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deviation estimate for solution sets when the probability measure is replaced by empirical
ones	
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� Introduction

When building stochastic models in decision making under �stochastic� uncertainty� the two
main approaches consist in introducing future costs �e�g� for the compensation of constraint vio�
lations� and in �xing certain reliability levels for constraints� The latter approach is motivated
by many problems in engineering sciences� where system reliability is an important feature
�e�g� inventory control� power generation� structural design etc� ��	
� ���
� ���
�� It leads to
stochastic programming problems with �so�called� probabilistic or chance constraints� To give
a mathematical formulation of the model we study in this paper� let � be an s�dimensional
random vector on some probability space ��A� P � and let � � Hj�x�� j � �� � � � � d� describe d
constraints depending on � and on the decision vector x � IRm� Denoting by g the objective
function and by C the subset of IRm expressing all deterministic constraints� we arrive at the
following model�

minfg�x� j x � C�P �� � Hj�x�� � pj � j � �� � � � � dg�
Here pj � �	� �� denotes the probability �or reliability� level subject to which the constraint
�� � Hj�x�� has to be satis�ed� Since di�erent reliability requirements might be �xed for
di�erent constraints� the levels pj � �	� ��� j � �� � � � � d are allowed to be di�erent� Later we
shall prefer the following formulation of the model

P��� minfg�x� j x � C���Hj�x�� � pj � j � �� � � � � dg� ���

where � denotes the probability distribution of �� i�e�� � � P����� In Section � the assumptions
on the data g�C�Hj �j � �� � � � � d� are speci�ed� so that the model is well�de�ned and enjoys
suitable properties� In Section � we shall study the case where Hj has the form Hj�x� � fz �
IRs j hj�x� � zjg with hj � IRm � IRsj � j � �� � � � � d� and

Pd
j�� sj � s� and in Section � we

shall deal with the polyhedral case� i�e�� C is polyhedral and h � h� is linear �d � ���
In most practical applications of the stochastic programming methodology only incomplete

information on the probability distribution � �of �� is available� This fact and the possible
need of approximations for � in solution methods �cf� ���
� ���
� ���
� motivate a stability
analysis of P��� with respect to perturbations of � in the space P�IRs� of all Borel probability
measures on IRs endowed with a suitable convergence �or metric�� In the context of stochastic
programs with probabilistic constraints� this problem was addressed in several papers� e�g�
��
� ���
� ���
� ���
� ���
� ���
� ���
� ���
� ���
� ���
� ���
� ���
� ���
� ���
� ���
� ���
� ���
� In ���

a nonlinear parametric framework is adapted to study stability with respect to changes of
�nite dimensional parameters of the distribution �� The convergence theory for measurable
multifunctions is utilized in ���
 to develop general approximation results for probabilistically
constrained models� This approach is also used in ���
� ���
� leading to general� satisfactory
results on convergence rates of estimates for such models� Further results in this direction are
given in ���
� ���
� Asymptotic properties of the optimal value based on an extended delta
method are studied in ���
� Recently� a new class of nonparametric estimators that preserve
convexity properties has been adapted to chance constrained models in ���
� The asymptotic
behaviour of these estimates and of solution sets to stochastic programs is analysed� too� In
the remaining papers quoted above� stochastic programs are viewed as parametric programs
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with respect to the probability measure �� ���
� ���
 and ���
 give qualitative stability results
for constraint sets� marginal values and solutions when the measure � is perturbed in P�IRs�
equipped with the �metrizable� topology of weak convergence ���
�� In ��
� ���
� ���
� ���
� ���

quantitative stability results for marginal values are obtained with respect to certain metric
distances on P�IRs� �the Prokhorov metric in ��
 and so�called discrepancies in the other
papers�� The papers ���
� ���
� ���
 also contain results on upper semicontinuity of local solution
sets�

The aim of the present paper is to extend the results in ���
� ���
� ���
 in two directions� ear�
lier conditions on the stability of probabilistic constraint sets are considerably generalized and a
novel result on the Hausdor� H�older stability of solution sets is established� We start our anal�
ysis by stating a general quantitative stability result for P��� �Theorem ����� which relies on
the recent work by Klatte ���
 and on techniques developed in ���
� ���
� The crucial conditions
in this result are the metric regularity of the probabilistic constraints and a quadratic growth
condition for the objective function near non isolated minima� The growth condition appears
in a more general context also in ��
� ��
� ���
 for instance� and in a slightly di�erent framework
in ���
� The aim of our analysis is to derive veri�able conditions �on the original problem P����
for metric regularity and quadratic growth� In particular� we focus on conditions that apply to
nonsmooth probabilistic constraints in order to enlarge the range of applications� In Section
� we obtain characterizations of metric regularity by exploiting the nonconvex subdi�erential
calculus by Mordukhovich ����
� ���
�� Two types of su�cient conditions for metric regularity
are developed� The �rst one represents an explicit growth condition for the composite function
���x� � ���H��x��� � � � � ��Hd�x��� at a feasible point �Theorem ������ The second type consists
of separate constraint quali�cations for the function h � �h�� � � � � hd� relative to C and for
a function �� whose components are certain marginal distribution functions of � �Theorem
������ In case � has a density� a more transparent and veri�able condition� which implies the
constraint quali�cation for ��� is established �Theorem ������ This can be achieved even glob�
ally if the strict positivity region of the density contains an in�nity path �Theorem ������ The
principal statements are illustrated by examples showing their validity and limitations� Earlier
results are essentially extended �cf� the discussion following Proposition ����� In Section � we
consider a particular convex stochastic program and give a criterion implying quadratic growth
of the objective near the solution set� In this respect a local strong concavity property of the
measure � is essential� The methodology for proving this result �Theorem ���� is shown to
extend to establishing the Hausdor� H�older continuity for solution sets �Theorem ����� Finally�
it is outlined that the latter result has immediate implications to rates of convergence for non�
parametric estimation procedures in P���� Namely� we derive a large deviation type result for
the Hausdor� distance of solution sets if the original distribution � is estimated by empirical
measures�

� A general result on quantitative stability

In this section� we develop a framework for stability analysis of probabilistic constrained models
and present a general result on the quantitative stability of marginal values and �local� solution
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sets� We consider the stochastic programming model P��� formulated in the introduction

P��� minfg�x� j x � C���Hj�x�� � pj � j � �� � � � � dg�

which involves several �joint� probabilistic constraints� For the data we assume that g is
a continuous mapping from IRm into IR� C is a nonempty� closed subset of IRm� Hj is a
set�valued mapping from Rm into IRs having a closed graph �for each j � �� � � � � d�� pj �
�	� �� �j � �� � � � � d� and � � P�IRs�� Making use of the notations p � �p�� � � � � pd� and
Mp��� � fx � C j ��Hj�x�� � pj � j � �� � � � � d�g for each � � P�IRs�� the model P��� takes
the form

minfg�x� j x �Mp���g� ���

The �rst step to analyse stability of ��� with respect to perturbations of � in P�IRs� is to
identify a �suitable� metric distance on P�IRs�� Consistently with ���
� ���
 we consider the
following distance� which is sometimes called B�discrepancy�

���� �� � supfj��B�� ��B�j j B � Bg ���

Here B is a class of closed subsets of IRs such that all sets of the form Hj�x� �x � C� j �
�� � � � � d� belong to B and that B is a determining class �i�e�� it has the property that if
any two measures agree on B� then they coincide�� Convergence of a sequence of probability
measures with respect to the metric � means its uniform convergence on B� Necessary and
su�cient conditions on B such that weak convergence of probability measures implies uniform
convergence on B usually refer to certain uniformity properties of the class B with respect to
the limit measure �cf� e�g� ��
� ��
� or to the sequential compactness of B� viewed as a subset of
the hyperspace of closed subsets of IRs equipped with a suitable topology ����
�� In particular�
if B is a subclass of all convex Borel sets� then the uniform convergence on B to the limit
measure � is implied by its weak convergence and the condition ���B� � 	 for all B � B
��B denoting the topological boundary of B��

A special feature of model ��� is that we have to take into account its possible nonconvexity�
Even when the original model is convex �cf� e�g� Proposition ����� perturbations of � �e�g� by
discrete measures� lead to nonconvex perturbed programs� Hence� an appropriate concept for
the stability analysis of ��� has to take into account the perturbation of sets of local minimizers�
Here we make use of the concepts developed in ���
� ���
 and� in particular� of so�called complete
minimizing sets �CLM sets�� Given V � IRm� we put for each � � P�IRs�

�V ��� � inffg�x� j x � Mp��� � cl V g

and

�V ��� � argminfg�x� j x �Mp��� � cl V g � fx �Mp��� � cl V j g�x� � �V ���g�

where cl V denotes the closure of V � Given � � P�IRs�� we call a nonempty subset X of
IRm a CLM set for ��� with respect to V � if V is an open subset of IRm containing X and
X � �V ���� For a discussion of CLM sets we refer to ���
� but mention that nonempty sets of
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global minimizers� isolated local minimizers and sets of non�isolated local minimizers around
which g satis�es a quadratic growth condition �cf� e�g� ��
� ���
� ���
� are examples of CLM
sets�

To state our quantitative stability result� we still need a stability property for the probabilis�
tic constraint in ���� We put �� � IRm � IRd� �j��x� � ��Hj�x�� for each x � IRm� j � �� � � � � d�
and p � �p�� � � � � pd� � IRd� Consistently with the general de�nition given in Section � we say
here that the probabilistic constraint function ������p is metrically regular with respect to C
at some x� �Mp��� if there are constants a 	 	 and 
 	 	 such that

dist �x�Mp�y���� � a � dist ����x�� p� IRd
� � y� � akmaxf	� p� y � ���x�gk

for all �x� y� � �C �B��x���	B��	�� Here �and in all what follows� B��x� denotes the closed
ball with radius 
 around x� The following general stability result will serve as an orientation
for the further development of our analysis�

Theorem ��� In addition to the general conditions� assume that

�i� X is a CLM set for P��� with respect to a bounded set V �i�e�� X � �V ��� and X is
compact��

�ii� g is locally Lipschitz continuous�

�iii� the probabilistic constraint function ����� � p is metrically regular with respect to C at
each x� � X�

Then there are constants L 	 	 and � 	 	 such that the set�valued mapping �V from
�P�IRs�� �� to IRm is upper semicontinuous at �� �V ��� is a CLM set for P��� with respect
to V and j�V ���� �V ���j � L � ���� �� holds whenever � � P�IRs�� ���� �� � ��

If� moreover� the following quadratic growth condition is satis�ed

�iv� there exists a constant c 	 	 such that we have

g�x� � �V ��� � c � dist �x��V ����
� 
x �Mp��� � V�

then �V is upper H�older continuous at � with rate ��� i�e��

sup
x��V ���

dist �x��V ���� � L � ���� ����� whenever � � P�IRs�� ���� �� � ��

Proof�
The �rst part of the assertion is proved in Theorem ��� of ���
� It remains to note that
condition �iii� is equivalent to the fact that the set�valued mapping q �� Mq��� from Rd to
IRm is pseudo�Lipschitzian at each pair �x�� p� � X 	 fpg �cf� ���
� Theorem ����� On the
other hand� the latter property is equivalent to the local Lipschitz continuity of the function
�x� q� �� dist �x�Mq���� from IRm 	 IRd to IR at each �x�� p� � X 	 fpg �see Theorem ���
in ��	
�� which is assumed in ���
� The second part of the result follows from Theorem ��� in
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���
 by using the same arguments as by deriving Theorem ��� in ���
 from Proposition � and
Theorem � in ���
 �see also Theorem ��� in ���
�� �

All assumptions �i���iv� in the theorem concern the original �or unperturbed� problem P����
While �i� and �ii� do not require further discussion� the conditions �iii� and �iv� are decisive and
deserve veri�cation� Veri�able conditions for the quadratic growth condition are apparently not
yet known� In Section � we shall take up this question for the case of a single �joint� probabilistic
constraint �i�e�� d���� polyhedral C and a set�valued mapping H having a convex polyhedral
graph� The method for proving the corresponding result �Theorem ���� will even allow to
establish a Hausdor� H�older continuity result for �V � The metric regularity property �iii�
�or its equivalent characterizations mentioned in the above proof� has already been discussed
in some special cases for C and for Hj �j � �� � � � � d� �cf� ���
� ���
� ���
� ���
�� In Section
� we shall considerably extend earlier results in this direction by exploiting recent tools from
nonsmooth analysis� In order to explain this extension� we record now a metric regularity result
for a situation where the data satisfy certain convexity properties� For this purpose and for later
use we introduce the notion of an r�concave probability measure �r � �����
�� Following
��	
 and ���
 we de�ne the generalized mean function mr on IR� 	 IR� 	 �	� �
 as follows�

mr�a� b��� �

��������
�������

��ar � ��� ��br���r if r � �	��� or r � ���� 	�� ab 	 	
	 if ab � 	� r � ���� 	�

a�b��� if r � 	
maxfa� bg if r ��
minfa� bg if r � ��

���

The measure � � P�IRs� is called r�concave� r � �����
 ���
� ���
� ���
�� if the inequality
���B� � �����B�� � mr���B��� ��B����� holds for all � � �	� �
 and all Borel subsets B�� B�

of IRs such that �B� � �� � ��B� is Borel� For r � 	 and r � ��� � is also called
logarithmic concave and quasi�concave� respectively ����
�� Since mr�a� b��� is increasing in r
if all the other variables are �xed� the sets of all r�concave probability measures are increasing
if r is decreasing� It is known �cf� ��
� ��	
� ���
� ���
� that � � P�IRs� is r�concave for some
r � ���� �s
 if � has a density f� such that

f���z � ��� ���z� � mr�s��f��z�� f���z����� where r�s� � r�� � rs��� ���

holds for all � � �	� �
 and z� �z � IRs� A density f� satisfying ��� is called r�s�� unimodal
�see e�g� ���
 for a detailed discussion of unimodality�� We mention that e�g� the uniform dis�
tribution �on some bounded convex set�� the �nondegenerate� multivariate normal distribution�
the Dirichlet distribution� the multivariate Student and Pareto distributions are r�concave for
some r � �����
 �see ��
� Chapter � in ���
��

Proposition ��� In addition to the general assumptions� let C be convex� Hj �j � �� � � � � d�
have convex graphs and let � be r�concave for some r � �����
� Suppose there exists
an element �x � C such that the strict inequality ����x� 	 p holds componentwise� Then the
probabilistic constraint function ������p is metrically regular with respect to C at each feasible
x� �Mp����
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The proof is carried out in ���
 �as part of the proof of Corollary ���� making use of the
Robinson�Ursescu theorem for multifunctions having a closed convex graph� In Section � we
shall study the case of C � IRm being closed and Hj�x� � fz � IRs j hj�x� � zjg with
hj � IRm � IRsj � j � �� � � � � d and

Pd
j�� sj � s� For d � �� C � IRm� continuously di�erentiable

h � h� and a probability measure � having locally Lipschitzian distribution function F�� a
particular metric regularity result is given in ���
 �Corollary ���� using the Clarke generalized
gradient� This has been partially extended by allowing for a general closed subset C of IRm

�but assuming h to be linear� in ���
 �Proposition ���� by making use of Clarke�s nonsmooth
calculus� Another type of result for a nonconvex situation �with d � �� C convex� h linear�
but without assuming that � has concavity properties� is developed in ���
 �Theorem ���� and
���
 �Corollary ���� by imposing a local growth condition on the composite function F��h����
near binding feasible points� In Section � these earlier results will be uni�ed and considerably
extended by relaxing assumptions on the data and by relying on Mordukhovich�s calculus for the
approximate subdi�erential and coderivative� A new local growth condition for the composite
function ��Hj���� is identi�ed and shown to be su�cient �and in some cases also necessary�
for metric regularity �Theorem ������ Later� separate constraint quali�cations for the measure
and the function H that imply metric regularity are established � Furthermore� the question
of global metric regularity is discussed� This is of interest� since the set X in condition �iii� of
Theorem ��� is not explicitly given in general� The constraint quali�cations needed in ���
 and
���
 for the special cases considered there� are recovered from our general results�

Finally� we give an idea how a quantitative stability result like Theorem ��� can be em�
ployed to derive asymptotic properties of solutions to P��� when estimating � by empirical
measures� Let ��� ��� � � � � �n� � � � be independent IRs� valued random variables on some proba�
bility space ��A� P � having common distribution �� The empirical measure of ��� � � � � �n is
�n � n��

Pn
i�� ��i �n � IN�� where �z is the probability measure with mass one at z � IRs�

The following result represents a large deviation type estimate for the �distance�

sup
x��V ��n�

dist �x��V ����

of sets of local solutions to P��n� and P���� respectively� as n tends to in�nity� We note
that this �distance� is an extended real�valued A�measurable mapping due to Theorem �K in
���
� To state the result we need the notion of a permissible Vapnik�Chervonenkis �VC� class
of sets� A collection C of sets is said to shatter a set A if every subset of A is of the form
B �A for some B � C� The supremum of cardinalities of �nite sets shattered by C is denoted
by s�C�� C is called a VC class i� s�C� is �nite� We refer to ���
� ��	
 for a detailed discussion
of VC classes and empirical measures� A class C of Borel subsets of IRs is called permissible
i� supB�C j��B�� �n�B�j is a �real�valued� A�measurable function�

Proposition ��� Assume that the conditions �i���iv� of Theorem ��� are satis�ed and that B
forms a permissible VC class of closed subsets of IRs� Then it holds for all 
 	 	 that

lim sup
n��

n�� log P � sup
x��V ��n�

dist �x��V ���� � 
� � ��minf��� 
�L��g�

where L and � denote the constants and V the bounded open set arising in Theorem ����
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Proof�
Let 
 	 	 and L� � and V be as in Theorem ���� We set A� � f� j ���� �n� � �g and know
that A� belongs to A since B is permissible� With �A� denoting the complement of A� we
obtain the following inclusion from Theorem ����

f� j sup
x��V ��n�

dist �x��V ���� � 
g � �A�  f� j 
 � L���� �n�
���g

� f� j ���� �n� � minf�� 
�L��g�
Furthermore� since B is a VC class of �Borel� subsets of IRs� for all � 	 	 and n � � there
exists a constant K��� such that P ����� �n� � �� � K���p�n� exp�����n�� where the function
p has polynomial growth �cf� chapter �� in ��	
�� Hence� we obtain

n�� logP ����� �n� � �� � n�� log�K���p�n�� � ���

and

lim sup
n��

n�� log P � sup
x��V ��n�

dist �x��V ���� � 
� �

lim sup
n��

n�� log P ����� �n� � minf�� 
�L��g� � ���minf�� 
�L��g���

�

Examples of VC classes are e�g� the collection of all s�dimensional intervals� all closed balls
in IRs� all half spaces in IRs and all polyhedra with at most k faces ����
� ��	
�� The notion
�permissible� for the required measurability property of ���� �n� is borrowed from ���
� In Ap�
pendix C of ���
 general techniques are described to establish that classes of sets are permissible�
Another idea is to require a separability assumption on the process f�n�B�� ��B� j B � Bg�
It is known� for example� that B is permissible i� it is universally separable �cf� Chapter II
in ���
�� B is called universally separable i� there exists a countable subclass B� such that
each characteristic function �B with B � B is the pointwise limit of a sequence ��Bn� with
Bn � B�� In particular� the class of closed convex subsets of IRs is universally separable�

� Metric regularity of probabilistic constraints

The importance of metric regularity as a stability concept in stochastic programming has been
outlined in Section � �Theorem ����� In this section we study a speci�c class of probabilistic
constraints by putting

Hj�x� � fz � IRs j hj�x� � zjg x � IRm� j � �� � � � � d

in the general model P��� formulated in Section �� Here we assume that zj � IRsj � hj � IRm �
IRsj � z � �z�� � � � � zd� � IRs � IRs� 	 � � � 	 IRsd � Then the probabilistic constraint becomes

M � fx � C j ��fz � IRs j hj�x� � zjg� � pjg �j � �� � � � � d�� ���

�



where C � IRm is closed� � � P�IRs� is a probability measure on Rs and pj � �	� �� are
prescribed probability levels� For the following it will be more convenient to transform ��� into
the equivalent description

M � fx � C j ���h�x�� � pg� ���

where h � �h�� � � � � hd� � IRm � IRs and p � �p�� � � � � pd� refer to the entities introduced above�
The mapping �� � ���

�� � � � ��
d
�� � IR

s � IRd comprises the marginal distribution functions of
� as its components�

�j
��y� � F���� � � � ���

j
�

yj��� � � � ��� �j � �� � � � � d��

where y � �y�� � � � � yd� � IRs� yj � IRsj �j � �� � � � � d�� Note that �� is a non�decreasing
mapping which� in case of d � �� reduces to the usual distribution function F�� In particular�
the components �j

� are upper semicontinuous�
According to the remarks following Proposition ��� the aim of this section is to formulate

su�cient characterizations of metric regularity in a general nonsmooth framework� As the main
tool the subdi�erential calculus by Mordukhovich ���
 shall be applied� This o�ers certain ad�
vantages over using the corresponding �larger in general� concepts by Clarke ���
� In particular�
the Mordukhovich coderivative yields an equivalent criterion for metric regularity ���
� It turns
out that� for instance in the case of a single locally Lipschitzian inequality f�x� � 	� which
is binding at some feasible point �x� an equivalent characterization of metric regularity by a
relation like 	 � �f��x� requires the departure of � from the framework of convexity� In fact�
it is shown in ���
 that Mordukhovich�s subdi�erential of Lipschitzian functions may be home�
omorphic to any compact subset of IRn� in particular� it may contain an arbitrary number of
connected components �for a related extension to the more general Hilbert space setting see
���
��

��� Basics from nonsmooth analysis

In this section� some basic concepts for characterizing metric regularity in a nonsmooth setting
shall be recalled� Let X�Y�Z be arbitrary sets� For multifunctions � � X�

�Y�� � Y �
�Z put

Ker� � fx � X j 	 � ��x�g
Im� � fy � Y j y � ��x�� x � Xg

Gph� � f�x� y� � X 	 Y j y � ��x�g
����y� � fx � X j y � ��x�g

� � ��x� �
�

y�	�x�
��y� �x � X�� and if X � IRn� � Y � IRn� �

lim sup
x�x�

��x� � fy � Y j �xn � x� �yn � y � yn � ��xn�g�

Now let X�Y be two normed spaces� A multifunction � � X�
�Y is called metrically regular

at some point �x�� y�� � Gph� if there are constants a 	 	 and 
 	 	 such that

dist �x�����y�� � a � dist �y���x�� 
�x� y� � B��x
��	B��y

���

�



The abstract form of constraint sets writes as C � F���K�� where C � X and K � Y are
closed subsets of the respective spaces �K usually being a closed convex cone� and F � X � Y
is the constraint function� Then� F is said to be metrically regular with respect to C at some
feasible point x� � C � F���K� if the associated multifunction

��x� �

� �F �x� �K for x � C
� else

is metrically regular at �x�� 	�� It is easily seen that this is equivalent to the conventional
de�nition of metric regularity for constrained systems�

�
 	 	�a 	 	
�x� y� � �C�B��x
���	B��	� � dist �x�C�F���K�y�� � a �dist �F �x��K�y�

Note that in this relation only the constraints given by F are subject to perturbations y
whereas C is considered to be a �xed set of unperturbed constraints�

For some closed subset S � IRn and x� � S the following concepts are de�ned�

T �S�x�� � lim sup
t��

t���S � fx�g� �contingent cone�

Tc�S�x
�� � fh � IRn j 
xn � x� �fxng � S� 
tn � 	 �hn � h � xn � tnhn � Sg

�Clarke�s tangent cone�

T ��S�x�� � fx� � IRn j hx�� hi � 	 
h � T �S�x��g �Fr echet normal cone�

Na�S�x
�� � lim sup

x�x�

x�S

T ��S�x� �approximate normal cone�

Nc�S�x
�� � fx� � IRn j hx�� hi � 	 
h � Tc�S�x

��g �Clarke�s normal cone�

The normal cone Na induces the approximate subdi�erential for lower semicontinuous functions
f � IRn � IR�

�af�x
�� � fx� � IRn j �x����� � Na�Epi f � �x

�� f�x����g�
where Epi refers to the epigraph� For locally Lipschitzian functions Clarke�s subdi�erential �c
relates to �a as

�cf�x
�� � conv �af�x

��� ���

A closed subset S � IRn is called regular at x� � S in the sense of Clarke� if T �S�x�� �
Tc�S�x��� Similarly� a locally Lipschitzian function f is called regular at x� � IRn in the sense
of Clarke� if T �Epi f � �x�� f�x���� � Tc�Epi f � �x�� f�x����� In case of the mentioned kinds of
regularity it holds that Nc�S�x�� � Na�S�x�� and �cf�x�� � �af�x���

A multifunction � � IRn�
�IR

m with closed graph and some point �x�� y�� � Gph� induces
a multifunction D�

a��x
�� y�� � IRm�

�R
n de�ned via

D�
a��x

�� y���y�� � fx� � IRn j �x���y�� � Na�Gph�� �x�� y���g�
which is called the approximate coderivative of � at �x�� y��� For single valued� locally Lip�
schitzian functions � � IRn � IRm one has �see ���
� Prop� ���

D�
a��x���x���y

�� � �ahy���i�x� 
x � IRn 
y� � IRm ���

�	



The following results are due to Mordukhovich �compare ���
� ���
� and will be substantially
exploited in this section�

Theorem ��� A multifunction � � IRn�
�IR

m with closed graph is metrically regular at some
point �x�� y�� � Gph� if and only if Ker D�

a��x
�� y�� � f	g�

Theorem ��� Let the multifunctions � � IRn�
�IR

m and � � IRm�
�IR

k have closed graph and
��x� �z� � Gph �� � ��� Suppose that the multifunction M � IRn 	 IRk � IRm de�ned by

M�x� z� � ��x� �����z�

is locally bounded around ��x� �z� and that the condition

D�
a��y� �z��	� �KerD�

a���x� y� � f	g 
y �M��x� �z�

holds� Then one has

D�
a�� � ����x� �z��z�� � �

y�	�
x������
z�
D�

a���x� y� �D�
a��y� �z��z�� 
z� � IRk

Lemma ��� Let S�� S� � IRn be closed sets with �x � S� � S� and Na�S�� �x� � �Na�S�� �x� �
f	g� Then

Na�S� � S�� �x� � Na�S�� �x� �Na�S�� �x��

where equality holds if S�� S� are regular in the sense of Clarke�

��� An explicit growth condition

Before dealing with the chance constraint ��� we start our considerations with general constraint
sets described by �nitely many inequalities�

P � fx � C j F �x� � 	g F � IRn � IRk� C � IRn �C closed�� ��	�

Obviously� ��� �ts into this type of constraints� For a feasible point x� � P denote by

I � fi � f�� � � � � kg j Fi�x
�� � 	g

J � fi � f�� � � � � kg j Fi is not continuous at x�g

the sets of active and noncontinuity indices� respectively� at x�� where the Fi refer to the com�
ponents of F � The following de�nition provides an explicit growth condition on the components
of F which will imply metric regularity�

De�nition ��� We say that the constraint mapping F � IRn � IRk in ��	� is growing at some
feasible point x� � P with respect to C if

�i� Fi is upper semicontinuous in a neighbourhood of x� for i � f�� � � � � kg

��



�ii� there exists an � 	 	 such that the following local growth condition is ful�lled


�� 	 	 
x � B��x
�� � C 

 	 	 �y � B��x� � C � Fi�y� 	 Fi�x� � �ky � xk 
i � I  J�

Note that� for continuous F � this is merely a growth condition imposed on the active compo�
nents at x��

Lemma ��� Let x� � P be a feasible point of ��	�� If F is growing at x� with respect to C�
then F is metrically regular at x� with respect to C�

Proof�
According to Section ��� one has to verify metric regularity of the multifunction

��x� �

� �F �x� � IRk
� if x � C

� else

at the point �x�� 	� � Gph�� Choose a number � with 	 � � � � �where � refers to De�nition
���� which� according to the de�nition of the index sets I and J � satis�es

Fi�z� 	 � 
i � I  J 
z � intB��x
�� ����

For computing Fr echet normal cones T � in a neighbourhood of �x�� 	�� �x an arbitrary �x� b� �
�intB��x��	 intB��	�� �Gph�� Then x � C and b � �F �x� by de�nition of ��

Let us �rst consider the case I  J �� �� By De�nition ��� there exists a sequence yl � x
�yl � C�� such that Fi�yl� 	 Fi�x� � �kyl � xk 
i � I  J � Clearly yl �� x� We show that the
vector �

x
b

�
� kyl � xk

�
�yl � x�kyl � xk

���
�
�

�
yl

b� �kyl � xk�
�

����

with � � ��� � � � � ��T belongs to Gph� for l large enough� In fact� if i � I  J � then

�b
i � �kyl � xk � �Fi�x�� �kyl � xk 	 �Fi�yl��

where the �b
i denote the corresponding components of b� On the other hand� taking for
instance the Euclidean norm� b � intB��	� implies �b
i 	 ��� hence �b
i � �kyl � xk 	 ��
for i � �� � � � � k and large l� In particular� relation ���� makes also the indices i � I  J
satisfy �b
i � �kyl � xk 	 �Fi�yl� � l large enough�� Combining both cases one arrives at
b��kyl�xk� � �F �yl�� IRk

�� which together with yl � C yields �yl� b��kyl�xk�� � Gph��
Without loss of generality� we assume �yl � x�kyl � xk � �� so ���� shows that �������
belongs to the contingent cone T �Gph�� �x� b��� Consequently�

h�������� ���� y��i � h�� ��i � �h�� y�i � 	 
���� y�� � T ��Gph�� �x� b��

Due to k�k � � this means k��k � h��� ��i � ��h�� y�i�
Now turn to the case IJ � �� Here �x� b����	����� � Gph� for su�ciently small � 	 	

�compare ���� and recall �b
i 	 �� for the components of b�� So �	����� � T �Gph�� �x� b���

��



and applying an arbitrary normal vector ���� y�� to this provides the inequality ��h�� y�i � 	�
Summarizing� one has

��h�� y�i � k��k ����


���� y�� � T ��Gph�� �x� b�� 
�x� b� � �intB��x��	 intB��	�� �Gph�

in any case� Consider any z� � KerD�
a��x

�� 	�� Local upper semicontinuity of all components
Fi together with the closedness of C imply the closedness �near �x�� 	�� of Gph�� By virtue
of Theorem ��� the lemma is proved if we can show that z� � 	� By de�nition

�	��z�� � Na�Gph�� �x�� 	�� � lim sup
�x�b���x� ���
�x�b��Gph�

T ��Gph�� �x� b��

so there are sequences

�xl� bl�� �x�� 	�� �xl� bl� � Gph�� ���l � y
�
l �� �	��z��� ���l � y�l � � T ��Gph�� �xl� bl���

Along with ���� this leads to ��h���z�i � 	� or� because � is positive� to h�� z�i � 	� On
the other hand� bl � �F �xl� implies �	� ej� � T �Gph�� �xl� bl�� for arbitrary standard unit
vectors ej � IRk� �j � �� � � � � k�� hence y�l � 	� By continuity� z� � 	� so the desired relation
z� � 	 follows� �

The reverse direction of Lemma ��� does not hold in general� as one can see from the example
C � IR�F �x� � jxj if x �� 	 and F �	� � �� While F is upper semicontinuous� it fails to be
growing at 	� On the other hand one computes

Na�Epi ��F �� �	� 	�� � f�x� y� � IR� j y � f	��jxjgg
hence� KerD�

a��	� 	� � f	g for the multifunction � � �F � IR�� so � is metrically regular at
�	� 	� due to Theorem ��� and� therefore� F is metrically regular at 	�

For some special cases� however� the growth condition of De�nition ��� is an equivalent
characterization of metric regularity in the constraint system ��	�� Before establishing a cor�
responding result� we need some preparatory propositions� some of which are of independent
interest�

Proposition ��� In the constraint set ��	� assume that k � �� �F is a regular� locally
Lipschitzian function at some x� � P with F �x�� � 	 and C is a regular set at x� �here
twice �regular� is meant in the sense of Clarke�� Then� metric regularity of F at x� w�r�t� C
implies �a��F ��x�� � �Na�C�x�� � �
Proof�
Obviously� Epi ��F � and C 	 IR are closed� regular subsets of IRn��� both of which contain
�x�� 	�� Since F is locally Lipschitzian� one has Na�Epi ��F �� �x�� 	�� � �IRn 	 f	g� � f�	� 	�g
�this follows from elementary calculations and amounts to the fact that the so�called singular
subdi�erential of locally Lipschitzian functions reduces to zero�� Therefore

Na�Epi ��F �� �x�� 	�� � �Na�C 	 IR� �x�� 	�� � Na�Epi ��F �� �x�� 	�� � ��Na�C�x��	 f	g

� f�	� 	�g

��



and Lemma ��� yields

Na�Epi ��F � � �C 	 IR�� �x�� 	�� � Na�Epi ��F �� �x�� 	�� � �Na�C�x��	 f	g
�

Suppose there exists some � � �a��F ��x�� � �Na�C�x��� Then� according to the above de�
composition

�	���� � ������ � ���� 	� � Na�Epi ��F � � �C 	 IR�� �x�� 	�� � Na�Gph�� �x�� 	���

where � � IRn�
�IR is de�ned by ��x� � �F �x� � IR� if x � C� and ��x� � � if x �

C� Hence� � � KerD�
a��x

�� 	�� so by Theorem ��� � is not metrically regular at �x�� 	��
Consequently� F is not metrically regular at x� w�r�t� C in contradiction to the assumption�
Thus �a��F ��x�� � �Na�C�x�� � �� �

Proposition ��	 In the constraint set ��	� assume that k � � and F is a locally Lipschitzian
function at some x� � P with F �x�� � 	� Then the constraint quali�cation �cF �x�� �
Nc�C�x�� � � implies F to be growing at x� w�r�t� C�

Proof�
Since both �cF �x�� and Nc�C�x�� are closed� convex and nonempty and the subdi�erential
is even compact� the separation theorem provides the existence of some h � IRn� khk � � and
� � IR such that

h��� hi � � � h��� hi 
���� ��� � �cF �x��	Nc�C�x���

!From � � 	 �since 	 � Nc�C�x��� and the cone property of Nc one deduces h��� hi � 	 for
all �� � Nc�C�x��� Therefore �h belongs to the dual of Nc�C�x��� which is Clarke�s tangent
cone Tc�C� x��� On the other hand� Clarke�s directional derivative of F at x� in direction h
computes as

dcF �x��h� � maxfh��� hi j �� � �cF �x��g � � � 	� ����

Suppose that F is not growing at x� w�r�t� C� Then there exist sequences xl � x� �xl � C�
and 
l 	 	 such that F �y� � F �xl��l��ky�xlk 
y � B�l�x

l��C� Putting tl �
�
� minf
l� l��g

one has tl � 	 and F �y� � F �xl� � l��ky � xlk 
y � B�tl�x
l� � C� The above mentioned

fact that �h � Tc�C�x�� implies that� along with the sequences fxlg� ftlg� there is a sequence
hl � h such that xl � tlh

l � C for l � IN � So� for large l� we get xl � tlh
l � B�tl�x

l� � C
�recall that khk � ��� With yl � xl � tlhl it follows yl � x� and F �yl� � F �xl� � l��tlkhlk�
According to the de�nition of Clarke�s directional derivative one arrives at

dcF �x��h� � lim sup
x�x�

t��

t���F �x� th�� F �x�� � lim sup
l��

t��l �F �yl � tlh�� F �yl��

� lim sup
l��

t��l �F �yl � tlhl�� F �yl�� � lim sup
l��

�l��khlk � 	

�here� replacing h by hl in the third estimation relies on F being locally Lipschitzian�� This
is a contradiction to ����� �

��



In the following� a function F � IRn � IRk is called nondecreasing at x� � IRn if the relation
y � x� F �y� � F �x� �with the partial orders in IRn and IRk� respectively� holds for all x� y
in some neighbourhood of x�� In particular� the function �� in ��� is nondecreasing at all
x � IRs�

Proposition ��
 Let F � IRn � IRk have upper semicontinuous components and be nonde�
creasing at x� � IRn� Then the associated multifunction � � IRn�

�IR
k de�ned by ��x� �

�F �x� � IRk
� satis�es ImD�

a��x
�� y� � IRn

� 
y � ��x���

Proof�
First note that Gph � is closed due to the upper semicontinuity of F � Consider arbitrary
y � ��x�� and �x�� y�� � IRn 	 IRk such that x� � D�

a��x
�� y��y��� This means �x���y�� �

Na�Gph�� �x�� y�� and� by de�nition� there are sequences �xl� yl� � �x�� y�� ��xl� yl� � Gph ��
and �x�l ��y�l � � �x���y�� ��x�l ��y�l � � T ��Gph�� �xl� yl���� Since F is nondecreasing at x��
one has �ej� 	� � T �Gph�� �xl� yl�� for all standard unit vectors ej � IRn and for all l � IN � It
follows that h�x�l ��y�l �� �ej� 	�i � �x�l �j � 	 for j � �� � � � � n� hence x�l � 	 and x� � IRn

�� as
desired� �

Corollary ��� If F � IRn � IR is upper semicontinuous and nondecreasing at x�� then
�a��F ��x�� � IRn

�� If� additionally� F is locally Lipschitzian at x�� then �c��F ��x�� � IRn
�

and
B��	� � �a��F ��x�� � � �� B��

p
n�	� � �c��F ��x�� � � 

 	 	� ����

where the balls are taken w�r�t� the Euclidean norm�

Proof�
First note that �F is lower semicontinuous� so �compare Section ����

�a��F ��x�� � D�
a��x

���F �x������ � IRn
�

with reference to Proposition ���� The next assertion follows from ��� since Rn
� is closed and

convex� Concerning ���� one has

�a��F ��x�� � IRn
� � fx� j kx�k� � dist �	� �a��F ��x���g�

where k � k� refers to the sum norm and dist to the Euclidean distance� The right�hand side
of this inclusion is closed and convex� hence� again by ���� it also contains �c��F ��x�� and one
obtains

kx�k � n����kx�k� � n����dist �	� �a��F ��x��� 	 

p
n 
x� � �c��F ��x���

�

Corollary ���� If F � IRn � IR is a locally Lipschitzian distribution function of some random
variable� then �aF �x�� �cF �x� � IRn

� 
x � IRn and 	 � �aF �x� if and only if 	 � �cF �x��

��



Proof�
Repeat the proof of Proposition ��� with ��x� � F �x� � IRk

� to get ImD�
a��x

�� y� � IRn
� 
y �

��x��� Using this� repeat the proof of Corollary ��� and replace �F by F and IRn
� by IRn

�

constantly� �

Now we are able to formulate conditions under which metric regularity implies growth according
to De�nition ���� such that both concepts are equivalent in view of Lemma ����

Lemma ���� In ��	�� let k � � and F be locally Lipschitzian at some feasible point x� � P �
Then metric regularity of F at x� w�r�t� C implies that F is growing at x� w�r�t� C provided
that one of the following conditions holds


�i� �F and C are regular at x� in the sense of Clarke�

�ii� F is nondecreasing at x� and C � IRn�

Proof�
According to De�nition ��� only the binding case F �x�� � 	 is of interest� Consider the �rst
condition in the lemma� Proposition ��� yields �a��F ��x�� � �Na�C�x�� � �� The regularity
assumptions make the corresponding concepts of approximate and Clarke subdi�erentiation
coincide� hence �c��F ��x����Nc�C�x�� � �� This� however� means that �cF �x���Nc�C�x�� �
�� Now apply Proposition ���� Concerning the second condition in the lemma note that
metric regularity of F at x� implies metric regularity of the multifunction �F � IR� at
�x�� 	� � �x�� F �x��� �recall C � IRn�� Then Theorem ��� provides

	 � D�
a��F � IR���x

�� 	���� � fx� � IRn j �x����� � Na�Epi ��F �� �x�� F �x����g
� �a��F ��x���

!From ���� we conclude that 	 � �c��F ��x��� so 	 � �cF �x��� Apply Proposotion ��� �with
C � IRn� so Nc�C�x�� � f	g� once more� �

Now we apply the above results to the characterization of metric regularity of the probabilistic
constraint ����

Theorem ���� In the probabilistic constraint ��� let h be continuous and x� � M some
feasible point� Suppose there exist � 	 	� � 	 	 such that for all components �j

� of �� that
are not continuous at h�x�� or that are binding �i�e�� �j

��h�x
��� � pj� the growth condition


x � B��x
�� � C 

 	 	 �y � B��x� � C � �j

��h�y�� 	 �j
��h�x�� � �ky � xk

is ful�lled� Then the constraint function ���h���� � p is metrically regular at x� w�r�t� C�
Next consider the special case d � � �i�e�� �� � F��� where h at x� and F� at h�x�� are
locally Lipschitzian and where� additionally� one of the following conditions holds


�i� �F� � h as a function and C as a set are regular at x� in the sense of Clarke�

�ii� h is nondecreasing at x� and C � IRn�

��



Then one has equivalence between metric regularity of the constraint function F��h����� p at
x� w�r�t� C and the following growth condition
 If F��h�x��� � p� then there exist � 	 	� � 	 	
such that


x � B��x
�� � C 

 	 	 �y � B��x� � C � F��h�y�� 	 F��h�x�� � �ky � xk

Proof�
Recall that the components of �� are automatically upper semicontinuous� hence the com�
position ���h���� � p enjoys the same property� Apply Lemma ���� The necessity of metric
regularity with the growth condition in the second assertion is a special case of the �rst asser�
tion� For the su�ciency apply Lemma ���� to the function F � F��h����� p and note that F
is nondecreasing at x� in the case �ii� since F� is always nondecreasing everywhere� �

To illustrate the potential and the limitations of Theorem ���� consider the following two
examples�

Example ���� In the probabilistic constraint ��� let m � �� s � d � �� p � 	��� h�x�� x�� �
x� � x�� Let � be the uniform distribution over the interval ��	��� 	��
 and take

C � f�x�� x�� � IR� j x� � 	� x�� � x� � x��g

Obviously one has
���y� � F��y� � y � 	�� 
y � ��	��� 	����

The point of interest is x� � �	� 	� � C� Then� in a small neighbourhood of this point� it
holds that F��h�x�� x��� � x� � x� � 	��� In particular� the constraint is binding at x�� Being
an ane linear function� �F� � h is regular at x� in the sense of Clarke� Furthermore�
Tc�C�x�� � T �C�x��� hence C is a regular set at x� in the sense of Clarke� Therefore� the
assumptions of the second assertion in Theorem ���� are ful�lled� so we know that checking
metric regularity is equivalent to verifying the second growth condition in Theorem ����� Now�
�x any x � C near x�� One may �nd a point y � C� y �� x arbitrarily close to x such that
y�x � IR�

�� Then the di�erence F��h�y���F��h�x�� equals the sum norm ky�xk�� therefore
F� � h is growing at x� w�r�t C� hence metric regularity of F� � h holds at x� w�r�t� C�

In ���
 �Corollary ���� a su�cient growth condition for metric regularity of the constraint
function ���h����� p was proposed for the special case d � �� �� � F� continuous� h linear
and C convex� Essentially� growth was required along line segments in C� Note that in
Example ���� there are no �nontrivial� line segments emanating from x� and entirely contained
in C� so the mentioned condition does not work here although� apart from nonconvexity of C�
the remaining assumptions are ful�lled� Furthermore� even if C is convex and F� continuous�
but h slightly violates linearity �e�g� being piecewise di�erentiable�� this condition does no
longer hold true� This illustrates the extension obtained by Theorem �����

The following example indicates a situation where metric regularity of chance constraints
cannot be recovered from the growth condition of Theorem ���� �compare Remark ��� in ���
��

��



Example ���� In ���� let d � � and � � P�IRs� be a discrete measure with countable support�
Suppose p � �	� �� to ful�ll

inf
z�IRs

jF��z�� pj 	 	

Then the constraint function F��h���� � p is metrically regular at all feasible x� w�r�t� C�
whereas it is not growing w�r�t� C at all x� such that F� is not continuous at h�x���

��� Separate Constraint Quali�cations

While metric regularity of the probabilistic constraint ��� has been characterized in terms of the
composite function �� � h so far� we now want to formulate separate constraint quali�cations
for the two single functions that are easier to verify and to interpret� With the constraint
functions �� and h from the de�nition of the probabilistic constraint in ��� we associate the
following two multifunctions "� � IRs�

�IR
d and "� � IRm�

�IR
s via

"��z� � p ����z� � IRd
� and "��x� �

�
h�x� x � C
� else

Then� their composition is " � "� � "� � IRm�
�IR

d with

"�x� �

�
p ����h�x�� � IRd

� x � C
� else

Proposition ���� In ���� assume h to be continuous and consider some feasible point �x �M �
Then the two constraint quali�cations

KerD�
a"��h��x�� 	� � f	g ����

KerD�
a"���x� h��x�� � IRs

� � f	g ����

imply KerD�
a"��x� 	� � f	g�

Proof�
All of the three multifunctions "��"� and " have a closed graph �due to the closedness of
C� continuity of h and upper semicontinuity of ���� Let us assume for a moment that the
application of Theorem ��� is justi�ed� Then the relation 	 � D�

a"��x� 	��z
�� �for arbitrary z��

along with the fact that "� is single�valued �"���x� � h��x�� yield the existence of some y� � IRs

such that
y� � D�

a"��h��x�� 	��z
�� and 	 � D�

a"���x� h��x���y
���

!From Proposition ��� we know that ImD�
a"��h��x�� 	� � IRs

�� This leads to

y� � KerD�
a"���x� h��x�� � IRs

� � f	g

by ���� and to z� � KerD�
a"��h��x�� 	� � f	g by ����� Consequently� D�

a"��x� 	� � f	g� as
desired�

��



To check the assumptions of Theorem ��� �rst note that the multifunction M�x� z� �
"��x� � "��� �z� ful�lls either M�x� z� � � or M�x� z� � fh�x�g� so it is locally bounded by
continuity of h� In particular� M��x� �z� � fh��x�g� and again from Proposition ��� and ���� we
have

D�
a"��h��x�� 	��	� �KerD�

a"���x� h��x�� � IRs
� �KerD�

a"���x� h��x�� � f	g�
�

The result of this proposition can now be restated in terms of the ingredients of the probabilistic
constraint ��� itself�

Theorem ���� The constraint function ���h���� � p in ��� is metrically regular at some
feasible point �x �M w�r�t� C if the following two conditions are ful�lled


�i� The function ������ p is metrically regular at h��x� in the constraint ���z� � p�

�ii� h is continuous� Na�Gph h� ��x� h��x��� � ��Na�C� �x�	 f	g� � f	g and

D�
ah��x� h��x���y

�� � �Na�C� �x� � � 
y� � IRs
� n f	g

Proof�
Obviously� condition �i� is equivalent to ���� by Theorem ���� Concerning �ii� one has Gph "� �
Gph h� �C	IRs� for the multifunction "� introduced above� The �rst part of �ii� corresponds
to the assumption of Lemma ��� �with S� � Gph h and S� � C 	 IRs�� so the lemma yields

Na�Gph "�� ��x� h��x��� � Na�Gph h� ��x� h��x��� �Na�C� �x�	 f	g

Choose any y� � KerD�
a"���x� h��x��� IRs

�� In particular� �	��y�� � Na�Gph "�� ��x� h��x��� and
we have �	��y�� � ��� a� � ��� 	� according to the decomposition just stated� Then � � �� �
�Na�C� �x� and ����y�� � ��� a� � Na�Gph h� ��x� h��x���� It follows � � D�

ah��x� h��x���y
�� �

�Na�C� �x�� hence y� � 	 due to the second part in �ii� and to y� � IRs
�� However� this is

����� so Proposition ���� guarantees KerD�
a"��x� 	� � f	g and� Theorem ��� implies metric

regularity of ���h����� p at �x w�r�t C� �

Theorem ���� o�ers the possibility to check properties of the measure � and of the function h
in ��� separately� Yet the conditions imposed are rather abstract� In the following we develop
criteria that are better to verify� First we turn to condition �i� and try to reformulate it in terms
of assumptions concerning the density of the measure �� If � has a density� then� denoting

y � �y��� � � � � y
s�
� � � � � � y

�
d� � � � � y

sd
d � �y � IRs� s � s� � � � � � sd��

one recognizes that the components of �� may be written as

�j
��y� �

�Z
��

� � �
�Z

��

y�
jZ

��
� � �

y
sj
jZ

��

�Z
��

� � �
�Z

��
f��y� dy

sd
d � � � dy�j��dysjj � � � dy�j dysj��j�� � � � dy���

��



Next we introduce the set where this density is locally bounded below by a positive number�

D� � fy � IRs j �
 	 	 
�y � B��y� � f���y� � 
g�
For continuous f�� of course� this set reduces to D� � fy � IRs j f��y� 	 	g� Finally� for any
subset I � f�� � � � � dg put

I � C� 	 � � � 	 Cd� where Ci �

�
IRsi i � I
�IRsi� i � I

The following theorem provides a density condition guaranteeing su�cient growth of �� to
arrive at the desired property of metric regularity�

Theorem ���	 For �x �M in ���� denote the set of active indices by I��x� � fi � f�� � � � � dg j
�i
��h��x�� � pig� If � has a density and �h��x��I�
x���D� �� �� then condition �i� of Theorem

���� is satis�ed�

Proof�
By assumption� there exists some �y � D� such that for all j � I��x�

�ykj � �h��x�
kj k � �� � � � � sj and �k�j� � f�� � � � � sjg � �y
k�j�
j � �h��x�


k�j�
j

Here� lower and upper indices refer to the partition of vectors in IRs � IRs� 	 � � � 	 IRsd

introduced above� By de�nition� one has f��y� � 
 for all y � B���y�� Choose any z �
B����h��x��� Without loss of generality we consider the balls with respect to the maximum
norm k � k�� As a consequence� we have for all indices j � I��x�

zkj � �ykj � 
� k � �� � � � � sj�

Next de�ne some vector e � IRs via

ekj �

�
� j � I��x� and k � k�j�
	 else

and put z�t� � z � te for t � �	� 
��� Clearly� for all indices j � I��x� it holds

�z�t�

k�j�
j � z

k�j�
j � t and �z�t�
kj � zkj if k �� k�j��

In particular� kz�t�� zk� � t and for c � �zk�j�j � z
k�j�
j � t
 one has

jc� �yk�j�j j � jc� z
k�j�
j j� jzk�j�j � �h��x�
k�j�j j � 
� � 
� � 
�

Now� the following estimation can be made for the active indices j � I��x��

�j
��z�t��� �j

��z� �

�Z
��

� � �
�Z

��

z�t���jZ
��

� � �
z�t��k�j�

jZ
��

� � �
z�t��

sj
jZ

��

�Z
��

� � �
�Z

��
f��y� dy

�	



�
�Z

��
� � �

�Z
��

z�
jZ

��
� � �

z
k�j�
jZ

��
� � �

z
sj
jZ

��

�Z
��

� � �
�Z

��
f��y� dy

�

�Z
��

� � �
�Z

��

z�
jZ

��
� � �

z
k�j�
j

�tZ
z
k�j�
j

� � �
z
sj
jZ

��

�Z
��

� � �
�Z

��
f��y� dy

�

y��Z


y����
� � �


y
sj��
j��Z


y
sj��
j�� ��


y�j����Z

y�
j
��

� � �
z
k�j�
j �tZ
z
k�j�
j

� � �

y
sj
j ����Z

y
sj
j ��


y�j��Z

y�
j����

� � �

y
sd
dZ


y
sd
d
��


 dy

� 
s�sj � �
��sj�� � 
 � kz�t�� zk�
But� having in mind� that �� is continuous due to the assumption that � possesses a density�
the above estimation results in ����� � p being growing at h��x� �w�r�t� IRs� in the sense of
De�nition ��� �put � � �
��s� � � 
� and recall that the above estimation is valid for all
t � �	� 
���� According to Lemma ��� ����� � p �considered with the � 	 constraint� is
metrically regular at h��x�� This is condition �i� of Theorem ����� �

Since� by de�nition� 	 � I�
x� for whatever index set I��x�� one concludes

Corollary ���
 If h��x� � D�� then condition �i� of Theorem ���� is satis�ed�

This density condition h��x� � D� was used in ���
 �Lemma ���� in order to derive a corre�
sponding stability result for a speci�c probabilistic constraint � d � � and h linear in ����� For
continuous densities one simply would have to require f��h��x�� 	 	� Note� however� that this
relation is far from being necessary in order to ensure condition �i� of Theorem ����� as can be
seen from the following example�

Example ���� In ���� we take d � �� s � m � �� h�x� � x� p � 	��� C � IR�� In particular�
�� coincides with the distribution function of the measure �� which we assume to be induced
by the following density on IR�


f��y� �

���
��

a y � B��	�
�� � kyk�a y � B��	� nB��	�
	 y � IR� nB��	�

where the balls of the corresponding distances refer to the Euclidean norm and the number
a 	 	 is suitably chosen to guarantee

R
IR� f��y� dy � �� Obviously� f� is continuous and

D� � intB��	�� For �x � �	� �� we deduce from the symmetry of f� around the origin that

���h��x�� � ����	� ��� � 	�� � p�

hence� we have the binding case I��x� � f�g� Of course� f��h��x�� � f���	� ��� � 	� so the
strong condition of Corollary ���� does not apply� Nevertheless� one may derive condition �i�
of Theorem ���� because ��	� �� � �IR�

�
 � D� �� � �take� for instance �	���� � �IR�
��� hence�

the weaker condition in Theorem ���� is satis�ed�

��



Frequently� the property of metric regularity is required at points that are not given explicitly�
e�g� the set of local minimizers� Therefore� it might sometimes be useful to know conditions
under which metric regularity holds everywhere� For instance� as a part of this question� one
could ask when condition �i� of Theorem ���� is satis�ed everywhere� i�e�� ������p is metrically
regular at all h��x� with �x �M � Using Corollary ���� one gets an immediate criterion for such a
global behaviour� namely D� � IRs� which is ful�lled for some of the conventional distributions
�like multivariate normal�� The situation becomes more interesting for densities whose support
is not all of Rs� To investigate this problem in more detail we introduce the following de�nition�

De�nition ���� A subset Q � IRn is called an in�nity path in IRn if there exists some
continuous function � � IR� IRn such that Im� � Q and

lim
t��� max

i��	


	n
�i�t� � ��� lim

t�� max
i��	


	n

�i�t� ��

Roughly speaking� one part of Q must tend to �� with all its coordinates simultaneously�
while for the other part it su�ces that at least one coordinate tends to ��� Of course� any
in�nity path is a connected subset of IRn� This concept allows an appropriate characterization
in the case of �� having only one component� i�e�� d � ��

Theorem ���� If d � �� � has a density and D� contains an in�nity path Q in Rs� then
condition �i� in Theorem ���� holds globally� i�e�� ����� � p is metrically regular at h��x� for
all �x � M �

Proof�
Consider any �x �M and put z � h��x�� With reference to De�nition ���	 there exist t�� t� � IR�
such that

max
i��	


	s

�i�t�� � min
i��	


	s

zi� max
i��	


	s

�i�t�� 	 max
i��	


	s

zi

Hence� for q� � ��t��� q� � ��t�� one has q� � Q� int �z� IRs
�� and q� � Q� �IRs n �z� IRs

����
Now

IRs � �int �z � IRs
��
  �IRs n �z � IRs

��
  �z � �IRs
�


is a disjoint decomposition of IRs� where the �rst two sets are open� Therefore Q��z��IRs
�� �� �

because otherwise
Q � �Q � int �z � IRs

��
  �Q � �IRs n �z � IRs
���


would be a decomposition of Q into two open� disjoint and nonempty subsets in contradiction
to the connectedness of Q� Taking account of Q � D�� we arrive at

� �� D� � �z � �IRs
�� � D� � �h��x� � I�
x��

Since �x �M was arbitrary� the assertion follows from Theorem ����� �

It is noted here� that the assertion of the theorem is not restricted to the �xed probability level
p� in fact� this value does not enter the proof at any point� Consequently� under the indicated
assumptions� ������ p� is metrically regular at h��x� not only for all �x � M but even for all
p� � �	� ��� The following example shall illustrate the meaning of Theorem �����

��



Example ���� Adopt the setting of Example ����� but with the density on IR� replaced by

f��y� �

�
ae�y

�
��� if y� � 	� jy�j � �� or y� � 	� jy� � y�j � ��

	 else

�a such that
R
f��y�dy � ��� Obviously� here the set D� coincides with the one which the �rst

line in the de�nition of f� relates to� so D� �� IR�� Nevertheless� condition �i� of Theorem
���� is satis�ed for all ��� �x � IR�� In fact� the continuous function � � IR � IR� de�ned by
��t� � �t� t� if t � 	 and ��t� � �t� 	� if t 	 	 generates an in�nity path Q � Im� that is
contained in D�� so Theorem ���� applies�

Now� re�ect the density w�r�t� the origin� i�e�� take f���y� � f���y�� Then� the set D��

does not contain any in�nity path� For instance� the canonical candidate Q� � D�� � which is
de�ned by Q� � Im��� where ���t� � �t� 	� for t � 	 and ���t� � �t� t� for t 	 	� fails to
satisfy the �rst limiting condition in De�nition ���	 �while the second one holds true��

Now we turn to the second constraint quali�cation in Theorem ����� As will be seen below� this
can be viewed as some kind of Mangasarian�Fromovitz Constraint Quali�cation for continuous
inequality constraints� The �rst part of this condition �relating the approximate normal cones
of the Graph of h and of the set C� is always ful�lled� for instance� if C � IRm or if h is
locally Lipschitzian� In order to gain more insight� we consider the cases of locally Lipschitzian
or even C�� mappings h�

Proposition ���� If h is locally Lipschitzian in ���� then condition �ii� of Theorem ����
reduces to

�ahy�� hi��x� � �Na�C� �x� � � 
y� � IRs
� n f	g� ����

If h � C��IRm� IRs� with Jacobian Dh� then the corresponding relation reads

�Dh��x�
Ty� � Na�C� �x� 
y� � IRs
� n f	g ����

Proof�
For locally Lipschitzian h the �rst part of condition �ii� in Theorem ���� is automatically
ful�lled� In fact� if k is a Lipschitz modulus of h near �x� then ka�k � kkb�k for all �a�� b�� �
T ��Gph h� �x� h�x��� and all x near �x �compare ��	
� Lemma ����� Now� the same relation must
hold true for all �a�� b�� � Na��Gph h� ��x� h��x��� too� In particular� b� � 	 implies a� � 	�

Finally� the second part of condition �ii� is nothing else but ���� as a consequence of ����
Now ���� follows from the fact that the approximate subdi�erential and the usual derivative
coincide in the C�� case� �

In case C � IRm �i�e�� Na�C� �x� � f	g�� Gordan�s theorem shows the equivalence of ���� with
the condition

�� � IRm � rhi��x� � � 	 	 i � �� � � � � s�

where now� in contrast to the derivations above� we return to the conventional labelling of the
components of h� Restricting this relation to the active indices only �which have no meaning
for h in our present context� this would be the well�known Mangasarian�Fromovitz Constraint

��



Quali�cation �in the absence of equations�� Replacing the sets in ���� by the corresponding
�bigger� concepts of Clarke�s subdi�erential calculus� one gets the stronger requirement

�chy�� hi��x� �Nc�C� �x� � � 
y� � IRs
� n f	g� ��	�

which is closely related to well�known constraint quali�cations in the locally Lipschitzian setting
�e�g� ��	
� ��
� ��
� ���
�� However� let us emphasize once more that� in ���� the mapping h does
not appear itself as a constraint� but as the inner part of a composite constraint� In particular�
there is no active index set to be considered� Furthermore� the application of ���� according
to Mordukhovich�s calculus promises advantages over ��	� for certain classes of mappings� like
nonsmooth convex ones� the most trivial example being h�x� � jxj� C � IR� where ���� is
satis�ed at zero due to �a��j � j��	� � f��� �g while ��	� fails to hold�

Similar to the considerations with respect to condition �i� in Theorem ���� one may ask
under which circumstances condition �ii� of the same theorem holds globally� i�e�� for all �x �M �
An answer may be deduced from the following corollary to Proposition �����

Corollary ���� In ���� let all components of h be concave and the set C be convex� If� for
�x �M � there exists some x� � C such that h�x�� 	 h��x� �componentwise�� then condition �ii�
of Theorem ���� is satis�ed�

Proof�
Due to concavity� h is locally Lipschitzian� so we have to check ����� If this relation does not
hold� then there exist some y� � IRs

�nf	g and � � IRm such that � � �hy���hi��x���N�C� �x�
�note that hy���hi is convex and that �a and Na coincide with the subdi�erential � and
the normal cone N of convex analysis�� Since both �x and x� belong to the convex set C�
we derive h�� x� � �xi � 	� On the other hand� by the sum rule of the convex subdi�erential�
there are �i � ���hi���x� with � �

Ps
i�� y

�
i �i� In particular� by the de�nition of the convex

subdi�erential� one has h�i� x���xi � hi��x��hi�x��� Summarizing� one obtains the contradiction

	 � h�� x� � �xi �
sX

i��

y�i h�i� x� � �xi �
sX

i��

y�i �hi��x�� hi�x
��� � 	

from the strict inequality in the assumption� �

The corollary corrects an error in ���
 Lemma ����� where� in the context of linear mappings h
and convex sets C� the existence of somex� � C with h�x�� � h��x� was required instead of
the strict inequality�

Now� the desired global property may be formulated as follows� If� in ���� h is concave �e�g�
linear� and C is convex� then condition �ii� of Theorem ���� is ful�lled at all �x � M except
for the pareto optimal points of the vector optimization problem

maxfhi�x� j x � C� i � �� � � � � sg�
At the end of this section we reexamine Example ���� using the tools related to Theorem �����
In contrast to the previously given veri�cation of metric regularity by means of the composite
function �� � h� the corresponding result shall be obtained now via separate considerations of
the measure and the function h�

��



Example ���� Example ���� revisited� Due to Na�C� �	� 	�� � f���� ��� � IR� j �� � 	g
one has

�Dh�	� 	�
Ty� � �y�� y��T � Na�C� �	� 	�� 
y� 	 	�

Consequently� ���� applies� On the other hand D� � ��	��� 	��� for the given unifrom distri�
bution over ��	��� 	��
� So h�	� 	� � 	 � D� and we are in the situation of Corollary �����
Summarizing� both conditions of Theorem ���� are satis�ed and the desired metric regularity
result follows�

� Quadratic growth condition and quantitative stability

In order to obtain quantitative stability results for solution sets� a certain growth condition for
the objective function in a neighbourhood of the optimal set has to be veri�ed� This is studied
next for more speci�c �convex� stochastic programs with one joint probabilistic constraint and
polyhedral deterministic constraints� More precisely� we consider the problem

P��� minfg�x� j x � C�F��Ax� � pg� ����

where g � IRm � IR is convex quadratic� C � IRm is convex polyhedral� A is an �s�m��
matrix� p � �	� �� and F� is the distribution function of a probability measure � � P�IRs��
which is assumed to be r�concave for some r � ���� 	�� Due to the r�concavity of �� P���
represents a convex program� In the following� ���� refers to the set of �global� solutions to
���� and� as in Section �� �V ��� denotes the localized solution set to P���� where � � P�IRs�
is a perturbation of � and V � IRm an open neighbourhood of �����

In the �rst step of our analysis a reduction argument is used to decompose the original prob�
lem P��� into two auxiliary problems� The �rst one is a stochastic program under probabilistic
constraints� again with decisions taken in Rs� whereas the second one represents a parametric
quadratic program with polyhedral constraints� The reduction argument also provides insight
into the structure of the solution set ����� A similar argument was already used in a di�erent
context in the proof of Theorem ��� in ���
�

Proposition ��� In addition to the general assumptions� let � � P�IRs� and suppose the
closure clV of V � IRm to be a polytope� Then we have

�V ��� � inf f�V �y� j y � A�CV �� F��y� � pg and �V ��� � �V �YV �����

where

YV ��� � argminf�V �y� j y � A�CV �� F��y� � pg
CV � C � clV

�V �y� � inf fg�x� j Ax � y� x � CV g
�V �y� � argminfg�x� j Ax � y� x � CV g �y � A�CV ���

Here� �V is convex on A�CV �� �V is Hausdor� Lipschitzian on A�CV � and there exists an
� 	 	 such that

g�x� � �V �Ax� � � d�x� �V �Ax��
� 
x � CV �

��



Proof�
Since the constraint set fx � CV j F��Ax� � pg is compact� �V ��� is nonempty� Let
x � �V ���� Then x � CV � F��Ax� � p� and

�V ��� � g�x� � �V �Ax� � inf f�V �y� j y � A�CV �� F��y� � pg�

Conversely� let y � A�CV � with F��y� � p� Then there exists an x � �V �y� with �V �y� �
g�x� � �V ���� Hence

�V ��� � inf f�V �y� j y � A�CV �� F��y� � pg and g�x� � �V �Ax� 
x � �V ����

This implies �V ��� � �V �YV ����� The convexity of �V is immediate and the Lipschitz property
of �V is shown in ���
� Theorem ���� Finally� the proof of the last statement in the lemma is
based on Ho�man�s theorem� It is omitted here for the sake of brevity� �

The preceding result enables us �rst to study the growth behaviour of the objective function
in the auxiliary problem

minf�V �y� j y � A�CV �� F��y� � pg�
where V is some suitably chosen subset of IRm� In a second step� the formula for �V in the
above proposition and the properties of �V may be exploited� This two�stage procedure forms
the basis of the proof of the following results�

Theorem ��� In addition to the general assumptions in this section� suppose that

�i� ���� is nonempty and bounded�

�ii� ���� � argmin fg�x� j x � Cg � ��
�iii� ��x � C � F��A�x� 	 p �Slater condition��

�iv� F r
� is strongly convex on some open convex neighbourhood U of A������� where r �

���� 	� is chosen such that � is r�concave�

Then the following quadratic growth condition is satis�ed


�c 	 	�V � ���� �V open� � g�x� � ���� � cd �x������� 
x � C � V� F��Ax� � p�

Proof�
Let V� � IRm be an open convex set such that ���� � V� and A�V�� � U � For each x � ����
select 
�x� 	 	 such that the closed ball �w�r�t� the norm k � k�� B��x� 
�x�� around x with
radius 
�x� is contained in V�� Since ���� is compact� a �nite number of these balls cover
����� The closed convex hull �V of their union is a polyhedron with ���� � V � �V � V��
where V � int�V � With the notations from Proposition ��� consider now the problem

minf�V �y� j y � SV � F��y� � pg� with SV � A�CV �

��



or� equivalently�

minf�V �y� j y � SV � h�y� � 	g where h�y� � F r
��y�� pr�

According to Proposition ��� the solution set YV ��� of this problem ful�lls ���� � �V ��� �
�V �YV ����� Let y� � YV ��� and �y � A�x with �x � C from �iii�� Then r�concavity of �
implies for any � � �	� �
�

h���y � ��� ��y�� � F r
����y � ��� ��y��� pr � �F r

���y� � �� � ��F r
��y��� pr

� ��F r
���y�� pr� � 	�

Thus� we may select #� � �	� �
 such that #y � #��y����#��y� belongs to SV and has the property
h�#y� � 	� This constraint quali�cation implies the existence of a Kuhn�Tucker coe�cient �� � 	
such that

�V �y�� � minf�V �y� � ��h�y� j y � SV g and ��h�y�� � 	

In case �� � 	� this would imply y� � argminf�V �y� j y � SV g and� hence� the existence
of some x� � ���� with g�x�� � �V �Ax�� � minfg�x� j Ax � y�� x � CV g� Then� in
contradiction to condition �ii�� x� would minimize g w�r�t� C due to x� � intV � Thus
�� 	 	 and �V ���h is strongly convex on SV � Hence� y� is the unique minimizer of �V ���h
and the growth property

�� 	 	 �ky � y�k� � �V �y� � ��h�y�� �V �y
�� 
y � SV ����

is valid� From Proposition ��� we conclude ���� � �V ��� � �V �y�� and

kAx� y�k� � �����V �Ax�� ����� 
x � CV � F��Ax� � p� ����

Now� choose any x � C � V such that F��Ax� � p� Obviously

d�x������ � d�x� �V �y
��� � d�x� �V �Ax�� � dH��V �Ax�� �V �y

����

where dH refers to the Hausdor� distance on bounded subsets of IRm � Using the last two
statements of Proposition ��� �with some Hausdor� Lipschitz modulus L 	 	� along with ����
we continue by

d�x������� � ��d�x� �V �Ax��
� � dH��V �Ax�� �V �y

�����

� ������g�x�� �V �Ax�� � L�kAx� y�k��
� ������g�x�� �V �Ax�� � L������V �Ax�� ������

� �maxf���� L����g�g�x�� �����

�

Together with Theorem ��� the preceding result leads to upper H�older continuity of the localized
solution set mapping �V at � �with rate �$�� immediately� The class B of closed subsets of
IRs de�ning the metric � on P�IRs� �see ���� specializes to the collection of all left orthants
here� i�e�� BK � fz � IRs

� j z � IRsg� Hence� the metric � becomes the Kolmogorov distance
�K��� �� � sup

z�IRs

jF��z� � F��z�j� Using the special structure of problem P��� we are able to

show even the Hausdor� H�older continuity of �V at ��

��



Theorem ��� Adopt the setting of Theorem ���� Then there exist L 	 	� � 	 	 and a neigh�
bourhood V of ���� with

dH�������V ���� � LkF� � F�k���� whenever � � P�IRs�� kF� � F�k� � ��

Here� again� dH denotes the Hausdor� distance and kF� � F�k� � supz�IRs jF��z�� F��z�j�
Proof�
As in the proof of Theorem ��� we construct a polyhedron �V � IRm such that ���� is
contained in the interior V of �V � Since the assumptions �i� � �iii� of Theorem ��� are satis�ed
�cf� Proposition ���� for the metric regularity property� the localized solution�set mapping �V

is upper semicontinuous at � �w�r�t� the Kolmogorov distance �K��� �� � kF� � F�k�� and
�V ��� �� � is a complete local minimizing set for P��� if �K��� �� is su�ciently small� Hence�
there exists a � 	 	 such that � �� �V ��� � V for all � � P�IRs� with kF� � F�k� � ��
With the notations from Proposition ��� and using the fact that YV ��� � fy�g and ���� �
�V ��� � �V �y�� we obtain

dH�������V ���� � dH��V �y��� �V �YV ����� � #L sup
y�YV ���

ky � y�k�

where #L 	 	 is the Hausdor� Lipschitz constant of �V �cf� Proposition ����� Using ����� the
above chain of inequalities extends to

dH�������V ���� � #L����� sup
y�YV ���

��V �y�� �V �y��

��� � #L�����j�V ���� �V ���j���

Appealing to the Lipschitz property for the localized marginal values �w�r�t� �K� in Theorem
��� completes the proof� �

The assumptions �i���iv� imposed in the Theorems ��� and ��� all concern the original problem
P���� Condition �i� is basic for our stability analysis and is satis�ed� for example� if C is
a polytope� The conditions �ii� and �iii� mean that the probability level p is not chosen
too low and too high� respectively� �ii� expresses the fact that the presence of the probabilistic
constraint F��Ax� � p moves the solution set ���� away from that obtained without imposing
the reliability constraint for �Ax � ��� From a modelling point of view� both conditions show
the signi�cance of the choice of the reliability level p� Assumption �iv� is decisive for the desired
growth condition of the objective function around ����� Contrary to the r�concavity of ��
which is supposed to hold globally� �iv� requires strong convexity of F r

� as a local property
around A������ �in addition to the convexity of F r

� on IRs with values in the extended real
numbers�� Although no general su�cient criterion for �iv� is available so far� �iv� seems to be
satis�ed in many cases when A������ belongs to the interior of the support of �� This is
illustrated by the following example�

Example ��� Let m � �� s � �� g�x� � x� 
x � �x�� x�� � IR�� A � ��� 	�� p � ��� C �
���� �
 	 ���� �
 and � be the uniform distribution on ����� ��
� Then ���� � f	g 	

��



���� �
� ���� � 	 and for each r � 	�

F r
��z� �

���
��

� � z � ���
�z � ���r � z � ����� ��


� � z 	 ��

Hence� it holds
d� F r

�

d z�
�z� � r�r � ��F r��

� �z� 	 	

in a neighbourhood of z � 	� and F r
� is strongly convex around A������ � f	g� Since

the conditions �i���iii� are satis�ed� both theorems apply� In fact� we have x� � g�x�� �
d �x������� � x�� for all x � ���� �� 	 ���� �� satisfying F��x�� � ���

As a conclusion from Theorem ��� we �nally derive a large deviation result for the Haus�
dor� distance of solution sets when estimating � by empirical measures� As in Section ��
let ��� ��� � � � � �n� � � � be iid IRs�valued random variables �on some probability space ��A� P ��
having common distribution �� and let �n � n��

Pn
i�� ��i denote the empirical measure of

��� � � � � �n �n � IN�� Since BK is a permissible VC class �cf� Section ��� the proof of our �nal
result follows the same lines as Proposition ��� and is therefore omitted�

Corollary ��� Adopt the setting of Theorem ���� Then it holds for all 
 	 	�

lim sup
n��

n�� logP �dH �������V ��n�� � 
� � ��minf��� 
�L��g�

where L and � denote the constants and V the bounded open set arising in Theorem ����
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