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Abstract

Stochastic effects in biochemical networks can affect the functioning of
these systems significantly. Signaling pathways, such as calcium signal trans-
duction, are particularly prone to random fluctuations. Thus, an important
question is how this influences the information transfer in these pathways.

First, a comprehensive overview and systematic classification of stochastic
simulation methods is given as methodical basis for the thesis. Here, the
focus is on approximate and hybrid approaches. Also, the hybrid solver in
the software system Copasi is described whose implementation was part of
this PhD work.

Then, in most cases, the dynamic behavior of biochemical systems shows
a transition from stochastic to deterministic behavior with increasing particle
numbers. This transition is studied in calcium signaling as well as other test
systems. It turns out that the onset of stochastic effects is very dependent
on the sensitivity of the specific system quantified by its divergence. Systems
with high divergence show stochastic effects even with high particle numbers
and vice versa.

Finally, the influence of noise on the performance of signaling pathways is
investigated. Simulated and experimentally measured calcium time series are
stochastically coupled to an intracellular target enzyme activation process.
Then, the information transfer under different cellular conditions is estimated
with the information-theoretic quantity transfer entropy. The amount of
information that can be transferred increases with rising particle numbers.
However, this increase is very dependent on the current dynamical mode of
the system, such as spiking, bursting or irregular oscillations.

The methods developed in this thesis, such as the use of the divergence
as an indicator for the transition from stochastic to deterministic behavior
or the stochastic coupling and information-theoretic analysis using transfer
entropy, are valuable tools for the analysis of biochemical systems.

Keywords:
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Zusammenfassung

Stochastische Effekte konnen einen groflen Einfluss auf die Funktionsweise
von biochemischen Netzwerken haben. Vor allem Signalwege, z.B. Calcium-
signaltransduktion, sind anfillig gegeniiber zufalligen Schwankungen. Daher
stellt sich die wichtige Frage, wie dadurch der Informationstransfer in diesen
Systemen beeintrachtigt wird.

Zunachst werden eine Reihe von stochastischen Simulationsmethoden dis-
kutiert und systematisch klassifiziert. Dies dient als methodische Grundlage
der ganzen Dissertation. Der Schwerpunkt liegt hier auf approximativen und
hybriden Ansétzen, einschliefilich der Hybridmethode des Softwaresystems
Copasi, deren Implementierung Teil dieser Arbeit war.

Die Dynamik biochemischer Systeme zeigt in den meisten Fallen einen
Ubergang von stochastischem zu deterministischem Verhalten mit steigen-
der Partikelzahl. Dieser Ubergang wird fiir Calciumsignaltransduktion und
andere Systeme untersucht. Es zeigt sich, dass das Auftreten stochastischer
Effekte stark von der Sensitivitat des Systems abhangt. Ein Mafl dafir ist
die Divergenz. Systeme mit hoher Divergenz zeigen noch mit hohen Teilchen-
zahlen stochastische Effekte und umgekehrt.

Schlielich wird der Einfluss von zufélligen Fluktuationen auf die Leis-
tungsfahigkeit von Signalpfaden erforscht. Dazu werden simulierte sowie ex-
perimentell gemessene Calcium-Zeitreihen stochastisch an die Aktivierung ei-
nes Zielenzyms gekoppelt. Das Schétzen des informationstheoretischen Mafles
Transferentropie unter unterschiedlichen zelluliren Bedingungen dient zur
Abschétzung des Informationstransfers. Dieser nimmt mit steigender Par-
tikelzahl zu, ist jedoch sehr abhéngig von der momentanen Dynamik (z.B.
spikende, burstende oder irreguldre Oszillationen).

Die hier entwickelten Methoden, wie der Gebrauch der Divergenz als
Indikator fiir den stoch./det. Ubergang oder die stochastische Kopplung
und informationstheoretische Analyse mittels Transferentropie, sind wert-
volle Werkzeuge fiir die Analyse von biochemischen Systemen.

Schlagworter:
stochastische Simulation, biochemische Netzwerke,
Calciumsignaltransduktion, Informationstransfer
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Chapter 1

General introduction

PvaodL ocexvtdHv
(Know yourself!)

INSCRIPTION ON THE
TEMPLE OF APOLLO AT DELPHI

1.1 Historical overview

Ever since the Scottish botanist Robert Brown in 1827 observed the irregular
movement of pollen particles suspended in water, people were fascinated by
random processes. At first, it was believed that some kind of “vital force”
was the cause of this so-called Brownian motion. However, this could be
ruled out, since dust particles exhibit a similar jittery movement. Instead,
it became clear that molecular fluctuations inevitably emerge in any system,
animated or not, if it has a temperature above absolute zero.

In 1905 Albert Einstein’s well-known article “Uber die von der mole-
kularkinetischen Theorie der Warme geforderte Bewegung von in ruhend-
en Flissigkeiten suspendierten Teilchen” [Ein05] provided the mathematical
framework for the study of such stochastic processes, which was successively
extended and refined by many people, e.g., Paul Langevin, Ito Kiyoshi and
Norbert Wiener.

Interestingly, the theory of stochastic processes found some of its first
applications in the field of financial mathematics. Nevertheless, also chem-
ical kinetic systems were studied in a stochastic manner quite early. Some
important contributions were made by Max Delbriick (1940) [Del40], An-
thony F. Bartholomay (1957) [Bar57; Bar58], Donald A. McQuarrie (1963)
[McQ63; McQ67] and others. Lacking computing power for numerical calcu-
lations, these works dealt primarily with analytical solutions of the so-called

1



Chemical Master Equation, a differential equation for the probability distri-
bution of the system states (e.g. set of species’ particle numbers). Since in
general this equation is infinitely dimensional, it can only be solved for the
simplest systems, such as uni-molecular or bi-molecular equilibrium reactions
[Lau00].

It is possible, though, to calculate single instances of the stochastic pro-
cess, i.e. individual time courses of the species particle numbers that are gov-
erned by the Chemical Master Equation. In 1976 and 1977 Daniel T. Gillespie
devised two simple algorithms for that in his seminal articles [Gil76; Gil77].
In particular during the last years [ARM98; GTGO01], this stochastic simula-
tion of biochemical networks has attracted renewed interest.

Already before that, however, it had become increasingly apparent that
the goal to understand the huge biochemical network in living cells will nei-
ther be achieved by genomics approaches nor by biochemical experiments
alone. This is mainly due to the vast degree of interaction and the resulting
complexity of this network. Therefore, computational methods, such as the
numerical simulation of biochemical processes, are essential in order to come
closer to an understanding of the cell. The integration of these computational
methods with corresponding experimental techniques has become known as
Systems Biology [Kit02]'.

Simulations in systems biology, having their seeds in the quantitative
modeling of enzyme kinetics, are largely based on numerical integration of
ordinary differential equations (ODE). This approach proved very successful,
in particular for metabolic systems [GH64; HS96]. Not only are there a
variety of efficient simulation methods, e.g. [Pet83; Ros63], but also many
powerful analysis techniques, e.g. [Fel97; Sav76].

In spite of the wide-spread use of the ODE approach, two of its limitations
have come to the fore recently:

» The system is assumed to be homogeneous (within each reaction com-
partment). Therefore, intracellular spatial organization is largely ne-
glected.

o The system is assumed to evolve deterministically. Random fluctu-
ations in molecular numbers, particularly of small-numbered subsys-
tems, are not considered.

Both spatial organization and stochastic effects can affect the dynamical
behavior of biochemical systems dramatically [TRR91; RWA02], and taking
these into account can be crucial for the understanding of the underlying

'For a well-written review of some of systems biology’s origins, see [Buc02].
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mechanisms. Also, diffusion and noise seem to be closely connected [Bha04].
Spatial effects can be investigated using, e.g., partial differential equations
or spatial stochastic methods [TAT05]. Given the increasing availability of
sophisticated measuring techniques which provide sub-cellular resolution (e.g.
[Pet07]), we anticipate that spatial modeling will be of high importance in the
future. Nevertheless, in the present thesis we will concentrate on stochastic
effects in spatially homogeneous systems.

As mentioned, these stochastic effects can, in principle, be studied by
using Gillespie’s algorithm (provided the system is well-mixed). As this al-
gorithm, however, is bound to tediously calculate each individual reaction
event in the system, it is clear that its computational demands can be enor-
mous for realistic systems.

The lack of sufficient computing power for stochastic simulations surely
was one of the reasons that more than twenty years elapsed between Gille-
spie’s original article in 1976 and the (re-)ignition of considerable interest in
stochastic methods around 2000. Another reason might have been the de-
velopment of appropriate single-cell measuring techniques with satisfactory
temporal resolution that allows the study of fluctuations beyond the bulk
behavior.

However, because the stochastic simulation algorithm is computation-
ally expensive, a multitude of approximate approaches have been proposed
recently that try to accelerate stochastic simulations by sacrificing an accept-
able amount of exactness, e.g. [Gil01; RWDO01; RA03; BT04].

Also the question arises, if time-consuming stochastic simulation is re-
quired for a specific system (or parts of it) at all. In the past, this question
has often been answered by an educated guess depending on whether or not
the modeler expected stochastic effects to occur. The most important crite-
rion for that decision has been the number of particles in the system, because
the relative amplitude of fluctuations, in many cases, scale with the inverse
square-root of the particle numbers [RWA02]. The deterministic interpreta-
tion represents the limiting behavior in the case of infinitely high particle
numbers and volumes, but constant concentrations [Kur72].

Nevertheless, answering this question in a more general manner turned
out to be difficult, and relatively few studies address this issue [FalO3a;
GHGO04].

Among the biochemical systems especially signaling pathways, as well
as gene expression, are prone to stochastic phenomena because they often
involve species with low particle numbers and, in addition, possess highly
non-linear kinetics. For instance, calcium signaling [BBL9S8] is a particu-
larly well-studied system in that respect. Many articles have been published
which deal with stochasticity in this system [GTGO1; SJ02; Fal03b; Fal04;



GTMGO03; PM03a; PGDMOS].

In 1986, Woods et al. [WCC86] were the first to observe that, upon stim-
ulation by an agonist, the cytosolic calcium level in single rat hepatocytes
display an intriguing oscillatory behavior. This is highly interesting because
different properties of these calcium oscillations are believed to confer speci-
ficity. This means that intracellular target enzymes can be activated differen-
tially depending on how the oscillations of the ubiquitous second-messenger
Ca?* are modulated.

Therefore, a number of models for calcium signaling have been developed
(see Schuster et al. [SMHO02], for a review). Also, the decoding of calcium
signals was investigated experimentally [HRGST95; Ber97; DS98; DXLOS;
LLW™98; OM98] as well as theoretically [PLvzM198; GBD00; RJ03; DHDO03;
LK03; LOK04; SPH04; SKM05; MPS05; MPS06; SPHOS].

Since signaling pathways have to cope with fluctuations in small particle
numbers, an important question is how this affects information transfer. The
most general framework to address this question seems to be information the-
ory [CT91], a discipline which was established in the 1940s by C.E. Shannon
[Sha48]. Information theory deals with the performance of communication
systems under the influence of noise in a statistical manner.

Information theory has been applied in the field of neurophysiology [BT99]
and many others. However, studies using it to investigate signaling pathways
are rare. For instance, in Palus et al. [PSvzM™98] the calcium response of
hamster insulin secreting cells (HIT) under pharmacological stimulation is
studied using coarse-grained entropy rates. Prank et al. [PSLT98; PGB00;
KGPO05] analyzed the information transfer in a calcium oscillations model
which has been stimulated by a generated hormone signal.

1.2 Research objectives

Stochastic effects in biochemical networks can affect the functioning of these
systems significantly.

In most cases, one can observe a transition between a stochastic and a
quasi-deterministic regime with increasing particle numbers. However, when
this transition really occurs is very system dependent. Since reliable indica-
tors for the onset of stochastic effects were mostly missing, one of the aims
of the present thesis is to investigate this transition in different systems and
to find more objective and general criteria.

In particular signaling pathways are influenced by molecular fluctuations.
This immediately raises questions such as: How can their performance under
the influence of noise be quantified? How does information transfer change
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in the transition range between stochastic and deterministic behavior and
under different cellular conditions? To address these questions we will use
an information-theoretic setting. This facilitates the direct comparison of
experimental and simulated data.

In contrast to earlier studies by Prank et al. [PSLT98; PGB00; KGP05]
which investigated the information transfer between a generated hormone
signal (band-limited Gaussian noise) and a model of calcium oscillations
stimulated by it, we will concentrate on the information transfer between
calcium and intracellular target enzymes. Also, we will use a model of cal-
cium oscillations to generate biologically plausible input signals. Finally, a
stochastic coupling between the calcium system and the enzyme system will
be employed, instead of deterministic coupling as in [PLvzM198; LOKO04].
This is essential in order to study the dependence of the information transfer
on particle numbers.

The basis for the study of stochastic effects are, of course, appropriate
stochastic simulation methods. Whereas the numerical integration of ODFEs
is widely known, this is still not true for stochastic approaches. Therefore,
it seems in order to firstly review the different methods suggested in the
literature. Here, the focus will be on approximate and hybrid methods, since
they attempt to bridge the important intermediate range between stochastic
and deterministic behavior. This includes the hybrid method in the software
system COPASI which was implemented during this PhD work.

1.3 Outline of the thesis

This thesis is structured as follows:

Chapter 2: First, a number of reasons for the use of stochastic modeling
and simulation are discussed. Then, a comprehensive overview and
systematic classification of the various simulation methods is given as
a basis for the following chapters.

Chapter 3 provides the biological background on calcium signaling and de-
tails about calcium models. Also, the experiments on rat hepatocytes,
including the materials used, are described there.

Chapter 4: This chapter focuses on stochastic simulation in the software
system COPASI, in particular, the hybrid approach, whose implemen-
tation was part of this PhD work, and a number of practical issues.



Chapter 5 deals with the transition from stochastic to quasi-deterministic
behavior in biochemical systems. In this context, particularly the role
of the so-called divergence is investigated.

Chapter 6: Here, the information transfer in stochastic signaling pathways,
namely between calcium and intracellular target enzymes, is studied
using the information-theoretic quantity transfer entropy. The main
question is: How does this information transfer change under the in-
fluence of different levels of noise and different dynamical conditions.

Chapter 7 concludes the thesis and contains a brief outlook and suggestions
for future projects.



Chapter 2

Review of stochastic simulation
methods

I have come to believe that one’s knowledge of any
dynamical system is deficient unless one knows a valid
way to numerically simulate that system on a computer.

DANIEL T. GILLESPIE

The simulation of (bio-)chemical systems is most often done using determin-
istic methods, e.g. numerical integration of ordinary differential equations®.
However, in some cases a stochastic treatment is necessary. Since the seminal
work by Gillespie in 1976 a multitude of different stochastic simulation algo-
rithms have been proposed. After a brief introduction of deterministic sim-
ulation and a discussion of why and when stochastic simulation is required,
a comprehensive review of the different stochastic approaches is given with
an emphasis on hybrid methods. This chapter provides the methodical basis
for the present thesis. This work was part of the BMBF-project HepatoSys
(1** funding period 2004-2006) [Hep].

Tt should be mentioned here that we are concerned with spatially homogeneous models
only. However, there are also a variety of modeling approaches and simulation methods
for spatially heterogeneous systems (e.g. partial differential equations). Two examples of
spatial and stochastic simulation are MCell [MCe] and SmartCell [Sma].

7



2.1 Deterministic simulation

The majority of biochemical simulations are based on deterministic methods,
e.g. using numerical integration of ordinary differential equations (ODEs)
[HS96]. Here, the concentrations of the participating chemical species are
taken as continuously valued components of the system’s state. Their change
over time is described by a differential equations system. Deterministic in this
context means that random fluctuations in molecule numbers are ignored.
Given an initial state the future of the system is determined in a unique way.

We consider a biochemical network which contains N reacting species
S; (1 = 1,...,N) participating in M reactions R, (x = 1,...,M). Let
X;(t) be the number of particles of species S; present in the system at time
t. If the particles are confined to the constant volume V', we can refer to the
value X;(t)/V as the concentration [X;](t) of species S; at time ¢. At this
point it is worth noting that, strictly speaking, the concentration of species
can only take discrete values. The conventional assumption of continuous
concentrations is only valid in the limit of high particle numbers and volumes.

For each species involved in a reaction there is a stoichiometric coefficient
v;,, which indicates the proportions in which the substrates and products are
consumed and produced respectively. Associated with each reaction R, is a
kinetic function f,, which defines the velocity of that reaction, i.e. the num-
ber of R, reaction events (or “firings”) per unit time. The kinetic function
usually takes the substrate particle numbers or concentrations as arguments.
Other variables in the kinetic function, such as the concentration of enzymes
catalyzing the reaction or the temperature and pH value of the environment,
are also possible because they too can influence the reaction velocity. In the
case of enzyme concentrations those additional arguments are often called
modifiers?.

The basis of the deterministic approach and, at the same time, the sim-
plest example of a kinetic function is the mass-action kinetics, where the
reaction velocity is proportional to the product of the substrate concentra-
tions to the power of their respective molecularity:

R, : aSi + S, + ... — products (2.1)
with

LX), [ Xa), . ) =k [ X0]™ - [X)P - (2.2)

2This use of the term “modifier” should not be confused with the usual meaning of an
regulator of enzyme activity.
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When several elementary reactions are lumped together into one complex
reaction, for instance in enzyme kinetics, more complex kinetic functions
(e.g. Michaelis-Menten/Briggs-Haldane kinetics) are used.

A biochemical differential equations system comprises one equation for
each variable, i.e. concentration of species in the system. The right hand sides
of these equations contain one summand for each reaction, where the species
appears as substrate or product. Each summand in turn is the product of
the kinetic function of that reaction and the corresponding stoichiometric
coefficient. We get:

diXi _ > v fu  (i=1,...,N). (2.3)

pu=1

For a well-defined initial value problem, one must provide initial values
[X;](t = 0) in addition to the equations.

In all but the most simple cases it is not possible to find a closed-form
solution for such systems and one must rely on numerical integration methods
that iteratively compute the solution starting from the initial values.

Differential equations corresponding to biochemical systems are almost
always stiff meaning that the changes of variables in the system occur on
disparate scales which can be several orders of magnitude apart. Such stiff
systems require the use of special stiff ODE solvers such as the Rosenbrock
method [PTVF92] or LSODE [Hin83]. The use of simpler methods, such as
the popular fourth-order Runge-Kutta method, is not recommended, since
here the stiffness either causes numerical problems or slows down the solver
considerably.

The most prominent advantage of deterministic simulation methods is
that many efficient algorithms are available, for stiff and non-stiff systems.
The time course can be calculated very rapidly.

Another important benefit of the deterministic formalism is that there
exists a rich body of research on the analysis of these models. This includes
bifurcation analysis, e.g. numerical continuation methods [XPP], Metabolic
Control Analysis [HS96] and others.

The deterministic approach has not only been employed in most of the
studies concerned with the dynamical behavior of biochemical systems so far,
but there also exist many good software tools. Among them are programs
for the numerical integration of ODEs in general, such as Berkeley Madonna
or XPPAut [Mad; XPP], as well as programs tailored to the simulation of
biochemical networks, such as CopasI ([Cop], also cf. the list of SBML-
compliant software at [SBM]).
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2.2 Why stochastic simulation?

The deterministic approach has proven very successful. However, despite of
its widespread use it has a number of drawbacks:

 Small particle numbers in cells (e.g. in signaling pathways) lead to ran-
dom fluctuations which can change the dynamic behavior considerably
[QSE02; MA97].

« Bi- or multi-stable systems can not be described adequately [ARM9S].

» Stochasticity itself can be an important property of the system. This
includes “the generation of errors in DNA replication leading to muta-
tion and evolution, noise-driven divergence of cell fates, noise-induced
amplification of signals, and maintenance of the quantitative individu-
ality of cells” [RWA02, p. 231].

For very small particle numbers (e.g. in gene expression) the continuous
description using concentrations breaks down.

“In this case we cannot apply continuous state models even
as an approximation. [...] Discrete state space, but determin-
istic, models are also out of question, since fluctuations cannot
be neglected even in the zeroth approrimation, because they are
not superimposed upon the phenomenon, but they represent the
phenomenon itself” [ET89, p. 7]

Inherent stochastic fluctuations in molecule numbers can change the dy-
namic behavior of biochemical systems significantly and can even give rise to
a qualitatively different behavior of the whole system [SPA05; SA06]. One
example is the production of proteins in random bursts [MA97] (related stud-
ies can be found in [KEO1; MA99]). Another example is the lysis/lysogeny
switch in A phage-infected Escherichia coli cells [ARM9S].

This is not restricted to systems containing low-numbered species, but
can also happen when the “system operates near an instability point of a
deterministic model. In this case small fluctuations may be amplified and
produce observable, even macroscopic effects. It may also happen that the
deterministic model of a system is structurally stable while the stochastic
model is not, or vice versa” [ET89, p. 7]. We will see an example of that in
Chap. 5.

Cells must act in a coordinated way despite ubiquitous molecular noise.
Therefore, specific cellular systems to cope with or even exploit stochastic
effects are likely to be very important and deserve further study. Stochastic



Chapter 2. Review of stochastic simulation methods 11

modeling provides the appropriate framework to investigate, for example,
the robustness of cells against random perturbations [RBH94; BL99; Hal99;
Kut01; GHG02b; GHG02a; VKBL02; GHLGO03; GTMGO03; GHGO04; Kit04;
BFLMO05] or the constructive effects of noise [ARM98; Hum00; LKS*01;
PMO03a].

A well-written review of stochastic effects and noise in cellular systems
can be found in Rao et al. 2002 [RWA02].

Finally, noise can even help with elucidating the functioning of biochemi-
cal systems. “Fluctuations can be a source of information. According to the
so-called fluctuation-dissipation theorem the dissipative processes leading to
equilibrium are interconnected with the fluctuations around the equilibrium
point. Using the spirit of this theorem the kinetic rate constants can be
calculated from equilibrium measurements” [ETSQ, p. 7]. Examples where
noise is exploited to study the underlying cellular processes include Elowitz
et al. 2002 [ELSS02] and Ozbudak et al. 2002 [OTK"02]. Here, extrinsic and
intrinsic noise sources are distinguished in gene expression. In Hallett and
Pettit 1997 [HP97] the authors investigate the increase of cytosolic calcium
concentration upon stimulation. They fitted a stochastic model to experi-
mental data and concluded that a process with six subsequent steps is most
likely to lead to the observed behavior.

In all the above cases stochastic fluctuations should be accounted for and
a stochastic modeling framework which takes into account the discreteness
of the system and correctly reproduces the fluctuations is required.

However, stochastic modeling is mathematically more involved than the
conventional deterministic approach using ODEs. For example, it is not
trivial to correctly incorporate lumped reactions using higher-order kinetics
which is commonplace in the deterministic framework (see Sec. 2.4.2).

Also, stochastic simulations usually are much more computationally de-
manding than deterministic methods. Exact methods take time proportional
to the number of single reaction events occurring during the simulation time
and this is dependent on the actual particle numbers.

One other drawback of stochastic modeling is that it still lacks behind in
terms of appropriate analysis methods such as stochastic bifurcation anal-
ysis, stochastic Metabolic Control Analysis (MCA) [WBHO04] or stochastic
sensitivity analysis [GCPDO05].

Therefore, Erdi and Téth remark [ET89, p. 91]: “We have to make clear
that the formulation of the theory of stochastic kinetics does not reduce the
importance of deterministic kinetics, since for great classes of phenomena
the stochastic model is only slightly better than the deterministic approach,
while the mathematics of the stochastic model is much more complicated.”
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2.3 Stochastic simulation: When?

Now, the practical question arises whether or not stochastic simulation should
be preferred over numerical integration of ODEs for a specific system one
wants to analyze. In the past, most often rules of thumb based on the rough

particle numbers in the system have been used to answer this question. Rao
states in [RWAO02, p. 234]:

“How is a modeler to choose between modeling approaches —
an implicit or explicit treatment of noise, a continuous or discrete
representation of molecules? When simulating processes that in-
volve only a few molecules, discrete stochastic models are supe-
rior to continuous models. However, in many processes, there are
many copies of some species and few of others. In these circum-
stances, it is not always clear which approach is better. [...] As
multiscale approaches for simulating stochastic processes are des-
perately lacking, personal proclivities currently dictate the choice
of approach, as modelling and simulation are, at this stage, more
art than science.”

Based on the asymptotic equivalence of the Master Equation and the
chemical Langevin equation (see Subsection 2.4.2) one could argue “[...]
that the relative magnitude of the molecular fluctuations scales roughly as
the inverse square root of the number of reacting molecules” [RWA02, p. 233|
and this backs up using heuristics based on particle numbers.

However, giving a general threshold for the particle numbers, above which
it is safe to employ deterministic methods, is surely impossible. The emer-
gence of stochastic effects is very model-dependent and this has to be checked
in each individual case. In addition, it has been established that even con-
sistency in the mean does not hold in general [ET89, p. 160]. To assist the
modeler with this decision we investigate the transition from stochastic to
quasi-deterministic behavior with increasing particle numbers in more detail
in Chap. 5.

Nevertheless, definite indicators necessitating stochastic modeling are a)
when the particle numbers are in a range where the concept of continuous
concentrations is no longer appropriate, or b) when phenomena associated
with stochasticity itself are the object of research.

Finally, it should also be mentioned that increasingly bigger and more het-
erogeneous models, e.g. combining gene expression, signaling and metabolic
pathways, might require different formalisms for the different subsystems,
eventually leading to hybrid modeling.
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2.4 Stochastic simulation methods

The stochastic approach is based on the notion of a stochastic reaction con-
stant ¢, for each reaction R, in the system® (see Fig. 2.1). ¢,dt is the average
probability that a specific combination of substrate particles in the system
will react in the next infinitesimal time step d¢ according to reaction R,,.
Multiplied with the number of possible R, substrate particle combinations
h,, (see Gillespie 1976 [Gil76], for details) we get a propensity a, for reaction
R, as a, = h,c, with:

a,dt = the average probability that a reaction R, will occur

in the system in the next infinitesimal time step dt. (2.4)

B‘ a,(x)-dt=c,h,(x)dt

A
r(B)

specific probabilistic reaction rate )

product of number of different
probability of collision combinations of
(~ average relative speed * collision cross- substrate particles

section area / volume) and
probability of reaction after collision
(collision energy larger than threshold)

\ J

Figure 2.1: Basis of the stochastic approach: reaction propensity a,. Par-
ticles A and B (with A moving relative to B) can react when B is localized
within the “collision volume” swept out by A during time d¢ [Gil77].

a, can usually be derived easily from the conventional deterministic re-
action rate. In general, we have ¢, = % and h, = HiLz“l (l):), if the
reaction R, has K, reactants, i.e., substrate molecules, taking part. There
are L, different types of reactants and for each type, [, is the stoichiometric
number, i.e., the number of identical reactant molecules. Thus K, = > 1,,.
The numbers X; refer to the total particle numbers present in volume V.
Finally, the rate &, includes any complex factors that might arise from the

kinetics of the reaction.

30ne condition for this constant to be well-defined is that many more non-reactive
molecular collisions occur than reactive ones.
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It turns out that within this framework the biochemical system can be
identified with a (homogeneous) jump-type Markov process for which the
so-called Chemical Master Equation can be formulated [Gil76; McQG67]

P M
P 0. 10) _ S, (0= 0,) Pl — vy, t]z0,t0) — () Pl tz0,10)] (2.5)
ot 2

which describes the time evolution of the system state probability distribu-
tion P(x,t), given that the initial state at point in time ¢y is ¢ (z denotes
the vector of species particle numbers X; and v, is the stoichiometric vector
of reaction R,,). In general, this differential-difference equation is infinitely-
dimensional. It can be solved either analytically or numerically only in the
simplest cases [Lau00]. Therefore, one resorts to stochastic simulation meth-
ods that, using Monte Carlo calculation schemes, generate instances of the
underlying stochastic process governed by the Master Equation. However,
since each run yields only one single trajectory, several runs have to be com-
puted to be able to calculate statistics of P(z,t).

Stochastic simulation algorithms can roughly be divided into exact, ap-
proximate or hybrid methods depending on whether or not they introduce
approximations or combine different approaches into one calculation scheme.

In the following we will give an overview of a number of different stochas-
tic approaches proposed in the literature. Other reviews on stochastic and
hybrid simulation methods can be found in Turner 2004 [TSB04] or Meng
2004 [MSDO04]. Also, see Appendix A for a list of biochemical software tools
with stochastic simulation methods implemented.

2.4.1 Exact stochastic methods

The so-called exact stochastic methods correctly account for inherent sto-
chastic fluctuations and correlations. In addition, the discrete nature of the
system is considered. Hence, they remain valid for very small particle num-
bers.

However, since they explicitly simulate each reaction event in the system,
they have time complexity approximately proportional to the overall number
of particles >  X; present in the system. Therefore, they are prohibitively
slow on large systems.

Gillespie [Gil76] proposed two simple stochastic simulation algorithms,
namely the Direct Method and the First Reaction Method. They are based
on the so-called Reaction Probability Density Function:
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P(Ta/i’l"at) = eXp ( Za“ ) . (26)

This function determines the probability P(7, u|x,t)dr that starting in
state x at time-point ¢ the next reaction in the system will occur in the time
interval [t + 7,¢ 4+ 7 + d7] and will be of type R,. The reaction times are
exponentially distributed and this defines a homogeneous Poisson process.

By iteratively drawing random numbers according to that density func-
tion and updating the system state according to the chosen reaction’s sto-
ichiometry the system can be simulated over time, one reaction event after
the other. The Direct Method and the First Reaction Method, as well as
the Next Reaction Method and Optimized Direct Method described below,
are mathematically equivalent but differ in how they calculate samples of

P(T, pla, ).
Direct Method (Gillespie 1976/77)

The Direct Method [Gil76; Gil77] uses two random numbers per step to
separately compute a) the stochastic time step 7 and b) the type of the next
reaction R,. The algorithm proceeds as follows:

1. First, the sum of all propensities for the M possible individual reactions
is calculated:
M
=> a, (2.7)
pn=1

2. The stochastic time step is calculated:

1
S —— 2.8
T ” nry (2.8)

Here ry is denoting a uniformly distributed random number in the range
10,1].

3. Finally, the reaction taking place is determined. For this purpose, a
second uniformly distributed random number ry is generated and the
reaction p chosen according to the following criteria:

-1

=

a—“ <r i a—”‘ (2.9)

1

Q
Il
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4. The corresponding reaction R, is realized, i.e., the number of the par-
ticipating molecules is increased or decreased according to the stoi-
chiometry, and the time is incremented by 7. The whole process (1-4)
is repeated as many times as necessary to reach the desired simulation
time.

First Reaction Method (Gillespie 1976/77)

The First Reaction Method [Gil76; Gil77] uses M random numbers in each
step to compute putative reaction times 7, for each of the M reactions R,
in the system. The 7, are exponentially distributed with parameter a,. The
reaction with the smallest reaction time 7,3, = min(7y, ..., 7)), is executed
and all putative reaction times are recalculated before the next step. Because
of the wasteful use of random numbers and redundant recalculations the First
Reaction Method is computationally inefficient. However, we found that the
First Reaction Method can be numerically advantageous because, depending
on the machine-dependent resolution of floating-point numbers, the Direct
Method cannot calculate very seldom reaction events amongst very frequent
reactions in the system.

Next Reaction Method (Gibson and Bruck 2000)

Gibson and Bruck [GB00] reduced the computational complexity of the First
Reaction Method by the intelligent use of data structures:

o A so-called dependency graph stores dependencies between the reac-
tions — redundant recalculations of a, are avoided.

« Absolute putative reaction times 7, (since the beginning of simulation)
are used instead of relative ones (since the last reaction event). Random
numbers are “recycled” during a reaction time update according to

Ty = (@p01a/ (7)) (Tyoa — 1) + ¢

e An indexed priority queue contains all reactions sorted according to
their putative reaction times — the next reaction can always be found
in the root of the tree with constant complexity.

Even though this so-called Next Reaction Method is mathematically
equivalent to the Direct Method, recalculations of a, are minimized, and,
asymptotically, only one random number per step is needed. Therefore it
performs well, in particular, in the case of many reacting species and reac-
tions.
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Optimized Direct Method (Cao et al. 2004)

Cao et al. [CLP04] demonstrated that a clever implementation of the Di-
rect Method using a dependency graph and sorting of reactions according to
their propensities can be even faster than Gibson and Bruck’s Next Reaction

Method.

2.4.2 Approximate stochastic methods

The huge computational effort needed for exact stochastic simulation en-
tailed a lively search for approximate simulation methods that sacrifice an
acceptable amount of accuracy in order to speed up the simulation. The
proposed methods often involve a grouping of reaction events (PW-DMC,
7-Leap Method), i.e. they permit more than one reaction event per step.

One approximate stochastic method, StochSim, does not primarily aim
at speeding up the simulation and shall be discussed first.

StochSim, Mesoscopic Approach (1998)

In the mesoscopic approach by Morton-Firth (now Firth) [MF98; MFBOS;
LS01] single particles are distinguished and represented by separate software
objects. Though, their positions and velocities in the reaction volume are
disregarded. This characteristic makes StochSim mesoscopic, residing on a
middle conceptual level between microscopic molecular dynamics and macro-
scopic approaches considering only particle numbers.

In each step two particles (or one particle and one pseudo-particle for
mono-molecular reactions) are randomly chosen. Whether a reaction event
takes place between the two, is then determined using a random number and
a look-up table.

This procedure can be even more time-consuming than the Direct Method
when many non-reactive selections are chosen. The advantages are that
multi-state particles are possible (with different reaction rates for each con-
figuration) and that the life-cycle of single particles can be traced.

The approach has also been extended to cover simple 2D-spatial modeling
with stationary particles [Shi02].

Probability-Weighted Dynamic Monte Carlo (2001)

The Probability-Weighted Dynamic Monte Carlo Method [RWDO01] (PW-
DMC method) is a rather ad-hoc approach in which reactions with high
probability are allowed to fire multiple times. Instead of considering sin-
gle fast reaction events separately, several events are grouped together and
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simulated as if they were one event. This reduces the effective propensity
a, of fast reactions and can reduce computation times, but has the major
drawback that fluctuations can be misdescribed.

A related approach was already used in Gibson & Bruck 2000 [GBO00].
There, a large fixed number of subsequent first-order reaction steps (tran-
scription, translation) was lumped together. With exponentially distributed
reaction times for each single step the whole process can be described using
a gamma distribution.

7-Leap Method (2001)

In 2001 Gillespie [Gil01] developed an approximate stochastic simulation
method named 7-Leap Method to accelerate the simulation procedure. This
method avoids the meticulous reconstruction of every individual reaction
event. Instead, it leaps along the time axis in steps of length 7 containing
many single reaction events. 7 has to fulfill the so-called Leap Condition:
It must be small enough that no significant change in the propensities a,
during [t,t 4 7] occurs. Then, the reaction channels effectively decouple and
the number of firings K, during time 7, starting from state x at time ¢, can
be approximated by Poisson distributed random variables:

K, (r;z,t) = Pla,(z), ) (2.10)
with
Prob{P(a,, 1) =k} = %e‘“”. (2.11)

In each step a Poisson random number &, is drawn for each reaction R,
and the system state is updated according to:

p(t+7)=2(t) + Y k. (2.12)

Due to the drawing of Poisson random numbers, each 7-leap is more
expensive than one step of the Direct or First Reaction Method. However,
since many single reaction events can be leaped over when 7 is large enough,
the simulation can be much faster after all. Fig. 2.2 illustrates the procedure.

The most important question remaining is how to choose an appropriate
T-value. Determining this value involves a trade-off between accuracy of the
simulation and computation time. In the original article, Gillespie proposed
a simple 7-choosing strategy. This has been improved upon in [GP03] and

[CGPO6].
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during each step calculate:

Direct t = stochastic time step for the next reaction
Method : z u = the next reaction to be realized
t > e -

reaction event

t-Leap
Method T

—o-e—0—0—0— *—O

for each t-leap calculate for each reaction R;:
k,, = number of reaction events of reaction i

within the step of length t (Poisson distributed)

Figure 2.2: Schema of the 7-Leap Method [Gil01].

A number of variants and extensions of 7-Leaping have been developed
recently that tackle some of the issues of the 7-Leap Method from 2001:

o Rathinam et al. [RPCGO3] draw on the analogy to numerical integra-
tion of ODEs and describe an “Implicit 7-Leaping Method” in order to
deal with stiffness in the system.

o Tian and Burrage 2004 [TBO04] and Chatterjee et al. [CVKO05] sug-
gested to use (bounded) binomial random numbers instead of Poisson
distributed ones. This so-called “Binomial 7-Leaping” avoids one of
the problems of the 7-Leap Method, namely the generation of negative
particle numbers in some cases.

e Another approach to avoid negative particle numbers has been devel-
oped by Cao et al. [CGPO05¢c|. In this “Modified 7-Leaping Method”
exact stochastic simulation, allowing only one reaction event per step,
is used for those particle numbers that are critically low.

» Burrage and Tian [BT04] constructed “Poisson Runge-Kutta Methods
(PRK)” to increase the efficiency of 7-Leaping.

o The “R-Leaping” in [ACKO06] is a variant of the k,-Leaping method
described in [Gil01].
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Langevin Method

If the value of 7 can be chosen big enough such that every reaction channel on
average produces a very large number of firings ((P(a,(x), 7)) = a,(z)7 > 1)
while still satisfying the Leap Condition, the Poisson random variables can
be approximated by normal random variables NV, [Gil00]:

K, (r;2,t) = Pu(au(z),7)
~ N(a,(z)T, a,(x)T) (2.13)

= a,(z)T + y/a,(x)T - N,(0,1) (2.14)

In this case, the 7 value is called to be “macroscopically infinitesimal”.
The Poisson random variables for the system state update can be replaced
by normal random variables which are easier to calculate. Conceptually, the
procedure is now equivalent to the (chemical) Langevin equation, a stochastic
differential equation (SDE):

z(t+7)=2z(t) + Z vua, ()T + ZU“ a,(x)T - n, (2.15)

with n, unit normal random variables.

In the limiting case a,(x)7 — o0, the last (noise) term becomes negligibly
small compared with the second (see Gillespie 2000 [Gil00]) yielding the
Euler update method for the numerical integration of ODEs. The Langevin
Method therefore illustrates how the stochastic simulation algorithms (SSA)
are connected to the deterministic method through a series of approximations
(SSA — 7-Leap Method — Langevin Method — deterministic reaction rate
equations).

Complex stochastic kinetics

The stochastic formalism is based on irreversible elementary reactions. How
to correctly handle higher-order kinetics, where a number of elementary reac-
tions have been lumped into one complex reaction is still subject to research.

Bundschuh et al. 2003 [BHJO03] observed that a naive direct stochastic
simulation of higher-order kinetics* can lead to a failure of correctly describ-
ing the fluctuations and even the mean of particle numbers. Nevertheless,

4The direct stochastic simulation of higher-order kinetics is done by extracting the
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in many cases the use of higher-order terms in stochastic simulation is in-
deed justified as is discussed in Rao and Arkin 2003 [RA03] and Cao et al.
[CGPO5b] for the stochastic quasi-steady-state approximation (QSSA) and
Michaelis-Menten kinetics, and in Sec. 2.4.4 for the quasi-equilibrium ap-
proximation (QEA). See also Sec. 4.3, for a discussion of the implementation
in COPASLI.

2.4.3 Hybrid methods

On the one hand, deterministic simulation methods are very effective in sim-
ulating biochemical systems with high numbers of molecules. However, they
completely neglect internal fluctuations which primarily occur when only few
molecules are present in the system. On the other hand, stochastic simula-
tion methods reproduce those random fluctuations correctly but can only do
that efficiently for systems containing relatively few molecules.

The basic idea of hybrid simulation methods is to combine the advan-
tages of complementary simulation approaches: The whole system is sub-
divided into appropriate parts and different simulation methods operate on
these parts at the same time. Fig. 2.3 shows a schematic view of this proce-
dure. Here, we have two subsystems containing the fast and slow reactions
respectively. Fast reactions often involve high-numbered species, e.g. in me-
tabolism. Slow reactions or reactions involving low-numbered species can
frequently be found in signal transduction or gene expression systems. The
two subsystems are simulated iteratively by using adequate simulation meth-
ods, for instance, numerical integration of ODEs and stochastic simulation
respectively.

Mathematically, this corresponds to a partitioning of the Chemical Master
Equation (for a rigorous derivation of the partitioning process and mathe-
matical details of the approximations employed, see Haseltine and Rawlings
2002 and 2005 [HR02; HRO5] and the references given in the respective sub-
sections below).

In between two reaction events in the slow/discrete subset of reactions,
the fast subset evolves due to the action of the fast reactions only. This
means that, during that time, its behavior can be approximated using ODEs,
SDEs or approximate stochastic simulation methods independently of the
slow subset.

mass-action part of the kinetic function. The remainder including the influence of the
modifiers constitutes the stochastic reaction rate c,. It is easy to see that this approach
runs into problems whenever the modifiers themselves are fast changing variables because
only the ¢, value at the beginning of each step is considered.
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Subset R
1,2, ..,k

Markov process with time-
varying transition rates a,,

" \ reactions in Ry can change a,
slow reactions,
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. ) \ integration of the probabilities
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1’ 2’ Ut M 4 no influence, since no reaction
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processes, etc.

Figure 2.3: Schematic view of a hybrid simulation method.

However, the reaction propensities a, of slow reactions are, in general,
also dependent on species whose concentrations are changed by fast reac-
tions. Taking this into account, the slow subset no longer constitutes a
homogeneous Poisson process. Instead, it has to be described by a Master
Equation with time-varying transition propensities a,(t). Gillespie [Gil92]
derives the correct Reaction Probability Density Function for this case:

P(1, plz,t) = a,(t + 7) exp (- /1t o > a#(t)dt> . (2.16)

A number of hybrid algorithms are based on this technique, for instance
[Ben04; Neo04; ACT*05; SSK06; GCPS06]. But, they differ in how exactly
the non-homogeneous Poisson process is sampled (and also the partitioning
strategies used).

Fast reactions involving high-numbered species (e.g. metabolism) can be
simulated efficiently with hybrid algorithms. These reactions, in particular,
would slow down a pure stochastic simulation considerably. This potential
speed-up and that random fluctuations are considered where necessary are
the main advantages of hybrid approaches. Nevertheless, there are still some
open questions:
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+ Synchronization of the subnetworks? (Provision for time-varying a,, in
the slow subnet. Conversion between continuous concentrations and
discrete particle numbers.)

» Reliable criteria for the partitioning?.
e Dynamic repartitioning — additional computational overhead.
e How to handle fast reactions with small particle numbers involved?

Dynamic/automated (re-)partitioning is not only important when the
system state varies considerably over time. It also makes the methods much
more user-friendly by avoiding tedious modeler intervention. In 2002 Rao
et al. noted in this respect: “[...] hybrid models involving continuous and
discrete representations. |[...] these approaches require direct intervention by
the modeller — a cumbersome and sometimes impossible task. The long-term
goal is to develop algorithms that do this both automatically and adaptively”
[RWAO02, p. 234]. However, since dynamic partitioning causes computational
overhead, the decision in favor or against it is always associated with a trade-
off between user-friendliness/accuracy and simulation speed.

Likewise, on the one hand, taking into account time-varying a,(t) in the
slow /discrete subsystem requires algorithms that are mathematically more
involved. On the other hand, the increase in accuracy associated with it
renders additional updates of the propensities a,(t) unnecessary so that larger
steps can be taken.

Hybrid modeling and simulation might become even more important in
the future because of the emergence of ever more complex and heterogeneous
models. Kitano remarked [Kit02, p. 209]: “Although some processes can be
modelled by either stochastic computation or differential equations alone,
many require a combination of both methods. But some biochemical pro-
cesses take place within a millisecond whereas others can take hours or days.
Additionally, biological processes often involve the interaction of different
types of process, such as biochemical networks coupled to protein transport,
chromosome dynamics, cell migration or morphological changes in tissues.”

In the following sections, we will briefly characterize each hybrid method
in turn® and systematically classify them along different dimensions, namely:

1. which methods are combined,
2. whether the partitioning is dynamic/automated or user-defined,

3. which partitioning policy is used and

5These subsections can safely be skipped on a first reading.
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4. if time-varying a,(t) in the slow/discrete subsystem(s) are considered
or not (— synchronization).

Table 2.1 summarizes the results in a concise form.

Alur et al. 2001

In [ABIT01] the authors describe an agent-based framework for the modeling
and simulation of hybrid models using the specification language CHARON
[AGH'00]. The different agent instances correspond to certain components
of the whole system. A combination of ODEs and mode-switching is used.
An agent changes from discrete (Direct Method) to continuous (numerical
integration of ODEs) behavior according to the current particle number in
the corresponding component. Though the partitioning is dynamic, it is
rather heuristic. Also, possibly time-varying propensities a,(t) within one
step in the discrete components are not considered.

Haseltine and Rawlings 2002

Haseltine and Rawlings [HR02| investigate the reaction-wise partitioning of
the Chemical Master Equation into a slow and fast reaction subset. Even
though they mention the possibility of dynamic partitioning, only static par-
titioning is used according to a heuristic for the separation of reaction veloc-
ities. The behavior of the fast subsystem is approximated using numerical
integration of ODEs or SDEs whereas the Direct Method is used for the slow
subnetwork. Haseltine and Rawlings discuss the handling of time-varying a,,
in the slow subnetwork but apply a constant a, approximation instead. Be-
cause of this, they introduce a “probability of no reaction” which facilitates
the scaling of the average step-size and, thus, can limit the approximation
error.

Pahle et al. 2002

This hybrid method combines ODEs with the Next Reaction Method. It
dynamically partitions the system on the basis of particle numbers using a
hysteresis scheme but does not consider time-varying propensities a, in the
slow subsystem.

This method was developed in my diploma thesis [Pah02] and integrated
into the software system CoPASI [Cop] during my PhD work. For a detailed
description of the algorithm and some implementation issues, see Sec. 4.2.
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Hybrid Methods Dy:;r:lc Partitioning v:Il'mifl-
approaches combined tri)oning criteria c?f g
“w

Alur 2001 Direct Method / Y article 10

[ABIT01] ODE P '

Haseltine 2002 Direct Method / .

[HRO2] ODE or SDE heuristics VI

Pahle 2002 Next Reaction J article 10

[Pah02] Method / ODE P '

Adalsteinsson Direct Method / user-defined

2004 [AMEO04] ODE

Bentele 2004 Next Reaction J relat. fluct., Y

[Ben04] Method / SDE particle no.

Burrage 2004 Direct M. / 7-Leap . propensities,

BTB04 SDE article no.

[ p

Kiehl 2004 Direct Method /

[KMS04] ODE user-defined V%

Neogi 2004 . .

[NeoO4] Stoch. Sim. / ODE Vv particle no. vV

Puchalka 2004 Next Reaction M. / Y, substrate no.,

[PKO04] 7-Leap Method relat. prop.

Takahashi 2004 Next Reaction user-defined

[TKHTO04] Method / ODE )

Vasudeva 2004 Direct Method / . propensities,

[VB04] ODE particle no.

Alfonsi 2005 Next Reaction Y. opensities Y

[ACT+05] Method / SDE prob

Salis 2005 Next Reaction J propensities, .
a; etho particle no.

[SK05a; SSK06] Method / SDE icl

Griffith 2006 Direct Method / Y propensities, Y

[GCPS06] ODE particle no.

Harris 2006 Direct M. / 7-Leap / Y opensities

[HCO6] Langevin M. / ODE prop

Wagner 2006 First Reaction M. / J erTor criterion

[WMPO06] discr. Gauss / ODE

Table 2.1: Overview and systematic classification of the different hybrid

simulation methods. //x denotes that the authors describe how this feature
can be realized in principle but do not demonstrate it in their examples or

implementation.
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BioNetS (Adalsteinsson et al. 2004)

The BioNetS software [Bio; AMEO4] includes a hybrid simulation method
that uses discrete stochastic simulation and the chemical Langevin equation
on discrete and continuous reaction subsets respectively. The user has to
specify which of the species should be discrete and which should be con-
tinuous. This leads to a static partitioning of the system where reactions
exclusively involving continuous species are marked continuous.

The discrete subsystem is propagated using two different methods (dt is
a user-defined time step and M, the number of discrete reactions):

o If (Ziyjl a,)dt < e, a fixed-time step version of the stochastic simula-
tion is used. Two random numbers are used to determine a) if a discrete
reaction occurs, and b) which reaction it will be.

o Otherwise Gillespie’s Direct Method is used to determine a stochastic
reaction time 7 and the type of the next discrete reaction.

The continuous subset is then either simulated over time dt or 7 using a
semi-implicit Langevin equation solver which completes that step. In this
algorithm the influence of the continuous subset on the discrete subset of
reactions is neglected.

Bentele et al. 2004

The method proposed in [Ben04; BE04] involves a generalized system state
that includes both the particle numbers and a vector of additional variables,
one for each reaction in the discrete/slow subsystem. These variables are
used to sample the non-homogeneous Poisson process representing the slow
subsystem as follows: For each slow reaction p they give the probability for
no reaction event PJ(t) (since the last occurrence). They are numerically
integrated along with the fast system (d%(t) = —PB (t)-au(t)) as it is propa-
gated over time. Each zero-crossing of one of the residuals is detected and the
corresponding slow reaction event is realized. The fast subsystem is either
described by an ODE or a chemical Langevin equation. In the latter case it is
simulated using the Euler-Maruyama Method for the numerical integration
of stochastic differential equations (SDE). The method is able to dynamically
partition the system depending on the level of relative fluctuations in particle

numbers and absolute particle numbers.
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Burrage et al. 2004

Instead of partitioning the reaction system into just two subsystems the
hybrid algorithm in [BTB04] even uses a 3-level fragmentation with the Di-
rect Method, the 7-Leap Method and a numerical solver for SDEs (Euler-
Maruyama) as the respective simulation methods. However, no theoretical
basis for the 3-level partitioning scheme is given and the user has to de-
fine thresholds for a heuristic dynamic partitioning scheme based on particle
numbers and propensities a,. There is no consideration of time-varying a,
in the slower subsystems.

Kiehl et al. 2004

This hybrid method (see [KMS04] for details) is based on a static user-defined
partitioning of the system according to simple heuristics. The behavior of the
fast subset of reactions is approximated by numerical integration of ODEs
(Runge-Kutta Method) and the Direct Method is used on the slow subset.

This approach considers time-varying propensities a, within one step in
the discrete/slow subset due to the influence of the continuous/fast subset.
However, first a tentative step size is estimated using the a, values at the
beginning of the step only. Then, the correct step size is determined while
numerically integrating the fast subset over the previously estimated interval.
If the correct step size turns out to be smaller than the previously estimated
one the algorithm backs up.

For the example calculations on the A phage system in [KMS04], calcula-
tion of time-varying a,, is turned off and the propensities in the slow subset
are assumed to be approximately constant during one time step.

Neogi 2004

In [Neo04] a combination of numerical integration of ODEs with exact sto-
chastic simulation is described. The system is dynamically partitioned de-
pending on the particle numbers (using the reaction rates has only been envis-
aged). To account for time-varying a,, in the discrete subsystem “thinning”
is used. That means the corresponding non-homogeneous Poisson process is
sampled by first calculating the next discrete reaction event using a maximal
rate. Then the correct reaction rate is determined and the reaction event is
only realized if a generated random number is smaller than the ratio (correct
rate)/(maximal rate).
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Puchalka and Kierzek 2004

Puchalka and Kierzek’s “Maximal Timestep Method” [PK04] uses a combi-
nation of the Next Reaction Method [GB00] and Gillespie’s 7-Leap Method
[Gil01]. The system is dynamically partitioned using two criteria for reactions
to be assigned to the fast subset:

min{X, : 5; is substrate of R,,} > n (2.17)
and
a,(x)/ao(z) > (2.18)

n and r are two user-defined parameters. Also, the maximal leap size is
bounded by another user-defined parameter x. Using the 7-Leap Method on
the fast subsystem has the drawback that, compared with methods employing
numerical integration of ODEs [Neo04; SK05a; ACTT05; GCPS06], here it
is not clear how to correctly consider the influence of the fast subsystem on
the slow subsystem, i.e. time-varying a,, during one step. However, since one
of the conditions of the 7-Leap Method is precisely that the propensities a,,
do not change considerably during one leap, this influence can be neglected.

Takahashi et al. 2004

The simulation approach described in [TKHTO04] uses a meta-algorithm that
knows about the dependencies between so-called “steppers” (modules imple-
menting different simulation algorithms). The steppers represent the differ-
ent subsystems. Their interaction is driven by the meta-algorithm using a
scheduling scheme. Three subclasses of steppers are provided, including “Dif-
ferentialSteppers” implementing continuous numerical integration of ODEs
(Runge-Kutta Methods) and “DiscreteSteppers” implementing discrete sto-
chastic simulation (Next Reaction Method). The state variables reside in a
global vector and are changed by the steppers as the simulation proceeds.

The method by Takahashi et al. requires intensive modeler intervention,
because the system needs to be partitioned and the appropriate steppers
have to be set up by hand prior to the simulation. The partitioning is static
and does not change. Also, in their test models used the faster subsystems
are uni-directionally dependent on the slower subsystems. That means that
time-varying a,,(t) are not considered and the influence of the fast subsystems
on the slower ones is neglected.

This algorithm is integrated into the E-Cell environment [E-C].
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Vasudeva and Bhalla 2004

In [VB04] a combination of the (exponential) Euler Method for the numerical
integration of ODEs and an approximate fixed time step stochastic simulation
is proposed.

This approach uses no explicit partitioning of the system. Rather reac-
tions are numerically integrated whenever

1. their propensities a, are sufficiently high and
2. none of the dependent particle numbers are below a predefined limit.

Otherwise their reaction events are determined stochastically. This leads to
an implicit, but dynamic, partitioning of the system. The threshold values
are user-defined.

Since it is difficult to extend that simple scheme to more sophisticated
numerical ODE solvers using adaptive-time steps the restriction to the Euler
Method is a severe limitation in many practical cases.

A GENESIS/Kinetikit implementation is available online [Kin].

Alfonsi et al. 2005

In Alfonsi et al. [ACTT05] three different hybrid calculation schemes are de-
scribed: a Direct Hybrid Method, a First Reaction Hybrid Method and a
Next Reaction Hybrid Method. They combine the respective stochastic sim-
ulation methods with numerical integration of ODEs (Runge-Kutta method).
A residual for the combined reaction propensity of the slow subnet (Direct
Hybrid Method) or one residual for each slow reaction (First Reaction and
Next Reaction Hybrid Methods) are numerically integrated along with the
fast subsystem. Zero-crossings of the residuals indicate slow reaction events.
The system is dynamically partitioned using the reaction propensities as cri-
terion.

Salis and Kaznessis 2005

The algorithm by Salis 2005 [SK05a] ([SSKO06] describes the implementation
of the method on a mainframe computer) is similar to the next reaction hy-
brid method in [ACT*05]. The differences are that the dynamic partitioning
is based on two criteria, the reaction propensity and particle numbers of par-
ticipating species, and that an additional approximation allows the firing of
multiple slow reactions within one step.
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Griffith et al. 2006

Griffith et al. [GCPS06] combine ODEs with stochastic simulation. They try
to improve on previous partitioning schemes by setting up the following two
conditions, which depend on two user-defined parameters v and A:

Xi > |vigl Vi : S; = {reactant or product of R} (2.19)
and
a,(X) > A+ Gmax (2.20)

with anax the rate of the fastest discrete reaction.

The first condition ensures that reactions are put in the stochastically simu-
lated subset whenever low numbers of substrate or product particles necessi-
tates a discrete treatment. The second condition is a realization of a criterion
for partitioning, which was mentioned already in the article by Haseltine 2002
[HR02], namely, that there must be a large enough separation between the
reaction rates in the slow and the fast subsystem respectively to make up for
the computational overhead caused by dynamic partitioning and switching of
reactions. Only those reactions where a continuous treatment is profitable,
i.e. they are much faster than the slow reactions and keeping them in the slow
subsystem would lead to many time-consuming discrete reaction events, are
switched to the fast subsystem.

A nice property of this approach is that there is no absolute threshold.
Rather the threshold for repartitioning can change dynamically according to
the current slow subsystem’s reaction rates.

Also, the implementation takes into account time-varying propensities
by numerically integrating the sum of the propensities of the slow reactions
together with the state of the fast subsystem until time 7 where 7 fulfills

ttﬂ Y1y au(t)dt = 71, with 7 a unity mean exponentially distributed ran-
dom number. Then using a second (uniformly distributed) random number
ro one of the slow reactions is chosen as in Gillespie’s Direct Method, the
reaction is realized and the numerical integration continues until the next
discrete event.

For the numerical integration, a fifth-order Runge-Kutta method or the
stiff /non-stiff solver CVODE [CH96] are used.
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Harris and Clancy 2006

The so-called “Partitioned Leaping Method” by Harris and Clancy [HCO06]
extends the 7-Leaping approach by integrating exact stochastic simulation, 7-
Leaping, the Langevin Method (SDE) and the explicit Euler method (ODE)
into one algorithmic framework. On a single reaction basis the reactions are
classified, depending on their propensities, as belonging to one of the four
regimes and propagated accordingly. Hence, the dynamic partitioning takes
place in an implicit manner.

Wagner et al. 2006

The hybrid method described in [WMPO06] is, like the one by Burrage et al.
2004, a 3-level method dividing the reactions into three subset. The calcu-
lation scheme combines a modified First Reaction Method, an approximate
method using discrete Gaussian distributions and an ODE solver. The parti-
tioning is done dynamically on the basis of a single tolerance parameter that
describes the maximal error per approximation. Time-varying a,(t) in the
slower reaction subsets are neglected. Even though the use of a single tol-
erance parameter is very attractive from a user’s point of view, this method
involves a number of internal approximations that are difficult to justify.

2.4.4 Stochastic quasi-equilibrium approximation

Several authors proposed the use of quasi-equilibrium approximations (QEA)
in stochastic simulations,e.g. [CGP05a; CGP05d; ELVE05; SK05b; Gou05;
HRO05; SV05] (see also [GPC07; ELVEOQ7] for a discussion).

For instance, Cao et al. [CGPO05d] devised the “Slow-Scale Simulation
Method” in which the system is subdivided reaction- and species-wise into a
fast and a slow subsystem. A “virtual fast process” is defined which consists
of the fast species evolving under only the fast reactions, i.e. all slow reactions
are turned off. This virtual fast process is Markovian. Also, it needs to
be stable in a way such that its relaxation time is much faster than the
expected time to the next slow reaction. Then, on the slow time scale,
it can be approximated using its asymptotic solution. Finally, the system
is simulated considering only the slow reaction events explicitly. For this,
the Direct Method can be used with modified @, (“slow-scale propensity
functions) in order to take into account the influence of the (asymptotic)
virtual fast process. In each step, values for the fast species are determined
by drawing random samples from the asymptotic probability distribution.
Cao et al. give two simple examples for calculating the slow-scale propensities
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a,, in their article, but this can be difficult for more complex models.

The multiscale stochastic solver by Samant 2007 [SOV07] is also based on
stochastic QEA. This quite involved method uses the Computational Singular
Perturbation (CSP) method by Lam, Goussis et al. [Lam93; LG94] for the
partitioning of the system and the Modified 7-Leaping Method [CGP05¢]| for
simulation.

Stochastic quasi-equilibrium approximations can be regarded as residing
in the middle between exact stochastic simulation methods and hybrid ap-
proaches. The system is partitioned into subsets of reactions or species as
in hybrid simulation methods. However, only the slow/discrete subset is
explicitly simulated (stochastically).

2.5 Conclusions

Stochastic modeling and simulation is important whenever fluctuation phe-
nomena play a role either as a destructive or constructive element. We will
see in Chap. 5 that this is not restricted to systems containing only few par-
ticles but can also happen in larger systems that are sensitive or operate near
bifurcation points.

Despite of the multitude of proposed stochastic methods, there seems
to be none that fits all problems. For smaller models in terms of particle
numbers and whenever a correct treatment of the fluctuations is required,
one of the exact methods should be used. They are relatively straightforward
to implement and there also exists a number of corresponding software tools,
for instance Copast or Di1zzy [Cop; Diz], which makes it easy to use them
without the need of programming. Since they are mathematically equivalent
it is a matter of taste which one of them to employ. For bigger systems
though, they are prohibitively computationally expensive.

For an accelerated stochastic simulation, one of the approximate methods
could be considered. However, some of them are ad-hoc procedures tailored
to specific problems rather than general stochastic solvers. The StochSim
algorithm might be interesting, if one wants to model multistate molecules
or to trace the life-cycle of single particles. The 7-Leap Method or one of its
variants seems to be a promising approach, but it suffers from the need to
find a correct 7 value. This problem is difficult, in particular when stiffness
comes into play. All approximate methods should be used with care. Their
assumptions have to be thoroughly checked in each case. Otherwise they can
misdescribe the fluctuations (e.g. the PW-DMC method and different forms
of lumping) in some cases. With the exception of the 7-Leap Method (imple-
mented in [Cel; Diz; E-C; Sma] general software tools are mostly missing. In
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addition, these approximate methods are rather cumbersome to implement
and often need intervention by the modeler.

The most promising direction is the development of hybrid methods be-
cause they directly tackle the pressing problem of stiffness in the system.
They appear to be flexible enough to allow for general stochastic solvers in
the future even for very big and heterogeneous models. However, for the time
being an established type of partitioning (reaction-wise and/or species-wise)
and, above all, reliable criteria for an automatic and adaptive partitioning
during the simulation are still missing. Hybrid algorithms are the most chal-
lenging methods to implement. They also still need much user intervention
unless automatic partitioning is implemented. Only a few software tools ex-
ist, which permit hybrid simulation, e.g. [HSGT06; AME04; SSK06], but this
is expected to change in the future.

See Appendix A for a list of software systems which support stochastic
simulation of biochemical systems.






Chapter 3

Calcium signal transduction

Mmm milk.

Good for the bones,

good for the kids.

I pity the fool

who ain’t got no calcium in his diet!

B.A., RoBoT CHICKEN (1.16)

Since calcium signal transduction is a repeatedly occurring model system
throughout the following chapters a brief introduction shall be given here
of how dynamic calcium behavior is believed to arise, and how it could be
decoded by target enzymes in cells. One simple model of calcium oscillations
which will be used later on is described in detail. Finally, the experimental
setup for measuring time-varying calcium levels in single rat hepatocytes is
specified.

3.1 Signal transduction via Ca’' ions

Calcium ions serve as important and versatile second messengers. Cal-
cium signaling is ubiquitous and controls a variety of cell functions from
fertilization, secretion, enzyme activation and gene expression to cell death
[BBL9S; Car(2], in many excitable and non-excitable cell types.

The cytosolic concentration of Ca?* in most cells is kept at low values
(~0.1—0.2 uM) by calcium ATPases that pump calcium ions from the cytosol
out of the cell, SERCA (sarco-/endoplasmic reticulum calcium ATPases),
that fill intracellular calcium stores, and mitochondrial calcium pumps. Af-
ter the activation of specific membrane-bound G-protein coupled receptors by

35
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agonists like nucleotides (e.g. ATP, UTP) or hormones (vasopressin, acetyl-
cholin, angiotensin II, etc.) receptor-associated G, subunits change GDP for
GTP and get activated. This, in turn, leads to the activation of phospholipase
C (PLC) in the cell membrane. Activated PLC catalyzes the hydrolysis of
phosphatidylinositol-4,5-bisphosphate to diacylglycerol (DAG) and inositol-
1,4,5-trisphospate (IP3) (These two signaling branches have a downstream
cross-link, when DAG and Ca®" together activate protein kinase C). IP3 dif-
fuses through the cytosol and binds to specific IP3-dependent receptors in
the endoplasmic membrane, which leads to an influx of calcium ions into the
cytosol. This fast process has an autocatalytic character (Ca*"-induced Ca**
release, CICR) and causes a sharp rise of cytosolic calcium concentration up
to 0.5 — 1.0 uM. Also, calcium ions from the extracellular space enter the cell
which seems to be needed for sustained oscillations in some cell types. Even-
tually, calcium is re-sequestered into intracellular compartments or pumped
back out of the cell again and the cytosolic concentration drops to its basal
level. Fig.3.1 illustrates this process in a schematic manner.

Figure 3.1: Schematic view of calcium signal transduction. Ca?* ions (blue
balls), agonists (red cones), G-protein coupled receptors (black), target en-
zymes (green cylinders). See text for a detailed description.

An intriguing fact is that, even in non-excitable cells like hepatocytes, the
concentration of cytosolic calcium can display regular (spiking) or more com-
plex (bursting) oscillations or prolonged elevated levels [WCC86] after stim-
ulation by an agonist and depending on the nature of this agonist. Some ex-
amples of different calcium dynamics can be seen in Fig. 3.2. This oscillatory
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behavior is not only believed to save the cell from the toxic effects of sustained
high cytosolic calcium levels and from desensitization, but has also been
shown to increase the efficiency of calcium signaling [DXL98|. In addition
to these temporal patterns of calcium dynamics, interesting spatio-temporal
patterns (e.g. calcium puffs and waves) have been described [BBL98; Fal03a].
However, we will concern ourselves in this study with temporal patterns only.
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Figure 3.2: Different calcium dynamics in single rat hepatocytes. (A) mix of
calcium spikes and bursts (stimulated with 1.2 uM ATP). (B) bursting with
distinct primary spikes and smaller secondary spikes (stimulated with 1 puM
ATP). (C) strong bursting (stimulated with 1.5 uM ATP). (D) high-frequency
spiking (stimulated with 2 uM phenylephrin). Data kindly provided by Anne
K. Green and C. Jane Dixon.

3.2 Models of calcium signaling

Due to both its importance for the functioning of many cell types and its
interesting dynamics [KS01], calcium signal transduction has attracted nu-
merous theoretical studies. Many different models of calcium signaling have
been proposed, ranging from simple one-pool models [SS91] to more elaborate
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ones [LOKO04] incorporating many different processes. For reviews on calcium
models, see Schuster et al. 2002 [SMHO02] or Dupont et al. 2000 [DSC*00].

Most of these models focus on the simulation of simple periodic oscilla-
tions (spiking). Only few models are able to display periodic bursting os-
cillations [SL95; HDG99; KOD*00; MHBHO0], let alone aperiodic bursting
oscillations [KOD*00; MHBHO0] in non-excitable cells.

We will use one of these models, a relatively simple receptor-operated
model developed in [KOD%00]. This model, even though phenomenological
and not aiming at representing all known physiological details, is able to
display simple and complex behavior, depending on the kinetics of the recep-
tor complex and thus depending on the agonist-specific receptor, as occurs
in real cells (cf. Table 3.1 for a list of reactions and corresponding kinetic
functions of the core model).

reactions kinetics
— G v =k
S G =k (Gl
PLC _ k3 [Ga][PLC]
Ga ’ V3 = RG]
Ca?* _ ks[Gal-[Ca?"]
Ga Vi = TG
Se, PLC w5 = ky - [Ga]
ks [PLC]
PLC — Vg = —Ks+[PLC]
Sy Ca?t vy = kg - [Gal
Cazt — Vg = F11-[Ca’]

8 — K12+[Ca2+]

Table 3.1: Model of calcium oscillations [KOD'00]. Parameters: k; = .212,
ks = 1.52, Ky = .19, ks = 4.88, Kg = 1.18, ky = 1.24, kg = 32.24, Kg = 29.00,
k1o = 13.58, k11 = 153, K19 = .16. ko is bifurcation parameter and is set to
different values in simulations depending on the desired behavior.

Here, G, denotes the active subunit of the G-protein, PLC the activated
form of PLC, and Ca?" cytosolic calcium. G, is activated upon binding of
an agonist (included in ky) and this process is autocatalytic. There is also
a small term (ky) for the spontaneous activation of G,. It is inactivated
via two processes, one being activated by Ca?* (via phosphokinase C) and
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one by PLC. PLC is activated by G, and inactivated by a simple enzymatic
reaction. Finally, G, also triggers the increase of calcium concentration in
the cytosol and calcium is removed by an active transport mechanism.

3.3 Decoding of the Ca*" signal

As we have seen, the rise of calcium concentration in the cytosol upon stim-
ulation by an agonist is not uniform and, in most cases, the calcium concen-
tration oscillates in response to receptor stimulation.

Because the second messenger Ca?t carries information coming from
different sources (different hormones, neurotransmitters, etc.) to a vari-
ety of cellular targets like transcription factors (e.g. NF-xB, Oct/OAP or
NF-AT [DXL98; LLW'98]) or proteins (e.g. calmodulin, CaM kinase II
[DS98], glycogen phosphorylase, PKC [OM98]), it is believed that the dif-
ferent signals are encoded by means of amplitude-, frequency-, duration-,
timing- and/or shape-modulation of these calcium oscillations (see Fig. 3.3).
The FM mode of calcium signals [Ber97] has been studied experimentally
[DS98; LLWT98; DXL98; OM98| and theoretically [PLvzM*98; GBDOO0;
DHDO03; SPH04; SPHO8] and can be considered as an established fact. With
increasing stimulus strength the frequency of calcium oscillations usually
rises and cellular targets can be activated differentially by different frequen-
cies. Recent studies showed that, depending on the waveform of bursting
calcium oscillations, calcium-binding proteins can be activated differentially
at the same time making use of the cooperative nature of calcium binding
[LOK04; SKMO5].

Stimulation of hepatocytes with, e.g., vasopressin results in spiking cal-
cium oscillations [WCC86]. When stimulated with ATP, bursting oscillations
are observed [DWCC90]. These differences in dynamic behavior offer an ex-
planation for the differences in physiological response, which occur when
different stimuli are applied.

A variety of proteins are influenced by intracellular Ca* levels (calmod-
ulin, CaM kinases, glycogen phosphorylase B, PKC, calcineurin; see [Cel96]
for a review). The most prominent class in that respect is the family of
EF hand proteins including the ubiquitous calmodulin. Ca?* activation of
calmodulin and similar proteins happens in a cooperative manner. Calmod-
ulin has four binding sites with high affinity (K; ~ 0.1 — 1 uM) for Ca?*.
That is the reason why in numerical studies [PLvzM198; LOK04; SKMO05]
often a Hill term of 4" order is used.

In addition to this cooperative activation Prank et al. [PLvzM198] added
an autophosphorylation term, that leads to a memory effect of activation.
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In Schuster et al. [SKMO05] not only a Ca?*-activated enzyme is studied, but
also one, whose regulation includes an inhibitory term resulting in a biphasic
activation profile.

Hormones (angiotensin I,
vasopressin etc.)

N Vv / &~
Ca’'-signal ~

bow tie
structure

\Nucleotides (ATP, UTP) \

Y ¥ X

Target proteins (camoduiin, | | Transcription factors
phosphorylase b kinase, etc.) (NF-kB, etc.)

Figure 3.3: The bow tie structure of calcium signaling [SKMO05].

3.4 Experiments

Single hepatocytes were isolated from fed male Wistar-strain rats (150 —
250 g) by collagenase perfusion as described previously [DCG95]. Briefly, the
hepatic portal vein was cannulated and an initial Ca?"-free perfusion was
followed by perfusion with collagenase (0.04% w/v) and Ca®" (3.8 mM) for
15min. The perfusion rate was 30 ml/min throughout. The cells were har-
vested and incubated at 37°C at low density (10°cells/ml) in 2% type IX
agarose in William’s medium E (WME). Single hepatocytes were prepared
for microinjection with the bioluminescent Ca?* indicator aequorin as de-
scribed previously [CL91]. The injected cell was transferred to a perfusable
cup held at 37°C, positioned under a cooled, low-noise photomultiplier, and
continuously superfused with WME, to which agonists were added. Photon
counts were sampled every 50 ms by computer. At the end of an experiment,
the total aequorin content of each cell was determined by discharging the
aequorin by lysing the cell. The data were normalized retrospectively by
computer, by calculating the photon counts per second divided by the total
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counts remaining. The computed fractional rate of aequorin consumption
could then be plotted as [Ca?"]; using in vitro calibration data and exponen-
tial smoothing with time constants: for resting [Ca?'];, 12s; for transients,
1s.

3.4.1 Materials

Aequorin was provided by Prof. O. Shimomura (Marine Biological Labora-
tory, Woods Hole, MA, U.S.A). Collagenase was obtained from Roche Diag-
nostics (Lewes, U.K.) and WME from Invitrogen (Paisley, U.K.). Agarose
and agonists were purchased from Sigma-Aldrich (Poole, U.K.).






Chapter 4

Stochastic simulation in Copasi

Beware of bugs in the above code;
I have only proved it correct,
not tried it.

DoNALD E. KNUTH

The software system CopasI [Cop|, the Complex Pathway Simulator, is a
comprehensive and user-friendly tool for the studying of biochemical net-
works. It provides a variety of different simulation and analysis methods.
One very convenient feature is that deterministic and stochastic simulation
can be used on the same model. In the following COPASI’s stochastic sim-
ulation methods will be presented, in particular the hybrid solver whose
implementation was part of this PhD work. Also, some issues concerning
the switch between deterministic and stochastic methods will be discussed.
Copast is the result of the collective work by many people, in particular Ste-
fan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Natalia Simus, Irina
Surovtsova, Mudita Singhal, Liang Xu, Pedro Mendes and Ursula Kummer.
Parts of this chapter have been published in Bioinformatics in 2006 [HSGT06]
and in [SSPK06; SGP*06].

4.1 The software system Copasi

CopPAsI is a comprehensive biochemical simulation and analysis tool with the
following features:

 User-friendly graphical user interface (GUI) and command line version
for batch processing.

« Deterministic (LSODA [Pet83]), stochastic and hybrid simulation.
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o Analysis: moieties, steady states, metabolic control, sensitivities, ele-
mentary modes, Lyapunov exponents.

o Parameter scans, optimization, parameter estimation.

o File formats supported:
SBML [SBM], Copasr's XML format, GEPASI file format, BERKELEY
MADONNA [Mad], XPPAuT [XPP], C source code.

o Available for different platforms:
Linux, MS Winpows, Mac OS X and SOLARIS SPARC.

CopPast is being developed as a joint project between the Kummer group
at the University of Heidelberg, Germany (formerly at the EML Research
gGmbH, Heidelberg) and the Mendes groups at the Virginia Bioinformatics
Institute, USA and at the University of Manchester, UK. It is free for non-
commercial use and can be downloaded from http://www.copasi.org.

The main stochastic solver implemented in COPASI uses the Next Re-
action Method by Gibson and Bruck (cf. Chap. 2.4.1). In addition to the
hybrid solver which is described in the following section, we also integrated
the 7-Leap Method (see Sec. 2.4.2) as a module. However, due to the experi-
mental nature of this method this feature is not yet activated in the publicly
available version.

CopraAst is also capable of computing the divergence of the system in order
to support the user in making a decision whether or not stochastic simulation
is necessary (see Chap. 5, for details).

4.2 Hybrid simulation method

Our hybrid method combines the stochastic simulation algorithm by Gibson
and Bruck (Next Reaction Method; Sec. 2.4.1) with different algorithms for
the numerical integration of ODEs (4'® order Runge-Kutta, LSODA — see
[Pet83]). The biochemical network is dynamically partitioned into a deter-
ministic and a stochastic subnet depending on the current particle numbers
in the system. The user can define limits for when a particle number should
be considered low or high. The stochastic subnet contains reactions involving
low numbered species as substrate or product. The remaining reactions, i.e.,
all those that only affect high numbered species, form the deterministic sub-
net. The two subnets are then simulated in parallel using the stochastic and
deterministic solver, respectively. The reaction probabilities in the stochastic
subnet are approximated as constant between two stochastic reaction events.
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Figure 4.1: Result of the hybrid simulation of the system in Eq. (4.1) in a
time interval 10%s, for a volume 5 - 1071% ml, initial concentrations [A](ty) =
10mMol/ml, [E](tp) = 0.1mMol/ml, [AE](tp) = OmMol/ml, [B](ty) =
O0mMol/ml and parameters k; = 0.01 mMol/(mls), k2 = 20ml/(mMol-s),
k3 =10s7!, ky = 157!, k5 = 0.01s~ . The lower and the upper limit for the
particle numbers are 500 and 700, correspondingly.

As an example, we investigate a simple open biochemical system where
A reacts to B catalyzed by E. The corresponding reaction system is the
following:

— A
A+ E = AF
AF — B+ FE
B — (4.1)

This corresponds to the following systems of equations:

]
B = —ky - [A] - [E] + k3 - [AE] + ky - [AE]
[AE) = ky - [A] - [E] — ks - [AE] — ky - [AE]
(B = ky - [AE] — ks - [B] (12)

In Fig. 4.1 we simulated this system using our hybrid algorithm and low
particle numbers.

Whenever the particle numbers drop below the user-defined limits the
corresponding reactions are simulated stochastically and random fluctuations
are captured. Otherwise the faster numerical integration is used for reactions
with high-numbered species.
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Figure 4.2: Hybrid simulation of the calcium oscillation system in [KKP*05]
(see Chap. 3), comprising species a (Gg), b (PLC) and ¢ (Ca%*), coupled to
a linear pathway of reactions (species d, g, h, i, j) via a calcium protein buffer
complex p, which activates the reaction from g to h. All other steps in the
linear pathway have Henri-Michaelis-Menten kinetics. Shown are the particle
numbers over time (A) and a comparison of the hybrid (B) (lower and upper
particle number limits 9900 and 10100, respectively) and pure stochastic (C)
simulations in terms of the particle number histograms of species g.
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Our hybrid method, which was developed and described in [Pah02], is
similar to the one by Haseltine and Rawlings (2002) [HR02], though in fact
they both were implemented independently during the same time. The main
difference is the dynamic partitioning with user-defined limits for the particle
numbers and the hysteresis-like repartitioning scheme.

The dynamical partitioning is vital, e.g. for oscillating systems, but the
speedup is very model-dependent. Because of the computational overhead
for partitioning the system the hybrid method can occasionally take longer
than pure stochastic methods. In addition, low-numbered species that take
part in fast reactions slow the simulation down by forcing the fast reactions
to be simulated stochastically. We use two different user-defined limits for
the particle numbers (lower and upper limit) and a hysteresis-like updat-
ing scheme (metabolites with particle numbers between those limits do not
change their status). This avoids unnecessary and time-consuming reaction
swaps if the particle numbers are fluctuating in a medium range.

We settled on the simple partitioning criterion using particle numbers
for three reasons. First, the amplitude of relative fluctuations of particle
numbers are high in low-numbered species. Single reaction events can have a
significant impact here. Reactions involving those species should therefore be
handled stochastically. Second, most of the computational effort of stochastic
simulation algorithms is spent on fast reactions. In order to speed up the
simulation, fast reactions should be taken out of the stochastic subsystem and
simulated deterministically. The higher the number of substrate particles, the
faster the reaction will be. This is true for mass action kinetics and for some
parts of the phase space of enzyme kinetics. Third, if only reactions involving
high-numbered species are simulated deterministically, the relative changes
in particle numbers are minimal. For this reason, the change in reaction
probabilities in the stochastic subnet caused by the fast subnet during one
step can be neglected.

Our algorithm therefore approximates the influence of the deterministic
subnet on the stochastic subnet during one step as constant, that means
that the reaction propensities in the stochastic subnet are constant during
this time interval.

This hybrid algorithm is able to simulate models faster than pure sto-
chastic methods, while still taking into account random effects in the sto-
chastic subnetwork. If the limits for the particle numbers are set to zero, the
whole network will be simulated deterministically. With increasing limits the
calculation eventually converges to an exact stochastic simulation of the sys-
tem. We tested our implementation in this limit successfully on the Discrete
Stochastic Model Test Suite [Stoa]. If the particle number limits are in an
intermediate range, between two repartitionings of the system the simulation
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proceeds similar to the method described and validated in [HR02]. In addi-
tion, we compared our hybrid solver to an exact stochastic solver with respect
to distributions of species particle numbers in different test systems. One ex-
ample is shown in Fig. 4.2 where the calcium model described in Chap. 3.1
extended by a linear pathway of reactions has been used. Panels B and C
show the resulting probability distributions of particle numbers.

However, we want to stress that due to the still heuristic partitioning
criterion it is possible for the user to choose the limits such that the result of
the hybrid solver deviates from the exact stochastic result as possible with
other hybrid methods.

Nevertheless, the user-defined limits for the partitioning of the system
allows to study the sensitivity/robustness of individual subnetworks w.r.t.
noise. By changing this limit, one can observe if the resulting trajectory is
dramatically changing, e.g. if additional subnetworks are simulated stochas-
tically. If this is the case, these subnetworks exhibit a pronounced sensitivity
towards intrinsic noise. Thus, dissection of the whole system w.r.t. noise-
sensitive and noise-robust subnetworks is possible.

ODEs describing biochemical networks are often stiff. In our hybrid
method we therefore use the LSODA algorithm (Petzold, 1983 [Pet83]),
which is adequate for the numerical integration of the deterministic subnet-
work in the presence of stiffness. We also implemented a hybrid solver that
uses a 4" order Runge-Kutta method for cases when one is certain that the
system is never stiff. Because the hybrid calculation requires many separate
ODE integrations in small time intervals, the use of a simple one-step solver,
such as Runge-Kutta, can be faster since it lacks the computational overhead
of predictor corrector methods.

There exist several mathematically equivalent algorithms for the stochas-
tic simulation of biochemical networks (see Sec. 2.4.1). In our hybrid solver
we chose the method by Gibson and Bruck for the simulation of the stochas-
tic part of the network as it was the most convenient to integrate into our
hybrid calculation scheme.

4.3 Using complex kinetics in stochastic sim-
ulations

When stochastically simulating a reaction network which has been described
by a set of ODEs all reaction rates have to be transferred to a corresponding
reaction probability. This is rather simple and straightforward in the case of
mass action kinetics [Gil76]. However, enzyme kinetic rate laws represent a
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lumping of terms each corresponding to an elementary mass action reaction;
an important question is whether it is justifiable to use such a rate expres-
sion with stochastic simulations. Several authors [vGKO01; RA03; CGPO05a;
CGPO5b] have shown that as long as the initial assumptions for the assumed
kinetics hold (e.g. excess substrate, fast reversible enzyme-substrate-complex
formation, etc.), it is indeed justified to assume the enzymatic reaction to
constitute one single step with the respective rate law.

Basically, the rate law consists of a mass action part and a kinetic part
[Hof95]. The kinetic part depends on reactant amounts and other factors, so
it is not constant, but it could be assumed to freeze and become constant
for the single reaction event that is computed in each step of the algorithm.
This rate then has to be computed anew for the next iteration.

Taking our example from above (Eq.(4.2)), the same system could also
be described using the Michaelis-Menten form as long as the formation of
AF is fast and reversible compared to product release and as long as there
is a substantial surplus of substrate compared to enzyme. In this case the
equations lump to the following ones:

‘g 4]
. [A]
[Bl' = —ks - [B] + Vinaa - m (4.3)

In Fig. 4.3 we compare time series of the stochastically simulated elaborate
system with the lumped system. We made sure that the assumptions for
lumping the system hold. As can be easily seen, both trajectories correspond
to each other.

4.4 Reversible reactions in stochastic simula-
tions

In order to perform stochastic simulations, reversible reactions have to be
handled as separate irreversible forward and backward reactions. In deter-
ministic simulations forward and backward reaction rates can cancel each
other out; in stochastic simulations each single reaction event has to be con-
sidered separately. COPASI provides a feature that, at the modeler’s request,
converts all reversible reactions to the corresponding individual forward and
backward reactions in order to allow for a stochastic simulation of the model.
The tool adjusts the reaction scheme and model description automatically.
However, due to the difficulty in dissecting an arbitrary reversible kinet-
ics into two irreversible kinetic functions, fully automatic conversion is only
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Figure 4.3: Results of stochastic simulations of the detailed (Eq. (4.1))
and the lumped (Eq. (4.3)) system in the time interval 103s, for the vol-
ume 5 - 10719 ml, initial concentrations [A](to) = 10mMol/ml, [E](ty) =
0.1mMol/ml, [AE](ty) = OmMol/ml, [B](tp) = 0mMol/ml and parame-
ters k1 = 0.0l mMol/(ml-s), ks = 20ml/(mMols), kg = 10s7!, kg = 1571,
ks = 0.0157%, Vipae = 0.1mMol/(ml-s), K,,, = 0.1 mMol/ml.

guaranteed for mass action kinetics. For more complex kinetics, COPASI uses
heuristics to separate the kinetic function into two terms that are meaningful
for the forward and backward reactions. If that fails, the user will have to
manually adjust the kinetics after the conversion.

In Fig. 4.4 we show the conversion of the reversible mass-action kinetics
assumed for the formation of AEF in the above example to the individual
forward and backward reaction for use in the stochastic simulation.
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Chapter 5

Transition from stochastic to
deterministic behavior in
biochemical systems

“[...] at the edge of chaos”

CHRISTOPHER LANGTON

In the following chapter we investigate the transition from stochastic to
quasi-deterministic behavior in biochemical systems, i.e. how many copies of
participating molecules are needed to show a deterministic response. This is
important for both the understanding of robustness in cellular systems and
for decisions about which simulation method is appropriate. In our main test
system, namely signal transduction via calcium, we observe that the tran-
sition occurs within a range of particle numbers which roughly corresponds
to the number of receptors and channels in the cell, and depends heavily
on the attractive properties of the phase space of the respective systems dy-
namics. The same dependence was found in other test systems, such as the
peroxidase-oxidase reaction and MAP kinase cascades.

This work was done in collaboration with Ursula Kummer, Borut Krajnc,
Anne K. Green, C. Jane Dixon, and Marko Marhl. It has in parts been
published in the Biophysical Journal in 2005 [KKPT05]. A subsequent man-
uscript is in preparation.
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5.1 Introduction

Improved experimental technology has led to the possibility of studying in-
creasingly large biochemical systems in vivo. However, the experimental
results are often very complex, which is of course due to the underlying com-
plexity of the biochemistry in the living cell itself. This has resulted in the
more and more heavy use of computational means to support experimental
investigations. Simulation and modeling are now being employed regularly
to understand the dynamic properties of a biochemical network. One prob-
lem of computational investigations is that the choice of, e.g., the simulation
method relies on rather heuristic, if any, rules. However, the more intensive
use of these methods asks for reliable and analytical decisions.

Simulations of biochemical systems have mostly been performed by in-
tegrating ordinary differential equations (ODEs) or stochastic algorithms.
When using ODEs one computes continuous concentrations of the partici-
pating species. The integration is very fast, but of course it is only suitable
when the participating molecule numbers are high enough to be approxi-
mated as concentrations. For low particle numbers, stochastic algorithms
that compute discrete particle numbers are more accurate, but also com-
putationally expensive. The decision regarding which of these methods to
employ to get a realistic result and at the same time to use the fastest pos-
sible method for this goal has commonly been made using intuition because
there are no reliable and rational rules.

To compensate for some of the computational expenses of the stochastic
methodologies, approximate stochastic methods and hybrid methods have
been developed recently (see Chap. 2 for details). The hybrid methods
need to partition the system into a deterministic and a stochastic subsys-
tem. Again, this is so far mostly done rather heuristically by considering the
velocity of reactions or the particle numbers of involved species.

This heuristics is partially justified because there are already a lot of
heuristics and simplifications involved when setting up the model itself. One
example of this is the inclusion or negligence of spatial dimensions in the
model. If space is considered as well, the system can be described by ODEs,
partial differential equations, or the respective stochastic algorithm. How-
ever, even though space doubtlessly plays a very important role in the func-
tioning of the cell, many models are built assuming homogeneity of the sys-
tem. This is due to multiple reasons. First of all, even modern experimental
technology still prevents the observation of spatially localized concentration
changes in the cell for many species. Therefore, spatially resolved experimen-
tal data are still rare. Second, many questions concerning, e.g., biochemical
mechanisms in small cells like the leukocytes or hepatocytes discussed be-
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low can be answered to some extent with the homogeneity assumption (e.g.,
[OKKPO03]) saving computational time. Still, neglecting the spatial dimen-
sion of the system is almost always a severe simplification.

Nevertheless, the simplifications and assumptions made while setting up
a model are usually thought through and actively done by the scientist who
is studying the respective biochemical system. However, the choice of the
suitable simulation method is often more passively done because explicit
knowledge about when which method is the appropriate one is largely miss-
ing. Gonze et al. related the appropriateness of deterministic simulations to
the rate constants in a model of the circadian rhythm [GHGO04]. However, a
generalization of this result for any model is hard to infer.

Therefore, we think that it is of general interest to find a rational basis to
actively decide for or against a specific simulation method. This basis should
allow the scientist to select the best methodology for his/her specific model
with all its assumptions and simplifications.

We therefore studied the transition between stochastic and deterministic
behavior primarily in a common model system, namely calcium oscillations,
to find a measure that supports this decision process. The findings should not
only be applicable for this specific system, and we will show some supporting
results on different test systems as well.

Calcium ions act as second messengers in a variety of cell types [BBLIS].
They influence cellular functions such as excitability, contraction, metabo-
lism, or exocytosis directly via the modification of enzymatic functions or
gene expression [BBL98|. Calcium ions are therefore an integral part of the
information-processing machinery in living organisms.

Due to its central importance, the function of calcium as second mes-
senger has been studied intensively, e.g., in hepatocytes. In this cell type,
the principal chain of events occurring during calcium signal transduction is
rather well known. A detailed description can be found in Chap. 3.1.

The number of receptors and ion channels in the cell can be very low (in
the range of 103-10° per cell), which leads to the question of whether the
deterministic approaches used for modeling and simulating this system are
valid and to what degree they are valid.

Stochastic simulations of calcium oscillations have been performed in the
case of spiking oscillations (e.g., [KW93; PAB198]). However, in these cases,
no detailed comparison to deterministic simulations has been done. In the
case of bursting calcium oscillations, no simulations on discrete particle ba-
sis of a system displaying deterministic bursting have been reported at all.
However, Falcke et al. showed that bursting behavior can arise during the sto-
chastic simulation of spiking [Fal03b; Fal04]. Falcke and others also studied
under which conditions a deterministic description of calcium concentrations
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based on channel kinetics is appropriate [Fal04; Fal03a; SJ02]. Knowledge
like this is necessary to decide which simulation method should be used for
a particular system and its particular behavior.

With this in mind, we have studied the stochastic simulation of spik-
ing and bursting calcium oscillations and the transition from stochastic to
deterministic behavior. We present experimental data on bursting calcium
oscillations that exemplify the need to perform stochastic simulations. For
the computational side we used tools developed recently to automatically
convert the corresponding differential equations to the stochastic discrete
equations and to perform the simulations. We observed a transition at par-
ticle numbers in the range of actual particle numbers in the cell.

The transition became apparent, when we compared the results obtained
by stochastic, discrete simulations according to Gillespie [Gil76] and the nu-
merical integration of ODEs. For high particle numbers the resulting simu-
lations were basically the same. However, gradually lowering the number
of particles, some significant differences between both computational ap-
proaches emerged. Therefore, we defined a transition range as the approx-
imate number of particles at which significant differences between stochas-
tic and deterministic simulation start to occur (the solutions do not match
anymore). Minute fluctuations of the trajectory are not considered. It is
of special interest to analyze whether this transition range depends on the
complexity of calcium oscillations. Our results show that the transition range
indeed changes with changing dynamics of the system. Thus, the transition
range cannot be generally determined for a system being valid for all parame-
ter values, but is dependent on the individual dynamics of a certain parameter
set. However, it is not the degree of complexity (e.g., complex periodic versus
simple periodic behavior) that determines the transition range. Our results
show that it is rather the attractive property of the respective phase space
that plays a more important role than the complexity of Ca?*t oscillations.
The attractive properties of the phase space have been quantified by the sum
of Lyapunov exponents (the divergence). Our results indicate that at lower
divergence the transition from stochastic to deterministic behavior occurs at
lower particle numbers, which means that the system is well characterized by
ODEs at realistic particle numbers. At higher divergence values the transi-
tion occurs at significantly higher particle numbers, which indicates the need
to employ stochastic modeling. These findings are in accordance with the ex-
perimental observation that apparently stochastic behavior is more common
in bursting calcium oscillations during high agonist doses, which corresponds
to a high divergence value in the corresponding model. The results were also
verified with other models and should apply for many types of biochemical
models.
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5.2 Materials and methods

5.2.1 Computations

Deterministic simulations were performed by numerically integrating ODEs
with the Rosenbrock [Ros63] and LSODE [Pet83] algorithms.

For the stochastic simulations, we used the stochastic algorithm developed
by Gillespie [Gil76] (Direct Method), which is described in detail in 2.4.1.

On the basis of this algorithm, software was implemented, which is able
to automatically convert a system of differential equations into the corre-
sponding stochastic system and to perform the stochastic simulations (e.g.,
STODE, which is freely available at [Stoe] or CopasI [Cop].

5.2.2 Calculation of Lyapunov exponents and the di-
vergence

Lyapunov exponents are an important concept for quantifying the sensitiv-
ity of dynamic systems against perturbations of initial states (see [KS97], for
details). They describe the exponential divergence or convergence of nearby
trajectories on an attractor and positive exponents can indicate chaotic be-
havior. A number of algorithms have been proposed for the calculation of
these exponents, e.g. Rosenstein 1993 [RCD93], Wolf 1985 [WSSV85] and
Kantz 1997 [KS97]. The algorithm by Wolf has been implemented into Co-
pAST [Cop; HSGT06]. Implementations of the algorithms by Rosenstein and
Kantz can be found, for instance, in Ti1SEAN [HKS99].

The sum of all Lyapunov exponents equals the so-called average diver-
gence of the system. This divergence, on the other hand, is identical to the
trace of the Jacobian matrix. By average we mean an average over a specific
trajectory that is long enough to be regarded as representative of a certain
dynamic regime of the system. Also, usually, a transient has been cut off.

The computation of the divergence value alone is much easier than the
calculation of the complete spectrum of Lyapunov exponents [WSSV85]. One
can numerically integrate the trace of the Jacobian along with the system’s
state variables. Finally, this integral is divided by the simulation time to
yield the average value. This method was employed in this study and it is
also implemented in COPASI.

5.2.3 Experimental

The experimental setup used for measuring calcium concentrations in single
rat hepatocytes over time is described in detail in Sec. 3.4.
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5.3 Results

Using ATP as the agonist for the activation of hepatocytes results in burst-
ing calcium oscillations for a wide range of concentrations. An example for
a low dose (1.2uM) of ATP is shown in Fig. 5.1. Each main spike is fol-
lowed by a series of secondary oscillations. The overall oscillation is by no
means periodic and the number of secondary oscillations varies. Increasing
the agonist concentration successively results in bursting oscillations, with in-
creasing amounts and length of secondary oscillations on average (Fig. 5.2).
These bursts are irregular in their nature, meaning that the amplitude of the
secondary oscillations are not simply decreasing with time.

800

700 B
600 -~ q
500 -~ q

400 -~ B

bbb o

100 1 1 1 1 1
0 200 400 600 800 1000 1200

Time [s]

Ca2+-concentration [nM]

Figure 5.1: Experimentally measured calcium concentration in hepatocytes
with 1.2 uM ATP added.

Modeling these bursting oscillations in hepatocytes has so far never been
able to account for the long stretches of secondary oscillations seen in these
time series and only models generating chaotic bursting have been able to
account for some of the nonperiodicities visible. Prolonged secondary oscil-
lations might carry important information for the cell because, e.g., a very
prolonged elevated level of calcium concentration in the cell can be respon-
sible for apoptosis [BBLIS].

For a detailed computational analysis of calcium oscillations in hepato-
cytes, we restrict ourselves firsthand to using a core model developed by
Kummer et al. [KOD100] (see Chap. 3.2 for a complete description). This
model captures the basic dynamic characteristics of the complete model.
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Figure 5.2: Experimentally measured calcium concentration in hepatocytes
with increasing amounts of ATP added as indicated.

Later on, we will see that our findings also hold true for more detailed, phys-
iological models.

Again, it has to be emphasized that this model is a simplified picture and
does not include all the processes that are known to occur in the context of
calcium signal transduction. Especially, one variable, namely P35 has been
eliminated completely. For a more detailed and more realistic model, see,
e.g., Larsen et al. [LOKO4]. However, the basic dynamical characteristics
are captured in this model (as was shown in Kummer et al. [KOD"00]) and
therefore we use it to study the transition from stochastic to deterministic
behavior in dependence on the system dynamics.

The bifurcation diagram of the model is shown in Fig. 5.3. At smaller
values of ks the system behavior is characterized by simple periodic spiking
Ca?* oscillations. By increasing the value of ks periodic bursting Ca?* os-
cillations appear, and a period adding route leads to a very small chaotic
regime around ko = 2.9259. Beyond the chaotic regime there is again a small
periodic regime before the system settles into a steady state.

In Fig. 5.4 we show an example of deterministically simulated periodic
bursting oscillations for ky = 2.85.

We simulated the same time series as obtained by the ODEs (e.g., Fig. 5.4)
on particle basis with the stochastic algorithm described above. We varied
the number of participating particles to study the transition from determinis-
tic to stochastic behavior with decreasing particle numbers. In the following,
we will emphasize the number of calcium ions in the system. However, we
want to point out that the number of particles of the other participating
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Figure 5.3: Bifurcation diagram of the core model for bursting calcium os-
cillations (Table 3.1). Parameters are: k; = 0.212,k3 = 1.52, K4 = 0.19, k5 =
488, Kg = 1.18,k; = 124, kg = 32.24, K9 = 29.09, k10 = 13.58, k1 =
153, K12 = 0.16. Initial conditions are: [G,] = 0.01, PLC = 0.01, Ca*" = 0.01.
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Figure 5.4: Deterministic simulation of periodic bursting of calcium concen-
tration. Parameters as in Fig. 5.1; ko = 2.85, divergence = -401.9.
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species is in the same range or higher (depending on the parameters) in this
simple model system. Therefore, we focus on the species with the lowest par-
ticle numbers. This was achieved by changing the volume of the system and
leaving the concentration constant. Computationally, this is equivalent to
letting the volume constant and changing the particle number in this volume
plus adjusting the kinetic parameters such that the same qualitative systems
behavior will arise. Otherwise, just changing the particle number in the same
constant volume will of course result in completely different behavior.

The results of the stochastic simulations for ky = 2.85 are presented in
Figs. 5.5 and 5.6 for different particle numbers.
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Figure 5.5: Stochastic simulation of bursting calcium oscillations close to
the deterministic limit. Parameters as in Fig. 5.4.

Fig. 5.5 shows that for large particle numbers the particle-based simula-
tions approach the deterministic limit, which is in accordance with theory.
The question arises, however, of how to determine the transition between sto-
chastic and deterministic behavior. This is usually a continuous convergence
and it is difficult to exactly determine the transition. Therefore, it is reason-
able to introduce a transition range as the approximate number of particles
at which differences between stochastic and deterministic behavior become
negligible. To estimate the particle number in the transition range between
stochastic and deterministic behavior, we studied the use of standard ap-
proaches for estimating differences between noisy signals and the respective
deterministic signal. All of these standard approaches like autocorrelation
functions, signal/noise ratio, or interspike interval histograms (ISIH) face
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Figure 5.6: Stochastic simulation of bursting calcium oscillations with lower
particle numbers compared to Fig. 5.5. Parameters as in Fig. 5.4.

strong limitations in this case. The reason is that in many cases the stochastic
simulation does not result simply in a noisy version of the deterministic limit
(as shown below). It is rather apparent that the stochasticity of the system
often results in completely different dynamics compared to the deterministic
solution. However, the global character of the solution (the attractor) is un-
derrepresented when considering the above-mentioned standard approaches.
Thus, on one hand, a noisy limit cycle will result, e.g., in a very different
ISIH compared to the deterministic solution even if the coarse limit cycle is
the same. On the other hand, a comparison between different attractors will
of course also result in a very different ISIH. Thus, it is almost impossible to
differentiate between a solution that displays a completely different attrac-
tor and a solution that still displays the global attractive properties of the
deterministic solution, but has added noise. However, a scientist modeling a
system will most certainly choose the faster deterministic simulation, if the
global picture of the simulation is accurate. A better method would be to
use a similarity measure of the global attractors resulting from the different
simulations as such. Few approaches for such a similarity measure are de-
scribed in literature so far (e.g., [Kan94; Kou01]). These need extensive sets
of data that are hard to create in stochastic simulations due to the compu-
tational expense. Therefore, for this study, we restrict ourselves to matching
the solutions in a graphical and/or visual way. However, we want to include
and develop such global similarity measures in future studies.
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For spiking (k2 = 2.0) and periodic bursting oscillations (ko = 2.85) with
ten-thousands of particles, only small fluctuations in the amplitude are ob-
served. However, decreasing the particle number to thousands leads to a
system already showing significant stochastic influence (Fig. 5.6). Stochastic
influences are big variations in the amplitude and period as well as pro-
longed secondary oscillations during bursting behavior like those seen in the
experimental investigations. The transition from deterministic to stochastic
behavior occurs in this case in the range of tens of thousands of particles.

For chaotic bursting Ca?* oscillations at ks = 2.9259 deterministic-like
behavior was observed only down to a number of particles in the range of
hundreds of thousands. Decreasing the particle numbers down to tens of
thousands already showed significant stochastic influences, e.g., a phase space
that corresponds more to a noisy limit cycle rather than to a chaotic attrac-
tor, i.e., hardly any amplitude variations. Decreasing the particle numbers
even further leads to additional prolonged secondary oscillations. Of course,
there is no possibility to simply match the deterministic and the stochastic
simulation in this case like done above. Therefore, and to get an estimate, we
relied on visual inspection taking, e.g., prolonged secondary oscillations as
signs for stochasticity. These signs ceased to appear in the range of hundreds
of thousands of particles in the system in the parameter regime where chaos
is displayed in the deterministic limit.

For the steady state at ky = 3.0, we observe that even higher numbers
of particles are needed to approach the deterministic limit (Figs. 5.7 and
5.8). The deterministic limit is not reached with particle numbers in the
high hundred-thousands, which is well above the physiological range. More-
over, for lower particle numbers, qualitative behavior is observed that again
displays most of the characteristics of the complex periodic regime (Fig. 5.8).

The above findings are summarized in Table 5.1. For different values of k,,
which correspond to different behaviors of the system, the number of particles
is estimated at which the transition between stochastic and deterministic
behavior appears.

ko Number of particles Behavior
2.0 Ten-thousands Periodic spiking
2.85 Ten-thousands Periodic bursting
2.9259 Hundred-thousands Chaos
2.99 Millions Regular oscillations
3.0 Greater than millions Steady state

Table 5.1: Transition ranges in dependence on ks.
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Figure 5.7: Stochastic simulation of calcium behavior corresponding to pa-
rameters for which the deterministic solution is a steady state (ko = 3.0)
with particle numbers far above physiological concentrations. The dashed line
indicates the deterministic steady state.
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Figure 5.8: Stochastic simulation of calcium behavior corresponding to pa-
rameters for which the deterministic solution is a steady state (k2 = 3.0) with
lower particle numbers compared to Fig. 5.7. The dashed line indicates the
deterministic steady state.
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To explain the results presented in Table 5.1 we estimate the attractive
properties of the phase space for different values of ky. The hypothesis is
that the stochastic influences could be more pronounced in case of weaker
attractive properties of the phase space. Hence, in a weaker attractive phase
space a higher number of particles would be needed to reach the deterministic
limit. We use the sum of Lyapunov exponents (the divergence) for estimating
the attractive properties of the phase space. By varying the parameter value
of k9 and corresponding to the different types of oscillations described above,
different values of divergence (Fig. 5.9) were computed. Fig. 5.9 shows that
the value of divergence approaches zero with increasing values of ky. By
comparing Fig. 5.9 with Table 5.1, we observe that the sensitivity of the
system to stochastic influences increases with increasing divergence. This
means that for a dynamic state representative of a highly negative divergence
value the system is well described by deterministic methods even for relatively
low (thousands) particle numbers whereas higher particle numbers are needed
to approach the deterministic limit if the divergence of the system is close to
Zero.
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Figure 5.9: Divergence value of the core model for bursting calcium oscilla-
tions. Parameters as in Fig. 5.3.

To verify that these findings are not restricted to our small core model,
we additionally analyzed a completely different model of Ca?* oscillations
proposed by Shen and Larter [SL95]. Likewise, a model of the peroxidase-
oxidase reaction [OLKO03] was studied (see Fig. 5.10).

This system describes the oxidation of NADH catalyzed by peroxidases.
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Figure 5.10: Schematic view of the peroxidase-oxidase reaction model de-
scribed in [OLKO03].

We observed again that the number of particles required to obtain results
matching the corresponding deterministic solutions is directly related to the
divergence of the attractors, as already described above. A divergence value
close to zero implies that the attractor is weak and can easily be altered by
the stochastic fluctuations. In Fig. 5.11 two different dynamical regimes with
low and high divergence value are shown as examples. The corresponding
time series show a transition between stochastic and deterministic behavior
at different particle numbers.

We also tested a model for mitogen-activated protein kinase cascades
[Kho00]. One of the important parameters of that model is vy, the stimulus
strength. We scanned the divergence of that model in dependence of vy.
The results are shown in Fig. 5.12. Here, the divergence decreases with
increasing parameter value for v; € [0.5,3]. For the default value (v; = 2.5)
we observed the transition roughly between 100 and 1000 particles of MAPK-
PP. For v; = 1 we expected the system to be more sensitive to random
fluctuations due to the higher divergence. Indeed here, the transition takes
place approximately between 1000 and 10000 particles.

Finally, we studied the influence of calcium buffers in the cell. For this
purpose, we included a simple linear equation for the binding and release of
calcium to protein buffers with the latter being present in large quantities
compared to calcium and therefore assumed to have a constant concentration.
Thus, the equations for calcium concentration reads:

[Ca®]
([Ca*"] + K1)

[Ca®*]) = kio[Ga] — k11 — ki3[Ca*"] + kw[P], (5.1)

with P representing the calcium concentration bound to protein buffers.
The inclusion of this simple term leads to a decrease in divergence, be-

cause the partial derivation of the equation describing the evolution of the



Chapter 5. Transition from stoch. to det. behavior 67

number of oxygen molecules

number of oxygen molecules

40000
35000
30000
25000
20000
15000
10000

5000

4000
3500
3000
2500
2000
1500
1000

500

A
1 1
5000 10000 15000 20000
T T T C
1 1
5000 10000 15000 20000
time [s]

300000
250000
200000
150000
100000

50000

0
20000 22000 24000 26000 28000 30000

30000
25000
20000
15000
10000

5000

0
20000 22

000 24000 26000 28000 30000
time [s]

Figure 5.11: Transition from stochastic to deterministic behavior in the
peroxidase-oxidase system [OLKO03]. Time series of the numbers of oxygen
molecules. Panels A and C: low divergence (bifurcation par. k12 = 0.04) —
transition roughly between thousands and ten-thousands of particles. Panels
B and D: high divergence (bifurcation par. k1o = 0.08) — transition roughly
between ten-thousands and hundred-thousands particles.
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Figure 5.12: Scan of the divergence (y-axis) of the MAP kinase cascade
model in [KhoOO] in dependence of the stimulus strength v (x-axis).

calcium concentration becomes more negative and this feeds into the sum of
the Lyapunov exponents. This means that according to our hypothesis the
sensitivity toward stochasticity should decrease as well. Indeed, the high fre-
quency stochastic fluctuations are diminished by the presence of the buffer.
However, we have found that buffering can change the system dynamics in
such a way that the divergence is not always uniformly decreased globally
but can in fact even rise with increasing buffering speed (see Fig. 5.13). This
results in different behavior in stochastic and deterministic simulations (e.g.
bursting oscillations and steady state, respectively) even if the particle num-
bers are large and the system is buffered.

Most of the calcium in cells is bound to protein buffers. But, even with
~ 80 % of the calcium being bound to these buffers, the systems behavior is
still strongly influenced whenever the divergence of the system is large (e.g.,
for ko = 3). Fig. 5.14 shows that in this case the high-frequent part of the
noise in the system is filtered out by the participating buffer (compared to
Fig. 5.6). Nevertheless, the system is still not running into a steady state as
it would be when calculated deterministically, but rather it shows complex
bursting oscillations.
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Figure 5.13: Calculation of the divergence value (y-axis) for different pro-
tein buffering speeds (x-axis). The buffering speed is the sum of the calcium
binding and the calcium release rates. The ratio of binding rate to release rate
is 1:1 or 4:1, leading to about 50 % or 80 % of the total calcium bound to the

buffer (ko equals 2.5).
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Figure 5.14: Stochastic simulation of calcium behavior corresponding to the
core model with parameters as in Fig. 5.3, including binding of calcium ions
to protein buffers (Eq. (5.1); k13 = 10,k14 = 1). Please note that the total
calcium ion concentration is by far higher because ~ 80 % are bound to protein
buffers in this case.
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5.4 Discussion

We studied the transition from deterministic to stochastic behavior in simu-
lations of Ca** oscillations on a particle basis. We mainly used the model de-
veloped by Kummer et al. [KOD'00] (see Chap. 3 for details) but also other
systems, such as the peroxidase-oxidase reaction and MAP kinase cascades.
Here, we studied in detail the dependency of the transition on the system
properties. We observed that the transition from stochastic to deterministic
behavior depends heavily on the attractive properties of the corresponding
attractors in phase space, quantified by the divergence. We conclude that the
divergence plays a more important role in determining the transition range
from stochastic to deterministic behavior than the complexity of the Ca?*
oscillations. The transition occurs at higher particle numbers if the corre-
sponding value of the divergence is close to zero compared to the particle
numbers needed when the system has a highly negative divergence. Com-
paring the ranges of particle numbers sensitive to stochastic influences, we
observe that oscillations characterized by a divergence close to zero show a
10-100-fold larger sensitivity compared to the oscillations with highly nega-
tive divergence in the presented case study.

The real particle numbers in calcium signal transduction roughly corre-
spond to the transition number in the cases with low divergence, namely
simple periodic and complex periodic oscillations. This is especially true
for a model in which calcium buffers are included. However, the number
of particles needed to reach the deterministic limit in cases with high di-
vergence values (chaotic, regular oscillations, steady state) is far above the
concentrations of receptors, channels, and calcium ions in the real cell, even
if buffers are included in the model. This is also in accordance with the ex-
perimental observation that at high agonist concentrations that correspond
to high divergence values in our model, more apparent stochastic influences
are visible. Therefore, one can argue on the one hand, that the stochastic
influence during simple periodic and complex periodic behavior should not
be tremendous, because the real particle numbers are not well below the
transition range. On the other hand, pronounced stochastic effects should
be present in the real system for high agonist concentrations (corresponding
to a high value of ky). However, because the studied model is rather qual-
itative in its nature, more studies with more realistic models are needed to
clarify this point in sufficient detail. The important issue here is that the
transition from stochastic to deterministic behavior for certain systems dy-
namics in general occurs clearly above physiological concentrations and the
resulting stochasticity in the system might be of physiological importance.
This is especially true for physiological effects that result from the prolonged
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secondary oscillations of the bursting calcium oscillations as described above.
Interestingly, such prolonged secondary oscillations have often been observed
experimentally (e.g., [GCD95]). If the elevated level of calcium concentra-
tion is sustained for considerable time, it will result in different biochemical
responses in the cell, e.g., in cell death [NBO92].

Our findings, showing that transition from stochastic to deterministic be-
havior occurs at higher particle numbers if the corresponding value of the
divergence is close to zero, can also be explained intuitively. If the contrac-
tive properties of an attractor in phase space are weak, then the attractor can
be more easily deformed, if perturbed continuously, which is the case when
studying stochastic simulations. Recently, it has been shown that Ca®" os-
cillations are more flexible in response to external forcing if the divergence
takes values close to zero [MS03; PMO03b]. Moreover, it has been shown that
the flexibility of Ca?* oscillations does not significantly depend on the type
of Ca?* oscillations. Therefore, we argue that in the case of determining the
transition from stochastic to deterministic behavior the divergence plays a
major role.

In the studied systems, no noise-induced chaos has been found as reported
in a number of cases (for a review, see Gao et al. [GCHL99]). However, it
has been observed in earlier studies that adding noise to a periodic bursting
calcium oscillation could result in deterministic chaotic oscillations [KBOOO].

Our results show that it is not sufficient to decide in favor of or against
the stochastic simulation of a system on the basis of knowing the number
of particles for a certain model in general, but it rather demands taking
into account the specific dynamics of the model and the attractive properties
of a particular oscillatory regime. Moreover, relatively large concentrations
(corresponding to nanomolar and millimolar), which often are simulated de-
terministically, already show a pronounced sensitivity toward stochasticity.
Therefore, a careful analysis of this sensitivity should preclude a decision for
a certain simulation method in the case of simulating calcium oscillations.
Because our results are very general in their nature, this holds for other sim-
ulations of biochemical systems as well. Calculating the divergence of the
system as one measure for the decision in favor of or against a specific simula-
tion methodology could be easily automated. The software system COPASI,
for instance, contains this feature to aid the user in his/her decision process.
Moreover, calculating the divergence on the basis of deterministic simulations
is computationally fast compared to many trials of stochastic simulations that
would be needed to just try out which method is more appropriate. It is also
possible to compute the sensitivity of the divergence with respect to different
parameters of the system, which gives a more general view on how robust the
decision for or against a specific simulation method is when parameters are
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changed. However, we also would like to point out, that the absolute values
of the divergence might be insufficient as a basis for the decision process, if
a system contains, e.g., very positive and very negative Lyapunov exponents
at the same time (which was not the case in the studied examples). In this
case, a weighting of these individual components might be necessary, which
is a topic of our future research. In addition, bistable systems require also a
special treatment. Such systems will display both stable solutions when dif-
ferent runs of stochastic simulations are performed whereas, e.g., the initial
conditions have to be changed in the deterministic approach to gain the same
kind of information. However, the appearance of the individual solution is
again subject to similar criteria as described above. Moreover, in the case of
a stable steady-state solution with no proximity to any other type of solution
(e.g., oscillations), there are cases where the amplitude of the noise due to a
stochastic simulation around this steady state stays the same, independent
of the divergence of the system (as in the simple system A = B with influx
of A and efflux of B, if all rates are altered such that their ratio stays the
same). However, due to the attractive properties of the respective steady
state, which is again dependent on the divergence, the individual trajectory
is able to stay away from the steady state much longer if the divergence is
high compared to a system with rates corresponding to a low divergence.
Thus, if simulating a short time span representing a real world example, the
stochastic simulation of the system with low divergence will quickly fluctuate
around the steady state whereas the system with high divergence might de-
viate from the steady state for the whole time. Therefore, the computation
of the divergence again adds to the knowledge in differentiating between the
two simulation methods.

Finally, we want to emphasize that inclusion of a spatial dimension will
be an important issue in the future. Particle numbers in small discrete vol-
umes will be even lower than considering the particle numbers for the whole
cell. We think that at least for systems described by diffusively coupled
ODEs, our findings will still be applicable, but this will be a matter of future
investigations.
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Chapter 6

Information transfer in
signaling pathways: a study
using coupled simulated and
experimental data

Statistics are like bikinis.
What they reveal is suggestive,
but what they conceal is vital.

AARON LEVENSTEIN

Signaling pathways are particularly prone to random fluctuations. Thus, an
important question is how this influences the information transfer in these
pathways.

The stochastic interpretation of biochemical networks lends itself readily
to ideas coming from information theory. Information theory deals with
the uncertainty of events in a statistical way. The decrease in uncertainty
is equated with the information gained by an observation. In this chapter
we will show how the information-theoretic measure transfer entropy can be
applied to signaling pathways, namely calcium signaling in order to quantify
the information transferred from calcium to target enzymes under different
cellular conditions. This study was done in collaboration with Anne K.
Green, C. Jane Dixon and Ursula Kummer and part of the material contained
in this chapter has been published in BMC Bioinformatics [PGDKO0S].
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6.1 Information theory

Even though information-theoretic ideas can be traced back at least to the
twenties of the past century (Harry Nyquist, Ralph Hartley), the establish-
ment of information theory as a discipline is most often attributed to Claude
Elwood Shannon (1916-2001). His seminal work “A Mathematical Theory of
Communication” from 1948 [Sha48| deals with the problem of reconstructing
a message, which has been disturbed during transmission over a noisy com-
munication channel: “The fundamental problem of communication is that
of reproducing at one point either exactly or approximately a message se-
lected at another point” [Shad8, p. 379]. This idea, initially only applied to
engineering problems associated with data compression and communication,
has, due to its general nature, also proven very fruitful in other fields such
as linguistics and (neuro-)biology. Other important contributions to the de-
velopment of information theory were made by, e.g., Norbert Wiener, David
A. Huffman, Solomon Kullback, Richard Leibler and many others.

First, we will give a brief introduction into some basic concepts of infor-
mation theory, which are relevant for our study. A recommendable reference
book for further study is “Elements of information theory” by T.M. Cover
and J.A. Thomas [CT91] (see also [Ash90; Mac03]).

The information content of an event A (in an appropriately defined prob-
ability space) can be quantified by its degree of uncertainty expressed as
the negative logarithm of its probability (—log Pr{A}). This is a strictly
decreasing function on (0, 1) with values from oo to 0 and it formalizes the
intuitive notion that rare events are more interesting than frequent ones. A
certain event (Pr{A} = 1.0) has no information content. For notational con-
venience, the information content of an impossible event B with Pr{B} =0
is usually defined to be zero.

Now, the so-called information entropy H(X), or Shannon entropy, is a
functional of the probability mass/density function p of a discrete/continu-
ous' random variable X (with values z;):

H(X) = —Zp(fi)logbp(%) (6.1)

!Shannon entropy and the other information-theoretic quantities can also be defined for
continuous random variables. Because of the limited space we will only show the discrete
versions here.
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where the base b of the logarithm can be chosen at will and only determines
the units of information entropy. In the following, we will use log, for binary
digits [bits]. One bit is the amount of information needed for answering one
yes/no question with equally probable answers.

The Shannon entropy can be interpreted as the averaged information
content over the set of possible outcomes or symbols. It also gives the number
of bits needed to optimally encode independent draws of the random variable.
One important property is that the information entropy is highest (= log IV,
with N the number of different outcomes) when all outcomes are equally
probable. Intuitively, the uncertainty is maximal here because the outcome
cannot be predicted at all in that case.

Shannon entropy should not be confused with information. Information is
actually associated to a (potential) decrease in entropy due to an observation.
In other words, information measures the sharpening of our knowledge (in
terms of the difference in uncertainty about a system before and after an
observation). Assuming there is no measuring error, we are certain about
the outcome after a measurement. In that case the uncertainty drops to zero
as a result of the observation and the information gained equals the system’s
Shannon entropy before the measurement.

There is also a conditional version of the information entropy which will
become important for our study of the dependence of two stochastic pro-
cesses:

H(X|Y) == plai,y;) log plaily;)- (6.2)

1,J

It quantifies the remaining uncertainty about the random variable X
when Y is known already.

If we do not know the true probability distribution p of a random variable,
and thus its true entropy, we can just assume it to have the probability
distribution ¢. The exceeding entropy, or, equally, the excess number of bits
we would need if we used ¢ for encoding, is given by the so-called Kullback-
Leibler divergence Dy (pllq) [KL51]:

Dicaplla) = 3 ple) og 227 (6.3)

(i
q(xi)
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Due to its asymmetry the Kullback-Leibler divergence is not a true metric.
However, it is an important concept for comparing probability distributions.
The well-known mutual information I(X,Y") often used to quantify the de-
pendence between two random variables is based on the Kullback-Leibler
divergence:

Pl )p(y;)’ 6.4

I(X,Y) = p(wi,y;)log
i.j

Here, it is assumed that the two random variables X and Y are indepen-
dent, i.e. that their joint probability distribution p(z;,y;) equals the prod-
uct of the two marginal probability distributions p(x;) - p(y;). The mutual
information quantifies the distance between this assumed joint probability
distribution and the true joint distribution.

In other words, it gives the amount of information shared by the two
random variables. It is zero if the two random variables are statistically
independent and maximal (= H (X)) if one random variable can be calculated
from the other one. It can easily be seen that the mutual information is
symmetric I(X,Y) = 1(Y, X).

The following summarizes some important relationships between entro-
pies and the mutual information:

H(Y|X)=H(X,Y)— H(X) (6.5)

with H(X,Y) = =3, . p(zi, y;) log p(xi, y;)

I(X,Y)=1(Y,X) = HX) — HX|Y) (6.6)
= H(X)— (H(X,Y)— H(Y)) (6.7)
= H(X)+ H(Y) - H(X,Y). (6.8)

In the case of stochastic processes I and J we have one random variable
for each process and each point in time. Random variables of different time
points are generally not independent. This dynamical information is usu-
ally neglected [Sch00] when the mutual information is employed. Instead,
it is assumed that the processes are stationary and that their probability
distributions do not change over time.

6.1.1 Transfer entropy

In biochemical systems the dynamics plays an important role. The reaction
network is identified with a jump Markov process (see Sec. 2.4) and future
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states are, of course, dependent on the current state. Therefore, in the fol-
lowing we will use a quantity which takes this dynamical information into
account:

The so-called transfer entropy 77 is an information-theoretic [WS49]
measure proposed by Schreiber 2000 [Sch00] to quantify the dependence of
one stochastic process on a second one. Its definition for discrete systems [
and J reads as follows:

10 p(Zn+1‘Z£lk)a.]T(ll))
T = Zp Zn-i—la n >]n )1 0g . (k)
Plintalin”)

(6.9)

with ¢,(j,) the system state of process I(J) at time point n and i =

The transfer entropy has Kullback-Leibler divergence form and measures
the deviation of process I from its Markov process behavior of order k£ due to
the interaction with process J. The degree of deviation is identified with the
information transferred. The most notable properties of the transfer entropy
are that it is directional (asymmetric) and dynamic, meaning that the history
of the process is taken into account.

6.2 Introduction

The topology of signaling cascades has been studied in quite some detail.
However, how information is processed exactly is still relatively unknown.
Since quite diverse information has to be transported by one and the same
signaling cascade (e.g. in case of different agonists), it is clear that the under-
lying mechanism is more complex than a simple binary switch which relies
on the mere presence or absence of a particular species. Therefore, finding
means to analyze the information transferred will help in deciphering how
information is processed exactly in the cell.

The simulation of complex biochemical networks has become very impor-
tant to gain insight into the dynamic behavior of cellular processes [EBO1;
ETR9; HS96]. Signaling pathways, in particular, often evade intuitive, and
therefore rather static, explanations because of their highly nonlinear dynam-
ics and many cross-links. However, despite the emergence of sophisticated
high-throughput and in vivo imaging techniques, there is still a lack of high-
quality single-cell multivariate data.
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Such data would be very helpful in elucidating the nuts and bolts of many
signaling mechanisms. In this study we use calcium signaling as an example
which represents one of the most versatile second-messenger pathways (see
Chap. 3 for details). Since a range of different agonists such as hormones
(e.g. vasopressin) or nucleotides (e.g. ATP) trigger calcium responses and,
on the other hand, a range of different targets (e.g. Ca?** dependent proteins
such as calmodulin, CaM kinase II, protein kinase C, phosphorylase kinase or
transcription factors e.g. NF-AT or NF-£B) exist in the cell [Cel96], specific
information is likely to be encoded in the calcium signal and decoded again
later on. It has been proposed that information might be encoded in the
amplitude, frequency, duration, waveform or timing of calcium oscillations
and the search for this calcium code has attracted a number of experimental
and theoretical studies (for a review, see [LKO03]).

On the experimental side, mainly the frequency decoding of spiking cal-
cium oscillations has been examined. De Koninck and Schulman 1998 [DS98]
demonstrated the sensitivity of immobilized CaM kinase II to Ca?* oscilla-
tion frequency by in vitro rapid superfusion. Li 1998 et al. [LLW 98] found
that NF-AT is activated optimally at a Ca?" oscillation frequency of about
1/min and Dolmetsch et al. 1998 [DXLI8] studied the differential regulation
of T-cell NF-AT and NF-xB by Ca?" oscillations of different frequencies. The
interesting work of Oancea and Meyer 1998 [OMO98] describes the activation
of protein kinase C v (PKCv) by DAG combined with high-frequency Ca?*
spikes, which points to a joint code of calcium and DAG in that case.

Most theoretical studies also limit themselves to the spiking mode of cal-
cium oscillations. Dupont et al. 2003 [DHDO3] could successfully reproduce
the findings of [DS98] in a model. Gall et al. 2000 [GBD00] examined the ac-
tivation of liver glycogen phosphorylase by modeling a de-/phosphorylation
cycle. Salazar et al. 2004 [SPHO04| studied the activation of target proteins
by Ca?* oscillations in terms of efficiency, speed and specificity. The same
group identified in [SPHOS8| three dimensionless parameters (effective acti-
vation rate, relative oscillation frequency and the duty ratio of the oscil-
lations) that determine the mean activity of target proteins. Marhl et al.
[IMPS05; MPS06] investigated the decoding of time-limited calcium oscilla-
tions by downstream proteins.

Recently, the bursting mode of Ca?* oscillations has been investigated
by Larsen et al. 2004 [LOKO04] and Schuster et al. 2005 [SKMO05]. Using
a simple model of calcium oscillations [LOKO04] and artificially generated
calcium bursts [SKMO05] respectively to drive protein activation, these studies
showed that specific information can be encoded in the waveform of bursting
oscillations and thus that different proteins can be activated differentially
at the same time. Rozi and Jia [RJ03] studied the activation of glycogen
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phosphorylase by spiking as well as bursting calcium oscillations.

Even though information-theoretic measures [WS49] are in widespread
use for physiological data, e.g. [IRWT05], and neural information transfer,
e.g. [BT99], their application to biochemical systems is restricted to only
relatively few studies. For instance, Prank et al. 1998 [PSLT98] and Kropp
et al. 2005 [KGPO05] studied the encoding of hormonal signals in intracel-
lular calcium signals using the so-called coding fraction and mutual infor-
mation. The authors drive a deterministic model of calcium spiking with
a specific form of generated noise and estimate the amount of information
transferred. In [PLvzM™98] the same group couples a deterministic model of
CaM kinase activation to experimentally measured data from HIT (hamster
insulin secreting tumor) cells, but here the results are not analyzed in an
information-theoretic manner.

We propose to use the information-theoretic measure transfer entropy
[Sch00] to estimate the information transferred by spiking or bursting cal-
cium oscillations under different conditions. Transfer entropy has advantages
over conventional measures such as (time-lagged) correlations, in that it de-
tects all statistical dependencies (linear and non-linear), it is asymmetric,
i.e. it distinguishes between information source and target, and it consid-
ers shared information due to a common history of the source and target
by using conditioned transition probabilities. Transfer entropy has been ap-
plied to physiological data [IRWT05; KTO06], financial time series [MK02],
geological data [MWYO07] and others [NST*06; LS06], but, so far, not to
biochemical data.

We used both simulated and experimentally measured time series for
the estimation of transfer entropy. The simulated data were generated by
a stochastic version of the simple calcium oscillations model in [KOD*00]
extended by a stochastically simulated activation of target protein. We set
up a framework for stochastic simulation of the calcium system, stochastic
coupling of the enzyme activation process and estimation of the transfer
entropy using kernel density estimation methods. We used this framework
to investigate calcium information transfer in systems with different levels of
activation and particle numbers.

Since multivariate experimental data is scarce, we devised a method, in-
spired by hybrid deterministic/stochastic simulation techniques, which al-
lows the stochastic coupling of the enzyme activation process to arbitrary
univariate calcium time series. We took experimental data from single-cell
measurements on rat hepatocytes and coupled the activation of the stochas-
tically simulated enzyme to them in order to get bivariate data. Finally, we
used these semi-experimental data as input for the estimation of the infor-
mation transfer. Fig. 6.1 shows this procedure in a schematic view.
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Figure 6.1: Schematic view on the coupling process and subsequent analysis.

6.3 Results

In this study we used a simple receptor-operated model [KOD*00] (cf. Sec. 6.6
for details on the model) with three variables (G,, PLC, cytosolic Ca?") to
generate calcium time series. This model was simulated stochastically by
Gillespie’s algorithm [Gil76] (see Sec. 2.4.1). Fig. 6.2 shows simulated time
series of the Ca?* concentration under different cellular activation levels. The
model is able to display understimulation (data not shown), spiking (panel
A), bursting (panel B) and irregular behavior (panel C) as well as overstim-
ulation (panel D). Spiking and bursting behavior is observed experimentally
when hepatocytes are stimulated with vasopressin and ATP, respectively.

The concentration of the active form of a simulated Ca?*-dependent en-
zyme, which was stochastically coupled to the calcium data, is also shown.
We implemented a stochastic coupling scheme to be able to couple the sim-
ulated enzyme to arbitrary, simulated or experimental, calcium time series.
This method is described in detail in Sec. 6.6.2.

The coupling of the simulated enzyme to experimental data leads to semi-
experimental time-series, one of which is shown in Fig. 6.3. Here an experi-
mentally measured time series of the Ca?" concentration in a single rat hep-
atocyte (see Sec. 6.6.4 for further details) was computationally coupled to a
simulated target enzyme according to Eq. (6.10). The hepatocyte was stim-
ulated with ATP, which led to a bursting mode of calcium oscillations. The
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Figure 6.2: Coupling of the stochastically simulated activation of an enzyme
to simulated calcium time series with different dynamical behavior according
to Eq. (6.10). From top left to bottom right we see a spiking (A), bursting
(B), irregular (C) behavior and overstimulation (D). k2 values 2, 2.85, 2.99
and 3.2, respectively, and volume 10712 [arbitrary units]. x-axis: time [s].
y-axis: concentration of Ca?t and the active form of the enzyme P, and the
enzyme’s K value.

integrating character of the enzyme, which was shown elsewhere [LOK04] to
permit frequency decoding of the calcium oscillations, can easily be seen.

Using these simulated and semi-experimental time series we investigated
the information transferred from the calcium signal to the enzyme by esti-
mating the transfer entropy (see Sec. 6.6.3). In Fig. 6.4 an example of a
scan over a range of bandwidths e for the kernel density estimation is shown.
The calcium system has been simulated in the bursting mode (ky = 2.85)
and with different values for the volume leading to different particle num-
bers. We used time courses of length 10000 s, sampled every second, after a
transient of 10000s has been cut off. For the density estimation we used a
rectangular kernel and set the length of the Theiler window to 20 and the
minimal number of neighbors to 5. As shown in the diagram, the estimates
are biased towards zero for € — (0. For small € values more and more sam-
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Figure 6.3: Coupling of the stochastically simulated activation of an enzyme
to an experimentally measured calcium time series according to Eq. (6.10).
Here the hepatocyte was stimulated using ATP (1.5 uM). x-axis: time [s]. y-
axis: concentration of Ca?T and the active form of the enzyme P, and the
simulated enzyme’s K, value (reaction volume of the simulated enzyme 10~1°
[arbitrary units]).

ples are missing enough neighbors within the kernel bandwidth and those
“lonely samples” are excluded from the estimation. For ¢ — oo the kernel
eventually covers the whole attractor, which also results in a value of zero
for the transfer entropy. In between, there is a plateau-like range, where the
estimate is almost independent of the e value and which is supposed to be the
best estimate of the true information transfer. We plotted the corresponding
maxima in the diagram (horizontal lines). In the following we will always
use those maximal values of the € scans as estimates of the transfer entropy
(see Discussion in Sec. 6.4).

We also tested our estimation process by using surrogate data (con-
strained realizations, see Schreiber 2000 [SS00] for details). We estimated
the transfer entropy of time series in which the temporal order of the cal-
cium signal was destroyed by shuffling the samples (data not shown). This
removed all dependencies, while the marginal probability distributions were
preserved. Indeed, here the estimated transfer entropy showed values near
zero (~0.02 — 0.07).

To investigate how the information transfer changes with varying particle
numbers in the system, we simulated the calcium model using a range of
different volumes. Systems with low volumes, corresponding to low particle
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Figure 6.4: Scan of the estimated transfer entropies from Ca?* to active pro-
tein Pyt in the stochastically simulated system (ko = 2.85, bursting). x-axis:
€ values. y-axis: estimates of the transfer entropy in simulated systems of vol-
umes 10712 to 1079 [arbitrary units] respectively. Also, the estimating process
was applied to a deterministically simulated calcium signal (det. signal). In
this case, the reaction volume of the simulated enzyme was 10719,
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Figure 6.5: Maximum values of the estimated transfer entropy for differ-
ent volumes in systems with ko = 2.85 (bursting). x-axis: volume. y-axis:
estimates of the transfer entropy.

numbers, usually display strong random fluctuations, which could hamper
the information transfer. Therefore our hypothesis was that a minimal num-
ber of particles are needed to allow for the faithful transfer of a certain
amount of information. In fact, this is the case. Fig. 6.5 shows a scan of
the transfer entropy of simulated systems in the bursting mode (ko = 2.85)
with different volumes. Here the information transfer increases with increas-
ing volume (and particle numbers) until it seems to flatten out at about
0.6 bit/sample for volumes greater than 5 - 10710 [arbitrary units]. Interest-
ingly, this corresponds to the particle numbers where the simulations dis-
play quasi-deterministic behavior (see Chap. 5). With even higher volumes
the system should eventually converge to the deterministic limit. In this
case, also the coupling would be quasi-deterministic and the estimation of
the transfer entropy should diverge (see discussion in Sec. 6.4). Therefore,
regimes where the transfer entropy does not increase uniformly with increas-
ing volume deserve further study, since this would be a helpful indicator that
the transition to quasi-deterministic behavior is not uniform (see Chap. 5).
However, the huge computational cost prevented us from testing whether or
not the apparent flattening is statistically significant in this case.

We also investigated the information transfer when the calcium system is
in different dynamical modes (cf. Fig. 6.2). Fig. 6.6 shows a scan of transfer
entropy estimates for different volumes (between 107! and 5 - 107) where
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Figure 6.6: Maximum values of the estimated transfer entropy for different
volumes and different ks values corresponding to different dynamic modes (1
understimulation, 2 spiking, 2.5, 2.85 bursting, 2.99 irregular/elevated oscilla-
tions, 3, 3.2 overstimulation) in the simulated system. x-axis: volume. y-axis:

estimates of the transfer entropy.

we varied the value of the bifurcation parameter ks to get different dynamics,
such as understimulation (ky = 1), spiking (k2 = 2), bursting (k2 = 2.5, 2.85),
irregular behavior/elevated oscillations (ko = 2.99) and overstimulation (kg =

3,3.2).

In the case of under- or overstimulation (ks = 1 or kg = 3.2), the system
is in a (noisy) steady state and this results in low values for the transfer
entropy. For ks = 1 the calcium concentration is near its resting level, which
is far below the Kj; value of the enzyme. No enzyme gets activated and no
information can be transferred. For ky = 3.2 the calcium steady state lies
above the enzyme’s Kj; value and the amount of active enzyme reaches its
maximum. In contrast to understimulation, here the information transfer is
not exactly zero, even though it takes low values of ~0.2. The reason for
this is that now the noisy steady state is near the K,; value of the enzyme
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and it can pick up some random fluctuations in calcium concentration.

If the system is in an oscillatory mode, such as spiking (ko = 2) or bursting
(ko = 2.5,2.85), the transfer entropy increases with increasing volume until
it seems to flatten out for volumes above 5-1071°, as shown above.

An interesting effect can be observed for ky = 2.99 and ks = 3, where
the deterministic limits of the calcium dynamics are elevated oscillations and
an elevated steady state, respectively. However, the stochastic system shows
irregular behavior with small volumes. For high volumes, oscillations are
observed even for ks = 3. For both parameter values, the generally very
high level of transfer entropy is due to the position of the center of their
oscillations. It is near the Kj; value of the enzyme, so that the enzyme
is responsive even to minute variations in the calcium level. Interestingly,
for ky = 3 the transfer entropy shows a maximum at the volumes 10~ and
5-1071%. An explanation for this effect is that for the higher volume 5-1072,
the system is already near the deterministic limit, which is just a rather
uninteresting elevated steady state with relatively low information transfer.
On the other hand, for smaller volumes, the information transfer gets de-
graded because of increasing stochastic fluctuations. Those fluctuations are
especially pronounced in this parameter range, because the sensitivity of the
system (measured by the divergence) is high (see Chap. 5 for details). Those
two opposed trends lead to a maximum in a range where the system is still
oscillatory, but not yet too noisy.

If we look at the estimates for a volume of 5- 107 only (the biggest sys-
tems considered in this study), there is a slight increase in estimated transfer
entropy from spiking to increasingly complex bursting oscillations (see Ta-
ble 6.1). The transfer entropy is very high for elevated oscillations near the
enzyme’s K, value and it drops to a very low value in the case of an elevated
steady state, e.g. overstimulation. Intuitively, one would think that the in-
formation transfer should be correlated to the complexity (spiking, bursting
or irregular oscillations) of the calcium oscillations, since more complex input
signals can potentially carry more information. However, this can only be
hinted at from our experiments. One should be wary not to over-interpret
the absolute numbers, since we found them very much dependent on the
estimation process used. Also, they are subject to statistical fluctuations.
Furthermore, the enzyme is most sensitive for calcium levels near its Ky,
value. For the input signal to generate a high information transfer, it is im-
portant to meet that range. The transfer entropy nicely detects this for the
oscillatory regime with ks = 2.99 and high volumes, where the oscillations
exactly meet the K, value. Here the estimated transfer entropy is high, even
though the dynamics is apparently less complex than in the bursting mode.

To compare simulations with experimental data we coupled an experimen-
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ko Dynamic behavior TE

1 Understimulation  0.00
2 Spiking 0.52
2.5 Bursting 0.59
2.85 Bursting 0.60

2.99 Elevated oscillations 0.95
3.2 Overstimulation 0.15

Table 6.1: Maximum values of the transfer entropy (TE) for different stim-
ulation strengths ko and their respective dynamic regime in the simulated
system with volume 5-107?.

tally measured calcium time series from a single hepatocyte to the stochastic
model of enzyme activation. In this case the cell was stimulated using 1.5 pM
ATP and showed bursting behavior (see Fig. 6.7, inset). We monitored the
calcium concentration over a time period of 3904 s (one sample per second).
The reaction volume of the simulated enzyme was set to 10710 [arbitrary
units]. For the kernel density estimation, we used a Theiler window of length
20 and reduced the minimal number of neighbors to 2 because of the smaller
number of samples available. Fig. 6.7 shows a scan of the transfer entropy
estimates from this semi-experimental time series over a range of e values.
The estimated transfer entropy has a maximum at about 0.35 bit.

For a direct comparison, we calculated 10 stochastically simulated calcium
time series of length 3904 s showing bursting behavior (k; = 2.85). One of
them can be seen in the inset of Fig. 6.8. We then coupled these time series
to the same enzyme process and estimated the transfer entropy using the
same set of parameters as before. We plotted the results of the 10 different
simulations plus the mean value in Fig. 6.8. The mean of the estimated
transfer entropies has a maximum of about 0.57 bit. The variance of the
estimated values is biggest in the plateau region with a maximum in standard
deviation of approximately 0.03.

The significantly higher transfer entropy values of the simulated system
can partly be explained by the existence of two episodes in the experimental
data without bursts (The calcium-mobilizing agonist was absent from the
experimental medium for the duration of these two episodes). We removed
these episodes and repeated the estimation which yielded a transfer entropy
maximum of roughly 0.39 bit. An explanation for the remaining discrepancy
is that the simulated bursts have a considerably longer duration than the
bursts in real hepatocytes. Therefore, the calcium signal spends more time
within the sensitive region of the enzyme (near the K, value) which clearly
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Figure 6.7: Scan of the estimated transfer entropy from an experimentally
measured Ca?* time series (3904 s) to the simulated target enzyme P, accord-
ing to Eq. (6.10). Here the hepatocyte was stimulated using ATP (1.5 uM).
x-axis: € values. y-axis: estimates of the transfer entropy (reaction volume of
the simulated enzyme 107! [arbitrary units]).

increases information transfer.

6.4 Discussion

In the following we will motivate the choice of several technical elements as
well as discuss their strengths and limitations.

6.4.1 Stochastic coupling procedure

Stochastic fluctuations in cellular systems are not just random noise, but can
even change the dynamics of the system [RWAO02] as was seen, for instance, in
our simulations for parameter values near bifurcation points (ko = 2.99 and
small volumes). Therefore it is important to consider random effects (and
the effects of the system size on those fluctuations) when modeling systems
with relatively low particle numbers, e.g. signal transduction pathways.

It should be noted here that, even in those cases where stochastic ef-
fects do not change the dynamics significantly, deterministic coupling of a
biochemical reaction system to experimental data, as, e.g., in [PLvzM198],
is not appropriate for our purposes. The estimation of transfer entropy di-



Chapter 6. Information transfer in signaling pathways 89

1.2 T I I I
1 - —
g
— 08| s
Q.
o
S 06 -
ks Fa
2 04} F s
0.2 4
mean;, —+
0 | | | |

0 0.02 0.04 0.06 0.08 0.1
epsilon
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entropy.
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verges for coarse-grained continuous systems and increasing resolution if the
coupling between the processes is deterministic [Sch00]. Therefore our sto-
chastic coupling scheme of the simulated enzyme to calcium time series is
absolutely essential for this study.

Since the experimentally measured calcium concentration is only known
at a discrete set of points in time and therefore we assumed it to be constant
between two samplings, the coupling of a simulated enzyme to those time
series can only be an approximation. However, it is apparent that, in the limit
of a sampling frequency of the given time series near the frequency of reaction
events in the system and a measurement resolution in the range of single
particles, our method converges to the mathematically exact solution. For
nearly every practical case, neither the number of samples nor the resolution
will satisfy these theoretical conditions. To make sure that this fact did
not compromise our results, we compared simulated data where the enzyme
was only coupled to a calcium time series with data that was calculated
by exact stochastic simulation of the whole system, i.e. calcium dynamics
plus enzyme activation, and where no approximation was involved (data not
shown). For the parameter values and sampling times we used, our results
were not changed considerably by the approximate coupling.

One shortcoming of the stochastic coupling procedure described here is
that it is a one-way process. Obviously, the input calcium time series is fixed
and can not be changed during the process and so possible feedback of the
target enzyme on the calcium system, e.g. calcium buffering by proteins or
feedback via protein kinase C, has to be neglected.

6.4.2 Choice of model parameters

The volume of a hepatocyte is about 2pL [SABT07]. Assuming that the cy-
tosol, where the free Ca?* is located, takes up about half of the total volume
of the cell and that, in the case of bursting, the calcium level peaks around
1 uM, this results in a particle number of about 600 000. This particle num-
ber roughly corresponds to a volume of 107! in the arbitrary units of the
calcium model used. Therefore our results lie well in the range of physiolog-
ically meaningful parameters. Also the parameters of the simulated enzyme
have been chosen to be, at least, biologically plausible. Most of the time
calcium binding to enzymes occurs cooperatively, as e.g. with calmodulin.
Calmodulin has four binding sites with high affinity (K; ~ 0.1 — 1 uM)
for Ca?*. For this reason, we, like the authors of other numerical studies
[PLvzM*98; LOKO04; SKMO05], employ a Hill term of 4" order. The Ky,
value of the simulated enzyme lies between the calcium resting level and the
amplitude of secondary peaks, in the case of bursting oscillations.
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The reason for choosing this core calcium model instead of a more de-
tailed one was that, even though it is very simple in terms of size and kinetic
functions, it can show both spiking and bursting behavior in addition to
(elevated) steady states, thereby mimicking the dynamics of real cells af-
ter stimulation by different agonists (see [KOD*00] for details). Most other
models cannot show bursting oscillations. It also was relatively easy to im-
plement and fast to simulate stochastically. Nevertheless, the generation of
some of the time series with high particle numbers required computation
times in the range of several days. In fact, the purpose of this study was not
to analyze this specific calcium model and therefore the approach presented
here is not restricted to that model. It should also be mentioned that our
framework can easily be applied to arbitrary enzyme regulation mechanisms,
provided that they allow stochastic simulation of the Gillespie type, i.e. a
propensity can be assigned to every possible event in the system.

One problem of the calcium model we used is that the amplitudes of the
oscillations vary for different dynamic modes (see Fig. 6.2), whereas in real
hepatocytes the amplitudes of calcium oscillations have been reported to be
independent of the type of oscillations. Also the duration of bursts is longer
than in experiments which, we believe, led to the discrepancy in transfer
entropy between simulated and experimental data (see Figs. 6.7 and 6.8). To
mitigate this issues we plan to use more realistic calcium models with more
constant oscillation amplitudes, e.g. [LOKO04], in the future.

6.4.3 Estimation of transfer entropy

Often, (time-lagged) correlations are used to quantify the coherence of two
observables. However, correlations can only indicate linear relations, not
non-linear ones. Therefore mutual information has been developed which
is sensitive to all statistical dependencies [SKD'02]. Unfortunately, this
measure is still (like correlations) symmetric and cannot distinguish between
information sources and targets.

The transfer entropy, on the other hand, is explicitly asymmetric be-
cause it uses conditioned transition probabilities. As stated by Schreiber
[Sch00, p. 461], “transfer entropy is able to distinguish effectively driving
and responding elements and to detect asymmetry in the interaction of sub-
systems.” In addition, the use of transition probabilities makes it a dynamic
measure, meaning that it can account for the history of the processes. This,
together with its ability to consider linear and non-linear dependencies, ren-
ders it appropriate for use on non-linear signal transduction systems.

We found that a major issue with this measure is that it is not trivial to
be estimated from time series in a reliable way and that the estimation is



92

quite data-intensive.

One crucial point is that the processes have to be ergodic to allow for the
estimation of the probability densities from one time series alone. Also they
must be Markovian. In other words, their histories of length k and [ (see
Sec. 6.6.3), which are taken into account, must be longer than possible cor-
relation times. This is very important, because the transfer entropy detects
the deviation from this Markov property. One simple example where this
condition would not be fulfilled is when we just reversed the direction and
estimated the transfer entropy from the enzyme signal to the calcium signal
(Paet — Ca®t). We saw already that in our setting there can be no feed-
back from the enzyme to the calcium system and thus no information can be
transferred this way. Because the transfer entropy is a directional measure
and can distinguish between information transferred in one and the other
direction, one would naively think that it should equal zero (plus statistical
fluctuations) here. This, however, is not the case, because the calcium signal
alone is not Markovian. In fact, in the model it is coupled to G, and PLC
and their influence will lead to a transfer entropy which is not zero. There
are two possible solutions to this issue: a) consider the whole system (Ca?T,
G, and PLC) or condition on all coupled subsystems, or b) take into account
a long enough history for the processes in which all relevant information is
already embedded.

In all practical applications of the transfer entropy, especially with purely
experimental data, one has to fix the lengths of the two signal histories (k
and [) with care. Since the characteristic time-scale of auto-dependencies in
measured data is not known a priori, they can not be regarded as stemming
from an order-one Markov process. Therefore, one should estimate the trans-
fer entropy using different values for the order of the underlying processes,
and longer histories should be preferred. However, the often very limited
amount of data renders this avenue infeasible in many cases, since kernel
estimation would have to be applied to distribution functions in four and
more dimensions. One possible resort here would be coarse-graining of the
time series and the use of the discrete version of the transfer entropy. In
the present study we restricted ourselves to the order-one case, the reason
being that, in our case, the coupled protein is actually described by a Markov
process of order one and is not dependent on previous values. Therefore, a
history length of 1 (k =1 = 1) suffices.

Kernel density estimation is known to be very dependent on the choice of a
correct kernel bandwidth e. Rules of thumb exist for the optimal bandwidth
of (univariate) Gaussian kernels (see [Sil86]) which, however, are said to
often lead to oversmoothing. Little has been done for multivariate kernels
however. Instead of just using one bandwidth, we scanned the estimated
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transfer entropy over a range of different € values and checked for the range
of bandwidths where the estimates are independent of €, e.g. a plateau is
visible in the scans (Fig. 6.4). If there is a definite plateau, its values are
simultaneously the maximal values of the scan. Due to this and because
the estimated transfer entropy was observed to underestimate the true value
[KS02], we chose to take the maxima of the scans as estimates of the transfer
entropy.

The calcium signal and the enzyme signal have different ranges of values.
Therefore we normalized the time series to have mean 0.0 and standard
deviation 1.0 prior to the estimation, which allowed us to use the same € in
both spaces. This is justified, because the (continuous) transfer entropy is
independent of coordinate transformations [KKS02].

To improve our calculations, we used a Theiler window approach and
excluded all estimates where only less than a required minimal number of
neighbors could be found. This avoided spurious effects caused by temporal
correlations and dampened statistical fluctuations, respectively. In this study
we mainly used rectangular kernels. However, we also tried Gaussian kernels
(data not shown), which did not change our results considerably.

Transfer entropy is an averaged measure, i.e. it describes the information
transfer over the whole observation interval. We observed that periods in
the experimental calcium time series without bursts (Fig. 6.7) decreased the
overall transfer entropy. Therefore, if the processes under study are expected
to show some kind of locking or unlocking episodes, which we would dub sta-
tistical locking, the measure would have to be calculated on smaller (disjoint
or overlapping) windows in order to see possible changes over time. Care
has to be taken, though, that the windows are big enough to get a sound
statistical basis for the estimation.

We want to stress that the absolute values of our transfer entropy esti-
mates are, of course, dependent on the parameters of the estimation proce-
dure. In particular, the minimum number of neighbors needed for a sample
to be considered plays a major role here. Setting this number to values
greater than 1 helps to diminish statistical fluctuations, but can create a
bias towards zero if there are not enough samples available. Therefore, one
should be cautious when interpreting these values and should not mix re-
sults coming from different estimation procedures without justification. We
only compared estimates where the estimation parameters, the type of kernel
and the length of the input time series were the same. We attributed the
discrepancy in estimated transfer entropy of simulated and experimentally
measured data to lacking realism of the simple calcium oscillations model
used. Hence, we note here that transfer entropy could very well be employed
as a measure of realism for signaling pathway models. We envisage its use
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in biochemical modeling where models are optimized so as to have the same
information transfer as observed in experiment.

Also, regarding the rates of information transfer we estimated in this
study, one should be cautious. Even though they can provide a useful basis
for hypotheses on the functioning of cellular signal transduction, it is not
known what fraction of the information that can maximally be transferred
is actually used by downstream cellular processes. Because it is not yet
clear what features of the calcium signal really carry relevant information,
we used an information-theoretic approach. It potentially measures all the
information from the calcium signal that can be found in the protein signal.
In addition, this model-free approach facilitates direct comparisons between
simulated and experimentally measured data. Nevertheless, specific infor-
mation transferred from calcium to cellular processes could, in principle, be
estimated by extending the simple model to include these processes under
consideration and estimating the transfer entropy directly between calcium
and the observables of these processes. This includes the detection, analysis
and quantification of possible cross-talk between different signaling pathways.

6.4.4 A general framework

It should be mentioned that there are many potential variants and extensions
of the estimation algorithm (simple or adaptive histograms, adaptive kernel
density estimation, likelihood estimators and others [Sil86]), which we could
not cover here. However, regardless of the algorithm used, the basic strength
of the information-theoretic approach is that it is model-free. This allows
the direct comparison of simulated and experimental data.

6.5 Conclusions

In this study we combined methodologies from different fields in order to
elucidate the cellular information transfer via Ca?* signaling. The main
ingredients we used are:

e Modeling and simulation of calcium signal transduction, in particular
stochastic approaches.

o Stochastic coupling of a Ca?*-dependent protein to experimental and
simulated data.

» The so-called transfer entropy introduced by Schreiber [Sch00] and its
estimation using kernel density estimation techniques.
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We developed and implemented a framework for the analysis of both sim-
ulated and experimentally measured Ca?* time series with the information-
theoretic measure transfer entropy. This involved the stochastic coupling of
a simulated enzyme to arbitrary calcium time series and the estimation of
the transfer entropy of these bivariate data using kernel density estimation
methods.

This study presents the first application of transfer entropy to biochemical
signaling pathways.

We investigated the information transfer from calcium to the target en-
zyme under different conditions, namely different particle numbers (by vary-
ing the volume) and different calcium dynamics (corresponding to different
stimuli). We found that, most of the time, information transfer increases
with increasing particle numbers in the system. However, this increase is
different in systems with different dynamic modes (spiking, bursting, etc.).
More complex dynamic modes (bursting or irregular oscillations) tend to re-
sult in higher values of the transfer entropy. We observed that the input
signal has to lie in the sensitive range, e.g. near the K, value of the enzyme,
for the information transfer to be efficient. We also estimated the transfer
entropy based on experimental data from hepatocytes. The values of these
estimates are significantly lower than those from comparable simulated data.
The major reason for this seems to be the unphysiologically long duration of
simulated bursts. Further study is needed to investigate that in detail.

Even though the estimation of transfer entropy from time series is tricky
and there are still some unsolved issues, it is a promising tool not only for the
quantification of information transfer in biochemical networks, but also, for
instance, to distinguish between different stochastic time series where a pure
visual investigation is difficult. The direct comparison of two stochastic tra-
jectories is difficult: Not the actual trajectory is important, but the features
of it, that are essential for the correct functioning of the cell. In the case
of calcium signaling, they are the ones that can be decoded by downstream
elements.

Each dynamic state exhibits its own sensitivity to random fluctuations
(see Chap. 5) and this should be reflected in the faster degradation of infor-
mation transfer if the sensitivity is high. Therefore, one possible application
of this approach could be the detection of the transition between stochastic
and quasi-deterministic behavior, in cases where it is difficult to be identi-
fied by visual inspection alone. We saw one example of that already in the
case of ky = 2.99 (see Sec. 6.3), where the stochastic behavior is qualitatively
different from the deterministic limit and where the transfer entropy could de-
tect this transition. Another application could be information theory-based
model fitting where models are optimized so as to have the same information
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transfer as observed experimentally.

It is worth mentioning that our framework is not at all limited to cal-
cium signaling. Stochastic coupling and/or estimation of transfer entropy
from biochemical data can be easily applied to other biochemical models and
pathways. Therefore, we think, that our approach could also be a valuable
tool for the analysis of other signaling pathways.

Our approach can also be extended in a number of ways. On the tech-
nical side, for example, the estimation of transfer entropy from limited data
sets should be improved. This could include the automatic determination
of an optimal kernel bandwidth, the use of different kernels or alternative
probability density estimation methods.

On the biological side, we plan to investigate the type and amount of
information carried by the different properties of the calcium signal (ampli-
tude, frequency, duration, shape, timing), because it is not yet clear which
of those are really used in cells. Thus we hope that the transfer entropy can
give valuable hints for further theoretical and experimental studies. Further-
more, we want to use our framework to study different enzyme regulation
mechanisms and to analyze other signaling pathways including their possible
cross-talks.

6.6 Methods

6.6.1 Model

In this study we used a simple receptor-operated model [KOD*00] with three
variables (G,, PLC, cytosolic Ca*") to generate calcium time series (see
Sec. 3.2).

This model was simulated stochastically by Gillespie’s algorithm [Gil76]
(see Sec. 2.4.1 for details). Because the original model has arbitrary units, we
scaled it in time (by 1/20) to have roughly the same frequency as observed
experimentally. This scaling corresponds to a division of the rate parameters
kﬁl, kﬁg, k’g, k5, k’7, k’g, klO and ]{?11 by 20.

The parameter ko represents the stimulation strength and serves as bi-
furcation parameter to vary the dynamic behavior of the model. In addition,
we changed the numbers of particles present by varying the volume of the
system.

Coupled to this simple signal generating model is a model for calcium
binding to a protein. In the following we will use a slight modification of the
regulation mechanism described in [LOKO04].
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d[Pact] kact : [Ca2+]p

dt = KP + [Ca2+]p : [Pinact] - kinact : [Pact] (610)
M

with [Piot] = [Pinact] + [Pact) = constant.

Activation of the inactive form of protein Pj,.. to its active form P,
by Ca?" is modeled by a Hill term of order four while deactivation follows
mass action kinetics (Eq. (6.10)). The parameters were set to ku, = 0.025,
Einact = 0.005, Ky = 1.0, [Piot] = 5.0 and p = 4.

6.6.2 Stochastic coupling

As mentioned, we employed Gillespie’s algorithm for the stochastic simula-
tion of the model system.

However, since we not only want to analyze simulated calcium dynam-
ics, but also intend to couple measured calcium time series to our enzyme
activation model, we have to take that influence into account. The coupled
calcium system exerts an influence on the reaction propensities a,, in the pro-
tein model and thus they can no longer be considered constant between two
reaction events. Mathematically, this is equivalent to changing the homo-
geneous Poisson process into an inhomogeneous one and therefore the pure
stochastic simulation methods cannot be used in this case.

The reaction probability density function for such systems with time-
dependent a,, reads (see Gillespie 1992 [Gil92]):

P(r, 1) = ay (£ + 7) exp (- /t Ty au(t)dt) | (6.11)

One can sample this inhomogeneous Poisson process by integrating the
differential reaction probabilities over time. Whenever a stopping criterion
for one of the reactions is reached, the integration is interrupted and the
corresponding reaction event is instantiated. This method has been used in
hybrid stochastic/deterministic simulation methods (see Chap. 2), where the
set of reactions is partitioned into a stochastically simulated and a determin-
istically simulated subset. During the simulation, the influence of the (fast)
deterministic subset on the stochastic subset has to be considered.

When we couple a time series to a stochastically simulated system, we do
not know the states of the system which produced the time series between
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two samples. Therefore a reasonable presumption is to assume piece-wise
constant particle numbers between two sample times. In this special case we
can use, for instance, Gillespie’s Direct Method, with the modification that
recalculation of all the a, in the system, which are dependent on the coupled
time series, is needed whenever a new sample is observed in the time series.
This approximation is discussed in Sec. 6.4.

We implemented this simple method in C++-code dynamically linked
to OCTAVE (Version 2.9.9 on Linux)[Oct]. Our implementation accepts time
series with arbitrary sampling times, both evenly and unevenly sampled.

6.6.3 Kernel density estimation

For the estimation of the transfer entropy, usually either the time series
is coarse-grained by histogram-based methods and the transfer entropy is
estimated on the symbolic time series or kernel density estimation (Parzen
window) [Sil86] methods are used.

In this study, we set the history lengths k£ = [ = 1, which is justified in the
discussion (Sec. 6.4). One should keep in mind though, that in the general
case longer history lengths might be required. Setting those parameters
correctly is crucial for a reliable estimation. If this is the case, probability
densities in spaces of dimension > 3 must be estimated.

We implemented a kernel density estimation method for the transfer en-
tropy (see [KS02]) in C++-code, which has been dynamically linked to Oc-
TAVE (Version 2.9.9 on Linux)[Oct]. For the estimation of local probability
densities, we mainly used a rectangular kernel with variable radius e:

Plait.e(Ti) = i iK (xl%xl(n)) (6.12)

n=1
1

K(r) = 5601~ Ir)

with © the Heaviside function.

To avoid spurious effects caused by temporal correlations, we employed a
Theiler window approach which excluded all neighbors that were too close in
time. In addition, in order to dampen statistical fluctuations, only samples
that had a user-defined minimal number of neighbors were considered. The
kernel density estimation procedure was implemented using a 2-dimensional
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box-assisted neighbor-searching algorithm [KS97], which resulted in a five to
six fold speed-up compared to the naive implementation.

We scanned the transfer entropy of the simulated calcium model and the
coupled enzyme for different volumes (between 107'% and 5 - 107 [arbitrary
units]), corresponding to different particle numbers in the system (roughly
between 600 and 30000000 during primary peaks), and for different dynam-
ics, e.g. different values of the bifurcation parameter ks (1 understimulation,
2 spiking, 2.5, 2.85 bursting, 2.99 irregular, 3, 3.2 overstimulation). The
same kernel bandwidth were used in the calcium and the protein concen-
tration spaces, but the data was normalized to have mean 0.0 and standard
deviation 1.0 prior to the estimation.

6.6.4 Experiments

The experimental setup and the materials used to measure the calcium con-
centration in single rat hepatocytes upon stimulation by different agonists is
described in Sec. 3.4.

In addition to the procedure described there, we transformed these data
to be roughly in the same range of values ([0, 10]) as that of the simulated
data.
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Chapter 7

(General conclusions and
outlook

Prediction is very difficult,
especially about the future.

NIELS BOHR

The underlying theme of the present thesis is the investigation of the border
between stochastically and deterministically evolving biochemical systems.
This intermediate regime is highly important due to a number of reasons:

First of all, biological systems seem to have evolved exactly towards that
border [RWAO02] in many cases. In Chap. 5, for instance, we observed that
the number of receptors and channels in the Ca?*-phosphoinositide pathway
of hepatocytes are roughly in the range where the transition from stochastic
to quasi-deterministic behavior occurs. Conceivable driving forces for this
phenomenon include the trade-off between minimal maintenance costs (—
small particle numbers) and reliable functioning of the cell (— high particle
numbers)!. Signaling pathways, e.g., are dependent on a minimal number of
particles to reach a certain rate of information transfer (see Chap. 6). Also,
cells possibly attenuate [BFLMO5] or produce noise [SPA05] in order to keep
it on a certain intermediate level that, on the one hand, allows exploitation
of stochastic effects and, on the other hand, avoids the detrimental aspects
of molecular fluctuations.

Another argument for the study of this middle range is the emergence
of sophisticated single-cell measuring techniques [ELSS02; OTK'02] that
extend the set of observable phenomena to include stochastic effects beyond
the mere bulk behavior of biochemical networks.

LA related but deterministic approach is the “principle of flux minimization” in [Hol04].
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Finally, a very practical reason for the relevance of this study is that
the field of Systems Biology promised to shed some light on the systemic
aspects of biochemical systems. This implies the formulation and analysis
of increasingly big and heterogeneous models, as, for instance, in Klipp et
al. 2005 [KNK™05], which integrate gene expression, metabolic and signaling
pathways. The simulation of these models requires algorithms that are able
to span the gap between stochastic and deterministic regimes, such as the
approximate and hybrid methods reviewed in Chap. 2. Since already the
consideration of growing volume and cell division or temperature changes, in
principle, necessitates hybrid modeling, it is anticipated that this area will
even be of more importance in the future. Very helpful in that respect could
also be finding means to predict whether or not pronounced stochastic effects
should be expected in a specific model system (see Chap. 5).

We explored this intermediate range between stochastic and deterministic
behavior primarily from three different angles:

o The computational aspect (Chapters 2 and 4): What simulation ap-
proaches exist, especially approximate and hybrid methods, that are
capable of bridging the gap between the different regimes? What are
the potential hurdles and pitfalls?

o What determines the transition from stochastic to quasi-deterministic
behavior (Chap. 5)7 How can this transition range be located in specific
models?

 Stochastic analysis (Chap. 6): How can the performance of signaling
pathways be quantified (information theory) and how does this change
under different cellular conditions, particularly system size?

These perspectives are intimately connected: Chap. 2 with an overview
of stochastic simulation algorithms, of course, provides the basis for all sub-
sequent chapters. The divergence (Chap. 5) as easily computable quantity
can indicate the onset of stochastic effects. Therefore, it could be used to
aid researchers looking for the most appropriate simulation method or as
partitioning criterion in automated hybrid simulation methods (Chap. 2).
Hybrid methods can also be used to elucidate the transition from stochastic
to deterministic behavior. Which reactions are mostly responsible for sto-
chastic behavior can be analyzed by varying the partitioning scheme. The
stochastic coupling procedure in Chap. 6 that uses ideas from hybrid simu-
lation represents another connection. Also, the transfer entropy (Chap. 6)
for the quantification of information transfer seems to be useful to distin-
guish between apparently similar stochastic trajectories in a more objective
manner.
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We mostly used calcium signal transduction (Chap. 3) as test system be-
cause it is not only a well-studied and physiologically very relevant system but
also prototypically exhibits all the properties we sought to investigate. How-
ever, we also showed the general applicability of our approaches, for instance
in Chap. 5, by testing them on other systems like the peroxidase-oxidase
reaction [OLKO03] and mitogen-activated protein kinase cascades [Kho00].

This study comprises, to the best of our knowledge, the first application
of transfer entropy to biochemical signaling pathways. Also, the use of the
divergence value as an indicator for the stochastic/deterministic transition
is an original contribution. The stochastic coupling procedure introduced in
Chap. 6 extends the common deterministic coupling of time series and ODEs.
It is essential for systems where randomness ought to be taken into account.
We collected and analyzed the different stochastic methods that were scat-
tered throughout the literature in the hope that our systematic presentation
will help researchers find the most appropriate simulation algorithm for their
specific model.

7.1 Outlook & suggestions for future projects

In the course of this study, naturally, more questions were raised than could
currently be answered. A number of promising directions for future work were
already discussed in the respective chapters. Nevertheless, we will briefly
highlight some of the biggest challenges and give concrete suggestions for
future studies:

e The visual inspection and comparison of stochastic and deterministic
time series should be substituted by a more objective and automated
procedure which would improve the precise detection of the transition
range. This problem looks simple at first sight. However, keeping in
mind that in the general case the dynamics can change qualitatively
if stochastic fluctuations are taken into account it turns out to be a
major challenge. Direct comparisons of the time series using squared
error sums, inter-spike interval histograms etc. do not seem appropri-
ate. One possible solution would be to compare the attractors of the
deterministic solution and the different stochastic solutions instead. We
already did some experiments using so-called cross-correlation integrals
[Kan94] and the preliminary results look promising.

e The estimation of the transfer entropy from limited data sets should
be improved. Two possible solutions for that would be a) to develop



104

better estimators or b) to boost the statistics. Ad a), an approach de-
veloped in [KSGO4] for mutual information can possibly be extended
to the transfer entropy. Ad b), multiple stochastic coupling of the en-
zyme process to the same experimental time series would sharpen the
knowledge of the probability densities of the enzyme system (personal
communication, Prof. Markus Miiller, Universidad Auténoma del Es-
tado de Morelos, Mexico).

Sophisticated estimation techniques that give reliable results even with
a limited amount of data will be even more important when transfer
entropy is to be applied to pure experimental data. Here, it is crucial
to consider long enough processes’ histories, since the exact order of
the processes is not known a priori. This necessitates the estimation of
probability densities in spaces of four and more dimensions.

The transfer entropy is an averaged quantity. However, a sliding-
window approach which would be required to detect changes in in-
formation transfer over time is difficult to implement because of the
data-intensive estimation process. One solution to avoid this problem
is the use of a “local version” of the transfer entropy (personal commu-
nication, Joe Lizier, CSIRO ICT Centre, Sidney, Australia).

Finally, a useful future step would be to formalize the knowledge about
the specific biochemical simulation methods. This knowledge could
then be implemented into a modeling environment, such as SYCAMORE
[Syc], thus guiding users intent on modeling and analyzing a specific
biochemical system.
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Appendix A

List of software systems for biochemical systems capable of stochastic simu-
lation. The type of the simulation engines implemented and corresponding
references are given.

BioNetS Gillespie, Langevin Eq., Hybrid Solver [Bio; AME(O4]

Cellware Gillespie, Gibson, 7-Leap (explicit), Langevin-type Eq. with Pois-
son noise-term [Cel; DMS*04; DMS105]

Copasi LSODA, Gibson, Hybrid Solver [Cop; HSGT06]
Dizzy Gillespie, Gibson, T-Leap [Diz; ROB05]
Dynetica Gillespie [Dyn; YHY03]

E-Cell Gillespie, Gibson, T-Leap (implicit and explicit), Langevin Eq., Hy-
brid Solver [E-C; THT 99|

Jarnac Gillespie [Jar]

Kinetikit Hybrid Solver (Vasudeva/Bhalla) [Kin; VB04]

MCell Spatial stochastic simulation [MCe; BLSS91]

MesoRD Spatial stochastic simulation [Mes; HFE05; EE04]

Moleculizer Spatial stochastic simulation [Mol; LBO5]

SmartCell Gillespie, T-Leap, Spatial stochastic simulation [Sma; ABD*04]
Stochastirator Gibson [Stob]

StochSim Stochastic mesoscopic approach [Stoc; LS01; MFBIS|

Stocks Gillespie (lin. growing vol. & and cell division possible) [Stod; Kie02]
Stode Gillespie [Stoe; vGKO1]
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