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Abstract

In this work, the near bandgap linear optical properties of semiconductor
quantum structures under applied magnetic field are investigated. These
properties are determined mainly by a quasi-particle consisting of one elec-
tron and one hole called exciton.

First, the exciton theory is developed starting with the one-electron Ha-
miltonian in a crystal, continuing with the Luttinger and Bir-Pikus Hamil-
tonian, and ending with the exciton Hamiltonian in the envelope function
approximation. Further, concentrating on the quantum well and thus as-
suming strong confinement in the growth (z-) direction, the motion parallel
and perpendicular to the zy-plane is factorized leading to the well-known
single sublevel approximation. A magnetic field perpendicular to the xy-
plane is applied, and a general theorem describing the behavior of the energy
eigenvalues is derived. This theorem is generally valid for any many-particle
system. Last but not least, the strain calculation within the isotropic elas-
ticity approach is described in detail.

Second, disorder is taken into account. After discussing its properties,
the standard ansatz of factorizing exciton relative and center-of-mass motion
is introduced. The Schrodinger equation is solved numerically for both the
full model and the factorization with artificially generated disorder poten-
tials showing that the differences between them are pronounced especially
for tail states. From the physical point of view it is shown that (i) the
diamagnetic shift, i. e. energy change with magnetic field, is inversionally
proportional to the localization of the wave function, (ii) the distribution of
the diamagnetic shifts of individual exciton states exists and these shifts are
non-monotonic in energy, (iii) the average value of the diamagnetic shift in-
creases with energy, and (iv) absorption and consequently photoluminescence
spectra become wider with increasing magnetic field.

Furthermore, having structural information from the cross-sectional scan-
ning tunneling microscopy of a given sample avaible, the statistical properties
of the disorder in a real quantum well have been analyzed. This analysis en-
abled the numerical generation of new lateral disorder potentials which served
as input in the simulation of exciton optical properties. In particular, temper-
ature dependent photoluminescence spectra and diamagnetic shift statistics,
have been compared with the experimental ones and very good agreement
has been found.

The second part of this thesis deals predominantly with highly symmet-
rical structures embedded in the quantum well: namely quantum rings and



dots. First, adopting an ansatz for the wave function, the Hamiltonian ma-
trix is derived discussing which matrix elements are non-zero according to
the symmetry of the potential. Additionally, the expectation values of the
current and magnetization operators are evaluated. Then, concentrating on
the case of the highest (circular) symmetry, the model of zero width ring
is introduced. Within this model the close relation between the oscillatory
component of the exciton energy (exciton Aharonov-Bohm effect) and the
persistent current is revealed. Examples for different material systems follow
revealing the importance of the relation between exciton Bohr radius and
ring diameter for oscillations and persistent current to be observed. The cir-
cular quantum dot is treated briefly. Finally, a case of the non-circular ring
is discussed and it is shown that oscillations can be observed although with
lower amplitude compared to circular case.

Finally, the exciton emission kinetics is calculated, too. The limitations
of the experimental observability of energy oscillations, photoluminescence
quenching, caused by non-zero non-radiative channels are disclosed.

Keywords:
Exciton, Magnetic field, Nanostructures, Optical properties, Kinetics
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Zusammenfassung

In dieser Arbeit werden die linearen optischen Eigenschaften von Halbleiter-
Nanostrukturen in der Nahe der Bandliicke im Magnetfeld untersucht. Diese
Eigenschaften werden hauptsachlich vom Quasiteilchen Exziton, das aus ei-
nem Elektron und einem Loch besteht, bestimmt.

Zuerst wird die Exziton-Theorie entwickelt: Beginnend mit dem Hamil-
ton-Operator eines Elektrons im Kristall wird der Luttinger- und Bir-Pikus-
Hamilton-Operator entwickelt, und schliefilich wird der Hamilton-Operator
eines Exzitons in der Enveloppen-Naherung aufgestellt. In weiteren wird ein
Quantengraben betrachtet, wo eine starke Beschrankung der Wellenfunktion
in der Wachstumsrichtung (z-Richtung) angenommen werden kann, und die
Bewegung parallel und senkrecht zur xy-Ebene faktorisiert. Das fiihrt zur
bekannten Naherung des isolierten Sublevels. Fiir ein senkrecht angelegtes
Magnetfeld wird ein allgemeines Theorem fiir das Verhalten der Energie-
Eigenwerte abgeleitet. Dieses Theorem gilt auch fiir mehrere Teilchen. Die
Berechnung der Verzerrung des Halbleitermaterials in der Naherung der iso-
tropen Elastizitat wird im Detail beschrieben.

Zweitens wird die Unordnung beriicksichtigt und ihre Eigenschaften dis-
kutiert. Der tibliche Ansatz fiir die Faktorisierung in Schwerpunkt- und Rela-
tiv-Bewegung des Exzitons wird eingefiihrt. Die Schrodinger-Gleichung wird
fiir das volle Modell und die Faktorisierung mit kiinstlich generierten Poten-
tialen numerisch gelost. Die Losung zeigt, dafl die Unterschiede zwischen bei-
den Modellen hauptsachlich fiir Zustande im Ausléaufer der optischen Spek-
tren wichtig sind. Weiter wird gezeigt, dafl (i) die diamagnetische Verschie-
bung, d. h. Anderung der Energie mit einem Magnetfeld, umgekehrt pro-
portional zur Lokalisierung der Wellenfunktion ist, (ii) eine Verteilung der
diamagnetischen Verschiebungen der lokalisierten Zustande des Exzitons exi-
stiert, (iii) der Mittelwert der diamagnetischen Verschiebung mit der Energie
anwéchst, und (iv) Absorptions- und Photolumineszenz-Spektren mit dem
Magnetfeld breiter werden.

Drittens werden die statistischen Eigenschaften der Unordnung in einem
realen Quantengraben analysiert, von dem strukturelle Informationen verfiig-
bar waren, die mit dem Raster-Tunnelmikroskop an einer Querschnittsflache
gewonnen wurden. Diese Analyse ermoglicht die numerische Erzeugung neuer
Unordnungspotentiale, die dann fiir die Simulation der optischen Eigenschaf-
ten benutzt wurden. Insbesondere temperaturabhangige Photolumineszenz-
Spektren und die Statistik der diamagnetischen Verschiebungen wurden mit



den experimentellen Daten verglichen, wobei eine sehr gute Ubereinstimmung
gefunden wurde.

Der zweite Teil dieser Dissertation beschéaftigt sich iiberwiegend mit hoch-
symmetrischen Strukturen eingebettet im Quantengraben, namlich Quanten-
ringen und Quantenpunkten. Mit einem Ansatz fiir die Wellenfunktion wird
die Hamilton-Matrix abgeleitet, wobei der Zusammenhang zwischen nichtver-
schwindenden Matrixelementen und der Symmetrie des Potentials diskutiert
wird. Zusaztlich werden die Erwartungswerte des Stromoperators und der
Magnetisierung ausgewertet. Dann wird die héchste (zirkuldre) Symmetrie
angenommen und das Modell eines Ringes mit verschwindender Breite ein-
gefithrt. Im Rahmen dieses Modells wird der enge Zusammenhang zwischen
der oszillatorischen Komponente der Exziton-Energie (Aharonov-Bohm Ef-
fekt des Exzitons) und dem persistenten Strom aufgezeigt. Es folgen einige
Beispiele fiir unterschiedliche Materialien, die den engen Bezug zwischen dem
Bohr-Radius des Exzitons und dem Durchmesser des Ringes im Hinblick auf
die Beobachtbarkeit der Oszillationen und des persistenten Stroms zeigen.
Zirkulare Quantenpunkte werden kurz behandelt. Schliellich wird der Fall
eines nichtzirkularen Ringes diskutiert und gezeigt, dal Oszillationen be-
obachtbar sein sollten, obwohl mit kleinerer Amplitude im Vergleich zum
zirkularen Ring.

Zum Schlufl wird die Kinetik der Emission des Exzitons behandelt. Ein-
schrankungen der Beobachtbarkeit der oszillatorischen Komponente der Ex-
ziton-Energie werden aufgezeigt, die mit der Unterdriickung der Photolumi-
niszenz durch nichtradiative Prozesse zusammenhangen.

Schlagworter:
Exziton, Magnetfeld, Nanostrukturen, Optische Eigenschaften, Kinetik
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Figure 1: The schematic picture of the molecular beam epitaxy [YC94].

The semiconductor nanostructures like quantum wells, wires or dots have
been investigates now for more than 30 years. They have found a giant
number of applications in the technology, just to mention few of them: lasers,
light emitting diodes, light detectors or transistors. This number is still
increasing and these structures are nowadays considered to be even more
perspective for future applications e.g. for quantum computing. This is one
of the reasons why after such a long time the amount of research performed
on this field does not decrease but grows further.

The scientific interest and technological progress would not be thinkable
without the key invention: molecular beam epitaxy (MBE) [CAT75]. This
method (schematically plotted in Fig. 1) enables to grow structures layer by
layer with very high quality. The structures with excellent properties like very
high carrier mobility or optical yield are grown in this way. Unfortunately,
due to many reasons these structures are even with this advanced method
far from being ideal due to e. g. the rough interfaces between two materials
or random position of atoms in an alloy. Among other methods used to
grow such structures metal oxide chemical vapor deposition [Dap82] should
be mentioned.

Due to the strong dependence of transport and optical properties on the
applied magnetic and electric field, the two-dimensional planar structures
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Figure 2: The schematic picture of the ideal quantum well. The conduction
(CB) and valence (VB) band profiles with electron (-) and hole (+) are
indicated.

(quantum wells, schematically shown in Fig. 2), coupled quantum wells and
multiple quantum wells) have been under focus. The mostly used material
for fabricating these structures is GaAs/AlGaAs thanks to its properties: (i)
direct bandgap of the ternary alloy (up to 40% of the Aluminum concentra-
tion) and (ii) practically the same lattice constant of GaAs and AlAs, which
reduces the strain substantially.

The technological importance of the quantum wells and related structures
makes it necessary to investigate the influence of imperfections on physical
properties. There is the well-known model of disorder introduced by Ander-
son [And58] which predicts that according to the strength of disorder the
transition (mobility edge) between conducting (delocalized wave function of
the carrier) and non-conducting (localized wave function) regime exists.

Like transport also optical properties give information about disorder.
The linear optical properties near the bandgap of the semiconductor are
dominated by the quasi-particle called exciton, consisting of the electron
in the conduction band and the hole in the valence band. The sensitiv-
ity to the disorder of the magnetic field dependent exciton properties like
inhomogeneous line-width of the absorption and photoluminescence spec-
tra and diamagnetic shift of the localized excitons enable to learn a lot
of about underlying structure. Several experimental techniques have been
developed to obtain as much detailed information as possible like: Micro-
photoluminescence [ZBH'94; BAB'94; GSK95], scanning near-field optical
spectroscopy [HBH'94], and cathodoluminescence [RMJT95]. The theoreti-
cal approaches to this phenomena, which will be discussed in detail in Chap-
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Figure 3: The schematic picture of the ideal quantum ring in zy-plan. Two
materials A and B are distinguished.

ter 2, have been developed successfully. There is an excellent agreement
between theory and experiment showing how much about disorder has been
understood.

However, it may seem surprising that there is only a little experimental
work that directly confirms the connection between structure and optics in
simple situations. By "directly" we mean that the structural properties of a
given sample are measured as precisely as possible (e. g. by transmission
electron microscopy [OTC89], X-ray diffraction [Fle80], or scanning tunnel-
ing microscopy [LZY198]) and predictions on the optical properties are made
from the structural data, and that those are contrasted by an optical exper-
iment.! We will address this open question in Chapter 2, too.

The second part of this thesis deals with ideal structures (like quantum
ring? which is schematically plotted in Fig. 3) embedded in the quantum well.
Unlike in the first part, magnetic field is not a tool to get some information
about disorder but induces qualitatively new effects: exciton Aharonov-Bohm
effect (ABE) [AB59] and exciton persistent current. Even though we focus
on the structures which are very hard to grow [GMRS™97; MKST05] and
we find effects which are hard to observe experimentally, they are surprising
on the first glance since the exciton as a neutral (composite) particle should
interact with magnetic field only weakly.

The original ABE is found only for charged particles [AB59] as a purely
quantum mechanical effect showing the important role of the vector po-
tential. The ground state energy of a charged particle oscillates with the
magnetic flux &5 = §B - dS. If the particle orbits in a ring around an

'Relaxing mentioned criteria there are methods that investigate experimentally and
theoretically semiconductor optical properties near bandgap like e.g. comparative studies
of ion-beam induced defect formation in crystalline solids [WMBW94].

2We will use throughout this thesis the names quantum ring and nanoring equivalently.



infinitely long solenoid with radius r, where the magnetic field B is con-
centrated then the magnetic flux is @5 = 7rgB. The oscillation period is
given in units of the magnetic flux quantum h/e. Shortly after its theoreti-
cal prediction the ABE has been confirmed experimentally [Cha60; MB62].
Furthermore, even recently ABE has been observed e.g. in mesoscopic metal
rings [vODNM98], carbon nanotubes [BSST99], and in doped semiconductor
InAs/GaAs nanorings [LLGT00]. Last but not least, the persistent current,
induced by an electron orbiting in a cylindrical film of a normal metal, has
been measured for the first time in Ref. [SS81] and recently in mesoscopic
metals [LDDB90; CWB*91] and semiconductor rings [MCB93]. Moreover,
also interacting electrons in the ring exhibit both ABE and the persistent
current [WF95; WFC95].

This thesis is divided into two parts: The first one deals with excitons
in quantum well under applied magnetic field. First, we start with the de-
scriptions of our theoretical approach (Chapter 1) and then we focus on the
exciton in the disordered quantum wells (Chapter 2), performing demanding
numerical simulations. In the second part we add another nanostructures,
either quantum dot or ring, into the ideal quantum well. We concentrate on
the energy, persistent current, and magnetization as a function of the mag-
netic field in Chapter 3. The emission kinetics is investigated in Chapter 4.
The results are summarized in Chapter 5. Many calculations are described
in detail in the appendices.
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Chapter 1

Theoretical approach

The theory of exciton in the quantum well is developed in this chapter. We
start with the crystal structure and adopting justified approximations we suc-
ceed to reduce the dimensionality and complexity of the problem enormously.
Finally, we end with the rather simple two-particle and two dimensional ex-
citon Hamiltonian which we solve without any further approximations and
lateron compare the results with the experiment in Chapter 2.

1.1 Crystalline and electronic properties

The III-V compounds which are the object of our interest crystallize in the
zincblende structure. The first Brillouin zone of the reciprocal lattice is a
truncated octahedron (see Fig. 1.1). Several high symmetry points or lines
of the first Brillouin zone have received specific notations, e.g. X, L and I’
points. In a III-V binary material like GaAs, there are 8 electrons per unit
cell (3 from Ga and 5 from As) which contribute to the chemical bounds.
We can say that the orbital of every atom hybridize (due to interaction with
his neighbors) to form bonding and antibonding state which broaden into
bands because of a great number of unit cells interacting. Two electrons fill
the s-band and remaining six electrons occupy the p-bands. Antibonding
bands are empty and the lowest lying one forms the conduction band (rep-
resentation I'¢! in the T' point). All III-V compounds have the top of the
valence band in the center of Brillouin zone. The spin-orbit coupling lowers
the sixfold degeneracy in the point I', and gives rise to a quadruplet with

!There are five irreducible representations of the cubic symmetry group Tj. Taking
into account spin-orbit coupling this number is increased since the spin is not invariant
to the rotation by the angle 27w. The eight representations I';_g of double groups are
formed [YC94].
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Figure 1.1: First Brillouin zone of face-centred cubic lattice, taken from
[Bas92].

J = 3/2 (representation I's) and a doublet J = 1/2 (representation I'7). The
conduction band edge of the I1I-V materials is situated near one of the points
I', L or X. The heavier the cation the more likely it is to find band edge in
the point I'.

1.2 k.p analysis

The starting point of our approach is the one-electron Schrédinger equation
in a bulk crystal which takes the form of

P’ n?
—+V(r)+ —5(exVV)-p+H, | ¥(r)=EV(r), (1.1)

2my 4mic?

where V(r) is the crystalline potential which includes an average of the
electron-electron interaction and is periodic with the period of the Bravais
lattice. The third term is the spin-orbit coupling and the fourth term is
the relativistic correction (mass-velocity and Darwin term). The solution of
Eq. (1.1) can be written in the Bloch form:

U,k (r) = Nugk(r) exp(ik.r), (1.2)

where N is a normalization coefficient and u,k(r) is a periodic function of
r with the period of the lattice. The periodic parts of the Bloch functions
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unk(r) are the solutions of (dropping the relativistic corrections)

2 2
p
omg Vir)+ Am2c? (o x VV) - p+
B2k Rk h?
omy  2mg (p t a7 VV)H k() = Eoktin(r)- (1)

The k-dependent terms in (1.3) vanish at k=0 and commute with the trans-
lation operator. The functions w,,o(r) form a complete basis and can be to
used to investigate the energy dispersion e, and wave function properties

for small k
Uk (1) =D € (K)o (1) (1.4)

By inserting (1.4) into (1.3), multiplying by wu(r) and integrating over a
unit cell we obtain:

R k>
Z{( EnO_gnk+ )5nm+
2m0

m

2

+ZLIZ (nOlp + —— Tmle 5 (0 % VV)\mO)} n(k) =0, (1.5)
where
(n0|Alm0) = /unit l U o (1) Attyo (r) dr. (1.6)

The Eq. (1.5) is well suited for the perturbation approach. Supposing that
the n'* band edge is non-degenerate, we can then assume for small k:

cn(k) ~ 1; cm(k) = ak, (1.7)
which inserted in Eq. (1.5), results in

hk 1
Cm(k) = Hnm 5 (18)

mo €no — €mo

and gives the second order correction to e,q:

k2 n? Z [T - k|

Enk €0+2m0 n€n0—5m0 ( )
The vector IT is defined as:
2
II=p+ (o x VV). (1.10)

4m3c?
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As long as k is small (g,x —£,0 remains much smaller than all band edge gaps
£n0 — Emo) the dispersion relations of the non-degenerate bands are parabolic
in k in the vicinity of the I' point.

Enle —en0+—2ka aﬂ (1.11)
where 5
1 1 11

M%B 2 Z 5n0 ( )

128 is the effective mass tensor which describes the carrier kinematics in the
vicinity of the zone center and for the energy close to the n'* band edge.
Assuming the validity of Eq. (1.12) the overall effects of the band structure
are embodied in the use of an effective mass instead of the free electron mass.
This approach is well suited for the lowest conduction band (I'g).

1.3 Luttinger and Bir-Pikus Hamiltonian

In the case of degenerate bands the simple perturbation theory cannot be
used. Instead a different approach is developed. The most important is the
case of the topmost 6 valence bands which are treated exactly in the k - p
approach and the coupling to higher conduction bands is included within
the perturbation theory [YC94]. Taking into account the spin-orbit coupling
%(0 x VV') only the total angular momentum

J=1L+S5, (1.13)

where L is the orbital angular momentum and S is the spin, remains the
good quantum number. There are two values of J = 3/2 and 1/2 for the
valence bands and corresponding basis function can be found with the help

of Clebsch-Gordan coefficients |.J.J,)

;+g> - —%|(X+z’Y)T), ';+%>=%|—(X+iy)l+QZT>,
g_%> — %](X—iY)TJrQZU, ‘g—;>=%I(X—iY)L>,
11 1 . 11 1 .

5+35) = JEIXHN Lz D, |5 = lx - 12 1),

(1.14)
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where T(]) is spin up (down), |X), |Y), and |Z) are p-like functions and their
combinations (X +4Y), Z, and (X —4Y’), which are eigenfunctions of L
and L., are analogous to spherical harmonics. The Hamiltonian Eq. (1.1) is
projected on the basis Eq. (1.14) and the coupling with the lowest conduction
bands is included within the perturbation theory.

There is also a different approach where the Hamiltonian is derived using
symmetry of the cubic or zinc blend lattice with effective parameters which
are related to the energies coming from the k-p calculation. This Hamiltonian
has been derived for the first time by Luttinger and Kohn [LK55] and the
parameters are thus called Luttinger-Kohn parameters. Furthermore, Bir
and Pikus have introduced strain into this Hamiltonian [BP74] which has

the following complex form of [CC92]

[ P+Q -8 R 0 -5
-5t P-Q 0 R —2Q s
R0 P-Q 5 \[ist

H= 0 Rt st P+Q —v2R —Lst |7 (1.15)
~5st —v3Q /s —v2R P+A 0
| V2R \3STVRQ %S 0 PA |
where

P = P+ P, Q= Qr + Qc,
R = Rk+R67 S:Sk"’Sea

h2
by = ( >vl(k2+k2+k2)

Qr = ( > Yo (k2 4k — 2k2),
_ 2 2 .
Rk = (2—%> ”)/Q(k' ky) -+ 22")/3k‘xk'y],
2
Sy = ( >2\/_73k: — ik, k),
2m0
Pe - av(eww + Eyy + Ezz)y
b
Qe = _Q(Ew.t + €yy — 2622)7
V3 .
R, = Tb(em — €yy) — ideyy,

Se = —d(ez —i€y,), (1.16)
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where ¢;; is the strain tensor, 71, 72, and ~3 are Luttinger-Kohn parameters,
a,, b, and d are Bir-Pikus deformation potentials, and A is the spin-orbit
split-off energy. The energy zero is taken at the top of unstrained valence
band.

Further assumptions can be made: Since the spin-off offsets is of order of
eV, much larger than tens of meV in which we are interested, we neglect cou-
pling between these bands and the rest. This reduces the matrix of Eq. (1.15)
to 4 x4 (the first submatrix). Since the hydrostatic and biaxial strain are the
most important in III-IV semiconductors we restrict ourselves only to them
in the following, which means

€xz = Eyy 7é €2z,
€yr = €yz = €z — 07
and then
R =5 =0 (1.17)

The eigenenergies of the reduced 4 x 4 Eq. (1.15) are

Ei(k) = —P—sgn(Q)v/Q*+ |R]>+ S| (1.18)
Ey(k) = —P+4sgn(Q)vVQ?+ |R]?+ |S]2. (1.19)

The sign of Q). is important for the type of the strain: negative (positive) for
compressive (tensile). The equation (1.18) can be expanded for small k£ and
the dispersion relation can be obtained

2

Bi(k) = —PE—QE—(h )[(%Hz)(kiwf,)ﬂ%—272>k:3]7

2my

(1.20)
h?
By(k) = —FP+Qc— (%) [0 =) (kZ + k) + (1 + 292) 2],

0

(1.21)
and band edges are

Ei(0)=—-P.—Q., Ey(0) = —P. 4+ Q.. (1.22)

The typical situation in the semiconductors is that the valence band is almost
filled and only few electrons are found in the conduction band. We may look
on this as there were empty places in the valence band called holes. The hole
has positive charge and effective mass (m;, = —m,) and it can be treated
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as a quasi-particle. Since there are two dispersion relations, Eq. (1.20), two
types of holes have to be distinguished according to their effective masses

My, = (n— 279) " 'my, mzh,u = (1 + 72) " 'mo, (1.23)
mpy, = (1 + 272) " 'mo, m;‘w = (71 — y2) " 'my, (1.24)

where || (L) stands for the motion in (perpendicular to) the zy-plane. Com-
paring the hole masses in the z-direction (perpendicular ones) the hole with
larger (smaller) mass is called heavy (light). The heavy hole has smaller
parallel mass then the light hole. The importance of the z-direction will be
clear when discussing the quantum wells. The heavy and light hole dispersion
relation can be written for clarity (omitting the superscript * from now)

h? K ki

Ehh(k> — Pe + QE + ‘|— y (125)
2mo ) \Mun,)  Mph,L
h? k k

En(k) = P.—Q.+ <2 ) ( (- ) (1.26)
mo Mip| Myip, 1

1.4 Envelope function approximation

We have treated only the ideal bulk so far. Now we introduce an additional
potential U(r) into the original Hamiltonian Hy Eq. (1.1). This potential
stands for e.g. impurities, donors, acceptors, the quantum well profile or
magnetic?® and electric field. We assume that U(r) is a weak and slowly
varying potential so that the perturbation theory can be applied. We may
suppose that an additional non-periodic potential localizes the wave function
and that’s why the application of the delocalized periodic Bloch functions
U,.k(r) is not the best choice. More appropriate is to use the localized func-
tions for a complete basis. These can be obtained by Fourier transformation
of the Bloch functions, these are called the Wannier functions a,(r, R;)

an(r,Ri) — \/Lﬁzeikf%\ynk(r), (1.27)
U(r) = \/Lﬁgeik%n(r,m), (1.28)

where N is the number of unit cells of the crystal® and R, is a lattice vector.
Since these functions are the eigenfunction of the lattice vector operator R

Ra,(r,R;) = R, a,(r,R;), (1.29)

2The vector potential A(r) is meant here.
3Periodic (Born-Karman) boundary conditions are assumed.
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the application of this operator on the wave function
n,k

can be approximated by

Ryp(r) =~ > (ia%An(k)) U, (1), (1.31)

n,k

The equality is not found here since both k and R are discrete.
Having found this useful correspondence,

.0 o,
R < (z@) and k < <Zﬁ) , (1.32)

we may start to search for the solution of the Schrédinger equation in the
form of

Y(r) = \/_Z(IJ Dan(r,R;), (1.33)

where @, (R;) are envelope functions. Applying this ansatz in the Eq. (1.1)
with additional U(r) and multiplying with a,(r, R;) on the lefthand side,
the unperturbed part gives

0
(m, Rj|Ho|n, R;) = 0pmdi By ( 8R> (1.34)

where E, (k) is a dispersion relation of the n band. The second contribution
can be approximated by

(m, R;|U(1)|n, Ri) = 6m6;,Un(R). (1.35)

The Schrodinger equation for the envelope functions can be thus written as

{En ( a?a) + U, (R)} o,(R) = E®,(R). (1.36)

This approach is one of the mostly used in the theory of nanostructures
since the Bloch functions (and consequently Wannier functions) of many
semiconductors are almost identical. The values of the following matrix
element

—i —i —i
P= o (Slpel X} = —(SIpy V) = - (Slp:|2), (1.37)

where S represents s-function, which are listed in Tab. 1.1, reveal it clearly.
When combining different materials, the envelope function approximation
is sufficient as the first approximation where U,(R) can be the position-
dependent bandgap.
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Table 1.1: Values of E, = 2moP? in €V in some III-V materials, taken from
[Bas92].

material | E, (eV)
InP 17.00
InAs 21.11
InSb 22.49
GaAs 22.71
GaShb 22.88

1.5 Exciton in ideal bulk

Our approach has focused on the one-electron problem up to now, which is,
of course, a very crude approximation since there are many electrons in a
crystal. In order to deal with them the many body theory should be used:
either Green’s functions or density matrix approximation. Nevertheless, in
some special cases the problem can be reduced substantially.

Let us assume that all valence bands are full, only one electron from the
topmost one has been excited into the conduction band leaving a hole in the
valence band. These two particles interact via Coulomb interaction and the
Schrodinger equation for the electron-hole envelope function reads

<h28 K20 e?

2me Or,  2my, Ory,  4Amegeg|re — 1

> O(re,ry) = E O(re,rp), (1.38)

where subscript e stands for an electron in the conduction band and A is either
heavy or light hole (if they are decoupled) in the valence band, €g is dielectric
constant. This is a somewhat heuristic derivation but gives the same result
as the density matrix approach in the Hartree-Fock approximation. The
solution of the Eq. (1.38) is straightforward since it is exactly the hydrogen
problem for the quasi-particle called ezciton. Transforming coordinates to
relative r and center-of-mass R ones
reme + rpmy,

r=r.-m, R=-" (1.39)

where M = m. + my, is the total exciton mass, the Eq. (1.38) changes into

(h28 K2 9 e?

2M OR  2uor  Amegegr

) o(r,R) = E®(r,R), (1.40)

where = memy/M is the reduced exciton mass. The wave function is
written easily

P, kx(r,R) = %eiK'R¢V(r), (1.41)
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where () is a volume of the semiconductor and ¢,(r) is the solution of

B2 0 e?
(—Ea - m) ¢u(r) = &0.(1), (1.42)

which has the simple form for the ground state

2 2
H € 1 —r/ag
s = —_—— —_— y s == 5 ]_43
&1 5 (471‘6065h> (o3} /_ﬂage ( )
where
724
4y = 108 (1.44)
e

is the effective exciton Bohr radius. The details of the calculation of the
&, and ¢,(r) of excited states can be found e.g. in Ref. [HK94]. The total
exciton energy is

R K2
v, K — Wi

+&. (1.45)

The absorption coefficient a(w) which determines the decay of the light
intensity per unit volume is related to the optical susceptibility y(w) as
(@) =~ Tmy(w) (1.46)
alw) = ——Imy(w .

where n(w) is a refractive index of the semiconductor which is typically only
weakly frequency dependent and the optical susceptibility describes the re-
sponse of the dielectric medium on the applied electric field

P(t) = x(w)eoEy(t); E,(t) = Ege ™" (1.47)

The simple picture of the photon absorption near the bandgap energy is that
an electron in the valence band is excited by the photon and the electron-
hole pair is created. This pair under certain conditions* forms an exciton
which changes the absorption profile from the well-known square-root law in
the bulk. Within the second quantization it can be shown that the induced

4The most important role plays the density of electron and holes, if too high then
electron-hole plasma forms. The presented theory is valid in the limit of neg.a% < 1
where ne,. is the exciton density. For higher densities (especially in the case of possible
Bose-Einstein condensation of exciton) the exciton-exciton interaction ~ n2,, cannot be
neglected.

C
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interband polarization per unit volume is the solution of the inhomogeneous
Schrodinger equation [HK94]

[hw 0t — H(r., rh)] P(r.,ry,w) = —duEod(r, — 13), (1.48)

where H(r.,r3,) is electron-hole Hamiltonian for envelope functions and
dey = (c|d]|v) (1.49)

is the interband dipole (d = ex) matrix element between conduction |¢) and
valence |v) band Bloch functions (see also Eq. (1.37)). The linear electron-
hole susceptibility is then calculated from its definition Eq. (1.47) integrating
the polarization P(r.,rp,t) = P(r., ), w)e ™" over the volume

X(w) =

dr |P(r,r,w)|. 1.50
57 [P (1.50)

This can be also expressed using the eigenvalues E, and eigenvectors @, of
the Hamiltonian H(r., ;) as

_ 2 | Jodr D, (r,1)[?
w) = ldal* Y S (1.51)

The knowledge of the solution of the Eq. (1.38) enables to rewrite Eq. (1.51)
as

|6,(0)[?
d g 1.52
= [desf? hw 410t = ¢, — (152)

where Fj is the bandgap energy. This can be calculated explicitly and Som-
merfeld enhancement of the absorption coefficient is obtained (see e.g. the
classical paper by Elliott [Ell57]).

The oscillator strength of individual exciton states @ may be defined from
the Eq. (1.51) as

M, = /dr O, (r.=r,r; =1), (1.53)
which has an intuitive interpretation: an exciton can be created (annihilated)

only if the electron and the hole are found on the same spot. We define the
optical density as

w) =7 M25(hw — Ey), (1.54)
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which is proportional to Imy(w). We will refer to D(w) as to the absorption
from now neglecting thus the constant prefactor d., and the factor w in
Eq. (1.46) which is almost constant and equal to E,/h.

Nevertheless, the quantity which is easily accessible in the experiment is
photoluminescence (PL). This is similar to the absorption but the occupation
N, of a state « is not constant for all states but has some distribution, it
would be Maxwell-Boltzmann distribution in a thermal equilibrium, and is
defined as

P(w) =7y _ MZN,5(hw — Ey). (1.55)

In general, the calculation of the occupation function is a demanding task
since the interaction between excitons or better electron-hole plasma and
optical and acoustic phonons have to be taken into account.

1.6 Exciton in ideal quantum well in zero mag-
netic field

As has been already mentioned in the introduction the idea of combining
two materials in such a way that a thin slab of small bandgap material
A is sandwiched between large bandgap material B, has turned out to be
extremely fruitful. The motivation behind is to confine the carriers in the
thin slab in order to increase their mobility.

Here the envelope function formalism comes into play: the difference
between bandgaps of both material divided between electron and hole® can
be interpreted as the slowly varying potential U(R)

Ua(R) = (Eg,B - Eg,A)faeB(R)a (156)

where a stands for either electron or hole, Fj g4y is bandgap of material B
(A), f. is bandgap ratio (f. + fr, = 1), and 65(R) is the Heavyside function
which is unity in material B.

The exciton Hamiltonian for the envelope function can be formulated
using the results of previous sections

e2

He;vc = He(re) + Hh(rh) - (157)

dreges|re — T4’

5The most widely used theoretical model is the electron affinity rule which calculates
the conduction band discontinuity AE,. as the difference between electron affinities of
the two semiconductors. The valence band discontinuity is then found from the relation
AE, = AE. + AFE, [Ada94].
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where the electron and hole Hamiltonians are generalized compared to the
Eq. (1.38). The conduction band modification due to the strain has to be
included

h?
2m, Or,
where a. is conduction band deformation potential. Moreover, taking into
account the energy dispersion of the topmost valence bands Eq. (1.15) and

applying the rule for the envelope function Eq. (1.36) the hole Hamiltonian
may be written as

H.(r.) = —

+ ac<€zm + €yy + Eyy) + Ue(re), (1'58>

0
8rh

where I is the identity matrix. The matrix H,(k) neglecting spin-orbit band
and replacing v; (a, b, d) with —~; (—a, —b, —d) has the form of

Hy(ry) = H( )—l—Uh(rh)I, (1.59)

P+Q -S R 0
st P-Q 0 R
A I A (1.60)
0 RS P+Q

The solution of the Schrédinger equation with exciton Hamiltonian Eq. (1.57)
is possible only numerically and is rather demanding [SRZ00].

Nevertheless, justified simplifications are possible. First, since we restrict
ourselves only to the vicinity of the I' point where the heavy and light hole
decoupling Eq. (1.25) is valid, the hole part of the Hamiltonian Eq. (1.57)
decouples into two diagonal terms

2 2 2 2
Hu = P(tn)+ Qulrs) < o, T a_> T Un(ra, ),

2 2
2mhh,|| 81‘h 2mhh7L 8zh

(1.61)
h? 92 h: o 92
Hy = Pury) — _ L
Ih (rh) — Qe(rr) (2mlh7| o 2mlh,J_aZ}2l)+Uh(rh,Zh)’
(1.62)

where r, is two-dimensional vector in the zy-plane from now. This means
that there are two kinds of excitons: heavy and light hole excitons.

Second, we assume that (i) the confining potential U,(r,, z,) is only func-
tion of z, and (ii) the potential is strong enough that the expansion of the
total wave function

CI)(I'e, Iy, Ze, Zh) = Z \I/,u,l/(re’ rh)ve,u(ze)vh,l/(zh> (163)

w,v
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can be limited only to the ground state functions v,(z,) and thus the one-
particle motion in the z-direction and in the xy-plane can be separated (omit-
ting the subscript 0)

O(re, 1, 26, 2n) = V(re, rp)ve(ze)vn(2n)