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Abstract

A power generation system comprising thermal and pumped�storage hy�

dro plants is considered� Two kinds of models for the cost�optimal generation

of electric power under uncertain load are introduced� �i� a dynamic model

for the short�term operation and �ii� a power production planning model� In

both cases� the presence of stochastic data in the optimization model leads to
multi�stage and two�stage stochastic programs� respectively� Both stochastic

programming problems involve a large number of mixed�integer �stochastic� de�

cisions� but their constraints are loosely coupled across operating power units�

This is used to design Lagrangian relaxation methods for both models� which

lead to a decomposition into stochastic single unit subproblems� For the dy�

namic model a Lagrangian decomposition based algorithm is described in more

detail� Special emphasis is put on a discussion of the duality gap� the e�cient

solution of the multi�stage single unit subproblems and on solving the dual

problem by bundle methods for convex nondi�erentiable optimization�
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� Introduction

The e�cient operation and planning of electric power generation systems play an
important role for electric utilities as well as the whole human activity� On the one
hand� the e�cient use of the available fuel for the production of electrical energy
is of growing importance� both monetarily and because most of the primary energy
sources� which today	s energy supply is based on� are not renewable and have limited
scope� Savings of a small percentage in the operation of a moderately large power
system represent a signi
cant reduction in operation cost as well as in the quantities
of fuel consumed� On the other hand� in the future� the human community and� in
particular� the power supply industry will be confronted with general economic and
ecological conditions that are partly contradictory and aggravating� Some of these
conditions are the rise in global energy demand� the scarcity of essential resources
and the limits to the local and global environmental damage� Another contemporary
challenge for the electric utility industry arises from the changes of market structures
for electric power� There has been a world�wide movement towards deregulation of
the electric utility industry and an opening of the market to nonutility participants�
Moreover� there are plans to open the use of the transmission system in the European
Community� All this has led and will further lead to a growth of the number and size
of energy transactions� This development raises questions about the prices involved
which are based on market actions rather than on costs as in traditional delivery
contracts�
These issues have motivated a growing interest in applying mathematical modelling
and optimization techniques for optimal system operation� Indeed� there is already
a long tradition for applying mathematical programming methods and software to
the solution of many relevant engineering problems �e� g� economic dispatch and
unit commitment� see ���� ��� and the references therein�� The recent substantial
progress in many areas of mathematical optimization �e� g� in linear� mixed�integer�
nonlinear� nondi�erentiable and stochastic programming� opens the road to solving
more and more involved models �e� g� ����� Such complex and large optimization
models arise� for instance� for the optimal operation of a hydro�thermal system when
including additional aspects like data uncertainty� other regenerative sources of en�
ergy� the mid�term management of reservoirs� electricity trading etc� Models of this
type are usually characterized by a combination of several di�culties like continuous
as well as binary decision variables� very large dimension� nonlinearities �e� g� in
hydro modelling� fuel costs� price structures in fuel as well as in electricity purchases�
and the uncertainty of problem data �e� g� uncertainty of load forecasts� stream�ows
to reservoirs� pricing schemes� generator failures etc���
The present paper aims� in particular� at applying a mathematical methodology�
called stochastic programming� for handling uncertain data in optimization models�
Stochastic programming is mostly concerned with problems that require a here�and�
now decision on the basis of given probabilistic information on random quantities�
but without making further observations� Possible formulations of stochastic pro�
gramming models depend on when decisions must be taken relative to the realization
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of the random variables �e� g� at several stages in a dynamic model�� the degree to
which the constraint structure must be satis
ed �e� g� with some probability�� and
the choice of the �stochastic� objective function �e� g� expected costs��
Stochastic programming approaches for tackling models in electric power generation
under uncertainty have already found considerable attention �cf� chapters ����� in
��� for earlier works�� We brie�y mention here some of the recent and relevant
works in this direction� A multi�stage stochastic optimization model for the optimal
scheduling of a hydro�thermal generation system with uncertain in�ows is developed
in ���� The authors present a solution strategy based on Benders decomposition
and test results for a system comprising �� hydroelectric plants� one aggregate ther�
mal unit and a yearly planning period with monthly stages� In ��� a multi�stage
stochastic program for scheduling hydroelectric generation under uncertainty is de�
scribed and solved by an enhanced version of nested Benders decomposition� The
paper also reports on the generation of monthly stream�ow scenario trees and on
model validation in the user	s environment of the Paci
c Gas � Electric Company�
In ��� stochastic programming techniques based on Benders decomposition and im�
portance sampling are applied to the facility expansion planning of electric power
systems under uncertainty of the availability of generators and transmission lines�
and on the demand� Schemes for the pricing of electric power� which is subject to
demand and supply uncertainties� are designed and compared in ��� by means of a
two�stage stochastic recourse model� The following papers deal with power schedul�
ing under uncertain load� A two�stage stochastic program with simple recourse for
the daily economic dispatch in a thermal power system is developed and solved in
�� under the assumption that the marginal distributions of the load are normal�
In ��� and ���� this model is extended to power systems comprising thermal and
pumped�storage hydro units and general load distributions� The extended model is
solved by combining a smooth nonparametric estimation procedure for the marginal
load distributions with standard nonlinear programming methods and it is validated
by solving the daily economic dispatch problem of a system involving �� thermal
and � pumped�storage plants� Further extensions of the latter model by allowing for
more general dynamics between decision and observation and for more appropriate
recourse cost functions are discussed in ��� and ���� These models do not yet include
start�up and shut�down decisions into the optimization process� This is realized in
���� where a stochastic unit commitment problem for a thermal power system and
a corresponding solution technique based on progressive hedging are developed� The
progressive hedging methodology �cf� ���� leads to a successive decomposition into
scenario subproblems� which are deterministic unit commitment problems� and solved
by Lagrangian relaxation and by an adapted subgradient method for dual maximiza�
tion� In ���� the authors report on encouraging test runs for large real�life models�
The present paper aims at the development of two kinds of models for the cost�optimal
scheduling of electric power in a hydro�thermal generation system under uncertain
load� a dynamic stochastic recourse model for the short�term operation and a two�
stage stochastic production planning model� Both models are further extensions of
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the stochastic models described in ���� ��� and ���� They represent mixed�integer
stochastic optimization problems which are large�scale for moderately large power
systems� The second aim of the present paper consists in designing Lagrangian de�
composition procedures for the two models by exploiting the particular structure of
coupling constraints�
The models arise from a cooperation with the electric utility VEAG Vereinigte En�
ergiewerke AG� which supplies the Eastern part of Germany� The VEAG owned
generation system �in ����� consists of �� �coal�
red or gas�burning� thermal units
and � pumped�storage hydro plants� Its total capacity is about ������ megawatts
�MW� including a hydrogeneration capacity of ����� MW� the systems peak load
amounts to ����� MW �in ������ Hence� optimal scheduling of the VEAG�system
exhibits two special features� the simultaneous optimization of thermal and hydro
capacity is indispensable and the model is more large�scale than ever when includ�
ing stochasticity� This gives rise to the need of solution algorithms for large�scale
stochastic optimization problems which allow for handling mixed�integer decisions�
Existing solution procedures for large�scale stochastic programs are mostly based on
approximating the underlying probability distribution by a discrete measure having

nite support and on utilizing decomposition techniques for solving the large�scale
approximate �deterministic� programs� For an overview and a discussion of much of
the work done in this direction we refer to ���� ���� ���� ���� ���� ���� In addi�
tion� we mention some of the recent relevant papers on decomposition approaches in
stochastic programming� Primal decomposition techniques are based on the L�shaped
or Benders decomposition method ������ its nested extension for multi�stage models
���� ����� and on regularized decomposition ������ A second group of �sometimes
called dual or scenario� decomposition methods relax nonanticipativity constraints
by introducing Lagrangian terms� For instance� the progressive hedging algorithm
����� and the scenario decomposition methods in ���� ��� are based on introduc�
ing augmented Lagrangians� Another augmented Lagrangian method by relaxing
the recourse constraints is developed in ���� A third group of methods consists of
algorithms that combine decomposition and sampling techniques in various ways�
For instance� sampling techniques are used for the generation of cuts in stochastic
decomposition methods ������ for the e�cient calculation of multivariate expected
values by importance sampling ������ and for reducing the large dimensionality via
EVPI�sampling ����� within nested Benders decomposition� Methods of a fourth
group combine decomposition schemes and iterated approximations via re
nement
strategies �cf� ���� ��� and chapt� ��� in �����
Most of these numerical methods cannot be applied directly to stochastic programs
involving integrality constraints� Methods for solving �mixed�� integer stochastic pro�
grams are rather rare� We refer to ��� for a brief overview of some recent approaches
to stochastic integer programming� Moreover� let us mention a recently developed
stochastic branch and bound method ����� and a dual decomposition method based
on relaxing the scenario constraints and on �deterministic� branch and bound tech�
niques ����� which also applies to mixed�integer situations�

�



Our paper is organized as follows� We introduce and discuss the two stochastic
power scheduling models in Section �� In Section � we brie�y recall the Lagrangian
relaxation approach and review some recent progress in solving the nondi�erentiable
duals� In the remaining two sections we develop Lagrangian decomposition methods
for the dynamic recourse as well as for the two�stage stochastic model by relaxing
coupling constraints� The dualization argument and the duality gap� the separability
structure and the solution of the stochastic single unit subproblems are discussed in
more detail for the dynamic model�

� Models

��� Modelling a Hydro�Thermal System

We consider a power generation system comprising �coal�
red and gas�burning� ther�
mal units� pumped�storage hydro plants and interchange contracts between intercon�
nected utilities� We will develop and describe a mathematical model for a power
system of this kind which has its origin in the earlier papers ���� ���� The models
allow for the simultaneous scheduling of all units and contracts over a certain time
horizon�
Let T denote the number of time intervals obtained by discretizing the operation
horizon� This discretization may be chosen uniformly �e� g� hourly or half�hourly�
or non�uniformly� Let I and J denote the number of thermal and pumped�storage
hydro units in the system� Delivery contracts are regarded as particular thermal
units� but may have cost functions that are essentially di�erent �e� g� nonconvex�
from typical thermal costs� The decision variables in the model correspond to the
outputs of each unit� i� e�� the electric power generated or consumed by each unit of
the system� These decision variables are denoted by

uti � pti � i � �� � � � � I � t � �� � � � � T�
stj � wt

j � j � �� � � � � J � t � �� � � � � T�

where uti � f�� �g and pti are the on�o� decisions and the production levels of the
thermal unit i during the time period t� Correspondingly� stj� w

t
j are the generation

and pumping levels of the pumped�storage plant j during the period t� respectively�
Thus� uti � � and uti � � mean that unit i is o��line and on�line during period t�
respectively� Further� by �tj we denote the storage volume in the upper reservoir of
plant j at the end of interval t� All variables mentioned above have 
nite upper
and lower bounds representing unit capacity limits and reservoir capacities of the
generation system�

pmin
it uti � pti � pmax

it uti � u
t
i � f�� �g� i � �� � � � � I� t � �� � � � � T�

� � stj � smax
jt � � � wt

j � wmax
jt � � � �tj � �max

jt � j � �� � � � � J� t � �� � � � � T�
���� �

The constants pmin
it � pmax

it � smax
jt � wmax

jt � and �max
jt denote the minimal�maximal outputs

of the units and the maximal storage volumes in the upper reservoirs during period
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t� respectively� The dynamics of the storage volume� which is measured in electrical
energy� is modelled by the equations�

�tj � �t��j � stj � �jw
t
j � t � �� ���� T�

��j � �inj � �
T
j � � end

j � j � �� ���� J�
���� �

Here� �inj and �endj denote the initial and 
nal volumes in the upper reservoir� re�
spectively� and �j is the cycle e�ciency of plant j� The cycle e�ciency is de
ned as
the quotient of the generation and of the pumping load that correspond to the same
volume of water� The equalities ���� � show� in particular� that there occure no in�
or out�ows in the upper reservoirs and� hence� that the pumped storage plants of the
system operate with a constant amount of water� Together with the upper and lower
bounds for �tj the equations ���� � mean that certain reservoir constraints have to be
maintained for all pumped�storage plants during the whole time horizon�
Further single�unit constraints are minimum up� and down�times and possible must�
on�o� constraints for each thermal unit� Minimum up� and down�time constraints are
imposed to prevent the thermal stress und high maintenance costs due to excessive
unit cycling� Denoting by �i the minimum down�time of unit i� the corresponding
constraints are described by the inequalities�

ut��i � uti � �� u�i � � � t� �� ����minft� �i � �� Tg� t � �� ���� T� ���� �

Analogous constraints can be formulated describing minimum�up times� Note that
further single�unit constraints could be added� such as generator fuel limit constraints
or air quality constraints in the form of limits on emissions from fossil�
red units�
The next constraints are coupling across the units� the loading and reserve con�
straints� The 
rst constraints are essential for the operation of the power system and
mean that the sum of the output powers is greater than or equal to the load demand
in each time period� Denoting by dt the load demand during period t� the loading
constraints are described by the inequalities�

IX
i��

pti �
JX

j��

�stj � wt
j� � dt� t � �� ���� T� ���� �

In order to compensate unexpected events within a speci
ed short time period� a
spinning reserve� describing the total amount of generation available from all units
synchronized on the system minus the present load� is prescribed� For instance� such
events are sudden load increases and the outage of one or more units� Beyond spinning
reserve various classes of o��line reserves may be involved� These include gas�turbine
units and pumped�storage hydro plants that can quickly be brought on�line and up
to full capacity� Hence� the spinning reserve constraints concern the synchronized
thermal units and are given by the following inequalities�

IX
i��

�pmax
it uti � pti� � rt� t � �� ���� T� ���� �
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where rt � � is a speci
ed spinning reserve in period t�
The objective function is given by the total costs for operating the thermal units�
These costs consist of the sum of the costs of each individual unit over the whole
time horizon� i� e��

IX
i��

TX
t��

h
FCit�p

t
i� u

t
i� � SCit �ui�t��

i
� ���� �

where FCit is the fuel cost function and SCit are the start�up costs for the operation of
the thermal unit i during period t� We make the natural assumption that FCit��� �� �
� and that FCit��� �� is strictly monotonically increasing� Often fuel cost functions
are piecewise linear�quadratic and convex� i� e�� they are functions of the form

FCit�p� u� � max
��������L

fi��p� � u ci� ���� �

where fi� are linear or convex quadratic functions having the property max
��������L

fi���� �

� and ci is a 
xed cost term� Non�convex set�ups for fuel costs are also possible and of
particular importance for modelling costs in delivery contracts including discounts�
Typical cost functions of this kind are general piecewise linear functions� Note that
such functions can be modeled using binary variables for selecting the correct line
segment for a given value of p �see e� g� �����
The start�up costs SCit �ui�t�� � where ui�t� � �u�i � ���� u

t
i�� can vary from a maximum

cold�start value to a much smaller value when the unit i is still relatively close to the
operating temperature� A simple description for start�up costs is given by

SCit �ui�t�� � Cf
i max

n
uti � ut��i � �

o
� t � �� � � � � T�

where Cf
i are 
xed costs� This description has the advantage that it can be expressed

in linear terms� On the other hand� it does not re�ect that the costs depend on
the cooling time� Alternatively� a more involved start�up cost function� which is
time�dependent� is given by

SCit �ui�t�� �
�
Cf
i � Cc

i ��� exp ���t� tsi���i��
�
max

n
uti � ut��i � �

o
�

where Cf
i are again 
xed costs� Cc

i cold�start costs� �i the thermal time constant for
the unit i and t� tsi the down�time of unit i until period t� i� e��

si � max
n
s � IN � ut�ji � ut��i � j � �� � � � � s

o
�

Altogether� minimizing the objective function ���� � subject to the constraints ���� ��
���� � leads to a cost�optimal schedule for all units of the power system during the
speci
ed time horizon� It is worth mentioning that a cost�optimal schedule has the
following two interesting properties� which are both a consequence of the strict mono�
tonicity of the fuel costs� If a schedule �u� p� s� w� is optimal� then the loading
constraints ���� � are typically satis
ed with equality and we have stjw

t
j � � for all

j � �� � � � � J� t � �� � � � � T� i� e�� generation and pumping do not occur simultaneously
�see �����
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The minimization problem ���� ������ � represents a mixed�integer program with �pos�
sibly� nonlinear objective� linear constraints� and IT binary and �I��J�T continuous
variables� respectively� For a typical con
guration of the VEAG owned generation
system with I � �� �thermal�� J � � �hydro� and T � ��� �i� e�� � days with hourly
discretization�� this amounts to ���� binary and ���� continuous variables�

load
thermal generation

hydro generation
hydro pumping

Fig� �� load curve and hydro�thermal schedule

For this park of the power system and for a peak load week� Figure � shows a typical
load curve and a corresponding cost�optimal hydro�thermal schedule� Note that the
mixed�integer program is solved by the methods described in ���� which Figure � is
taken from� The load curve in Figure � shows two types of cycles� In general� the load
is higher during the morning and the early evening �peak�� with a small valley during
the early afternoon� and it is lower during the night� In addition� the consumption
of electric power exhibits a weekly cycle� because the load is lower over weekend
days than weekdays� The e�cient operation of pumped�storage hydro plants exploits
these two cycles� They are designed to save fuel costs by serving the peak load with
hydro�energy and then pumping to re
ll the reservoir during o��peak periods� i� e��
during the nights and weekends� The hydro schedule in Figure � re�ects this typical
operation of pumped�storage plants� They may� in fact� be operated on a daily or
weekly cycle� Figure � records a schedule when operating on a weekly cycle� The
remaining load� i� e�� the di�erence between the original system load and the hydro
schedule� shows a much more uniform structure than the original load� This portion
of the load is covered by the total thermal output� Among the thermal plants of
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the system� the base�load units are loaded nearly ���� of the time horizon and the
�cycling� units are loaded for periods depending on their costs and the shape of the
load pattern�
So far we have tacitly assumed that the electrical load is deterministic over the whole
time horizon� In electric utilities� schedulers forecast the electrical load for each time
period of the day or week in advance� For this purpose they make use of historical
load data �e� g� of the same week from previous years�� of their personal experience
and of statistical methods �e� g� time series or regression analysis�� But� clearly�
the actual load demand may deviate from the predicted load at any time period for
various reasons� Usually electric utilities record the actual system load and save the
data over several years� These statistical data provide a basis for the development of
stochastic models for the load process and the optimization of power scheduling�
Next we decribe two stochastic models for the optimal scheduling of electric power
which di�er mainly in the quality of available information on the load stochasticity�
The 
rst one represents a model for the optimal on�line or short�term operation of
a power system� where future consequences of actual scheduling decisions as well as
the future load uncertainty are taken into account� In this model we assume that the
load is completely known �i� e�� deterministic� at the beginning of the time horizon
and that the load uncertainty increases with the growing number of time periods�
Secondly� a model for short� or mid�term power production planning is developed�
The essential di�erence to the 
rst model is that the quality of available information
on the load uncertainty does not depend on time� It aims at determining �optimal�
power production schedules for a future planning period �e� g� next week or month��
The second model represents a two�stage stochastic program� whereas the 
rst one
is a dynamic �multi�stage� stochastic optimization problem� Both models involve
mixed�integer decisions in all stages�

��� Dynamic Recourse Model

We assume that the load fdt � t � �� � � � � Tg forms a �discrete�time� stochastic process
on some probability space ���A� ��� that the information on the load is complete for
t � �� and that the uncertainty increases with growing t� Let fAt � t � �� � � � � Tg
be the 
ltration generated by the load process� where At is the ��completed 	�
eld
de
ned by the random vector �d�� � � � � dt�� Hence� we have A� � A� � � � � � At �
� � � � AT � A and A� is the ��completion of f���g� The sequence of scheduling
decisions f�ut� pt� st� wt� � t � �� � � � � Tg also forms a stochastic process on ���A� ���
which is assumed to be adapted to the 
ltration of 	�
elds� i�e�� nonanticipative� The
latter condition means that the decision �ut� pt� st� wt� depends only on the data
history �d�� � � � � dt� or� equivalently� that �ut� pt� st� wt� isAt�measurable� We mention
that this condition is often formulated in terms of a closed linear subspace that is
determined by the conditional expectations with respect to the 	�
elds At ����� �����
Since all decision variables are uniformly bounded� we may restrict our attention to
decisions �u� p� s� w� belonging to L� ��� A� �� IRm�� where m �� ��I � J�T � Then
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the nonanticipativity condition can be formulated equivalently as

x � �u� p� s� w� �
T
�
t��

L� ��� At� �� IR
mt� � ���� �

where mt �� ��I � J�� and the �stochastic� optimization problem consists in mini�
mizing the expected cost �cf� ���� ��

F �x� � IE

�
IX

i��

TX
t��

h
FCit

�
pti� u

t
i

�
� SCit �ui�t��

i�
���� �

over all decisions �u� p� s� w� satisfying the nonanticipativity constraint ���� � and ��
almost surely the constraints ���� ������ �� Among the constraints ���� ������ �� ���� �
and ���� � re�ect the dynamics of the model and ���� �� ���� � are coupling across
units� Altogether� the stochastic program involves ��I � J�T stochastic decision
variables and� hence� an enormous number of stochastic scheduling decisions for real�
life power generation systems� It is a discrete time dynamic or multi�stage recourse
problem� where the �stages� do not necessarily refer to time periods� but correspond
to steps in the decision process where observations of the uncertain environment �i� e�
the load� take place� The number K of stages of the dynamic model thus corresponds
to the �maximal� number of time steps t� � � 
 t� 
 � � � 
 tk 
 � � � 
 tK�� � T
such that we have the strict inclusion Atk � Atk��� k � �� � � � � K� � � for the 	�
elds
belonging to the 
ltration�
For the numerical solution of the dynamic recourse model we now assume that a
discrete multivariate probability distribution of the stochastic load vector
d �

�
d�� � � � � dT

�
� whose 
nite support consists of the atoms or scenarios

dn �
�
d�n� � � � � d

T
n

�
� with the probabilities �n � � �d � dn� � n � �� � � � � N � is given�

Let nk� k � �� � � � � K� denote the number of atoms corresponding to the 	�
eld Atk �
Then we have n� � � 
 n� 
 � � � 
 nk 
 � � � 
 nK � N and the following scenario
constraints at each stage k � f�� � � � � Kg�

dtkn � dtk�n implies dtn � dt�n� for all t � �� � � � � tk� ����� �

Hence� the information on the load can be represented in the form of a scenario
tree� Each path from the root to a leaf of the tree corresponds to one scenario� each
branching node corresponds to a �decision� stage� Figure � shows an example of a
load scenario tree over a weekly time horizon� where observations of the load are
made every day� leading to one additional daily scenario�
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Fig� �� Load scenario tree

The scenario information may have various origins� It can be obtained as an approx�
imation of the multivariate load distribution� based on sampling from empirical data
or on scenarios provided by experienced schedulers� We do not go into detail here� but
refer to ��� �and the references therein� for a discussion of various approaches to the
generation of scenarios that re�ect the structure of the model as well as the informa�
tion available on the underlying probability distribution� We also refer to ��� where
several strategies for generating load scenarios �e� g� handling forecast uncertainty�
are discussed� Although the primary aim of generating a scenario tree is to obtain a
reasonable approximation for the underlying probability distribution� a compromise
between the quality of approximation and the size of the approximate problem has
to be taken into consideration� too� The size of the scenario based multi�stage model
easily grows out of hand with increasing number of scenarios and stages� In order to
illustrate this fact� let ui�n� pi�n� sj�n� wj�n� and �j�n� denote the n�th scenario of the
variables ui� pi� sj� wj� and �j� Then the scenario based model consists in minimizing
the objective function

NX
n��

IX
i��

TX
t��

�n
h
FCit

�
pti�n� u

t
i�n

�
� SCit �ui�n�t��

i
����� �

over all decisions f�un� pn snwn� � n � �� � � � � Ng satisfying the bound and integrality
constraints ���� �� the system dynamics

�tj�n � �t��j�n � stj�n � �jw
t
j�n� �

�
j�n � �inj � �

T
j�n � �endj � j � �� � � � � J�

ut��i�n � uti�n � �� u�i�n� � � t � �� � � � �minft� �i � �� Tg�

t � �� � � � � T� n � �� � � � � N�

����� �

the loading and reserve constraints

IX
i��
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JX

j��

�sti�n � wt
i�n� � dtn�

IX
i��

�
pmax
it uti�n � pti

�
� rt� ����� �

t � �� � � � � T� n � �� � � � � N�
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and the scenario nonanticipativity constraints� which can be formulated analogously
to ����� ��
When regarding the nonanticipativity constraints and introducing decision variables
at each node of the scenario tree� the number of decisions in the �deterministic�

optimization model ����� ������� � amounts to ��I � J�
KP
k��

nk �tk�� � tk�� Hence� the

model may easily become extremely large if the scenario tree contains too many
paths� Even for the �very� small scenario tree in Figure � �i� e�� with K � �� nK � K
and tk�� � tk � ��� the model involves ��� � I binary and ��� � �I � �J� continuous
variables and standard methods including those reviewed in Section �� may not be
able to solve the problem in reasonable time� This requires other techniques that
exploit the underlying structure of the original stochastic model�

��� Two�Stage Stochastic Model

Again we assume the load fdt � t � �� � � � � Tg to be given as a �discrete�time� stochas�
tic process on some probability space ��� A� ��� However� this time the load process
does not involve an information structure and the decision process consists of two
stages where the 
rst�stage decisions correspond to the here�and�now schedules for
all power generation units over the whole time horizon� The second�stage decisions
correspond to future compensation or recourse actions of each unit in each time pe�
riod in response to the environment created by the chosen 
rst�stage decision and
the load realization in that speci
c time period� Hence� the aim of such a two�stage
dynamic model can be formulated as follows� Find an optimal schedule for the whole
power system and planning horizon such that the uncertain demand can be compen�
sated by the system� all system constraints are satis
ed and the sum of the total
generation costs and the expected compensation costs is minimal�
In order to give a mathematical formulation of the model� let �u� p� s� w� denote the

rst�stage scheduling decisions as in Section ��� and � u�  p�  s�  w� denote the stochas�
tic compensation decisions having the components  uti�  p

t
i�  s

t
j�  wt

j� i � �� � � � � I� j �
�� � � � � J� t � �� � � � � T� which correspond to the compensation actions of each unit at
time period t�
In addition to the �non�stochastic� constraints for �u� p� s� w�� ���� � �capacity lim�
its�� ���� � �storage dynamics�� ���� � �minimum down�time constraints� and ���� �
�reserve constraints�� we have to require that the compensation actions also satisfy
certain system constraints� These are the unit capacity limits� minimum�down time
constraints and reservoir capacity bounds �

pmin
it  uti � pti u

t
i �  pti � pmax

it  uti�  uti � f�� �g� i � �� � � � � I� ����� �

 ut��i �  uti � ��  u�i � � � t� �� � � � �minft� �i � �� Tg� i � �� � � � � I� ����� �
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� � stj �  stj � smax
jt � � � wt

j �  wt
j � wmax

jt �

� � �tj �  �tj � �max
j �  ��j �  �Tj � �

 �tj �
 �t��j �  stj � �j  w

t
j� j � �� � � � � J� t � �� � � � � T� �� a� s�

����� �

In other words� the constraints ����� � for the hydro scheduling decisions mean that
the sum of 
rst�stage decisions and recourse actions is feasible� too� The formulation
����� � of the thermal unit capacity limits for the compensation stage becomes more
involved because the term pti u

t
i introduces a nonlinear constraint connecting 
rst� and

second�stage variables� The nonlinearity in ����� � is avoided when requiring that a
thermal unit� which is scheduled to be on�line in the 
rst�stage� must not be o��line
in the compensation action� In this case� ����� � can be replaced by the �linear�
constraints�

pmin
it  uti � pti �  pti � pmax

it  uti� u
t
i �  uti�  uti � f�� �g� i � �� � � � � I� ����� �

This formulation of the thermal unit capacity limits seems to be quite natural and
realistic because generation systems often possess su�cient �exibility to compensate
load decreases by lowering output levels of thermal units� However� there might be
a need for new on�line units in order to compensate unpredictable load increases�
Another possible compensation strategy could be based on a subdivision of the set
of available thermal units into two sets I� and I� such that I� 	 I� � f�� � � � � Ig and
the conditions

uti �  uti� i � I�� and uti �  uti� i � I�� t � �� � � � � T� �� a� s� �

are satis
ed� This means that only some of the available thermal units may change
their on�o� state when compensating uncertain load� From a modelling point of view
this strategy would lead to a reduction of the number of binary variables�
In the following� we always assume that ����� � instead of ����� � is satis
ed� Observe
that the conditions ����� � and ����� � imply ���� ��
The loading constraints ���� � are modi
ed by requiring that the sum of the 
rst�
stage power outputs of all generation units satis
es the load with some probability
�t � ��� �� in period t� t � �� � � � � T � and that the sum of the total power outputs
satis
es the load with probability one� Denoting by Fdt the distribution function of
dt� the �modi
ed� loading constraints are given by the following inequalities�

IX
i��

pti �
JX

j��

�stj � wt
j� � F��dt ��t�� t � �� � � � � T� ����� �

IX
i��

�pti �  pti� �
JX

j��

�stj �  stj � �wt
j �  wt

j�� � dt� t � �� � � � � T� �� a�s� ����� �

A variant of ����� �� which will be considered in Section �� is that the term F��dt ��t�
is replaced by the expected load IE�dt�� t � �� � � � � T � In both cases� the constraint
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����� � means that the sum of the 
rst�stage output power satis
es a certain pre�
dicted or approximated load and the second�stage decisions take care of satisfying
the stochastic load with probability one�
Since the real operation of the system takes place during the compensation action�
the objective function corresponds to the total average costs for operating the termal
units� i� e��

IE

�
IX

i��

TX
t��

h
FCit

�
pti �  pti�  u

t
i

�
� SCit � ui�t��

i�
����� �

where FCit and SCit denote the fuel cost and start�up cost functions� respectively�
for the operation of unit i during period t� and  ui�t� �� � u�i � � � � �  u

t
i��

The stochastic power production planning model consists then in minimizing the
objective function ����� � over all deterministic decisions �u� p� s� w� and all stochas�
tic decisions � u�  p�  s�  w� � L���� A� �� IRm� satisfying the constraints ���� �� ���� ��
���� �� ����� ������� �� The model represents a two�stage stochastic mixed�integer pro�
gram involving ��I � J�T deterministic and ��I � J�T stochastic decision variables�
Similar to the dynamic model in the previous section� only the loading constraints
����� �� ����� � and the reserve constraints ���� � are coupling across units�

� Lagrangian relaxation approach

Lagrangian relaxation is a solution technique primarily for minimizing a nonsmooth
function� We would like to recall the basic ideas and some facts in order to clarify
the reasons that make this approach appropriate for solving the problems introduced
in the previous section� Our presentation is inspired by ���� Let us consider an
optimization problem

min f�x� subject to x � C� g�x� � �� ���� �

where f � IRn 
 IR� C � IRn� g � IRn 
 IRm�
We suppose that the functions f and g and the set C have some special structure�
which makes the Lagrangian problem

min L�x� �� � f�x� � �g�x�� subject to x � C ���� �

much easier to solve than the problem ���� �� where � � IRm
� � Let us assume the

following�

�A� !��� � min
x�C

L�x� �� � L�x�� �� is 
nite for all � � IRm
� �

Furthermore� we set "g��� � �g�x���
Be aware that L��� �� may have several minima for some �� but !��� is well�de
ned�
since the minimal value is non�ambiguous� By the weak duality theorem� we have

!��� � min
x�C

L�x� �� � f�x�

��



for all feasible points x in ���� �� The following statement is straight�forward but
important�

Proposition ��� ������ Any solution #x of the Lagrangian problem ���� � solves the
perturbed problem ���� �	

min f�x� subject to x � C� �"g��� � g�x�� ���� �

Proof� For any feasible x in ���� � and � � IRm
� we have

f�x� � f�x� � �g�x� � "g����
� L�x� �� � �"g��� � L�#x� ��� � � g�#x�
� f�#x�

�

We conclude that if #x is �almost feasible�� it is �almost a solution� of ���� �� If we
succeed in 
nding a feasible point to ���� �� then we have a solution to ���� �� because
the inequality of ���� � is satis
ed� Having in mind the weak duality theorem� it
is clear that any feasible point #x of ���� � produces an upper bound f�#x� for !����
Hence� to solve ���� � via ���� � it is necessary to maximize ! on IRm

� �
We call !��� the dual function� � the dual variable� and the problem

max!��� subject to � � IRm
� ���� �

the dual problem to ���� �� We show that ! is a concave function having subgradients
at all � by virtue of the assumption �A�� Let us denote a solution of ���� � for #� by
#x�

!��� � min
x�C

L�x� �� � L�#x� ��

� L�#x� #�� � ��� #��g�#x�
� !�#��� ��� #��"g�#��

The latter inequality characterizes concavity and implies

"g�#�� � �!�#���

where �!���� stands for the subdi�erential of �! with respect to � calculated at
the point #��
Let us suppose that the problem under consideration has a separable structure� i� e��
the problem is of the following form�
the variables x � �x�� � � � � x�n� and xi � IRni i � �� � � � � #n�

the objective function f�x� �
�nP

i��
fi�xi� � f��

the related constraints gj�x� �
�nP

i��
gij�xi� � g�j � j � �� � � � � m�

where f� and g�j �j � �� � � � � m� are constants�
Let us further suppose some special structure of the set C� We assume the set C to
be the following product

C �
�

i�
�
i��
f�� �gni

�
�
�

�n
�

i�i���
Bi

�
�

��



where Bi � IRni are compact convex sets� This means that x�� � � � � xi� are binary
variables and we consider a mixed�integer problem�
Furthermore� let us assume the functions fi and gij to be convex piecewise linear or
�piecewise� quadratic functions� Then L��� �� is a convex function� too�
The strong duality theorem does not apply due to the presence of integrality� i� e�
the structure of the set C� However� we are in a favourable situation to have

� the assumption �A� is satis
ed�

� decomposable structure of the relaxed problem�

� description of the subgradients of !����

We call the following optimization problem a continuous relaxation of the problem
���� �

min f�x� subject to x � "C� g�x� � ��

where "C �
�
�i�
i���� ��

ni

�
�
�
��n

i�i���
Bi

�
�

Proposition ��� The Lagrangian relaxation provides a better lower bound of the
optimal value of ���� � than the continuous relaxation of the problem�

Proof� The following sequence of inequalities holds true for each � � IRm
� �

min
x�C

g�x	��

f�x� � min
x�C

L�x� �� � min
x� 
C

L�x� �� � min
x� 
C

g�x	��

f�x�

The last equality results from the strong duality theorem� This proves the assertion�
�

Observe that L�x� �� has a separable structure with respect to the components xi�
which together with the special structure of C leads to a decomposition of the problem
��� into #n subproblems of dimension ni each� The subproblems read

Pi��� � min fi�xi� �
mX
j��

�jg
i
j�xi� subject to xi � Ci�

where� Ci �

�
f�� �gni if � � i � i�
Bi if i� � i � ni

Denoting the marginal functions of the problems above by !i��� �i � �� � � � � #n� we
obtain for the dual function

!i��� �
�nX

i��

!i��� � f� �
mX
j��

�jg
�
j

Consequently� the dual problem has a separable structure� too� The latter observa�
tions make an approach to problems with decomposable structure via Lagrangian
relaxation attractive� A solution procedure should include�

��



� a method for solving the non�smooth concave optimization problem ���� ��

� fast algorithms for minimizing the Lagrange�function L�x� �� at a given point
�� i� e�� for solving the subproblems Pi���� i � �� � � � � #n � The solution provides
then the value of ! and its subgradients�

� a technique to obtain a primal feasible solution�

The latter point needs separate investigations� As already mentioned� a dual method
does not provide a primal feasible solution due to the integrality conditions� Thus� we
have to use the information on the dual solution to calculate a primal feasible point
close to the dual solution e�ciently� Due to the 
rst proposition� such a procedure will
obtain a fairly good point� In ��� it is shown that the relative duality gap for mixed
integer problems with special structure becomes small under certain assumptions�
We will see later how the estimate given there is modi
ed for the dynamic recourse
problem�
Methods for nonsmooth optimization have been subject of intensive development
during the last �� years� An algorithm for minimizing a convex function known for a
long time is the cutting�plane method given in ���� ���� It develops the natural idea
to use subgradient�information and to generate a linear approximation of the function
associated with it� Let us suppose that� at a certain moment� values f�x��� � � � � f�xk�
and subgradients y� � f�x��� � � � � yk � f�xk� are available� We de
ne

"fk�x� � maxff�xi�� 
 yi� x� xi �� i � �� � � � � kg

and� minimizing "fk� obtain a further point xk��� It is assumed that "fk is bounded
from below on C and we are able to compute values and subgradients of f �
However� this algorithm has some well�known drawbacks� The initial iterations are
ine�cient� The number of cuts increases after each iteration and there is no reliable
rule for deleting them� The minimization of the approximate function is sensitive
when approaching a point of nondi�erentiability� Further developments have led to
the so�called bundle methods which o�er a stabilizing device based on the following
ingredients�

� a sequence fxng of stabilized iterates�

� a criterion �test� deciding whether a new iterate has been found and �or�
whether the bundle of information� i�e�� the approximation "fk� should be en�
riched�

� a sequence fMng of positive de
nite matrices used for a stabilizing term�

Bundle methods are pioneered by Wolfe and Lemarechal� A detailed study on the
subject can be found in ��� and ���� A comprehensive review is given in ���� One
description of the main idea of �
rst�order� bundle methods is the following�
Suppose iterate xn and a bundle of subgradients yk have been computed� As above�
we use the bundle of information to formulate a lower approximation of the function
f � i� e�� "fn�x� � maxff�xi�� 
 yi� x� xi �� i � �� � � � � kg� and

��



�� minimize "fn�x� �
�
�

 Mn�x� xn�� x� xn �

and let the point #x be its minimal point�

�� compute a nominal decrease
�n � f�xn�� "fk�#x��

�
�

 Mn�#x� xn�� #x� xn � �

A constant c � ��� �� being chosen� we perform the descent test�
f�#x� � f�xn�� c�n
If the inequality is satis
ed we set xn�� � #x� yk�� � #x
and increase n and k by ��
Otherwise� n is kept 
xed� we set yk�� � #x and increase k by �� In some versions
�cf� ���� an additional test is made before increasing k�

�� The choice of fMng given in the literature is�
� an abstract sequence� as in ����
� Mn � I� as in ����
� Mn � �nI with heuristic rules for computing �n� in ���� ����
� solving a quasi�Newton equation in ����

This description of the bundle methods corresponds to the proximal point concept
�i� e�� the Moreau�Yosida regularization�� Recall that� given a positive semi�de
nite
matrix M �

F �x� � inf
�
f�y� �

�

�

 M�y � x�� y � x �

�
���� �

is the Moreau�Yosida regularization of the function f � In the classical framework M
should be positive de
nite� In ���� it is suggested to allow a degenerate proximal
term and it is shown there that the essential proprties can be reproduced also in this
case� A relationship between these concepts and certain 
rst order bundle methods
was observed by several authors� e�g� ���� Methods of order higher than one are
studied in ��� and ��� where a single stabilizing parameter is varied�
In ��� the choice of weights � for updating the matrix in the proximal term is con�
sidered� The matrixM is intended to accumulate information about the curvature of
f around the point #x� Safeguarded quadratic interpolation is proposed for choosing
the weights �n�� so that the curvature of f between xn and #x is estimated� The algo�
rithm computes a direction for the next iterate xn�� by solving a quadratic program�
then the descent test and the update of the bundle of subgradients are modi
ed ac�
cordingly� The reported computational experiments indicate that this technique can
decrease the number of objective evaluations necessary for reaching a desired accu�
racy in the optimal value signi
cantly�
The algorithms presented in ��� ���� ���� referred to as variable metric bundle meth�
ods� make use of the Moreau�Yosida regularization of the objective function and
develop some quasi�Newton formulas� Two strategies for updating the matrix M
in the minimization procedure are suggested in ���� In the 
rst version� called di�
agonal quasi�Newton method� M is proportional to the identity matrix� while the
second version uses a full quasi�Newton matrix� The matrix is updated at the end

��



of a descent�step� when a new stabilizing iterate point is computed� The updating
procedure corresponds to a regularizing scheme for the gradient of F �
In ��� M is a positive de
nite matrix and� thus� there is a unique solution of ���� ��
which is denoted by y�x�� The main idea is to approximate y�x� and to vary the
matrix M in order to use the information gathered in 
nding one approximation to
help in 
nding the next one� Let J be some approximation of the Jacobian J�x� of
y�x�� A Newton step � r�F��x��

��
rF �x� is approximated there by

M�I � J����M�y�x�� x� � I � J ����y�x�� y��

where I is the identity matrix� M could be 
xed or updated by

Mn � �nGn�

where �n is some constant and Gn is an estimate of rF computed by information
from previous iterations � How to compute the necessary estimate J of the Jacobian
matrix of y�x� is discussed in detail in ���� The method developed there is called
approximate Newton�method�
A precise study of the second�order properties of the Moreau�Yosida regularization
is presented in ��� for the problem of minimizing a closed proper convex function�
which is a selection of a 
nite number of twice continuously di�erentiable functions�
It is proved that under certain constraint quali
cation the gradient rFM is piecewise
smooth� Further conditions are formulated that guarantee a superlinear �quadratic�
convergence of an approximate Newton method for minimizing F �
Generally� one can consider any Newton�type method for nonsmooth equations in
order to solve optimization problems� Newton�type methods in such a generality are
considered in e� g� ���� ���� ���� ���� The methods presented there are applied
to solving optimization problems via augmented Lagrangians ���� via the Karush�
Kuhn�Tucker equations ��� or via the Moreau�Yosida regularization ���
Our review is not an attempt to comment all recent developments of solution tech�
niques for nonsmooth optimization problems� We only wish to present the main ideas
of the well�established methods in order to clarify which of them are appropriate for
solving the nonsmooth problems studied in the next two sections�

� Lagrangian Relaxation for the Dynamic

Recourse Problem

In this section� we consider the Lagrangian relaxation approach for the dynamic re�
course model ���� ������ � in detail and sketch a conceptual algorithm for solving
the problem� The decision variables are uniformly bounded functions �u� p� s� w� �
�T

t�� L
� ��� At� �� IR

mt�� mt � ��I � J�� The variables �ui� pi�� i � �� � � � � I� and
�sj� wj�� j � �� � � � � J� are associated with one single operation unit i� and j� re�
spectively� All constraints except for ���� � and ���� � are associated with a single

��



operation unit� Thus� natural candidates for the relaxation are the coupling con�
straints ���� � and ���� �� We associate Lagrange multipliers �� and �� with the load�
and reserve�constraints� respectively� Setting x � �u� p� s� w� and

L�x� �� � IE

�
IP

i��

TP
t��

FCit �p
t
i� u

t
i� � SCit �ui�t���

��t�

�
dt �

IP
i��

pti �
JP

j��

�
stj � wt

j

�	

��t�

�
rt �

IP
i��

�uti p
max
it � pti�

	�
�

���� �

we have to clarify what kind of objects �� and �� are� Duality theorems for dy�
namic models that are relevant for our setting are considered in ���� ���� We utilize
the results of ���� For stating a duality result we neglect integrality and substitute
uti � f�� �g by uti � �� �� in ���� � for a moment� We denote the modi
ed constraint
by ���� ���
First� let us recall that the dynamic recourse problem has relatively complete re

course if the following procedure leads to a choice of decisions xk� k � �� � � � � K�
almost surely for all stages k� Let x� be a feasible solution of the 
rst stage� In the
second stage �having a new observation of the load�� we can choose x� satisfying the
restrictions and the dynamics of the system� i� e�� in particular� ���� � and ���� � hold
true with the corresponding components of x� and x�� And so forth� In the k�th
stage� we are able to choose a feasible decision xk�
Nonanticipativity and relatively complete recourse provide su�cient conditions for
considering L� to be the space of Lagrange multipliers �� instead of working with
esoteric objects from �L��� �cf� �����
Suppose� additionally� that strict feasibility holds true� It means� that the feasible
set determined by ���� ������� � has a non�empty interior in �T

i�� L
���� At� �� IR

mt��
i� �e�� there exists a positive real number �� a point #x � �T

i�� L
� ��� At� �� IR

mt� and a
neighbourhood U of #x such that any point x � �u� p� s� w� � U satis
es ���� ������� �
and the inequalities�

IX
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pti �
JX

j��

�
stj � wt

j

�
� dt � �� t � �� � � � � T�

IX
i��

�
pti � uti p

max
it

�
� rt � �� t � �� � � � � T�

In terms of a power generation system� strict feasibility means that the generation
system should have the capacity to produce power that satis
es every slightly changed
demand and reserve�condition regarding the other constraints� This is a reasonable
and acceptable restriction� which can be assumed to be satis
ed�
We denote

X �
�
x �

T
�
i��

L� ��� At� �� IR
mt� � ���� �� � ���� � are ful
lled
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The following duality statement holds true�

Proposition ��� The Langrange function ���� � has at least one saddle point
�#x� #�� � X � $ assuming ���� � ���� � relatively complete recourse and strict feasi

bility� In order that the function #x � X be an optimal solution of the problem ���� �

 ���� � it is necessary and su�cient that the following conditions be satis�ed a�s� for
some #� � $ 	

#�t�
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i��
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it #uti�
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� � xL
�
#xt� #�t

�
� t � �� � � � � T�

���� �

Proof� The assertion follows by Theorem � and the arguments of Theorem � from
���� �

Now we consider the relaxed problem�

min
�u� p� s�w	

L�u� p� s� w� subject to ���� � � ���� �� ���� �

Denoting the marginal function of the latter problem by !���� the dual problem reads

max!��� subject to � � $� ���� �

Let us check the properties of ! discussed in the previous section� The concavity of
! and Proposition ��� follow trivially� Proposition ���� follows due to the duality
statement discussed above�
Observe that the assumption �A� of Section � is satis
ed� i� e�� the feasible set with
respect to the continuous variables is a compact �box�constrained� set because of
���� ��
Now� we show that the dual problem is decomposable with respect to the single units�
Using the notations of the previous section� we de
ne

xi � �ui� pi�� i � �� � � � � I� xI�j � �sj� wj�� j � �� � � � � J� #n � I � J�

and observe that all functions are separable with respect to xi� i � �� � � � � #n�
We de
ne functions !i��� and "!j����

!i��� � min
�ui� pi	

IE
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t��

FCit �p
t
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t
i� � SCit�ui�t��� �t�p
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max
it � pti��
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t
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max
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The latter equality holds by the separable structure of the functions FCit with respect
to pti and uti �cf����� �� and the possibility to exchange min and IE in the above
expression�

"!j��� � min
�sj � wj	

IE
TX
t��

h
��t��s

t
j � wt

j�
i

Consequently� the function !��� can be expressed as�

!��� �
IX

i��

!i��� �
JX

j��

"!j��� � IE
TX
t��

h
�t� d

t � �t� r
t
i

It has a separable structure with respect to the single units as well as the constraints
���� � � ���� �� ���� � � ���� � do� Thus� the value and subgradients of !��� can be
computed for a given argument � by solving the subproblems Pi���� i � �� � � � � I and
"Pj��� j � �� � � � � J �

Pi��� � min
ui

IE
TP
t��



min
pti

fFCit �p
t
i� u

t
i�� ��t� � �t�� p

t
ig� SCit�ui�t��� �t� u

t
i p

max
it

�

subject to ���� �� ���� �

"Pj��� � min
�sj � wj	

IE
TP
t��

h
��t�

�
stj � wt
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�i

subject to ���� �� ���� �� ���� �

Note that these are dynamic recourse problems themselves associated with the single
generation units� As noticed in the previous section� the subgradients of !��� with
respect to �� and �� are given by

dt �
IP

i��
pti �

JP
j��

�
stj � wt

j

�
and

rt �
IP

i��
�uti p

max
it � pti��

where �uti� p
t
i� and �stj� w

t
j� are solutions of Pi��� � i � � � � � � I� and "Pj���� j � �� � � � � J�

respectively�
Therefore� the necessary information for a nonsmooth optimization method of the
kind discussed in Section � is at hand providing e�cient algorithms for solving the
subproblems are available� Consequently� we shall have established an algorithm for
solving the problem ���� � � ���� � if the following points are clari
ed�

� approximation of the stochastic process dt by a scenario tree�

� choice of an appropriate method for solving the dual problem ���� ��

� e�cient algorithms for solving the subproblems Pi��� � "Pj����

��



� gaining information from the solution of the dual problem ���� � for computing
a primal feasible solution and providing an estimation of the occurring relative
duality gap�

Let us comment all these points� The stochastic process dt can be approximated by
means of an analysis of statistical data using also expert knowledge� The 
rst thing
to clarify is the nature of the demand randomness� In order to estimate the load of
the system one usually uses the data of the same week from previous years� data of
days with similar weather conditions� and the experience of experts� The strategy
of creating scenarios has to re�ect truly all possible future demands� The number
of scenarios that approximate the demand has to be chosen in such a way that a
fairly good approximation is obtained but the speed of the optimization procedure
is not a�ected critically since the execution time of the algorithm grows rapidly as
the number of scenarios included increases� The probability assigned to each scenario
can be calculated according to the likelihood of their occurrence�
The functions FCit and SCit i � �� � � � � I� t � �� � � � � T are assumed to be piecewise
linear or quadratic� Consequently� the function !��� is piecewise twice continuously
di�erentiable� Therefore� any method of non�smooth optimization of those discussed
in the previous section could be applied� The methods developed as bundle methods
of order higher than one could be applied successfully� e� g� ���� ���� ���� Unfortu�
nately� for those guaranteeing superlinear convergence ������ no computational code
is available up to now� The variable metric bundle methods ���� ���� ��� provide
convergence but no estimate of the rate is given� We would like to emphasize that
those methods are 
nite for piecewise linear convex functions� The published experi�
ence with NOA Version ��� ����� reports fast convergence in practice �cf� �����
The e�ciency of the optimization algorithm depends to great extent on the fast
computation of the values and subgradients of the objective function !���� There�
fore� the development of fast algorithms for solving the problems Pi��� and "Pj���� i �
�� � � � � I� j � �� � � � � J � is important� An algorithm for solving the problems "Pj���� j �
�� � � � � J� has been developed by Nowak ���� It regards "Pj��� as a network��ow prob�
lem and suggests a procedure adapted to the structure called EXCHA� The crucial
point in this procedure is the selection of a proper direction from a prescribed subset of
descent directions for minimizing the objective of "Pj���� Let us consider the problems
Pi���� i � �� � � � � I� The inner minimization �with respect to pi� can be done explic�
itly or by one�dimensional optimization� Further� a dynamic programming procedure
can be used to minimize the expected costs with respect to the integer variables ui�
A state transition graph of the unit to each scenario regarding the nonanticipativity
constraint can be considered� Then the solution corresponds to a tree in this graph
that has minimal weighted length� In order to reduce the number of nodes� we can
include the constraints ���� � into the process of generating the state transition graph
by setting nodes �o�� for at least �i periods�
Another substantial part of the solution procedure for the dynamic recourse problem
consists in developing an algorithm for the determination of a primal feasible solution
after one has found a solution of the dual problem� As already established� if we 
nd

��



an �almost� feasible point� it is �almost� a solution �Proposition ����� In addition�
the optimal value !��� of the dual problem is a better lower bound of the objective
function of the primal problem than the value of its continuous relaxation� It is pos�
sible to use some modi
cation of the heuristic procedure presented for this purpose
in ��� and further modi
ed as in ���� More precisely� the algorithm should work as
follows�

� try to satisfy the reserve�constraints by using pumped�storage hydro plants in
those time intervals� where the largest values of dt � rt occur� If the reserve�
constraints are still violated� use the procedure of ����

� improve the feasible solution found at the end of the procedure above by solving
the problem keeping the integer variables 
xed� An algorithm for the latter
problem is suggested in ��� that is a modi
cation of the network��ow algorithm
in ���� The problem is considered as a network��ow problem again and the
algorithm makes use of its special structure�

Summarizing� the presented solution technique includes the following basic steps�

� generation of a scenario tree �discrete approximation of d�

� solving the problem ���� � e�g� by NOA Version ����
solving the problems Pi���� i � �� � � � � I� by dynamic programming and
"Pj���� j � �� � � � � J � by EXCHA�

� determination of a primal feasible solution by the procedure described above�

An illustrative example for an approximation of the load is given in Figure � and
Figure � expresses the corresponding stochastic schedule for 
xed binary variables�
The values of the approximative load are generated by using the value of a given
load� and a standard normal random variable �see ��� for details��
A 
nal remark is due� There is an estimate for the occurring duality gap� We
use the description of the problem ����� ������� � based on scenarios� At this place�
we incorporate the nonanticipativity condition into the representation of the model�
More precisely� we consider decisions xtin � �utin� p

t
in� s

t
in� w

t
in� and x

t
i�n that correspond

to scenarios n and  n ful
lling dtn � dt�n for all t � �� � � � � tk as indistinguishable up to
the stage k� We use only one notation for the decisions at stage k for all scenarios
that are indistinguishable up to that stage� Recall that the number of scenarios at
the stage k is denoted by nk and the number of load and reserve�constraints amounts

to �
KP
k��

nk�tk�� � tk��

��
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Proposition ��� Assume relatively complete recourse for the dynamic recourse
problem� Let its optimal value be denoted by F � and the optimal value of its dual
problem by !�� Then there exists a constant � such that the following estimate holds
true	

F � �!� � ��
KX
k��

nk�tk�� � tk� � ���

Proof� The proof follows from Proposition ���� in ��� We only have to show that
the assumptions �A����A�� made there are satis
ed in our situation� �A�� is just the
feasibility of the problem� which holds due to relatively complete recourse� �A�� and
�A�� are easily checked specifying the required conditions� �

We consider the same dynamic recourse problem with a modi
ed objective function�

�

I N
IE
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i��

TX
t��

h
FCit�p

t
i� u

t
i� � SCit �ui�t��

i

The objective function in this case represents the average costs per scenario
term�
We have the same optimal solution for both problems and the duality gap becomes

F � �!� �
�

KP
k��

nk�tk�� � tk� � �

I N
�

The latter inequality implies that the duality gap goes to zero as I 
 � Conse�
quently� the duality gap becomes small for large systems independently of making
the discrete approximation of the load 
ner �N 
��

� Lagrangian Relaxation for the Two�Stage

Model

We consider the two�stage stochastic power production planning model elaborated in
Section ��� under the assumption that the fuel cost functions exhibit the form ���� ��
Setting x �� �u� p� s� w� and  x �� � u�  p�  s�  w� � L���� A� �� IRm� the optimization
problem consists in minimizing the objective function

F �x�  x� �� IE

�
IX

i��

TX
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h
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�
pti �  pti�  u

t
i

�
� SCit � ui�t��
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���� �

over all decisions x � IRmand  x � L���� A� �� IRm� such that the unit capacity
limits ���� �� ���� �� ����� �� ����� � the minimum down�time constraints ����� � and
the loading and reserve constraints

IP
i��

pti �
JP
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respectively� are satis
ed� The constraints ���� � are coupling across units while all
remaining constraints are associated with the operation of single �thermal or hy�
dro� units� With a similar argument based on a duality statement as in the pre�
vious section� we relax the constraints ���� � by introducing Lagrange multipliers
� � ���� ��� ���� where ��� �� � IRT and �� � L���� A� �� IRT �� The dual problem
is then of the following form�

max
n
!��� � � � IRT � L���� A� �� IRT �� IRT � � � �� �� a� s�

o
���� �

where
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Hence� the dual function ! decomposes into the form
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Here !i��� is the optimal value of a two�stage stochastic program for the �single�
thermal unit i� which has the form�
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Introducing the optimal value function for the second�stage problem and taking into
account the special form ���� � of the fuel costs� the two�stage mixed�integer stochastic
program ���� � may be rewritten as

min f
TP
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��t� � �t��p
t
i � �t�u

t
ip

max
it � � IE f%i�ui� pi����g �

pmin
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Since the minimization with respect to pi and  pi ��� a� s�� in ���� � or ���� � can be per�
formed explicitly� the models represent two�stage stochastic combinatorial programs
and can be solved by dynamic stochastic programming� Problem ���� � simpli
es
essentially for the case of I� � �� i� e��  uti � uti �i � �� � � � � I� t � �� � � � � T �� because
the compensation program does not contain binary decisions� %i enjoys a separability
structure and can be computed explicitly� In the latter case ���� � takes the form
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The term "!j��� in the representation ���� � of the dual function ! is the optimal
value of the following stochastic pumped�storage subproblem for the plant j�

min

�
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��t� � IE��t��� �s
t
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TP
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�
 stj �  wt

j

��
� �sj� wj� and � sj�  wj�

satisfy � � stj � smax
jt � � � wt

j � wmax
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jt �

t � �� � � � � T� and ���� �� ����� �g �
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Problem ���� � represents a linear two�stage stochastic program� which can be solved
by standard solution techniques �cf� ���� �����
These facts motivate a Lagrangian relaxation�based conceptual solution method for
the two�stage stochastic model� which is similar to the algorithm developed in the
previous section� Its basic steps are�

��



� Generation of scenarios dn� n � �� � � � � N� for the load process d and replacing
d by this discrete approximation�

� solving the concave dual problem ���� � by applying appropriate nondi�eren�
tiable optimizationmethods �cf� Section ��� where function values and subgradi�
ents of ! are computed by solving the single unit subproblems ���� � and ���� ��
Note that ���� � has dimension �TN and ! is piecewise linear or quadratic�

� determining a primal feasible solution for the 
rst�stage variables by a procedure
that is similar to the method described in Section ��
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