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SUMMARY

In many problems one wants to model the relationship between a response Y and a covariate X.
Sometimes it is difficult, expensive, or even impossible to observe X directly, but one can instead
observe a substitute variable W which is easier to obtain. By far the most common model for the
relationship between the actual covariate of interest X and the substitute W is W = X 4+ U, where
the variable U represents measurement error. This assumption of additive measurement error may
be unreasonable for certain data sets. We propose a new model, namely h(W) = h(X )+ U, where
h(-) is a monotone transformation function selected from some family 7 of monotone functions.
The idea of the new model is that, in the correct scale, measurement error is additive. We propose
two possible transformation families H. One is based of selecting a transformation which makes the
within sample mean and standard deviation of replicated W’s uncorrelated. The second is based on
selecting the transformation so that the errors (U’s) fit a prespecified distribution. Transformation
families used are the parametric power transformations and a cubic spline family. Several data
examples are presented to illustrate the methods.
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1 INTRODUCTION

Measurement error models concern the situation where one or more variables in a study cannot be
measured exactly. We restrict our attention to the case where a single variable is measured with
error. It is usually assumed that the relationship between the variable which is actually observed,
W, and the true covariate of interest, X, is W = X 4+ U, where U represents measurement error.
Fuller (1987) applies this additive model for measurement error to many classical linear models.

There are also other ways to model the relationship between W and X, such as the multiplicative
error model W = X eV, which gives additivity in the logarithmic scale, i.e., log(W) = log(X) + U.
The idea behind both the additive and multiplicative error structure models is that, in the correct
scale, measurement error is additive. The additive and the multiplicative error models are specific
cases of a more general model W = G(X,U) for some function G. In this article, we consider the
set of functions G such that G(X,U) = H~'{H(X) + U}, where H is a monotone function with
inverse H1.

Additivity underlies almost all the measurement error models and modeling techniques in the
common case that X is unobservable. The classical functional methods for ordinary regression
(Fuller, 1997) and for general nonlinear models (Carroll, Ruppert & Stefanski, 1995) essentially
without exception assume additivity. Likelihood (structural) methods which naturally allow for
the commonly occurring within-person replication of the W’s typically assume additivity in some
scale with a known distribution for U.

For all of these reasons, finding a scale for additive measurement error is important. In this
paper, we investigate methods for determining an appropriate scale. Section 2 discusses two differ-
ent methods for determining the correct scale for additivity of measurement error, the correlation
method and the error distribution method. In section 3 we describe the transformations used, and
in section 4 we describe their implementation. In section 5 we present data examples to illustrate

the methods.

2 FUNCTIONAL TRANSFORMATIONS

In measurement error models, the literature makes a distinction between classical functional mod-
els, in which the values of unobserved true values of X;, ¢ = 1,..., n are considered to be a sequence
of unknown fixed constants, and classical structural models, in which the values of X are considered
to be random variables. We believe that a more fruitful classification scheme is that of functional

modeling, where no assumptions are made about the distribution of the X;’s, and structural mod-



eling, in which parametric assumptions are made about the distribution of the unknown X’s. For
a full description of functional versus structural modeling, see Carroll, et al. (1995, pp 144-145).

Additive error models assume that there is a monotone function A(-) such that
BOW) = h(X) + U, 1)

where the random variable U is independent of X. There is an essential difference between our
work and that typical in transformations, namely that in our case X cannot be observed so that
without any additional information, h(-) cannot be identified. In practice, this extra information
comes from replicating the W’s, so that (W;;) is observed for ¢ = 1,...,n units and j = 1,...,.J
replicates per unit. The resulting errors (U;;) are assumed to be independent of X;, although they
may be correlated either given ¢ or marginally.

The issue we address in this paper is that of estimating the transformation function h(-). We
propose two different methods, both of which are truly functional modeling methods, in that they
make no assumptions about the distribution of X, so that the methods are robust to the distribution
of the predictor.

There are two general methods we propose, correlation methods and error distribution methods.
These two methods are derived from the properties of the transformation model (1), as follows.

Property 1: Define the within-person mean W, (k) and the within-person standard deviation
si(h) as

J 1/2

J
— — 2
Wih) =J7 3 (W) sith) = [(J - )T S {aWy) - Wi} |
J=1 7=1
respectively. Under model (1), if the errors are symmetrically distributed, then W, (k) and
si(h) are uncorrelated. Thus the correlation method selects the transformation A(-) so that
the sample correlation for W;(h) and s;(h) equal zero. Ruppert & Aldershof (1989), Box,
Hunter, & Hunter (1978), and Solomon & Cox (1992) each mention correlation type methods

in different contexts.

Property 2: For the correct transformation, the distribution of
h(Wy) — h(Wy) = Uy — Uy (2)

does not depend on X. In particular, if the U’s are multivariate normal so too is (2). If
(Uy, ..., Uy) have a multivariate t-distribution with k& degrees of freedom, then (2) is a multiple

of a t-distribution with k degrees of freedom. If the U’s are independent with a mixture of two



normals distribution, (2) has a symmetric mixture of three normals distribution. These ideas
suggest that the second class of methods, the error distribution methods, transform so that
the terms in (2) follow one of the distributions mentioned. We address distributional shape
via the Anderson-Darling (Anderson & Darling, 1954) and Filliben correlation (Filliben,
1975) statistics. There are times when a distributional model for the measurement error is
desirable or even essential. Carroll, et al. (1995) describe several techniques which require
that the measurement error distribution be specified, including Simulation-Extrapolation
(Chapter 4), corrected scores (Chapter 6), conditional scores (Chapter 6), and likelihood
techniques (Chapter 7).

3 TWO FAMILIES OF TRANSFORMATIONS

3.1 Definition of the Power Transformation

The power transformation family was described in Box and Cox (1964). The transformations in

this family are indexed by the scalar parameter # and have the form

NP Y R Y
h(v|0)—v(9)_{ e S

Power transformations are monotone for each fixed . However, we have found that the restricted
shape of power transformations limits their utility somewhat in our context, and for that reason

we describe below an alternative family.

3.2 Definition Of The Spline Transform

The transformation family H which we consider is the set of all zero-intercept, cubic piecewise-

polynomial spline functions with knots at £ = (&,...,§,). Transformations from this family have
the form
p
h(v|©,8) = 610+ 630° + 630" + 20k+3 (U—fk)i (3)
k=1

where (a)i_ =a® if a > 0, and = 0 otherwise. In general, the problem of picking knot points £ is
a difficult one. We will assume throughout this discussion that, given the data, the knot points &
are fixed. For a more detailed discussion of knot point selection, see, for example, Eubank (1988).

Our method of selecting the knot points is as follows:

1. Let the combined data vector be W*, including all replicates across all units.

2. Let & = W*(0.005)7 where W* (p) is the pth sample percentile of W=



3. Let & = W*(0.01),&,_1 = W=(0.99), &, = W*(0.995)
4. Let & = W*(0.01+ {p—3}"1{i —1}{0.99 - 0.01}), i=3,...,p—2

One should also note that the transformation given in (3) does not have the usual constant
term, which is not identifiable. The parameter vector © = (61, ..., 0,43).

The issue of obtaining a monotone transformation function is difficult. For a given set of data
and knot points £, describing the set {© : h(v+ §|0,&) — h(v|©,£) > 0, V5 > 0} is a nontrivial
analytical problem. Certainly, requiring that ©; > 0, ¢ = 1,...,p+ 3 is sufficient to obtain a
monotone transformation, but this is clearly unduly restrictive.

Our solution to the problem of obtaining a monotone transform is to create a set of M + 1 grid

points {7p < 7 < ...< 7} on which we require that
h(74]©,&) — h(1:-1]©,€) >0, i=1,..., M. (4)

We usually set M = 23; let 7 through 7g be the 1st, 2nd, 3rd,..., and 9th percentiles of the
combined data vector W*; let 715 through 793 be the 91st, 92nd, 93rd, ..., and 99th percentiles of
W*; and let 79 through 74 be set at evenly-spaced percentiles of W* between the 9th and the 91st,
similar to step (4.) in the procedure describing the selection of knot points. We have found that
through careful selection of these grid points, the final transformation will be monotone through

the range of the data.

4 CORRELATIONS AND DISTRIBUTIONS

Using Property 1 of section 2, the correlation methods find the transformation which makes the
within-person mean and standard deviation have zero sample correlation. With the power trans-
formations restricted to the range —3 < 6 < 3, we have always observed a unique zero numerically,
although in principle this need not be the case. The spline transformation has also had satisfactory

numerical behavior, although there is no guarantee of a unique zero.

4.1 Assessing The Need For A Transformation Using Correlation and Powers

An important question to answer is whether or not the data indicate that a transformation would
be appropriate. One way to answer this question is to create a confidence interval for 6y, the value
at which the population correlation between the within-person mean and standard deviation equals
zero. One rejects the “no transform” null hypothesis if the interval does not contain 1. We con-

structed an asymptotic confidence interval for 8y using the delta method and sandwich covariance



estimate via standard techniques, but while the confidence level for this interval is correct asymp-
totically, the convergence to the nominal level is quite slow. We also considered confidence intervals
using resampling techniques described in Efron and Tibshirani (1993). Figure 1 shows the results
of a simulation study comparing the asymptotic confidence interval to a confidence interval created
using the bootstrap estimate of standard error. We studied other resampling-based confidence in-
tervals with the same result: the delta-method confidence interval with sandwich covariance matrix

estimate converges to its nominal level much more slowly than any of the bootstrap methods.

4.2 Assessing Distributional Shape

We consider the spline transformation to normality when there are exactly two replicates. The
power transformations are even easier to work with. The overall goal is to find a vector e) which,
for a given data set, makes the differences F; = h(W¢1|@7€) - h(W¢2|@,€) look as “normal” as
possible, while satisfying the constraints given in (4). Actually, one need not specify a normal
distribution for the measurement error. We investigate both bivariate ¢ distributions and normal
mixture distributions later in this article. There are several ways to check for normality of the
differences F; for a given value of ©®. We have chosen to use the probability plot correlation
coefficient (PPC) described in Filliben (1975), which is a relative of the Shapiro-Wilk W statistic
described in Shapiro and Wilk (1965). The basic idea is to calculate the correlation coefficient for
a QQ-Plot of the E;. The closer the empirical distribution of the FE; is to a normal distribution,
the closer the PPC for the I/; should be to 1. Hence, our method of estimating © is to find the
value © which, subject to the constraints in (4), maximizes v (E), where E = (Ey, ..., E,)T and
v(v) is the PPC for the vector v = (vy,...,v,)7.

In this maximization problem, both the constraints and the objective function have simple
matrix expressions. Given the data {W;;}, i=1,...,n, j = 1,2 and a set of knot points £, define

the matrices D and C as

D. Wk —wk i=1,...,n k=1,...,3

k (Wil_fk—?))i—(wﬂ_fk—?))i t=1,....,n k=4,...,p+3 %)
5

C. — T -1k i=1,....M k=1,...,3

* (i = &-a) — (e —&-a)} i=1,...M k=4,...,p+3

Thus, the maximization problem is to find mgx*y(D@) subject to CO > 0, where by CO > 0
we mean that each element of CO is nonnegative. The constrained maximization is accomplished
using the FORTRAN program NPSOL (Gill, Murray, Saunders & Wright, 1986).

In modeling data such as the examples we discuss in Section 5, it is possible that the error



distribution may be something other than normal. We consider alternate distributions for the
measurement error, specifically the bivariate ¢ distributions (Johnson and Kotz, 1972) for k£ =
20, 10, 8,6,4, 3, and find separate transformations for each possible error distribution. Note that the
bivariate t;, distributions are such that if (Uy, Uz) ~ Bivariate ¢, then (Uy —Ug)/\/§ ~ Univariate .
The modification to the PPC statistic is simple—one calculates the correlation coefficient for the
QQ-plot of the specified distribution instead of the normal distribution. As an additional check,
for each transformation, we calculate the Anderson-Darling A statistic for the vector of differences
E (Anderson & Darling, 1954).

We found with most of our examples that the spline transformation based on the error method
transforms the data such that the error distribution is either normal or “nearly normal”, i.e., a
bivariate ¢ distribution with either 20 or 10 degrees of freedom, with the non-normality being
attributable to a small number of points in the difference vector F. Another reasonable way to
model the data is to assume that the measurement error is distributed as a two-component normal
mixture distribution, with the measurement error for a (relatively small) number of data pairs being
generated by a normal distribution with slightly heavier tails. We selected four normal mixture
distributions, each chosen to have the same first four moments as a univariate t; distribution, for
k = 20,10,8, and 6, respectively. We use the shorthand NM(k) to refer to such a normal mixture
distribution. For further information about the NM (k) distributions, see the Appendix.

4.3 The Spline Transform With More Than 2 Measurements Per Individual

Unlike with correlations, the error distribution methods which model the distribution of the differ-
ences given in (2) do not have an easy direct definition for the case of J > 2. There are a variety
of possibilities, including transformations so that the within-person sample standard deviation has
the distribution of a sample standard deviation of a candidate error model, in which case the results
of the previous subsection apply. Alternatively, one may wish to analyze the data pairwise, as this
can often point out unusual replicates. Here we describe such a pairwise implementation.

In order to select the optimal © value, we must first determine the appropriate distribution for U,
and then optimize with respect to that measurement error distribution. We select the distribution
for U by some preliminary analyses on two columns of data. If the data are measurements on the
same individual taken over time, then it makes some sense to use the two columns of data for which
the measurements are farthest apart chronologically.

We implement the preliminary analyses in two stages. In the first stage, we select two columns

of data, and find separate estimates @k, k=00,3,4,6,8,10,20, where (:)Oo is the value of © which



maximizes v (F) for normally-distributed measurement error, and @k, k > 01is the value of © which
maximizes (L) for measurement error with a bivariate ¢; distribution. For each value of O, we
examine the PPC and AD statistics for the difference vector F, and for O.. we also examine the
PPC and AD statistics for the NM(k) distribution for & = 6,8, 10, and 20. We also calculate the

intra-individual mean/standard deviation correlation for the two selected data columns for each

~

O.

Using the calculations in the first stage as a guide, we then select an appropriate (:)k7 say O,
for additional analysis in the second stage. In this stage, we apply the transformation h(v|(:)*,f)
to every data value W;;, ¢ =1,...,n, 7 =1,...,J, and then do an analysis of the differences of
the transformation for each possible pair of columns. In this difference analysis, we calculate PPC
and AD statistics, and their p-values, for the normal distribution, bivariate t; distributions with
k=3,4,6,8,10, and 20, and NM(k) for k = 6,8, 10, and 20. We also calculate the intra-individual
mean/std correlation for each pair of columns of transformed data.

By combining the two stages of analysis, we can select an appropriate distribution for the mea-
surement error U. We can then define quantities as follows to find an optimal O value. Specifically,

if v{(v1,...,v,)T} is the PPC function for the specified error distribution, let

Aim(©) = h(Wi]0,8) — h(W;,,]0,&)

Qen(©) = 7 [{A1m(0), -, Aun (0)}]

B 5 I
QO) = mz > Qun(©)

k=1 m=k+1
QO) = median {Qn(O)}, 1 <k<J -1, k<m<J

We can then consider both ©, the numerical maximizer of Q(©), and é, the numerical maximizer

of Q(O).

5 EXAMPLES

5.1 Urinary Sodium Chloride Data

The Urinary Sodium Chloride data are discussed in Liu & Liang (1992). In a study attempting to
relate the incidence of hypertension with urinary sodium, overnight urine samples were taken from
397 men on 7 consecutive nights. The data from days 1-6 were available to us. Because the data
have a very high autocorrelation, we examined the data from days 1 and 6, which have the least

correlation in the errors and hence presumably the most stable statistical properties.



Transform Optimization ~ Mean/Std  Error Dist. PPC AD

Criterion Correlation Comparison p-value p-value

Power (# = 2.304)  Correlation 0.00 Normal 0.967 0.801
Spline Correlation 0.00 Normal 0.963 0.788
PPC(Normal) 0.01 Normal 0.968  0.808

Table 1: Comparing transformations to different error distributions for the USC Data. The spline
transformations used 8 knot points.

The estimated power transform from the correlation method was 50 = 2.304, with bootstrap
confidence interval [1.520, 2.688], thus indicating the need for a transformation. We tested the
differences of the power transformed data for normality, and found a PPC p-value = 0.967, and
an AD statistic p-value = 0.801. In both cases, the null hypothesis is that the difference vector F
has a normal distribution, with low p-values indicating non-normality. Hereafter we shall say that
a data vector “passes” a given test (either PPC or AD) for a certain distribution if the P-value
for the calculated statistic is greater than 0.10. Thus, the difference vector F from the power
transformation “passes” both the PPC and the AD tests for normality.

Table 1 shows the results of the error distribution method using cubic splines for estimating
the transform. Each row in the table gives the transformation, the criterion for optimization, the
within-person mean and standard deviation sample correlation, the distribution under which the
PPC and AD statistics are computed, and their corresponding p-values. One can see that the
differences from either spline transformation clearly pass the PPC and AD tests for normality, with
acceptably low within-person sample mean versus standard deviation correlation.

Figure 2 compares the correlation method power transformation and the error distribution
method spline transformation. The circles in the graph represent percentiles of the data, from the
1st to the 99th. Each transformation has been standardized to the same scale. For this data set,
the power transformation and the spline transformation were almost identical.

We repeated the analysis using all pairs of days and all six days together, and with one exception
the answers were similar. The exception occurs for the pair of days (5,6), which seem to behave

together quite differently from all the others. We have no explanation for this behavior.

5.2 Framingham Heart Study

The Framingham heart study measured various factors such as age, smoking habits, and blood

pressure for 1,615 men aged 31-65, attempting to link these factors to the presence of coronary



Transform Optimization ~ Mean/Std  Error Dist. PPC AD

Criterion Correlation Comparison p-value p-value

Power (§# = 1.726)  Correlation 0.00 Normal < 0.005 < 0.005
t10 0.071 0.098

NM(10) 0.098 0.384
Spline Correlation 0.00 Normal < 0.005  0.149
NM(10) 0.165 0.211

PPC(Normal) -0.085 Normal < 0.005 < 0.005
NM(10) 0.791 0.335
PPC(t10) -0.112 t10 0.979 0.461

NM(10) 0.952  0.354

Table 2: Comparing transformations to different error distributions for the LSBP Data. The spline
transformations used 12 knot points.

heart disease. The data we analyze here are two systolic blood pressure (SBP) measurements,
the first of which is the average of two SBP measurements taken during a physical exam, and the
second of which is the average of two SPB measurements taken at another physical exam two years
later. We actually pretransform the data by analyzing log(SBP — 50), which is a modification of
the transformation originally suggested by Cornfield (1962) and which we will designate as LSBP.

For the pretransformed LSBP variable, using the correlation method with power transformation
we found 6y = 1.726 with 90% bootstrap confidence interval [1.113, 2.339], and 95% confidence
interval [0.996, 2.455].

For the error distribution method using the spline transformation, Table 2 shows the usual
statistics for the transformations of the LSBP data to additivity with various error distributions.
There are a number of points to note. The power transformation using the correlation method
results in differences which are non-normal and do not “pass” tests for the ¢-distribution with
10 degrees of freedom. The spline transformation using the correlation method does pass the
t1p and NM(10) distribution tests. The spline transformation which attempts to fit a normal
distribution to the differences is unsuccessful in doing so, at least with this number of knots. All
of these calculations suggest that the errors are heavier-tailed than the normal distribution. The
spline transformation under the error distribution method for the NM(10) distribution is shown in

Figure 3.



Transform Optimization ~ Mean/Std  Error Dist. PPC AD
Criterion Correlation Comparison p-value p-value

None N/A -0.028 Normal < 0.005 < 0.005
NM(20) 0.031 < 0.005
NM(10) 0.543  0.109

t10 0.765 0.401

Power (# = 1.056)  Correlation 0.00 Normal < 0.005 < 0.005
Spline Correlation 0.00 Normal 0.130 0.329
PPC(Normal) 0.05 Normal 0.750 0.350

Table 3: Comparing transformations for the % Calories from Fat data.

5.3 CSFII Data

Our third example involves the Continuing Survey of Food Intakes for Individuals (CSFI1I) data set
(Thompson, et. al, 1992). This data set contains information on nutrient intakes for 2,134 women.
The data contain multiple measurements for each woman for a variety of daily dietary components
such as vitamin A, vitamin C, amount of saturated fat, total calories, etc. Four measurements for
each component were gathered for each woman. The first measurement was based on an extensive
interview, and the subsequent three measurements were based on follow-up telephone interviews.

We analyze one dietary component from the CSFII data, percent calories from fat, by consid-
ering the second and fourth measurements for each woman in the study. We choose not to use the
first measurement because it was gathered in a different manner than the last three. The power
transformation using the correlation method yields an estimate bo = 1.056, with bootstrap confi-
dence interval [0.948, 1.164]. However, as is shown in Table 3, the differences of the no-transform
model fail both tests for normality. The no-transform differences do pass both PPC and AD tests
for t;0 and NM(10) distributions.

The spline transformations with 5 knots both pass the normality tests, with acceptably low
within-person sample mean and standard deviation correlation of the transformed data values is
0.055. The graph of the spline transformation using the error distribution method is given in

Figure 4.

6 DISCUSSION AND CONCLUDING REMARKS

We have presented two methods for transforming the data to achieve additive measurement error.

The correlation method transforms so that the sample correlation between the within-person mean

10



and standard deviation equals zero, while the error distribution method transforms so that dif-
ferences have a specified distribution. Within each method we used power transformations and
transformations based on cubic splines. A question which may arise is, “why not just transform the
data to normality?” Such a method has been suggested by Nusser et. al. (1997), who also use power
transformations and cubic splines. This method, which we call the marginal method, selects h(-)
such that h(W;1),i=1,...,n is approximately normally distributed. Thus, it transforms the data
to normality instead of transforming the errors to normality. The marginal method with power
transformation is in wide use in nutritional epidemiology.

There is no intrinsic reason that the marginal method must find the “right” or “wrong” answer.
Indeed, in many examples marginal methods will yield transformations which pass both our cor-
relation and error distribution criteria. One drawback of marginal methods which is important in
measurement error modeling can be seen by once again considering the concepts of functional and
structural modeling. The methods of transformation we have suggested are functional, by which
we mean that they make no explicit assumptions about the distribution of the unobservable X.
This makes sense in the context of measurement error models, because of the emphasis in that field
of functional modeling to estimate regression parameters.

Unlike our methods, marginal approaches are explicitly structural, and can depend in a strong
way on the distribution of X. For example, consider the case that no transformation is necessary, so
that W = X + U, h(v) = v and U is normally distributed. Marginal methods transform so that W
is normally distributed, and hence they will properly conclude that no transformation is necessary
only if X is also normally distributed. This does not mean that marginal methods have no value,
far from it, but only that one needs some care in employing them. As a noteworthy example of
such care, in their applications Nusser, et al. also check what we call Properties 1 and 2 in section
2.

One point to keep in mind is that if there are J = 2 replicates, then plots of the within-
person standard deviation versus the mean will have an odd shape if a significant number of W’s
approach a lower bound. For example, if the lower bound is zero, and if W7 & 0, then the standard
deviation ~ W,/2'/2 while the mean is ~ W3 /2, so that the plot of the standard deviation against
the mean will in effect be bounded by a line with intercept zero and slope 21/2.

Finally, there is no guarantee that one can find a single transformation which will achieve ad-
ditivity as measured by the correlation method with a normal or nearly normal error distribution

as measured by the error distribution method. The Framingham data using power transformations

11



are a good example of this issue. Ruppert & Aldershof (1989) address this issue in their context,
and suggest estimating parameters either as a weighted average of the correlation and error distri-
bution methods, or by weighting their estimating equations. This is an interesting issue for further

exploration.
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7 APPENDIX

7.1 Mixture Normals

If X ~ tr and k > 4, the first and third moments equal zero and the second and fourth moments
are EX? = k/(k—2) and EX* = 3k%/(k? — 6k + 8), respectively. A corresponding mixture normal

density with the same first four moments is defined as follows. It has density

) = (=i/a))¢ (y/o),

=1

where ¢(-) is the standard normal density function, 0% = 1, 62 = (2k)/(k—4), 71 = k*/(k*+2k —8)

and 7y = 1 — 7y.

7.2 Details Of The Algorithm

The following are the steps for optimizing the PPC statistic with respect to the coeflicient vector
©. Assume that we have data Y;;, 1 =1,...,n, j = 1,2, a vector of knot points £ = (&, .. .,fp)T,
and a specified measurement error distribution U. We will use the notation Y;, ¢+ = 1,2 to denote

the vector (Yi1,...,Yn1)?, and Y* = (Y1, Y;1)T. Define the matrices D and C as in (5).

Let o4 be the theoretical standard deviation of U;; — Uss.
Let sy be the sample standard deviation of Y*.

Define W;; = Y;;/sy.

Generate random values (:)m7 0,, = (Om1, .. .,(:)m7p_|_3)T
form=1,...,1000

~

=W N

(a) Let Onmiyi=1,...,p+3, be independent Uniform[-1,1]; R
(b) Let sqp, be the sample standard deviation of the elements of DO,,;
(c) Multiply each element of ©,, by the factor o4/s4;
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(d) Test for co,, > 0. If any element of CO,, is negative, “throw out”
O,, and generate ©,,41 in step (a) above;
(e) Calculate v, = v(D®,,), the PPC statistic.

5. Use the value of ©,, which gave the maximum 7, as the starting value

in the numerical optimization program NPSOL to find mgx'y(@)
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Figure 1: Coverage Probabilities for both the asymptotic confidence interval and the confidence
interval which uses the Bootstrap Standard Error.
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Figure 2: Graph of transformations for Urinary Sodium Chloride (USC) Data. The dashed vertical

lines show the locations of the knot points.
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Figure 3: Graph of transformations for pretransformed systolic blood pressure (LSPB) data. The

dashed vertical lines show the locations of the knot points.
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Figure 4: Graph of transformations for the CSFII % Calories from Fat (PCT) data. The dashed

vertical lines show the locations of the knot points.



