

SFB 649 Discussion Paper 2005-018

Yxilon – a Modular
Open-Source Statistical
Programming Language

Sigbert Klinke*

Uwe Ziegenhagen*
Yuval Guri*

* CASE - Center for Applied Statistics and Economics,
Humboldt-Universität zu Berlin, Germany

This research was supported by the Deutsche
Forschungsgemeinschaft through the SFB 649 "Economic Risk".

http://sfb649.wiwi.hu-berlin.de

ISSN 1860-5664

SFB 649, Humboldt-Universität zu Berlin
Spandauer Straße 1, D-10178 Berlin

S
FB

6

 4
 9

E

 C
 O

 N
 O

 M
 I

C

 R

 I
S

 K

 B

 E
 R

 L
 I

N

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127605686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Yxilon - a modular open-source statistical programming

language

Sigbert Klinke, Uwe Ziegenhagen and Yuval Guri
Humboldt-Universität zu Berlin, School of Business and Economics, Institute for Statistics and
Econometrics, Spandauer Strasse 1, D-10178 Berlin, Germany
sigbert@wiwi.hu-berlin.de, ziegenhagen@wiwi.hu-berlin.de

Statistical research has always been at the edge of available computing power. Huge
datasets, e.g in Data Mining or Quantitative Finance, and computationally intensive techniques,
e.g. bootstrap methods, always require a little bit more computing power than is currently
available. But the most popular statistical programming language R, as well as statistical
programming languages like S or XploRe, are interpreted which makes them slow in computing
intensive areas. The common solution is to implement these routines in low-level programming
languages like C/C++ or Fortran and subsequently integrate them as dynamic linked libraries
(DLL) or shared object libraries (SO) in the statistical programming language.

XploRe vs. Yxilon

Nearly 15 years ago the first versions of XploRe were implemented. In opposite to more
mouse-oriented packages as SPSS and Minitab, XploRe was always targeted on a language
based approach. While this approach inheres a usually flatter learning curve in comparison
with mouse-based interaction we have learned from lectures and user feedback that the users
receive a deeper understanding of the underlying theories and are more actively involved in the
process of analysis.

With Yxilon we start an open source project to reimplement the XploRe language. Our
aim is to compile directly to a low-level language as C/C++ or Java. The generated code can
then be compiled either to DLL’s/SO’s or stand-alone programs. Further low-level languages,
e.g. C#, are possible.

To download the current version visit http://www.quantlet.org.

Yxilon

For two reasons we have choosen XploRe rather than R as the basis of this project: XploRe
is a non object-oriented programming language, for which a parser can be easily written and
some of us have been involved for more than a decade in the development of the language. To
produce a reasonable system we currently develop four components:

Yxilon GUI: a user interface for writing, interpreting, compiling and executing Yxilon code

Yxilon parser: a parser which compiles Yxilon programs to C/C++, Java or parse trees

Yxilon-J/Yxilon-C: libraries for matrix/array computations in Java and C/C++

Yxilon-RT: a run-time environment for the interpretation of parse trees

Other components, like the object database with web components, the middleware (see
Figure 1) will be developed at a later stage of the project. The figure also depicts our intention
of having “strong modularity” between the components which should simplify the development
process. Changes targeted at improving modularisation and simplification will also have some
impact on the XploRe language itself, see Härdle, Klinke and Ziegenhagen (2004).

http://www.quantlet.org

Yxilon core
 Compiler

 Client

Text Interface
Applet
COM

SOAP/XML
GUI
...

 Databases

Oracle
MySQL

MD*Base
...

Object-
database

Parser

C/C++
Java

...

Parse tree

DLL
Jar & JVM

creates programs

creates

manipulates objects
creates output

sends results
& graphics

sends programs
sends data

and quantlets

manipulates objects
creates output

sends results,
graphics and

user interactions

interprets

Run-time environment

Compilation
branch

Interpretation
branch

Figure 1: The Yxilon components (dotted components are work in progress or
finished).

Following Chambers and Lang (1999) we provide a list of requirements for statistical ap-
plications, among them: usability from multiple front-ends, internet abilities to read and write
data to networks and database support to enable large-scale analysis. We added: modularity
and extensibility, support for multiple languages and valuable, integrated user support (tutorial,
help system).

Yxilon GUI

The aim of the current graphical user interface is to satisfy two major needs:

• Integrating the parsing and interpretation modules under one roof

• Providing one experimental platform to analyze the different needs of different types of
users

• Implementing and testing efficient ways of interaction and communication

In the analysis of user behavior we focus mainly on the central items of usability from
Nielsen (1993): Learnability, Efficiency, Memorability, Errors and Satisfaction. Shneiderman
(1998) furthermore defines ’Golden Rules of Interface Design’, including questions concerning
common rules (consistency, error handling and feedback) in the communication between user
and software as well as psychological aspects (loss of control in interaction and limited human
short term memory capacity).

Working especially with language based statistical software requires a significant com-
mitment from the user, especially in the initial learning phase. With log4j from the Apache
Foundation (http://www.apache.org/log4j) we have a powerful tool to log each interaction
between user and software, together with questionnaires and interviews we hope to analyze and
improve the user/software interface.

The layout and design of the Yxilon GUI is a mixture of the above design principles and
earlier XploRe GUIs. All window and menu captions are provided via an initialization file. Java

http://www.apache.org/log4j

Figure 2: Left: The Yxilon GUI with editor and output window. Right:
The Yxilon-J WWW test page with the current language implementation, see
http://stirner.wiwi.hu-berlin.de/yxilon-j/yxilon-j.html.

offers native Unicode support, so the adaptation to different languages is easy. Furthermore the
initialization file contains the relevant settings for the Java and C++ compiler. Our aim is to
hide the technical details from the user as much as possible, thus sparing the implementation
details of C++ and Java. This approach inheres possible error sources, if the Yxilon code
contains either semantic or logical errors the generated code will not work either. It is therefore
a main task in the development of the parser and the user interface to provide the user with
valuable error messages.

Yxilon parser and interpreter

The Yxilon parser is a C/C++ program based on tools, compatible to lex and yacc,
and generates different outputs: C/C++, Java and parse trees. Since we want to avoid the
development of separate parsers for different target languages, which surely would lead to
incompatible Yxilon language branches in the future, we decided to create plug-ins for the parser
which generate the appropriate output. Other plug-ins than C/C++ or Java are possible.

The C/C++ code can be used to generate dynamic link libraries (Windows) or shared
object libraries (Unix/Linux) for standalone programs. Slight modifications in the C/C++
code will allow to create COM code which can be embedded e.g. in Microsoft Office products
(Excel, Word).

The third output method is the generation of a binary parse tree that contains Yxilon
code in form of an execution tree. The binary data format is platform-independent. Similar to
the Java programming system, a run-time environment (RTE) is able to interprete and execute
these trees. The parser and the RTE together form an interpreter.

Yxilon-J: Yxilon compilation with Java

The Yxilon-J component which compiles Yxilon code to Java consists of four components:

1. the JavaWalker: a C/C++ plug-in for the parser which writes Java code. The parser builds
up an expression tree which contains the code in a hierarchical structure; the Walker program
analyzes the expression tree top-down and generates the appropriate Java code. Each Yxilon
subprogram, called ”quantlet” in XploRe, will translate to its own Java class.

2. Skeleton files: they define how the class header and footers for the main Yxilon program and

subprograms look like. Currently there are @main.java, containing a main method to run the
program, and @quantlet.java, which can be called by either quantlets or the main method.

3. Colt 1.0.3: an efficient implementation of matrix/array classes in Java by Hoschek (2002).

4. yxilon.jar: a set of classes implementing the basic Yxilon functionalities (operators and
selected commands).

Due to restrictions in the Java language, each Yxilon program will be stored in a separate class
file, such that it can be reused without recompilation. These files (java source and bytecode)
will be part of the Yxilon-J distribution.

Figure 2 (right) shows the Yxilon-J WWW test page which is similar to the CGI Interface
of RWeb-Server page (see Banfield 1998). Left and below the form are same (non-)runnable
code pieces. The form takes the Yxilon code, generates a Java file, compiles it and calls the
Java Virtual Machine to execute it. Error messages and/or output is catched and displayed on
a resulting web page.

Summary

Yxilon is an open source project for developing a new statistical programming language.
It does as well generate C/C++ and Java code for compilation into dynamic link libraries or
shared object libraries as it interpretes its own code by means of parse trees. Interested people
are invited to join the project as developers or testers (http://www.quantlet.org).

REFERENCES

Banfield J. (1998). RWeb, http://www.math.montana.edu/Rweb/

Chambers, J., Lang, D. (1999). Omegahat – a component-based statistical computing environ-
ment, ‘Proceedings of the 52nd ISI Session’

Härdle W., Klinke S., Ziegenhagen U. (2004). Yxilon - Designing the next generation, verti-
cally integrable statistical software environment. ‘Proceedings of the 36th Symposium on the
Interface’

Hoscheck W. (2002). The Colt distribution, Version 1.0.3,
http://hoschek.home.cern.ch/hoschek/colt/

Nielsen J. (1993). Usability Engineering, AP Professional

Shneiderman, B. (1997). Designing the User Interface, 3. edn, Addison-Wesley Longman

ACKNOWLEDGEMENT

The financial support from the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 649
Economic Risk at Humboldt-Universitat zu Berlin, is gratefully acknowledged.

http://www.quantlet.org
http://www.math.montana.edu/Rweb/
http://hoschek.home.cern.ch/hoschek/colt/

SFB 649 Discussion Paper Series

For a complete list of Discussion Papers published by the SFB 649,
please visit http://sfb649.wiwi.hu-berlin.de.

001 "Nonparametric Risk Management with Generalized
Hyperbolic Distributions" by Ying Chen, Wolfgang Härdle
and Seok-Oh Jeong, January 2005.

002 "Selecting Comparables for the Valuation of the European
Firms" by Ingolf Dittmann and Christian Weiner, February
2005.

003 "Competitive Risk Sharing Contracts with One-sided
Commitment" by Dirk Krueger and Harald Uhlig, February
2005.

004 "Value-at-Risk Calculations with Time Varying Copulae" by
Enzo Giacomini and Wolfgang Härdle, February 2005.

005 "An Optimal Stopping Problem in a Diffusion-type Model with
Delay" by Pavel V. Gapeev and Markus Reiß, February 2005.

006 "Conditional and Dynamic Convex Risk Measures" by Kai
Detlefsen and Giacomo Scandolo, February 2005.

007 "Implied Trinomial Trees" by Pavel Čížek and Karel
Komorád, February 2005.

008 "Stable Distributions" by Szymon Borak, Wolfgang Härdle
and Rafal Weron, February 2005.

009 "Predicting Bankruptcy with Support Vector Machines" by
Wolfgang Härdle, Rouslan A. Moro and Dorothea Schäfer,
February 2005.

010 "Working with the XQC" by Wolfgang Härdle and Heiko
Lehmann, February 2005.

011 "FFT Based Option Pricing" by Szymon Borak, Kai Detlefsen
and Wolfgang Härdle, February 2005.

012 "Common Functional Implied Volatility Analysis" by Michal
Benko and Wolfgang Härdle, February 2005.

013 "Nonparametric Productivity Analysis" by Wolfgang Härdle
and Seok-Oh Jeong, March 2005.

014 "Are Eastern European Countries Catching Up? Time Series
Evidence for Czech Republic, Hungary, and Poland" by Ralf
Brüggemann and Carsten Trenkler, March 2005.

015 "Robust Estimation of Dimension Reduction Space" by Pavel
Čížek and Wolfgang Härdle, March 2005.

016 "Common Functional Component Modelling" by Alois Kneip
and Michal Benko, March 2005.

017 "A Two State Model for Noise-induced Resonance in Bistable
Systems with Delay" by Markus Fischer and Peter Imkeller,
March 2005.

SFB 649, Spandauer Straße 1, D-10178 Berlin

http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the SFB 649 "Economic Risk".

018 "Yxilon – a Modular Open-source Statistical Programming
Language" by Sigbert Klinke, Uwe Ziegenhagen and Yuval
Guri, March 2005.

SFB 649, Spandauer Straße 1, D-10178 Berlin
http://sfb649.wiwi.hu-berlin.de

This research was supported by the Deutsche

Forschungsgemeinschaft through the SFB 649 "Economic Risk".

	Frontpage 018.pdf
	SFB649DP2005-018.pdf
	Frontpage 018.pdf
	kligurzie_sfb_dp050316.pdf
	Endpage 018.pdf
	SFB DP Endpage 017.pdf
	Endpage 2. Seite.pdf

	Endpage 018.pdf

