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English summary

Humans rely extensively on social learning in their everyday lives. The capacity for learn-

ing from others is thought to underlie the complexity of human cultures and to influence

all domains of life. How people learn from others and when it is adaptive to rely on social

learning have been major questions in several disciplines including psychology, biology,

anthropology and economics. Despite the shared interest of these diverse fields, many of

the results remain isolated and are often incomparable, in part because the study of social

learning still lacks a general theoretical framework that would make results comparable or

explain why different strategies perform well in different contexts. In this thesis I propose

such a framework that is grounded in the study of ecological rationality. I use this frame-

work to explore three primary questions: i) how can social learning strategies be modeled

as cognitively plausible strategies composed of simple building blocks (search, stopping

and decision rules), ii) what are key characteristics of social and task environments in

which social learning takes place, and iii) how do social learning strategies composed of

different building blocks interact with the structure of the environment to produce differ-

ent levels of success. Through addressing these three questions I map out the conditions

under which different strategies are adaptive and explain how the building blocks of differ-

ent strategies contribute to their performance in certain environments. The thesis focuses

on three representative classes of social learning strategies, namely, frequency-dependent,

payoff-biased, and unbiased copying. Different chapters focus on important everyday so-

cial learning settings, identify key environmental characteristics defining the setting and

demonstrate how the building blocks of social learning strategies interact with these en-

vironmental structures to produce different outcomes. In the final chapter I discuss the

implications, possible extensions and future challenges of the framework.

Keywords: Social learning; Ecological rationality; Wisdom of crowds; Decision making
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Zusammenfassung

In ihrem Alltag nutzen Menschen soziales Lernen. Die Fähigkeit von anderen zu lernen

bildet die Basis für die Komplexität menschlicher Kulturen und beeinflusst alle Bere-

iche menschlichen Zusammenlebens. Wie Menschen von anderen lernen und wann es

adaptiv-rational ist sich auf soziales Lernen zu verlassen sind wichtige Fragen in vie-

len Disziplinen einschließlich der Psychologie, der Biologie, der Anthropologie und den

Wirtschaftswissenschaften. Trotz der geteilten Interessen dieser Disziplinen sind viele

der vorhandenen Resultate voneinander isoliert und oft nicht vergleichbar, teilweise weil

es der Forschung zum sozialen Lernen immer noch eines theoretischen Rahmens fehlt,

welcher die gewonnen Erkenntnisse vergleichbar machen würde sowie erklären würde

warum unterschiedliche Strategien in Abhängigkeit vom sozialen Kontext erfolgreich

sind oder nicht. In meiner Arbeit schlage ich einen solchen theoretischen Rahmen vor,

welcher sich auf der Forschung zur ökologischen Rationalität gründet. Ich benutze den

theoretischen Rahmen der ökologischen Rationalität sozialen Lernens, um drei Fragen

zu beantworten: i) Wie können soziale Lernstrategien als kognitiv plausible Strategien

modelliert werden, die auf drei einfachen Building Blocks beruhen (Such-, Stopp- und

Entscheidungsregeln), ii) was sind die wichtigsten Faktoren von sozialen Umwelten und

Problemumwelten, in denen soziales Lernen stattfindet und iii) wie interagieren soziale

Lernstrategien, die auf unterschiedlichen Building Blocks beruhen, mit der Struktur von

Umwelten, um unterschiedliche Erfolgsniveaus zu erreichen. Indem ich diese drei Fra-

gen adressiere, erarbeite ich die Bedingungen unter denen unterschiedlichen Strategien

adaptiv-rational sind und erkläre wie unterschiedlichen Strategien in bestimmten Umwel-

ten erfolgreich sind. Meine Arbeit fokussiert auf drei repräsentative Klassen von sozialen

Lernstrategien: Frequency-Dependent, Payoff-Biased und Unbiased Copying. Jedes der

Kapitel behandelt eine wichtige alltägliche soziale Lernsituation, identifiziert die Schlüs-

selcharakteristiken der Situation und demonstriert wie die Building Blocks des sozialen

Lernens mit diesen Umweltstrukturen interagieren, um unterschiedliche Erfolgsniveaus
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zu erreichen. Im letzten Kapitel diskutiere ich Implikationen, mögliche Erweiterungen

und künftigen Herausforderung des theoretischen Rahmens der ökologischen Rationalität

sozialen Lernens.

Schlagwörter: Sozialen lernen; Ökologischen Rationalität; Intelligenz der Masse; Entschei-

den
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Chapter 1

Introduction

1.1 Social learning

Humans make many decisions by relying on social information. From choosing consumer

products (e.g., books, movies, music, food items) to deciding how to behave in cultural

settings, people often imitate the choices of others. Social learning is central in the lives

of most social animals (Laland, 2004) and is a core element of human social cognition

already present in pre-verbal infancy (Gergely, Bekkering, & Király, 2002; Heyes, 2012;

Meltzoff, 1988). Starting from a few months of age, infants imitate adults’ gestures, tool

use, and avoidance behavior, and imitation remains an important element of development

and learning throughout adolescence and adulthood (Bell, 1970). On a large scale, organi-

zations such as firms also rely on social learning when, for example, developing business

models (Segerstrom, 1991). Social learning underlies much of human behavior and is

considered to be the major driving force of cultural evolution (Boyd & Richerson, 1985).

The study of social learning broadly construed is central to a large number of dis-

ciplines including psychology, biology, anthropology, economics, management, and arti-

ficial intelligence. Many studies, in particular in biology and anthropology have focused

1



2 Chapter 1. Introduction

on developing mathematical models for understanding the conditions under which differ-

ent social learning strategies can evolve and can outperform each other. However, for the

sake of analytical tractability, most of these models are rather abstract and tend to ignore

the cognitive processes underlying social learning (e.g. how information is searched) as

well as many important characteristics of real-world social and task environments (Boyd

& Richerson, 1985; A. R. Rogers, 1988; Schlag, 1999). Meanwhile, in psychology, so-

cial learning has typically been studied using vague terms, such as conformity or social

influence, that lack the precision needed to distinguish between different strategies in em-

pirical settings or to formalize them computationally (Mesoudi, 2009). Both approaches

have their strengths and weaknesses and combining them would contribute to a better

understanding of social learning. However, despite the fact that these disciplines are con-

cerned with very similar questions, they tend to study social learning independently, with

very little or no communication between them. Several recent attempts have been made

to address this issue by providing a taxonomy of social learning strategies for the be-

havioral sciences (Laland, 2004), trying to foster communication between the biological

and psychological sciences (Mesoudi, Whiten, & Laland, 2006) or running interdisci-

plinary computer tournaments on social learning in the spirit of Robert Axelrod’s famous

tournament on cooperation (Rendell, Boyd, et al., 2010). In addition, some biological

and anthropological models have tried to test hypotheses put forward in Bandura’s social

learning theory (Aoki, Wakano, & Feldman, 2005; Bandura, 1971; Boyd & Richerson,

1985), thereby connecting insights from psychology with formal mathematical models

developed in biology.

However, the study of social learning still lacks a unifying theoretical framework

with most results being difficult to compare due to the different methodologies used, dif-

ferent interpretations of social learning and the different journals these studies are pub-

lished in.

The purpose of this thesis is to fill this gap in the study of social learning by propos-
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ing a novel framework based on the notion of ecological rationality for the study of social

learning. This framework is composed of three elements:

(1) Modeling social learning as cognitively plausible process-level strategies com-

posed of building blocks (search, stopping, and decision rules).

(2) Studying important elements of the social and task environments in which social

learning takes place.

(3) Building computational and analytical models to study the match between so-

cial learning strategies and different environments in order to explain why a given

strategy is successful in a given environment.

1.2 Ecological Rationality

The study of ecological rationality emphasizes the role played by the match between the

strategy and the structure of the environment in producing good decisions (Gigerenzer

& Gaissmaier, 2011; Gigerenzer, Todd, & the ABC Research group, 1999). Following

this approach, I model social learning strategies (rules that describe whom to imitate)

as cognitive strategies composed of three basic building blocks: search, stopping, and

decision rules. Search rules specify how information is searched in the environment,

stopping rules prescribe when search is stopped, and decision rules determine how the

collected information is used to make a final decision.

Consider a simple heuristic called take-the-best (Gigerenzer & Goldstein, 1996) that

can be applied to make binary decisions about which of two options has a higher value

on a given criterion. For example, when judging which of two cities is larger on the basis

of several cues, such as whether a given city has a university, is a state capital, or has a

soccer team, the take-the-best heuristic searches for cues in terms of their validity (i.e., the

relative frequency with which a given cue leads to the correct inference), stops searching
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as soon as one of the cues discriminates (i.e., the cue has a positive value for one city and

a negative value for the other) and decides by picking the city with the positive cue value.

Take-the-best is a process model describing each phase of making a decision, including

information search, stopping search and making a decision. By studying each building

block of the strategy and properties of the environments in which it can be applied one can

map out the conditions under which it is a good strategy. Theoretical analyses have shown

that take-the-best performs well in environments where cue validities follow a J-shaped

distribution (Todd & Gigerenzer, 2012) (see Gigerenzer & Brighton, 2009; Şimşek, 2013,

for other ecological conditions). These theoretical predictions have been subsequently

justified in empirical studies (Gigerenzer, Hertwig, & Pachur, 2011).

Another heuristic that can be used for the same task is the recognition heuristic

which makes a decision about which of two cities has a larger population by selecting the

option that is recognized 1. This strategy is ecologically rational when the most famous

cities are also the biggest cities, i.e., recognition correlates with the criterion (Goldstein

& Gigerenzer, 2002). This approach has been fruitful in modeling individual decision

strategies and studying the environmental conditions influencing their performance.

The framework of ecological rationality has also been applied to the social domain

including group decision making, cooperation, mate choice, moral decision making, and

advice taking (Hertwig & Hoffrage, 2013; Kämmer, Gaissmaier, Reimer, & Schermuly,

2014). Hertwig and Hoffrage (2013) classified problems faced in the social work into

two broad classes: games against nature and social games. Games against nature refer to

situations where individuals need to predict something occurring in nature (e.g. the yield

of a crop) while social games involve making decisions in situations where outcomes also

depend on the decisions of other individuals. The heuristics proposed within the adaptive

toolbox that can be applied to such problems include social learning (imitation), however,

very few studies have focused on fleshing out the properties of imitation strategies and

1Note that this strategy requires that only one of the two cities is recognized, otherwise, the take-the-best

strategy can be applied.
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the ecological conditions in which they perform well. One of the few such attempts have

been made by Boyd and Richerson (1985) who studied the environmental conditions that

favor genetic transmission, individual learning or social learning. They found that when

the environment is stable, natural selection should favor genetic transmission, when the

environment is very turbulent individual learning is favored and when the environment

changes at intermediate rates, social learning can evolve (Boyd & Richerson, 1985). This

is a useful approach for mapping out the ecological rationality of social learning, however,

it is only an initial step. How to define environmental change, what are other environmen-

tal conditions that favor or disfavor social learning and what forms of social learning are

favored have not been addressed.

In social learning, strategies have typically been defined by one word descriptions

(e.g. imitate the best) without reference to the underlying decision process. This is prob-

lematic for a couple of reasons. First, it results in most studies modeling only the decision

phase of implementing a social learning strategy (e.g., Garcia-Retamero, Takezawa, &

Gigerenzer, 2006) without specifying how the information on which the decision is based

is collected. Second, it leaves the exact implementation of the strategies open, resulting

in different studies using different implementations and, as a result, in contradictory re-

sults (see for example Garcia-Retamero et al., 2006; Woike, Bonardi, & Garcia-Retamero,

2013).

Linking the study of social learning to the framework of ecological rationality, al-

lows us to build psychologically plausible process models of social learning. Specifically

social learning strategies can be modeled by the same building blocks (search, stopping,

and decision rules) and their performance can be studied in different social and task envi-

ronments. Before describing this approach in more detail, in what follows I briefly review

the literature on social learning in psychology and biology and discuss their limitations.
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1.3 Social learning in Psychology and Biology

The study of social learning has a long history in social psychology. Psychologists and

sociologists have considered imitation to be a fundamental aspect of human behavior

and human culture (Bandura, 1971; Tarde, 1903). For example, Bandura’s Social Learn-

ing Theory put forward that much of human behavior is acquired via social learning

rather than learning through trial-and-error (Bandura, 1971) and several experiments have

demonstrated that children imitate aggressive acts after observing them or that they tend

to copy prestigious individuals (Bandura, Ross, & Ross, 1961, 1963). Festinger (1954)

argued that individuals compare themselves to others when they are uncertain about their

own behavior and tend to adjust their own behavior accordingly. Other studies have fo-

cused on situations where individuals conform to the behavior of others in experimental

settings (Asch, 1956; Latané & Wolf, 1981; Sherif, 1936). These studies from social

psychology provide rich information regarding the kinds of situations in which individu-

als use social information as well as about the kinds of social information they consider.

However, most of these studies lack precise models of social learning strategies and an un-

derstanding of how they interact with the structure of the environment (Mesoudi, 2009).

They use rather vague definitions of social learning that obscure the exact mechanisms

underlying individual decisions. As a result, the same vaguely defined mechanism can be

consistent with several different patterns of behavior.

To illustrate, consider the case of conformity. In a large population 60% of indi-

viduals choose option A and 40% choose option B. If an individual was to conform by

copying the majority behavior of a random sample of, say, nine members of the popula-

tion, her probability of choosing option A would be higher than 60% 2. If, however, she

would follow a random other individual then she would have a 60% chance of choosing

the most frequent option (A). In both cases, the observed pattern of results would indi-

2This can be verified by simply calculating the cumulative probability of sampling a majority or more

’correct’ instances from a set of Bernoulli trials where the probability of being ’correct’ is 0.6 in this case.

Doing the calculation yields 73% for this example.
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cate that the individual conformed to the most popular option since an individual is more

likely to choose the more frequent option using both strategies (Claidière & Whiten, 2012;

Mesoudi, 2009). However, the underlying mechanisms are different: in the first case an

individual samples multiple people from the population and picks the majority option,

while in the second case she considers only one randomly sampled individual. As I will

demonstrate in this thesis, these mechanisms can produce very different results when in-

teracting with different environmental structures and, therefore, distinguishing between

them is crucial.

The literature on social learning in biology and anthropology has studied social

learning more formally (albeit only the decision phase of strategies), but studied them

in very simplified environments to allow for analytical tractability. In general, this line

of research has identified three main classes of social learning strategies: (1) frequency-

dependent, (2) payoff-biased, and (3) unbiased social learning.

Frequency-dependent social learning refers to any strategy that adopts a behavior as

a function of its frequency in the population. Within this class, positive and negative fre-

quency dependence can be distinguished, where the former refers to adopting a behavior

the more frequent it is and the latter to adopting a behavior the less frequent it is. This

class is also commonly referred to as conformity and anti-conformity, respectively. Com-

monly studied strategies within this class are the majority and plurality rules (Hastie &

Kameda, 2005) as examples of positive frequency dependence, and the copy-the-minority

strategy as an example of negative frequency dependence (Claidière, Bowler, & Whiten,

2012; Efferson et al., 2008). Frequency-dependent social learning, in particular the ma-

jority rule is very similar in structure to a decision heuristic called tallying which chooses

the option with the highest number of positive cue values (Dawes & Corrigan, 1974).

Payoff-biased strategies use the payoff, success, or prestige of other individuals as

cues to decide whom to copy. Common strategies studied in this class are the imitate-the-

best, imitate-the-successful and imitate-the-prestigious heuristics (Henrich & Gil-White,
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2001). These strategies are thought to underlie the evolution of prestige relationships in

human cultures and have been studied in economic and business settings (Schlag, 1999).

Note that they have a very similar structure to the take-the-best heuristic which searches

for cues in a lexicographic order starting with the best cue.

Finally, unbiased copying refers to a strategy that does not bias its decision towards

frequency, payoff, or some other cue, but instead, it simply copies another individual at

random. This strategy is typically referred to as random copying. Random copying has

been shown to be consistent with several cultural trends in human societies, including the

adoption and abandonment of popular music, first names or dog breeds (Bentley, Hahn,

& Shennan, 2004). Unbiased copying is analogous to the minimalist heuristic studied in

binary choice which searches for cues at random.

In addition, several combinations of these three classes also exist, for example a

strategy can be simultaneously frequency-dependent (copy the majority behavior) and

payoff-biased (adopt it only if it has a higher payoff).

While these strategies have been studied formally in biology and anthropology, they

have typically been modeled as decision rules (e.g. imitate-the-majority) while ignoring

the other building blocks required for implementing these strategies. This is problematic

because, as we will see later on, these strategies can produce very different outcomes

depending on how they search for information or on the size of the sample on which they

based their decisions.

In summary, building more precise, psychologically plausible models and studying

them more formally could inform both social psychological studies as well as biological

and anthropological models of social learning. The importance of linking these two per-

spectives has also been highlighted by (Mesoudi, 2009). As outlined above, I develop a

framework that aims to fill this gap, and address three main goals.
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1.4 Goals of the thesis

The first goal of the thesis is to model social learning as cognitively plausible process-level

strategies. To this end I will model frequency-dependent, payoff-biased and unbiased so-

cial learning strategies as combinations of three building blocks: search, stopping, and

decision rules. To illustrate, in this framework, social learning strategies can be mod-

eled as follows: (1) search (randomly in the population; among most similar individuals;

among kin; among peers); (2) stopping (stop searching after consulting n other people;

after reaching a threshold); (3) decide (majority rule; best member; random member). By

modeling strategies in terms of search, stopping, and decision rules it is possible to un-

derstand how each phase contributes to the overall performance of a given strategy. This

allows for an explanation of why a given strategy might perform well and provides insight

on how to modify a certain strategy to improve performance.

The second goal of the thesis is to identify important properties of social and task

environments that may influence the success of social learning. To achieve this I study

important everyday social learning settings such as innovation diffusion, organizational

learning, judgment aggregation in the context of the wisdom of the crowds and advice

taking in matters of taste. In each situation, I identify key environmental characteristics

of the task and the social network in which interaction takes place and study the match

between the building blocks of a strategy and the environmental structures.

I identify five important dimensions of environments based on reviewing a the liter-

ature in psychology, biology, anthropology and management science:

(1) Simple versus Complex environments: In some cases what we copy consists

of whole units, (e.g., a stock to invest in or a camera to buy) and options can be ranked

by their payoffs. I call these simple environments because the payoff space is charac-

terized by a single peak (the best option). I contrast these environments with complex

ones, where what is being copied consists of several components that are interdepen-
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dent(Simon, 1965). In complex environments the payoff space is multi-peaked due to

interdependence. Copying all components correctly is crucial for obtaining good payoffs.

Examples of complex environments include technological innovation, copying business

models or agricultural practices. For example, planting the exact same crop in the exact

same way under the exact same environmental conditions are all crucial components to

success. Implementing one of these steps differently (planting the same crop in a different

environment) can result in completely different outcomes, hence the multi-peaked payoff

space. Contrast this example with buying a camera, where it matters much less whether it

is used in the exact same way or purpose.

(2) One-shot versus Repeated social learning settings: Some settings involve making

one-shot decisions, such as voting in a committee, while other settings evolve over time,

e.g. making a decision about whether to adopt an innovation. In repeated settings there

is a feedback loop between the choices of individuals and the information available for

imitation, thereby altering information available to copying over time.

(3) Uniform versus Varying task difficulties: Some decision environments consist

of relatively homogeneous task difficulties, while other tasks can vary substantially in

difficulty.

(4) Learning about Matters of Fact versus Matters of Taste: many decision prob-

lems involve making inferences about options that have a universal, objective criteria

(i.e., matters of fact) while in other problems the best option depends on the tastes of the

individuals, and different options might be good for different individuals (i.e., matters of

taste).

(5) Clustered versus Unclustered social environments: In some environments agents

have access to the decisions of all other individuals within their group (e.g. in a group

decision making environment) while in many real life situations agents from small cliques

within a larger network and interact within those cliques.



1.5. Overview of the chapters 11

The third goal of the thesis is study the match between strategy and environment

using computational and analytical modeling. Here I show that the best way of learn-

ing socially depends crucially on the building blocks of social learning strategies and the

environmental dimensions in which learning takes place. Table 1.1 illustrates the environ-

mental characteristics studied in each chapter. The goal here is not to study all possible

combinations of environmental properties, but rather to characterize each everyday setting

along the five proposed environmental dimensions and to demonstrate how they interact

with the building blocks of different strategies to produce different outcomes in terms of

performance.

1.5 Overview of the chapters

The thesis is organized as follows. Chapter 2 demonstrates what to expect from social

learning in a simple task environment with the goal of building intuition for subsequent

chapters. In a simulation, agents made repeated choices between two options, where at

any point in time one option had a higher payoff than the other option. Over time, the

environment could change, making the previously correct option incorrect and vice versa.

Agents could learn about the state of the environment either via individual learning or

social learning by copying (1) the most successful agent, (2) the majority of the agents in

the sample, or (3) a random agent. Agents searched randomly among other agents with

whom they were connected and stopped after consulting either a small (n = 3) or a larger

(n = 9) number of others. In separate scenarios we varied the communication network

agents were embedded in, starting from a fully connected network where agents could

communicate with all other agents to a clustered network, where agents formed cliques

and different agents belonged to different cliques. Results show that as long as payoffs

can be accurately observed, copying the best member always outperforms both copying

the majority and random copying and more connected networks (i.e., fewer clusters) im-

prove the performance of all strategies. In addition, taking smaller samples in the case of
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copying the majority leads to higher performance compared to larger samples. Again, the

goal of this chapter is to provide a simple and comprehensible overview of what to expect

from strategies and to facilitate the understanding of subsequent chapters.

In chapter 3 this work is extended to the setting of organizational learning or col-

lective problem-solving where instead of having a simple environment with clearly iden-

tifiable payoffs, the environment is complex in a sense that options to be copied consist

of several components that are interdependent. The number of components and the level

of interdependence between these components in a system have been suggested as two

important elements of complexity (Simon, 1965) and have been studied in models of

technological innovation, organizational learning, and biological evolution (Kauffman,

1993; Levinthal, 1997). In such settings, different solutions form a fitness landscape with

multiple peaks, depending on the level of interdependence between components. The de-

cision task becomes a combinatorial optimization problem where the goal is to improve

the payoff of a solution by modifying its components and, therefore, shares many prop-

erties with the famous traveling salesman problem or cue-order learning in the heuristics

research program (Garcia-Retamero et al., 2006). In this study agents used one of three

different social learning strategies (1) best member, (2) conformity (majority/plurality)

and (3) random copying, each of which could be composed of different building blocks.

Agents by default engaged in social learning and switched to individual learning if the

default strategy could not find a better solution. Results show that in the short run the

best member strategy outperforms other strategies (as in Chapter 2), however, in the long

run the conformity strategy relying on small samples outperforms all other strategies. In

addition it is shown that depending on the social learning strategy used by agents, both

well and poorly connected networks can be beneficial.

Chapter 4 investigates in greater detail the reasons why relying on small samples in

the case of conformity is beneficial (as has been found in the previous two chapters). In

the context of innovation diffusion it is shown that when agents face the task of choosing
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repeatedly between two options where one option has a better long-run payoff than the

other, sampling fewer individuals leads to both higher individual- and population-level

outcomes. Here a simple mathematical model based on Condorcet’s Jury theorem is

developed and utilized to study the performance of conformity (or copy the majority).

The results are then explained both in terms of basic probability theory as well as in

more practical terms. The basic findings are supported in several sensitivity checks and

implications for studying the diffusion of innovations are discussed.

Chapter 5 moves from decision tasks where learning unfolds over time, to one-

shot situations such as voting in groups or forecasting binary outcomes in the case of

sports or politics. Many important decisions are made in committees of small to moderate

sizes. Consider governing bodies, electoral committees, councils or policy boards. These

groups typically have between three to 40 members. Work on the wisdom of the crowds

and Condorcet’s Jury Theorem predicts that when average individual accuracy in a group

is higher than chance, decision accuracy should reach near certainty as group size goes to

infinity. Why aren’t the empirically observed group sizes larger then? This project points

out an important environmental characteristic missing from these theoretical models: the

fact that groups face tasks of varying difficulty. I show that when groups face several

one-shot decisions where tasks vary in difficulty, decision accuracy often peaks at small

to moderate group sizes even if average individual accuracy is above chance. I analyze

the conditions necessary for this to happen using a simple mathematical model and illus-

trate its plausibility by means of empirical data from political predictions and economic

forecasts.

In Chapter 6 social learning strategies are applied to matters of taste rather than mat-

ters of fact. Most studies of social learning and social decision making in general study

situations where there is a universal, objectively best option for all individuals. In con-

trast, in many real life situations different options (e.g., books, movies, restaurants) are

good for different individuals. The literature on recommender systems has long been con-



14 Chapter 1. Introduction

cerned with finding strategies that work well for matters of taste. Therefore, this project

first undertakes an exercise in theory integration, finding parallels between (1) models in

recommender systems and (2) models of social learning and inference from psychology,

biology and anthropology. The performance of these models is then investigated in a large

real-world dataset of joke ratings. It is shown that when individuals have little experience

with a domain it is best to rely on the wisdom of the crowds by averaging the ratings of

other individuals, while if individuals are experienced with a domain, it pays to apply a

search rule based on similarity to other individuals.

Chapter 7 summarizes and discusses the implications of the framework.

Task

studied

Repeated

vs.

One-shot

Task

difficulty

Simple

vs.

Complex

environment

Matters

of

Fact

vs.

Taste

Social

environment

Chapter

2

Abstract

example
Repeated Uniform Simple Fact

Clustered

and

Unclustered

Chapter

3

Organizational

learning /

collective

problem-solving

Repeated Uniform Complex Fact

Clustered

and

Unclustered

Chapter

4

Innovation

diffusion
Repeated Varying Simple Fact

Clustered

and

Unclustered

Chapter

5

Committee

decision

making

One-shot Varying Simple Fact Unclustered

Chapter

6

Consumer

choice
One-shot Uniform Simple Taste Unclustered

Table 1.1: Illustration of the environmental conditions studied in each chapter.
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Building Blocks of Social Learning

Strategies

This chapter is based on Barkoczi, D., & Galesic, M. (2013). Social learning in complex

networks: the role of building block and environmental change. In M. Knauff, M. Pauen,

N. Sebanz, & I. Wachsmuth (Eds.) Proceedings of the 35th Annual Conference of the

Cognitive Science Society (pp. 1821−1826). Berlin: GER: Cognitive Science Society.

15



16 Chapter 2. Building Blocks of Social Learning Strategies

2.1 Introduction

Humans and other animals obtain information via social learning. This is an efficient way

to save the time and effort involved in individual trial-and-error learning and is known

to underlie our capacity for culture. Despite the diverse list of empirical evidence for

its use in the wild (Laland, 2004; McElreath et al., 2008), theoretical models exploring

the adaptive nature of social learning strategies lack sufficient detail to explain when we

should expect to observe them. Most models study unstructured groups and focus only on

the decision phase of implementing a strategy (e.g. copy- the-majority), leaving open an

important dimension affecting strategy performance: the interaction between the building

blocks of a strategy and the structure of the environment. The main goal of the chapter is

to highlight the importance of studying the building blocks of social learning strategies in

a simple, transparent environment.

Social learning is often based on limited samples of the social environment. Most

communities consist of sizable groups where an individual cannot survey all other group

members within reasonable time before making a decision. Consider migrating animals

deciding between multiple directions, individuals in an organization trying to jointly solve

a problem or stock traders trying to predict the best investment option (Couzin, Krause,

Franks, & Levin, 2005; March, 1991). In such situations the way information about op-

tions is sampled from the social environment is likely to be an important aspect of any

strategy. The structure of the social network in which social learning takes place can then

in turn affect the options available for sampling. Previous work has shown that different

network structures and their efficiency can affect the diversity of behaviors in the popula-

tion and the time it takes groups to converge on good solutions (Lazer & Friedman, 2007;

Mason & Watts, 2012). How does the performance of different strategies depend on the

way they sample information and on the social environment in which they are embedded?

To address this question we study three representative social learning strategies:
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copy-the-best, copy-the- majority and random copying (Boyd & Richerson, 1985; Cavalli-

Sforza & Feldman, 1981; Laland, 2004) and model them as decision heuristics that consist

of different building blocks: search, stopping and decision rules (Gigerenzer et al., 1999).

By explicitly modeling these three phases we are able to test their relative contribution to

strategy success in different environmental structures.

Overall, a general characteristic shared by many social learning strategies, including

those we study here, is that they alter the structure of the social environment by changing

the frequency of different options in the population over time. This property has been

extensively studied in the context of biased cultural transmission (Boyd & Richerson,

1985) and suggests a key factor influencing strategy success in a changing environment:

the speed with which they are able to increase the frequency of the correct option in the

group and, therefore, their ability to respond to environmental change. Our goal here is to

show how this speed can be influenced by the building blocks of a strategy (i.e., its search,

stopping and and decision rule) on the one hand, and by the structure and efficiency of the

social network in which interaction takes place on the other hand.

In what follows we derive specific expectations, based on previous literature and

preliminary analytic calculations, about the effects of different building blocks and net-

work structures on copy-the-best, copy-the-majority and random copying. We consider

a hypothetical situation where a group of agents make repeated choices between two

options (one correct, the other incorrect). Whenever the environment changes, the previ-

ously correct option becomes incorrect and vice versa.

Effects of decision rules. In general, as long as the correct option is used by the

majority of agents in a group and the environment is stable, all three strategies will con-

verge to the correct option. However, under the assumption that the best member can be

reliably identified within the sample, copy-the-best will always converge faster than the

other strategies because it requires only a single agent with the correct solution to reach a

decision, whereas copy-the- majority requires at least two out of three and random copy-
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ing will select the correct option equal to that options frequency in the population. As

soon as the environment changes, the correct option will be in minority. In this case,

copy-the-best and random copying will still be able to find it, however, as predicted by

the Condorcet Jury Theorem (CJT), copy-the-majority will never find the correct option

because it requires that the proportion of agents with the correct option be higher than 0.5

(e.g., Grofman, Owen, & Feld, 1983).

Effects of information sampling and sample size. The CJT prediction may no longer

hold when sampling is involved. Even if the correct option is in minority, copy-the-

majority may still be able to find it. Sampling as opposed to group-level aggregation can

create situations where the correct option is more frequent in one’s sample than overall

in the group. When agents with such samples choose the correct option, this further in-

creases the correct option’s frequency in the group, assuming that agents retain the option

if it is better than what they were using before (Lazer & Friedman, 2007). Smaller sam-

ples are more likely to produce such situations, both because they are more likely to be

biased and because they require fewer agents with the correct option in order to reach a

decision. This suggests two situations where smaller as opposed to larger samples should

benefit copy-the-majority. First, whenever the group is converging toward the incorrect

option, smaller samples will delay this process and keep the payoffs of the group higher

for the longer time. Second, when the correct option is in minority, smaller samples will

make it more likely to accidentally have a majority of agents with the correct option. In

contrast, for copy-the-best larger samples are always more advantageous, because they

increase the chance of finding at least one agent with the correct solution, while for ran-

dom copying sample size does not matter since by definition it copies a random behavior

and has a chance of selecting the good option equal to its frequency in the population

regardless of sample size.

Effects of network structure. Previous studies have demonstrated that for simple

problems, higher network efficiency (i.e., the speed with which different networks spread
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useful information) lead to higher performance. More efficient networks should, there-

fore, favor all strategies by increasing the speed with which useful information can spread.

Network efficiency depends on a variety of factors (Mason & Watts, 2012); here we focus

on clustering (number of isolated cliques in the networks) and average path length (i.e.,

the average number of agents separating two randomly selected agents in the network).

As networks become more clustered and average path lengths increase, their efficiency

decreases, and they maintain diversity for a longer time (Lazer & Friedman, 2007). In

such networks, the speed with which different strategies can find the correct option will

become more important. As a result, the difference in performance between copy-the-best

and copy-the-majority should become even larger. More clustered networks could have

an additional effect by enabling the occurrence of relatively homogeneous clusters using

the same option. If this option is incorrect, copy-the-majority using a sample within that

cluster will not be able to find the correct option. In contrast, copy-the-best and random

copying should be less affected by diversity of information as they only require a single

agent with the correct option.

2.2 Method

2.2.1 Overview

We simulated a situation where multiple agents (N = 100) had to make repeated choices

between different number of options by acquiring information from their contacts. The

choices they made directly affected their payoffs. We created three social networks dif-

fering in their efficiency (as measured by clustering and average path length). Each agent

had the same number of contacts in the network (d = 10)1 and was assigned one of five

decision strategies. Each strategy sampled randomly among one’s contacts but differed

in its stopping and decision rule. The agents’ task was to make repeated choices between

1Except for the fully connected network where each agent was connected to each other agent.
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different number of options (2 or 10) at each time step using their decision strategy. The

environment could change on each time step (ti) with some probability (pc) affecting the

payoff of options at the next time step (ti+1). The simulation was run for t = 400 time

steps and each condition was replicated 100 times 2. More specifically the simulation

consisted of the following steps:

(1) At t = 0 agents were placed in the networks and randomly assigned a social

learning strategy and an initial option.

(2) From t = 1 onwards, agents sampled the options and corresponding payoffs at

ti−1 of their contacts.

(3) Agents made a choice between the sampled options based on the decision rules

of their social learning strategies.

(4) The environment changed with a certain probability (pc), making the previously

best option worse and vice versa.

(5) Payoffs for the choice from step (3) were determined.

Note that there is a lag between the information acquired from contacts and the realiza-

tion of an agent’s payoff in the sense that information is collected before environmental

change occurs, thus allowing for the possibility of acquiring outdated information when

the environment changes to a new state.

2.2.2 Social Learning Strategies

We studied five social learning strategies that differed in their building blocks (see Table

2.1). For each strategy we assumed that agents sample among their contacts randomly,

2Sensitivity analyses revealed that running the simulation for longer time periods and more replications

produce identical results.
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and stop after collecting either a small (n=3) or a large sample (n=9)3, except for random

copying where sample size was set to n=14. They then decide to try an option that is either

endorsed by the majority of the sample contacts; by the agent that had the best payoff in

the last time step or by a random agent. In all cases agents only switch to a new option if

that option’s payoff was higher at the previous time step than the option they are currently

using. In situations where these two payoffs are equal or when the majority rule results in

ties, agents chose randomly.

Table 2.1: Social learning strategies and their building blocks.

Sampling rule Stopping rule Decision rule

Random

sample of

contacts

n=3 or n=9 copy-the-best
n=3 or n=9 copy-the-majority

n=1 random copying

2.2.3 Decision environment

Two factors affecting the decision environment were varied in different simulations: (1)

the number of options available and (2) the rate of environmental change. To manipulate

the first factor we assumed that agents choose either between 2 or 10 options with payoffs

ranging from 1 to 2 and from 1 to 10 respectively, with higher numbers implying higher

payoffs. At any given time, only one option had the highest payoff. On the first time

step agents were assigned options randomly. In conditions with 2 options, we varied the

initial proportion of the correct option in the group ( ps = 0.2, 0.5 or 0.7). For 10 options

each option had the same initial proportion. For the second factor we assumed that the

payoffs of options can change on each time step with probability pc=0.001, 0.01, 0.1 or

0.4 reflecting a discreet scale between slow and fast rates of change. We ran all possible

combinations of environmental change in all three network structures described below.

3Sensitivity analyses with other sample sizes produced similar results and we do not report them here.
4Note that in the case of random copying all sample sizes will lead to the same performance level.
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2.2.4 Network structure

Three different networks were created, ranging from most efficient to least efficient as

measured by two standard indicators in the network science literature (Mason & Watts,

2012): clustering coefficient and average path length. The clustering coefficient mea-

sures the extent to which the network is dominated by isolated cliques, which from a

communication perspective decreases the efficiency of a network by making it harder for

information to spread the higher the clustering. Consider an example where small groups

of tightly connected agents exchange information but because groups are isolated from

other groups information spreads much slower between these small units.

Another measure of efficiency is average path length, the average number of steps

it takes to get from any agent to any other agent in the network. The shorter the path

length the more easily information can spread. The efficiency of a network is known to

affect how quickly information spreads from one part to another, however, it can also en-

able maladaptive information to spread more rapidly as in the case of panics following flu

pandemics or stock bubbles. Many real-world networks are known to have both high clus-

tering and low average path lengths thus representing an intermediate level of efficiency.

These small-world networks (Watts & Strogatz, 1998) can be mimicked by performing

random re-wirings on edges of a locally connected network. In line with previous studies

(e.g., Schwenk & Reimer, 2008), we started by first generating a random directed locally

connected network and then randomly rewired it (i.e., changed the links between nodes)

with a 0.1 probability to obtain a small-world network 5. In addition we created a fully-

connected network to represent unstructured groups (see Table 2.2 and Figure 2.1). All

networks had a fixed degree of 10 and a total of 100 nodes (d = 10, n = 100) except for

the fully connected network where all nodes where connected to all other nodes.

5Other networks with lower values of rewiring produce similar results, therefore, we omit them.
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Table 2.2: Social networks studied in the simulation.

Network
Clustering

coefficient

Average

path length

Rewiring

probability

Locally connected 0.67 5.55 p=0

Small world 0.31 2.35 p=0.1

Fully connected 1 1 p=1

Figure 2.1: Illustration of the three social networks studied. Panels A: locally con-

nected network, B: small world network , C: fully connected network. Nodes represent

agents and lines represent connections between agents. In the locally connected network

each agent is connected to its direct neighbors and form small isolated cliques with two

neighbors each; in the small world network agents also form small cliques but some agents

are connected to other agents outside of these cliques, thereby decreasing the distance be-

tween cliques in the network; in the fully connected network all agents are connected to

all other agents.

2.3 Simulation results

Figure 2.2 shows the overall performance of the five different strategies, measured by their

rate of environmental tracking (percentage of agents using the correct option on each time

step). We show the results for 2 options, probability of environmental change pc = 0.001,

and initial probability of correct option pinit = 0.5, averaged across networks6. Overall,

6Results for 10 options and other rates of environmental change and initial probability of correct option

do not change the main conclusions and we do not present them here.
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copy-the-best proves to be the best strategy in terms of speed of spreading information,

followed by random copying and copy-the-majority. This result holds in all network

structures and environmental conditions.

Figure 2.2: Performance of strategies over time averaged across the three different
social networks. Results are shown for environmental conditions pc = 0.001 and ps =
0.5. Y-axis: Proportion of agents with the superior option.

2.3.1 Effects of buildling blocks

From Figure 2.2 we can see the number of time steps it takes groups using each of the

strategies to converge on the correct solution after the environment has changed. As ex-

pected, copy-the-best benefits somewhat from larger samples, however, even its small

sample version outperforms both random copying and copy-the-majority. The opposite is

the case for copy-the-majority, which is hurt by larger samples and actually performs bet-

ter when it samples fewer people. This result highlights that speed with which different

strategies can recover after environmental change is crucial to their success and demon-
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strates that different sampling regimes should be adopted depending on the decision rule

used.

As mentioned before, without sampling, copy-the- majority will converge on an

incorrect option whenever the proportion of agents using the correct option is smaller

than 0.5. As expected, these results do not hold when decisions are based on sampled

information as opposed to overall group aggregation. As visible in Figure 2.2, copy-the-

majority is able to find the correct option even when the proportion of agents using it

falls under 0.5. This happens because samples sometimes include a majority of the less

frequent but superior option and, by agents selectively retaining it over time, increases

in frequency, making it more and more likely to appear as the most frequent option over

time (this effect will be studied in greater detail in Chapter 4).

However, when the correct option is in majority in the group (as on t = 1) larger sam-

ples are slightly better than smaller samples as predicted by Condorcet’s Jury Theorem.

In addition, in such situations, copy-the-majority becomes slightly better than random

copying. This can be seen in Figure 2.3 which zooms in on the first 30 time steps of the

simulation. Note that the population started from ps = 0.5 on the first time step. The

reason why these results do not translate to situations where individuals start from lower

frequencies of correct behavior (as in Figure 2.2) is that the initial advantage gained by

the faster strategies when the correct behavior is rare cannot be overtaken later on (as can

be seen in Figure 2.2).
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Figure 2.3: Performance of strategies on the first 30 time steps (when ps => 0.5)
averaged across the three different social networks.

2.3.2 Effects of network structure

Overall, we find that regardless of strategy, more efficient networks are faster at spreading

information and that this helps groups in all conditions. However, we observe an effect

for network structure on the relative difference between strategies. Figure 2.4 shows

that the difference between strategies is least pronounced in the fully connected network

absent of any structural properties, however, as networks become more structured (thereby

decreasing the efficiency and speed with which information flows), the difference between

copy-the-majority and the other two strategies becomes more pronounced.

The effect of network structure is especially visible immediately after environmental

change. In networks with high clustering and long path lengths such as a locally connected

network, relatively isolated agents may form homogeneous groups possessing the same
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information. In these situations, copy-the-majority has problems finding the correct op-

tion. The larger the sample, the more prone is this strategy to get stuck. As expected, the

performance of copy-the-best and random copying is less affected by network structure.

Figure 2.4: Performance of different strategies in the three network structures over
time. Panels A: locally connected network, B: small world network , C: fully connected

network. Results are shown for environmental conditions pc = 0.001 and ps = 0.5.

2.4 Discussion

Our goal was to study how information sampling and the structure of the social environ-

ment affect the performance of three representative social learning strategies: copy-the-

best and copy-the-majority and random copying. We modeled social learning strategies

as heuristics consisting of different building blocks and embedded them in three social

networks in a task involving repeated choices between multiple options.

Overall, we find that copy-the-best consistently outperforms both random copying

and copy-the-majority and our results suggest that the reason underlying this finding is

the speed with which different strategies are able to respond to environmental change.

This speed is affected both by different building blocks and the structure of the social

environment. Copy-the-best is always faster at finding the good option because its de-
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cision rule requires fewer correct instances in the sample and larger samples are always

beneficial. In contrast, sample size has a counter-intuitive effect on copy-the-majority

with smaller samples increasing the likelihood and thereby the speed of finding the cor-

rect option. Sample size has no effect in the case of random copying and, therefore, has

a probability of choosing the correct behavior equal to that behaviors frequency in the

population. The relative difference between strategies, however, is moderated by network

structure. Copy-the-best and random copying are less affected by network structure than

copy-the-majority. More efficient networks (those with lower clustering and shorter path

lengths) benefit all strategies and decrease the difference between them while less efficient

networks (with more clusters and longer path lengths) increase the difference by having a

worse impact on copy-the-majority.

Information sampling as opposed to group-level aggregation has an additional effect

on copy-the-majority: it can still converge on the correct option, even if less than 50% of

the group is using it. This result lies in contrast to the predictions of the Condorcet and

related Theorems on full group-level aggregation of information in a single trial (Grofman

et al., 1983). We study this finding in greater detail in Chapter 4.

The three strategies investigated in this chapter have been extensively studied both

theoretically and empirically (e.g., Conradt & Roper, 2003; Garcia-Retamero et al., 2006;

Hastie & Kameda, 2005; Katsikopoulos & King, 2010; McElreath, Fasolo, & Wallin,

2013). Much of this work has studied small and unstructured groups and focused exclu-

sively on the decision-phase of implementing these strategies (but see Pachur, Rieskamp,

& Hertwig, 2005; Schwenk & Reimer, 2008, for exceptions in other contexts). We believe

that this leaves many important details affecting strategy success unaddressed and can be

one reason why some studies reach different conclusions. The present chapter is a first

step towards capturing the interactions between the building blocks of social heuristics

and the structure of the social and task environments that they exploit.

The main focus of this chapter was to introduce the reader to the general setting we
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study and to illustrate the importance of studying the building blocks of social learning

strategies. To achieve this goal we deliberately left many aspects of the simulation rather

simplified. The next chapter extends this model to more complex task environments and

uses insights from this chapter to explain the results. Chapter 4 then focuses more closely

on the counter-intuitive effect of sample size on copy-the-majority.



Chapter 3

Social Learning in Complex

Environments

This chapter is based on Barkoczi, D & Galesic, M. (2015). Social learning strategies, net-

work structure and the exploration-exploitation tradeoff. Proceedings of the 2015 Annual

Meeting of the Computational Social Science Society, Santa Fe, NM, USA

30
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3.1 Introduction

The previous chapter introduced the reader to the basic setting of social learning, out-

lined the concept of building blocks and demonstrated their importance through a simple,

transparent problem. This chapter extends the model from Chapter 2 to a more complex

problem that characterizes many real world settings including organizational learning or

collective problem-solving.

Many problems involving social learning require making a trade-off between ex-

ploration and exploitation (Gupta, Smith, & Shalley, 2006; Holland, 1975; March, 1991;

Mehlhorn et al., 2015). Exploration involves the search for superior solutions in a prob-

lem space while exploitation involves the use of existing solutions in order to reap their

benefits. Individuals, groups and organizations regularly face this problem when decid-

ing whether to keep using an existing solution that works well (e.g., an organizational

structure) or to search for new, potentially better solutions (Mehlhorn et al., 2015; Voss

& Voss, 2013). A proper balance between the two behaviors is thought to be essential for

long-term success (Levinthal, 1997; March, 1991; Voss & Voss, 2013).

When individuals interact through social learning, this trade-off manifests itself in

the balance between innovation through direct environmental learning and the imitation

of existing solutions in the population (Fang, Lee, & Schilling, 2010; Kameda & Nakan-

ishi, 2002, 2003; Rendell, Boyd, et al., 2010; A. R. Rogers, 1988). Innovation is essential

both for tracking changes in the environment and for introducing novelty in the popula-

tion, while imitation serves the purpose of diffusing good solutions in order to increase

individual and group-level performance (Boyd & Richerson, 1985).

In this chapter we study how the use of different social learning strategies con-

tributes to the population-level balance of exploration (innovation) and exploitation (im-

itation) in complex environments where agents switch between exploration and exploita-

tion depending on whether social learning (i.e., exploitation) proves useful.
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Focusing on the three representative classes of strategies studied in the previous

chapter: (1) copy-the-majority/plurality (hereafter conformity) , (2) copy-the-best (here-

after best member), and (3) random copying (Henrich & Boyd, 1998; Rivkin, 2000;

A. R. Rogers, 1988) and implementing them as decision strategies grounded in basic

building blocks that guide information search, stopping search and making a decision

(Gigerenzer et al., 1999), we study: (1) how these building blocks affect the usefulness of

the strategies and (2) how they interact with the structure and complexity of the environ-

ment to produce different outcomes in terms of performance.

We propose, based on the findings of the previous chapter, that different strategies

vary on a continuum from efficient to inefficient, where efficiency is defined by the speed

with which different strategies are able to diffuse information about more successful op-

tions in the population (see also Lazer & Friedman, 2007). The efficiency of a social

learning strategy affects the level of exploitation and exploration the population engages

in, assuming that agents switch between these two behaviors depending on their success

(see e.g., Lazer & Friedman, 2007)1. More efficient strategies result in higher levels of

exploitation and drive agents toward better solutions at any given point in time, while less

efficient strategies result in higher levels of exploration through individual search, thereby

maintaining higher levels of diversity in the population. The position of a strategy on this

efficiency continuum will, therefore, determine the level of exploration and exploitation

it promotes in the population. While exploration through individual search maintains di-

versity and ensures extensive search on complex problem spaces, too much exploration

prevents the population from converging on more promising solutions. In contrast, ex-

ploitation is essential for adapting quickly and driving the population toward solutions

with higher fitness, but it also has a homogenizing effect, leading to the presence of a

single or only a few solutions in the population (Hanaki & Owan, 2013; Kandler & La-

land, 2009). In a rugged problem space (where the correlation between payoffs of nearby

1To illustrate, if social learning proves successful in finding better options, individuals keep using it,

whereas if it is unsuccessful they switch to individual search (i.e., exploration).
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solutions is low) this can result in the population getting stuck on local peaks. Thus, a

proper balance is required to ensure that groups can both search extensively and converge

on high-payoff solutions (see also Hanaki & Owan, 2013; Kandler & Laland, 2009; Lazer

& Friedman, 2007; Miller, Zhao, & Calantone, 2006).

What determines the efficiency of different strategies? First, note that we define

strategy efficiency in terms of how fast it disseminates useful information.

To illustrate, the best member strategy would spread the solution of the best per-

forming agent, the conformity strategy would spread the most frequent solution, and the

random copying strategy would disseminate a random solution in a sample. With this

consideration in mind, it is possible to classify different strategies on a scale from more to

less efficient. The most efficient strategy is the best member strategy because it requires

only a single instance of a superior solution in a sample in order to spread it. It is fol-

lowed by random copying, which has a chance of spreading a superior option equal to

the option’s frequency in the population. When useful information is rare, it has a higher

chance of spotting it compared to conformity which requires a majority or plurality of

individuals with these solutions, making conformity the least efficient strategy when use-

ful information is rare (Barkoczi & Galesic, 2013). However, when useful information

becomes frequent, conformity becomes more efficient than random copying, as we have

seen in the previous chapter. Larger sample sizes would increase the efficiency of both

the best member and conformity strategies. This happens because larger samples increase

the chances of identifying options with good payoffs, benefiting the best member strategy

and also allow for a more precise estimation of the frequency of different behaviors, mak-

ing it more likely that the conformity strategy will select a useful option when it is more

frequent relative to other solutions in the population (i.e. in situations where ps > 0.5 in

the two option case studied in the previous chapter). However, the efficiency of random

copying would be unaffected by sample size since by definition it copies a random behav-

ior from the population and, on average, the probability of sampling any behavior in the
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population will be equal to its frequency in the population, regardless of sample size.

Strategies varying in efficiency (as determined by their building blocks) will pro-

mote different patterns of explorative and exploitative behavior in the population, but

whether different patterns of exploration and exploitation lead to good performance will

also depend on the environment.

An ideal environment for studying exploration and exploitation is a fitness landscape

such as the NK model (Kauffman, 1993; Kauffman & Levin, 1987; Levinthal, 1997),

which belongs to a family of combinatorial optimization problems including the secre-

tary and the travelling salesman problems. The NK model is a "tunably rugged" landscape

defined by N, the number of components that make up each solution, and K, the level of

interdependence between these components, which together define a problem space where

different solutions in the space have different payoffs. Consider a technology composed

of different parts or an organization with different departmental configurations. Identi-

fying a way to improve a technology or an organization’s configuration depends both on

its components and on the interdependence between the components (Simon, 1965). For

example, changing one component (e.g., increasing the number of departments in an or-

ganization) is likely to also have an impact on other components of the organization, and

as a result, whether this change will increase overall performance depends on whether it

also has a positive effect on the other components with which it is interdependent. Thus,

search on such problem spaces becomes a combinatorial optimization problem where the

goal is to modify components of different solutions in order to increase their overall pay-

off. Depending on the level of interdependence between components K, the landscape

can be dominated either by a single peak (K = 0) in which case the payoffs of nearby so-

lutions are highly correlated and local search is highly effective; by multiple local peaks

(0 < K < N), where payoffs of nearby solutions can have very different payoffs (see Fig-

ure 3.1); or by almost completely uncorrelated landscapes where the payoffs obtained by

local search become very similar to a random walk (K = N − 1). Whenever there are
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multiple local peaks in the problem space, individuals and populations can get stuck with

inferior solutions that leave them unable to improve via local search. In this setting ex-

ploration involves searching for superior solutions that are not present in the population,

while exploitation involves copying existing high-payoff solutions. The extent to which

different strategies rely on these two forms of behavior evolves naturally depending on

whether they are able to find superior solutions.

Our concept of strategy efficiency is related to work by Lazer and Friedman (2007),

who studied the question of how the efficiency of social networks affects group-level out-

comes. In a series of simulations, they varied the efficiency (i.e., the speed with which

networks disseminate information) of the communication networks in which agents were

embedded and found that efficient networks reached highest performance in the short run

while in the long run inefficient networks outperformed efficient ones. Similar results

were reported in a behavioral experiment by Mason, Jones, and Goldstone (2008) and in

an organizational model by Fang et al. (2010). A recent behavioral experiment came to the

opposite conclusion, however, finding that groups connected by highly efficient networks

reached higher outcomes (Mason & Watts, 2012). Note though, that the above studies ei-

ther focused on a single strategy (best member) or did not model the behavioral strategies

underlying individual decisions. We connect our work to these results and demonstrate

that different levels of efficiency in a population can be achieved both by social learning

strategies composed of different building blocks as well as by the communication network

agents are embedded in. We also show that the two can interact in ways that are either

beneficial or harmful for overall performance. This allows us to reconcile the contradic-

tory findings of Lazer and Friedman (2007) and Mason and Watts (2012) by showing that

these results depend on the underlying social learning strategies in addition to the network

in which interaction takes place.

In summary, our goal in this chapter is two-fold: first, we aim to understand how

social learning strategies varying in their building blocks result in different levels of per-
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formance and second, how social learning strategies and network structure interact.

3.2 Model

3.2.1 Overview

We consider agents searching a space of possible N-digit solutions by modifying dig-

its in their current solution in order to improve their performance. Examples include

trying to identify an organizational configuration that maximizes performance or modi-

fying components of existing technologies to improve them. These problems share the

characteristic of being path dependent and interdependent in nature; getting to a solution

usually involves modifying previous solutions and the success of changing some feature

depends on the other features within the structure. The extent to which these character-

istics dominate the problem space can be straightforwardly captured by tunably rugged

fitness landscapes (see Environment). Agents by default engage in social learning (ex-

ploitation) and switch to innovation (exploration) if the former does not prove successful

(see Agents and Strategies). Thus a strategy that often proves useful will engage in more

exploitation and less exploration. We measured the performance of different strategies

by the average payoff achieved relative to other strategies and to the highest obtainable

performance level in the environment.

3.2.2 Environment

The environment is characterised by a tunably rugged NK landscape, where N denotes

the number of components of the system and K represents the number of interdependen-

cies between the components. A value of K = 0 produces single peak environment, while

K = N −1 produces a completely rugged landscape with no correlation between adjacent
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solutions, making local exploration ineffective. Intermediate values of K produce land-

scapes with both local and global peaks, with some correlation between nearby solutions.

Each solution in the environment is an N-length vector composed of binary strings: that is,

each element of the vector can take on two values, 0 and 1, leading to a total of 2N possible

solutions in the problem space. Each solution has a payoff that is calculated as the average

of the payoff contributions of each element and the other elements with which they are

interdependent. The payoff contribution of each element is a random number drawn from

a uniform distribution between 0 and 1. In the case of K = 0, a simple average of the N

elements is taken: 1/N ∗∑N
i=1 Ni, whereas with K > 1, individual payoff contributions are

determined by values of the other K −1 elements, that is , f (Ni | Ni,Ni+1, ...,NK), where

f () is the payoff function and the total payoff is 1/N ∗∑N
i=1 f (Ni | Ni,Ni+1, ...,NK). In

other words, when K = 0, changing any single element of the solution will affect only

the contribution of that element, whereas when K > 0, changing a single element will

change the payoff contribution of the K − 1 other elements. As mentioned above, when

K = 0, exploration of solutions through the modification of single components can prove

effective, but as K increases, local exploration becomes less and less effective (Levinthal,

1997). In all results reported we let N = 15 and K = 0 or K = 7 to create two different

environments that we call simple and complex, respectively. Figure 3.1 displays a graphi-

cal illustration of the environments studied. Panel A shows the simple environment where

only one unique peak exists and it is possible to reach this peak by gradually modifying

digits in one’s solution. In contrast, Panel B shows a multi-peaked environment, which

mean that agents can get stuck in a local peaks and be unable to reach higher payoffs via

local search.
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Figure 3.1: Illustration of the two environments studied. A: Simple environment with

a single peak. B: Complex environment with multiple peaks. In the simple environment

solutions one-digit apart from each other have very similar payoffs, therefore, modifying

single digits in a solution will eventually lead to the global peak. In the complex environ-

ment payoffs of nearby solutions can be very different, therefore, search by single digit

modification can lead to local peaks from which it is impossible to improve and, as a

result, to find the global peak.

Our choices for values of N and K are representative of the literature, and sensitivity

analyses revealed that changing these values would not affect our results. The simple

environment (N = 15, K = 0) would correspond to the environment studied in the previous

chapter since it is characterized by a single peak and all other solutions can be ranked by

their payoffs.

Following several authors, we normalized the payoffs of different solutions by di-

viding them by the maximum obtainable payoff on a landscape PNorm =Pi/max(P) (Lazer

& Friedman, 2007; Siggelkow & Rivkin, 2005). The distribution of normalized payoffs

tends to follow a normal distribution with decreasing variance as K increases. This implies

that most solutions tend to cluster around very similar payoff values. Following Lazer and

Friedman (2007) we use a monotonic transformation (PNorm)
8 to widen the distribution,
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making most solutions "mediocre" and only a few solutions "very good". Note that this

assumption does not change any of the results.

Since our main focus is on the properties of different strategies, the majority of our

simulations is based on a fully connected network with N = 100 nodes. We compare the

fully connected network with a locally connected network with 100 nodes and a degree

of d = 4 (see Section 3.3.2 for network versus strategy efficiency and Figure 2.1 for

an illustration of the networks) but omit the small-world network since we saw in the

previous chapter that it lies in-between the two more extreme networks and, therefore,

we do not expect anything unique to happen there. This allows us to compare more and

less efficient networks as in previous studies (Lazer & Friedman, 2007; Mason & Watts,

2012).

3.2.3 Agents and Strategies

We simulated N = 100 agents. On each time step agents simultaneously interacted with

the environment in order to avoid possible sequence effects (Bikhchandani, Hirshleifer,

& Welch, 1992).

On the first time step agents started out with a randomly assigned solution of N

digits and on each subsequent time step went through the following steps:

(1) Implement social learning by following the steps specified by the building

blocks:

(i) Search rule: search randomly among the population

(ii) Stopping rule: stop searching after looking up the solutions of s2 other in-

dividuals. We focused on two sample sizes, a relatively smaller (s=3) and a

2Note that the sample size s corresponds to n in the previous chapter
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relatively larger (s=9) sample size 3.

(iii) Decision rule: select the best performing agent (best member); select the

most frequent solution (conformity) 4; select a random agent (random copying).

(2) Observe whether the solution identified via social learning produces a higher

fitness score than the current solution. If yes, switch to the alternative solution;

otherwise go to Step 3.

(3) Engage in exploration by modifying a single digit in the current solution and

observe whether it produces a higher payoff than the current solution. If yes, switch

to the alternative solution; otherwise keep the current solution.

This procedure is repeated for t = 200 time steps and the average payoff in the population

is recorded for different strategies and environments. Results reported are averaged across

1000 different NK environments.

3.3 Results

3.3.1 Performance

Figure 3.2 shows the average fitness level achieved by each strategy over time on two

different landscapes: a simple landscape with a single peak (K = 0)5 and a rugged land-

scape with multiple peaks (both local and global) (K = 7). First, note that in a simple

landscape (Panel A), all strategies are able to find the globally best solution but differ in

the time they take. The best member strategies are the fastest, followed by the small- and

large-sample version of the conformity strategy. Random copying is the worst performing

3See section on Sensitivity checks for the best sample size for each strategy.
4This implies selecting the majority/plurality solution in the sample. In case each solution is equally

frequent, agents choose randomly.
5This landscape is analogous to the problem studied in Chapter 2.
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social learning strategy. Also note that all social learning strategies perform better than

pure individual learning. This result replicates the findings from the previous chapter and

validates our model. To see this, note that this setting corresponds to a case where the best

solution is likely to be infrequent (i.e., ps < 0.5) in the beginning but will quickly become

the most frequent solution 6. This results can also be seen on Figure 2.3 in the previous

chapter.

The result can be explained in the following way. As mentioned above, nearby so-

lutions on the simple landscape are correlated and there is no interdependence between

different components of a solution. These properties make local exploration highly effec-

tive and make it likely that someone in the population will be able to identify the globally

best solution. As soon as the best solution is present in the population, the best member

strategy will quickly drive the population toward this solution, since it requires only a

single individual in a sample to identify it. Random copying will also quickly diffuse so-

lutions that are better than the starting configurations on the first time step, but when when

the best solution becomes the most frequent solution, conformity will drive the population

toward this option faster. The conformity strategy promotes diversity through individual

search in the beginning and since the problem is simple, a majority or plurality of indi-

viduals will quickly be able to identify the best solution. Once a plurality of individuals

have found the best solution the conformity strategy will be biased toward this solution,

allowing it to diffuse.

In more complex problem spaces, where the level of interdependence is high, identi-

fying good solutions is not so straightforward. Figure 3.2B shows performance on a com-

plex landscape. The best member strategies still reach the highest short-run outcomes, but

they quickly drive the whole population toward a local peak, from which point individual

exploration is not able to find better solutions. As a result the whole population gets stuck

6This happens simply because there are many possible options to choose from. As soon as a few indi-

viduals identify the best option through individual search, it will become the most frequent option available

for sampling.
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in an inferior state. In contrast, the conformity strategies converge more slowly to a so-

lution. A striking result is that while the large-sample version of the conformity strategy

performs poorly, the small-sample version converges to the highest long-run outcomes,

outperforming the best member strategies by a large margin. Random copying performs

on the level of individual learning. This pattern of results was replicated in all complex

landscapes (N > K > 0).

A B

Figure 3.2: Performance over time for different strategies. Panel A: single peak envi-

ronment (K = 0); Panel B: multi-peak environment (N = 15, K = 7); s stands for sample

size.

The intuition underlying this result is the following. The best member strategies

engage in the highest level of exploitation and lowest level of exploration early on and

quickly drive the population towards a local peak. Their small-sample version performs

slightly better than the large-sample version, because it leads to slightly less efficiency and

thereby allows the population to explore and find a local peak that has a higher payoff. The

second most efficient strategy, random copying, also engages in high levels of exploitation

in the beginning and drives agents to several local peaks. Finally, the conformist strategy
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leads to very different outcomes depending on its building blocks. The large-sample

version of the strategy is more efficient at diffusing the most frequent solution (analogous

to ps> 0.5 in the previous chapter), so as soon as a plurality of individuals select solutions

that are better relative to the starting solutions in the population, the group will converge

to these solutions. However, even if a few individuals later identify a better solution,

these solutions will never show up as the most frequent in a large sample, making them

hard to diffuse and, therefore, lead the population to converge on several local peaks. In

contrast, because of higher sampling variability, higher fitness solutions identified by a

few people are more likely to sometimes appear as the most frequent solution in small

samples, allowing infrequent but superior solutions to diffuse through the population (see

also Chapter 4). In the long-run this leads to the highest outcomes because the group is

able to search extensively as well as to converge on high fitness solutions.

That agents get stuck on multiple local peaks can be seen from Figure 3.3, which

shows how the number of unique solutions in the population changes over time for dif-

ferent strategies. Since the best member strategies engage in high levels of exploitation

and are biased toward high-payoff solutions, they drive out diversity from the population

and lead the whole population to a single local peak. In contrast, in the case of the con-

formist strategies and random copying, the level of diversity in the group remains high for

a longer period of time and groups discover multiple peaks on the landscape.
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Figure 3.3: Number of unique solutions over time.

Taken together, these results indicate that strategies vary in their efficiency, lead-

ing to different patterns of explorative and exploitative behavior. The extent to which

these behavior patterns are beneficial or harmful for a strategy will depend on the strat-

egy’s building blocks and the structure and complexity of the environment. Interestingly,

strategies sharing the same decision rule (conformity) can achieve very different levels of

performance depending on their other building blocks.

3.3.2 Network Versus Strategy Efficiency

In this section we study the connection between strategy and network efficiency. As

mentioned above, two recent studies produced contradictory findings about the perfor-

mance of efficient and inefficient networks (Lazer & Friedman, 2007; Mason & Watts,

2012). Lazer and Friedman (2007) used simulations to model social learning using the
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best member strategy with a sample size of two (each agent could communicate with two

other neighbors), whereas Mason and Watts (2012) used behavioral experiments and did

not model social learning strategies. The authors differ in how they defined network ef-

ficiency but agree that clustering (i.e., the number of local cliques in the network) and

average path length (number of steps required to get from one agent to any other agent)

are important factors. The former study found that inefficient networks outperformed

efficient networks, whereas the latter came to the opposite conclusion.

Here we show that both results can be obtained depending on the social learning

strategies that agents use. The underlying explanation is that strategy and network effi-

ciency have similar effects on group-level performance: therefore, their interaction can

counteract the individual effect of each. For example, an inefficient strategy in an in-

efficient network can increase the level of inefficiency to a level where it is no longer

beneficial. Similarly, an efficient strategy in an efficient network can result in too much

efficiency. Therefore, the concepts of strategy and network efficiency must be studied

together.

We compare the performances of the best member and conformity strategies (an

efficient and inefficient strategy, respectively) in a fully connected network (as above)

with a locally connected lattice (N = 100, d = 4)7. Since the locally connected lattice

only has a degree of 3 we restrict attention to the small-sample strategies, which have also

performed best in our main study. Figure 3.4 shows strategy performance on these two

different networks over time.

These results show that both effects can be obtained depending on the underlying

social learning strategy. When individuals rely on the best member strategy, inefficient

networks outperform efficient ones. When individuals rely on the conformity strategy,

inefficient networks are better. As a result we are able to reconcile the contradictory

findings from the literature and highlight the need to study the interaction between social

7We chose a network with a degree of 3 to be as close to the original networks studied by Lazer and

Friedman (2007) and Mason and Watts (2012) as possible.
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learning heuristics and network structure.
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Figure 3.4: Performance on efficient (LEFT) and inefficient (RIGHT) networks. In-

efficient networks can outperform efficient ones when agents rely on the best member
strategy. The opposite result holds when agents rely on the conformity strategy.

3.3.3 Changing environments

So far we have assumed that the environment is stable. Would any of our conclusions

change in a turbulent environment? We study two environments: a slightly turbulent en-

vironment where change occurs only once halfway through the simulation, and a highly

turbulent environment where change occurs on every 20th time step. Following Levinthal

(1997), we model environmental change by redrawing the fitness contribution of a ran-

domly selected digit in the space. Our results (shown in Figure 3.5) remain the same in

slightly turbulent environments, however, when the environment is highly turbulent the

best member strategy initially performs better, because it is best strategy in the short run.
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Given that the landscape changes frequently, there is insufficient time for the long-run

advantage of the conformity strategy to show up. However, over time, agents using the

conformity strategy will also get closer to better solutions, and will need to modify fewer

digits after environmental change to identify good solutions. As a result, over time, the

small sample conformity strategy takes over the best member strategy.

Figure 3.5: Performance of strategies in slightly turbulent (change occurs halfway
through) and highly turbulent environments (change occurs every 20th time step).
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3.3.4 Best sample size.

As noted above, sample size has no effect on random copying, therefore, we focus on

identifying the best sample size for the best member and conformity strategies. In case of

the best member strategy the best sample size turns out to be 2, however, the difference

between different sample sizes is relatively small 8. Therefore we choose to keep sample

size of 3 for our main analyses to make it directly comparable to the conformity strategy

that also uses a sample size of 3 9. In contrast, for conformity the best sample size is 3

and if it increases to the next odd group size (i.e., 5) the advantage of conformity is lost

and performance drops to the level of the large sample conformity strategy reported in the

main text.

3.4 Discussion

We studied how different social learning strategies composed of different building blocks

naturally trade off exploration and exploitation and how this trade-off leads to different

levels of performance in complex environments.

We introduced the concept of strategy efficiency and related it to the concept of net-

work efficiency (Lazer & Friedman, 2007; Mason & Watts, 2012). We classified strate-

gies on a continuum from more efficient to less efficient, which allowed us to suggest

a rationale for why they produce different patterns of exploration and exploitation. We

decomposed strategies into three basic building blocks - that is, rules that guide search,

stopping search and making a decision - and studied how these rules affect strategy effi-

ciency and how they interact with the structure of the task environment in two different

8Note that the best member strategy with a sample size of 1 would correspond to the random copying
strategy.

9Note that the difference between the performance of the best member strategy with sample size 2 and

sample size 3 is very small, so using a sample size of 2 in the main analysis would not change any of the

results. Therefore, to allow for direct comparison with the conformity strategy we stick to a sample size of

3.
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social networks. Our results indicate that strategy performance depends on both how it

trades off exploration and exploitation and how its building blocks interact with the task

environment. Our main result is that best member strategies reach the best performance

in the short run, but a small amount of conformity (achieved by relying on small sam-

ples) ensured the highest long-run outcomes whenever task environments were complex.

We also found that strategies with different levels of efficiency could achieve extremely

different levels of performance.

This insight led us to study the interaction between network and strategy efficiency

and enabled us to reconcile contradictory findings from the literature (Fang et al., 2010;

Lazer & Friedman, 2007; Mason et al., 2008; Mason & Watts, 2012).

The importance of balancing exploration and exploitation has long been recognized

in the behavioral sciences (Mehlhorn et al., 2015; Rendell, Boyd, et al., 2010; Voss &

Voss, 2013). Gupta et al. (2006) discussed different mechanisms through which this bal-

ance can be achieved by, namely, punctuated equilibrium and ambidexterity. In punc-

tuated equilibrium, organizations balance exploration and exploitation in a sequential

way focusing exclusively on one or the other at any given point in time. In contrast,

in ambidexterity the balance is achieved simultaneously through different organizational

structures. It is interesting to note that the way in which different social learning strate-

gies naturally trade off exploration and exploitation leads to patterns that are consistent

with these different concepts. More efficient strategies such as best member and random

copying lead to patterns reflecting punctuated equilibrium, where the whole population

engages exclusively in either exploration or exploitation for short periods of time. In con-

trast, the conformist strategies balance exploration and exploitation in the population for

longer periods of time, reflecting some form of ambidexterity with some agent focusing

on exploitation while other focus on exploration.

We assumed in Chapter 2 that agents have a fixed probability of engaging in indi-

vidual learning and otherwise rely on social learning. This differs from the assumption
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in the present chapter that agents switch between the two behaviors depending on their

success. We believe that the simplified assumption was sufficient in the previous chap-

ter to demonstrate our main points, however, we let the relative reliance on social versus

individual learning evolve in this chapter to rely on fewer arbitrary parameters.

We are not the first to study exploration and exploitation in the context of social

learning (e.g., Hanaki & Owan, 2013; Rendell, Fogarty, & Laland, 2010), but we believe

our study has several novel aspects. First, as mentioned above, rather than modeling the

relative reliance on exploration and exploitation with a parameter or by modeling the dif-

ferential costs associated with these two behaviors (Hanaki & Owan, 2013; Kameda &

Nakanishi, 2002; Rendell, Boyd, et al., 2010), we let it naturally evolve depending on the

success of an social learning strategy in a given environment. In other words, we studied

how the interaction between strategy and environment determines the reliance on explo-

ration and exploitation purely in terms of success. To achieve this in our model, different

strategies started with exploitation (i.e., social learning) and switched to exploration if

exploitation did not prove successful. This approach has parallels in the biological litera-

ture with a strategy called ’critical social learner’ (Enquist, Eriksson, & Ghirlanda, 2007;

Rendell, Fogarty, & Laland, 2010). This strategy has been found to be highly successful

and to outperform pure individual or social learning strategies 10. Second, we directly

compared different strategies and their properties and modeled them in terms of build-

ing blocks (rules for search, stopping search and deciding), whereas most existing studies

have focused on a single class of strategies and their decision rules (Csaszar & Siggelkow,

2010; Lazer & Friedman, 2007; Rivkin, 2000). By comparing different strategies we were

able to show when and why they are more or less successful and by modeling their build-

ing blocks we showed how the same decision rule (e.g. majority/plurarlity rule) can lead

to very different levels of performance depending on the strategy’s other building blocks.

10One can also consider the opposite strategy, first attempt exploration and if unsuccessful turn to ex-

ploitation and it is an equally plausible model of organizational learning, however, it is not the focus of the

present study.
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The notion of building blocks in the context of strategies can be loosely related

to organizational structure and its components. Siggelkow and Rivkin (2005) studied

the extent to which different organizational forms are able to cope with complex and

turbulent environments, finding that some organizational configurations are more suited

to complex but stable environments while others are better in simple but turbulent settings.

We believe that the building blocks of a strategy can affect its performance in a similar

way, so modifying the building blocks of a strategy can make it suitable for different

environments. However, we leave the exploration of this issue to future research.

Social learning is often thought to have a homogenizing effect on the number of

solutions in a population (Boyd & Richerson, 1985; Hanaki & Owan, 2013; Henrich &

Boyd, 1998; Lazer & Friedman, 2007). Yet, in our model, exploitation sometimes pro-

motes diversity, which arises because agents switch between exploration and exploitation

depending on their success with these two behaviors. However, several other situations

have been identified where social learning can promote diversity. Posen and Levinthal

(2012) showed that when social learners copy parts of other agents’ solutions and exper-

iment with the rest, agents end up with heterogeneous solutions on rugged landscapes.

Bala and Goyal (1998) and Rendell, Fogarty, and Laland (2010) showed that when agents

are loosely connected in cliques, different cliques will end up with different solutions, but

these solutions will not be able to spread to other cliques, thereby maintaining a multi-

tude solutions in the population. Finally, when environments are turbulent and the most

adaptive solution changes faster than the rate at with which the population can converge,

previously adaptive information will be preserved in the population (Kandler & Laland,

2013).

Our study has broad implications for organizational learning, technological inno-

vation and the diffusion of innovations. Most studies of exploration and exploitation in

organizations focus on how to design the external environment to make firms more adap-

tive (Csaszar & Siggelkow, 2010; Fang et al., 2010; Lazer & Friedman, 2007; Siggelkow
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& Rivkin, 2005). Our study highlights that it is also important to consider the social learn-

ing strategies used by agents and organizations. In addition our study on the relationship

between strategies and social networks shows that changing the social environment with-

out paying attention to the individual-level strategies might not produce the desired effect.

Research on technological innovation has highlighted the combinatorial nature of in-

novation with most new inventions being recombinations of existing innovations (Arthur,

2009; Solée et al., 2013). Much of this research has focused on how innovation occurs,

whereas there has been very little attention devoted to the coevolution of innovation and

imitation. Our study identifies situations where imitation can both help and hinder the

development of technological innovation.

Several open questions remain to be addressed. In line with previous studies we

focused on the NK landscape as a form of a tunably rugged landscape. The extent to

which our results (and other results from the literature) would apply to other landscape

problems is a question for future research. We also assumed for the sake of clarity that

populations rely on a single social learning strategy. Future research should address the

dynamics of exploration and exploitation in a population using multiple strategies at the

same time. Our model could also be tested empirically. There are only a handful of

studies on how people behave in combinatorial optimization problems that have a rugged

structure and we know very little about how these results translate to other problems

(Billinger, Stieglitz, & Schumacher, 2013; Garcia-Retamero et al., 2006; Mesoudi, 2008;

Wisdom, Song, & Goldstone, 2013).

A surprising finding of the current and the previous chapter was that relying on

small samples in the case of conformity (or copy-the-majority) leads to the best long-run

outcomes. The next chapter explores in greater detail the reasons underlying this result.
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4.1 Introduction

In this chapter we analyse in greater detail the effect of sample size on the performance of

copy-the-majority. Copy-the-majority is one of the most studied forms of social learning

belonging to the class of frequency-dependent copying strategies. An individual follow-

ing this strategy is disproportionately likely to adopt an option held by the majority of

others (Boyd & Richerson, 1985; Claidière et al., 2012; Hoppitt & Laland, 2013). This

tendency has been linked to phenomena such as the widely observed S-shaped adoption

curves in the diffusion of innovations literature (Henrich, 2001; Young, 2009), complex

contagion (Centola & Macy, 2007) or social influence (Asch, 1956). Conformity has

several evolutionary benefits compared to individual learning and other forms of social

learning (Henrich, 2001; Henrich & Boyd, 1998), although it has been shown that it is

most useful in spatially rather than temporally varying environments (Nakahashi, 2007;

Nakahashi, Wakano, & Henrich, 2012; Wakano & Aoki, 2007).

How should one apply this strategy to ensure the best performance in terms of ac-

curacy? We have seen in the previous two chapters that relying on smaller samples often

leads to better performance. In addition, it has been suggested that in order to be adap-

tive, conformity should be relatively weak (Claidière et al., 2012; Eriksson & Coultas,

2009; Henrich, 2001; Kandler & Laland, 2009, 2013), where strength of conformity is

typically defined by the probability of an individual adopting an option relative to the

frequency of the option in the population; the smaller the probability relative to the popu-

lation frequency, the weaker the level of conformity 1. Strength of conformity is typically

modeled by means of a theoretical parameter that moderates the importance of reliance

on frequency-dependent learning. For example a parameter value of 0.6 would mean that

an individual chooses the most frequent option 60% of the time and the less frequent op-

tion 40% of the time, reflecting a weak to moderate level of conformity. This abstract

level of modeling strength of conformity is suitable for population genetic models used in

1Other definitions of strength of conformity also exist see e.g., Claidière et al. (2012)
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most previous studies as it simplifies the calculations of evolutionary equilibrium steady

states, and is in principle applicable to a wide range of organisms. However, in order to

understand the consequences of using different social learning strategies, it is important

to understand how they are implemented on a process-level. Or, as aptly put by Henrich

(2001), models of social learning should in general aim to be based on plausible assump-

tions about underlying cognitive processes rather than "merely having equations with the

symbols arranged in a particular fashion" (p. 1007).

Here we propose a sampling-based process model of conformist social learning and

demonstrate that different forms of conformity can results from the size of the informa-

tion samples on which individuals base their judgments, with weak conformity resulting

from taking small samples. Importantly, our model can reproduce the conformity patterns

reported in existing theoretical models and empirical observations (Boyd & Richerson,

1985; Henrich & Boyd, 1998; Nakahashi, 2007; Nakahashi et al., 2012). However, in

contrast to existing studies which assume a motivational tendency to disregard individual

over social information, we show that the relative reliance on the most frequent option can

result from a simple statistical fact that smaller samples provide weaker evidence about

the frequency of a behavior in the population, because of their inherently higher variabil-

ity compared to larger samples. As a result, individuals with the same internal propensity

to copy the most frequent option can exhibit different forms of conformity not because of

any internal preferences for social or non-social information, but purely because of this

byproduct of information sampling. This account also allows us to draw novel insights

regarding the cognitive mechanisms underlying different patterns of behavior, with some

patterns being consistent with a pure sampling-based social learning model, while others

indicating a mixture of individual and social learning.

We further show that when choosing between options with different payoffs, coun-

terintuitively, relying on small samples (a form of weak conformity) can lead to superior

performance in terms of both individual accuracy (i.e., likelihood of choosing the superior
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behavior) and the speed of diffusion of an innovation in unstructured and structured pop-

ulations. When one is uncertain about frequency of the superior option in the population,

as it is typically the case in the real world, on average, relying on smaller samples leads to

better performance compared to larger samples. This is because smaller samples provide

large advantage when the superior behavior is in minority, but only a small disadvantage

when it is in majority. We intuit these results mathematically, illustrate them by practical

examples and discuss the implications of our approach.

4.2 Process based model of conformist learning

To build a sampling-based process model of conformity, we model the conformity strategy

as being composed of the three basic building blocks (search, stopping, and decision

rules).

Focusing on the simplest and most studied version of a frequency-dependent social

learning strategy: copy-the-majority 2, we first ask: How many individuals do people

"sample" from their social environments when making decisions about adopting new op-

tions, such as innovations or novel beliefs? While humans might be able to maintain

social contact with more than 100 individuals (Dunbar, 1993; Hill & Dunbar, 2003), data

from diverse studies converge to suggest that the number of people one discusses impor-

tant issues with, or consider as close friends or support clique, typically does not exceed

about five individuals (Fu, 2005; Galesic, Olsson, & Rieskamp, 2012; Marin & Hampton,

2007; Marsden, 1987). This core network size has likely emerged for reasons unrelated to

accuracy of social learning discussed here, for example because of the limited number of

relationships one can afford to maintain by making costly investments now in order to gain

support in the future. Nevertheless, this number represents the typical size of a sample

that individuals take from their social environments when making important decisions.

2An individual following this strategy decides between two available options by following the choice of

the simple majority of others observed (Boyd & Richerson, 1985; Henrich & Boyd, 1998; Laland, 2004)
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In line with these considerations, we propose that the sample sizes used in the previ-

ous two chapters (n=3 and n=9) seem reasonable with respect to everyday social decision

making in humans.

To systematically study the effect of sample size on copy-the-majority we use the

Condorcet Jury Theorem (hereafter simply CJT ) (Efferson et al., 2008; King & Cowlishaw,

2007; Perreault, Moya, & Boyd, 2012). CJT models the probability that the simple ma-

jority of a group of n individuals is correct by the cumulative binomial distribution:

CJT (ps,n) =
n

∑
i=m

(
n
i

)
psi(1− ps)n−i (4.1)

...where ps is the proportion of individuals with the superior solution, n is the sample

size, m is (n+ 1)/2 for odd n and n/2+ 1 for even n (Condorcet, 1972; Grofman et al.,

1983). Equation 4.1 shows that the probability that the majority is correct depends on

the number of other individuals, or models, that one considers when making a decision.

While this has been recognized (Boyd & Richerson, 1985; Efferson et al., 2008; King &

Cowlishaw, 2007; Perreault et al., 2012), the problem of sample size has been ignored by

previous studies, which have either not modeled sampling, studied a single sample size

or averaged across all sample sizes and compositions and in general assumed that larger

samples sizes are better (Perreault et al., 2012).

As shown in Figure 4.1 Panel A, when the proportion of the population with the su-

perior solution (or individual probability of choosing correctly) is above 0.5, individuals

relying on larger samples will be more likely to pick the superior option than individu-

als relying on smaller samples, asymptotically reaching perfect accuracy with an infinite

sample size. In contrast, when this proportion is below 0.5, CJT predicts that smaller

samples will outperform larger samples. Importantly, CJT predicts that an average in-

dividual copying the majority will never find the superior solution if the proportion of

the population using that solution is lower than 0.5. The predictions of CJT apply to
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one-shot decisions, however, the context of innovation diffusion differs in several ways.

First, during the diffusion of innovations, individuals repeatedly interact with the same

group and adopt or consider adopting novel options as they appear. Second, the choices

of individuals at one time step will influence the information available for sampling on

the next time step. As a consequence, as the number of individuals adopting the superior

option increases, one will be more likely to sample such individuals over time. In turn,

an initially rare but superior option can increase in frequency by individuals selectively

retaining it over time.
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Figure 4.1: Panel A: Condorcet Jury Theorem. Probability that option A is in majority

as a function of option A’s frequency in the population and sample size (n; see Equation

4.1). Panels B and C: Demonstration of the equivalence of sample size and strength

of conformity modeled by parameter D (Panel B; see Equation 4.3) and a (Panel C, see

Equation 4.4). See text for detailed explanation.

To account for these characteristics, we first recognize that when individuals update

their choices over t time steps, on each time step, the probability of sampling an individual
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holding a superior option will be equal to the proportion of such individuals on the previ-

ous time step. Therefore, we can embed Equation 4.1 in a recursive process described by

the following equation:

pst+1 =CJT (n, pst) (4.2)

The same process can be modeled with the more abstract parameter specifying

strength of conformity as used in previous studies. For instance, Boyd and Richerson

(1985); Eriksson and Coultas (2009); Henrich and Boyd (1998); Nakahashi (2007) fixed

sample size to an arbitrary level 3 but used parameter D to determine how much an in-

dividual would rely on the majority opinion. To allow for the comparison of our model

with models in the literature we implementing this parameter by calculating CJT as:

SC = pst ∗ (1−D)+D∗ (CJT ( f ixedn, pst)) (4.3)

We explore three values of parameter D4: 0 (no conformity), 0.5 (weak conformity),

and 1 (strong conformity) and assume that the sample size n is 9.

Another common way of modeling conformity is by the parameter a (Nakahashi,

2007; Nakahashi et al., 2012) using the following equation:

pst+1,a = psa
t /(psa

t +(1− pst)
a) (4.4)

We find values of a that match the sample sizes and parameter values of D studied

above.

Several other implementations of strength of conformity exist in the literature, how-

3Often to n=3 or n=10.
4As in Henrich and Boyd (1998).
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ever, differences typically stem from efforts to simplify mathematical calculations rather

than to model different phenomena. Therefore, we restrict attention to two of the most

widely studied implementations.

By calculating the expected accuracy of copy-the-majority under the sampling as-

sumption (Equation 4.1) and the conformity parameter implementations (Equation 4.3

and 4.4), it is easy to show that sample size can mimic different levels of strength of

conformity modeled by the parameter D (Henrich & Boyd, 1998). More specifically, as-

suming a fixed sample size of 9 in the conformity parameter implementation, it turns out

that a parameter of D = 0 corresponds to taking a sample of size 1, a value of D = 0.5 to

a sample of size 3 and a value of D = 1 to a sample of size 9 5.

Specifying the sampling processes underlying social learning provides further in-

sights into other phenomena related to conformism. For instance, one can model anti-

conformity (i.e., contrarian behavior) as a social learning strategy that consists of the

same search and stop rules but instead of copying the majority, it selects the minority

option. In other words, anti-conformity (i.e., a < 0 or parameter M (see appendix in Ef-

ferson et al. (2008))) would correspond to the copy-the-minority strategy using the same

sample sizes (see Appendix C for further details).

Our sampling account also shows that unlike conformity and anti-conformity, non-

conformity (i.e., a tendency to copy the most frequent option with a probability less than

the option’s frequency but still higher than the frequency of the alternative option) cannot

be explained purely by social learning strategies relying on samples of different sizes.

Instead, as shown in Appendix B, curves produced with D[−1,0) or 1 > a > 0 (i.e., non-

conformity) suggest a behavior that is a combination of social and individual learning. A

parameter-based implementation of conformity would not have allowed us to draw this

insight. It is also important to note that majority rules with higher or lower thresholds

can produce curves that are in some regions consistent with anti-conformity and in other

5Negative values of D in the region [-1,0) imply anti-conformity and would correspond to the copy-the-
minority strategy using the same sample sizes.
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regions with non-conformity (see Appendix B). This means that it is difficult to draw

clear conclusions about the type of conformity observed from data points alone, since the

same strategy can be consistent with different forms of conformity (see also Efferson et al.

(2008) who showed that data points from Asch (1956), which were originally interpreted

as conformity, can be consistent with multiple behaviors).

Having demonstrated that sample size (as determined by the stopping rule) leads to

different strengths of conformity, we first proceed to analyzing the performance of copy-

the-majority using different sample sizes and second, provide intuition for the results both

analytically and by using practical examples.

4.3 Study 1: Small Samples Increase the Likelihood of

Identifying the Superior Option

We consider a population of individuals repeatedly choosing between two options A and

B, where option A has a better long-run payoff than B. To illustrate, farmers might decide

whether to plant hybrid corn or traditional corn or villagers might decide whether or not

to boil drinking water (E. M. Rogers, 2010; Ryan & Gross, 1943; Wellin, 1955). While

option A may be superior to B in the long-run, due to environmental fluctuation, A might

produce positive outcomes for some individuals but negative outcomes for some others.

Therefore, different individuals might experience different levels of success with an in-

novation. In our model individuals take a random sample from the population, observe

the previous choices, but not the payoffs of others in their sample, and try out the option

used by the majority in their sample. The payoff experienced by trying out an option is

independently determined for each individual to capture individual differences in success

with an innovation. If the selected option produces a higher payoff than the one they were

using before, they switch to the novel option, otherwise they keep the option they were us-

ing previously. If the two options produce equal (indistinguishable) payoffs, the decision
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is made randomly. Therefore, learning in this context takes place by selective retention

of options that produce good outcomes. In this framework, repeated social learning can

be represented by a recursive function that involves iterating copy-the-majority for t time

steps and updating the proportion of the population with the superior option after each

time step (see Appendix for how to derive Equation 4.4):

pst+1 = pst ∗ ( f +(1− f )∗CJT (pst ,n, i))+(1− pst)∗ f ∗CJT (pst ,n, i) (4.5)

...where CJT is the formula from Equation 4.1 and f is the level of environmental

fluctuation, controlling the level of noise in feedback about payoffs. The parameter f

determines how often the inferior option produces better payoffs than the superior option

and vice-versa. When f = 1, the payoffs of the two options are constant, making them per-

fectly distinguishable (identical to the setting in Chapter 2). As f decreases towards 0.5

payoffs become more noisy, eventually making the two options indistinguishable when

f = 0.5.

Before proceeding, two clarifications are in order. Majority is typically defined us-

ing a threshold of 50% of the population (simple majority), although empirical studies

have shown that people often require higher thresholds to conform (T. J. H. Morgan &

Laland, 2012). Using higher thresholds do not change any of the results, therefore, we do

not report them here. Furthermore, note that the use of the binomial distribution to model

sampling assumes an infinitely large population. However, in reality the population is

bounded and is often small (e.g. a small community). This is important for the following

reason: in social learning the sampling of models takes place without replacement, how-

ever, the binomial distribution assumes sampling without replacement. This assumption

does not matter when the population is infinitely large, however, it does when the popula-

tion is small. A more appropriate distribution for modeling the probability of the majority
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choice being correct in small populations is the hyper-geometric distribution (Tideman &

Plassmann, 2013). However, the binomial distribution is often used in theoretical treat-

ment of voting issues, because of simplified computations (Grofman et al., 1983; King

& Cowlishaw, 2007). All our results hold when we assume small population sizes (e.g.

n = 100). We very this by implementing our model as an agent-based simulation. Result

are identical to the analytical calculations reported in this chapter.

Figure 4.2: Proportion of individuals with the superior option in the population (ps)
on each time step (x axis), for different initial levels of ps (y axis), for small and large

samples (blue dotted and solid red lines), for different levels of environmental fluctuation

f, panel A: f=1; panel B: f=0.8; panel C: f=0.6. In this cumulative social learning setting,

individuals using copy-the-majority can find the superior option even if initial ps is smaller

than 0.5. Small samples perform much better than large samples when ps is smaller than

0.5, but have only a small disadvantage when ps is larger than 0.5.

In separate scenarios we varied the proportion of individuals with the superior option

(ps) on the first time step and iterated the social learning process for t = 10 time steps.

These scenarios correspond to cases where an innovation appears in the population and

a certain proportion of individuals have already adopted it. We investigated how the size

of samples that individuals take randomly from the population on each time step affects

the performance of copy-the-majority in these different scenarios. We focused on two

sample sizes: small (n = 3) and large (n = 9), but other sample sizes (both odd and even)
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produce the same pattern of results. Results show that in this setting the prevalence of the

superior option in a population can increase even when its initial proportion is lower than

0.5 on the first time step (Figure 4.2). In addition, small samples have a great advantage

over large samples when the proportion of agents with the superior option is in the range

below 0.5, but have only a minor disadvantage over large samples when this proportion is

above 0.5, regardless of the level of environmental fluctuation f (panels A-C).

To assess how much these results depend on the range of initial ps values, we plot-

ted the average performance of populations using small and large samples for different

ranges of initial ps and different levels of f (Figure 4.3). It is an empirical question which

of these scenarios individuals encounter most frequently in reality. However, whenever

the environment changes (e.g., a previously high-payoff option loses its value) or a novel

option is introduced, a population will find itself in a situation where the superior alter-

native is in the minority (as in the examples of foraging and farming mentioned above or

as in the previous chapters, (see also E. M. Rogers, 2010; Ryan & Gross, 1943; Wellin,

1955). Overall, when averaged over all time steps and across a broad range of values of

initial ps (0.1− 0.9), small samples have an advantage over large ones. However, even

when the range of ps values is restricted to only those that favor large samples (ps > 0.5),

there is no disadvantage of using small samples or the disadvantage is much smaller com-

pared to their advantage in situations where ranges favoring small samples (ps < 0.5) are

also included. This result implies that if a social learner is uncertain about the number of

other individuals using the superior option (ps), taking smaller samples will increase the

likelihood of identifying a majority that is using the superior option and, as a results, will

more often lead to the option with the higher payoff.
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Figure 4.3: Average performance of copy-the-majority (y axis) using small and large
samples, for different ranges of initial proportion of individuals with the superior op-

tion (ps) values (x axis) (a=[0.1-0.9], b=[0.2- 0.9], c=[0.3-0.9], d=[0.4-0.9], e=[0.5-0.9],

f=[0.6-0.9], g=[0.7-0.9], h=[0.8-0.9], i=[0.9]). for different levels of environmental fluc-

tuation f, panel A: f=1; panel B: f=0.8; panel C: f=0.6. When the full range of initial

ps values is considered, average performance using small samples is much better than

the performance using large samples. When only the range of initial ps values that favor

large samples is considered (from ps>0.5), large samples perform better, but the relative

difference between the two sample sizes is much smaller than when the full range of ps

values is considered.

The basic intuition underlying our result is the following. Small samples have an

advantage over large samples for three reasons, in particular when the superior option

is used by only a minority in the population. First, when the superior option is in the

minority (e.g., a new innovation was introduced or the environment has changed), smaller

samples will include it as a majority more often than larger samples, due to sampling

variability. This result can be derived from CJT. To illustrate, consider a situation in

Figure 4.1 where ps is only 0.3. Taking a smaller sample and choosing the majority

option in the sample will more often lead to the inference that this option is in the majority

compared to taking larger samples. In Equation 4.1, this is reflected by the cumulative

probability of sampling a majority of superior instances. This probability is larger for

smaller samples as long as pst is smaller than 0.5. Consequently, pst+1 will grow faster

for smaller samples when the superior option is rare.
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Second, compared to large samples, small samples require fewer agents with the su-

perior option in order to reach a majority decision in favor of the superior option. There-

fore, in a finite population, smaller samples can reach a decision in favor of a novel option

sooner compared to larger samples. To illustrate, note that a sample size of three requires

only two instances of the superior option to reach a majority decision in favor of the supe-

rior option, whereas a sample size of nine requires five such instances. As a consequence,

if only two individuals in the population have the superior option, an individual using a

sample size of three might be able by chance to have both of those individuals in her sam-

ple and make a decision in favor of the superior option. Yet an individual using a sample

size of nine will have to wait for a few time steps until there are at least five individuals

using the superior option. In Equation 4.2, this means that the term pst will not increase

at all for individuals using large samples until a sufficient number of individuals have

adopted the innovation in the population and they reach the majority in at least one of the

samples. During the same time, pst will have a chance to grow for individuals using small

samples.

Third, the benefit provided by large samples when the superior option is in the ma-

jority is smaller than the benefit provided by small samples when the superior option is

in the minority (Figures 4.2 and 4.3). This is because the proportion of group members

who still do not have the superior option is smaller when the superior option is in the

majority than when the superior option is in the minority. In Equation 4.1, this is reflected

in the second term (1− pst), which is larger for pst < 0.5, when smaller samples have

an advantage, than for pst > 0.5, when larger samples have an advantage. To illustrate,

when the proportion of individuals with the superior option is 0.2, the remaining 0.8 can

still learn the superior option and improvement in the overall ps can be substantial. In

contrast, when the proportion of individuals with the superior option is 0.8, only 0.2 of

the population can learn the superior option. This provides an overall advantage for small

samples across different initial proportions of individuals with the superior option. So far

we have been assuming that all individuals are equally likely to sample all other individ-
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uals in the population. This assumption corresponds to an unstructured population where

each individual is equally likely to communicate with all others. In most real-life social

environments, however, individuals tend to form clusters and communicate within those

clusters. Individuals within the same cluster tend to share similar information (making

their beliefs correlated) and hold similar beliefs (e.g., due to homophily). In these en-

vironments, individuals do not sample randomly from the population; their samples are

biased toward those in their immediate social environment. The next section explores the

generality of our findings in more realistic social environments.

4.4 Study 2: Small Samples Perform Better Even in Clus-

tered Environments

In a simple agent-based model, we simulated a population of N=100 agents facing the

same task as described in Study 1 (implementing Study 1 as an agent-based model pro-

duces identical results to the analytical calculations described above), but instead of as-

suming an unstructured group (i.e. a fully connected network, as before), we modeled

the connections between agents with a linear network characterized by a large number

of clusters (clustering coefficient=0.67) and long distances between agents from different

clusters (average path length=5.5). Other network structures such as small-world net-

works (Watts & Strogatz, 1998) produce the same pattern of results. In our model each

agent is connected to 10 other agents, from which they sample either n = 3 (small) or

n = 9 (large) agents. We iterate the process for t = 10 time steps and record the frequency

of the superior option in the population after the agents had made their decisions on each

time step. Figure 4.4 shows the proportion of agents with the superior option on each time

step for different conditions of ps, and f averaged over 1,000 replications. The main re-

sults from Study 1 are replicated. The relative difference between small and large samples

is even more pronounced in clustered environments, where small samples reach a higher
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accuracy even when ps = 0.5.

Figure 4.4: Proportion of individuals with the superior option in the population (ps)
on each time step, for different initial levels of ps, for small and large samples, for dif-

ferent levels of environmental fluctuation f, panel A: f=1; panel B: f=0.8; panel C: f=0.6,

assuming a clustered population. The pattern of results is similar to that of the unstruc-

tured population shown in Figure 4.2., except that small samples are better than large

samples even for ps=.5.

The intuition underlying this result is that information within clusters might not be

representative of the whole population. To illustrate, consider a population where the

overall proportion of a superior option is ps = 0.5, but some clusters have ps = 0.4, while

other clusters have ps = 0.6. Agents using smaller samples in clusters where ps = 0.4

will be more likely to infer that the less frequent (but superior) option is in the majority

and will spread this option within the cluster. This in turn will promote spread of this

option throughout the population (see also Kreindler & Young, 2014, for other contexts

where clusters have been found to spread rare information). In contrast, agents using

larger samples will be less likely to detect this novel useful option in clusters where it is

in the minority.
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4.5 Summary and Discussion

4.5.1 Summary

In this chapter we systematically investigated the influence of sample size on the spread

of a novel option in a population over time. We focused on cases where a novel option

requires reinforcement from a majority of peers in order to spread, a form of complex

contagion (Centola & Macy, 2007). We showed that contrary to what might be expected

based on the prevailing wisdom that more is better, relying on the majority option in

smaller as opposed to larger samples improves both individual and population-level per-

formance. This pattern of results holds under different levels of noise in feedback and in

different social structures.

Our sampling account of strength of conformity allowed us to explain these results

both analytically as well as by using simple intuitive examples. First, due to sampling

variability, smaller samples are more likely to include a majority of superior options in

the sample when the superior option is in the minority overall in the population. Second,

smaller samples need fewer instances of the superior option in order for the superior

option to be in the majority. Third, smaller samples lead to larger improvements when the

proportion of individuals with the superior option is small and, therefore, leads to larger

population level gains compared to when most individuals are using the superior solution.

4.5.2 Exploration vs. exploitation

The trade-off between exploration and exploitation is central to most adaptive problems

(Hills et al., 2015; March, 1991). In the context of social learning, a key barrier to adap-

tation in changing environments in the lack of exploration (i.e., innovation) in the popu-

lation (Whitehead & Richerson, 2009). Our results demonstrate a novel source through

which innovation can be introduced in the population: sampling variability highlighting
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rare, but useful information. We believe this effect has not been studied previously and has

potential implications for understanding the sources through which novelty is introduced

in social groups.

4.5.3 Threshold models

In the study of innovation diffusion, an agentâĂŹs propensity to adopt (or not) an in-

novation has been linked to a threshold value that specifies how many other individuals

the agent should observe exhibiting the innovation before deciding to adopt (Granovetter,

1978; Henrich, 2001). For example, an agent might adopt an innovation after observing

one other individual, or might require 50 out of a total of 100 other individuals. We point

out that sampling variability can significantly alter the results obtained from pure thresh-

old models. Specifically, an individual with a high threshold value (e.g., not adopting

until 50% of the population has adopted) will adopt earlier, given that variability in small

samples will more often indicate 50% adoption rate in one’s sample compared to its true

population frequency.

4.5.4 Bet hedging

We showed that small samples can be robust in situations where individuals face varying

circumstances or are uncertain about the frequency of the superior option in the popula-

tion. One can argue that the optimal sample size still depends on whether this frequency

is above or below 0.5. This would require that individuals accurately identify each situa-

tion they face and then apply the optimal behavior. However, in uncertain environments

where the optimal behavior is difficult or impossible to determine, evolution should favor

decision rules that perform well in most situations (McNamara & Houston, 2009). We

showed that using small samples when they are not optimal results in much less harm

than using large samples when they are not optimal, therefore, small samples minimize
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variance in payoffs. This is often referred to as bet hedging (Olofsson, Ripa, & Jonzén,

2009).

4.5.5 Why people conform

Several explanations exist for why people tend to conform to the behavior of others. Some

suggest that conformity is an important element of human nature and have demonstrated

people’s tendency to conform in experimental settings (Asch, 1956; Bond, 2005; Cialdini

& Goldstein, 2004). Here conformity is interpreted as a motivational goal to be like others

and is often referred to as normative conformity. Individuals might also conform to others

in order to coordinate or maintain cohesion within a group (Conradt & Roper, 2005).

Other explanations, focusing on whether conformity can lead to accurate decisions have

shown that it can be adaptive and can evolve in a wide range of situations (Claidière &

Whiten, 2012; Henrich & Boyd, 1998; Wakano & Aoki, 2007). This is often referred to as

informational conformity. Note that some of these explanations imply that people might

also conform in situations where it is not the most adaptive strategy.

4.5.6 Conformity versus other strategies

In our study a copy-the-successful or a random copying strategy both have regions where

they can perform better than copy-the-majority. In situations where innovations are treated

as discrete options and are adopted in exactly the same way by each individual, copying

a single random individual will lead to even better overall performance than copy-the-

majority. However, in real life situations, innovations are unlikely to be adopted in ex-

actly the same way. Consider adopting a novel crop. Even if the same seeds were planted,

the soil and the weather conditions might differ, resulting in different payoffs (Diamond,

2005). In the present study we modeled this as environmental fluctuation, however, a

more realistic way would be to model the success of adopting the innovation as being a
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function of several interacting aspects (e.g., crop, soil, weather, farming method). For the

sake of simplicity and transparency we did not model this in the present study.

Another reason why copying the most successful individuals might perform worse

than copy the majority is that it requires the ability to observe payoffs of other agents with

sufficient accuracy. Even if payoffs were observable, such a copy-the-successful strategy

could loose its advantage over copy-the-majority, whenever the payoff generating mech-

anism is dominated by noise, luck, context or other factors that make inferring success

from behaviour difficult (Denrell & Liu, 2012; McElreath et al., 2013).

4.5.7 Sample size, conformity parameters and other strategies

Our results imply that the smaller the sample, the better an individual using the majority

rule will perform, with the smallest possible sample being three individuals for an indi-

vidual following the majority. It is useful to ask how this sample size corresponds to the

best conformity parameter values found in the literature. Given that the best parameter

values depend on the exact modeling details, we do not survey all studies here but only

provide an illustration. For example, Henrich (2001) finds that the best conformity param-

eter (implemented similarly to D in this paper) should be smaller or equal to 0.5. As we

have seen a value of 0.5 would correspond to a sample size of 3. In another study, McEl-

reath et al. (2008) using an implementation similar to a in this paper find that a value of

1.953 provides the best fit to experimental data. In our sampling account this would cor-

respond to a sample size of approximately 5. Finally, a recent experimental study found

evidence for larger group sizes leading to stronger levels of conformity (Muthukrishna,

Morgan, & Henrich, in press). This is in line with our predictions, however, note that our

model implies that stronger levels of conformity in larger groups does not have to be a

result of a stable individual trait or a situation specific decision. Instead, stronger levels

of conformity can simply be a result of the sample size (or group size) individuals are

exposed to. T. Morgan, Rendell, Ehn, Hoppitt, and Laland (2011) found that participants
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were more likely to choose social over asocial information when social information was

presented by larger number of demonstrators. However, when social and asocial informa-

tion were presented simultaneously, number of demonstrators did not affect participants’

willingness to follow social information. In the latter condition, social information was

revealed while in the former it was not. As these experiments manipulated several vari-

ables simultaneously, including visibility of social information at the time of choice, task

difficulty, participants’ experience and confidence, further research is needed to determine

how number of demonstrators affect people’s willingness to copy the majority.

A recent study by Perreault et al. (2012) investigated how different sample sizes

impact the performance of social learning. As expected by the present account, the authors

found that small samples sometimes have an advantage over larger samples, but they

interpreted such situations as an artifact of their particular model specification. Their

model differs in several ways from the present demonstration, in particular because they

investigated a combination of odd and even sample sizes (1, 3, 8, and 16). As even

sample sizes can include ties (i.e., situations when both options are equally frequent in

the sample), the final results will depend on the frequency of ties and the way they are

resolved. We believe that the advantage of small samples would be even stronger in that

study if the sample sizes were either all odd or all even.

Note that small sample sizes do not have the same beneficial effect for other strate-

gies. The success of copying a single random person from oneâĂŹs (random) sample will

not be affected by the sample size, any sample size will produce the same accuracy. In the

case of copying the most successful individual, however, larger samples would be bene-

ficial because they would maximize the chance of spotting the best individual, assuming

that the payoffs can be observed without error.
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4.5.8 Positive versus negative outcomes

Our analysis focused on situations where the adoption of an alternative option was more

likely to lead to positive than negative outcomes ( f > 0.5), making that option superior.

What if instead the alternative (initially minority) option could produce severe negative

outcomes, for example in the case of adopting a dangerous novel practice? This would

be the mirror image of the situation we modeled, with the superior option replacing the

inferior option and vice versa. As a consequence all of reported results would remain the

same.

We do not, however, model extreme environments where feedback is non-existent

or extremely delayed and misleading (Hogarth, 2001). In such settings, social learning in

general is not adaptive and can lead to the spread of inferior options (Tanaka, Kendal, &

Laland, 2009). However, small samples would help a population recover faster from such

a state whenever new, beneficial information enters the population.

4.5.9 More than two choice options

We assumed that populations choose between two available alternatives favored by differ-

ent proportions of individuals and make simultaneous decisions on each time step (in or-

der to avoid possible sequence effects that might lead to information cascades (Bikhchan-

dani et al., 1992)). This scenario corresponds to the diffusion of innovations and standard

population-genetic models of cultural evolution (Boyd & Richerson, 1985; Cavalli-Sforza

& Feldman, 1981; E. M. Rogers, 2010). There are good reasons to believe that this task

reflects many real-life situations. First, ranking of several options can be represented as

a series of pairwise comparisons. Also, since the majority rule has the property of creat-

ing homogeneous groups (Boyd & Richerson, 1985; Henrich & Boyd, 1998), it is likely

that over time most of the alternatives will be selected out of the population, leading to a

competition between two of the most popular alternatives. The competition of relatively
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few choice options is reflected in the power-law distribution of various cultural products

such as first names, baby names, dog breeds or scientific citations (Bentley et al., 2004;

H. A. Herzog, Bentley, & Hahn, 2004; Mesoudi & Lycett, 2009; Price, 1976; Simkin &

Roychowdhury, 2007; Simon, 1955). Even when there are several options available, most

will be used by a small fraction of the population, having little impact on collective dy-

namics. However, our model can be straightforwardly extended to more than two choice

options by using the multinomial distribution (see (List & Goodin, 2001)). As we have

seen CJT predicts better performance for large samples for ps > 0.5 and worse perfor-

mance for ps < 0.5. The predictions would also hold for an n option case where n > 2,

where one would simply need to change the cut-off point. To illustrate, in the n = 2 op-

tion case the cut-off point is 1/n = 0.5, similarly for an n = 3 option case it would be

1/n = 0.3.

4.5.10 Small samples in other domains

Small samples have also been found to be beneficial both in the assessment of the expected

values and prevalence of risks (Hertwig & Pleskac, 2010; Pachur, Hertwig, & Rieskamp,

2013), as well as in the early detection of correlations in the environment (Fiedler &

Kareev, 2006). A common criticism against the latter studies is that when one consid-

ers not only the number of hits but also the false alarms in a signal detection analysis,

the advantage of small samples largely disappears (R. B. Anderson, Doherty, Berg, &

Friedrich, 2005; Juslin & Olsson, 2005). These criticisms do not apply to our study since

our accuracy criterion (proportion of individuals with the superior option) does not map

onto a criterion used for detection tasks. However, the table in the Appendix B allows

us to categorize each scenario as hit (choosing the superior option), miss (selecting but

not choosing the superior option), correct rejection (not choosing the inferior option) and

false alarm (choosing the inferior option). Calculating each reveals that small samples

score better on all four criteria (calculations are available from the authors).
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4.5.11 Wisdom of crowds

We build onto the growing body of work within the wisdom of the crowds demonstrat-

ing the advantage of small group sizes on decision accuracy (Goldstein, McAfee, & Suri,

2014; Kao & Couzin, 2014; Mannes, Soll, & Larrick, 2014; Spiekermann & Goodin,

2012), however, our model is different from these studies in a number of respects. First

we assume repeated social learning and track the frequency of adaptive behavior in the

population over time rather than focusing on average performance from one-shot deci-

sions. Second we model social learning of individual level decisions rather than the social

aggregation of individual estimates. These are important differences, because repeated

social learning creates a feedback loop in the learning process which is not present in

these other studies, and because our performance measure is not affected by the benefit

of error cancellation gained from pooling estimates as in these other studies. As a conse-

quence, our findings are driven by different underlying mechanisms. To the best of our

knowledge, our study is the first to demonstrate the advantage of small samples in re-

peated social learning settings. We believe that exploring the similarities and differences

between the wisdom of crowds in one-shot and repeated social learning tasks is a fruitful

direction for future work.

4.5.12 Heterogeneous populations

We assumed that all agents in the population have the same tendency to conform. Popu-

lations, however, consist of both conformist and anti-conformists (Efferson et al., 2008;

Kendal, Giraldeau, & Laland, 2009). Further simulations (see Appendix C for details)

revealed that assuming a mixed population of conformists and anti-conformists does not

change our main results and, in fact, can be beneficial for copy-the-majority using small

samples but harmful for large samples.
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4.5.13 Conclusion

Our goal in this chapter was to systematically investigate how sample size affects the per-

formance of the copy-the-majority strategy and to explain more precisely why we found

an advantage for small samples in the previous chapters.

Our results suggest that individuals can vary in their level of conformity purely

as a result of the samples they take from their social environments. In addition, small

samples can be robust to varying environmental scenarios and, therefore, individuals who

are uncertain about the payoff of an option and use the majority rule to decide will fare

best by consulting only a few others. The sampling variability resulting from taking small

samples can be beneficial by highlighting information that is not salient in the population.

Our model also demonstrates how strikingly different behavioral patterns can emerge

from individuals using the same strategy but only differing in the amount of information

they sample. Overall, our results echo the findings in the literature about the benefit

of weak conformity, however, following the suggestion of Henrich (2001) of building

psychologically plausible models of social learning strategies, we show how strength of

conformity can arise as a byproduct of information sampling without invoking an abstract

parameter. These findings have practical implications for understanding the time-course

and circumstances under which novel behaviors spread in social groups and the strategies

underlying individual decisions to adopt novel practices in human societies.

So far we have been focusing on repeated social learning settings, where individu-

als constantly learn from their environment and make decisions, thus creating a feedback

loop between information available for sampling and the decisions they make. Another

set of representative environments in which social learning takes place are one-shot de-

cision environments, where individuals or groups make a single decision by using the

information available at a single time point. The following two chapters focus on social

learning in one-shot as opposed to repeated settings.



Chapter 5

Wisdom of Randomly Assembled Small

Crowds

This chapter is based on Galesic, M., Barkoczi, D. & Katsikopoulos, K. (2015). Wisdom

of randomly assembled small crowds. Under review

78



5.1. Introduction 79

5.1 Introduction

The previous chapter analyzed the dynamics of copy-the-majority in repeated settings

such as in the case of innovation diffusion. In this chapter we recognize that this same

strategy (i.e., majority voting) is also used in many one-shot decision situations, including

political voting, committee decisions and group meetings. In a wide range of context the

groups in which people rely on majority voting are relatively small. For example, jury

sizes in many countries range from six to 15 people who most often decide by simple ma-

jority (Leib, 2007). Local town and parish councils such as those in the United Kingdom

and Australia consist of five to around 30 members (Electoral Council of Australia and

New Zealand, 2013; UK Department of Communities and Local Government, 2008), gov-

erning bodies of most German labor unions have from three to 35 members (Dejure.org,

2013), parliamentary committees in the United States, the European Union, Australia,

and other countries have on average 20 to 40 members (European Parliament, 2014; Par-

liament of Australia, 2014; Peterson, 2013), subcommittees in the U.S. House and Senate

consist of on average 10 to 15 people (Peterson, 2013), and policy boards of most central

banks have up to 12 members (Lybek & Morris, 2004). Similarly, individuals considering

a variety of decisions typically rely on six or fewer close friends (Galesic et al., 2012) and

read about five and rarely more than 30 online reviews before deciding whether to trust a

business (M. Anderson, 2014). Deciding in moderately-sized groups can be observed in

other species throughout the animal kingdom (Krause & Ruxton, 2002).

In many cases, deciding by group vote rather than relying on a single decision maker

can in many cases boost overall decision accuracy. It is typically argued that group wis-

dom increases with its size (Condorcet, 1972; Galton, 1907; Surowiecki, 2005), and tech-

nological advances make meeting and communication in larger groups easier than ever

before (e.g., various social networking sites; LiquidFeedback (2014)). Why, then, do

most committees remain moderately sized, and why do most people consult only a lim-

ited number of others’ opinions? Existing explanations focus on time and coordination
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costs or on cognitive limitations that prevent stable relationships with a large number of

individuals (Dunbar, 1993). We complement these explanations with an argument for

the superiority of moderate group sizes based solely on group decision accuracy. We

show that in many realistic decision environments, where groups occasionally face situ-

ations with unexpected outcomes, average decision accuracy peaks when voting is done

by moderately sized groups. This does not occur because of selective sampling of group

members based on expertise (Budescu & Chen, 2014; Goldstein et al., 2014; Mannes et

al., 2014) but solely because the accuracy of groups deciding by simple majority or plu-

rality rules increases with their size for relatively easy tasks but decreases for tasks for

which most individuals make the wrong prediction. Thus, averaged across the range of

difficulties often encountered in real life, accuracy is highest for moderately sized groups.

These results challenge the basic prediction of Condorcet Jury Theorem (see Figure 4.1)

that claims that whenever individuals are more accurate than chance (ps > 0.5) larger

groups should perform better.

For examples of tasks with unexpected outcomes, consider election forecasts. Fore-

casters on average often show better-than-chance prediction accuracy, but a few election

years have been difficult to predict. Such as the U.K. 2015 general election, where all but

one polling company erroneously predicted that Tories would not win a majority of seats

in the Parliament (Bialik, 2015). Similarly, majority of forecasters in the U.S. 2000 pres-

idential elections predicted Gore’s victory over Bush in Florida (Graefe, 2014; Whitson,

2014). As illustrated in more detail later on, tasks with unexpected outcomes that are diffi-

cult to predict can be found in many other domains, including economic forecasts, medical

diagnoses, and general knowledge items. Consider the knowledge question "Which city

if further north, New York or Rome?", which most people answer incorrectly. Tempera-

ture, the cue that is valid for most other comparisons of city latitudes, points to the wrong

answer for this pair of cities (Gigerenzer, Hoffrage, & Kleinbölting, 1991). Note that in

all of the above examples the majority of individuals can be wrong, resulting in average

individual accuracy below 50% on those particular tasks. This can happen because these
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tasks are characterized by the so called Brunswikian uncertainty Juslin and Olsson (1997)

that occurs because of imperfect correlations of environmental cues and the actual states

of the world they are used to predict.

If most people rely on the sames cues to make inferences, cases where a cue is mis-

leading can create situations where a majority of people are incorrect. However, even

when individuals rely on different cues, these cues could all fail to predict the correct out-

come for some specific tasks; either because the usual cues are not suited for predicting

some particular cases or because the environment has changed between the moment of

prediction and the moment when the outcome was observed. For instance, most diseases

might be accurately diagnosed based on their symptoms, but some less well-known or

rare diseases have symptoms that easily point to the wrong direction; similarly, forecasts

of economic growth may prove to be wrong in some years because of unobservable un-

derlying complexities affecting the financial markets. In what follows, we will call tasks

with surprising outcomes that more people predict incorrectly "difficult", and those that

most people predict correctly "easy".

5.2 Solving tasks of varying difficulty

Most committees will face a variety of task difficulties in the course of their existence,

ranging from very easy to quite difficult. However, most past studies have assumed that

groups always encounter tasks of the same and known difficulty (but see Grofman, Feld,

& Owen, 1984, for an exception). Once task difficulty is known, it is easy to tell what

the best group size should be to maximize accuracy. In principle, for easy tasks, in which

average individual accuracy of group members (average individual probability of being

correct) is larger than 0.5, majority vote in larger groups will be more accurate than in

smaller groups, and vice versa for difficult tasks (Condorcet, 1972). However, in most

real-life situations we cannot know in advance how difficult any particular task will be.
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All we might know is an approximate distribution of task difficulties, for instance, that

some tasks might be difficult and some quite easy. We also may know an approximate

ratio of easy and difficult tasks. With these assumptions in mind we proceed to analyzing

how the assumed distribution of task difficulties affects accuracy of groups of different

sizes.

To study how group accuracy depends on group size when a task involves making a

choice between two options using a simple majority rule, we can use the Condorcet Jury

Theorem (CJT), just as in the previous chapter, which can be represented as

Pn =
n

∑
i=m

(
n
i

)
p̂i(1− p̂)n−i (5.1)

where Pn is group accuracy at group size n, m is size of simple majority, and p̂ is

average individual accuracy. Without loss of generality, n is assumed to be always odd.

Individual group members can have heterogeneous skills. As long as the distribution

of individual skills is symmetrical, CJT predictions remain essentially the same as if all

individuals had the same skill level (Grofman et al., 1983). Deviations occur in some

exceptional cases, for instance, when some individuals consistently have accuracy 0 or

1 or when average accuracy is close to 0.5 and groups are very small. With increase

in n, group accuracy P monotonically increases to 1 for tasks with average individual

accuracies 0.5 and monotonically decreases to 0 for tasks with p̂ < 0.5. When average of

individual accuracies p̂ = 0.5, P will converge to a value between 0.39 and 0.61 (Owen,

Grofman, & Feld, 1989). In other words, CJT predictions generalize to a large range of

asymmetrical distributions of individual skills (Grofman et al., 1983).

For simplicity, we first focus on tasks involving two options between which groups

choose by simple majority rule. We then analyze group accuracy for different combina-

tions of task difficulties. We assume that individual group members have symmetrically

distributed or identical skills and that they vote independently and investigate the effects
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of correlated votes in the last section. We assume that groups encounter two types of task

difficulties: With probability e they encounter easy (denoted E) tasks, for which average

individual accuracy p̂E > 0.5; and with probability 1−e they encounter difficult (denoted

D) tasks, for which average individual accuracy p̂D < 0.5. The reader might wonder how

average individual accuracy can be lower than 0.5 on difficult tasks. To illustrate this,

consider situations where individuals are misinformed, for example, when all cues point

toward a candidate who is very likely to win an election, but it turns out that the other

candidate won. Such situations can occur in many cases that involve prediction, including

political and economic forecasts or sports predictions. We illustrate such situations in the

section 5.3.

Figure 5.1: Average group accuracy can peak at moderate group sizes. Illustration

of changes in group accuracy as a function of group size n and different combinations

of task difficulties, assuming proportion of easy tasks e = 0.6. Note that as n increases,

average group accuracy P̂ converges to e. A In a "friendly" task environment ( p̂E + p̂D >
1), P̂ increases until n = 7, then decreases toward e. B In a "neutral" task environment

( p̂E + p̂D = 1), P̂ increases monotonically with n until it reaches e. C In an "unfriendly"

task environment (p̂E + p̂D < 1), P̂ decreases until n = 3, then increases toward e = 0.6
even though P̂n=1 < 0.5.

Figure 5.1 shows how average group accuracy P̂ across the two types of tasks

changes with increase in group size n, assuming that the proportion of easy tasks is
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e = 0.6. Following the Condorcet jury theorem (CJT), for easy tasks group accuracy

PE is larger than p̂E and increases monotonically to 1 as groups get larger (red dashed

lines in Figure 5.1). For difficult tasks, PD < p̂D and decreases monotonically to 0 with

increase in group size (blue dotted lines). Importantly, simple CJT based on average indi-

vidual accuracy p̂ cannot be used to predict average group accuracy P̂ across both types

of tasks (black solid lines in Figure 5.1). Rather, the average group accuracy P̂ (full black

lines) must be calculated as the average of group accuracies on easy and difficulty tasks,

weighted by the proportion of each type of task that the group encounters:

P̂n = ePE,n +(1− e)PD,n (5.2)

where P̂n is the average accuracy of a group of size n, e is the proportion of easy

tasks it encounters, and PE,n(PD,n) is the accuracy of a group of size n on easy (difficult)

tasks derived by the CJT. It follows that with an increase in group size, P̂ converges

to the proportion of easy tasks e, rather than to 0 or 1 as would be predicted by the

simple CJT (see also Grofman et al., 1984). This happens because for large enough n,

PE reaches 1 and PD reaches 0, so P̂ converges to e ∗ 1+(1− e) ∗ 0 = e. Note that for

n = 1, P̂n−1 = ep̂E +(1− e) p̂D, which is the average individual accuracy across easy and

difficult tasks.

As Figure 5.1 illustrates, changes in P̂ with changes in n depend on the type of

environment. We define a "friendly" environment as one in which p̂E + p̂D > 1, a "neutral"

environment as one in which p̂E + p̂D = 1, and an "unfriendly" environment as one in

which p̂E + p̂D < 1. These definitions express whether it is the accuracy in easy tasks or

the accuracy in difficult tasks that is further away from chance. For example, p̂E + p̂D >

1 is equivalent to p̂E − 0.5 > 0.5− p̂D,which means that in friendly environments, the

accuracy in easy tasks is above chance more than the accuracy in difficult tasks is below

chance.
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In all environments, P̂n will start from ep̂E +(1− e)p̂D for n = 1 and will eventu-

ally converge to e. In between these two extremes, P̂ can be a monotonically increas-

ing, monotonically decreasing, U-shaped, or inverted U-shaped function of n. Which of

these shapes obtains is completely determined by three factors: the type of environment

(friendly, neutral, or unfriendly) as defined precisely above, the value of the starting point

of P̂n−1 = ep̂E +(1− e)p̂D, and the relative frequency of easy and difficult tasks as mea-

sured by the ratio 1−e
e . More precicely, the following holds as n increases to n+ 2 (the

next odd group size):

� P̂n

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

> 0 i f �PE,n >
1−e

e �PD,n

< 0 i f �PE,n <
1−e

e �PD,n

= 0 i f �PE,n =
1−e

e �PD,n

(5.3)

Where �P̂n = P̂n+2 − P̂n,�P̂E = PE,n+2 −PE,n, and �P̂D = PD,n+2 −PD,n.

This equation says that P̂ increases as n increases to n+ 2 if the rate of change in

accuracy on easy tasks �PE,n is higher than the rate of change in accuracy on difficult

tasks �PD,n, taking into account the relative prevalence of the tasks 1−e
e . For example, if

the environment is friendly, then the rate of change in accuracy on easy tasks is initially

higher than the rate of change on difficult tasks because p̂E − 0.5 > 0.5− p̂D. Now if

additionally easy tasks are encountered more often, then e > 0.5 and thus 1−e
e < 1, which

means that this difference in rates of change is only magnified and P̂ will definitely in-

crease from n to n+ 2. On the other hand, if easy tasks are encountered less often, then

e < 0.5 and thus 1−e
e > 1, in which case it can be that P̂ does not increase as n increases

to n+ 2 even if the environment is friendly. But there is a catch. Notice that an initial

increasing or decreasing trend in P̂ may be reversed as n continues to increase exactly

because the component P̂,ePE or (1− e)PD, which initially changes faster, will also con-

verge faster to its limiting value and then the other component will start changing faster.

For example, if the environment is friendly then the component ePE will initially increase
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faster than the component (1− e)PD decreases, but at some point, which depends on the

value of e, this trend will be reversed, giving rise to an inverted-U-shaped curve. This is

what happens in Figure 5.1A. In this friendly task environment, an increase in n initially

leads to an increase in P̂, here peaking at 0.7 for n = 7 before decreasing to e. Figure

5.1B shows a case of a neutral environment, where P̂ increases monotonically with n

until it reaches e. Finally, Figure5.1C shows a particularly interesting case that occurs

in unfriendly environments. Here, a downward peak occurs, with P̂ initially decreasing

and then slowly increasing toward e. Note than in this case P̂ will ultimately become

larger than 0.5 (because e = 0.6) even though the average individual accuracy across the

two types of tasks was lower than 0.5(P̂n=1 = 0.44). This finding might be surprising,

since the original CJT predicts that when P̂n=1 < 0.5, with increase in n, group accuracy

decreases to 0.

In sum, for P̂ to profit from group size increase, the gain in group accuracy on

easy tasks must be larger than the simultaneous loss in group accuracy on difficult tasks,

weighted by the ratio of proportions of difficult and easy tasks. If an increase from n

to n+ 2 leads to a gain in PE that is larger than the weighted loss it produces in PD, P̂

will increase and otherwise decrease. It will reach its peak when the gains and weighted

losses cancel each other. Solving Equation 5.3 analytically involves taking derivatives of

the binomial cumulative distribution functions PE and PD with respect to n. This produces

cumbersome solutions so approximations have been developed for large n (Grofman et

al., 1983). To find solutions numerically and examine how group size relates to group

accuracy for different combinations of easy (0.6 ≤ p̂E ≤ 0.9) and difficult (0.1 ≤ p̂D ≤
0.4) tasks, separately for different proportions of easy tasks 0.1 ≤ e ≤ 0.9, in increments

of 0.1.

Figure 5.2 shows that non-monotonic changes in P̂, such as those shown above in

Figure 5.1, occur in half of all combinations of task difficulties we analyzed. Specifically,

whenever the average individual accuracy across tasks starts from P̂n=1 > 0.5 and the task
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environment is friendly (as defined above), P̂ peaks at moderate group sizes from 3 to 43

members before it starts decreasing toward e. These results are reversed when P̂n=1 < 0.5.

Here, when the task environment is unfriendly, P̂ reaches its minimum at moderate group

sizes (3 < n < 43), and then increases toward e. An interesting implication of this result is

that in unfriendly task environments, larger groups are often better, except in cases where

e < P̂n=1, when relying on a single randomly selected group member might be best. This

result adds to our understanding of the conditions under which it is better to increase group

size or to follow the best individual in the group (Fifić & Gigerenzer, 2014; Katsikopoulos

& King, 2010). Finally, when P̂n=1 = 0.5, P̂ will increase (decrease) monotonically to e

in friendly (unfriendly) environments, and stay at 0.5 in neutral environments.
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Figure 5.2: Average group accuracy depends on combination of task difficulty and
proportion of easy tasks. Changes in average group accuracy P̂ as a function of group

size n, different combinations of easy (0.6 ≤ p̂E ≤ 0.9) and difficult (0.1 ≤ p̂D ≤ 0.4)

tasks, and different proportions of easy tasks (0.1 ≤ e ≤ 0.9). Red lines represent cases in

which average individual accuracy across tasks P̂n=1 > 0.5, blue lines are for P̂n=1 < 0.5,

and black lines for P̂n=1 = 0.5, where P̂n=1 = ep̂E +(1− e)p̂D. Circles show maximum

value of P̂ for each case. Dashed lines denote cases where P̂ changes monotonically with

n until it reaches e, while solid lines denote cases where P̂ changes nonmonotonically,

that is, reaches an upward or a downward peak at moderate group size n before reaching

e. In each panel, upper lines represent higher proportions of easy tasks e (see legend to

the right of each row). Panels above the diagonal represent friendly task environments,

those in the diagonal neutral, and those below the diagonal unfriendly task environments

(see main text for details). Gray dotted lines denote region in which 0.6 ≤ P̂n=1 ≤ 0.8, as

is commonly observed in real-world policy tasks (see section on real-world tasks)

This analysis can be extended to situations with more than two possible task diffi-
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culties and tasks with more than two options, as well as to groups whose members have

correlated votes, say because of opinion leaders or shared information. In all of these

cases it can be shown that groups with moderate sizes very often reach highest accuracy.

We now turn to illustrating these situations.

5.2.1 Situations with more than two task difficulties

So far we have assumed, for simplicity, that a group faces only two types of tasks with

difficulty p̂E and p̂D. In real life, groups will face tasks of a wide range of difficulties.

Average group accuracy across these tasks can be calculated by an extension of Equation

5.2:

P̂n =
1

T

T

∑
t=1

Pt,n (5.4)

where T is the number of tasks, and Pt ,n is group accuracy on a given task t at group

size n, calculated using Equation 5.1.

5.2.2 Tasks with more than two options

What if tasks involve plurality choices between more than two options? CJT can be

extended to these situations: Group accuracy will increase with n as long as the aver-

age individual is more likely to choose the correct option over any other option (List &

Goodin, 2001). The probability that a group chooses the correct one of k options can be

calculated as a multinomial probability of all k-tuples of individual votes for the k options

for which the correct option is the plurality winner, given probabilities p1, p2, ..., pk that

an average individual chooses each of the k options. Once group accuracies Pt,n are cal-

culated in this way for different tasks t and group sizes n, Equation 5.4 can be used to
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calculate average group accuracy. It is then easy to show that nonmonotonic changes in

average group accuracy can occur in these situations, as well.

5.2.3 Effect of correlated votes

So far we have assumed that group members are independent in a sense that they rely on

diverse (or uncorrelated) cues to make their judgments. Surprising outcomes can drive a

majority of people in the wrong direction even when individuals vote independently. This

can happen if the environment changes in a way that makes all cues incorrect or if by

chance uncorrelated cues happen to be wrong on the same task. However, the assumption

of perfect independence is unrealistic (see e.g., Broomell & Budescu, 2009). In real life

people are often influenced by the same cues, such as the same pieces of information, me-

dia reports, or opinion leaders. It has been shown that the presence of opinion leaders or

common information that introduces correlations between individuals’ decisions can re-

duce or even reverse the positive effects of larger group size on group accuracy (Boland,

Proschan, & Tong, 1989; Kao & Couzin, 2014; Spiekermann & Goodin, 2012). These

findings can be parsimoniously explained within the present framework. Whenever the

leader or the common information is correct, average individual accuracy improves and

the task in effect becomes easier. Conversely, whenever the leader or the common cue is

wrong, the average individual becomes less accurate and the task becomes more difficult.

Hence, given stochastic accuracy of the leader or the common cue, the overall group ac-

curacy can be represented as an average of its performance on easy and difficult tasks (see

Equations 5.5 and 5.6 below). Accordingly, single peak functions of the kind presented

above have been observed for groups with correlated votes (see references above) but to

our knowledge the simple explanation in terms of a mixture of easy and difficult tasks

has not been proposed before. To further explore effects of correlated votes on the results

presented above, we introduce correlations between voters on each task, before averaging

across tasks. Following Boland et al. (1989), we assume that on each task a proportion
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of r voters are following a leader or some other cue that is stochastically correct with

probability l, and as a result their votes become correlated. Whenever the leader or cue

is correct, all r voters are correct, and accuracy of the remaining voters depends on their

individual skill (see Equation 5.7). We repeat the analyses above (presented in Figure

5.3) while increasing the assumed proportion of voters r who follow the leader from 0

to 1 in steps of 0.1. With increase in r, changes in group accuracy with its size become

less and less prominent, and for high r there is almost no change in group accuracy with

increase in its size (Hogarth, 1978). Because in the real world it is difficult or impossible

to know what proportion of people will follow a leader in a particular task, we average the

results over the whole range of values of r. The results, shown in Figure 5.3 demonstrate

that, in all situations in which it was observed when we assumed independent votes, the

superiority of moderate group sizes still holds under the assumption of correlated votes.

Following an opinion leader (who does not vote but influences some group members

to decide in a certain way) or voting based on a common cue can be incorporated in the

present framework and studied as a combination of easy tasks (when the leader or cue is

correct) and difficult tasks (when the leader or cue is not correct). More precisely,

P̂n = l ∗Pn[p(1− r)+ r]+ (1− l)∗Pn[p(1− r)] (5.5)

where P̂n is average accuracy of a group of size n, l is probability that an opinion

leader is accurate on a certain task, Pn is group accuracy at group size n given individual

accuracy specified within the square brackets, p is initial individual accuracy of group

members, and r is the proportion of group members who are following the opinion leader.

The higher r, the higher the correlation among group members, and in some cases the two

values are identical (Spiekermann & Goodin, 2012). It is easy to see that when the leader

is accurate the tasks will overall be easier (i.e., group accuracy will be higher) than when

the leader is not accurate. A condition similar to Equation 5.3 must be satisfied for P̂ to
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increase with group size n:

P̂n+2[p(1− r)+ r]−Pn[p(1− r)+ r]>
1− l

l
[P̂n+2[p(1− r)]−Pn[p(1− r)]] (5.6)

A similar case can be made for situations in which correlations occur because indi-

viduals use the same sources of information.

5.2.4 Combining the effect of correlated votes and task difficulty

Eqs. 5.2 and 5.5 can be combined to account for both correlated votes and task difficulty:

P̂n = e[lE ∗PE,n[ p̂E(1− r)+ r]+ (1− lE)∗PE,n

[p̂E(1− r)]]+(1− e)[lD ∗PD,n[ p̂D(1− r)+ r]+ (1− lD)∗PD,n[p̂D(1− r)]]
(5.7)

In simulations equivalent to those used to produce the main results (Figures 5.1 and

5.2), we vary r from 0 to 1 insteps of 0.1. We first assume that lE = P̂E and lD = P̂D,that

is, that the leader has the same skill as the average group member. Average results over

all levels of r are shown in Figure 5.3. The results hold if we assume that the leader is 10

percentage points more or less likely to be accurate than the average member.

Having demonstrated the main findings and several extensions, we now illustrate

these analyses with several real-world examples.
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Figure 5.3: Group accuracy after repeating the analysis in Figure 5.2 for correlation
levels r ranging from 0 to 1 in steps of 0.1 and averaging over them. Leader accuracy l
is assumed to be equal to the average individual accuracy (see main text for more details).

Figures for each level of r and different values of l are available from the authors.

5.3 Real-world illustrations

What is the best committee size in typical real-world environments? To answer this ques-

tion, we need to have a rough idea of the distribution of task difficulties a committee might
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encounter in the real world. Given that committees are typically composed of people who

are experts in the relevant area, we could expect that their accuracy in easy tasks is above

chance more than their accuracy in difficult tasks is below chance. In other words, a typ-

ical task environment in which committees need to make decisions might more often be

friendly than unfriendly. For the same reason, we could expect that the average individual

accuracy across tasks is P̂n=1 > 0.5; that is, on their own, committee members are more

often right than wrong. Studies documenting expert accuracies across a range of tasks in

the fields of politics, health, and economics support these expectations. To illustrate, in a

longitudinal study of expert forecasts of five U.S. presidential elections, average individ-

ual accuracy across years P̂n=1 = 0.66. Average individual accuracy in most years was

above 0.8 while it was as low as 0.2 in only one year, 2000 (Bush vs. Gore; see (Graefe,

2014), and gray lines in Figure 5.4A). Similarly, a review of accuracy of medical diag-

noses for 11 diseases showed that the average individual accuracy for most diseases is

above 0.8, and it is rarely lower than around 0.4, for P̂n=1 = 0.7 across diseases (Schiff et

al., 2009); gray lines in Figure 5.4B). Finally, a review of accuracy of predictions given by

the top officials of the U.S. Federal Reserve Bank about future economic trends showed

that their average individual accuracy when predicting whether unemployment, economic

growth, and inflation would increase or decrease was rather high for two of these do-

mains, and it was never lower than 0.4, with P̂n=1 = 0.71 (Hilsenrath & Peterson, 2013).

Finally, in a study including 120 general knowledge tasks such as which of two randomly

selected cities is farther north, or which of two randomly selected countries is larger or

more populated, Juslin (1994) found that participants were more often right than wrong

on average (P̂n=1 = 0.76, but tended to be incorrect on a subset of tasks in which otherwise

useful cues pointed to the wrong answers (Figure 5.4D). Under these conditions, groups

of moderate sizes are likely to reach the most accurate decisions. Of all such conditions

presented in Figure 5.2 in 71% (17/24) average group accuracy peaks at moderate group

sizes ranging from n = 3 to n = 31.
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Figure 5.4: Real-world environments are often friendly and group accuracy peaks at
moderate group sizes. Gray lines: Group accuracy for different group sizes and different

tasks, assuming task difficulties corresponding to those faced by A experts predicting U.S.

political elections in years 1992, 2000, 2004, 2008, and 2012 (Graefe, 2014), B doctors

giving medical diagnoses for a range of diseases (AC=acute cardiac ischemia, BC=breast

cancer, S=subarachnoid hemorrhage, D=diabetes, G=glaucoma, St=Soft tissue pathology,

C=cerebral aneurysm, Bi=brain and spinal cord biopsies, L=Lyme disease, P=pyrogenic

spinal infections, AA=abdominal aortic aneurysm; (Schiff et al., 2009)), and CU.S. Fed-

eral Reserve Bank officials giving economic forecasts about future economic trends in

unemployment (unempl), inflation, and economic growth (Hilsenrath & Peterson, 2013),

and D individuals answering 120 general knowledge items about sizes, latitudes, and pop-

ulations of cities and countries (Juslin, 1994). In panels (A-C) each gray line represents

one task; in (D) each gray line depicts several tasks and the frequency of different tasks

at each level of task difficulty ( p̂) is shown in the inset. Note that in all domains easy

tasks prevail, accompanied with a few surprising tasks that were difficult for most people.

Thick black lines: average group accuracy across different tasks. For all four examples,

average group accuracy peaks at moderate group sizes (as indicated by circles): in A at

n = 5; in B at n = 11; in C at n = 7; in D at n = 15.
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If we assume that a policy maker or an individual needs to decide on the best group

size to solve a range of tasks such as those above, what group size would reach the high-

est accuracy? How many political experts should a journalist consult to improve election

forecasts, how many doctors should a patient consult to improve the accuracy of her med-

ical diagnosis, and how many economists should a government consult to make a good

guess about the future course of the economy? To answer this, we combine group ac-

curacies for different tasks to get average group accuracy in each of the three domains

illustrated above (see Equation 5.4). As Figure 5.4 shows, the best group size for im-

proving election forecasts by political experts in this particular illustration is n = 5. For

diagnosing a variety of health problems, the best size of a panel of medical experts in this

example would be n = 11. Finally, for economic tasks such as those faced by Federal

Reserve officials, the best group size seems to be n = 7. Perhaps coincidentally, this is

the designated number of seats on the Federal Reserve’s Board of Governors, although

at the moment of writing this paper two of those seven seats are empty (Federal Reserve,

2014). Finally, for answering general knowledge items correctly, the best group size for

participants of Juslin’s (1994) study is n = 15.

5.4 Conclusions

Our results suggest that the highest accuracy across a diverse set of tasks may be achieved

by moderately sized rather than large groups. These results hold even if we assume that in-

dividuals have diverse skills, that their votes are correlated, that tasks have more than two

options, or that groups encounter more than two task difficulties. Note that we modeled

tasks in which groups use simple majority or plurality rules to choose between discrete

options, rather than using averaging to predict a quantitative property. Wisdom-of-crowds

effects are typically studied in the latter type of task (Galton, 1907; Surowiecki, 2005), al-

though it has been shown theoretically that the performance of majority and plurality rules

often compares to that of a computationally more demanding averaging rule (Surowiecki,
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2005). Note also that we do not assume any selective sampling of group members, for

example, based on expertise (Budescu & Chen, 2014; Goldstein et al., 2014; Mannes et

al., 2014). A smaller group that would produce more accurate decisions in our model can

simply be selected randomly out of a larger group of experts. Overall the study highlights

an important characteristic of the environment that has been neglected before: the distri-

bution of different task difficulties over time. This opens a novel perspective in the study

of group judgment and decision making and serves as an important factor in analyzing

the ecological rationality of social learning in one-shot decision environments.

So far in all chapters we have been assuming that individuals are trying to maximize

a universal, objective criterion (i.e., accuracy), that is the same for each individual. In

many real-life environments, however, the best option varies between individuals. Such

settings involve making decisions about matters of taste as in the case of deciding between

books, movies, music and other cultural products. In the next chapter we study how and

when the building blocks of the three strategies we studied so far (and some new variants)

could be modified to make them applicable to situations involving matters of taste.



Chapter 6

Social learning about matters of taste

This chapter is based on Analytis, P.P., Barkoczi, D., & Herzog, S.M. (2015). You’re

special but it doesn’t matter if you’re a greenhorn: social recommender strategies for mere

mortals. Proceedings of the 37th Annual Conference of the Cognitive Science Society.

Pasadena, CA: Cognitive Science Society.
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6.1 Introduction

Where should I go for my next vacation? Which car should I buy? Many choices people

encounter are about "matters of taste" and thus no universal, objective criterion about the

options’ exists. How can people increase their chances of selecting options that they will

enjoy?

One promising approach is to tap into the knowledge of other individuals who have

already experienced and evaluated options. In the area of recommender systems this

source of knowledge has been used to develop collaborative filtering methods, which

estimate the subjective quality of options that people have not yet experienced (Adomavi-

cius & Tuzhilin, 2005; Resnick & Varian, 1997). One key insight from that literature is

that building recommendations based only on the evaluations of individuals similar to

the target individual often improves the quality of the recommendations (e.g., Herlocker,

Konstan, Borchers, & Riedl, 1999)—where similarity between two people is typically

defined as the correlation in their evaluations across options they have both evaluated.

Although the consumer industry enables people to benefit from recommender sys-

tems in some domains (e.g., choosing a movie on Netflix), for many everyday decisions

there is neither an algorithm nor "big data" at hand. How can individuals leverage the

experience of other people when they have no access to big data but access only to a

relatively small community of other people with whom they share some prior experience

about the available options?

In this chapter we make three contributions. First, we have undertaken an exercise

in theory integration by mapping the striking conceptual similarities between seminal

recommender system algorithms and both (i) models of judgment and categorization and

(ii) models of social learning and social decision making (from psychology, cognitive

science, judgment and decision making, anthropology, and biology). Models from rec-

ommender systems have been developed for problems involving matters of taste while the
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latter two classes of models have their origins in inference problems about matters of fact.

Second, we have recast the latter two classes of models as social recommender strategies

which can be thought of as social learning strategies with modified building blocks. Fi-

nally, based on this mapping, we have investigated how ordinary people can leverage the

experience of other people to make better decisions about matters of taste. To this end

we studied the inevitable trade-off between (i) harnessing the apparent (dis)similarity be-

tween people’s tastes—to discriminate between more and less relevant advisers—and (ii)

estimating those similarities accurately enough. We have investigated how this trade-off

evolves with the amount of experience a decision maker has (i.e., the number of options

previously evaluated).

Outside of the recommender systems literature, social recommender strategies re-

main an under-explored topic. Research on advice taking, social learning, and judgment

aggregation in psychology, cognitive science, judgment and decision making, anthropol-

ogy, and biology has focused almost exclusively on "matters of fact" where there is an

objective criterion to be inferred ("wisdom of crowds"; e.g., Larrick, Mannes, and Soll

(2012)). This is echoed in the last 4 chapters which also focused on making decisions

about matters of fact. To the best of our knowledge, there are only a handful of studies on

social recommender strategies (Müller-Trede, Choshen-Hillel, Barneron, & Yaniv, 2015;

Van Swol, 2011; Yaniv, Choshen-Hillel, & Milyavsky, 2011). They show that people rely

on the similarity between themselves and their advisers when making decisions about

matters of taste and that this is a good strategy.

6.2 Mapping recommendation systems algorithms to in-

formational and social cue-based strategies

Table 6.1 displays several social recommender strategies that predict one’s own future

evaluations based on the past evaluations provided by other people.
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We identified conceptual similarities between the proposed social recommender

strategies (inspired by seminal algorithms from recommender systems research) and heuris-

tics and strategies for predicting matters of fact, where people have access to either infor-

mational cues potentially related to an objective criterion (e.g., number of movie theaters

in a city to predict its population size) or social cues (i.e., the opinions of other people

concerning the same objective criterion).

This mapping emphasizes the close correspondence between recommendation algo-

rithms on the one hand and informational and social cue-based strategies on the other.

Table 6.1 introduces the strategies we study and their parallels in the literature. Note

that these strategies differ slightly from the strategies studied in the previous chapters.

The previous chapters focused on copying of options with discreet payoffs, where the

frequency of each option could be tallied and the majority rule could be applied. However,

in the current setting individuals’ preferences are on a continuous scale and, therefore,

averaging becomes a more appropriate decision rule 1. We also introduce a search rule

based on similarity rather than random order. In addition, we introduce several hybrid

strategies that combine averaging and similarity ordered search rules. These strategies

can also be thought of as social learning strategies composed of different building blocks.

To illustrate, the Follow your clique strategy can be modeled as: (1) Search among your

peers in the order of similarity; (2) Stop after looking up the k most similar peers; (3)

Average the evaluations of the people in your sample and choose the option with the

highest evaluation.

These social recommender strategies can be placed on a continuum, on the bound-

aries of which strategies rely either only on similarity information (i.e., use a search rule

based on similarity rather than random order as in the previous chapters) or only on aggre-

gation of opinions (i.e., strategies that average the evaluations of all individuals in one’s

sample). As we move away from the boundaries the strategies rely increasingly on both

1Note that Hastie and Kameda (2005) have shown that the performance of averaging and the majority

rule often correspond very closely.
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of these two fundamental principles.

Below we illustrate some of the strategies using a fictional data set that has the same

structure as the large-scale data sets used in recommender systems research and in our

own simulation study below.

6.3 Example: Deciding which movie to watch based on

other people’s past experiences

Amit likes superhero movies and wants to watch Batman or Fantastic Four. His friends

have already seen both movies. Furthermore, he and his friends have all watched and

evaluated several other movies (see Table 6.2). In addition to any contextual information

about the movies (e.g., director, cast, movie length), Amit can use his friends’ evaluations

to inform his movie choice.

Movie John Bob Linda Mary Lou Avg. Amit
Superman 3 4 2.5 4.5 3 3.8 2.5
Spiderman 4 4.5 3 2 3.5 3.4 3
Batman 5 5 2 1 3 3.2 ?
Fantastic Four 2 3 2.5 3 2.5 2.6 ?
X-Men 1 1.5 2 1.5 3 1.8 2

Table 6.2: A typical recommender system problem. The movies are rated on a scale of 1

to 5 (higher values indicate more positive ratings). Avg. = average.

From Amit’s perspective, his own future evaluations are the criterion values he seeks

to maximize and the evaluations of his friends are informational cues he can use to predict

his own future evaluations. Based on his past evaluations of the other movies, Amit thinks

that he and Linda have similar taste. If Linda truly were his “taste Doppelgänger” he could

simply copy her evaluations and arrive at very accurate estimates of his own future en-

joyment (Follow your Doppelgänger). However, it is unclear to what extent this seeming
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similarity—based on only a small set of joint past experiences—would generalize well to

future cases. Amit may thus prefer to take the evaluations of others into account, as well.

For example, he could assign equal weights to all individuals and simply use the aver-

age evaluation (i.e., the “mainstream” option; Follow the whole crowd). Yet by doing so

he would also incorporate evaluations from individuals with possibly very different—or

even antithetical—tastes. Alternatively, he could search for a movie that everybody rated

similarly to the target movie and then use his own evaluation for that similar movie as a

proxy (Consider similar options; e.g., Spiderman is similar to Batman).

6.4 Simulation study

We investigated the performance of the proposed social recommender strategies (see Ta-

ble 6.1) by simulating their predictions for a large-scale, real-world data set. We varied

the experience of the simulated decision makers (i.e., the number of options previously

experienced in that domain; that is, the number of rows in Table 6.2). As experience in-

creased, the strategies relying on similarity could thus base their similarity estimates on

more data.2

The social network from which a person could leverage vicarious experience would

likely be much smaller than the thousands of people available in typical recommender

system data sets. The cognitive limit of the number of stable relationships that people can

maintain is estimated to be around 250 (Dunbar, 2010). We therefore opted to simulate

small “communities” of 250 members each to mirror this real-world feature (as opposed

to letting decision makers have access to all other individuals in the population). However,

within those small communities, we assumed a fully connected network.

2A similar challenge is faced by recommender system algorithms when recommending options to new

users about whom they know nothing or only very little. This challenge is commonly referred to as the user
cold start problem Ekstrand, Riedl, and Konstan (2011).
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6.4.1 Method

Dataset

We used the funniness ratings of 100 jokes collected in the Jester data set. Jester3 was

created by an online recommender system that allows Internet users to read and rate jokes.

Users evaluated jokes on a scale ranging from not funny (–10) to funny (+10). At the

beginning of the recommendation process, a set of 10 jokes was presented to the user.

Thereafter, Jester recommended jokes and continued to collect ratings for each of them.

The data set contains 4.1 million evaluations of 100 jokes by 73,421 participants. In

contrast to other data sets studied by the recommender system community, here a large

number of participants evaluated all options. Since its publication, the Jester data set has

been used extensively to study collaborative filtering algorithms.

Simulation procedure

For simplicity we worked only with participants who evaluated all jokes (reducing the

number of participants from 73,421 to 14,116). We randomly selected 14,000 participants

in order to partition them into evenly sized communities of 250 members each. In line

with previous work in the recommender system literature, we used the Pearson correlation

coefficient as a measure of similarity (Herlocker, Konstan, Terveen, & Riedl, 2004).4

In each simulation run, we followed the following steps: First, we randomly gener-

ated 56 communities with 250 members each (14,000/250). Second, we randomly divided

the jokes into a training (x jokes) and a test (10 jokes) set; this assignment was the same

for all individuals within all communities. The strategies were then fitted on the training

set. Individuals could access only advisers within their own community. Third, for each

3http://eigentaste.berkeley.edu
4The Pearson similarity coefficient between two individuals or two items i and j is defined as w(i, j) =

∑k
n=1(uin−ūi)(u jn−ū j)

∑k
n=1

√
(uin−ūi)2(u jn−ū j)2
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Figure 6.1: Panel A: The performance of strategies as a decision maker’s experience

with the domain of jokes (i.e., number of jokes previously experienced and evaluated)

increases; the strategies are grouped by color to those that rely primarily on aggregation

(blue), those that rely heavily on similarity information (red) and benchmark strategies

(black) (see also Table 6.1). Panel B: Performance of the Follow your clique strategy as a

function of the experience with the domain (i.e., number of options experienced; x axis)

and the size of the clique (i.e., number of most similar people consulted; y axis). Note that

Follow your Doppelgänger and Follow the whole crowd are special cases of this strategy

when the number of similar people consulted equals 1 and N, respectively. FD: Follow
your Doppelgänger. FC: Follow your clique. FWC: Follow the whole crowd.

individual (within all communities) we generated all 45 possible pair comparisons within

the test set [10× (10−1)÷2] and examined the performance of the strategies in predict-

ing which of the two jokes in a pair had a higher evaluation for that individual, resulting

in 45 pair comparisons per individual, 11,250 per community (45×250), and 630,000 in

total (11,250×56). For each strategy we recorded the proportion of correct predictions.

This procedure was repeated 100 times and results were averaged. We investigated how

the performance of the strategies changed as a function of experience by repeating this

procedure for different numbers (x) of jokes experienced in the training set (varying from

5 to 90 in increments of 5).
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6.4.2 Results

How did the strategies perform?

Figure 6.1 shows the performance of each strategy as a function of the number of options

evaluated. For the highest level of experience the strategy based on item similarity (Con-

sider similar options) performed best (predicting 65% of the pair comparisons correctly).

This was followed by the strategies that relied on both similarity information and aggre-

gation: Follow your clique and Follow the similarity-weighted crowd predicted approxi-

mately 64% of the cases correctly and Follow your similar crowd—relying on similarity

information more crudely—performed slightly worse at 63%. Strategies relying solely

on either user similarity (Follow your Doppelgänger) or aggregation (Follow the whole

crowd) performed worse than the other strategies, reaching 59% and 62%, respectively.

The usefulness of less similar advisers

These results provide a rationale for why people rely on similar advisers (Müller-Trede

et al., 2015; Yaniv et al., 2011). However, relying purely on similarity (Follow your

Doppelgänger) does not perform that well because of the difficulty of reliably estimating

similarity in light of sampling error. Mirroring results from research on the wisdom of

crowds (Goldstein et al., 2014; Mannes et al., 2014), taking into account additional—

although less similar—advisers and averaging their recommendations markedly improves

performance.

Experience within a domain

Strategies that rely heavily on similarity information have steep learning curves. For

small amounts of experience, Follow your similar crowd is the best performing strategy.

Consider similar options, Follow your clique, and Follow the similarity-weighted crowd
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start to outperform Follow the whole crowd once approximately 15 options have been

added to the training set and Follow your similar crowd after approximately 25 options.

Thus, decision makers who have not yet experienced many options are well-advised

simply to aggregate the evaluations of individuals who seem to have at least minimally

similar (i.e., positively correlated) tastes (Follow your similar crowd) or even to uncondi-

tionally aggregate the evaluations of all individuals (Follow the whole crowd). Although

the opinions of truly similar individuals are more informative than those of truly dis-

similar individuals, this discrimination is only beneficial to the extent that it is accurate

enough. For small training samples, estimates of similarity are apparently often not accu-

rate enough to be of any use.

How large should your clique be?

When following your clique, the size of k (i.e., the number of neighbors whose evaluations

are averaged) is a hyperparameter that needs to be chosen beforehand (in Figure 6.1A we

fixed k = 10). The value of k determines the stopping rule used by the strategy. Figure 6.1B

shows how performance changes as a function of k and experience (i.e., the number of

options experienced). With little experience it is better to rely on large cliques (ca. 100),

whereas for more extensive experience, performance peaks at moderately sized cliques

(ca. 30).

The potential of one-reason decision making

Following a random other person correctly predicted 54% of the comparisons, which

indicates a very modest, minimally shared sense of humor in the population (i.e., slightly

better than chance). We also tested another benchmark strategy that simply used the

length of a joke as a cue to predict its evaluation (i.e., some people may prefer long,

story-like jokes while others may prefer short and witty linguistic puns). This one-cue
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strategy predicted 57% of cases correctly—it was almost as accurate as the Follow your

Doppelgänger strategy (59%), which also relied on one cue, yet a social one.5

6.5 General discussion

Mapping out the striking conceptual similarities between seminal recommender system

algorithms, on the one hand, and extant models of judgment and decision making (based

on informational or social cues), on the other, allowed us to recast the latter models as

social recommender strategies (see Table 6.2). This theory integration allowed us to ana-

lyze the performance of social recommender strategies for mere mortals who have access

to only a small pool of potential advisers, rather than the "big data" available to recom-

mender systems.

Two results stand out. First, the successful strategies all have one thing in com-

mon: They aggregate evaluations across several people (or items). Second, the amount

of experience within a domain turns out to be a crucial determinant of the success of

strategies using similarity-based search. Whereas experienced people can benefit from

relying on only the opinions of seemingly similar people, inexperienced people are often

well-advised to aggregate the evaluations of a large set of people (picking the option with

the highest average evaluation either across all people or across at least minimally similar

people) even if there are interindividual differences in taste, because reliable estimation

of similarity requires considerable experience.

6.5.1 Experience and the bias–variance trade-off

With increasing experience with the domain, the performance of all top-notch strategies

increased—except for the wisdom of crowds strategy (Follow the whole crowd), which

5This result conflicts with a relevant finding from a speed dating experiment Gilbert, Killingsworth,

Eyre, and Wilson (2009), where the experience of a random other person (from the same population) pre-

dicted the actual dating enjoyment better than the same participants’ predictions (based on an extensive set

of informational cues available before the speed date started, namely, among other things, a picture and

information about age, height, favorite movie, sport, book, song, and food).
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unconditionally averages across all people and is thus—by design—unaffected by the in-

creasing accuracy of the similarity estimates. Such an averaging strategy assumes that

everybody has the same taste and performs well to the extent that the tastes in the popu-

lation are indeed homogeneous. From a bias–variance trade-off perspective e.g. (Geurts,

2010; Gigerenzer & Brighton, 2009), this strategy suffers from potentially high bias to

the extent that its homogeneity assumption is wrong, but exhibits zero variance in its

prediction error because it does not estimate any free parameters.6

In contrast, the strategies relying on similarity have a comparatively low bias be-

cause they can adapt to the homogeneity or heterogeneity of tastes in the population.

However, they potentially suffer from variance because their predictions depend on the

similarity estimates—to differing degrees—and thus they lie on a bias–variance contin-

uum. At one extreme, a strategy of adopting the evaluations of only the seemingly most

similar person has the potential to profit from the vicarious experiences of one’s taste

Doppelgänger but is most reliant on an accurate estimation of similarity. At the other

extreme, a strategy of relying on a large crowd of at least minimally similar people (i.e.,

with at least positively correlated tastes) is more biased but also more robust because it

depends on only roughly discriminating between similar and dissimilar advisers (see also

Goldstein et al., 2014; Mannes et al., 2014).

6.5.2 Theory integration: Reconnecting the cognitive sciences with

recommender systems research

New statistical tools haven often served as an inspiration for the development of new

psychological theories (Gigerenzer, 1991). In the case of recommender systems, however,

the insights developed within the last two decades have not been much incorporated into

cognitive science7—despite recommender systems being widely available and relevant

6Also from a Bayesian perspective, it is prudent to go with the crowd: An inexperienced decision

maker—by statistical necessity—is a priori more likely than not to have “mainstream taste” unless there is

diagnostic private information to the contrary (S. M. Herzog & Hertwig, 2013, p. 210).
7In a similar vein, Analytis, Kothiyal, and Katsikopoulos (2014) pointed out the overlooked analogy

between ranking models from machine learning and human search behavior.
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for everyday decision making and seminal recommender systems being inspired by the

work of cognitive scientists (Rich, 1979). We hope that the current paper initiates a cross-

fertilization between the two until now largely unconnected research streams.



Chapter 7

Conclusion

In the beginning of this thesis I proposed a general framework for the study of social

learning that consists of:

(1) Modeling social learning as cognitively plausible process-level strategies.

(2) Studying important elements of the social and task environments in which social

learning takes place.

(3) Building computational and analytical models to study the match between social

learning strategies and different environments in order to explain why a given strategy is

successful in a given environment.

This framework is grounded in the study of ecological rationality that has proven

fruitful in the study of decision making in general (Gigerenzer et al., 1999). I tried to

extend the scope of ecological rationality to the domain of social learning. To do so I

studied three representative classes of social learning strategies and their combinations:

frequency-dependent, payoff-biased and unbiased copying. In each chapter I focused

on an important everyday setting in which social learning has been shown to play an

important role and tried to identify the key environmental properties characterizing it.

112
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The first three studies focused on what I called repeated social learning settings. Re-

peated social learning settings are characterized by feedback loops between the choices

of individuals at a given time step and the information available for social learning on

subsequent time steps. Such settings play an important role in everyday decision environ-

ments including organizational learning (Chapter 3) and innovation diffusion (Chapters

2 and 4). In Chapter 2 I showed that in repeated social learning settings, the speed with

which different strategies are able to drive the populations toward the best solutions is

crucial, thus favoring strategies such as copy-the-best and random copying that need to

sample only a few individuals in order to make a decision. In Chapter 4 I showed that the

distinction between one-shot and repeated social learning settings is an important one,

given that predictions about strategy performance in one-shot decision environments do

not translate to repeated settings. This finding can explain why, for example, Garcia-

Retamero et al. (2006) and Hastie and Kameda (2005) came to opposite conclusions. In

the discussion section of their cue-order learning study Garcia-Retamero et al. (2006) rec-

ognize that their findings are contradictory to a study by Hastie and Kameda (2005). The

former study found that the best member strategy performs best while the latter found

the majority rule to be better. From this thesis it becomes clear that the key difference

between the two studies was that Garcia-Retamero et al. (2006) studied a repeated social

learning setting, while Hastie and Kameda (2005) focused on one-shot decision tasks. In

the repeated setting studied by Garcia-Retamero et al. (2006) the speed with which the

best member strategy was able to diffuse good solutions outweighed the benefit gained

from information pooling via the majority rule in the one-shot context studied by Hastie

and Kameda (2005).

Within the context of repeated social learning I made a distinction between whether

the environment simple (Chapters 2 and 4) or complex (Chapter 4), where complexity was

characterized by the number of components and the interaction between the components

of the option to be copied (Simon, 1965). I showed that different strategies are favored in

complex environments than in simple environments. When the environment is simple, best
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member strategies perform better, however, when it is complex, some forms of conformity

can be better because they promote more extensive search and ensure that the population

does not get stuck with locally optimal solutions early-on. In addition I showed how the

level of clustering in the social network in which agents are embedded in interacts with

the social learning strategies they use, and pointed out, that identifying the best strategy

depends on the social network and vice-versa.

A surprising result of these studies is that relying on small samples in the context

of conformity can often lead to a very high level of performance, both relative to the

same strategy relying on larger samples as well as to other strategies. This has been

systematically investigated in Chapter 4 and provides a striking illustration of how the

same decision strategy (copy-the-majority) can result in completely different aggregate

behaviors depending on the other building blocks of the strategy (the stopping rule in this

case).

Chapter 5 developed this finding further by moving to one-shot decision environ-

ments, where individuals aggregate information available at a single time step. Focusing

on the context of group decision making or group voting, I showed that in many situa-

tions it is better to rely on a small sample (or small group) of individuals when using the

majority rule to decide. A key environmental characteristic, that is, varying task difficulty

across trials, has been shown to account for this finding.

In the final chapter I presented results on social learning in matters of taste rather

than matters of fact. Matters of taste are part of many decisions people make every day,

including choosing books, movies, or holiday destinations. Models of social learning

have seldom been applied to such settings which provide an ideal context for studying

how different search rules might perform. The main question of this study was whether

it pays to search based on similarity rather than randomly as in the previous chapters. To

address this question recommender system algorithms where recast as cognitively plau-

sible social learning strategies composed of different building blocks. The basic finding
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was that individuals who are experienced with a domain benefit from searching based on

similarity rather than randomly, while individuals who have little experience are better

off aggregating the opinions of other individuals. Taken together these studies identify

several key environmental factors of social environments:

(1) Simple versus Complex environments

(2) One-shot versus Repeated settings

(3) Uniform versus Varying task difficulties

(4) Matters of Taste versus Matters of Fact

(5) Clustered versus Unclustered social environments

In each of these cases I showed how different building blocks (search, stopping,

decision rules) might be suitable for different environments. This framework is admittedly

a first step toward studying the ecological rationality of social learning. In what follows I

briefly outline proposed future work within this framework.

I focused on three basic building blocks, search, stopping and decision rules. It is

an important question for future research whether there are other building blocks in the

context of social learning that could be modeled. If other building blocks can also be iden-

tified then the question of constructing new social learning strategies that might perform

even better than those proposed here or in the literature in general could be addressed.

Another contribution to the literature would be to use the proposed ecological ratio-

nality framework to re-examine existing results in the diverse literature on social learning

from different disciplines and synthesize them by reconciling contradictory or hard to

compare findings. One example was given above regarding the contradictory findings

of Garcia-Retamero et al. (2006) and Hastie and Kameda (2005). Another example was

studied in Chapter 3, where I showed that determining the best communication network

depends on the underlying strategy used. Two published studies found contradictory re-
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sults regarding the best communication network for problem solving (Lazer & Friedman,

2007; Mason & Watts, 2012). The analysis presented in Chapter 3 suggests that these two

studies ignored an important factor, namely the underlying strategies used.

In this thesis I focused on the goal of identifying the option with the highest (ob-

jective or subjective) payoff. However, many of our decisions are driven by other goals,

such as to enhance cooperation, maintain group cohesion, make a decision that is trans-

parent, or one that is good for the whole group and not just a single individual. A more

comprehensive list of such goals could be assembled and the problem of social learn-

ing could be recast for each of these goals. I hypothesize that different building blocks

might be suitable for problems motivated by different goals. For example, if the goal is

to maintain group cohesion, then searching based on proximity and following the ma-

jority might be more appropriate than copying the most prestigious individual. A com-

prehensive list of goals could be assembled, for example, by drawing from Fiske’s four

elementary social relationships, which categorizes social relationships into four elemen-

tary goals, namely community sharing, authority ranking, equality matching and market

pricing (Fiske, 1992).

It is well known that the performance of social learning strategies also depends on

what strategies other individuals use (Rendell, Boyd, et al., 2010). In this thesis I stud-

ied social learning strategies in isolation (i.e., assuming that the whole population relies

on a single strategy; see Appendix for Chapter 4 for an exception). This is admittedly a

simplification, however, it allowed me to study in greater detail the properties of different

strategies. I believe it is an important next step to study strategies in conjunction, how-

ever, the first step in this direction should be to come up with a theoretical justification or

empirical evidence for which strategies should be studied in conjunction and why. With-

out such a theory, results obtained from studying strategies in conjunction can always be

challenged by including or removing another set of strategies, therefore, the conclusions

drawn from such studies are unlikely to be more realistic.
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In a similar spirit, a more comprehensive list of everyday domains involving social

learning could be assembled and further environmental factors could be identified. In the

present thesis I focused on innovation diffusion, organizational learning and the wisdom

of the crowds. It is an open question whether other decision tasks including medical,

financial or environmental decisions have important properties that are unique to each.

Finally, while modeling social learning as building blocks assumes psychologically

plausibility, the question whether people use these strategies is still unresolved. The stud-

ies reported here map out the environmental conditions in which different combinations of

search, stopping and decision rules are ecologically rational. They provide strong, testable

predictions about specific social learning strategies that we should expect to observe in

empirical studies.

One possible direction would be to develop experimental paradigms where the full

decision process involved in social learning can be observed. In such experiments the

information about the frequency of different behaviors, the payoffs of agents, or the costs

of social learning can be manipulated and the way in which individuals search, stop,

and decide can be examined (see Mason & Watts, 2012; McElreath et al., 2008; Mesoudi,

2008; Wisdom et al., 2013, for examples of such paradigms). One can also conduct survey

studies probing individuals about the ways in which they collect information from their

social environments. Galesic et al. (2012) found that people typically consult around five

other individuals about various important matters in life and Pachur et al. (2013) studied

the number of people recalled from memory when judging the frequencies of different

risks. Both of these studies can inform us about the way in which people search their

social environments and when they tend to stop search.

Another possible way to test strategies empirically is to see whether they are consis-

tent with aggregate patterns of collective behavior. Henrich (2001) studied the shape of

the diffusion curve in populations using different forms of social and individual learning

and showed that only some forms of social learning are consistent with the widely ob-
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served S-shaped adoption curves in the diffusion of innovations literature (E. M. Rogers,

2010). A similar approach was adopted by Bentley et al. (2004) who showed that random

copying is likely to underlie change in cultural trends such as baby names or dog breeds.

Finally, Todd, Billari, and Simao (2005) tried to distinguish between various individual

mate search heuristics by testing whether they can reproduce aggregate age at marriage

patterns.

I hope that the framework proposed in this thesis will further stimulate empirical

research on social learning strategies in humans.
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Appendix for Chapter 4

A. How to obtain Equation 4.4

To obtain Equation 4.4 we list all possible situations faced by a hypothetical agent (sum-

marized in the table below) and calculate the probability of choosing the superior option

(option A) in each situation. I and S denote inferior and superior payoffs, respectively.

Current option
Option selected by

majority

Payoff of current

option

Payoff of selected

option
Decision

A with CJT (pst), A with f : S with f : S keep A

A with CJT (pst), A with (1-f ): I with f : S keep A

A with CJT (pst), A with f : S with (1-f ): I keep A

A with CJT (pst), A with (1-f ): I with (1-f ): I keep A

A with CJT (1− pst), B with f : S with (1-f ): S flip a coin

A with CJT (1− pst), B with (1-f ): I with (1-f ): S switch to B

A with CJT (1− pst), B with f : S with f : I keep A

A with CJT (1− pst), B with (1-f ): I with f : I flip a coin

B with CJT (pst), A with f : I with f : S switch to A

B with CJT (pst), A with (1-f ): S with f : S flip a coin

B with CJT (pst), A with f : I with (1-f ): I flip a coin

B with CJT (pst), A with (1-f ): S with (1-f ): I switch to B

B with CJT (1− pst), B with f : I with (1-f ): S switch to B

B with CJT (1− pst), B with (1-f ): I with (1-f ): S switch to B

B with CJT (1− pst), B with f : I with f : I switch to B

B with CJT (1− pst), B with (1-f ): S with f : I switch to B

For each hypothetical situation we can calculate the probability of choosing the

superior option. Combining each situation yields the following equation:

pst+1 = pst ∗CJT (pst ,n)+ pst ∗ (1−CJT (pst ,n))∗ [ f ∗ (1− f )∗1/2+ f ∗ f +(1−
f )∗ f ∗1/2]+ (1− pst)∗CJT (pst ,n)∗ [ f ∗ f +(1− f )∗ f ∗1/2+ f ∗ (1− f )∗1/2]

By simplifying this equation we obtain Equation 4.4 in the main text.
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B. Conformity, anti-conformity and non-conformity

We have seen in the main text that conformity defined as D(0,1] and a > 1 can be mim-

icked by the copy-the-majority strategy relying on different sample sizes. Here we show

that 1) anti-conformity can be modeled using the same approach and 2) non-conformity

cannot be obtained by sampling alone, indicating a combination of social and individual

learning.

Panel A of Figure A1 shows anti-conformity as implemented by the copy-the-minority

strategy relying on different sample sizes (row 1), parameter M1 as implemented by Ef-

ferson et al. (2008) in their Appendix (row 2) and parameter a in the region a < 0 (row

3). As we can see all three implementations produce the same curves.

A more interesting situation is shown in Panel B of Figure A1. Here we model

non-conformity (i.e., the tendency to adopt an option with a probability lower than the

option’s frequency in the population but still higher than 0.5). Non-conformity, as it is

defined here, lies in the region between the horizontal dashed line and the 45 degree line.

We can see that both parameter D (row 2) and a (row 3) can produce curves that exhibit

non-conformity. However, one can not achieve such curves with pure social learning

strategies relying on different sample sizes. However, we can produce curves that lie in

the non-conformity region by setting the majority threshold higher (solid lines) or lower

(dashed lines). In column 1 we focused on a sample size of 5 and 9 (note that one cannot

increase the majority threshold for a sample size of 3), and set the thresholds higher (4

and 8) or lower (1 and 3) compared to the threshold of 3 and 5 as in the simple majority

rule. Setting the thresholds higher or lower produces curves that are largely consistent

with non-conformity, however, their shapes are substantially different from what the D

and a produce. This indicates, that behaviors that look consistent with non-conformity

as defined by D and a (Figure A1, Panel B, rows 2 and 3) are likely to be a result of a

1Ct+1,M = ∑N/2
i=0

(N
i

)
psi(1− ps)n−i +M

{
∑N

i=N/2

(N
i

)
psi(1− ps)n−i

}
−Mi
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mixture of individual and social learning.

Also note that higher and lower threshold majority rules (Figure A1 top right panel)

are consistent with non-conformity in the top right and bottom left quadrants of the figure,

while the same strategies are consistent with anti-conformity in the top left and bottom

right quadrants. This indicates that one cannot draw conclusions about the underlying

behavior by observing data points in only one of the quadrants (e.g., see Efferson et al.

(2008) and their critique of Asch (1956)).



123

Figure A1: Anti-conformity (Panel A) and non-conformity (Panel B) as implemented by

sampling (row 1), parameter D (also M)(Efferson et al., 2008) (row 2) and parameter a
Nakahashi (2007) (row 3).

C. Heterogeneous populations

In the main text we considered the dynamics of copy-the-majority when this is the only

strategy used in a population. However, the performance of social learning strategies de-

pends largely on the other strategies in a population (Rendell, Boyd, et al., 2010), there-

fore, we tested whether our results hold when some percentage of the population copies



124

the minority. Copy-the-majority and copy-the-minority have very different population-

level dynamics, where the former creates behaviorally homogeneous groups while the

latter fluctuates around 50% adoption rate in the case of 2 options (Efferson et al., 2008;

Kendal et al., 2009). How the two strategies complement each other is, therefore, and

interesting question to examine. Figure A2 shows the performance of copy-the-majority

with small (n = 3) and large (n = 9) samples when some percentage of agents are using

the copy-the-minority strategy. Adding multiple strategies does not change the pattern of

results reported in the study, helps small samples but harms larger samples.
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Figure A2: Proportion of agents with the correct option on each time step using copy-
the-majority with small (n = 3) and large (n = 9) samples where some percentage of

agents are using copy-the-minority. a = 20% copying the minority, b = 40% copying the

minority, c = 60% copying the minority, d = 80% copying the minority. Based on 500

replications. Panel A: f = 1, B: f = 0.8, C: f = 0.6.
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