
TRANSFORMATIONS TO ADDITIVITY IN

MEASUREMENT ERROR MODELS

September �� ����

R� Stephen Eckert Raymond J� Carroll and Naisyin Wang
Lilly Research Laboratories Department of Statistics
Eli Lilly and Company Texas A�M University
Indianapolis IN ����� College Station TX 		��
�
��


SUMMARY

In many problems one wants to model the relationship between a response Y and a covariate X �
Sometimes it is dicult� expensive� or even impossible to observe X directly� but one can instead
observe a substitute variable W which is easier to obtain� By far the most common model for the
relationship between the actual covariate of interest X and the substitute W is W � X �U � where
the variable U represents measurement error� This assumption of additive measurement error may
be unreasonable for certain data sets� We propose a new model� namely h�W � � h�X� �U � where
h��� is a monotone transformation function selected from some family H of monotone functions�
The idea of the new model is that� in the correct scale� measurement error is additive� We propose
two possible transformation families H� One is based of selecting a transformation which makes the
within sample mean and standard deviation of replicated W �s uncorrelated� The second is based on
selecting the transformation so that the errors �U �s� �t a prespeci�ed distribution� Transformation
families used are the parametric power transformations and a cubic spline family� Several data
examples are presented to illustrate the methods�

Some Key Words� Errors�in�Variables� Nonlinear Models� Power Transformations� Regression Cal�
ibration� SIMEX� Spline Transformations� Transform�Both�Sides�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127605722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


� INTRODUCTION

Measurement error models concern the situation where one or more variables in a study cannot be

measured exactly� We restrict our attention to the case where a single variable is measured with

error� It is usually assumed that the relationship between the variable which is actually observed�

W � and the true covariate of interest� X � is W � X � U � where U represents measurement error�

Fuller ����	� applies this additive model for measurement error to many classical linear models�

There are also other ways to model the relationship between W and X � such as the multiplicative

error model W � XeU � which gives additivity in the logarithmic scale� i�e�� log�W � � log�X� � U �

The idea behind both the additive and multiplicative error structure models is that� in the correct

scale� measurement error is additive� The additive and the multiplicative error models are speci�c

cases of a more general model W � G�X�U� for some function G� In this article� we consider the

set of functions G such that G�X�U� � H��fH�X� � Ug� where H is a monotone function with

inverse H���
Additivity underlies almost all the measurement error models and modeling techniques in the

common case that X is unobservable� The classical functional methods for ordinary regression

�Fuller� ���	� and for general nonlinear models �Carroll� Ruppert � Stefanski� ����� essentially

without exception assume additivity� Likelihood �structural� methods which naturally allow for

the commonly occurring within�person replication of the W �s typically assume additivity in some

scale with a known distribution for U �

For all of these reasons� �nding a scale for additive measurement error is important� In this

paper� we investigate methods for determining an appropriate scale� Section � discusses two di�er�

ent methods for determining the correct scale for additivity of measurement error� the correlation

method and the error distribution method� In section 
 we describe the transformations used� and

in section � we describe their implementation� In section � we present data examples to illustrate

the methods�

� FUNCTIONAL TRANSFORMATIONS

In measurement error models� the literature makes a distinction between classical functional mod�

els� in which the values of unobserved true values of Xi� i � �� � � � � n are considered to be a sequence

of unknown �xed constants� and classical structural models� in which the values of X are considered

to be random variables� We believe that a more fruitful classi�cation scheme is that of functional

modeling� where no assumptions are made about the distribution of the Xi�s� and structural mod�
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eling� in which parametric assumptions are made about the distribution of the unknown X �s� For

a full description of functional versus structural modeling� see Carroll� et al� ������ pp ���������

Additive error models assume that there is a monotone function h��� such that

h�W � � h�X� � U� ���

where the random variable U is independent of X � There is an essential di�erence between our

work and that typical in transformations� namely that in our case X cannot be observed so that

without any additional information� h��� cannot be identi�ed� In practice� this extra information

comes from replicating the W �s� so that �Wij� is observed for i � �� ���� n units and j � �� ���� J

replicates per unit� The resulting errors �Uij� are assumed to be independent of Xi� although they

may be correlated either given i or marginally�

The issue we address in this paper is that of estimating the transformation function h���� We

propose two di�erent methods� both of which are truly functional modeling methods� in that they

make no assumptions about the distribution of X � so that the methods are robust to the distribution

of the predictor�

There are two general methods we propose� correlation methods and error distribution methods�

These two methods are derived from the properties of the transformation model ���� as follows�

Property �� De�ne the within�person mean W i�h� and the within�person standard deviation

si�h� as

W i�h� � J��
JX

j��

h�Wij�� si�h� �

���J � ����
JX

j��

n
h�Wij��W i�h�

o������ �
respectively� Under model ���� if the errors are symmetrically distributed� then W i�h� and

si�h� are uncorrelated� Thus the correlation method selects the transformation h��� so that

the sample correlation for W i�h� and si�h� equal zero� Ruppert � Aldershof ������� Box�

Hunter� � Hunter ���	��� and Solomon � Cox ������ each mention correlation type methods

in di�erent contexts�

Property �� For the correct transformation� the distribution of

h�W��� h�W�� � U� � U� ���

does not depend on X � In particular� if the U �s are multivariate normal so too is ���� If

�U�� ���� UJ� have a multivariate t�distribution with k degrees of freedom� then ��� is a multiple

of a t�distribution with k degrees of freedom� If the U �s are independent with a mixture of two
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normals distribution� ��� has a symmetric mixture of three normals distribution� These ideas

suggest that the second class of methods� the error distribution methods� transform so that

the terms in ��� follow one of the distributions mentioned� We address distributional shape

via the Anderson�Darling �Anderson � Darling� ����� and Filliben correlation �Filliben�

��	�� statistics� There are times when a distributional model for the measurement error is

desirable or even essential� Carroll� et al� ������ describe several techniques which require

that the measurement error distribution be speci�ed� including Simulation�Extrapolation

�Chapter ��� corrected scores �Chapter ��� conditional scores �Chapter ��� and likelihood

techniques �Chapter 	��

� TWO FAMILIES OF TRANSFORMATIONS

��� De�nition of the Power Transformation

The power transformation family was described in Box and Cox ������� The transformations in

this family are indexed by the scalar parameter � and have the form

h�vj�� � v��� �

�
�v� � ����� � �� �

log�v� � � � ��

Power transformations are monotone for each �xed �� However� we have found that the restricted

shape of power transformations limits their utility somewhat in our context� and for that reason

we describe below an alternative family�

��� De�nition Of The Spline Transform

The transformation family H which we consider is the set of all zero�intercept� cubic piecewise�

polynomial spline functions with knots at � � ���� � � � � �p�� Transformations from this family have

the form

h�vj�� �� � ��v � ��v
� � ��v

� �
pX

k��

�k�� �v � �k��� �
�

where �a��� � a� if a � �� and � � otherwise� In general� the problem of picking knot points � is

a dicult one� We will assume throughout this discussion that� given the data� the knot points �

are �xed� For a more detailed discussion of knot point selection� see� for example� Eubank �������

Our method of selecting the knot points is as follows�

�� Let the combined data vector be fW �� including all replicates across all units�

�� Let �� � fW ��������� where fW ��p� is the pth sample percentile of fW �







� Let �� � fW �������� �p�� � fW �������� �p � fW ��������

�� Let �i � fW ������ � fp� 
g��fi� �gf����� ����g�� i � 
� � � � � p� �

One should also note that the transformation given in �
� does not have the usual constant

term� which is not identi�able� The parameter vector � � ���� ���� �p����

The issue of obtaining a monotone transformation function is dicult� For a given set of data

and knot points �� describing the set f� � h�v � �j�� �� � h�vj�� �� � �� �� � �g is a nontrivial

analytical problem� Certainly� requiring that �i � �� i � �� � � � � p � 
 is sucient to obtain a

monotone transformation� but this is clearly unduly restrictive�

Our solution to the problem of obtaining a monotone transform is to create a set of M � � grid

points f	� 
 	� 
 � � � 
 	mg on which we require that

h�	ij�� ��� h�	i��j�� �� � �� i � �� � � � �M� ���

We usually set M � �
� let 	� through 		 be the �st� �nd� 
rd�� � �� and �th percentiles of the

combined data vector fW �� let 	�
 through 	�� be the ��st� ��nd� �
rd� � � �� and ��th percentiles offW �� and let 	� through 	�� be set at evenly�spaced percentiles of fW � between the �th and the ��st�

similar to step ���� in the procedure describing the selection of knot points� We have found that

through careful selection of these grid points� the �nal transformation will be monotone through

the range of the data�

� CORRELATIONS AND DISTRIBUTIONS

Using Property � of section �� the correlation methods �nd the transformation which makes the

within�person mean and standard deviation have zero sample correlation� With the power trans�

formations restricted to the range �
 � � � 
� we have always observed a unique zero numerically�

although in principle this need not be the case� The spline transformation has also had satisfactory

numerical behavior� although there is no guarantee of a unique zero�

��� Assessing The Need For A Transformation Using Correlation and Powers

An important question to answer is whether or not the data indicate that a transformation would

be appropriate� One way to answer this question is to create a con�dence interval for ��� the value

at which the population correlation between the within�person mean and standard deviation equals

zero� One rejects the �no transform� null hypothesis if the interval does not contain �� We con�

structed an asymptotic con�dence interval for �� using the delta method and sandwich covariance
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estimate via standard techniques� but while the con�dence level for this interval is correct asymp�

totically� the convergence to the nominal level is quite slow� We also considered con�dence intervals

using resampling techniques described in Efron and Tibshirani ����
�� Figure � shows the results

of a simulation study comparing the asymptotic con�dence interval to a con�dence interval created

using the bootstrap estimate of standard error� We studied other resampling�based con�dence in�

tervals with the same result� the delta�method con�dence interval with sandwich covariance matrix

estimate converges to its nominal level much more slowly than any of the bootstrap methods�

��� Assessing Distributional Shape

We consider the spline transformation to normality when there are exactly two replicates� The

power transformations are even easier to work with� The overall goal is to �nd a vector b� which�

for a given data set� makes the di�erences Ei � h�Wi�jb�� �� � h�Wi�jb�� �� look as �normal� as

possible� while satisfying the constraints given in ���� Actually� one need not specify a normal

distribution for the measurement error� We investigate both bivariate t distributions and normal

mixture distributions later in this article� There are several ways to check for normality of the

di�erences Ei for a given value of �� We have chosen to use the probability plot correlation

coecient �PPC� described in Filliben ���	��� which is a relative of the Shapiro�Wilk W statistic

described in Shapiro and Wilk ������� The basic idea is to calculate the correlation coecient for

a QQ�Plot of the Ei� The closer the empirical distribution of the Ei is to a normal distribution�

the closer the PPC for the Ei should be to �� Hence� our method of estimating � is to �nd the

value b� which� subject to the constraints in ���� maximizes ��E�� where E � �E�� � � � � En�T and

��v� is the PPC for the vector v � �v�� � � � � vn�T �

In this maximization problem� both the constraints and the objective function have simple

matrix expressions� Given the data fWijg� i � �� � � � � n� j � �� � and a set of knot points �� de�ne

the matrices D and C as

Dik �

�
W k

i� �W k
i� i � �� � � � � n k � �� � � � � 


�Wi� � �k���
�
� � �Wi� � �k���

�
� i � �� � � � � n k � �� � � � � p � 


Cik �

�
	ki � 	ki�� i � �� � � � �M k � �� � � � � 


�	i � �k���
�
� � �	i�� � �k���

�
� i � �� � � � �M k � �� � � � � p� 


���

Thus� the maximization problem is to �nd max


��D�� subject to C� � �� where by C� � �

we mean that each element of C� is nonnegative� The constrained maximization is accomplished

using the FORTRAN program NPSOL �Gill� Murray� Saunders � Wright� ������

In modeling data such as the examples we discuss in Section �� it is possible that the error
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distribution may be something other than normal� We consider alternate distributions for the

measurement error� speci�cally the bivariate tk distributions �Johnson and Kotz� ��	�� for k �

��� ��� �� �� �� 
� and �nd separate transformations for each possible error distribution� Note that the

bivariate tk distributions are such that if �U�� U�� � Bivariate tk � then �U��U���
p

� � Univariate tk�

The modi�cation to the PPC statistic is simple�one calculates the correlation coecient for the

QQ�plot of the speci�ed distribution instead of the normal distribution� As an additional check�

for each transformation� we calculate the Anderson�Darling A statistic for the vector of di�erences

E �Anderson � Darling� ������

We found with most of our examples that the spline transformation based on the error method

transforms the data such that the error distribution is either normal or �nearly normal�� i�e�� a

bivariate t distribution with either �� or �� degrees of freedom� with the non�normality being

attributable to a small number of points in the di�erence vector E� Another reasonable way to

model the data is to assume that the measurement error is distributed as a two�component normal

mixture distribution� with the measurement error for a �relatively small� number of data pairs being

generated by a normal distribution with slightly heavier tails� We selected four normal mixture

distributions� each chosen to have the same �rst four moments as a univariate tk distribution� for

k � ��� ��� �� and �� respectively� We use the shorthand NM�k� to refer to such a normal mixture

distribution� For further information about the NM�k� distributions� see the Appendix�

��� The Spline Transform With More Than � Measurements Per Individual

Unlike with correlations� the error distribution methods which model the distribution of the di�er�

ences given in ��� do not have an easy direct de�nition for the case of J � �� There are a variety

of possibilities� including transformations so that the within�person sample standard deviation has

the distribution of a sample standard deviation of a candidate error model� in which case the results

of the previous subsection apply� Alternatively� one may wish to analyze the data pairwise� as this

can often point out unusual replicates� Here we describe such a pairwise implementation�

In order to select the optimal � value� we must �rst determine the appropriate distribution forU �

and then optimize with respect to that measurement error distribution� We select the distribution

for U by some preliminary analyses on two columns of data� If the data are measurements on the

same individual taken over time� then it makes some sense to use the two columns of data for which

the measurements are farthest apart chronologically�

We implement the preliminary analyses in two stages� In the �rst stage� we select two columns

of data� and �nd separate estimates b�k � k � �� 
� �� �� �� ��� ��� where b�� is the value of � which
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maximizes ��E� for normally�distributed measurement error� and b�k � k � � is the value of � which

maximizes ��E� for measurement error with a bivariate tk distribution� For each value of b�k � we

examine the PPC and AD statistics for the di�erence vector E� and for b�� we also examine the

PPC and AD statistics for the NM�k� distribution for k � �� �� ��� and ��� We also calculate the

intra�individual mean�standard deviation correlation for the two selected data columns for eachb�k �

Using the calculations in the �rst stage as a guide� we then select an appropriate b�k � say b��
for additional analysis in the second stage� In this stage� we apply the transformation h�vjb��� ��
to every data value Wij � i � �� � � � � n� j � �� � � � � J � and then do an analysis of the di�erences of

the transformation for each possible pair of columns� In this di�erence analysis� we calculate PPC

and AD statistics� and their p�values� for the normal distribution� bivariate tk distributions with

k � 
� �� �� �� ��� and ��� and NM�k� for k � �� �� ��� and ��� We also calculate the intra�individual

mean�std correlation for each pair of columns of transformed data�

By combining the two stages of analysis� we can select an appropriate distribution for the mea�

surement error U � We can then de�ne quantities as follows to �nd an optimal b� value� Speci�cally�

if �f�v�� � � � � vn�T g is the PPC function for the speci�ed error distribution� let

Aikm��� � h�Wikj�� ��� h�Wimj�� ��
Qkm��� � �

h
fA�km���� � � � � Ankm���gT

i
Q��� �

�

J�J � ��

J��X
k��

JX
m�k��

Qkm���

eQ��� � median fQkm���g � � � k � J � �� k 
 m � J

We can then consider both �� the numerical maximizer of Q���� and e�� the numerical maximizer

of eQ����

� EXAMPLES

��� Urinary Sodium Chloride Data

The Urinary Sodium Chloride data are discussed in Liu � Liang ������� In a study attempting to

relate the incidence of hypertension with urinary sodium� overnight urine samples were taken from


�	 men on 	 consecutive nights� The data from days ��� were available to us� Because the data

have a very high autocorrelation� we examined the data from days � and �� which have the least

correlation in the errors and hence presumably the most stable statistical properties�

	



Transform Optimization Mean�Std Error Dist� PPC AD
Criterion Correlation Comparison p�value p�value

Power �� � ��
��� Correlation ���� Normal ����	 �����
Spline Correlation ���� Normal ����
 ��	��

PPC�Normal� ���� Normal ����� �����

Table �� Comparing transformations to di�erent error distributions for the USC Data� The spline
transformations used � knot points�

The estimated power transform from the correlation method was b�� � ��
��� with bootstrap

con�dence interval  ������ �����!� thus indicating the need for a transformation� We tested the

di�erences of the power transformed data for normality� and found a PPC p�value � ����	� and

an AD statistic p�value � ������ In both cases� the null hypothesis is that the di�erence vector E

has a normal distribution� with low p�values indicating non�normality� Hereafter we shall say that

a data vector �passes� a given test �either PPC or AD� for a certain distribution if the P�value

for the calculated statistic is greater than ����� Thus� the di�erence vector E from the power

transformation �passes� both the PPC and the AD tests for normality�

Table � shows the results of the error distribution method using cubic splines for estimating

the transform� Each row in the table gives the transformation� the criterion for optimization� the

within�person mean and standard deviation sample correlation� the distribution under which the

PPC and AD statistics are computed� and their corresponding p�values� One can see that the

di�erences from either spline transformation clearly pass the PPC and AD tests for normality� with

acceptably low within�person sample mean versus standard deviation correlation�

Figure � compares the correlation method power transformation and the error distribution

method spline transformation� The circles in the graph represent percentiles of the data� from the

�st to the ��th� Each transformation has been standardized to the same scale� For this data set�

the power transformation and the spline transformation were almost identical�

We repeated the analysis using all pairs of days and all six days together� and with one exception

the answers were similar� The exception occurs for the pair of days ������ which seem to behave

together quite di�erently from all the others� We have no explanation for this behavior�

��� Framingham Heart Study

The Framingham heart study measured various factors such as age� smoking habits� and blood

pressure for ����� men aged 
����� attempting to link these factors to the presence of coronary
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Transform Optimization Mean�Std Error Dist� PPC AD
Criterion Correlation Comparison p�value p�value

Power �� � ��	��� Correlation ���� Normal 
 ����� 
 �����
t�� ���	� �����

NM���� ����� ��
��
Spline Correlation ���� Normal 
 ����� �����

NM���� ����� �����
PPC�Normal� ������ Normal 
 ����� 
 �����

NM���� ��	�� ��

�
PPC�t��� ������ t�� ���	� �����

NM���� ����� ��
��

Table �� Comparing transformations to di�erent error distributions for the LSBP Data� The spline
transformations used �� knot points�

heart disease� The data we analyze here are two systolic blood pressure �SBP� measurements�

the �rst of which is the average of two SBP measurements taken during a physical exam� and the

second of which is the average of two SPB measurements taken at another physical exam two years

later� We actually pretransform the data by analyzing log�SBP � ���� which is a modi�cation of

the transformation originally suggested by Corn�eld ������ and which we will designate as LSBP�

For the pretransformed LSBP variable� using the correlation method with power transformation

we found b�� � ��	�� with ��" bootstrap con�dence interval  ����
� ��

�!� and ��" con�dence

interval  ������ �����!�

For the error distribution method using the spline transformation� Table � shows the usual

statistics for the transformations of the LSBP data to additivity with various error distributions�

There are a number of points to note� The power transformation using the correlation method

results in di�erences which are non�normal and do not �pass� tests for the t�distribution with

�� degrees of freedom� The spline transformation using the correlation method does pass the

t�� and NM���� distribution tests� The spline transformation which attempts to �t a normal

distribution to the di�erences is unsuccessful in doing so� at least with this number of knots� All

of these calculations suggest that the errors are heavier�tailed than the normal distribution� The

spline transformation under the error distribution method for the NM���� distribution is shown in

Figure 
�
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Transform Optimization Mean�Std Error Dist� PPC AD
Criterion Correlation Comparison p�value p�value

None N�A ������ Normal 
 ����� 
 �����
NM���� ���
� 
 �����
NM���� ����
 �����
t�� ��	�� �����

Power �� � ������ Correlation ���� Normal 
 ����� 
 �����
Spline Correlation ���� Normal ���
� ��
��

PPC�Normal� ���� Normal ��	�� ��
��

Table 
� Comparing transformations for the " Calories from Fat data�

��� CSFII Data

Our third example involves the Continuing Survey of Food Intakes for Individuals �CSFII� data set

�Thompson� et� al� ������ This data set contains information on nutrient intakes for ���
� women�

The data contain multiple measurements for each woman for a variety of daily dietary components

such as vitamin A� vitamin C� amount of saturated fat� total calories� etc� Four measurements for

each component were gathered for each woman� The �rst measurement was based on an extensive

interview� and the subsequent three measurements were based on follow�up telephone interviews�

We analyze one dietary component from the CSFII data� percent calories from fat� by consid�

ering the second and fourth measurements for each woman in the study� We choose not to use the

�rst measurement because it was gathered in a di�erent manner than the last three� The power

transformation using the correlation method yields an estimate b�� � ������ with bootstrap con��

dence interval  ������ �����!� However� as is shown in Table 
� the di�erences of the no�transform

model fail both tests for normality� The no�transform di�erences do pass both PPC and AD tests

for t�� and NM���� distributions�

The spline transformations with � knots both pass the normality tests� with acceptably low

within�person sample mean and standard deviation correlation of the transformed data values is

������ The graph of the spline transformation using the error distribution method is given in

Figure ��

� DISCUSSION AND CONCLUDING REMARKS

We have presented two methods for transforming the data to achieve additive measurement error�

The correlation method transforms so that the sample correlation between the within�person mean
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and standard deviation equals zero� while the error distribution method transforms so that dif�

ferences have a speci�ed distribution� Within each method we used power transformations and

transformations based on cubic splines� A question which may arise is� �why not just transform the

data to normality#� Such a method has been suggested by Nusser et� al� ����	�� who also use power

transformations and cubic splines� This method� which we call the marginal method� selects h���
such that h�Wi��� i � �� � � � � n is approximately normally distributed� Thus� it transforms the data

to normality instead of transforming the errors to normality� The marginal method with power

transformation is in wide use in nutritional epidemiology�

There is no intrinsic reason that the marginal method must �nd the �right� or �wrong� answer�

Indeed� in many examples marginal methods will yield transformations which pass both our cor�

relation and error distribution criteria� One drawback of marginal methods which is important in

measurement error modeling can be seen by once again considering the concepts of functional and

structural modeling� The methods of transformation we have suggested are functional� by which

we mean that they make no explicit assumptions about the distribution of the unobservable X �

This makes sense in the context of measurement error models� because of the emphasis in that �eld

of functional modeling to estimate regression parameters�

Unlike our methods� marginal approaches are explicitly structural� and can depend in a strong

way on the distribution of X � For example� consider the case that no transformation is necessary� so

that W � X �U � h�v� � v and U is normally distributed� Marginal methods transform so that W

is normally distributed� and hence they will properly conclude that no transformation is necessary

only if X is also normally distributed� This does not mean that marginal methods have no value�

far from it� but only that one needs some care in employing them� As a noteworthy example of

such care� in their applications Nusser� et al� also check what we call Properties � and � in section

��

One point to keep in mind is that if there are J � � replicates� then plots of the within�

person standard deviation versus the mean will have an odd shape if a signi�cant number of W �s

approach a lower bound� For example� if the lower bound is zero� and if W� 	 �� then the standard

deviation 	 W������ while the mean is 	 W���� so that the plot of the standard deviation against

the mean will in e�ect be bounded by a line with intercept zero and slope �����

Finally� there is no guarantee that one can �nd a single transformation which will achieve ad�

ditivity as measured by the correlation method with a normal or nearly normal error distribution

as measured by the error distribution method� The Framingham data using power transformations

��



are a good example of this issue� Ruppert � Aldershof ������ address this issue in their context�

and suggest estimating parameters either as a weighted average of the correlation and error distri�

bution methods� or by weighting their estimating equations� This is an interesting issue for further

exploration�
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� APPENDIX

��� Mixture Normals

If X � tk and k � �� the �rst and third moments equal zero and the second and fourth moments

are EX� � k��k� �� and EX� � 
k���k�� �k � ��� respectively� A corresponding mixture normal

density with the same �rst four moments is de�ned as follows� It has density

f�y� �
�X

j��

��j�j�� �y�j� �

where ���� is the standard normal density function� �� � �� �� � ��k���k���� �� � k���k���k���

and �� � �� ���

��� Details Of The Algorithm

The following are the steps for optimizing the PPC statistic with respect to the coecient vector

�� Assume that we have data Yij � i � �� � � � � n� j � �� �� a vector of knot points � � ���� � � � � �p�
T �

and a speci�ed measurement error distribution U � We will use the notation Yi� i � �� � to denote

the vector �Yi�� � � � � Yn��T � and Y � � �Y T
� � Y T

� �T � De�ne the matrices D and C as in ����

�� Let d be the theoretical standard deviation of Ui� � Ui��

�� Let sY be the sample standard deviation of Y ��


� De�ne Wij � Yij�sY �

�� Generate random values b�m� b�m � �b�m��� � � � � b�m�p���T

for m � �� � � � � ����

�a� Let b�mi� i � �� � � � � p� 
� be independent Uniform ����!�
�b� Let sdm be the sample standard deviation of the elements of Db�m�
�c� Multiply each element of b�m by the factor d�sdm�

�




�d� Test for Cb�m � �� If any element of Cb�m is negative� �throw out�b�m and generate b�m�� in step �a� above�
�e� Calculate �m � ��Db�m�� the PPC statistic�

�� Use the value of b�m which gave the maximum �m as the starting value

in the numerical optimization program NPSOL to �nd max


����

��



Coverage Probabilities for Theta = 0.5
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Figure �� Coverage Probabilities for both the asymptotic con�dence interval and the con�dence
interval which uses the Bootstrap Standard Error�
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Figure �� Graph of transformations for Urinary Sodium Chloride �USC� Data� The dashed vertical
lines show the locations of the knot points�
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Figure 
� Graph of transformations for pretransformed systolic blood pressure �LSPB� data� The
dashed vertical lines show the locations of the knot points�
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Figure �� Graph of transformations for the CSFII " Calories from Fat �PCT� data� The dashed
vertical lines show the locations of the knot points�


