation.
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Figure 2.15: Calculated absorption spectra (black), PL spectra with thermal
occupation (magenta) and quasi-thermal occupation (orange) for two tem-
peratures TL = 4 K (a and b) and TL = 50 K (c and d) of the 4 nm wide
quantum well. The sampled area for the absorption calculation (dashed) cor-
responds to the size of the optical focus in the experiment (600×600 nm2).
The effective exciton temperature TX was adjusted at high energy tail of the
experimental PL (see text). Individual lines are Gaussian broadened with
σG = 0.15 meV Eq. (C.8).
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Figure 2.16: Comparison between measured µPL spectra (black) and cal-
culated ones with quasi-thermal occupation (blue ansatz A and red ansatz
B) for two temperatures TL = 4 K a) and TL = 50 K b) of the 4 nm wide
quantum well. The same spot as in Fig. 2.12 is used. Other parameters same
as in Fig. 2.15.

The comparison in the case of the ansatz B does not look so convincing
since the absorption spectra is almost twice as wide as for the ansatz A.
This is caused by the longer correlation length while the variance is kept
fixed. Consequently, also the PL line is too wide and differences between
thermal and quasi-thermal occupation become more pronounced. Since the
absolute energetic position of the PL line is adjusted in order to obtain
optimal agreement at T = 50 K, it leads to clear disagreement at T =
4 K. Nevertheless, the striking differences in Fig. 2.16 b) red should not
be overevaluated since some discrepancies come from our assumption of the
occupation function.

The comparison between simulated and measured µPL spectra cannot be
regarded as a conclusive check of the validity and quality of our approach.
In contrast, the diamagnetic shift provides such a check since here individual
exciton states are studied. This is also the reason why the µPL measurement
with its sharp lines is superior to the broad and structureless far-field PL
spectrum.
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Figure 2.17: Diamagnetic shift coefficients of single exciton states in a 4 nm
wide quantum well. Measured data (circles) are taken from Ref. [ERW+06]
and compared with the calculation (crosses) of ansatz: A and B. The dashed
line shows the theoretical value without disorder.

2.8.4 Diamagnetic shift coefficient

From the overall shift of the PL with magnetic field, a coefficient γtot =
22 µeV/T2 in the present sample could be extracted. This is definitely below
the calculated ideal value of γid = 37 µeV/T2 which is marked in Fig. 2.17 as
dashed horizontal line. We have to conclude again that the disorder-induced
localization reduces the shift coefficient dramatically. The nice agreement
between the measured and calculated data points in Fig. 2.17 could, however,
not be achieved before the enhanced electron mass was included (see Sec. 2.7).

Previous magnetoluminescence experiments [TOIM84; RSN+86; SAS95]
on a 5 nm wide quantum well gave an average diamagnetic coefficient of the
PL line 25 µeV/T2 which is comparable to the range found in the present
experiment. Furthermore, the role of an enhanced reduced mass for the γα

has been recognized earlyon [SDL+89] but the localization caused by disorder
was not discussed.

In the experiment, γα has been extracted by averaging over the Zeeman
doublet. Reliable data, however, can be determined only for states deep in
the tail, and having a oscillator strength large enough. Only a few states fulfil
these criteria, which reduces the statistics significantly. In the simulation,
such a problem does not exist and relevant statistics can be obtained. Very
good agreement between theoretical and experimental results (measured on



62 2.8 Real quantum well

the same sample but on a different spot) is seen in Fig. 2.17. In the present
case the ansatz B gives better agreement than A since the deep tail states
have higher probability (nonetheless their absolute energetic position is fixed
by PL at T = 50 K).

An interesting new feature seen in Fig. 2.17 is the increase of the γα dis-
tribution width with energy. An intuitive explanation is as follows: The most
strongly localized states are found in deep minima which have a very narrow
distribution of curvatures and depths, which is theoretically predicted by the
optimum fluctuation theory [Run02]. On the contrary, less localized states
average over a larger area, and find a wide variety of potential shapes. The
potential distributions maps directly to the diamagnetic shift. Similar rela-
tions exist for the oscillator strength distribution, which have been explored
before [LRZ03].

The extracted small correlation lengths show that spatial correlations ex-
tend mostly over only few atomic distances. The correlation length may seem
unexpectedly short in the case of ansatz A. However, the dominant contri-
bution to the disorder in this structure, grown without growth interruptions,
is certainly on the order of 1 nm and below. Additional experimental and
theoretical work will be necessary to resolve finer details of the correlation
and to conclude which fit ansatz is more appropriate.

On the theoretical side, one could employ a more sophisticated interpre-
tation of the XSTM images beyond the linear scaling, e.g., with a density
functional approach, and taking into account the STM-tip correlation. Ex-
perimentally, even larger XSTM topographs could in the future improve the
statistics on longer correlations and optimally the three-dimensional data
would be desirable. For the present work, single and double exponential
averaging functions have turned out to be sufficient to obtain convincing
agreement between the theoretical computations and the experimental data.
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Chapter 3

Quantum Ring

Figure 3.1: Schematic drawing of the investigated nanoring embedded in the
quantum well

This chapter is devoted to the properties of the exciton in structures
where electron and hole are not only confined in the growth direction but
also in the xy-plane, and are subject to an applied perpendicular magnetic
field. An example of such a structure, a circular quantum ring embedded
in the quantum well, is shown in Fig. 3.1. Before we start to work with the
Hamiltonian Eq. (2.2) we may notice that the main difference to the previous
chapter is that the in-plane confining potential Wa(ra) (either for electron
or hole) will have a local maximum at the origin ra = 0 and minimum at
ra = r0. These potential properties may force the exciton wave function to

65
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have a form of a closed loop. Such a shape of the wave function is called
non-trivial or connected topology. This topology is especially sensitive to the
perpendicular magnetic field since it tries to rotate the carriers (electron and
hole in opposite directions). In the case of a trivial topology electron and
hole rotate around themselves while for a connected topology they can orbit
through the ring shaped potential.

As has been already mentioned in the introduction, the Aharonov-Bohm
effect which requires the non-trivial topology of the wave function is found
only for charged particles. However, the exciton being a composite particle
consisting of electron and hole, has zero total charge. Theoretical stud-
ies on the basis of a simplified model (zero width of the nanoring) [Cha95;
RR00; MC04; CM05; dSUS05; BPSP06] have demonstrated that the exci-
ton Aharonov-Bohm effect (X-ABE), i. e. an oscillatory component in the
energy exists.

Let us investigate it more precisely.

3.1 Hamiltonian

Assuming that the nanoring is embedded in a narrow quantum well, the
exciton Hamiltonian Eq. (2.2) can be adopted replacing the disorder potential
Wa(ra) with the lateral confinement Va(ra, φa). The separation of the wave
function Eq. (1.64) can be directly adopted. Using the symmetric one-particle
Coulomb gauge of the vector potential: A(r) = 1

2
B× r (see appendix B for

details) the single-exciton Hamiltonian Eq. (2.2) (consider also Eq. (1.72)) is
rewritten in electron-hole polar coordinates in the following way

Ĥ =
∑
a=e,h

[
Va(ra, φa)−

h̄2

2ma

1

ra

∂

∂ra

(
ra

∂

∂ra

)

+
1

2mar2
a

(
−ih̄ ∂

∂φa

− qa
eB

2
r2
a

)2
]

+ VC(re, rh, φe − φh). (3.1)

We use the Jacobi coordinates with convenience since the Coulomb potential
is a only function of the angle difference

φ = φe − φh , Φ =
1

2
(φe + φh), (3.2)

φe = Φ +
1

2
φ , φh = Φ− 1

2
φ, (3.3)

∂

∂φe

=
∂

∂φ
+

1

2

∂

∂Φ
,

∂

∂φh

= − ∂

∂φ
+

1

2

∂

∂Φ
, (3.4)
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where φ (Φ) is the relative (average) angle. The Hamiltonian Eq. (3.1) trans-
forms to

Ĥ =
∑
a=e,h

[
− h̄2

2ma

1

ra

∂

∂ra

(
ra

∂

∂ra

)
+

1

2mar2
a

(
ih̄

[
∂

∂φ
± 1

2

∂

∂Φ

]
− eB

2
r2
a

)2

+Va(ra,Φ±
1

2
φ)

]
+ VC(re, rh, φ). (3.5)

The exciton wave function is expanded into the basis of angular momentum
eigenfunctions

Ψα(re, rh, φ,Φ) =
∑
l,L

ul,L,α(re, rh)e
ilφ e

iLΦ

2π
. (3.6)

Taking into account the azimuthal boundary conditions which have the usual
form of

Ψα(re, rh, φe, φh) = Ψα(re, rh, φe + 2π, φh) = Ψα(re, rh, φe, φh + 2π), (3.7)

and the expansion Eq. (3.6), we find the rule how l depends on L:

L even: l integer; L odd: l half integer. (3.8)

The coupled equations for the expansion functions ul,L,α(re, rh) can be de-
rived straightforwardly. First, we investigate the confining potential matrix
elements

〈lL|Va(ra, φa)|l′L′〉 = δ
l−l′,±L−L′

2
V a

L−L′(ra),

V a
k (ra) =

1

2π

∫ 2π

0

dφa Va(ra, φa)e
ikφa , (3.9)

and from the reality of the Va(ra, φa) follows V a
k = (V a

−k)
∗.

The confining potential can have an arbitrary symmetry (see Fig. 3.2 for
examples) which is classified by the two-dimensional point groups. There are
two types of them: (i) Cn which consists of all rotations about a fixed point
by multiples of the angle 2π/n and (ii) Dn which consist of the rotations in
Cn together with reflections in n axes that pass through the fixed point. In
order to derive symmetry properties of V a

k (ra) depending on the point group
of the potential let us assume that the potential Va(ra, φa) is invariant to the
rotation by φ = 2π

n
. Changing the variable in the intergrad of the Eq. (3.9)

by φ′a = φa + 2π
n

we obtain

V a
k (ra) =

1

2π

∫ 2π

0

dφa Va(ra, φa)e
ik(φa+ 2π

n
). (3.10)
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Figure 3.2: Schematic picture of the quantum rings with the C1 a) and D4

b) symmetry.

Table 3.1: The symmetries of the in-plane potential and matrix elements Vk

Eq. (3.9).
Point group of the potential Symmetry of Vk

Cn Vk 6= 0, k = jn, j integer
Dn Vk = V−k 6= 0, k = jn, j integer
O(2) Vk = V0δk,0

This should be identical to Eq. (3.9) which implies that only elements with
k = jn, j being integer, are non-zero. Adopting similar arguments it can
be proven that the existence of inversion symmetry implies V a

k = V a
−k. The

symmetry properties are summarized in Tab. 3.1.
In the case of the lowest symmetry (C1) the matrix of V a

k cannot be
separated into block matrices since generally all V a

k are non-zero. As the
symmetry is increased (Cn or Dn) the matrix can be separated into n block
matrices, which means that the matrix elements VlLl′L′ are non zero only if
L − L′ = n is fullfilled. In the limiting case of n → ∞ the point groups Cn

and Dn are identical1 and form point group of the circle C∞ = D∞ = O(2)
with infinitely many block matrices.

Second, we look upon the Coulomb potential matrix elements which are

1This is only true in two dimensions. The continuous limit of Cn is the proper symmetry
group of the circle SO(2) consisting of all rotations about a fixed point. Such a point group
cannot be visualized. The continuous limit of Dn is O(2), the symmetry group of the circle,
consisting of all rotations about a fixed point and reflections in any axis through that fixed
point.
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diagonal in L

〈lL|VC(re, rh, φ)|l′L′〉 = δLL′Ṽ
k
C (re, rh),

Ṽ k
C (re, rh) =

1

2π

∫ 2π

0

VC(re, rh, φ) cos(kφ) dφ, (3.11)

and finally the Hamiltonian can be written down

〈lL|Ĥ(re, rh, φ,Φ)|l′L′〉 =

δll′δLL′

∑
a=e,h

[
− h̄2

2ma

(
− 1

ra

∂

∂ra

(
ra

∂

∂ra

)
+

1

r2
a

(
l ± L

2
+
eB

2
r2
a

)2
)]

+δ
l−l′, L−L′

2
V e

l−l′(re) + δ
l′−l, L−L′

2
V h

l−l′(rh) + δLL′Ṽ
l−l′

C (re, rh). (3.12)

Introducing the expansion Eq. (3.6), the exciton oscillator strength Mα of
Eq. (1.53) simplifies to

Mα =
∑

l

∫ ∞

0

ul,0,α(r, r) rdr. (3.13)

Therefore, only the component with L = 0 contributes to the oscillator
strength.

In the following, the wave function of the state α is analyzed studying
the correlated one-particle densities

n(e)
α (re, φ̃) = re

∫
drhrh

∣∣∣∣∣ψα

(
re, rh, φ = φ̃,Φ =

φ̃

2

)∣∣∣∣∣
2

, (3.14)

n(h)
α (rh, φ̃) = rh

∫
drere

∣∣∣∣∣ψα

(
re, rh, φ = −φ̃,Φ =

φ̃

2

)∣∣∣∣∣
2

, (3.15)

for which the angular position of the second particle is fixed at say φa = 0.
Another possibility would be to fix the ra coordinate instead of integrating
over ra. In the case of strong confinement in the ring both approaches are
equivalent.

3.2 Persistent current and magnetization
Even though the exciton is a neutral particle, it can posses a current at a
finite B-field: electron and hole orbit in the nanoring under the B-field in
opposite directions, and since they have opposite signs of their charges, their
current contributions do add.
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The one-particle current density operator at position r is defined as

Ĵa(r) =
qa

2ma

[(p̂a − qaeA(ra)) δ(ra − r) + δ(ra − r) (p̂a − qaeA(ra))] .

The expectation value of the radial current Ĵa,r is nonzero only for continuum
states and will not be discussed further. In the present case, the azimuthal
current Ĵa,φ(r, φ) eφ takes the form

Ĵa,φ(r, φ) =
qa

2ma

[(
−ih̄ 1

ra

∂

∂φa

− qaeBra

2

)
δ(r − ra)

r
δ(φ− φa)

+
δ(r − ra)

r
δ(φ− φa)

(
−ih̄ 1

ra

∂

∂φa

− qaeBra

2

)]
. (3.16)

The total exciton current consists of the electron and hole ones, which have
to be added and integrated over the cross section of the nanoring,

Iα =

∫ ∞

0

dr 〈α|Ĵe,φ(r, φ) + Ĵh,φ(r, φ)|α〉. (3.17)

Since the operator Eq. (3.16) is not an explicit function of φa there is no
dependence of 〈α|Ĵa,φ(r, φ)|α〉 on φ as can be easily checked taking the ex-
pansion Eq. (3.6). Consequently, the total current Iα is independent of angle
φ in accordance with Kirchhoff’s laws of current conservation.

The one-particle magnetization operator is defined as

M̂a(r) =
1

2
r× Ĵa(r). (3.18)

The only nonzero expectation value of the magnetization which integrated
over all space is directed along z and has the magnitude

Mα = π

∫
dr r2 〈α|Ĵe,φ(r, φ) + Ĵh,φ(r, φ)|α〉. (3.19)

With the expansion Eq. (3.6) the persistent current (PC) and the magneti-
zation can be written explicitly as

Iα =
eh̄

2π

∑
l,L

∫
dr r

∫
dr′r′

[(
l + L

2

r2
− 1

2λ2

)
u2

l,L,α(r, r′)

me
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(
l − L

2

r2
− 1

2λ2

)
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l,L,α(r′, r)

mh

]
, (3.20)

Mα =
eh̄

2

∑
l,L

∫
dr r

∫
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2
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2λ2
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+

(
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2
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)
u2

l,L,α(r′, r)

mh

]
. (3.21)
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Comparing Eq. (3.20) and Eq. (3.21), the difference is an additional factor πr2

in the integrand of the magnetization. The expression for the magnetization
can also be derived using the Hellmann-Feynman theorem

Mα = −dEα(B)

dB
. (3.22)

3.3 Circular quantum ring
As a special case we investigate the case of the highest circular (O(2)) sym-
metry. A ring with such a high symmetry can not be probably grown but
this assumption simplifies the problem a lot and enables to get a better in-
sight. Due to the rotational invariance caused by the circular symmetry one
degree of freedom may be factorized as follows from the principles of quan-
tum mechanics. This is total angle motion as can be verified checking the
commutator [Ĥ,−ih̄ ∂

∂Φ
] = 0. It follows also from Tab. 3.1 that only the

matrix elements V0(ra) contributes and this means that L is a good quantum
number. The Hamiltonian Eq. (3.12) reduces thus to

Ĥ ll′

LL′(re, rh) = δLL′

{
δll′
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a=e,h
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2ma
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+ Va(ra)

]
+ Ṽ l−l′

C (re, rh)

}
. (3.23)

and consequently the wave function expansion Eq. (3.6) to

Ψα(re, rh, φ,Φ) =
∑

l

ul,α(re, rh)e
ilφ e

iLαΦ

2π
. (3.24)

In order to derive analytical expression additional assumptions are required.

3.3.1 Zero width ring
In the limiting case of strong electron and hole confinement the wave function
can be further factorized

Ψα(re, rh) = ψα(φe, φh)fe(re)fh(rh), (3.25)

where fa(ra) are one-particle confinement wave functions in the radial di-
rection centered at Ra and the angle dependent part is expanded as in the
previous expansions Eqs. (3.6) and (3.24)

ψα(φ,Φ) =
∑

l

cαl e
−ilφ e

iLαΦ

2π
. (3.26)
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Strong lateral confinement can be achieved either by combining materials
with appropriate band alignments or by the inclusion of strain. After av-
eraging the Hamiltonian Eq. (3.23) with functions fa(ra) one gets a new
Hamilton matrix

Ĥ ll′

LL′ = δLL′

{
δll′

[
h̄2

2µXR2
X

(
l +

eB

2h̄
R2

X +
L

2
p

)2

+
h̄2

2(meR2
e +mhR2

h)

(
eB

2h̄
(R2

e −R2
h)− L

)2
]

+ Ṽ l−l′

C (Re, Rh)

}
,

(3.27)

where RX is an effective ring radius for the exciton and p is a phase shift

R2
X =

R2
eR

2
h (me +mh)

meR2
e +mhR2

h

, p =
mhR

2
h −meR

2
e

mhR2
h +meR2

e

. (3.28)

This Hamiltonian has been intensively studied by many authors since its
introduction [Cha95; GUKW02; dSUG04; dSUS05; BPSP06]. The further
simplification of the Coulomb potential to Ṽ k

C (Re, Rh) = vC (contact poten-
tial) enables an analytical solution with the transcendental equation for the
ground state energy [RR00; MC04] and with a closed form for the absorption
spectrum [CM05] using the Green’s function technique.

Absorption

The approach of [CM05] can be illustrated extending it to the case of different
electron and hole radii. First, the Hamiltonian Eq. (3.27) for L = 0 is
rewritten into a more compact way with the contact potential

Ĥ = TX(−i ∂
∂φ

+ fX)2 + γ + vCδ(φ), (3.29)

where TX = h̄2

2µR2
X

is the kinetic energy, fX =
πBR2

X

Φ0
magnetic flux and γ =

e2B2(R2
e−R2

h)2

8(meR2
e+mhR2

h)
energy shift. Second, we consider the unperturbed Green’s

function of the Schrödinger equation with vC = 0 which is usually defined as

(h̄ω + i0+ − H̃0)G0(φ, φ
′, ω) = δ(φ− φ′). (3.30)

Its solution can be found straightforwardly

G0(φ, φ
′, ω) =

1

2π

n∑
n=−∞

ein(φ−φ′)

h̄ω + i0+ − TX(n+ fX)2 − γ
, (3.31)
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and is given explicitly in a special case

G0(0, 0, ω) =
1

4TXβ1/2
[cot(π(fX + β1/2))− cot(π(fX − β1/2))], (3.32)

where β = h̄ω−γ
TX

. Considering further also the Coulomb interaction it can
be shown using standard techniques of many body theory that the Dyson
equation is fullfilled

G(φ, φ′, ω) = G0(φ, φ
′, ω)− vC

∫ 2π

0

G0(φ, φ
′′, ω)δ(φ′′)G0(φ

′′, φ′, ω), (3.33)

with the solution

G(φ, φ′, ω) = G0(φ, φ
′, ω)− vC

G0(φ, 0, ω)G0(0, φ
′, ω)

1 + vCG0(0, 0, ω)
. (3.34)

The optical interband polarization is the solution of the Eq. (1.48) (setting
the electromagnetic field to one for simplicity)

(h̄ω + i0+ −H)P(φe, φh, ω) = −dcvUδ(φe − φh), (3.35)

where U is an overlap of radial and z-confinement wave functions

U =

∫
dr r fe(r) fh(r)

∫
dz ve(z) vh(z). (3.36)

The susceptibility is obtained calculating electron-hole overlap Eq. (1.50)

χ(ω) = |dcv|2U2

∫ 2π

0

dφP(φ, φ, ω). (3.37)

and comparing Eqs. (3.34) and (3.37) we get

χ(ω) = |dcv|2U2 G0(0, 0, ω)

1 + vCG0(0, 0, ω)
. (3.38)

The absorption being the imaginary part of χ(ω) can be easily evaluated
with the help of the Eq. (3.32).

Oscillatory component and persistent current

Let us turn our attention back to the angle dependent Coulomb potential.
The total energy as a function of the magnetic field can be written as

Eα(B) = Eα(0) + ∆E(1)
α (B) + ∆E(2)

α (B), (3.39)
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where ∆E
(1)
α (B) is a strictly periodic function of B with the period [Cha02]

BP =
2h̄

e

1

R2
X

, (3.40)

and is called oscillatory component, and ∆E
(2)
α (B) (the second term in the

square brackets of Eq. (3.27)) is a parabolic function of the magnetic field
with zero of the energy shifted to BZ,L

BZ,L = L
2h̄

e

1

R2
e −R2

h

. (3.41)

The persistent current induced by an exciton in state α (Eq. (3.20)) can
be also obtained from a version of the Hellman-Feynman theorem after in-
troducing the one-particle flux [WFK94; MC04] ΦB,a = πR2

aB

Iα = −∂Eα(ΦB,e,ΦB,h)

∂ΦB,e

− ∂Eα(ΦB,e,ΦB,h)

∂ΦB,h

. (3.42)

In the present case, however, this would call for a calculation of the problem
in dependence on two different (fictitious) B-fields in Eα(ΦB,e,ΦB,h). From
the Hamiltonian Eq. (3.27) the exciton flux can be defined as

ΦB,X = πR2
XB, (3.43)

and the exciton energy can be regarded as a function of the exciton flux
Eα(ΦB,X). It turns out that the exciton PC calculated from the definition
Eq. (3.42) is equivalent to the derivative of the oscillatory component of the
exciton energy only,

Iα = − 1

πR2
X

d∆E
(1)
α (B)

dB
. (3.44)

This means that the term quadratic in B (∆E(2)
α ) does not contribute to the

PC. From the general definition of the magnetization Eq. (3.22) a relation
between the magnetization and the PC can be found easily,

Mα = πR2
XIα −

d∆E
(2)
α (B)

dB
. (3.45)

The second term is the intrinsic magnetization originating from the inner
electron and hole motion in the exciton while the first one being proportional
to the PC, is related to the non-trivial (connected) topology of the wave
function. Only in the case of identical electron and hole radii, Re = Rh, the
PC and the magnetization are proportional, since the term ∆E

(2)
α is absent.
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3.3.2 Exciton Aharonov-Bohm effect
Overview

First, let us start with experiment where contradictory results are found: An
ensemble of InP/GaAs type II quantum dots has been studied [RGWCMR04].
A theoretical explanation based on [KKG98] described below indicated some
X-ABE oscillations in a single dot. However, in a very recent single dot
experiment [dGGN+06] on InP/GaAs quantum dots (grown under different
conditions) no oscillations have been observed.

In order to explain the experiment [RGWCMR04] the electron-hole in-
teraction has been taken only as a perturbation since the strong parabolic
confinement for electron in the quantum dot is assumed. The hole is found
in the ring-like potential minimum with radius Rh due to the strain and
Coulomb interaction. The total energy can be then expressed as

EX = Eg +
√

(h̄ω0)2 + (h̄ωc/2)2 +
h̄2

2mhR2
h

(lh − fh)
2, (3.46)

where Eg is the bandgap energy including exciton binding energy, h̄ω0 is the
confinement energy of electron, ωc = eB/me is the cyclotron frequency, lh
the hole angular moment quantum number, and fh is the hole magnetic flux
in units of Φ0.

Unfortunately, the X-ABE in nanorings has not been observed yet in
contrast to charged excitons (complex of exciton and electron) [BKH+03].

Theoretically, there are only few works that go beyond zero width ring
[HZLX01; SU01; GBW02]. However, no oscillatory component of the energy
∆E

(1)
α (B) has been confirmed for the ground state. Nevertheless, a recent

calculation on two-dimensional annular lattices [PDER05] indicated that the
X-ABE of the ground state for nanorings exists, but in this model the energy
shift quadratic in the magnetic field was neglected.

Furthermore, several proposals have been made to improve the observ-
ability of oscillations, such as applying an electric field to separate elec-
tron and hole [MC03; ZZC05] or different confinements for electron and
hole [GUKW02]. The effect of weak disorder or impurity scattering (in gen-
eral losing the cylindrical symmetry) has been investigated with the result
that optically non-active (dark) states can become bright ones [dSUG04;
dSUS05]. This effect is also investigated in detail in Sec. 3.5.

Objectives

It is necessary to stress that it is not the aim of our work to model material
properties with the most accurate description. Out of this reason some effects
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Figure 3.3: Schematic drawing of the investigated nanoring and the geometry
within the x-y-plane: (a) type I, (b) type II-A, and (c) type II-B band align-
ment (see text). The magnetic field is directed along the growth direction z.
Specific electron and hole positions (including strain) are visualized.

which may play an important role in selected materials, like piezoelectric
fields, image charge effects, or even valence and conduction band mixing, are
neglected.

We will investigate in what follows

� Type I nanoring, where the electron and the hole are confined together.

� Type II-A nanoring, where the electron is confined in the ring and
the hole has a ring-like barrier.

� Type II-B nanoring, where the hole is confined in the ring and the
electron has a ring-like barrier.

These are schematically shown in Fig. 3.3. The well and ring material param-
eters are summarized in Tab. A.1 and A.2 in the appendix A. The effective
masses are chosen according to the material in which the particle is found
predominantly.

In the investigation of the X-ABE we concentrate on the optically active
state with the lowest eigenenergy Eα in this Section, since its proper confir-
mation in finite width nanorings represented an open question. We propose
the following method for observing oscillations: The second derivative of the
energy with respect to the B-field.

We have chosen B-field strengths up to B = 25 T which can be easily
achieved in experiment. The strain calculation is described in detail in the
appendix F.
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Figure 3.4: Absorption spectrum (a) of a GaAs/AlGaAs nanoring with
radii r1 = 4 nm and r2 = 12 nm. The lines are Gaussian broadened with
σ = 1 meV Eq. (C.8), and the oscillator strength (for the ground state di-
vided by ten) is given in linear grey scale (step like features are artefacts
of the interpolation). The circle focuses on the specific anti-crossing (see
text). The correlated hole densities at B = 2 T are given for the first four
lowest bright states (b)-(e). The black rectangle indicates the fixed electron
position.

Type I: GaAs/AlGaAs

Structure: The choice of GaAs/AlGaAs for type I structure is rather
straightforward since it is the most frequently investigated direct semicon-
ductor. The strain can be safely neglected in this structure due to the small
lattice mismatch.

This contrasts with previously investigated self-assembled InAs/GaAs
nanorings [LLG+00; BWO04] which have been grown with an interesting
method: First, InAs is grown on the Si doped GaAs substrate and dots
are formed. Then, these dots are overgrown with thin layer of GaAs and
annealed at the growth temperature. The drastic changes in the morphol-
ogy due to the strain are observed when InAs escapes from the center and
volcanos appear.

There is also a newly developed technique which allows to grow concentric
GaAs/AlGaAs nanorings [KMO+05]. The rings are grown using modified
droplet epitaxy. First, cation (Ga) atoms are supplied and their nanometers-
sized droplets form. Then, the anion (As) atoms are supplied and according
to its flux intensity either strain-free dots, rings or even double concentric
rings are grown. The rings have almost circular symmetry.
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Figure 3.5: a) Absorption spectrum of the zero width nanoring (re = rh =
8 nm). The lines are Gaussian broadened with σ = 1 meV Eq. (C.8), and
the oscillator strength (for the ground state divided by ten) is given in linear
grey scale.

The structure investigated here consists of a Al0.23Ga0.77As 4 nm wide
quantum well between Al0.3Ga0.7As barriers. A nanoring of pure GaAs is
placed inside the Al0.23Ga0.77As well.

Absorption: As an example we discuss the absorption spectrum Eq. (1.54)
of an GaAs/AlGaAs nanoring as plotted in Fig. 3.4a where the oscillations
of the excited states are indeed clearly visible, while the ground state shows
only a smooth and monotonic energy shift. Before discussing the properties
of the lowest bright state we focus our attention to one interesting feature of
excited states, namely the anti-crossing marked by a circle in Fig. 3.4. On
a first glance, the absorption spectrum resembles the result of the simplified
model (Fig. 3.5): The first three lowest bright states can also be found in
the simplified model as plotted in Fig. 3.4b-d (being even, even and odd
with respect to φ at B = 0 T). Only the fourth state (Fig. 3.4e) cannot be
found in the simplified model since the hole is found in its first excited radial
state, which is absent in a zero width ring. Its overlap with the electron part
and consequently the oscillator strength is, however, tiny. Nevertheless, this
even state manifests itself strongly by the anti-crossing with the next even
state at around B = 13 T. This kind of anticrossing, even though somewhat
marginal, goes beyond the description of the simplified model. From now on,
let us concentrate on the lowest bright state.



Quantum Ring 79

Figure 3.6: The B-field dependence of lowest bright (ground) state energy
(a) and its second derivative in type I GaAs/AlGaAs nanorings, solid - r1 =
4 nm, r2 = 12 nm, and dashed - r1 = 8 nm, r2 = 16 nm. The full calculation
(black) is compared to results for infinitesimal narrow rings Eq. (3.27) (red).
The periods of the oscillations Eq. (3.40) are BP = 20.8 T (solid) and BP =
9.2 T (dashed). Projected hole density n(h) according to Eq. (3.15) at B =
0 T (c). The ring boundaries are shown as dashed circles.

Results: Up to now there has not been any clear evidence of oscillations
of the lowest bright (ground) state for finite width nanorings. The problem
becomes evident looking at Fig. 3.6a, where on the first glance the only de-
pendence of the energy on the B-field is the smooth and monotonic increase.
Although for nanorings of finite width a separation of the diamagnetic shift
like Eq. (3.39) is not possible in a strict sense, we will understand in the
following ∆E

(1)
α as the oscillating part and ∆E

(2)
α as the smooth monotonic

part (Lα = 0). The behavior of the exciton ground state energy in the limit
B → 0 has been studied in Ref. [WR98] finding a non-trivial dependence
on the one-particle confinement and exciton relative motion. In the present
case, the strong electron (hole) ring confinement fixes the electron (hole)
radial position re(h) and the strong Coulomb interaction fixes the relative
distance r, which means that the quadratic dependence on B and conse-
quently its contribution to the second derivative are almost constant with
the B-field. This enables to extract the second - oscillatory - component
from the second derivative as seen in Fig. 3.6b.

The strong dependence of the oscillations amplitude on the ring radius
is remarkable. The expectation values of R2

a = 〈r2
e(h)〉 at B = 0 T from

the full solution were used as input parameters in the simplified model. A
comparison of the simplified with the full model shows good agreement for
the period and the amplitude of the oscillations, and its strong dependence on
the ring radius as well. The main difference is the absence of the term ∆E

(2)
α

in the simplified model. It is the finite radial extension of the exciton relative
wave function (plotted in Fig. 3.6c) which gives a nonzero contribution to this
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Figure 3.7: The hole potential in the x-y-plane for z = 0 of the InP/GaInP
(a) and InAs/AlGaSb (b) nanorings without (dashed) and with (solid) strain
included.

energy. After having compared results of both models in this case, further we
will discuss only the full solution. Note, however, that the period Eq. (3.40)
gives generally a good estimate.

Let us direct our attention to type II systems where more pronounced
effects are expected.

Type II-A: InP/GaInP

Structure: InP/GaInP self-assembled quantum dots have been investi-
gated since many years both theoretically and experimentally (see [PHJ+05]
and references therein). Possibly, rings may be grown as well, e. g. using the
same procedure as for InAs/GaAs [GMRS+97] or GaAs/AlGaAs [KMO+05]
nanorings. We have investigated a structure consisting of a 4 nm wide
Ga0.51In0.49P quantum well between AlAs barriers. The nanoring is pure InP.
Such a structure guarantees that the hole is always found around the ring
(in the xy-plane) and not above or below the ring (in growth (z-) direction).
This is not a necessary condition for the X-ABE. The situation where the
hole (electron) is found above or below is also of interest. This goes beyond
the scope of our work since we would not be able to take advantage of the
z-separation. The strain plays an important role in this material [JPP03], as
is clearly shown in Fig. 3.7a.

Results: Since the deep minimum of the hole potential is formed at the
inner edge of the ring (Fig. 3.7a), the hole is found there. Such a state is
named hole-in (depicted in Fig. 3.8c). The effective electron-hole separation
is thus decreased with respect to the strain-free case. The state hole-in is
the ground state for any ring radius. Excluding composition changes, the
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Figure 3.8: The B-field dependence of lowest bright state energy (a) and its
second derivative (b). Solid - r1 = 4 nm, r2 = 12 nm, and dashed - r1 = 8 nm,
r2 = 16 nm InP/GaInP nanoring. The solid line in (a) is shifted by 20 meV for
comparison. Projected hole density n(h) according to Eq. (3.15) at B = 0 T
(c). The ring boundaries are shown as dashed circles. The periods of the
oscillations Eq. (3.40) are BP = 40.9 T (solid) and BP = 11.8 T (dashed).

height of the ring-like barrier for the hole can decrease by changing the well
width in the z direction. For high B-fields, a transition from type II to type
I may occur due the enhanced penetration of the hole wave function into
the ring. This has been already predicted for quantum dots in Ref. [JPP03].
The energy of the lowest bright states as a function of B-field is plotted in
Fig. 3.8a. Again, no evidence of oscillations is seen by the naked eye. The
analysis of the second derivative (Fig. 3.8b) reveals that (i) the amplitude
of the oscillation is increased compared to type I (as expected), and (ii) the
period of the oscillation is increased as well since the hole samples a smaller
magnetic flux (see Eq. (3.40)) compared to type I.

Type II-A: InAs/AlGaSbAs

Structure: The InAs/AlGaSb system has several advantages for observing
the X-ABE in type II-A systems compared to InP/GaInP as will be discussed
below. This system is less known compared to GaAs/AlAs or InP/GaInP,
but as a quantum well structure well-understood and used (see [OFO05] and
references therein). Recently, InAs quantum dots on AlGaSb substrate have
been grown [YAGO04]. The fact that Al0.6Ga0.4Sb is an indirect semicon-
ductor [AJJA83] is of less importance since the electron is found predom-
inantly in InAs, which means that the approximation taking into account
only the Γ point is sufficient. A problem is the small difference (0.083 eV)
between the conduction band edge in InAs and the valence band edge in
Al0.6Ga0.4Sb [VMRM01]. The applicability of the effective mass approxi-
mation is questionable here [CTCL96]. Nevertheless, we believe as a first
approximation [XCQ92] it can be adopted. The investigated structure con-
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Figure 3.9: The B-field dependence of lowest bright state energy (a) and its
second derivative (b). Solid - r1 = 4 nm, r2 = 12 nm, and dashed - r1 = 8 nm,
r2 = 16 nm InAs/AlGaSb nanoring. Projected hole density n(h) according
to Eq. (3.15) at B = 0 T (c). The ring boundaries are shown as dashed
circles. The periods of the oscillations Eq. (3.40) are BP = 19.9 T (solid)
and BP = 8.8 T (dashed).

sists of a Al0.6Ga0.4Sb 4 nm wide quantum well between AlSb barriers. A
InAs nanoring is placed in the Al0.6Ga0.4Sb well. Even though the lattice
mismatch between InAs and AlGaSb is small (1%), our calculation includes
strain (see Fig. 3.7b).

Results: The influence of the strain on the hole potential for InAs/AlGaSb
is shown in Fig. 3.7b. Compared to InP/GaInP, there are striking differences.
The effect of strain is much smaller due to the much smaller lattice mismatch
and the sign of the strain contribution is opposite. Instead of compression in
the ring as for InP/GaInP (enlarging the bandgap), there is dilatation in the
case of InAs/AlGaSb which lowers the bandgap. This leads to the repulsion
of the hole from the ring and thus to a weakening of the Coulomb interaction.
In contrast to InP/GaInP, the minimum of the hole potential is found outside
of the ring (Fig. 3.7b) for any ring radius. The hole is found outside of the
ring –hole-out– as depicted in Fig. 3.9c. The difference between the potential
value in the middle and outside the ring decreases with increasing inner ring
radius.

As stated above, due to its material properties a large oscillation ampli-
tude is found here, as seen in Fig. 3.9a and b. Even without any further anal-
ysis, the lowest bright state, hole-out, shows clear oscillations. Please note
a change of the scale by a factor of ten in Fig. 3.9b compared to Fig. 3.8b!
In both cases kinks in E(B) (sharp minima in d2E/dB2) resemble the one-
particle ABE and are consequence of the weak Coulomb interaction.

An interesting new effect is found in larger rings, namely a transition
from hole-in to hole-out. Depending on the ring geometry one of them is the
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Figure 3.10: The second derivative with respect to the B-field of the lowest
bright state energy (a) of the InAs/AlGaSb nanoring with radii r1 = 22 nm
and r2 = 30 nm. Projected hole density n(h) according to Eq. (3.15) at
B = 0 T (b), B = 10 T (c), and B = 20 T (d). The ring boundaries
are shown as dashed circles. The period of the oscillations Eq. (3.40) is
BP = 1.9 T.

lowest bright state and the other one the second lowest. The strain profile
favors the state hole-out. On the other hand, the Coulomb interaction prefers
the state hole-in. As the strain profile in the middle and outside of the ring
becomes similar for larger rings, the Coulomb interaction dominates and the
state hole-in becomes the lowest bright state. This situation is demonstrated
in Fig. 3.10b. The lowest bright state changes with increasing B-field: from
hole-in (Fig. 3.10b) to hole-out (Fig. 3.10c and d). The state hole-in has a
larger energy shift ∆E(2), which can be verified by calculating the effective
hole radii 〈r2

h〉 and checking the expression for ∆E
(2)
α (B). The transition

occurs at around B = 1.5 T. Since we always follow the lowest bright state
the second derivative shows a sharp peak at the transition (Fig. 3.10a). We
note that the small overlap of the hole-in and hole-out wave functions does
not allow to distinguish between level crossing and anti-crossing, at least
within our numerical precision. Due to the large radius of the ring, the
oscillation period is small (according to Eq. (3.40) BP = 1.9 T). The decay
of the oscillation amplitude is due to a decrease in exciton Bohr radius with
B-field (compare Fig. 3.10c and Fig. 3.10d).

Type II-B: GaSb/GaAs

Structure: GaSb/GaAs self-assembled quantum dots of type II-B have
attracted a certain interest recently (see [TEL+04] and references therein).
The strain plays a very important role in these structures and modifies sig-
nificantly the conduction and valence band energies: The strain-free offsets
Ee = 0.063 eV and Eh = −0.77 eV are modified to Ee = 0.65 eV and
Eh = −0.86 (minimum). The substantial change of the electron potential is
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Figure 3.11: The electron potential in the x-y-plane for z = 0 of the
GaSb/GaAs nanoring without (dashed) and with (solid) strain included.

Figure 3.12: The B-field dependence of lowest bright state energy (a) and its
second derivative (b). Solid - r1 = 4 nm, r2 = 12 nm, and dashed - r1 = 8 nm,
r2 = 16 nm GaSb/GaAs nanoring. Projected electron density n(e) according
to Eq. (3.14) at B = 0 T (c). The ring boundaries are shown as dashed
circles. The periods of the oscillations Eq. (3.40) are BP = 2.9 T (solid) and
BP = 1.5 T (dashed).

shown in Fig. 3.11. These results are comparable with those in Ref. [PP05].
The investigated structure consists of a GaAs 4 nm wide quantum well be-
tween Al0.3Ga0.7As barriers, a GaSb nanoring is placed in the well.

Results: The increase of the lowest bright state energy by 40 meV from
B = 0 T to B = 25 T (Fig. 3.12a) is large compared to all previous values
and again no clue of oscillation is seen. In the second derivative (Fig. 3.12b),
a sharp initial decay is revealed. The origin of this decay can be understood
studying the wave function. The hole is strongly confined in this system
and the electron potential has a high ring-like barrier as mentioned above.
The correlated electron density plotted in Fig. 3.12c shows that the shallow
Coulomb potential localizes the electron part of the wave functions only
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weakly. The electron is very sensitive to the B-field. Due to the quadratic
term ∆E(2), the electron is forced to move quickly towards the hole (i. e. to
the nanoring) with increasing B-field. This behavior leads to the initial decay
in the second derivative (Fig. 3.12b). Lateron, the wave function stabilizes
and oscillations appear (Fig. 3.12b). Their amplitude is comparable to values
found in InP/GaInP. The advantage of the GaSb/GaAs system is the large
Bohr radius due to the large electron-hole separation. On the contrary, the
disadvantage is the sensitivity of the electron to the B-field due to its small
mass and shallow confinement.

Discussion

Now, we compare and discuss the results of the previous section and conclude
which material combination is preferential for X-ABE.

Our results show unambiguously that a weakening of the Coulomb inter-
action increases the oscillation amplitudes, which has been already shown for
the simplified model [GUKW02; dSUS05]. The reason is that electron and
hole can sample the entire ring more easily if the exciton is weakly bound
(larger exciton Bohr radius), and the wave function can acquire the neces-
sary ring topology. The mutual confinement of electron and hole (type I)
has turned out to be inferior to the systems where electron and hole are
separated by the conduction and valence band alignments in the xy-plane
(type II). One unwanted consequence of the spatial electron-hole separation
is that the lowest bright state is not any more the ground state for larger
B-fields [Cha02; GUKW02; BPSP06] (in contrast to type I). This may re-
sult e. g. in losses of photoluminescence intensity if some non-radiative decay
channels are present. These kinetic effects are studied in the next Chapter.

Comparing the results for different material systems, we find that for large
amplitude of X-ABE oscillations the ideal structure is of type II-A with the
following properties: Light electron mass, strong electron confinement, and
high barrier for holes. These criteria can be discussed qualitatively: (i) The
light electron mass leads to a larger Bohr radius and higher probability of
the particle to sample the whole nanoring. (ii) Strong electron confinement
is needed in order to force the light electron to orbit around the ring. (iii)
A high barrier for holes is necessary for a "good" type II nanoring, thus
avoiding the penetration of the wave function into the ring. The material
which matches these criteria best is InAs/AlGaSb in our case. This system
clearly deserves further investigations, both theoretically and experimentally.
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Figure 3.13: Magnetization (a - d) and persistent current (e - h) and of
the nanorings with radii r1 = 4 nm, r2 = 12 nm (solid) and r1 = 8 nm,
r2 = 16 nm (dashed) of the lowest bright state. Materials: GaAs/AlGaAs
(a, e), InP/GaInP (b, f), InAs/AlGaSb (c, g), and GaSb/GaAs (d, h). The
scaling factor between the PC and the magnetization is held constant in all
cases. All curves are multiplied by minus one in order to see better the
correspondence between magnetization and the first derivative of energy.

3.3.3 Persistent current and magnetization

After having examined the X-ABE in different materials, we investigate now
the persistent currents and the magnetization in a more compact way.

The PC Eq. (3.20) and the magnetization Eq. (3.21) can be measured
under special conditions: (i) The exciton should be excited into the opti-
cally active state (in our case always the lowest one). (ii) The excitation
power should be sufficient in order to give a measurable signal but small
enough to avoid exciton-exciton interaction. We assume one exciton per
nanoring in the following, which corresponds to extremely strong excitation.
A more realistic value of the excitation would reduce the scales in Fig. 3.13
accordingly. The state-of-the-art experimental technique (SQUID2) enables
to measure the magnetization directly [MCB93]. The measurement of the

2Superconducting Quantum Interface Device uses the properties of electron-pair wave
coherence and Josephson Junction (weak link between two superconductors) to detect
very small magnetic fields. The typical geometry is the ring with two (or more) Josephson
Junctions and the measured current is the function of the magnetic field threading the
ring.
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current requires additional contacts on the nanoring which may complicate
the already difficult assembling of the nanorings even more. A measurement
of either the persistent current or the magnetization in the nanoring is an
extremely challenging task.

First, the magnetization of the exciton in the ring with finite width
(Fig. 3.13a-d) can be divided roughly also into two contributions according
to the analogy with the simplified model Eq. (3.45): The first (oscillatory)
part comes from the orbiting of electron and hole around the nanoring while
the second monotonic part (nearly linear in B) is related to the inner exci-
ton motion where electron and hole orbit around each other. The weight of
each contribution depends on the wave function topology. The dominance of
the first contribution is seen only in the case of weak Coulomb interaction
where the magnetization has even positive values (negative in the plot), i.
e. pointing into the same direction of the B-field itself, thus behaving para-
magnetically. Such an effect could be interesting for further applications,
namely a sign switch of the optically induced coherent magnetization by the
B-field. Unfortunately, this effect is rather weak. In all other cases both
parts contribute with different weights. The linear component is found also
for excitons in quantum wells or dots.

Second, the exciton PC shown in Fig. 3.13e-h exhibit periodic oscillations
for each ring geometry and for all materials, even though the oscillation am-
plitude may be very small (as e. g. in Fig. 3.13d). The period and the relative
amplitude of the oscillations agree well with those of the second derivative
of the energy with respect to the magnetic field. Furthermore, the results
confirm the relation Eq. (3.44) qualitatively also for finite width nanorings
since they indeed remind of the first derivative of the oscillatory component
of the exciton energy. A quantitative comparison is in general not possible
since the smooth (non-oscillatory) component of the diamagnetic shift can-
not be extracted unambiguously. From the theoretical point of view it turns
out that a measurements of the PC would give a more direct information on
the non-trivial ring topology of the wave function.

3.4 Circular quantum dot

Even though the nanoring is an ideal structure for the observation of either
X-ABE or PC, there is an experimental observation backed by theoretical
analysis [RGWCMR04] that excitons in InP/GaAs quantum dot of type II
exhibit also X-ABE. Taking our approach we focus now our attention on this
system.

The investigated quantum dot is schematically plotted in Fig. 3.14a).
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Figure 3.14: a) Schematic picture of the investigated geometry and mate-
rials, a buried InP dot in the GaAs/AlGaAs quantum well. b) (c): The
electron (hole) band edges for the case e-in (solid) and the e-out (dashed) in
ρ direction for z = 0. The chemical band offsets are shown as thin lines.

It consists of the cylindrical InP quantum dot placed inside a 4 nm wide
AlGaAs/GaAs quantum well. The electron and heavy-hole band edges are
shown in Fig. 3.14b) and c) (for details of the calculation see appendix F).

We consider two values for the chemical electron and hole band offsets
of InP on GaAs: (a) Ee = −0.297 eV , Eh = 0.197 eV [dW89] and (b)
Ee = −0.240 eV, Eh = 0.140 eV [VMRM01]. InP/GaAs without strain is a
type II structure. If the strain is included, the two parameter choices lead
to a quite different behavior: (a) the electron is confined in the dot with
Ẽe = −25 meV called e-in (Fig. 3.14 solid), or (b) the dot acts as barrier for
the electron, Ẽe = 21 meV called e-out (Fig. 3.14 dashed). Such a surprising
result has been already predicted [PP05].

The main focus lies again on the behavior of the lowest bright exciton state
with magnetic field. Such a state is also the ground state for zero magnetic
field. In Fig. 3.15 correlated one-particle densities for hole and electron are
plotted for e-in [a, b, c, d] and e-out [e, f, g, h] with dot radius of r = 16 nm.
The electron part differs more: either the electron is confined in the dot
(Fig. 3.15b) and d)) or outside the dot due to the Coulomb interaction with
the hole (Fig. 3.15f) and h)).

As has been already pointed out in order to observe any oscillatory com-
ponent of the energy on the B-field it is necessary that the wave function
closes around the origin. The diameter of the dot has to be comparable with
the exciton Bohr radius (aB = 9 nm) to fulfil this condition. This condition
is well fulfilled for e-in and for e-out only in the case of smaller dots.

In the investigated cases, the hole part of the wave function connects
around the origin for both types when r = 8 nm and only for e-in when
r = 16 nm. In the e-in and e-out structures, the heavier particle (hole,
mh = 0.22) has a ring-like confinement and the lighter one (electron) has not
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Figure 3.15: Correlated one-particle densities according to Eqs. (3.14)
and (3.15) at B = 0 T [a, b, e, f] and B = 15 T [c, d, g, h] for e-in (see text)
[a, b, c, d] and e-out [e, f, g, h] with r = 16 nm in Cartesian coordinates. The
hole density [a, c, e, g] and the electron one [b, d, f, h] are shown. The dot
boundaries are shown as dashed circles. The maximum value of the electron
(hole) density is same in all cases. The grey arrow indicates the fixed position
of the second particle.

only a very shallow one-particle potential but also a shallow ring-like potential
due to the Coulomb interaction. Taking into account the small effective mass
of the electron (me = 0.077), it can be concluded that the electron is more
"delocalized" around the potential minima. This leads to the fact that the
electron part of the wave function does not connect efficiently around the
origin. Such a behavior is clearly visible in Fig. 3.15. Furthermore, with
increasing B-field both particles move towards each other (〈re−rh〉 decreases)
and even the hole loses its ring topology (Fig. 3.15c)).

Absorption spectra with clear evidence of oscillations for higher states are
plotted in Fig 3.16a) and b) for the case e-in. The calculated second deriva-
tives for different configurations (see caption) are depicted in Fig. 3.16c).
There are no clear oscillations seen. Due to the weak confinement of both
particles, the second derivate of the non-oscillatory part decreases with B-
field, and dominates the behavior completely.

Our results are not fully comparable with the experiments published in
Ref. [RGWCMR04; dGGN+06] due to the additional confinement in the
growth direction which we assume. But still some correspondence can be
expected since the heavy-hole potential minimum originating from the strain
is found around the dot and not above or below. This means that our in-plane
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Figure 3.16: Absorption spectra for the case e-in with dot radius r = 8 nm
(a) and r = 16 nm (b). In both cases the lines are Gaussian broadened
with σ = 0.52 meV Eq. (C.8) and the oscillator strength (grey scale) is the
same. Step-like features in the absorption are due to the finite resolution with
respect to the magnetic field. c): The second derivative of the lowest bright
states with respect to the magnetic field for e-in with strain (dashed-dotted
r = 8 nm, dotted r = 16 nm) and e-out (solid r = 8 nm, dashed r = 16 nm).

model and its conclusions are to some extent applicable. The present results
are in a rather good agreement with those published in Ref. [dGGN+06] where
no oscillations have been seen. Since the experiment [dGGN+06] is performed
on a single quantum dot, it is in a way superior to the ensemble measurements
reported in Ref. [RGWCMR04]. Since the dots in the experiments are grown
under different conditions, their shape and consequently the strain profile
may differ significantly.

3.5 Non-circular quantum ring

We have treated the circular symmetry so far. Even though such a high
symmetry is highly idealized it has given us an insight what X-ABE is and
how it is related to the PC. Now we investigate a ring with D1 symmetry
as an example of low symmetry structure. There are many possibilities how
this ring could look like. Here we study a model of the ring whose boundaries
are two circles. The inner one is centered at the origin. The outer one is
centered at point whose distance to the origin is b as indicated in Fig. 3.17.
The potential has non-zero value V a

0 only between these two rings.
First, the matrix elements Eq. (3.9) have to be calculated

V a
k (ra) =

V a
0

2π

∫ π

−π

dφeikφθ (ra − r1) θ
(
r2
2 − (ra cos(φ)− b)2 − r2

a sin2(φ)
)
.
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Figure 3.17: Schematic picture of the ring with D1 symmetry with indicated
ring radii ri, the distance between ring centers b, and non-zero potential value
V a

0 inside the ring.

The step functions lead to integration boundaries ±φ given by

cos(φ(ra)) =
1

2

b2 + r2
a − r2

2

rab
, (3.47)

and the matrix element is equal to

V a
k (ra) = V a

0

[
1

kπ
sin(kφ(ra))θ(ra − r2 + b)θ(r2 + b− ra)

+δk,0θ(ra − r1)θ(r2 − b− ra)

]
, (3.48)

which properly satisfies the relation V a
k = V a

−k. The Hamiltonian is identical
to Eq. (3.12).

Second, we study the eigenenergies with their corresponding oscillator
strengths and the second derivatives which are plotted as a function of the
magnetic field in Fig. 3.18 for type I nanoring. The behavior of the lowest
three energies is not qualitatively different from the case of the circular sym-
metry since the energetically lowest states for different quantum numbers
L do not cross. Their mixing manifests itself by the larger energy splitting
among states with different |L| and by the lifting of the degeneracy for the
same |L| at B = 0 T. Consequently, the oscillator strength is redistributed.
The D1 symmetry group implies that there is one symmetry axis, let us say
the x-axis. The wave function transforms in the following way

T̂xΨα(xe, ye, xh, yh) = Ψα(xe,−ye, xh,−yh) = ±Ψα(xe, ye, xh, yh). (3.49)
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Figure 3.18: Energies (a) and corresponding oscillator strengths (b) of the
ground (solid), the first (dashed), and the second (dotted) excited states,
and the second derivative of the ground state energy (c) as a functions of the
B-field for type I GaAs/AlGaAs nanorings with radii r1 = 4 nm, r2 = 12 nm
and different shifts b = 0 nm black, b = 1 nm red, and b = 2 nm green.
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There are two kinds of states with respect to this symmetry operation: even
and odd ones. The odd ones have zero oscillator strength as immediately
follows from Eq. (3.49). The doubly degenerate states with L 6= 0 of the
circular nanoring can form an even and odd linear combination with respect
to T̂x. As the symmetry is lowered these combinations are mixed. In the
case of the C1 symmetry all states could be optically active.3

The energetic order of even and odd states can be estimated for the
lowest ones. The ground state is always even as shown in Fig. 3.18b. The
first excited is an odd one since the contribution of the Coulomb interaction
is similar to the ground state one but the kinetic energy is lower than for
the next even one (analogous with e.g. a quantum well). The excited states
have different Coulomb contributions and that’s why their order cannot be
determined in general.

The second derivative shown in Fig. 3.18c reveals that the ring topology
of the wave function weakens as the outer ring is shifted more from the origin.
The effective width dR of the nanoring becomes angle dependent and varies
from its minimum dR = r2−b−r1 at φa = π to its maximum dR = r2 +b−r1
at φa = 0. Due to the confinement energy it is convenient for the exciton
wave function to be found predominantly at φa = 0. Thus the value of
the exciton wave function at φ = π, and consequently the ring topology,
is accordingly decreased. The ring topology is lost if b ≥ r2 − r1 and the
confinement potential is a banana-like quantum dot.

Let us turn now our attention towards type II nanoring. We investigate
a special case of the InP/GaInP nanoring without strain assuming that the
hole potential is dot-like. This guarantees that the hole is found always in the
middle of the nanoring as it would be if the strain is taken into account. The
strain would only modify the exact potential profile but not the symmetry.

As it has been already mentioned the spatial separation of the electron
and hole leads to the darkening of the ground state with magnetic field.
This is illustrated in Fig. 3.19a where crossings among states with different
quantum number L are seen. Like for the type I nanoring all states are mixed
if the symmetry is decreased to the D1 symmetry, and inevitably all crossings
become anti-crossings or disappear completely depending on the degree of
displacement. In the present case there is no evidence of any anti-crossing
left for the lowest states as clearly seen in Fig. 3.19a and consequently, the
energy dependence on the magnetic field is qualitatively the same as for the

3However, it is important to notice that we were discussing only the brightness of
exciton states with respect to the center-of-mass motion. Regarding the relative motion
exciton states can be categorized as bright and dark ones at zero magnetic field too. In
one-dimensional case they are even (bright) and odd (dark) ones, in two-dimensional case
they are s- (bright), p-, d-,...like (dark).
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Figure 3.19: Energies (a) and corresponding oscillator strengths (b) as a
functions of the B-field for type II InP/GaInP nanorings with radii r1 =
8 nm, r2 = 16 nm (for details see text) and different shifts b = 0 nm black
(the lowest bright state L = 0 - solid, L = 1 - dashed, and L = 2 - dotted),
b = 1 nm red (the ground (solid), the first (dashed), and the second (dotted)
excited states), and b = 2 nm green.
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Figure 3.20: a) The comparison of the second derivatives of the ground state
of the finite (solid, as in Fig. 3.19) and zero width nanoring (dashed-dotted,
re = 12.4 nm, rh = 4.8 nm for details see text). b) Oscillator strengths
as a functions of the B-field for the three lowest states (the ground (solid),
the first (dashed), and the second (dotted) excited states) of the zero width
nanoring. In both cases different shifts b = 1 nm (red) and b = 2 nm (green)
were considered.

type I nanoring.
However, the difference between type I and II nanorings becomes appar-

ent when the oscillator strength is studied as depicted in Fig. 3.19b. The
oscillator strength changes with the magnetic field as the character of the
exciton wave function changes e.g. the main component of the ground state
wave function for B = 0 T is L = 0, it is shifted to L = 1 for B = 10 T. This
results in a decrease of the oscillator strength which is transfered to the first
excited state (and increased due to the larger electron-hole overlap). Lat-
eron it is transfered to the second and higher excited ones where the states
with different quantum numbers L mix. Although the ground state oscilla-
tor strength becomes exponentially small with increasing magnetic field it is
never exactly zero, which has an interesting implications when the exciton
kinetics is taken into account (see Sec. 4.3).

Unlike the case of the type I nanoring, the oscillation period changes
with b (Fig. 3.19c). This is also accompanied by a decrease of the oscillation
amplitude due to the loss of the ring topology with increasing b. The period
of oscillations is no more related to the exciton relative motion with the
period BP but to the periodic exchange of the ground state main component
from L to L+1. Its period, can be derived within the zero width model from
Eq. (3.41),

BP,2 =
2h̄

e

1

R2
e −R2

h

. (3.50)
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In the present case, taking Re = 〈re〉 = 12.3 nm and Rh = 〈rh〉 = 4.4 nm we
obtain BP,2 = 9.9 T, which agrees well with the observed period in Fig. 3.20c.

In order to apply the zero width model to non-circular symmetry the
radial and azimuthal motion Eq. (3.25) has to be factorized. The expansion
of the azimuthal part is again

ψα(φ,Φ) =
∑
l,L

cαl,Le
−ilφ e

iLΦ

2π
, (3.51)

which preserves the symmetry of the problem and the matrix elements V a
k (ra)

have to be averaged

V a
k =

∫ ∞

0

dr r V a
k (r) η2

a(r). (3.52)

The question is a choice of the proper functions ηa(r). Assuming that the
loss of the circular symmetry is rather weak and that the ring topology of the
wave function is preserved we take for the functions ηa(ra) the confinement
function of the circular ring (b = 0) fa(ra).

Disregarding from the obvious constant contribution to the second deriva-
tive coming from the inner exciton motion the agreement between finite and
zero width model is reasonable as seen in Fig. 3.20a. The underestimated
oscillation amplitude is influenced by the choice of the radial functions ηa(r).
Nonetheless, the oscillator strengths for the three lowest states in the zero
width model show qualitatively the same behavior as in the finite width model
(compare Fig. 3.19b and Fig. 3.20b). At this point it may be concluded that
the zero width model describes the main features of the full one.

Finally, the brief exploration of the circular symmetry attenuation has
demonstrated that the amplitude of X-ABE gets weaker since the lower the
symmetry the higher the probability that the wave function localizes and
loses the general ring topology. However, if the asymmetry is weak and the
electron and hole are spatially separated as in type II structures, the ground
state, which has an oscillatory component and is always bright, exists.



Chapter 4

Emission kinetics

In the previous chapter we have seen that the exciton ground state in a
nanoring is not necessarily optically active for every magnetic field. This is
especially true for the circular nanoring if the electron and hole are spatially
separated. Since the consequences of this fact for the photoluminescence
have not been discussed yet we focus on them in this chapter.

Even though the exciton emission kinetics in nanostructures (e.g. for the
case of disordered quantum wells see [Run02] and references therein) have
been investigated theoretically since many years, nanorings have not been
under such a focus so far. The reason may be that interesting effects are
expected in type II nanorings only [dSUG04] which have not been grown up
to now.

Here we derive expressions for the exciton-phonon scattering matrix ele-
ments and show examples of the photoluminescence quenching with increas-
ing magnetic field under steady state conditions, including a non-radiative
decay.

4.1 Theory

Let us assume that the eigenenergies Eα and corresponding wave functions
ψα of the Hamiltonian Eq. (3.12) are known. We suppose that excitons are at
the final stage of their thermalization after optical excitation and that their
density is such low (nexcaB � 1) that exciton-exciton scattering is negligible.

In order to drive kinetic equation for the exciton population the exciton
Hamiltonian which includes coupling to photons and to acoustic phonons has

97
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to be written down in the second quantization [HK94; ZRS03]

H =
∑

α

Eαb
†
αbα +

∑
k

h̄Ωkc
†
kck + i

∑
α,k

gk,λ(Mαb
†
αck −M∗

αc
†
kbα)

+
∑
q

h̄ωqa
†
qaq +

∑
α,β,q

tqαβ(a†q + aq)b
†
αbβ, (4.1)

where b†α (bα), c†k (ck), and a†q (aq) are bosonic creation (annihilation) oper-
ators of excitons, photons, and acoustic phonons respectively,

gk =

√
2πh̄Ωk

nR

ek,λ, (4.2)

where ek,λ polarization state of the light, Mα = dcvMα is an exciton pho-
ton coupling constant, h̄ωq = h̄sq (h̄Ωk = h̄ck/nR) is an acoustic phonon
(photon) energy dispersion with s being the sound velocity (c being the light
velocity and nR index of refraction), and tqαβ are scattering rates between
exciton states α and β due to bulk acoustic phonons1 which are then given
by [Tak85]

tqαβ =

√
h̄ωq

2s2ρMV

∫ ∫
dre drh Ψα(re, rh)(Dc exp(iqre)

−Dv exp(iqrh))Ψβ(re, rh), (4.3)

where ρM the mass density, V the sample volume, and Dc (Dv) the deforma-
tion potential for electron (hole).

The quantities, we are interested in, are polarization Pα of the state α
and the density matrix Nαβ

Pα = 〈b†α〉, Nαβ = 〈b†αbβ〉. (4.4)

In order to calculate the time dependence of Pα(t) and Nαβ(t) the equation
of motion in the Heisenberg picture ih̄∂tb

†
α = [H, b†α] has to be considered.

This leads to an infinite hierarchy of equations which has to be truncated.
Assuming low excitation density and bulk phonons which are in thermal
equilibrium because they can easily dissipate energy into faraway regions of
the bulk, the expectation values with more than one phonon operator or
more than two exciton operators together are factorized as2

〈a†qaq′b
†
α〉 = 〈a†qaq′〉〈b†α〉 = δqq′nB(h̄ωq)〈b†α〉, (4.5)

1Although bulk phonons do not exist in layered system this is a very good approxima-
tion especially for GaAs/AlGaAs quantum wells [WG88; SD01].

2More precisely, following dynamical variables are considered: Pα = 〈b†α〉, Nαβ =
〈b†αbβ〉, T̂αq = 〈a†qb†α〉, T̃αq = 〈a†−qb†α〉, and Tαβq = 〈a†qb†αbβ〉.
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where nB(h̄ωq) is the Bose-Einstein occupation function. Proceeding further
adopting the Markov and rotating wave approximation, we obtain

ih̄
∂

∂t
Nαβ(t) = ((Eβ − Eα)− ih̄(Γα + Γβ))Nαβ(t) + ih̄δαβ

∑
ρ

γαρNρρ(t)

− 2ImMαE0(t)Pα(t),

ih̄
∂

∂t
Pα(t) = (Eα − ih̄Γα + E0(t)Mα)Pα(t), (4.6)

where an incident light field Ek(t) = δkk0E0(t) is directed along k0 and the
total outscattering rate is defined as

2Γα = rα +
∑

β

γβα, (4.7)

where the phonon scattering rates

γαβ =
2π

h̄

∑
q

|tqαβ|
2 [(nB(h̄ωq) + 1)δ(Eβ − Eα − h̄ωq)

+ nB(h̄ωq)δ(Eβ − Eα + h̄ωq)] , (4.8)

and radiative rates (see appendix E)

rα =
2π

h̄

2πh̄Ωk

n2
R

|Mα|2
∑
k,λ

ek,λδ(Eα − h̄Ωk), (4.9)

have been introduced.
However, in the present section we do not aim to describe a coherent

dynamics within the first picoseconds. Rather we concentrate on the non-
coherent dynamics on longer time scale. The polarization is then almost zero
and consequently also off-diagonal terms of density matrix since Nαβ(t) =
P ∗

α(t)Pβ(t) holds. The final equations take the form of

∂

∂t
Nα = gα +

∑
β

γαβNβ −

(
rα + dα +

∑
β

γβα

)
Nα, (4.10)

where gα is a state dependent generation (source) term and dα a phenomeno-
logical non-radiative decay rate, representing processes as e. g. exciton anni-
hilation via impurities, escape into the wetting layer or Auger processes. We
note that even though these equations could be written immediately they
are not invariant under unitary transformation and thus the results depend
on the choice of the basis.



100 4.1 Theory

These equations are then solved numerically for the steady state situation
∂
∂t
Nα = 0 which is experimentally relevant. Summing the kinetic equations

Eq. (4.10) over all states α, a conservation law for the exciton occupation in
the steady state is found∑

α

gα =
∑

α

(rα + dα)Nα. (4.11)

If the non-radiative rate is zero (dα = 0) the number of excitons which are
optically generated and then decay radiatively is identical. Consequently,
the spectrally integrated PL intensity

P (ω) = π
∑

α

M2
αNαδ(h̄ω − Eα), (4.12)∫

dωP (ω) = constB (4.13)

is constant with e.g. magnetic field. Thus the PL quenching is a clear
indication of nonradiative processes (dα 6= 0).

First, we start with the evaluation of the radiative rates rα which give
the coupling between light and exciton in the state α explicitly

rα = rcv|Mα|2; rcv =
4

3

dcvE
3
gnR

h̄4c3
. (4.14)

The detailed derivation can be found in the appendix E. Taking into account
the single sublevel approximation Eq. (1.64) and the expansion of the lateral
part of the wave function Eq. (3.6), the rates rα have the form of

rα = rcv

∣∣∣∣∣
∫ ∞

−∞
dz ve(z) vh(z)

∑
l

∫ ∞

0

dr r ul,0,α(r, r)

∣∣∣∣∣
2

. (4.15)

Second, we focus on the calculation of scattering rates between exciton
states α and β. The expansion of the wave function Eq. (3.6) gives

tqαβ =

√
h̄ωq

2s2ρMV
×∑

L,L′

ei(L−L′)Φq

(
Sαβe

L,L′(q‖)Ke(qz)Dc − Sαβh
L,L′(q‖)Kh(qz)Dv

)
,(4.16)
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introducing state dependent "overlap" matrix functions Sαβe(h)
L,L′ (q‖) and a z-

dependent contribution

S
αβe(h)
L,L′ (q‖) =

∑
l

∫ ∞

0

dre re drh rh ul,L,α(re, rh)

×u
l∓L−L′

2
,L′,β

(re, rh) JL−L′(q‖re(h)), (4.17)

Ka(qz) =

∫
dz v2

a(z)e
−iqzz, (4.18)

where Sαβe(h)
L,L′ (q‖) = S

βαe(h)
L′,L (q‖) is satisfied and JL−L′(x) are Bessel functions

of the first kind.
Further, the scattering matrix elements tqαβ are integrated over q to obtain

the scattering rates γαβ depending on the energy difference ∆E = Eα−Eβ =
h̄sq. Defining

γ0 =
1

2πh̄4s5ρM

, T
αβe(h)
L−L′ (q‖) ≡

∑
M

S
αβe(h)
M,M−(L−L′)(q‖), (4.19)

the final expression is obtained as

γαβ(∆E) = γ0nB(∆E)∆E3

∫ π

0

dθ sin(θ)×∑
L,L′

[
Sαβe

L,L′(q‖)T
αβe
L−L′(q‖)K

2
e (q⊥)D2

c + Sαβh
L,L′(q‖)T

αβh
L−L′(q‖)K

2
h(q⊥)D2

v

− (Sαβe
L,L′(q‖)T

αβh
L−L′(q‖) + Sαβh

L,L′(q‖)T
αβe
L−L′(q‖))Ke(q⊥)Kh(q⊥)DcDv

]
,

(4.20)

where q‖ = q sin(θ) (q⊥ = q cos(θ)) is the parallel (perpendicular) component
of the phonon quasi-momentum.

4.2 Circular quantum ring of zero width
First, we investigate a very simple example of the circular ring width zero
width. Despite its simplicity, this example captures main features of finite
width model. Adopting the assumptions of a narrow quantum well and of
very narrow circular nanorings with radii Ra, the matrix elements tqαβ simplify
to

tqαβ =

√
h̄ωq

2s2ρMV
eiLΦq

(
Sαβe

L Ie
L(q‖)Ke(qz)Dc − Sαβh

L Ih
L(q‖)Kh(qz)Dv

)
,

S
αβe(h)
L =

∑
l

cαl c
β

l∓L
2

, Ia
L(q‖) =

∫
dr r f 2

a (r) JL(q‖r)L=Lα−Lβ
, (4.21)
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where the wave function factorization Eq. (3.25) and expansion Eq. (3.26)
with the quantum number Lα have been taken into account. Treating z-
confinement and the radial wave functions as delta functions gives Ka(qz) = 1
and Ia

L(q‖) = JL(q‖Ra).
A nanoring with radii Re = 12 nm and Rh = 3 nm is investigated as a

model example here. GaAs materials parameters are taken from [SAK01]
and give rcv = 8.9 × 10−1 ns−1. The approximation of the delta function is
not appropriate for the calculation of the radiative rate and that’s why we
assume that electron-hole overlap can be approximated by Gaussian function

rα = rcve
−(Re−Rh)2/2σ2

R

∣∣∣∣∣δLα,0

∑
l

cαl

∣∣∣∣∣
2

, (4.22)

which can be evaluated for the ground state at B = 0 T

r1 = 7.5× 10−3 ns−1, (4.23)

where a radial extension σR = 4 nm was taken. The phonon matrix elements
are of the following orders

γe = γ0D
2
c = 35.4× 103 ns−1 meV−3, (4.24)

where Dc = 7 eV was taken. These numbers clearly show that the exciton-
phonon scattering dominates the kinetics since ∆E is of the order of a few
meV.

We briefly discuss the X-ABE. The second derivative of the energy with
respect to the magnetic field is calculated in Fig. 3.3d and the first minimum
of the oscillation is exactly at BP/2 = 15.4 T. In this way it could be possible,
in principle, to verify an oscillatory component ∆E

(1)
α (B) of the total exciton

energy as we have discussed in detail in the last Chapter.
Since the quantum number Lα abruptly changes with the B-field in order

to minimize the energy contribution ∆E
(2)
α (B), the ground state is no more

optically active Eq. (4.22). This kind of behavior is shown in Fig. 4.1a where
the lowest state with Lα = 1 (Lα = 2) is shown as a dashed (dotted) curve.
The energy minimum of the Lα = 1 state is found at BZ,1 = 9.7 T. As
expected, the crossing point between the states with Lα = 0 and Lα = 1
(Lα = 1 and Lα = 2) is found at around BZ,1/2 (3BZ,1/2).

In order to estimate quantitatively the change of the PL with magnetic
field, we concentrate on the steady state solution of the kinetic equations
Eq. (4.10). Calculated PL spectra for state-independent generation gα = g
are shown in Fig. 4.1b and c. Taking into account the excellent optical yield of
nanostructures in general, only a very small non-radiative rate dα = 0.013 r1
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Figure 4.1: a) The absorption spectrum on linear gray scale. The lowest dark
states are shown too (dashed: Lα = 1 and dotted: Lα = 2). Photolumines-
cence spectra for the lattice temperatures at b) T = 4 K and c) T = 40 K.
d) The second derivative of the lowest bright state with respect to the mag-
netic field. The nanoring radii of zero width model are: Re = 12 nm and
Rh = 3 nm. GaAs material parameters from [SAK01]. Other parameters:
state-independent generation gα = g, non-radiative decay dα = 0.013 r0. 22
lowest exciton states were taken into account.

Figure 4.2: The occupation of the lowest optically active state N0 (solid)
and of the lowest optically non-active state N1 with Lα = 1 (dashed) for the
lattice temperatures a) T = 4 K and b) T = 40 K. The dotted line is the
equilibrium occupation of N eq

1 (see text). Parameters as in Fig. 4.1.
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was assumed. Fig. 4.1b demonstrates the sharp luminescence quenching with
increasing B-field for a low lattice temperature of T = 4 K shortly after the
ground state gets dark (at BZ,1/2). The PL-quenching is much weaker if the
temperature is increased up to T = 40 K as shown in Fig. 4.1c where even
the second lowest bright state can be observed (magnified by factor of 10).

In order to understand the behavior of the PL with B-field more thor-
oughly, the occupation of the lowest bright state (with Lα = 0), called 0,
and the lowest state with Lα = 1, called 1, are plotted as function of the
B-field in Fig. 4.2. The low temperature case shows a pronounced behavior
with magnetic field. At zero B-field the state 0 is strongly occupied and this
does not change up to the crossing point of the energies and occupations of
both states. On the contrary, the occupation of the state 1 increases lin-
early (in logarithmic plot) since its energy decreases. As the occupation of
the state 0 starts to decrease linearly at around B = 6 T the PL starts to
quench. The case of higher temperature shows qualitatively similar behavior
but the change in the occupation of state 0 and 1 are smoother and smaller
compared to the low temperature case. Thermal equilibrium between both
states would result in N eq

1 = N0 exp (−(E1 − E0)/kBT ) (kB being the Boltz-
mann constant, E0 and E1 eigenenergies of both states). As shown by dotted
curves in Fig. 4.2, this is well preserved up to B = 14 T when the ground
state changes its quantum number to Lα = 2. In the low temperature case
thermal equilibrium is found only among the first few states unlike for the
higher temperature where it is achieved for almost all states.

This analysis suggests to measure at higher temperatures in order to
diminish the PL-quenching. However, an experimental disadvantage for such
a choice is the strongly reduced signal to noise ratio. Since our goal is not
only to observe the energy of the lowest bright state with B-field but to
calculate the second derivative from the data, noise-free high quality data
are desired.

4.3 Non-circular quantum ring of zero width

After discussing the simplest model we turn now our attention towards a
non-circular ring. Although we try to make our approach realistic as much as
possible some approximations cannot be avoided. Especially, the calculation
of the phonon scattering matrix elements represents a serious problem, which
can be circumvented by adopting the zero with model for their calculation
but with energies coming from the finite width model. Doing so we assume
that Bose-Einstein occupation function nB(h̄ωq) plays a decisive role.



Emission kinetics 105

The radiative rates are calculated precisely within finite width model as

rα = rcv

∣∣∣∣∣∑
l

∫ ∞

0

dr r ul,0,α(r, r)

∣∣∣∣∣
2

. (4.25)

Adopting now the zero width model and treating further z-confinement and
the radial wave functions as delta functions, the matrix elements γαβ Eq. (4.8)
simplify to

γαβ(∆E) = γ0nB(∆E)∆E3∑
LL′

[
Sαβe

LL′T
αβe
L−L′I

ee
L−L′(q‖)D

2
c + Sαβh

LL′ T
αβh
L−L′I

hh
L−L′(q‖)D

2
v

− (Sαβe
LL′T

αβh
L−L′ + Sαβh

LL′ T
αβe
L−L′)I

eh
L−L′(q‖)DcDv

]
, (4.26)

S
αβe(h)
L,L′ =

∑
l

cαl,Lc
β

l∓L−L′
2

,L′
, T

αβe(h)
L−L′ =

∑
M

S
αβe(h)
M,M−(L−L′),

Iab
M =

∫ π

0

dθ sin(θ) JM [q sin(θ)Ra] JM [q sin(θ)Rb] . (4.27)

It is important to stress that despite the factorization of the radial and az-
imuthal motion the symmetry of the problem (D1 in this case) is preserved.

We investigate slightly asymmetric type II InP/GaInP nanoring with radii
r1 = 8 nm, r2 = 16 nm, and b = 0.5 nm (for details see Sec. 3.5). Unfor-
tunately, due to the uncertainty in the values of the deformation potentials
Dc,v for InP/GaInP we take those of GaAs. The radiative rate of the lowest
state at B = 0 T is equal to

r1 = 2.7× 10−2 ns−1, (4.28)

which is still much smaller that the phonon matrix elements Eq. (4.24) and
consequently, the exciton-phonon scattering dominates the kinetics as before.

The absorption spectrum plotted in Fig. 4.3a demonstrates nicely how the
oscillator strength is transformed to higher states with increasing magnetic
field as already discussed in detail in Sec. 3.5. Despite this transfer, the
ground state remains optically active, even though its oscillator strength at
B = 25 T is less than 10−2 of the value at B = 0 T. Although the oscillation of
the ground state cannot be seen by a naked eye, the second derivative reveals
them unambiguously in Fig. 4.3b with enhanced amplitude compared to the
circular ring plotted in Fig. 3.8. The oscillations of higher states are seen
clearly and the period agrees well with Eq. (3.50).

The investigation of the circular ring in the last section has indicated
that although the amplitude of the oscillations can be large any presence of
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Figure 4.3: a) Absorption spectrum on linear gray scale for type II
InP/GaInP nanorings with radii r1 = 8 nm, r2 = 16 nm and b = 0.5 nm.
b) The second derivative of the ground state with respect to the magnetic
field. Photoluminescence spectra for the lattice temperatures at c) T = 4 K
and d) T = 40 K. Other parameters: state-independent generation gα = g
and non-radiative decay dα = 0.1 r1. 7 lowest exciton states were taken into
account (see text for details).

the non-radiative decay channels spoils their observability in the experiment
substantially. On the other hand, it has been demonstrated in Sec. 3.5 that
the lowering of the symmetry decreases the amplitude of the oscillations in
most cases but it also keeps the ground state bright. The photoluminescence
spectra depicted in Fig. 4.3c and d show that there is a measurable signal
up to almost B = 25 T supposing moderate non-radiative decay rate of
dα = 0.1r1 (factor of ten compared with previous section). Only the ground
state is visible for low temperature T = 4 K (Fig. 4.3c) in contrast with
higher temperature T = 40 K where the PL spectrum (Fig. 4.3d) resembles
very much the absorption (Fig. 4.3a).

Thus we conclude that surprisingly the small violation of the circular
symmetry improves the observability of the X-ABE because the small asym-
metry changes crossing among states with different L into periodic anticross-
ing with period BP,2 Eq. (3.50), which manifests itself strongly in the second
derivative, and additionally the ground state has always non-zero oscillator
strength.

From this point of view we may speculate that the indication of the X-
ABE reported in Ref. [RGWCMR04] is influenced by the slight asymmetry
of the InP/GaAs quantum dots which was not taken into account in the
theoretical interpretation.
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The excitonic optical properties of disodered quantum wells and ideal
quantum rings have been studied. Our theoretical approach has been based
on the envelope function formalism, effective mass and single sublevel ap-
proximation. The main achievements in the first part can be summarized as
follows

� It has been analytically proven that the ground state energy at B = 0 T
is a lower boundary for the ground state energy at any magnetic field.

� Absorption spectra and diamagnetic shifts have been calculated for the
exciton in-plane motion without any further approximation.

� The results of the full calculation have been compared with the factor-
ization into exciton relative and center-of-mass motion. The factoriza-
tion ansatz leads to incorrect values of the diamagnetic shift.

� The diamagnetic shift for different single localized excitons of the same
energy differs. Its average increases with energy.

� The enhancement of the electron effective mass due to the confinement
is essential for the diamagnetic shift coefficient.

� Structural data from the XSTM experiment have been analyzed and
the potential averaging and correlation functions have been extracted.
Generating new potential realizations with the same statistical prop-
erties, absorption, photoluminescence spectra and diamagnetic shift
coefficients have been calculated. Very good agreement with the ex-
periment has been found.

The main outcomes of the second part are listed below

� The exciton Hamiltonian of the quantum ring has been derived and
expressed in Jacobi angular coordinates.

� After introducing an angular expansion of the wave function, non-zero
matrix elements have been sorted according to the symmetry point
group of the confining potential.

� Within the model of zero width nanoring, analytical expressions have
been derived and compared with the full model.

� The strain has been included into the calculation within the isotropic
elasticity approach.
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� Assuming circular symmetry, type I and type II nanorings made of
different materials have been studied and the influence of material pa-
rameters has been discussed. The close relation between the oscillatory
component of the exciton energy with magnetic field and the persistent
current has been revealed. Non-circular nanorings have been investi-
gated, too.

� The exciton emission kinetics via interaction with acoustic phonons
has been calculated within the model of zero width nanoring. Ana-
lytical expressions for the scattering matrix elements for circular and
non-circular nanorings have been calculated. Including non-radiative
exciton decay, a quenching of the photoluminescence has been demon-
strated.

As an outlook the present our work can be extended into following directions:

? Having the full exciton in-plane wave function at hand, other exciton
properties as e.g. the resonant Rayleigh scattering which has been
investigated so far with the factorization ansatz, can be calculated.
Especially, the perpendicular magnetic field can be included.

? Regarding the comparison between theory and experiment of the quan-
tum well exciton photoluminescence, an exact calculation of the scat-
tering matrix elements for the exciton emission kinetics would be de-
sirable.

? For the quantum rings, the single sublevel approximation could be
abandoned which opens the possibility to investigate other confine-
ment structures. Additionally, the strain should be calculated within a
more realistic approach of continuum mechanics. Other contributions
like piezo-electric fields or image charge effects could be taken into ac-
count, too. The approximation of the zero width nanoring should be
lifted for the calculation of the emission kinetics. Finally, comparison
with experimental data should be regarded as an ultimate check of the
theoretical results.
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Appendix A

Material parameters

The complete set of material parameters is listed in Tabs. A.1 and A.2.

Table A.1: Selected material parameters used in the calculation.
a0 Eg ac av b

(Å) (eV)
me m3

h (eV) (eV) (eV)
GaAs1 5.6533 1.519 0.0677 0.368 -7.2 1.2 -2.0
Al0.3Ga0.7As1 5.6556 2.0135 0.0846 0.396 -6.7 1.6 -2.1
InP2 5.8687 1.424 0.077 1.67 -7.0 0.4 -2.0
Ga0.51In0.49P2 5.6553 1.970 0.125 0.60 -7.5 0.4 -2.0
InAs1 6.0583 0.417 0.026 0.51 -5.1 1.0 -1.8
Al0.6Ga0.4Sb1 6.1197 1.756 0.10 0.56 -5.7 1.2 -1.6
GaSb1 6.0959 0.812 0.039 0.71 -6.0 1.1 -1.7

1[VMRM01], 2[TPJ+02], 3
m

[110]
hh = 1

2
(2γ1 − γ2 − 3γ3) [VMRM01], 4[JPP01], 5recent tight-binding

calculation [VS], 6[Ada94], 7Due to the confinement the electron effective becomes anisotropic and has the

values of me,‖ = 0.78 and me,⊥ = 0.70 for 4 nm wide GaAs/AlGaAs quantum well [Eke89]; 8Taking into

account the exciton center-of-mass motion in quantum wells using the 6 bands k ·p theory, "renormalized"

hole effective mass is obtained: mh,‖ = 0.233 for 4 nm wide GaAs/AlGaAs quantum well [SRZ00].

Table A.2: Chemical band edges in meV, relative lattice mismatch ελ and
static dielectric constant εS.

GaAs/AlGaAs InP/GaInP InAs/AlGaSb GaSb/GaAs
Ee -257 -600 -1673 63
Eh -110 50 332 -770

ελ (%) 0 3.81 -1.00 7.83
εS 12.5 12.6 151 12.5

1[XCQ92].
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Appendix B

Gauge transformation

B.1 Choice of the gauge
In principle any gauge of the magnetic field can be used, since physical re-
sults should be independent of it. However, this is not true if the numerical
solution of the Schrödinger equation is considered because an oscillatory be-
havior of the wave function may cause problems. In order to see this in more
detail we start with the in-plane electron-hole Hamiltonian with the Coulomb
one-particle gauge of the magnetic field

Ae(re) =
B

2
(ye,−xe, 0), Ah(rh) =

B

2
(yh,−xh, 0), (B.1)

Ĥexc = − h̄2

2me

∆re −
h̄2

2mh

∆rh
+
e2B2

8
(
r2
e

m2
e

+
r2
h

m2
h

)

+Ve(re) + Vh(rh)− VC(re − rh)

+
eB

2me

ih̄ [ye∂xe − xe∂ye ] +
eB

2mh

ih̄ [−yh∂xh
+ xh∂yh

] . (B.2)

Changing the gauge to relative coordinates the transformation function
λ(re, rh) Eq. (1.76) has the form of

Ar(r) ≡ Ă(re, rh) =
B

2
(ye − yh, xh − xe, 0), (B.3)

λ(re, rh) =
eB

2h̄
(yexh − yhxe) =

e

h̄
Ar(r) ·R, (B.4)

and the wave function is transformed as

Ψλ(re, rh) = exp
(
−i e
h̄
Ar(r) ·R

)
Ψ(re, rh). (B.5)

The Hamiltonian for Ψλ(re, rh) is just Eq. (2.2). By separating the term
exp

(
−i e

h̄
Ar(r) ·R

)
from the wave function, the Hamiltonian Eq. (2.2) has
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no longer B terms which depend on the absolute position of one particle
(or of the center-of-mass). Thus, any oscillations of the wave function are
restricted to its extension in relative space, which is of the order of the exciton
Bohr radius. Other gauges with a dependence of the vector potential on the
center-of-mass coordinates would lead to oscillating features across the entire
sample, which is not suitable for a numerical solution using a finite grid size.

Nonetheless, the one-particle gauge Eq. (B.1) is well suited for the quan-
tum ring, especially if circular symmetry is assumed, because the wave func-
tion can be factorized Eq. (3.24). Moreover, due to the lateral confinement
which fixes the radial electron and hole positions, magnetic field dependence
of the absolute one particle position dominates over the Coulomb interaction.

B.2 Numerical implementation
Although the gauge is chosen so that it was optimally suited for the numerical
solution another problem appears. The naive discretization of Hamiltonians
the Eqs. (2.2) and (B.2) on a grid results in a form which is not invariant
under gauge transformation Eq. (1.76). Instead the discrete form of the
continuous one-particle gauge transformation has to considered, which takes
the form of

Aλ(ri) = A(ri) +
1

∆x

(λ(ri + ∆)− λ(ri)), (B.6)

where ri is a two-dimensional vector on a square grid with the grid step
∆x and ri + ∆ is position of the next neighbor of ri in the direction ∆.
Based on ideas of Peierls [Pei32] and Wilson [Wil74], a discretization of
the Hamiltonian whose eigenvalues are gauge invariant under Eq. (B.6), has
been proposed recently [GU98], where the one-particle kinetic term T =
(−i∇− eAλ(r))

2 is discretized as follows

TD
ij =

∑
∆

1

∆2
x

[2δi,j − U∆(j)δi−∆,j − U∆(i)δi+∆,j] , (B.7)

where

U∆(i) = exp
(
i
e

h̄
A∆(ri)

)
, (B.8)

where A∆ is the component of A in the direction ∆. Even though the
eigenenergies calculated using Eq. (B.7) are slightly lower compared to those
calculated using the naive discretization, this discretization does not improve
the problem of the oscillating phases exp

(
−i e

h̄
Ar(r) ·R

)
.
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Numerics

The main numerical methods have been used in this work: the Leapfrog and
Lanczos method. The Leapfrog method was used when the entire absorp-
tion spectrum was required. On the contrary the Lanczos method was used
to obtain energies and wave functions of the lowest (tail) states with high
precision. Both methods give numerically identical results.

C.1 Leapfrog method
First, let us rewrite the complex linear optical susceptibility Eq. (1.51) as

χ(ω) = 〈µ|[Ĥ − h̄ω + i0+]−1|µ〉, (C.1)
〈r|µ〉 = dcvδ(re − rh), (C.2)

where |µ〉 represents an electron-hole excitation state from the semiconduc-
tor vacuum. Since a calculation of a sufficient number of eigenvalues and
eigenfunctions of the full electron-hole Hamiltonian Eq. (2.2) is demanding
(the vector size is N = 304 = 810.000 or N = 404 = 2.560.000) the direct
diagonalization has to be circumvented by calculating the time evolution of
the wave function

ih̄
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉, |Ψ(0)〉 = |µ〉, (C.3)

projecting the wave function |Ψ(t)〉 on |µ〉, and performing the Fourier trans-
formation

χ(ω) =
i

h̄

∫ ∞

0

dt e−iωt〈Ψ(t)|µ〉. (C.4)

The quick and efficient implementation of the time evolution Eq. (C.3) using
the Leapfrog method proposed in [GCB96] was adopted. In order to handle

117



118 C.2 Implementation and tests

the effects of finite time integration in the Fourier transformation a small
Gaussian damping is introduced in Ref. [PTVF02]

D(ω) ≡ Imχ(ω) = Re
1

h̄

∫ ∞

0

dt e−iωte−(σt/h̄)2〈Ψ(t)|µ〉. (C.5)

The expansion of |Ψ(t)〉 into the eigenfunctions |Ψα〉 of the Hamiltonian
Eq. (2.2)

|Ψ(t)〉 =
∑

α

|Ψα〉〈Ψα|µ〉e−iEαt/h̄, (C.6)

Ĥexc|Ψα〉 = Eα|Ψα〉, (C.7)

gives a Gaussian broadened optical density Eq. (1.54)

D(ω) =
∑

α

π|Mα|2
1√
2πσ

exp

(
−(h̄ω − Eα)2

2σ2

)
, (C.8)

Mα = 〈Ψα|µ〉. (C.9)

Given the eigenenergy, the corresponding eigenfunction can be extracted in-
tegrating over the time dependent wave function in a second run

〈r,R|Ψα〉 ∼
∫
dt 〈r,R|Ψ(t)〉 eiEαt/h̄e−(σt/h̄)2 . (C.10)

In this way, however, only wave functions of energetically well separated
eigenstates can be obtained.

C.2 Implementation and tests
The electron and hole confinement wave functions va(za) Eq. (1.64) without
disorder are calculated numerically. Then, the Coulomb averaging Eq. (1.71)
is performed and the factorized Schrödinger equation Eq. (B.2) is numerically
solved. The wave function φ1s(r;B) obtained in this way is used twice: in
the factorization approach and to generate the discretized Coulomb potential
for the full solution using the identity

VC(r) =

(
h̄2

2µ
∆r

)
φ1s(r; 0)

φ1s(r; 0)
+ E1s(0), (C.11)

as introduced in [GCB96]. This method also handles the Coulomb singularity
at the origin. The Hamiltonian Eq. (2.2) in electron and hole coordinates is
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Figure C.1: Absorption spectra without disorder calculated using the exact
solution taking Eq. (B.2) for all states (solid). For the full solution, two
simulation sizes are used N = 304 (dotted) and N = 404 (dashed) with a
grid step of 4 nm. Inset: The probability densities of the relative part of the
total wave function Eq. (2.24) calculated for the 1s-state of the full solution
(crosses) and calculated exactly (line) for 0 T and 5 T (units in 10−3 nm−2).

given by

Ĥexc = − h̄2

2me

∆re −
h̄2

2mh

∆rh
+
e2B2

8µ
(re − rh)

2

+Ve(re) + Vh(rh)− VC(r)

+
eB

2me

ih̄ [(ye − yh)∂xe − (xe − xh)∂ye ]

+
eB

2mh

ih̄ [(ye − yh)∂xh
− (xe − xh)∂yh

] , (C.12)

which is implemented instead of Eq. (2.2). The choice of electron and hole
coordinates is advantageous for a possible inclusion of disorder from growth
simulations [ZGR97].

The factorization ansatz Eq. (2.16) holds precisely in the no-disorder case,
which is used to test the full solution. The only optically active state has a
constant center-of-mass part (delocalized). The absorption spectra plotted
in Fig. C.1 compare full and exact solution. Due to a combined effect of
boundary conditions and finite simulation size, the exact spectrum is not
fully reconstructed in the full solution. There is a small energy shift of the
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dominant peak and additional small peaks appear. Increasing the simulation
size the satellite peaks move towards the main peak.

In the presence of disorder the center-of-mass projection of the wave func-
tion is localized and far less sensitive to the boundary conditions. Therefore,
our implementation is suited for the disorder case (localized states).

An important feature is the almost correct reconstruction in the full so-
lution of the 2s exciton state (the second eigenvalue E2s of Eq. (B.2) with
eigenfunction φ2s(r)) since the potential is constructed only with the 1s wave
function. The diamagnetic shifts of the 1s and 2s excitons are also obtained
correctly with less than 3% error. The relative parts of wave functions plotted
in the inset of Fig. C.1 demonstrate the good agreement as well.

C.3 Lanczos method
Unlike the previous method, the Lanczos method enables to calculate the
lowest eigenvalues of large sparse hermitian matrices by iteration. It is very
efficient and easy to implement. The principles of this method are described
e. g. in Ref. [LG96]. As in the case of the Leapfrog method the wave function
can be obtained in a second run of the whole iteration. A disadvantage is the
fast growth of the computational time with the number of needed eigenvalues.
We have implemented this method for the solution of the four-coordinate
Schrödinger equation which enabled us to calculate the energies and wave
functions of the tail states with very high precision. The time needed is only
a fraction of that needed in the Leapfrog method. This becomes important
mainly at small grid steps since the number of iterations in the Leapfrog
method scales with 1/∆2

x.
Unfortunately, the straightforward implementation of the Lanczos me-

thod leads to the appearance of multiple or even spurious eigenvalues. This
is due to the loss of orthogonality of the Lanczos basis during the iteration
by round off errors. The remedy is an additional re-orthogonalization of
the basis which has to be stored. The storage of the basis in the memory
could represent a serious limitation. Nevertheless, this can be overcome if
the iteration is restarted after a limited number of steps. Thus, also a small
number of basis vector has to be stored only. This variant is called thick-
restart Lanczos method and has been introduced only recently for electronic
structure calculations [WS98; WS99].
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Correlation function

Here, the details of the correlation function reconstruction performed in
Sec. 2.8.2 are described. Assuming an arbitrary averaging function Amn

on the two-dimensional discrete grid and with the definitions of the one-
dimensional discrete Fourier transformation

Xk =
N−1∑
j=0

xje
(−i2π) jk

N , xj =
1

N

N−1∑
k=0

Xke
(i2π) jk

N , (D.1)

the averaging function in reciprocal space takes the form of

Amn =
1

N2

N−1∑
p,q=0

Ãpqe
(i2π)mp

N e(i2π)nq
N . (D.2)

Using the standard definition of the disorder potential via

Wmn =
∑
kl

A|m−k||n−l|Ukl, 〈UmnUlk〉 = δmkδnl, (D.3)

where the values of Ukl are Gaussian distributed random numbers with the
variance σ2 = 1, the averaged one-dimensional correlation function can be
written explicitly as

〈C(1)
s 〉 =

1

N
〈Wm+s0Wm0〉 =

1

N

∑
kl

A|m+s−k||l|A|m−k||l|

=
1

N3

∑
pq

|Ãpq|2e(i2π) sp
N , (D.4)

where the identity
∑

k e
(i2π) kp

N = Nδp,0 was used. The Fourier component has
the simple form of

〈C̃(1)
n 〉 =

1

N2

∑
q

|Ãnq|2. (D.5)
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The scheme of the program is straightforward: (i) The coefficients Amn are
calculated. (ii) The Fourier transformation is performed to obtain Ãmn.
(iii) The one-dimensional correlation function C̃

(1)
n is evaluated. (iv) The

correlation C̃(1)
n is compared to the experimental one and parameters entering

Amn are optimized.



Appendix E

Radiative rates

In order to calculate radiative rates Eq. (4.9) the exact form of Bloch func-
tions and light polarization have to be taken into account. We restrict our-
selves only to the heavy hole exciton in the quantum well for which Eq. (4.9)
modifies to [Run02; And91]

rα =
(2π)2Ωk

n2
R

|Mα|2
∑
k

1 +

√
k2 − k2

‖

k

 δ(Eα − h̄Ωk), (E.1)

where the first term corresponds to transverse-electric (perpendicular to k‖
and ez), and the second one to transverse-magnetic (in the (k‖–ez) plane)
polarization. Changing summation to integration

∑
k →

1
(2π)3

∫
dk and per-

forming integration over kz we obtain

rα =
2πΩk

h̄c nR

|Mα|2
∫

dk‖
(2π)2

 k0√
k2

0 − k2
‖

+

√
k2

0 − k2
‖

k0

 θ(k0 − k‖), (E.2)

where k0 = (Eg+Eα)nR

h̄c
, which can be easily integrated

rα =
2πΩk

h̄c nR

|Mα|2
2k2

0

3π
=

4

3

E3
gnR

h̄4c3
d2

cvM
2
α, (E.3)

where Eα was neglected since it is much smaller than bandgap energy Eg.
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Appendix F

Strain

Here we show an example of the heavy and light hole potentials Eq. (1.22)
of a nanoring embedded in a quantum well including strain within isotropic
elasticity approach Eq. (1.122). This is depicted in Fig. F.1. The heavy
hole minimum is found in the quantum well, unlike the light hole one which
is outside. Since the confinement in the growth direction is strong enough,
both particles are always found in the quantum well. Such a potential profiles
quarantee that heavy and light hole are well energetically separated.

For the completeness, we list below the integrals which have to be evalu-
ated.

F.1 Dot

In the case of the dot there are three contributions to the surface integral

Tij(r) =

∮
S′

(xi − x′i)dS
′
j

|r− r′|3
, (F.1)
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126 F.1 Dot

Figure F.1: The heavy (a) and light (b) hole potential profile Eq. (1.22) in
meV. The quantum well is 4 nm wide and InP/GaInP ring radii are r1 =
10 nm and r2 = 20 nm. The material parameters are taken from Tab. A.1.

as shown in Fig. F.2a.

TD1
zz (r, φ, z) = −

∫ r0

0

∫ 2π

0

(z + a) r′dr′dφ′√
r′2 + r2 − rr′ cos(φ− φ′) + (z + a)2

3 ,

(F.2)

TD2
zz (r, φ, z) =

∫ r0

0

∫ 2π

0

(z − a) r′dr′dφ′√
r′2 + r2 − rr′ cos(φ− φ′) + (z − a)2

3 ,

(F.3)

TD3
rr (r, φ, z) = −

∫ 2π

0

∫ a

−a

(rr0 cos(φ− φ′)− r2
0) dz

′dφ′√
r2
0 + r2 − rr0 cos(φ− φ′) + (z − z′)2

3 .

(F.4)
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Figure F.2: Schematic picture of the dot a) and ring b) with indicated sur-
faces which are integrated over taking Eq. (F.1).

F.2 Ring

Similarly for the ring in Fig. F.2b, the following integrals are found

TR1
zz (r, φ, z) = −

∫ r2

r1

∫ 2π

0

(z + a) r′dr′dφ′√
r′2 + r2 − rr′ cos(φ− φ′) + (z + a)2

3 ,

(F.5)

TR2
zz (r, φ, z) =

∫ r2

r1

∫ 2π

0

(z − a) r′dr′dφ′√
r′2 + r2 − rr′ cos(φ− φ′) + (z − a)2

3 ,

(F.6)

TR3
rr (r, φ, z) = −

∫ 2π

0

∫ a

−a

(rr2 cos(φ− φ′)− r2
2) dz

′dφ′√
r2
2 + r2 − rr2 cos(φ− φ′) + (z − z′)2

3 ,

(F.7)

TR4
rr (r, φ, z) = −

∫ 2π

0

∫ a

−a

(−rr1 cos(φ− φ′) + r2
1) dz

′dφ′√
r2
1 + r2 − rr1 cos(φ− φ′) + (z − z′)2

3 .

(F.8)

We note that all the results are due to the circular symmetry independent
of angle φ (thus φ = 0 may be set in all integrands).
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Appendix G

List of abbreviations

ABE Aharonov-Bohm effect
B-field Magnetic field
µPL Micro-Photoluminescence
MBE Molecular beam epitaxy
PC Persistent current
PL Photoluminescence
X-ABE Exciton Aharonov-Bohm effect
XSTM Cross-sectional scanning tunneling microscopy
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