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Abstract

We examine the role of macroeconomic fluctuations, assetendiquidity, and
network structure in determining contagion and aggregesgsis in a financial sys-
tem. Systemic instability is explored in a financial netwodmprising three dis-
tinct, but interconnected, sets of agents — domestic banternational financial
institutions, and firms. Calibrating the model to advancedntry banking sector
data, we obtain sensible aggregate loss distributionshadnie bimodal in nature.
We demonstrate how systemic crises may occur and analyzeotovesults are
influenced by firesale externalities and the feedbdfdces from curtailed lending
in the macroeconomy. We also illustrate the resilience ofroodel financial sys-
tem to stress scenarios with sharply rising corporate ttefaies and falling asset
prices.
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1. Introduction

The complex and opaque nature of modern financial systenes posonsider-
able challenge for the analysis of systemic resilience. rncate web of claims
and obligations links households and firms to a wide variéfinancial intermedi-
aries such as banks, insurance companies, and hedge furasapid development
of securitization and credit derivative markets has alsdenexposures between
agents diicult to assess and monitor. The global financial crisis of7280llus-
trates how intertwined the financial network has becomelsiviso making clear
the potential for widespread losses and instability.

Recent €orts by central banks to measure and assess systemic riskehav
phasized the important role played by netwoffeets, firesale externalities, and
funding liquidity risk in financial stabilitg. A general insight, highlighted by
Alessandri et.al (2009), is that these factors generfatgdils’ in the distribution
of aggregate losses for the banking system. This is consigtigh recent analyti-
cal work which suggests that financial systems, like othemglex networks, have
“tipping points”, display a fobust-yet-fragilé tendency — with sharp discontinu-
ities emerging following some unexpected shocks, with ogihecks resulting in
benign dfects (May et.al. (2008); May and Haldane (2011); Gai and Kipa
(2010); Gai et.al (2011)).

Y An earlier version of this paper was circulated under tHe, ftomplexity and Crises in Finan-
cial SystemsWe are grateful to David Aikman, Dilek Bulbul, Andy Halds, Simon Hall, Reimer
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24-25 September, 2008), the Royal Economic Society Annoaf&ence (Guildford, 20-22 April
2009), the Money, Macro and Finance Research Group Comemn“Financial Stability and Trans-
mission of Credit Risk” (London, 21 May 2009), the Bank fotdmational Settlements workshop
on Challenges in Banking Research (Basel, 28-29 May, 2@B8)Econometric Society European
Congress (Barcelona, 23-27 August, 2009), The Europeatr&&ank workshop on Recent Ad-
vances in Modelling Systemic Risk Using Network Analysisafikfurt am Main, 5 October, 2009),
the Conference on Post-Crisis Financial Sector Perform&Beangor, 23 June 2011) and seminar
participants at the Bank of England are also gratefully askedged.

DU This paper represents the views of the authors and shouldentitought to represent those of
the Bank of England, its Monetary Policy Committee, or itsdficial Policy Committee members.

*Corresponding author; kartik.anand@tu-berlin.de. KAreekledges support of the Deutsche
Forschungsgemeinschaft through the Collaborative Rels€enter (Sonderforschungsbereich) SFB
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for the UK, and Gauthier et.al (2010) for Canada. Foglia @Qfrovides a detailed overview
of systemic risk assessment models being developed byatéainks. Cifuentes et.al (2005) and
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These central bank studies rely on highly detailed, andivelg static, balance
sheet data to establish precise linkages between banksdothestic financial sys-
tem and to derive banking system losses. As such, their lngshiis constrained
when true linkages are not known (such as with credit rishsfier or dt-balance
sheet activity) or when shocks strike financial players rewtieto the core banking
system. The pre-defined balance sheet interlinkages ia thedels also precludes
analysis of how network structure matters for system essi¢. The crisis has
emphasized how network linkages and interactions betwaaksbare critical to
understanding systemic risk. And the growing importancéstéss testing” exer-
cises in the policy debate about financial stability poiotshie need for analyses
that help overcome such limitations.

In this paper, we set out a general framework to gauge systdgki in cir-
cumstances when data about the reach of financial exposumgsted and shocks
are international in nature. We present a statistical mofialfinancial system in-
volving a diverse set of financial agents, namely domestik&adomestic firms,
and international financial institutions. We calibrate thedel to advanced coun-
try banking sector data to illustrate how macroeconomiddiations, asset market
liquidity and network structure interact to determine amgte credit losses and
contagion. Although the calibration is deliberately brdmdsh so as to emphasize
the qualitative nature of the results, we obtain plausialddiled (bi-modal) aggre-
gate loss distributions and can quantify the size of the ceomomic or financial
sector shock that may be necessary for system-wide faibuvedur.

The model highlights how shocks are propagated throughitketdnterlink-
ages of claims and obligations amongst (and between) damestks and inter-
national financial institutions. But it also shows how défaacross the network
are amplified by asset fire sales and curtailed lending in theroeconomy as
credit crunch #ects take hold in the event of distress. In addition, we tilats
how greater heterogeneity of bank balance sheets leadsrtoreadistic outcomes,
characterized by the failure of some — but not all — banks freexe scenarios.

We also demonstrate how the model can be used to “stresgtiedbanking
system. We draw on some recent bank stress testing exetacisgamine the con-
sequences for bank failure in our model. The results obdaave entirely illus-
trative and intended to demonstrate the usefulness of énecfivork. Specifically,
we consider a scenario in which the loss rate on corporatesexps of around
4.5 % and is accompanied by a 20 % fall in equity prices as dtrekfiresales.
Faced with such stress, approximately one quarter of ouehifimhking system is
pushed into default. Our findings do not seem implausiblergihat we explicitly
take into account macroeconomic and fire sdfeats, although the assumption
of 100 % loss-given-default (LGD) suggests this estimats ar upper bound on
bank failures.



Our analysis complements recent work that draws on teckaeiffom network
science and statistical physics to study credit contagimimaodel credit risk losses
in banks’ portfolios (Giesecke and Weber (2004, 2006); H¢&)07); Hatchett
and Kihn (2009); Gai and Kapadia (2010); May and Arinamiinpa(2010)).
But the networks in these models typically involve homogerseagents — a firm
or a bank — and do not capture the twifiegets of macroeconomic and firesale
feedbacks.

Our analysis also relates to the literature which seeks tairhnalytical valu-
ation results for complex portfolio credit derivatives lynsidering default corre-
lation and credit contagion among firms in a dynamic settingik et.al (2010);
Longstdf and Rajan (2008). In contrast to these papers, clearly feggbdiank
balance sheets are central to our approach, with bilaiakaldes precisely defined
with reference to these. And ourfiiring modelling strategy, which focuses on the
transmission of contagion along these links, reflects thatgr structure embedded
in our network set-up.

In choosing to model the complexity of a heterogeneous fiahagstem with
feedback #&ects, we have allowed relatively little role for behavior.naytical
tractability precludes optimizing agents and stratediergrctions. Although we al-
low for plausible ‘fules of thumbthat permit banks to curtail lending and dispose
assets in a firesale, the contagion process is mechanisticsiZe and structure of
financial linkages is kept constant as default cascades$apew¥hile this assump-
tion may be defensible in the midst of a rapidly developingisy it is clearly at
odds with recent work on financial networks (Leitner (200G#stiglionesi and
Navarro (2007)) that builds upon the seminal contributidgnrAlen and Gale
(2000¥. The stylized nature of these models means, however, thgtdannot
be used for systemic risk assessment. So our paper shoulgwedvas a very
preliminary first step towards an integrated model of sy&taisk that both takes
complexity seriously and incorporates realistic behalioesponses.

The paper proceeds as follows. Section 2 provides an infadiseussion of
our approach and explains how shocks are propagated andiachpl a stylized
financial system comprising diverse agents. Section 3 ithescmodel calibration
and discusses a novel approach to deriving the distritgitidrbalance sheet ex-
posures in environments when data is unavailable. Sectgesknts the baseline
aggregate loss distribution obtained from stochastic kitimns and considers how
liquidity risk and macroeconomic feedbacks migffeat system stability. Section
5 presents an example of how the model can be used for a basydtgm stress

2See Allen and Babus (2008) for a survey of network-theosgdjaroaches to modelling financial
issues. Jackson (2008) provides detailed discussionaiégic behavior on networks.



test. A final section concludes. Formal details of the model @ description of
how distributions of exposures are obtained from maximutropy techniques are
presented in the appendices.

2. A stylized financial system and the transmission of shocks

The financial system in our model can be viewed as a corefmsipstruc-
ture with three inter-connected layers — domestic bankerriational banks and
firms. While we do not model lending to households in thisatre, the frame-
work could easily be augmented to include a role for them imaa way to the
treatment of firm.

A network of coredomestic banksits at the center of the system. A distin-
guishing feature of this group is that each bank interacts all other banks, i.e.,
the (sub-) network of domestic banks is complete. This sirecreflects the im-
portance of core banks within money markets and paymenemgsin national
financial structure’s

Beyond this group of core banks lies a groupndérnational banksi.e., banks
operating in foreign countries and peripheral to the coraekiic financial system.
Unlike domestic banks, the (sub-) network of internatidreiks is incomplete and
exhibits a small world property — each international bank interacts with institu
tions in its immediate vicinity and only interacts with malistant institutions with
some probability. The sparseness of the links betweemiatienal banks relative
to the complete network of domestic banks reflects the mueater diversity of
institutions in this sector, both in terms of activity andddtion. It is also consis-
tent with recent evidence from von Peter (2007) on the firmtiokages between
international banking centers.

The outer-most layer of the financial system is comprisefitofsin the econ-
omy. Firms are assumed not to lend to each other and do not lsaressin one
another. They are, thus, not connected to each other in apyWés assumption
is made for tractability. Firms are, however, assigned agerous credit rating
(investment or speculative grade), are subject to commgreggte economy-wide
shocks, and exposed to the risk of restrictions in bank tradlie performance of
different firms across the economy is therefore correlatedafisipa shock to the
financial system.

Although the three layers of the financial system are distieach group is
linked to the others. Domestic and international banks eand ko, and borrow
from, each other. They are also able to lend to, and own sl@irest investments)

30ur data on lending between domestic UK banks corroborhiesssumptions.



in, firms. The financial relationships across layers are ithedlas random graphs.
In other words, entities belonging toffdirent layers are linked to each other with
a given probability. These probabilities are independetvben pairs of entities,
and the random links mean banks caffatiin terms of lending to, and equity
holdings in, firms.

Figure 1 illustrates the financial system. Our use of randcaplytechniques
to model the interlinkages betweenffdrent types of agent can be viewed as a
metaphor for the opacity and reach of modern financial insénts. Policymakers
frequently highlight the way in which financial innovatiomshenabled financial
intermediaries to ‘slice and dice’ credit risks to the phéapes of the financial
system (Bank of England (2007a); Trichet (2008)). The valtiastruments such
as credit derivatives and their related exposures dfiewlt to monitor as a result,
justifying the probabilistic treatment adopted here.

As Figure 1 shows, banks and firms are represented as nodeseitwark.
Although not illustrated, links between nodes reflect drediequity relationships
and the network is directed, with incoming links representassets (i.e., monies
owed to an entity by a counterparty or shares in the case dsbaglationships
with firms) and outgoing links representing liabilities.gkie 2 presents the typ-
ical balance sheet of a bank in the financial system. Tot@&tas®mprise loans
to firms, loans to other banks (domestic and internatiorshi@res in firms, and
government securities. The liability side of the balanceeshincludes customer
deposits, interbank borrowing, and the bank’s capitdfdsu Our balance sheet
structure is sfiiciently simple to be tractable whilst including enough granity
to be interesting.

Appendix A provides a formal presentation of the model. Edfies banks’
balance sheets and shows how our assumptions about certyedtow the finan-
cial system described above to be cast in convenient maitnm.flt also specifies
how shocks give rise to crisis dynamics and contagion.

An informal sense of the mapping from shocks to systemica@sk however,
be readily gleaned from Figure 3. Macroeconomic disturbarean trigger firm
defaults, leading to credit losses and losses on holdindgnofequities at some
banks. These shocks can trigger the default of a financiifutisn and generate
a default cascade amongst banks that are directly IihkBdt as the losses at an
individual bank mount, approaching a critical fraction apdal, it is also likely to
take defensive action to try to protect itself from failuBpecifically, it is likely to

4Alternatively, a financial institution may fail for idiosgnatic reasons without there being a
macroeconomic shock.



sell assets (equities) once in distress and cut back omitsnig to firms. The fire-
sale of equities and resultant asset price decline givesaisiark-to-market losses,
forcing other banks to write down the value of their assetstentially enter into
their own fire sales and tighten their own lending to firms. Mekile restrictions
in credit increase the probability probability of defauftfoms, magnifying the
initial shock. Direct contagion is, thus, reinforced by $imes and macroeconomic
feedback fects.

We strictly assume that the banking sector is the sole peowficredit for firms
who do not have direct access to credit markets or any otteameh of credit. Our
focus and assumption is a stylized attempt to capture meanoenic feedback
loops from the financial system to the real economy. Moreowee may expect
our assumption to be qualitatively true during periods oérficial crisis, where
due to a confluence of high capital search costs and a hoaddifiquidity by
all institutions, i.e., a credit crunch, the probability défault for firms increases,
which exacerbates the financial crisis.

In the mechanistic setting adopted here, banks follow rig¢sumb when con-
fronted with distress. Although plausible, these rulesshaw micro-foundations.
But they can be viewed as being consistent with rational\aehaFacing a highly
uncertain recovery rate and timing of economic recoveryhim rnidst of crisis,
banks are likely to assume a worst case scenario and begatiflipull credit lines.
For simplicity we do not assume an explicit link between hifeéquity prices and
the default probabilities of firms. These channels are subsguwith other behav-
ioral factors that collectively raise the credit risks ofrfs. If such loans are denied
the firm defaults on existing loans to other banks, therelagesbating the crisis.

3. Model calibration

We attempt to characterize the state of a modern financiémsyprior to the
onset of the global financial crisis. Although we draw upon ti€a for much of
our calibration, our choice of parameters is intended tourelp illustrative and
does not purport to quantify systemic risk in the UK. Our intten, instead, is
to showcase how the model can usefully generate plausibésumes of systemic
risk and clarify the interplay between macro-financial #tspanarket liquidity,
and network structure within a financial system. Since sofbenexposure data

50ur approach does not model the dynamic restructuring @fnisal sheets. In other words, the
actual transfer of equity from one bank to another as a reétiie firesale is absent. We motivate this
stylized assumption by qualifying our firesale asaaticipatedfiresale. Once a bank’s capital falls
below the critical threshold, all other market particigawill anticipate that the bank will perform a
firesale in the near future. It is this anticipation that t&sim the fall of equity prices.



is confidential in nature, we verbally describe how we calibrsome of the key
statistics necessary for our maximum entropy proceduresd lexposure statistics
are, however, reported in detail where the data is publichjiable.

The network consists of 17 domestic banks, 240 interndthmnzks, and 50,000
firms. Seventeen domestic-owned banks accounted for 95 %nkirg assets in
the UK at end-2007, while three-quarters of foreign excleangnover during 2004
was accounted for by some 240 non-UK banks located in 20 dearthe Bank for
International Settlements (2008}6nsolidated Banking Statistics Reppwhich
publishes aggregate statistics on cross-border loans xpidity excludes non-
bank financial entities such as insurance agencies and lieage Our choice of
the number of firms is based on the UK’s Department for Busitmsovation and
Skills press release ddmall and Medium Enterprise Statisticat the beginning
of 2008 they recorded approximately 33,000 firms in the Ukhvi® employees
or more. Our choice of 50,000 firms is broadly illustrativelué statistic. Clearly,
the number of foreign financial institutions and firms can h&mlarger, so our
choice simply indicates the situation facing an economyaihighly developed
and integrated financial sector.

Given the paucity of data about exposures between banksati@nally, and
between domestic firms and international banks, we rely oridg distributions
of exposure sizes and the number of links between the thpes tgf agent from
a limited data set. We use quarterly time series data on t@laheets over a
four year horizon (2004-2007) to fit least biased distrimusi. These establish the
financial connections of our network. Appendix B shows howpeital constraints
observed in the data are accounted for in selecting a leasedidistribution that
also maximizes information content.

A novel feature of the calibration is our use of the principfenaximum en-
tropy to estimate the distributions of exposures betweemfiiral players. Specifi-
cally, we use the principle of maximum entropy to approxinidte empirical dis-
tribution of exposures. The entropy, which is a functionha probability distri-
bution, is a measure of th@edictability of exposures. When the entropy is large,
there is greater uncertainty on our current state of knogdeahd it is harder to
predict typical exposure values. In this case, the diginbuwf exposures is broad.
On the other hand, when the entropy is small, the distribuigosharply peaked
around a small range of exposures, thereby improving thdigiedility. The prin-
ciple of maximum entropy postulates that subject to knowrstaints (knowledge
of the first few moments from the empirical distribution, éxample), the probabil-
ity distribution that best represents our current knowéedgd that is least biased
is the one with maximal entropy. Importantly, the principlees not require the
modeler to make prior assumptions on the shape of the pidbatiistribution.
We implement our maximum entropy procedure using the atlgoriprovided by
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Mohammad-Djafari (1991).

Our approach is distinct from the maximum entropy methoasius central
bank analyses (eg Elsinger et.al (2006); Upper (2011))sé&ktudies estimate re-
alizations of exposure matrices whose entropy is as clopesssble to a reference
matrix. The entropy here is a function of the exposure medrtbemselves, which
have been suitably re-scaled to satisfy properties of fmitityadistributions.

3.1. Structure of balance sheets

We use end-2007 published accounts data for the 17 UK baiksoarespond-
ing data for international banks reported in BankScope twattierize the balance
sheets used in the model. The average total asset size fomdKnternational
banks are £ 400 bn and £ 150 bn respectively. For UK bankstiesgjuioans to
firms and interbank assets (the sum of claims against bo#igiorand other UK
banks) made up 10 %, 80 % and 10 % of assets respectively, cagavel he data
from Bankscope suggest a similar picture for internatidraaiks’ balance sheets,
so we adopt the same composition for these balance sheetdlas w

3.2. Distribution of exposure sizes between banks

We calibrate the distribution of interbank loans betweemestic (UK) banks
using confidential quarterly data on regulatory large ewpes for the 17 major
banks between 2004-2007. The empirical mean, standardtaevand skewness
for the bilateral claims between UK banks were calculatetifarm the constraints
in calculating the maximum entropy PDF. Figure 4 plots thesimam entropy
PDF (solid line) against actual data (circles) on a Y-lodpanic scalé® For com-
parison, we also plot a fitted log normal distribution (dakhee). Both the maxi-
mum entropy and log-normal distributions fit the empiriciatidbution fairly well.

To establish the distribution of loan sizes between domestd international
banks, we suppose that the 240 banks originate from the 20finaacially ad-
vanced countries for which data is readily available in tlaBfor International
Settlements (2008)Consolidated Banking Statistics RepoitVe use this infor-
mation to establish the sterling claims of UK banks on otlmmdries’ banking
systems and vice versa. We assume that all internation&irigaolaims are chan-
neled through the 17 core domestic banks and the 8 intenadtimanks in each
foreign country. We approximate the individual bank-tatba&laims by dividing
the aggregated claims of all domestic banks by the numbekobahks (17) and
the number of international banks per country (12).

5The PDF for the actual data was obtained by binning the bidhéxposures and normalizing the
weight attributed to each bin. The circles in Figure 4 cqroesl to bin centers.



Empirical means, standard deviations and skewness Estigtre also calcu-
lated for claims held by UK banks against international Isarfkor those held by
international banks against UK banks, the mean, standaidtoie and skewness
were £ 0.28 bn, £ 0.67 bn, and 4.56. Figure 4 plots the maximutogy and
fitted log-normal PDFs of loans sizes between internatiamal domestic banks.
There is again reasonable agreement between the actuattaddiDFs, although
the maximum-entropy PDF seems to capture the fat tailedeafihe distribution
somewhat better.

The international banks in our system, of course, also leea@th other as well
as to banks within their own jurisdictions. Data on intedbbanding within foreign
banking systems is not available, however. So we supposedich international
bank lends to ten of its local counter-parfiesd that lending between these banks
follows the same statistics as interbank lending withinlite

In order to calibrate the distribution of exposure sizesveen international
banks in dfferent countries, we make use of cross-border claims data tine
BIS. The mean, standard deviation, and skewness of eacls@eis £ 0.25 bn, £
0.81 bn, and 6.84 respectively. The fitted maximum entropiridution in Figure
4 provides a reasonable description of the data, includiedatness in the tail.

3.3. Connections between banks

In addition to exposure sizes, we also need to establish uh#er of links
between banks to construct the financial network. To obte@mtaximum entropy
distribution for the number of links that a bank has againkeobanks, we use
the results of Bianconi (2009) that for uncorrelated nekspthe maximum en-
tropy distribution for the number of links is a Poisson disition. Uncorrelated
networks are those where the degrees of nodes are not ted.el® argue that
our financial network may be modeled by an uncorrelated mtwe assume that
domestic banks are owned by domestic shareholders onlgn ithe other hand,
domestic banks were owned by international shareholda@ssywould lead to bias
in the structure of links between domestic and foreign barikisis assumption
holds for our selection of core UK banks.And since we do nawvkthe identities
of the other international banks, our assumption servesad hypothesis for the
structure of linkages.

To construct this distribution for our financial system, weed the average
number of links between agents — banks or firms — of type X agjéose of type
Y, denoted(c*Y). This implies that the probability that any link is preseatieen

“As made clear below, to utilize the ‘small-world’ networkgatithm of Watts and Strogatz
(1998) the number of local counter-parts for each inteomati bank must be even.
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two banks isp*Y = <‘f\|X—YY> whereNY is the total number of banks of type Y. So
the problem reduces to estimating the average number af liskween the various
types of banks.

We take the domestic banking network as being completelyected. The
average number of connections for claims held by domestikdagainst inter-
national banks is obtained by taking the average totalbatgt assets of a UK
bank, subtracting the average total assets held agairest d# banks, and divid-
ing by the average size of an exposure between a UK and itimmahbank. This
suggests that each domestic (UK) bank is exposed to 52 attenal banks.

To establish connections between international banks saenae that each in-
ternational bank is connected, on average, to 4 domesticdkKd In this case, the
fraction of domestic UK banks each foreign bank has loank @tL7) is roughly
equal to the fraction of foreign banks each domestic UK baamk lbans against
(52/240). Each international bank lends to ten other banks iovits country. We
model the network of all international banks as a ‘small doretwork, where
each international bank is linked to those in immediate jnity (banks in the
same country) and has occasional ‘long range’ connectmighier international
banks. The means that the number of ‘immediate-neighbeamections (between
international banks in the same country) is2 10. We obtain the average num-
ber of ‘long range’ connections by taking average totalrlvaek assets (10 % of
£ 150 bn), subtracting the average assets held against tord&sbanks (4« £
0.28 bn) and those held against other banks in the same gpantt dividing this
guantity by the average size of an exposure between intenadbanks in dierent
countries (£ 0.25 bn). This gives approximately 7 ‘long irmpnnections. Defin-
ing the ‘long-range’ wiring probability ap, the average degree for each node is
2«(1 + p), implying thatp = 0.7.

As Figure 5 illustrates, we arrange the nodes of internatibanks in a ring,
connecting each to its immediate (local) neighbors, and taedomly (with prob-
ability p) allowing an international bank to form connections witlotier bank in-
ternationally that is chosen from a uniform distributiorepsll international banks.
This procedure is iterated over all international banks.

3.4. Distribution of loans to firms and equity holdings

In the absence of data on individual bank lending to firms, s aur break-
down of banks’ balance sheets to suppose that each loan aitg leglding is, on
average, £ 100 mil and £ 10 mil, respectively for UK banks ari®finil and £
1.2 mil for international banks. The data on average balaheet size and con-
tributions from loans and equities allows us to infer thermmtions between do-
mestic (D) and international banks (1) and firms (F). Thesg(e™) = 3200 and
(c'Fy = 3200 for loans, andd®F) = 4000 andd'F) = 4000 for equities.
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3.5. Corporate default probabilities

Our calibration of corporate sector default probabiliie®ased on a study of
US investment and speculative grade firms by Schuermann anddd (2004).
They use credit rating data from Standard and Poors overaliedp1981-2002
to establish Gaussian density functions for annual defandbabilities in each
grade. We base our default probabilities upon these paesired density func-
tions. Specifically, we treat the default probability in éstment (A) grade cat-
egory as having a mean and standard deviatiogP@'®) = 8.65 x 10™° and
o' = 2x 10°°, respectively. The non-investment grade (BB) category &has
mean and standard deviation ¢tDV'®) = 6.3 x 102 andoN'® = 6.1 x 1074,
respectively. The proportion of firms that are investmeatigr(speculative grade)
within the system is 0.7 (0.3). We take the firm LGD to be 35%.

The probabilities of default for all firms are also influendsgd an common
economy wide shockg. The largernug, indicating a worsening of the macroeco-
nomic outlook, the higher are the probabilities of defaattdll firms, irrespective
of their rating grade. We do not calibratg, instead we use it as variable in or-
der to explore how large a macroeconomic shock needs to b&lém to “tip” the
financial system into a systemic crisis.

3.6. Additional parameters

Our model also makes use of some additional parametersrthatitical in de-
termining the extent of feedbackrects following a shock to the financial network.
Specifically,

e Ratio of capital to assets (leverage ratis),, we initially set banks’ (un-
weighted) capital bffiers to be a uniformr = 4% of total assets, a figure
drawn from the 2005 published accounts of a range of largariational
banks. We then allow capital fiers to vary across banks in the range
[4 — 24]%. In section 4.4, we relax the assumption of uniform capitaidrg
allowing them to vary in the range [424]%.

e Trigger rule for firesalesy : once a banks’ losses from the combindiets
of corporate defaults, mark to market losses on its equitied interbank
losses amount to 50 % of its initial capitalffer, the bank will decide to put
its own tradeable assets up for sale. This trigger level &b EBnounts to
setting the parameter = 0.5.

e Liquidity discount parameter] : we setd = 0.7 to reflect the fact that
once 10 % of equity is put up for sale, the equity price q(t) faill by 7%.
Our parameterization of the price impact of a firesale is, large extent,
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arbitrary since evidence on the price impact of firesalesasce. Mitchell
et.al (2007) analyze firesales of US convertible bonds bygéddnds in
2005, and suggest that price discounts were around 3 % winea S&%6 of
the market was sold. This would correspond to a valug ef 0.57 in our
model. Given this estimate is based upon a period of relgtioey stress in
the financial system, we adopt a value Aaonsistent with a more significant
price impact.

e Macroeconomic feedback parametger, since macroeconomic feedback ef-
fects in the current crisis are yet to be properly calibrated (somewhat
arbitrarily) setp = 6.25x 10°° as a working hypothesis. This implies, fairly
plausibly, that if a bank reduces the volume of credit it éssto firms by 20%
this will increase the probability of default for all firmsahhave preexisting
loans against the bank equally, irrespective of whetheb#m is domestic

or international. Specifically, we sg¢t= 0.2/(L;<CIF> . Thus, if all banks

have more loans, on average, the impact of one bank tiglydtshcredit
conditions is mapped into a smaller rise in the probabilftgefault of firms.
The trigger rule for a bank to tighten lending conditionsdsritical to that
for firesales and is governed by the ratiof losses to the capital Hier.

4. Credit events, aggregate losses, and feedbadkexts

We now present a plausible aggregate loss distributiorhfocalibrated finan-
cial system and evaluate its response to adverse crediksh&tandard industry
models of systemic risk do not consider the complexity ieglby international
financial linkages and are typically limited in their chaeazation of the feedback
effects from asset firesales and tightening credit conditinoriké macroeconomy.
The extent to which these factors combine to generate flatitaithe aggregate
loss distribution is critical to the assessment of finargyatem resilience. In what
follows, we assume a zero recovery rate on loans. This statnaption is made
for tractability and to highlight our findings, but can be dia relaxed without
affecting the spirit of the results. Given both this and the 8rbaushed nature of
the more general calibration, the results presented bdiowld be taken as purely
illustrative rather than as a precise measure of systeskarrithe financial system.

4.1. The baseline aggregate loss distribution

We perform a series of stochastic simulations to obtain gneggte loss distri-
bution under a set of baseline assumptions. Specificallgssame that asset fire-
sales have no price impact and that there are no macroecotieetiback ffects
(2 = ¢ = 0). There are also no aggregate macroeconomic shocks to fiems Q).
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For each simulation, we generate balance sheets whereusgpase drawn from
the connectivity and asset size distributions describeskiction 3. Next, through
a series of Bernoulli trials, we set some of the firms to deéfatihese defaults are
registered on banks’ balance sheets, possibly promptifagiite or firesales. Once
the shock has run its course through the network and assesgnave adjusted,
we measure the fraction of failed banks and the balancesbéatl banks in the
system. We perform 1000 such simulations and create akdiston for banking
system assets lost.

The inset of Figure 6 presents the normalized histogramhianumber of de-
faulting firms from the initial credit shock. The number olfiaes from subjecting
firms to a shock is characterized by a Bernoulli distributienction (see descrip-
tion in Appendix A.4). The typical defaulting firm is smalliialation to the overall
financial system — the average size of a defaulting firm@98% of total system
assets. In the baseline, 150 firms default on average in @acitasion.

Figure 6 presents the aggregate loss distribution for tin&ibg system, as a
fraction of total banking system assets, for the domestik b@twork and the over-
all financial system. The idiosyncratic defaults on theeschscribed above have
very little impact on system resilience — there are no bariéudis. Average sys-
tem losses as a result of the idiosyncratic shocks are saliie® of the domestic
banking system and 0.16 % of the overall system. In other sydsdth domes-
tic and international banks are similarlffected following idiosyncratic corporate
failures.

4.2. Macroeconomic shocks

Aggregate macroeconomic shocks to the financial system draeelverse ef-
fect on firms and enter the model via the parameigr, the increase of which
reflects higher levels of firm default.

We begin by attempting to identify the scale of firm defaultsent any feed-
back efects from firesales or a credit crunch, that triggers the ifistances of
complete financial system failures (i.e the failure of alirastic and international
banks). The results reported for eaghare compiled from performing 500 draws
of the shock and letting them run their course through théeays The initial in-
stance of system-wide failure occurg:gt= 0.078 This point is depicted in Figure
7 by a downward facing triangle, and is associated with tHaulteof 2700 firms
on average. Faug < ug, we only observe cases wheaemostone international
bank fails. Atyg, by contrast, we observe that there are no bank failures?®@%b
the time, one bank failing 0.1 % of the time, and in the remaiir@4 % of cases
the entire system fails. In these instances of complete ar&tailure, the initial
macroeconomic shock reduces the capitdlidnfor banks holding loans and equity
against the defaulting firms, triggering the direct failofea few banks. Interbank
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linkages then lead to direct contagion, as the similaritpagnbanks in their abil-
ity to absorb shocks leads to a starkly bi-polar result inohtaill banks fail once
widespread contagion has broken out. At the critical vafiiethe loss distribution
becomes bimodal for the first time.

Figure 7 also shows the average fraction of failed bank&i(Boé with squares)
as a function ofis. Due to the assumed homogeneity in banks’ ability to withstan
shocks, each square represents the probability the finagstem will collapse for
a given level of macroeconomic shock. Ag approaches.09,the probability of
system failure accelerates towards unity. There is an tiflegoint associated
with us ~ 0.085 Here, the probability mass is equally distributed betwden t
two modes of the aggregate loss distribution, represethi@gphase transitiohor
‘tipping point of the complex financial system. For macroeconomic shobksa
this level, the financial system will always collapse.

Figure 8 plots the aggregate loss distribution for the eriainking system for
the stressed scenario wherge = 0.078. As can be seen, the losses under the
adverse scenario are orders of magnitude greater than itndke baseline and
the distribution is bi-modal. The probability mass is camntcated around (a) small
losses of around 3 % of system assets; and (b) a few extrertendes where
around 11 % of system assets are lost. In these extreme tasestire financial
system collapses.

4.3. Feedbackffects

We now investigate thefkects of asset firesales and the withdrawal of bank
lending to firms on the aggregate loss distribution. Wherkbame in distress and
losses mount in excess of a trigger threshaldof their capital bifer, they sell
their holdings of equities and simultaneously tightenrthemding to firms. The
withdrawal of credit from remaining firms increases theiolability of default.
As further credit losses mount, the feedbadieets of reduced bank lending am-
plifies the losses to banks and, together with the mark-t&ketaffects of firesales,
contributes to further financial instability.

We initially focus on the pure macroeconomic feedbat&at of a credit crunch
and abstract away from the possibility of any distress fitessdn this case] = 0.
Thus, withy = 6.25 x 107°, we find no shift in the tipping poingg = 0.078.
However, as figure 7 indicates the average fraction of fdilenks is higher, as
indicated by an upward shift of the curve in figure 9. In theecakpure firesale
effect, i.e.. = 0, figure 9 shows the with = 0.7, the minimum critical quantum
of credit risk necessary to instigate system collapse iaditoforward sharply to
ug = 0.037. The average fraction of failed banks again shows the prityabf
system-wide failure.
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Allowing for the possibility that banks tighten credit cdimoins once they opt
to engage in firesales further brings forward the first instaof system failure.
Our calibration suggests thag = 0.031 in this case and, as Figure 9 shows,
the probability of system failure is greater for all valudsug. The intuition is
straightforward. In the first round, the tightening of ctdui banks pushes further
firms into bankruptcy, amplifying the extent of credit lossamong banks. The
ensuing distress of some banks leads to further firesales astond round of
credit tightening that further raises the probability ofrfidefault. The cycle only
terminates once the entire banking system fails.

As our results make clear, macroeconomic feedbacks arsubssantial than
firesales in our calibration. Indeed, both aréfidult to calibrate meaningfully.
While our firesale calibration is based on Mitchell et.al 2)) our ability to cal-
ibrate the macroeconomic feedbacks is wayward. While it meal be that this
feedback is more substantial, the combin&fdats of both the firesale and macroe-
conomic feedbacks appear plausible. A through calibratiothese mechanisms
is beyond the scope of this paper and is an avenue for fut@algsas

4.4. A more realistic setting - heterogeneity of capitgffixs

Our depiction of financial fragility has been extremely ktara change in the
size of a credit shock around a critical value determineshdrghe entire network
collapses or not. More realistically, one might expectatitans in which interme-
diate outcomes obtain, in which only some banks fail but #s of the system
continues to function. In particular, shocks may be unablegread once they
reach very well capitalized banks.

We therefore relax the assumption that all banks have the sapital bifer,
and allow it to vary from institution to institution. The dégd-asset ratiog, is now
drawn from a uniform distribution with support.[¥, 0.24], more representative
of the sort of bifers likely to be held by banks in some countries.

Figure 10 depicts a much richer set of results. We note, fample, that
for ug = 0.0375, on average 2.8 % of banks default. The banks that fail ar
both foreign and domestic. In particular instances of theutations, 219 banks
collapsed (85 % of the the total system), while the few reinginby virtue of
higher capital bffers are saved. Agg increases to 0.0475 a similar conclusion
is drawn. On average 91 % or 234 banks in the system collapg3ase again,
a few banks are found to befigiently well capitalized to survive the shock and
feedback fects.

The highest default rates between 1920 and 2006 were, 1.7 tivisstment
grade —ratings class A —firms and 11.1 % for speculative gradgngs class Ba—
firms. (Moody’s (2007)). These higher default rates wera@sgted, in particular,
during the Great Depression, which was a period of signifibank failures. In our
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model, these figures correspond to a probability of defaulthe average of 4.5
%, which is generated by takings = 0.045. With liquidity and macro-feedback
effects switched on and allowing banks to have heterogenoessle¥ capital in
our model, we find that witjyg = 0.045 a significant fraction (89 %) of the entire
banking system collapses, on average.

5. “Stress testing”

In the wake of the global financial crisis, policy-makers én@egun to subject
banking systems to “stress tests”. While we cannot do fdllige to such exer-
cises, out model is well versed to provide a compelling edwie of these tests
that include both macroeconomic feedback and asset fieeddlereover, our use
of a random graph structure sidesteps the challenge toategsilof assessing the
true scale of network connections due to complex financizdycts.

Specifically, we may ask how well domestic banks absorb catpaxposure
loss rates of around 4.5 %d = 0.044) and a 35 % haircut of equity exposures
stemming from a 20 % equity price fall (= 0.37). These are the sorts of shocks
being considered by policy-makers in contemporary bardssttest exercises.

Under this scenario we find that there are no bank failures7if6of the
simulated instances. However, in the remainder 33 % of casd®ve, on average,
200 (78 %) foreign and domestic banks failing. This impliest &an overall average
of 25 % of banks fails. In the instances where no banks defindtlosses solely
due to corporate defaults amount to 1.8 % of total systentsask®wever, in the
remainder of instances, we have, on average 19 % of all dssieig wiped out.

The high average percentage of bank failures may be attdliotkey modeling
assumptions in our model, specifically the inclusion of maconomic and firesale
feedback loops. These elements exacerbate shocks to tkimdpagstem, as dis-
cussed in Sections 4.2 and 4.3, thereby heightening théditiyagf the financial
system. Secondly, we take a 100% LGD on interbank expostifés.assumption
is stark and intended to be purely illustrative. Actual LGdDs likely to be less
Taking, as we do, a loss rate of 100 % amplifies losses due todefaults, which
further contributes to the degradation of systemic stgbikinally, a third exacer-
bating factor is that we do not allow banks tis®t their losses by future expected
earnings, which would have helped mitigate the cascadelofda.

8For instance, published results on loss rates (e.g. Jan@%1)j1 report a loss rate of 40% for
banks. Relatedly, Altman and Kishore (1996) estimate tbewery rates (100-LGD %) on defaulting
bonds of financial institutions between 1978-1995 to be 8B6Wb, on average. However, recovery
rates vary by type of institution: mortgage banks 68 %, fieac@mpanies, 46 % and commercial
banks, 29 %.
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6. Conclusion

Modern financial systems are characterized by compleXimitages and a di-
verse set of agents. Our paper develops a general framew@#uge systemic
stability in the presence of such linkages and heteroger@#librating the model
using data on advanced country banking sector that is lamdilic, we illustrate
how macroeconomic fluctuations, asset market liquiditg, metwork structure in-
teract to determine aggregate credit losses and contagilthough our calibra-
tion is broad-brush in nature to emphasize the qualitatgelts of the model, the
results show how systemic stability might begin to be gdimakiin a statistical
fashion, particularly when data about the reach of modeantial instruments is
limited and shocks are international in nature.

A thorough understanding of both the qualitative and quzinte features of
aggregate loss distributions in the banking system is itapbifor policymakers
concerned with systemic risk. Our findings indicate that im@conomic shocks
and asset price feedbacfexts intertwine to generate fat tails in these distribigion
and that large-scale financial disruption may be possible.al&b show how the
heterogeneity of bank balance sheets gives rise to moistiealtuations in which
some banks fail, but the overall system remains resilient.

The model clearly illustrates how complex financial systemesvulnerable to
system-wide breakdown of the type observed during the teglebal financial
crisis. It can also be used to inform stress testing exescideawing on the types
of scenarios and shocks recently used by policymakers tgegfinancial sector
resilience, we find the model generates outcomes that aeslgrplausible. In
particular, the default rates in the corporate sector rsacgdo trigger a systemic
financial event in the model are comparable to those witdedaeng the Great
Depression and also the recent crisis.

Our model imposes a number of simplifying restrictions onremxtivity. Re-
laxing these restrictions and altering the topology of thework may &ect risk-
sharing and change the degree to which shocks are dispeafsdg across the
financial system. A thorough evaluation of changing the nétdinkages between
and among dierent types of agent is a task we leave for future researctevan
greater challenge is to incorporate more meaningful behalviesponses into this
type of network model, whilst retaining the complexitiestmstructure.
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A. A Statistical Model of the Financial System

A.l. Financial relationships betweenfidirent types of agent

The financial system consists Nf agents who belong to one of three types:
(1) NP domestic banks; (2)\' international banks and (}F firms’, whereN =
NP + N' + NF.

Each agent is represented by a node on a directed graph ked tmeach other
through their assets, liabilities, and equity holdingse@iically, for an agent, an
incoming link from agentj represents an asset — either loans or equities Fson
balance sheet. Let the value of loans and equities from agenteAjj, Q;; € R*
respectively. Outgoing links represent an agent's liiediwith valueL; € R*.

Connections between agents ofeient types are formed randomly. The vari-
ablescij, dij € {0,1} denote whether agenholds a loan or equity assets against
agentj. Thus, we write

Ajj = GijSij , 1)
and

Qij = dijTij , )
whereS;j, Tjj € R* are random variables that describe the extent of the exposur

The statistics of our random variables are governed byyteof the lending
and borrowing agents, i.e., whether one or the other is a sien@r international
bank or a firm. We defingp(Sjj) as the probability density function (PDF) of
loans from domestic bank, labeledo the international bank, labelgdSimilarly,
we can define the PD#g (Tj;) of equity holdings between the international bank
and firmj. Considering all possible combinations of agent types hemde lending
arrangements, the statistics for sizes of loan and equltirigs is governed by 18
different probability distributions.

For the connectivity ca@icientsc; andd;; as well we can apply a similar pro-
cedure to defingp;(cj) as the probability mass function (PMF) for the presence
(or absence) of a loan from domestic bartk foreign bankj. Similarly, pr (dij)
defines the PMF determining the probability with which inggional bank holds
equity of firm j in our financial system. The financial relationships betwdiier-
ent types of agent can now be given a convenient matrix forheirTinteractions
are summarized by the matrix

ADD ADI ADF QDD QDI QDF
F = AID AII AIF QID QII QIF , (3)
AFD AFl AFF QFD QFI QFF

SWe furthermore denote by®, ' and NF the set of domestic banks, international banks and
firms, respectively.
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whereAXY andQ*Y are matrices of exposures from type X agents to other type
Y agents, whose elements areS;; andd;; T;;, respectively, withi € N*X and
jeNY.

The forms used for our exposure PDFs and connectivity PMBpé# out in
the calibration section.

A.2. Financial relationships between agents of the same typ

We here assume that all core domestic banks holds assetstageaery other
domestic bank. Hence in matPP we have that;j = 1. This forms a complete
network of the core banks through their lending relatiopshiFirms do not hold
assets or equity against each other or against domesticnégmhational banks.
Hence the matricea™ , AF', AFF  QFP  QF' andQFF are all equal to zero.

Interactions between international banks take place onadi-svorld network.
Such networks are characterized by (i) their clusteringtmient, which reflects
the clique-like relationship between a node and its nearesthbors; (ii) long-
range links between ‘distant’ nodes which result in a shegtage path length (i.e.
a short average number of links between any two nodes).

The connectivity cofficients between international banks, i, with i, j €
N', are constructed using the algorithm proposed by Watts émog@z (1998).
Pictorially, we arrange the nodes of international banka img and connect each
node to its’ Z nearest neighbors. Next, starting with the first bank, we vaitlal
probability p a ‘long-range’ link to another bank outside its’ nearedtghborhood.
We perform this random draw and ‘long-range’ link additioithaprobability p a
total of 2 times for the first bank. This procedure is iterated overra#éirinational
banks. The total number of ‘long-range’ linksNg 2« p.

Taken together, our assumptions on connectivity lead tstacted matrix and
imply that our financial system can be represented as
DF
o ) @

AID AII AIF

, ADD ADI ADF
F = QIF

A.3. Bank balance sheets

We now describe the bank balance sheets depicted in Figunafly. The total
assets of bank which may be either domestic or foreign, is

A = ZS”+ZSij+ZSij+ZTij+Bi, %)

jeNp jen] jeNt jemr
where

NX = {je N*\ilcj = BandMF = {je N \ildj = 1}, (6)
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and B; denotes the level of safe assets such as government bon@sseTR*
denotes the set of institutiorgtype X) against whom bankholds an asset. Simi-
larly, Mix denotes the set of firmjswhose shares barlowns. The total liabilities

are
Li:ZSji"'ZSji‘FKi"'Di, (7)
JeAP e

whereD; denotes external liabilities such as customer depositsranuhitial cap-
ital buffer K; = 7 A is a fixed fractiont € (0, 1) of assets on the balance sheet. As
before,/(/iX = {j e NX\i |cj = 1} denotes the set of bankqtype X) to whom
banki has a liability.

If the initial assets of each bank drawn from the asset diginn exceeds ini-
tial liabilities, the liability-side of the balance shest ‘topped’ up by customer
deposits to ensure that total assets are equal to totditleti Conversely, if lia-
bilities exceed assets, thef@rence is accounted for on the asset side by holdings
of government bonds.

A.4. Crisis dynamics and contagion

In our simulations, a bank will default if its total losses ajreater than its
capital bufer. We consider a two-state model, i.e., during each instafhthe in-
ternal simulation timé¢ € N, banki is either solventyj(t) = 0) or it has defaulted
(vi(t) = 1). Defining the total losses incurred by bards £; ioi(t) > 0, we obtain
the following update rule:

Vit +1) = O (Liw(t) - Ki), 8

where®(...) is the Heaviside function. In what follows, we specify tharious
components that contribute to bank losses.

A crisis is instigated by shocks to firms. We model firm defaslhg a Bernoulli
model, of the sort widely used in the credit risk literatuBa(dy (2000)) and in the
risk management industry. Similar to that of banks, we ddfieesstate of firnt as
being either solveni{(t) = 0) or defaulted on its’ loans to banks,(t) = 1). Fur-
thermore, firms are classified according to their creditiiogss, which is quan-
tified by a probability of default PEt) € (0,1), for firm ¢ at timet. All firms
fall into one of two categories: (i) investment-grade (IGXij) non-investmeny
speculative grade (NIG). The probability of default?'\"l))for firm ¢ (of graden)
at timet is given by

PDI(t) = Re(n) + 6 + ¥ [ Do+ ) ¢i(t)], 9)

iewpP iew,

21



whereRy(n7) € (0,1) is drawn from the distribution gf,(PD) for firms in grade;.

The second termg reflects an aggregate economy wide shock to all firms. The
final term in the equation above reflect the macro-feedback.|oThe indicator
variable ¢;(t) denotes whether barils intent to perform a firesalep{(t) = 1) or
abstain ¢;(t) = 0) from such drastic action. If banls forced to perform a firesale,
the action is accompanied by the bank cutting back on itsingntb firms. This

act leaves firms more vulnerable to default, thereby regylti an increase of their
PD by an amoung. Thus for each bank (domestic and international) perfogmin
a firesale, against whom firsh has borrowed (denoted by the s(Bl’z,( ={i €
N*|ci¢ = 1)), there will be a contribution increase to the firms’ PD.

Firms default according to a series of Bernoulli trials,,igtarting with all
firms being solvent, at specific tim#s, each firm¢ will default independently of
others with probability PQXt*). These times* occur each time the PDs of firms
are incremented by factors gfdue to the firesales and subsequent cutting back of
lending by the banks.

Default severs the connections (loans and shares) betwardss land firms.
We assume a zero recovery rate for loans and also supposhé#ratprices of the
defaulted firms drop to zert). Thus, losses from firms for barilare:

Lis®) = ) Sijm® + D> Tijp®). (10)

jenf jeMFP

Banki will default at timet from the firm credit shocks if’; ¢ (t) > K;.

Contagion in the financial system may spread through dinegnhial linkages.
If bank i defaults, then another barjkholding assets against bankwill suffer
losses. At this point, we assume that the financial countiegaof defaulting
banks lose all of their interbank assets held against thak.Ha At time t the
counter-party losses for bajkamount to

Lic(t) = Z Siknk(t) + Z Sik k(1) . (11)

ke NJ-D keNJ!

Contagion may also spread indirectly as a result of mankoket losses on
balance sheets brought on by fire sales of assets by bankstiesdi As any

0The stylized zero recovery rate assumption simplifies ththemaatical structure of the model.
And, though we adopt it in our simulations, the frameworlowa8 for this assumption to be relaxed
in a straightforward manner.

1 This assumption is likely to be realistic in the midst of =i in the immediate aftermath of a
default, the recovery rate on loans and the timing of econaetovery will be highly uncertain and
those providing banks’ funding are likely to assume the woese scenario. Gai and Kapadia (2010)
show that the qualitative features of these types of modetabust to relaxing this assumption.
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individual bank incurs losses, it is likely to take defemsactions to protect itself
from failure. One option, exercised by some institutionesithe advent of the
current financial crisis, is for the bank to sell assets. &foee, we allow banks to
sell equities when they are in distress (we suppose thatisiebtnpletely illiquid
and therefore cannot be sold). Specifically, banks engafiecisales of equities
once losses mount above a certain fractioa (0, 1) of their capital, i.e.,

$i(t) = O (Ljct) + Lis(t) - aK)). (12)

Let Q(t) > 0 be the equity held by banks participating in a fire sale a¢tim

ie.,

Q) = ), @(t)[ > Tif] v @(t){ > m] : (13)

ieND te MF ieN! teMF

andQ > 0 be the total equity held by all banks. The dynamics of thétegquice,
g(t) > 0, are determined by a form of “cash in the market” pricingl¢Aland
Gale (2005); Cifuentes et.al (2005)), where the price isicad) in the ratio of
the equities for sale to the quantity of equities not beinigl,sa proxy for non-
distressed potential buyers. We therefore write

Q(t)
q(t+1) q(t)(l /lQ— Q(t))’ (14)

whered € R* is a parameter that measures the price impact of a fire'%dlle.
the market is extremely liquid} = O and there is no price impact from asset
sales, whereag > 0 implies that equity prices fall sharply for a given amouht o
distressed assets on the market.

When the equity price falls, banks incur mark-to-markesésson their equity
holdings. Bankj’s total losses at timeare thus given by

Lia® = Lic®) + Lis + D, Tix(@0) - a1 - m(®].  (15)
ke MF

where the last term refers to losses incurred due to a falyjuitye prices of firms
that did not default from the initial shock.

When one bank has defaulted, related counterparty and toariarket losses
may cause other banks to default. This process continusdivigy, with contin-

2while the prescribed form of equity price captures an acagit in price fall as more equity is
dumped onto the market, we must explicitly demand that megatices are not allowed. This may
be achieved by multiplying the right-hand side of (14)@g(t)).
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ually updating counterparty and mark-to-market lossesl| oo further banks are
pushed into defauft®

B. Principle of maximum entropy

Let us defineP(X) to be the probability distribution for the random variable
X € N. We shall, for the moment concentrate on the case of discaatdom vari-
ables, but the theory may be readily generalized to the dasentinuous random
variables.

Suppose we can observe and empirically measure theMirsiv moments of
the distribution, which we write as

pn= Y X'P(X=%), n=01...,M. (16)

x>0

Then = 0 case simply reflect that the probability distribution misthormalized,
i.e.,/.lo = 1.

Our goal is to find the least biased form f8¢x) that satisfies the constraints
give by Eq. (16). The principle of maximum entropy stated tha distribution
we seek is the one that maximizes the information entropy.céliesolve for this
distribution from the Lagrange function

M
S[P] == > P()1ogP() + " [ > X"P(X = ¥)]. (17)

x>0 n=0 x>0

where thed, € R indicate the Lagrange multipliers that we must solve fore Th
first term in Eq. (17) gives us the information entropy. Ourximal entropy
distribution is given by solvingS[P]/oP(x) = 0, which yields

P(x):exp(—[/lo+/llx+/12x2+ oo+ Am XM]), (18)
where

o = logZ
IogZexp(— [0 + 10 + 2208 + ...+ A (x™)])  (19)

x>0

3Eisenberg and Noe (2001) demonstrate that, following aiairdefault in such a system, a
unique vector which clears the obligations of all partieistax
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enforces the normalization of the probability distributiand the Lagrange multi-
pliers are given as the solutions to the seMb# 1 equations

M
,un:fdx%“exp(—z/imxm), n=01 ... M. (20)
m=0

Closed form analytical expressions for the distributioresavailable only when
M < 2. ForM = 0, we only specify that the probability distribution must rior-
malized. This corresponds to Laplace’s principle of ffetience, which dictates
that if we have no prior information to distinguish betweeéfifatent states of a
system we must associate equal probability to each stateMFoe 1, we impose
that the distribution must be normalized and specify itsamdf the mean is posi-
tive then we get an exponential distribution. Finally, whidn= 2 and the support
for the random variable is the entire real axis, we obtainNbemal distribution
function. For higher values d¥l there is no closed for analytical expression and
we must rely on numerical methods to solve for the distrdoutiln particular, we
follow the method proposed by Mohammad-Djafari (1991) fer éstimation.
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Figure 1: The stylized financial system where the filled escl nodes - represent baffiksns, and
the links between nodes depict credit or equity relatigpshiThere are three distinct layers: (i) a
core of domestic banks, (ii) a peripheral layer of interoradl banks and (iii) an outer layer of firms.
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Figure 2: Typical balance sheet of a bank in the financiaksyst
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Regular network Small world network

Figure 5: The small world nature of international financigkerlinkages. Starting with a regular
lattice where each bank is connected to its’ two nearegthher banks (one on either side), we add
‘long range’ links at random (with probability) between banks to get the small-world network.
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Figure 6: Distribution of losses relative to system assetgte entire banking network (red) and
the UK banking network (blue) for the baseline scenario. hia inset we show the corresponding
normalized histogram for the number of defaulted firms.
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Fraction of failed banks

Figure 7: The average fraction of failed banks as a functidth@aggregate macroeconomic shock,
uc. The initial instance of total system breakdown is indidaby the downward facing triangle.
The dashed line represents the case with 6.25x 1075 andA = 0.0. The upward facing triangle
indicates the corresponding first instance of total breakdo
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Figure 9: The average fraction of failed banks as a functforso The black line represents the cases
whered = 0.7 andy = 0.0. The downward facing triangle indicates the first instasfaetal system
breakdown. The dashed-blue line is fbre= 0.7 andy = 6.25 x 10°°. The upward facing triangle
indicates the first instance of total breakdown for thesamaters.
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