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Department of Mathematics
University of Duisburg-Essen, Campus Duisburg

Lotharstr. 65, D-47048 Duisburg, Germany

Abstract

We introduce stochastic integer programs with dominance constraints induced by mixed-integer lin-
ear recourse. Closedness of the constraint set mapping with respect to perturbations of the underly-
ing probability measure is derived. For discrete probability measures, large-scale, block-structured,
mixed-integer linear programming equivalents to the dominance constrained stochastic programs are
identified. For these models, a decomposition algorithm is proposed. Computational tests with
instances from power optimization and Sudoku puzzling conclude the paper.
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1 Introduction

In recent years, stochastic dominance has gained some attraction in stochastic programming. In [10, 11,
12, 22] the authors have introduced stochastic programs with dominance constraints of different order
involving generic random variables. They have studied basic structural properties of these models and
proposed algorithms for their solution.
Notions of stochastic dominance introduce partial orders on families of random variables. When preferring
small outcomes to big ones, a (real-valued) random variable X is said to dominate a random variable Y
to first order (X �1 Y) iff IEh(X) ≤ IEh(Y) for all nondecreasing functions h for which both expectations
exist. X is said to dominate Y to second order (X �2 Y) iff

IEh(X) ≤ IEh(Y) (1)

for all nondecreasing convex functions h for which both expectations exist. Dominance of first order
implies that of second order to hold, but not vice versa. We refer to [21] and the references therein for
background on stochastic dominance.
The objects of interest in the present paper are stochastic programs with second-order dominance con-
straints involving random variables that result from the dynamics met in two-stage stochastic program-
ming. To be more specific, let us consider the following random mixed-integer linear program

min{c>x + q>y : Tx + Wy = z(ω), x ∈ X, y ∈ ZZm̄
+ × IRm′

+ } (2)

together with the information constraint that, in the first stage, x must be selected prior to observing
z(ω), and afterwards, in a second stage, y has to be selected. This condition often is referred to as
nonanticipativity of x. We assume that the vectors and matrices in (2) have conformable dimensions,
that W has rational entries, and that X ⊆ IRm is a nonempty polyhedron, possibly involving integer
requirements to components of x.
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In traditional two-stage stochastic programming, see [6, 18, 23, 26], the aim is to optimize first-stage
decisions. To this end, well-defined optimization problems in x, often called deterministic equivalents,
are formulated. The principal construction is as follows. Rewrite (2) as

min
x

{
c>x + min

y
{q>y : Wy = z(ω)− Tx, y ∈ ZZm̄

+ × IRm′

+ } : x ∈ X
}

= min
x
{c>x + Φ(z(ω)− Tx) : x ∈ X} (3)

where
Φ(t) := min{q>y : Wy = t, y ∈ ZZm̄

+ × IRm′

+ }. (4)

One possibility to look at (3) is to recognise a family of random variables(
c>x + Φ(z(ω)− Tx)

)
x∈X

, (5)

and to understand (3) as the problem of finding a “best” member in this family. The most straightforward
way to make this selection is to compare the random variables by their expectations, leading to the
deterministic equivalent

min{IE[c>x + Φ(z(ω)− Tx)] : x ∈ X}. (6)

In the literature this problem is known as the (classical) two-stage stochastic program with (mixed-integer)
linear recourse, [6, 18, 23, 26]. The risk neutral problem (6) can be extended to a model involving risk
aversion if the random variables f(x, ω) := c>x + Φ(z(ω)− Tx) get compared via statistical parameters
reflecting risk. With R a generic such parameter and ρ > 0 a fixed weight factor, the mean-risk extension
of (6) reads

min{IE[f(x, ω)] + ρ · R[f(x, ω)] : x ∈ X}.
Risk measures R that were used in this context include both quantile-based (excess probability, value-
at-risk, conditional value-at-risk) and deviation-based measures (expected excess, semideviation), see
[1, 13, 19, 20, 28, 29].

The starting point of the investigations in the present paper is to identify “acceptable” members of (5)
rather than looking for a “best” among them. We assume that a random benchmark a(ω) is given that
reflects an acceptance threshold for the costs f(x, ω) resulting from the two-stage dynamics in (2). We
will consider x ∈ X acceptable iff f(x, ω) �2 a(ω). Over all acceptable x we minimize an objective
function g : IRm → IR. This leads to the following stochastic program with second-order dominance
constraints induced by mixed-integer recourse

min{g(x) : f(x, ω) �2 a(ω), x ∈ X}. (7)

This model, while interesting in its own, is closely related to the counterpart model where second-order
dominance is replaced by first-order dominance, see [14] for an analysis of the latter. Since second-order
dominance is the weaker notion, (7) is a relaxation of the first-order model, see [22] for related work.
Our paper is organized as follows. In Section 2 we study some structural properties of (7). Section 3 is
devoted to algorithmic considerations, and in the final section we report some computational results.

2 Structural Properties

The aim of this section is to provide a framework such that the objects in (7) are well-defined, and to
derive some basic structural properties of (7).
Let us come back to the definition of second-order stochastic dominance. It is well-known, see [21] for a
proof, that (1) is already valid if it holds for all “wedge” functions h(.) := max{.−η, 0} =: [.−η]+, η ∈ IR.
Let P(IRs),P(IR) be the sets of all Borel probability measures on IRs and IR, and let µ ∈ P(IRs) and
ν ∈ P(IR) denote the image measures induced by z(ω), a(ω) on IRs and IR, respectively. The constraint
f(x, ω) �2 a(ω) now can be equivalently expressed as∫

IRs

[f(x, z)− η]+ µ(dz) ≤
∫

IR

[a− η]+ ν(da) ∀η ∈ IR, (8)

provided all objects in (8) are well-defined. Let us start with f(x, z) := c>x + Φ(z − Tx). Recall that Φ
is the value function of a mixed-integer linear program, cf. (4). Assume
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(A1) (complete recourse) W (ZZm̄
+ × IRm′

+ ) = IRs,

(A2) (sufficiently expensive recourse) {u ∈ IRs : W>u ≤ q} 6= ∅.

Then it holds that (A1) and (A2), together with the rationality of W , which was imposed as a basic
assumption in the very beginning, imply that Φ is real-valued and lower semicontinuous on IRs, i.e.,
lim inftn→t Φ(tn) ≥ Φ(t) for all t ∈ IRs, [3, 7]. Moreover, there exist α > 0, β > 0 such that for all
t1, t2 ∈ IRs

|Φ(t1) − Φ(t2)| ≤ α‖t1 − t2‖ + β. (9)

Without integer requirements in the second stage (linear recourse), linear programming duality, together
with (A1) and (A2), imply

Φ(t) = min{q>y : Wy = t, y ≥ 0} = max{t>u : W>u ≤ q} = max
`=1,...,L

d>` t (10)

where d`, ` = 1, . . . , L, are the vertices of {u : W>u ≤ q}. Hence, Φ is piecewise linear and convex in this
case.
This settles well-posedness of the integrands in (8). For finiteness of the integrals we assume

(A3) (finite first moments)
∫

IRs

‖z‖µ(dz) < ∞,

∫
IR

|a| ν(da) < ∞.

Using (9) and the fact that (A2) implies Φ(0) = 0, we obtain that for fixed x there is a constant κ > 0
such that ∣∣[f(x, z)− η]+

∣∣ ≤ α‖z‖ + κ ∀z ∈ IRs.

Hence, (A1)-(A3) imply that the integral on the left in (8) is always finite. For the integral on the right,
(A3) ensures this property.
In accordance with (A3) we denote by P1(IRs),P1(IR) the subsets of P(IRs),P(IR) with measures having
finite first moment. We fix ν ∈ P1(IR) and consider the multifunction C : P1(IRs) → 2IRm

where

C(µ) := {x ∈ IRm : f(x, z) �2 a, x ∈ X}. (11)

The space P1(IRs) is equipped with weak convergence of probability measures ([4]). A sequence {µn}
in P1(IRs) is said to converge weakly to µ ∈ P1(IRs), written µn

w−→ µ, if for any bounded continuous
function h : IRs → IR it holds

∫
IRs h(z)µn(dz) →

∫
IRs h(z)µ(dz) as n →∞.

Our aim is to show that C is a closed multifunction on P1(IRs). This means that for arbitrary µ ∈ P1(IRs)
and sequences µn ∈ P1(IRs), xn ∈ C(µn) with µn

w−→ µ and xn → x it follows that x ∈ C(µ).

Lemma 2.1 Let µn, µ ∈ P(IRs) with µn
w−→ µ and h : IRs → IR be lower semicontinuous with

h(z) ≥ 0 ∀z ∈ IRs. Then ∫
IRs

h(z) µ(dz) ≤ lim inf
n

∫
IRs

h(z) µn(dz).

Proof: We start with the bounded case and assume there exist h, h̄ ∈ IR such that h < h(z) < h̄ ∀z ∈ IRs.
Without loss of generality we assume 0 < h(z) < 1 ∀z ∈ IRs which can be achieved by affine scaling.
Fix k ∈ IN and consider the sets Hi := {z ∈ IRs : i/k < h(z)}, i = 0, . . . , k. Since h is lower semicontin-
uous, Hi is open for all i. It holds

k∑
i=1

i− 1
k

µ
[{

z :
i− 1

k
< h(z) ≤ i

k

}]
≤

∫
IRs

h(z) µ(dz) ≤
k∑

i=1

i

k
µ
[{

z :
i− 1

k
< h(z) ≤ i

k

}]
.

The sum on the right equals

k∑
i=1

i

k

(
µ[Hi−1]− µ[Hi]

)
=

1
k

+
1
k

k∑
i=1

µ[Hi],

while the sum on the left is identical with
k∑

i=1

i− 1
k

(
µ[Hi−1]− µ[Hi]

)
=

1
k

k∑
i=1

µ[Hi].
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Putting this together yields

1
k

k∑
i=1

µ[Hi] ≤
∫

IRs

h(z) µ(dz) ≤ 1
k

+
1
k

k∑
i=1

µ[Hi]. (12)

By the Portmanteau Theorem (see [4], Theorem 2.1, p 11/12) we have for all i

µ[Hi] ≤ lim inf
n

µn[Hi]. (13)

Applying the left inequality in (12) to µn and taking the limes inferior provides

1
k

lim inf
n

k∑
i=1

µn[Hi] ≤ lim inf
n

∫
IRs

h(z) µn(dz),

and, together with (13),
1
k

k∑
i=1

µ[Hi] ≤ lim inf
n

∫
IRs

h(z) µn(dz).

Now we apply the right inequality in (12) and obtain

−1
k

+
∫

IRs

h(z) µ(dz) ≤ lim inf
n

∫
IRs

h(z) µn(dz).

With k → ∞ this yields the assertion for bounded h. For extension to unbounded non-negative h let
r ∈ IR+ and consider the truncated function hr : IRs → IR with

hr(z) :=
{

h(z) , if h(z) ≤ r
r , otherwise.

Lower semicontinuity of h implies lower semicontinuity of hr for all r ∈ IR+. The assertion then is valid
for hr, since hr is bounded. Moreover, hr(z) ≤ h(z)∀z ∈ IRs. This yields∫

IRs

hr(z) µ(dz) ≤ lim inf
n

∫
IRs

hr(z) µn(dz) ≤ lim inf
n

∫
IRs

h(z) µn(dz) ∀r ∈ IR+. (14)

The Monotone Convergence Theorem (see for instance [5], Theorem 16.2, p. 211) yields∫
IRs

hr(z) µ(dz) −→
∫

IRs

h(z) µ(dz) for r →∞.

Together with (14) this implies∫
IRs

h(z) µ(dz) ≤ lim inf
n

∫
IRs

h(z) µn(dz),

and the proof is complete. 2

Proposition 2.2 Assume (A1)-(A3). Then the multifunction C, as defined in (11), is closed on P1(IRs).

Proof: Let µn, µ ∈ P1(IRs) and xn ∈ C(µn) such that µn
w−→ µ and xn → x. Closedness of X then

immediately yields x ∈ X. According to (8), xn ∈ C(µn) implies∫
IRs

[f(xn, z)− η]+ µn(dz) ≤
∫

IR

[a− η]+ ν(da) ∀η ∈ IR. (15)

Notice that the integrands [f(·, ·)−η]+ are non-negative and lower semicontinuous for all η ∈ IR. Together
with Fatou’s Lemma (see for instance [5], Theorem 16.3, p. 212), this implies∫

IRs

[f(x, z)− η]+ µn(dz) ≤
∫

IRs

lim inf
k

[f(xk, z)− η]+ µn(dz)

≤ lim inf
k

∫
IRs

[f(xk, z)− η]+ µn(dz)
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for all η ∈ IR. Taking the limes inferior with respect to n on both sides we obtain

lim inf
n

∫
IRs

[f(x, z)− η]+ µn(dz) ≤ lim inf
n

lim inf
k

∫
IRs

[f(xk, z)− η]+ µn(dz)

≤ lim inf
n

∫
IRs

[f(xn, z)− η]+ µn(dz)

≤
∫

IR

[a− η]+ ν(da) ∀η ∈ IR.

Here the second inequality follows from passing to the diagonal sequence where n = k, and the third
inequality follows from (15). Applying Lemma 2.1 with h(z) := [f(x, z)− η]+ implies∫

IRs

[f(x, z)− η]+ µ(dz) ≤ lim inf
n

∫
[f(xn, z)− η]+ µn(dz) ≤

∫
IR

[a− η]+ ν(da) ∀η ∈ IR

and thus x ∈ C(µ). The proof is complete. 2

Remark 2.3 (About closedness of the sets C(µ).) By setting µn identical to µ for all n, Proposition 2.2
implies that C(µ) is a closed subset of IRm for all µ ∈ P1(IRs).

Remark 2.4 (About convexity of the sets C(µ).) Assume there are no integer variables in the second
stage, i.e., Φ(t) := min{q>y : Wy = t, y ≥ 0} and X is convex. The convexity of Φ, recall (10), then
implies that for all x1, x2 ∈ X and all λ with 0 ≤ λ ≤ 1[

f(λx1 + (1− λ)x2, z)− η
]
+

≤
[
λ(f(x1, z)− η) + (1− λ)(f(x2, z)− η)

]
+

≤ λ
[
f(x1, z)− η

]
+

+ (1− λ)
[
f(x2, z)− η

]
+
.

Together with (8) this yields the convexity of C(µ) for all µ ∈ P1(IRs).

Remark 2.5 (About variable ν.) In [10] the authors have studied the stability of first-order stochastic
dominance constraints (involving generic random variables) when perturbing the underlying probability
distributions for the data and the benchmark. When equipping the space P1(IR) of benchmark measures
ν with weak convergence of probability measures and selecting the benchmarks from the subset Pρ,R(IR) ⊆
P1(IR) of measures whose ρ-th moment is bounded above by R (ρ > 1, R > 0 fixed), then νn, ν ∈ Pρ,R(IR)
and νn

w−→ ν imply
∫

IR
[a − η]+ νn(da) →

∫
IR

[a − η]+ ν(da), see for instance [4], Theorem 5.4, p. 32.
This enables straightforward extension of the proof of Proposition 2.2 to the multifunction C̄ : P1(IRs)×
Pρ,R(IR) → 2IRm

where C̄(µ, ν) := {x ∈ IRm : f(x, z) �2 a, x ∈ X}.

Remark 2.6 (About lower semicontinuity of the optimal value.) Closedness of the multifunction C is the
key to proving lower semicontinuity of the optimal value function given by ϕ(µ) := inf{g(x) : x ∈ C(µ)}.
For instance, if X is nonempty and compact, g lower semicontinuous, and (A1)-(A3) are valid, then ϕ
is lower semicontinuous at all µ̄ ∈ P1(IRs) for which the optimization problem defining ϕ(µ̄) is solvable.
The proof follows the lines of Berge’s classical theory, see for instance [2] or [14].

3 Algorithm

For discrete probability distributions, the following proposition establishes an equivalence between (7)
and a mixed-integer linear program.

Proposition 3.1 Let z(ω) and a(ω) in (7) follow discrete distributions with realizations zl, l = 1, . . . , L,
and ak, k = 1, . . . ,K, as well as probabilities πl, l = 1, . . . , L, and pk, k = 1, . . . ,K, respectively. Let
further g(x) := g>x be linear. Assume (A1) and (A2). Then (7) is equivalent to the mixed-integer linear
program
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min
{

g>x : c>x + q>ylk − ak ≤ vlk ∀l ∀k

Tx + Wylk = zl ∀l ∀k∑L
l=1 πlvlk ≤ āk ∀k

x ∈ X, ylk ∈ ZZm̄
+ × IRm′

+ , vlk ≥ 0 ∀l ∀k


(16)

where āk :=
∫

IR
[a− ak]+ ν(da), k = 1, . . . ,K.

Proof: Recall from (8) that the constraint f(x, ω) �2 a(ω) is equivalent to∫
IRs

[f(x, z)− η]+ µ(dz) ≤
∫

IR

[a− η]+ ν(da) ∀η ∈ IR. (17)

We first show that, for this to hold, validity for η = a1, . . . , aK is already sufficient. Denote for all η ∈ IR

F (η) :=
∫

IRs

[f(x, z)− η]+ µ(dz)

and
A(η) :=

∫
IR

[a− η]+ ν(da),

and assume that
F (ak) ≤ A(ak), k = 1, . . . ,K. (18)

Assume the ak are arranged in ascending order. Since ν is finite discrete, the function A is piecewise
linear and convex. Moreover, A is linear on each of the intervals η ≤ a1, ak ≤ η ≤ ak+1(k = 1, . . . ,K−1),
and aK ≤ η. We will check (17) for each of these intervals and start with η ≤ a1.
Pick ηo ≤ η such that ηo ≤ f(x, zl) for all l = 1, . . . , L. Denoting L′ :=

{
l ∈ {1, . . . , L} : f(x, zl) < a1

}
we compute

F (ηo) − F (a1) =
L∑

l=1

πlf(x, zl)− ηo −
∑
l 6∈L′

πlf(x, zl) +
∑
l 6∈L′

πla1

=
∑
l 6∈L′

πla1 − ηo +
∑
l∈L′

πlf(x, zl)

≤
∑
l 6∈L′

πla1 − ηo +
∑
l∈L′

πla1

= a1 − ηo. (19)

Moreover, A(η) =
∑K

k=1 pkak − η for η ≤ a1, and

A(ηo) − A(a1) =
K∑

k=1

pkak − ηo −
K∑

k=1

pkak + a1 = a1 − ηo. (20)

For a suitable λ with 0 ≤ λ ≤ 1 it holds η = ληo + (1− λ)a1. The convexity of F then yields

F (η) ≤ λF (ηo) + (1− λ)F (a1)
= F (a1) + λ(F (ηo)− F (a1))
≤ F (a1) + λ(a1 − ηo)
≤ A(a1) + λ(a1 − ηo)
= A(a1) + λ(A(ηo)−A(a1))
= A(ληo + (1− λ)a1)
= A(η).
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In the third row we have used (19), in the fourth (18), in the fifth (20), and then the linearity of A on
the considered interval.
Now let ak ≤ η ≤ ak+1 for some k = 1, . . . ,K − 1. The convexity of F , (18), and the linearity of A on
this interval then provide for a suitable λ with 0 ≤ λ ≤ 1

F (η) ≤ λF (ak) + (1− λ)F (ak+1) ≤ λA(ak) + (1− λ)A(ak+1) = A(λak + (1− λ)ak+1) = A(η).

Finally, let aK ≤ η. Note that F is non-increasing and non-negative. Hence, together with (18),

0 ≤ F (η) ≤ F (aK) ≤ A(aK) = 0.

Therefore, F (η) = 0 = A(η). This proves the claim that (17) holds when it is valid for η = a1, . . . , aK .
To establish the asserted equivalence we fix k, consider the sets

S1 :=
{

x ∈ X :
∫

IRs

[f(x, z)− ak]+ µ(dz) ≤
∫

IR

[a− ak]+ ν(da)
}

and

S2 :=
{

x ∈ X : ∃vl ≥ 0 ∃yl ∈ ZZm̄
+ × IRm′

+ , l = 1, . . . , L,

such that:

c>x + q>yl − ak ≤ vl

Tx + Wyl = zl∑L
l=1 πlvl ≤ āk


and show that S1 = S2.
For S1 ⊆ S2 let x ∈ S1 and denote I :=

{
l ∈ {1, . . . , L} : f(x, zl) − ak > 0

}
. By the definition of S1 we

have ∫
IRs

[f(x, z)− ak]+ µ(dz) =
∑
l∈I

πl(f(x, zl)− ak) ≤ āk.

Put vl := f(x, zl)− ak for all l ∈ I, and vl := 0, otherwise. This yields

L∑
l=1

πlvl ≤ āk.

For l 6∈ I it holds that f(x, zl) − ak ≤ 0. The validity of (A1) and (A2) implies that the optimization
problems behind the f(x, zl) are solvable. Hence, for all l 6∈ I, there exist yl ∈ ZZm̄

+ × IRm′

+ with

c>x + q>yl − ak ≤ 0 = vl and Tx + Wyl = zl.

For l ∈ I, choose yl ∈ ZZm̄
+ × IRm′

+ such that q>yl = Φ(zl − Tx) and Tx + Wyl = zl. Then

c>x + q>yl − ak = f(x, zl)− ak = vl,

yielding x ∈ S2.
For S2 ⊆ S1 let x ∈ S2 and consider I :=

{
l ∈ {1, . . . , L} : vl > 0

}
. The definition of S2 implies that for

l 6∈ I there exist yl ∈ ZZm̄
+ × IRm′

+ fulfilling

c>x + q>yl − ak ≤ 0 and Tx + Wyl = zl.

Therefore, f(x, zl)− ak ≤ 0 for all l 6∈ I. For l ∈ I there exist yl ∈ ZZm̄
+ × IRm′

+ with

c>x + q>yl − ak ≤ vl and Tx + Wyl = zl.
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Thus, f(x, zl)− ak ≤ vl for all l ∈ I. Now we obtain∫
IRs

[f(x, z)− ak]+ µ(dz) =
∑
l∈I

πl[f(x, zl)− ak]+ +
∑
l 6∈I

πl[f(x, zl)− ak]+

≤
∑
l∈I

πlvl + 0 ≤
L∑

l=1

πlvl ≤ āk,

so x ∈ S1, and the proof is complete. 2

Concerning the above proof we remark that the fact that, for finite probability spaces, second-order
stochastic dominance reduces to a finite number of real-valued inequalities, cf. (18), has already been
observed in [22]. The setting in [22] refers to a different class of random variables and stochastic dominance
with preference of big outcomes, though.
Inspecting (16) we observe that the constraints

L∑
l=1

πlvlk ≤ āk ∀k (21)

are the only ones coupling explicitly second-stage variables, namely vlk, across different scenarios l. An
implicit such coupling, of course, is given by

c>x + q>ylk − ak ≤ vlk ∀l ∀k,

Tx + Wylk = zl ∀l ∀k.

One concludes that, without (21), problem (16) in principle were in L-shaped form, [30], a structure that
has given rise to different decomposition algorithms for stochastic programs [6, 8, 18, 23, 25, 26].
Understanding (16) as an “expanded” representation of the nonconvex global minimization problem (7)
we propose the following branch-and-bound algorithm for its solution. By P we denote a list of problems,
and ϕLB(P ) is a lower bound for the optimal value of P ∈ P. Moreover, ϕ̄ denotes the currently best
upper bound to the optimal value of (16), and X(P ) is the element in the partition of X belonging to P .

Algorithm 3.2

Step 1 (Initialization):
Let P := {(16)} and ϕ̄ := +∞.

Step 2 (Termination):
If P = ∅ then the x̄ that yielded ϕ̄ = g>x̄ is optimal.

Step 3 (Bounding):
Select and delete a problem P from P. Compute a lower bound ϕLB(P ) and apply a feasibility
heuristics to find a feasible point x̄ of P .

Step 4 (Pruning):
If ϕLB(P ) = +∞ (infeasibility of a subproblem)) or ϕLB(P ) > ϕ̄ (inferiority of P ), then go to
Step 2.
If ϕLB(P ) = g>x̄ (optimality for P ), then check whether g>x̄ < ϕ̄. If yes, then ϕ̄ := g>x̄. Go to
Step 2.
If g>x̄ < ϕ̄, then ϕ̄ := g>x̄.

Step 5 (Branching):
Create two new subproblems by partitioning the set X(P ) by means of linear inequalities. Add these
subproblems to P and go to Step 2.

Of course, Algorithm 3.2 is of little value as long as the bounding in Step 3 is not specified. Let us start
with lower bounding. The basic idea is to pass to a model in L-shaped form by means of relaxation. In
view of the above discussion the obvious candidate for this relaxation is (21). Recall that there are as
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many constraints in (21) as there are realizations of the benchmark a(ω). The latter originating from a
subjective perception of risk, this number K often is quite small, say within some tens, compared with
the generally far bigger number L of data scenarios zl. Hence, Lagrangean relaxation of (21) will lead to
a Lagrangean dual of tractable dimension.
For models in L-shaped form, two principal decomposition approaches can be taken, a Benders-type
decomposition or a dual decomposition based on (Lagrangean) relaxation of nonanticipativity [6, 8, 18,
23, 25, 26, 30]. With integer variables in the second-stage, however, Benders decomposition leads to
nonconvex master problems. Therefore, we pursue dual decomposition.
We relax nonanticipativity of x in (16) by introducing copies xl, l = 1, . . . , L. One possibility now could
be to regain nonanticipativity by Lagrangean relaxation of the identities x1 = x2 = . . . = xL. This,
however, would lead to a Lagrangean dual in dimension (L−1) ·dim x, which quickly can become several
tens or even hundreds of thousands. Therefore, we leave it at working with the copies xl in our lower
bounding scheme, striking a compromise between computational effort and quality of bounds.
With these presuppositons, and putting x =

∑L
l=1 πlxl we arrive at the following Lagrangean function

L(x, v, λ) =
L∑

l=1

πl · g>xl +
K∑

k=1

λk

( L∑
l=1

πlvlk − āk

)
=

L∑
l=1

πl · g>xl +
L∑

l=1

K∑
k=1

λk · (πlvlk − πlāk)

=
L∑

l=1

Ll(xl, vl, λ)

where

Ll(xl, vl, λ) := πl · g>xl + πl

K∑
k=1

λk · (vlk − āk).

The Lagrangean dual reads
max{D(λ) : λ ∈ IRK

+ }

where

D(λ) = min
{
L(x, v, λ) : c>xl + q>ylk − ak ≤ vlk ∀l ∀k

Txl + Wylk = zl ∀l ∀k

xl ∈ X, ylk ∈ ZZm̄
+ × IRm′

+ , vlk ≥ 0 ∀l ∀k


This is where decomposition becomes effective. The optimization problem behind D(λ) is separable in l,
and we obtain

D(λ) =
L∑

l=1

min
{
Ll(xl, vl, λ) : c>xl + q>ylk − ak ≤ vlk ∀k

Txl + Wylk = zl ∀k

xl ∈ X, ylk ∈ ZZm̄
+ × IRm′

+ , vlk ≥ 0 ∀k

 (22)

The function D(.) is piecewise linear and concave. So bundle-trust methods for nonsmooth convex mini-
mization can be employed for solving the Lagrangean dual, whose optimal value provides a lower bound
for the optimal value of (16). In our numerical experiments we have used Christoph Helmberg’s imple-
mentation of the spectral bundle method from [16].

As already mentioned there, upper bounding in Algorithm 3.2 is accomplished by a feasibility heuristics.
This heuristics starts with xl-parts x̃l of optimal solutions to the single-scenario problems in (22) for
optimal or nearly optimal λ.
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Algorithm 3.3

Step 1:
Using x̃l, l = 1, . . . , L, pick a “reasonable candidate” x̄, for instance one arising most frequently, or
one with minimal Ll(xl, vl, λ), or average the x̃l, l = 1, . . . , L, and round to integers if necessary.

Step 2:
Check whether the following problems are feasible for l = 1, . . . , L:

min
{

g>x̄ : c>x̄ + q>ylk − ak ≤ vlk

T x̄ + Wylk = zl

ylk ∈ ZZm̄
+ × IRm′

+ , vlk ≥ 0, k = 1, . . . ,K

 (23)

If one of them fails to be feasible, x̄ cannot be feasible for (16), and the heuristics stops with assigning
the formal upper bound +∞. Otherwise, go to Step 3.

Step 3:
Check whether the vlk found in (23) fulfil

L∑
l=1

πlvlk ≤ āk k = 1, . . . ,K.

If yes, then a feasible solution to (16) is found. The heuristics stops with the upper bound g>x̄.
Otherwise, go to Step 4.

Step 4:
Solve for each l = 1, . . . , L:

min

{
K∑

k=1

vlk : c>x̄ + q>ylk − ak ≤ vlk

T x̄ + Wylk = zl

ylk ∈ ZZm̄
+ × IRm′

+ , vlk ≥ 0, k = 1, . . . ,K


Go to Step 5.

Step 5:
Repeat the test from Step 3 with the vlk found in Step 4. If the test is positive then the heuristics
stops with the upper bound g>x̄. Otherwise, the heuristics stops without a feasible solution to (16)
and assigns the formal upper bound +∞.

4 Computations

In the following we report computational results for Algorithm 3.2 applied to test instances from power
planning and Sudoku puzzling. The first group of instances refers to the optimal management of a
dispersed generation (DG) system run by a power utility in Germany, see [15] for a detailed model
description. The instances of the second group are inspired by [17].

4.1 Dispersed Generation System

The system contains five engine-based cogeneration stations which produce heat and power simultaneously
and include altogether 18 generation units. Excessive heat is either stored or is exhausted (lost) via cooling
devices. The electrical energy is fed into the distribution network. The system is completed by twelve
wind turbines and one hydroelectric power plant.
Optimizing the operation of the system over some time horizon can be accomplished by a mixed-integer
linear model that consists of about 17500 variables (9000 boolean, 8500 continuous) and 22000 constraints,
if a horizon of 24 hours is split into quarter-hourly subintervals.
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Taking into account data uncertainty - the consumers’ demand of energy as well as the infeed from
renewable resources and the fuel and power prices are known only in terms of probability distributions -
the problem turns into a random optimization problem (2).
Finally, a two-stage stochastic optimization problem (3) arises, if we assume the data to be certain for
the first four hours of the planning horizon. Results for a purely expectation-based model (6) and for
mean-risk models with different risk measures are reported in [15, 27].
Dominance constraints are applied to this problem to minimize abrasion of the generation units over all
possible generation policies that dominate a given cost benchmark to second order. Therefore the new
objective function g(x) in (7) is chosen as the sum over all variables indicating start-ups of the units in the
first four hours. The benchmark a is provided by an optimal solution x̂ of the expectation-based model
(6). The f(x̂, ω) are clustered around some heuristically chosen benchmark values and each benchmark
value is assigned the sum of the probabilities of the members in its cluster. Further test instances are
obtained by succesively increasing the benchmark values, with probabilities fixed.
Below, computational results for K = 4 benchmark scenarios and L = 20 up to L = 50 scenarios for
heat and power demand are reported. Dimensions of the arising deterministic equivalents are shown in
Table 1.

Number of 20 scenarios 30 scenarios 50 scenarios
Boolean variables 596719 894319 1489519

continuous variables 564693 846333 1409613
constraints 1481568 2220488 3698328

Table 1: Dimensions of mixed-integer linear programming equivalents

In Tables 2 - 4 we compare results for the deterministic equivalents gained from the standard mixed-
integer solver Cplex ([9]) to results computed with Algorithm 3.2 derived in Section 3, called ddsip.vSD
here. Computations were done on a Linux-PC with a 3.2GHz pentium processor and 2GB ram. As
stopping criterion we used a timelimit of eight hours.
From instance 1 to instance 5 the benchmark costs increase successively which makes the dominance
constraints easier to fulfil. As one would expect, this leads to a decrease in the number of start-ups of
the generation units. This is reported in the column ’Upper Bound’, where the objective value of the
current best solution is displayed. The corresponding lower bounds (’Lower Bound’) are given as well.
In all test instances, ddsip.vSD reaches the first feasible solution faster than Cplex does. The time
ddsip.vSD needs to find this first feasible solution is thus reported. Furthermore, the points in time are
given, where ddsip.vSD and Cplex, respectively, solve the test instances to optimality. For Cplex, this
always turned out to be the time when the first feasible solution was found. Finally, if a computation
was not finished within eight hours, its status at expiry of the timelimit is reported.

Instance Benchmarks Time (sec.) Cplex ddsip.vSD
Probability Benchmark Value Upper Lower Upper Lower

Bound Bound Bound Bound
1 0.105 2895000 455.36 – 29 29 9

0.1 4851000 1602.92 – 29 29 29
0.69 7789000 3694.92 29 29 29 29
0.105 10728000

2 0.105 2900000 464.26 – 27 27 9
0.1 4860000 2501.01 – 27 27 27
0.69 7800000 4661.86 27 27 27 27
0.105 10740000

3 0.105 3000000 362.91 – 18 18 9
0.1 5000000 3101.28 – 18 18 18
0.69 8000000 3952.93 18 18 18 18
0.105 11000000

4 0.105 3500000 386.32 – 11 11 9
0.1 5500000 1197.34 – 11 11 11
0.69 8500000 3760.04 11 11 11 11
0.105 11500000

5 0.105 4000000 430.61 – 8 8 8
0.1 6000000 3035.52 8 8 8 8
0.69 9000000
0.105 12000000

Table 2: Results for instances with 20 data scenarios and 4 benchmark scenarios

For one of the test instances with 30 scenarios Cplex stopped before reaching a feasible solution, because
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the available memory was exceeded (marked by ’out of mem.’). In this case the lower bound at break off
is reported.
With 50 data scenarios the deterministic equivalents get so large, that the available memory is insufficient
to build up the model (lp-) file used by Cplex, thus preventing optimization with Cplex for these instances.
Hence, in the last table only best values and lower bounds found by ddsip.vSD are presented.

Instance Benchmarks Time (sec.) Cplex ddsip.vSD
Probability Benchmark Value Upper Lower Upper Lower

Bound Bound Bound Bound
1 0.085 2895000 697.21 – 29 29 9

0.14 4851000 2471.63 – 29 29 29
0.635 7789000 7520.07 29 29 29 29
0.14 10728000

2 0.085 2900000 702.31 – 27 27 9
0.14 4860000 3635.25 – 27 27 27
0.635 7800000 14905.68 – 27 out of mem. 27 27
0.14 10740000

3 0.085 3000000 666.31 – 18 18 9
0.14 5000000 3907.92 – 18 18 18
0.635 8000000 7181.68 18 18 18 18
0.14 11000000

4 0.085 3500000 500.05 – 11 11 9
0.14 5500000 1404.96 – 11 11 11
0.635 8500000 6559.52 11 11 11 11
0.14 11500000

5 0.085 4000000 474.68 – 8 8 8
0.14 6000000 6076.40 8 8 8 8
0.635 9000000
0.14 12000000

Table 3: Results for instances with 30 data scenarios and 4 benchmark scenarios

Instance Benchmarks Time (sec.) Cplex ddsip.vSD
Probability Benchmark Value Upper Lower Upper Lower

Bound Bound Bound Bound
1 0.09 2895000 1084.68 – – 29 9

0.135 4851000 3747.69 – – 29 29
0.67 7789000
0.105 10728000

2 0.09 2900000 1125.39 – – 27 9
0.135 4860000 5857.67 – – 27 27
0.67 7800000
0.105 10740000

3 0.09 3000000 1041.15 – – 18 9
0.135 5000000 6126.89 – – 18 18
0.67 8000000
0.105 11000000

4 0.09 3500000 1026.21 – – 11 9
0.135 5500000 2872.83 – – 11 11
0.67 8500000
0.105 11500000

5 0.09 4000000 1096.69 – – 8 8
0.135 6000000
0.67 9000000
0.105 12000000

Table 4: Results for instances with 50 data scenarios and 4 benchmark scenarios

Our computations show that the decomposition method solves all test instances to the optimum in less
computing time than Cplex does. It always reaches a first feasible solution very fast, seven up to twenty
times faster than Cplex, which seems to be the decisive difficulty for the standard solver.
Especially in the computations with 30 and 50 scenarios the superiority of the decomposition method
over general-purpose solvers becomes apparent. For one instance with 30 scenarios Cplex cannot provide
a feasible solution, for all instances with 50 scenarios even no lower bound. On the other hand, ddsip.vSD
solves all these problems to optimality.

4.2 Sudoku

Sudoku is a popular logic game, which is played over a 9 × 9 grid, canonically divided into nine 3 × 3
sub grids. Sudoku begins with some of the grid cells already filled with numbers. The task of a Sudoku
player is to fill the remaining empty cells with numbers between 1 and 9 (one number only in each cell),
such that each number occurs only once in each row, each column and each of the nine sub blocks. The
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Sudoku rules can easily be represented with 729 Boolean variables and a system of linear inequalities
(cf. [17]).
A two-stage random mixed-integer linear program (2) arises in the following way: The entries on the main
diagonal are chosen as first stage decisions. A scenario is formed by a single Sudoku puzzle with a small
number of prescribed entries and the property that a solution with joint elements on the main diagonal
exists. The objective is to minimize the sum of the elements of the secondary diagonal (north-east to
south-west).
To arrive at a dominance constrained model (7), we choose the objective g(x) = g>x as the sum of the
elements on the main diagonal. Benchmark scenarios were derived by clustering f(x̂, ω), where x̂ denotes
an optimal solution to the expectation model (6). In this way we minimize the sum of the main diagonal
elements such that the corresponding member of (5) stochastically dominates the specified benchmark
random variable to second order.
We report results with K = 1 up to 5 benchmark scenarios and L = 10 up to 100 scenarios. Deterministic
equivalents according to Proposition 3.1 again become pretty large-scale. Table 5 shows dimensions for
K = 5 and some L.

Number of 10 scenarios 20 scenarios 50 scenarios 100 scenarios
boolean variables 36450 72900 182250 364500
general integer variables 9 9 9 9
continuous variables 50 100 250 500
constraints 20755 41505 103755 207505

Table 5: Dimensions of mixed-integer linear programming equivalents

Table 6 summarizes our computations for the Sudoku instances. Again, a Linux-PC with a 3.2GHz
pentium processor and 2GB ram was used. The time limit was set to ten hours.
The first two columns list the numbers K of benchmark and L of data scenarios. The remaining columns
list lower and upper bounds obtained when applying Cplex [9] and our implementation ddsip.vSD of
Algorithm 3.2. Time entries deviating from the limit of 10h indicate that the instance was solved to
optimality within this span. It can be seen that ddsip.vSD was able to solve all instances to optimality
within the horizon of 10 hours, except the 100 scenario, 5 references problem, while Cplex did not find a
feasible point in most cases.

Cplex ddsip.vSD
Number
of Bench-
mark
Scenarios

Number
of Data

Scenarios

Upper
Bound

Lower
Bound

Time
(min)

Upper
Bound

Lower
Bound

Time
(min)

1

10 - 45 600 45 45 4
20 45 45 0.1 45 45 5
50 45 45 0.4 45 45 5
100 - 45 600 45 45 9

2

10 45 45 0.4 45 45 33
20 45 45 0.6 45 45 22
50 45 45 2.6 45 45 37
100 - 45 600 45 45 67

3

10 - 45 600 45 45 94
20 - 45 600 45 45 168
50 - 45 600 45 45 96
100 - 45 600 45 45 151

4

10 - 45 600 45 45 156
20 - 45 600 45 45 260
50 - 45 600 45 45 198
100 - 45 600 45 45 201

To be continued on the next page
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Cplex ddsip.vSD
Number
of Bench-
mark
Scenarios

Number
of Data

Scenarios

Upper
Bound

Lower
Bound

Time
(min)

Upper
Bound

Lower
Bound

Time
(min)

5

10 - 45 600 45 45 413
20 - 45 600 45 45 480
50 - 45 600 45 45 229
100 - 45 600 45 43 600

Table 6: Results for Sudoku instances

As an illustration of possible tradeoffs between the dominance model (7) and the expectation model
(6) we did some computations with a fixed number of 6 scenarios and different (uniformly distributed)
random variables a. The results of these experiments are shown in Table 7, where the first column
contains the possible values of the random variable f(x∗, ω) (also uniformly distributed) to the optimal
x∗ found by solving the dominance constrained model. The second column lists the different benchmark
values (realizations of a). It can be observed that the looser the benchmark profile is chosen the better is
the objective value of the dominance model. On the other hand one has to cope with a higher expected
value.
The figures below show the cumulative distribution functions (cdf) of a( . ) and f(x∗, . ) for the first and
the last instances of Table 7. While in the first case f stochastically dominates a only to second-order,
the cdf of f is greater or equal to that of a in the second case. Thus even dominance to first-order holds
for this instance.

Values of f(x∗, ω) Benchmark Objective Value
(Dominance Model) IE[f(x∗, ω)]

24, 28, 28, 28, 28, 30 24, 30 55 27.6667
27, 27, 28, 28, 28, 29 27, 29 44 27.8333
27, 28, 28, 28, 28, 30 26.5, 30 40 28.1667
29, 29, 29, 30, 31, 31 29, 31 38 29.8333
29, 29, 29, 30, 31, 32 29, 32 37 30

Table 7: Results for different benchmarks
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