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Zusammenfassung 

 

Knochen und Muskel sind die wichtigsten Gewebe im muskuloskelettalen System 

welche dem Körper die Bewegungen möglich machen. Beide Gewebetypen sind hochgradig 

strukturierter Extrazellulärmatrix zugrundegelegt, welche die mechanischen und biologischen 

Funktionen bestimmen. Viele physiologische Gegebenheiten wie physischer Zustand, Alter, 

Genetik und medizinische Behandlungen beeinflussen die mechanischen und strukturellen 

Eigenschaften dieser Gewebearten. Um die Mechanismen zu verstehen, welche in 

gewebebeeinflussende Vorgänge involviert sind, muss nicht nur die Knochenquantität sondern 

auch die Knochenqualität in mikroskopischer und makroskopischer Größenordnung bekannt 

sein. Ultraschalltechniken sind im klinischen Umfeld für Gewebecharakterisierung 

außerordentlich gut  geeignet. Sie haben den Vorteil den Gewebeaufbau und dessen 

funktionelle Eigenschaften auf verschiedenen Größenordnungen analysieren zu können. 

In dieser Studie wurden die räumliche Verteilung  der anisotropen elastischen 

Eigenschaften und der Gewebemineralisation im humanen kortikalen Femur untersucht. 

Zylindrische Stanzbiopsieproben wurden mit hochaufgelöster akustischer Mikroskopie 

(SAM) und Synchrotron-µCT (SR-µCT) analysiert. Für alle Proben wurden die elastischen 

Koeffizienten und die mittlere Gewebemineralisation mittels SAM beziehungsweise SR-µCT 

bestimmt. Die homogenisierten elastischen Eigenschaften wurden aus einer Kombination der 

mesoskalaren Porosität und der Gewebeelastizitätsmatrix mit Hilfe eines asymptotischen 

Homogenisierungsmodells ermittelt. Der Einfluss der Gewebemineralisierung und der 

Strukturparameter auf die mikroskopischen und mesoskopischen elastischen Koeffizienten 

wurde unter Berücksichtigung der anatomischen Position des Femurschaftes untersucht. 

Es wurde ein Modell entwickelt, mit welchem der intramuskuläre Fettgehalt als 

Fleischqualitätsparameter des porcinen musculus longissimus nichtinvasiv mittels 

quantitativem Ultraschall mit einer Frequenz von 3,2 MHz und dessen spektraler Analyze des 

Echosignals bestimmt werden kann. Systembeeinflussende Effekte und 

Schallausbreitungseffekte mit Auswirkung auf die Spektralanalyse wurden analysiert und 

korrigiert. Muskelspezifische Parameter wie Dämpfung, spectral slope, midband fit, apparent 

integrated backscatter und cepstrale Paramter wurden aus den RF-Signalen extrahiert. Die 



 

Einflüsse der Muskelkomposition und Strukturparameter auf die spektralen 

Ultraschallparameter wurden untersucht. Die anisotropen akustischen Eigenschaften von 

porcinem Muskelgewebe wurden auf Faserebene mit hochfrequenter Ultraschallmikroskopie 

untersucht.  Die Parameter Schallgeschwindigkeit, Impedanz, Dämpfung und Elastizität 

werden durch die Muskelfaserorientierung beeinflusst und weisen höhere Werte parallel zur 

Faserlängsrichtung als senkrecht zur Faserorientierung auf. Die größte Abhängigkeit von der 

Faserorientierung wurde bei der Dämpfung gefunden. Beim Vergleich von akustischen 

Eigenschaften mit histologischen Schnitten mittels Bildregistrierung zeigten sich keine 

signifikanten Unterschiede zwischen den individuellen Fasertypen. 

Die in dieser Studie gewonnenen detaillierten und lokal bestimmten Knochendaten 

können möglicherweise als Eingabeparameter für numerische 3D FE-Simulationen dienen 

und damit die gewöhnlich genutzte Annahme eines homogenen und isotropen 

Knochengewebes ablösen. Darüber hinaus kann die Untersuchung von Veränderungen der 

lokalen Gewebeanisotropie neue Einsichten in Studien über Knochenumbildung geben, wie es 

beispielsweise in Hinblick auf Frakturheilung, Knochenerkrankungen, Alter oder Anpassung 

an veränderte Belastungszustände an Knochen-Implantat-Grenzflächen nach 

endoprothetischen Operationen der Fall ist. Diese auf Gewebeebene bestimmten Daten von 

Muskelgewebe können in numerischen Simulationen von akustischer Rückstreuung genutzt 

werden um diagnostische Methoden und Geräte zu verbessern. 

 

Schlagwörter: Akustische Impedanz, Anisotropie, elastische Eigenschaften, akustische 

Mikroskopie, kortikaler Knochen, intramuskuläres Fett, Muskel, Cepstrum, integrierte 

Rückstreuung 

 

 

 

 

 



 

Abstract  

 

Bone and muscle are the most important tissues in the musculoskeletal system that 

gives the ability to move the body.   Both tissues have the highly oriented underlying 

extracellular matrix structure for performing mechanical and biological functions.  Many 

pathological conditions such as physical condition, age, genetic background and treatment 

change the mechanical and structural properties of these tissues.  In order to understand the 

mechanisms involved in tissue alteration due to several conditions, not only bone quantity, but 

also  its quality needs to be characterized at microscopic and macro molecular tissue level.  

Ultrasound technique shows considerably more promise for the tissue characterization within 

a clinical setting.  It has ability to assess tissue architecture and function properties at multiple 

scales.   

 In this study, the spatial distribution of anisotropic elastic properties and tissue 

mineralization within a human femoral cortical bone shaft were investigated.  Cylindrically 

shaped punch biopsy samples were analyzed using high resolution ultrasonic cylindrical 

scanning microscopy (SAM) at 50 MHz and synchrotron radiation µCT (SR-µCT).  For all 

samples the average tissue elastic coefficients and average tissue mineralization were derived 

from the SAM and SR-µCT measurements, respectively.  The homogenized meoscopic elastic 

properties were determined by a combination of mesoscale porosity and tissue elastic matrix 

using a asymptotic homogenization model.  The impact on tissue mineralization and structural 

parameters of the microscopic and mesocopic elastic coefficients was analyzed with respect to 

the anatomical location of the femoral shaft.          

A model was developed to estimate meat quality parameter, intramuscular fat of 

porcine musculus longissimus non-invasively using a quantitative ultrasonic device with a 

frequency of 3.2 MHz by spectral analysis of ultrasonic echo signals.  System specific effects 

and sound propagation effects on the spectral analysis were analyzed and corrected.  Muscle 

specific acoustic parameters, i.e. attenuation, spectral slope, midband fit, apparent integrated 

backscatter, and cepstral parameters were extracted from the measured RF echoes.  The 

impact of muscle composition and structural properties on ultrasonic spectral parameters was 

analyzed.  The anisotropic acoustic properties of this porcine muscle were investigated at 

fiber level using a high frequency scanning acoustic microscope.  The parameters: speed of 

sound, impedance, attenuation and elastic coefficient were affected by the muscle fiber 



 

orientation and have higher values along fiber long axis compared to those in the direction 

perpendicular to the long fiber axis.  The most dominant direction dependency was found for 

the attenuation.  A comparison of the acoustic properties with site-matched histological 

images did not reveal significant differences between the individual fiber types.   

The detailed locally assessed bone data in this study may serve as a real-life input for 

numerical 3D FE simulation models instead of the commonly used assumption that bone 

tissue is homogeneous and isotropic.  Moreover, the assessment of changes of local tissue 

anisotropy may provide new insights into the bone remodelling studies, e.g., in the course of 

fracture healing, bone pathologies, aging, or adaptation to modified loading conditions at the 

bone-implant interface after endoprothetic surgeries.  The data provided at tissue level and 

investigated ultrasound backscattering from muscle tissue, can be used in numerical 

simulation FE models for acoustical backscattering from muscle for the further improvement 

of diagnostic methods and equipment. 

 

Keywords: Acoustic impedance, anisotropy, elastic properties, acoustic microscopy, cortical 

bone, intramuscular fat, muscle, cepstrum, apparent integrated backscatter 
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AR Anisotropy ratio 

ANOVA Analysis of variance 
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HC Haversian canal 

IS Interstitial Tissue 
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PMMA Polymethylmethacrylate 

RF signal radio frequency signal 

ROC Radius of curvature 

ROI Region of interest 

SAM Scanning acoustic microscope 

SOS Speed of sound 

SR-µCT Synchrotron radiation micro computed tomography 

STO, FTG, FTO Muscle fiber types: slow-twitch oxidative, fast-twitch glycolytic 

and fast-twitch oxidative 
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   Attenuation 

 Transverse isotropic stiffness matrix ܥ

ܿ௜௝        Elastic or stiffness coefficient 

ܿு஺, ܿ௖௢௟௟, ܿுଶ଴ Elastic tensor of hydroxyapatite, collagen and water 

   Mass density 
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݂ Frequency 

݇ு஺, ݇ுଶை Bulk modulus of hydroxyapatite and water       
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V(,t)  Voltage with respect angle and time 

ݒ ு݂஺, ݒ ௖݂௢௟௟ Volume fraction of hydroxyapatite and collagen 
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Thesis Outline  

Chapter 1 Introduction:  1) Establishes the importance of musculoskeletal tissue elastic and 

structural properties investigation, and carries out literature survey of these tissue type’s 

ultrasonic studies and their drawbacks and finally the aims of this study.  2) Discusses skeletal 

muscle physiology and anatomy in order to develop a basic knowledge which is necessary 

before an explanation of the interaction between ultrasound and skeletal muscle can be 

attempted.  3) Discusses many of the fundamental acoustic equations and the interaction of 

acoustic wave with simple homogeneous material, inhomogeneous materials and biological 

tissue like bone and muscle.   

Chapter 2 Materials and methods:  1) Discusses some of the other techniques used for 

musculoskeletal tissue characteristics.  2) Explains the principle of the scanning acoustic 

microscope.  3) Explains the preparation of samples, techniques and methods used to estimate 

the acoustic, structural and chemical composition of the bone and muscle at microscopic and 

macro molecular levels.  

Chapter 3 Results: Explains the anisotropic acoustic properties at microscopic level, chemical 

and structural properties, correlation between the acoustic and chemical composition, acoustic 

properties at macroscopic level and influence of the structural and chemical properties on the 

acoustic parameters. 

Chapter 4 Discussions: Discusses the results obtained at microscopic and macroscopic levels.  

Chapter 5 Summary: Looks into the holistic aspects of the work that was undertaken and 

presents a general summary. 

Chapter 6 References: Cites all the published papers and book articles that were referred to in 

this thesis. 
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I Introduction 

I.1 Musculoskeletal system 

A musculoskeletal system is an important organ system that gives the ability to move 

the body.  It is comprised of several tissue types.  Its primary functions are supporting the 

body, protecting vital organs and allowing motion.  Large tissue part involving for this 

function properties in this system are bone and muscle.  Skeletal bone is the main storage 

system for calcium and phosphorus and provides stability to the body.  In contrast to most 

other tissues, bone is able to heal and has capacity to restore its structure and function.  

Muscles keep bones in place and also play a role in the movement of the bones.  Both bone 

and muscle have the highly orientated underlying extracellular matrix structure to perform 

mechanical, biological and chemical functions. 

Many pathological conditions such as physical condition, age, genetic background and 

treatment change the mechanical and structural properties of both bone and muscle tissues.  

There are a number of medical imaging techniques that are used to assess the functional 

properties of musculoskeletal tissues in every day clinical diagnosis. Ultrasound, computed 

tomography, magnetic resonance imaging and nuclear medicine being the most common.  

Among them, ultrasound technique shows considerably more promise for the tissue 

characterization within a clinical setting.  For a clear understanding the effect of various 

pathological conditions on a biological system, the micro architecture and functional 

properties of that system at tissue level should be analyzed.  The ultrasonic technique has the 

advantage that it is able to assess those properties at multiple-scale.  

The following sections list the, important features of both bone and muscle tissue 

types, the type of specimen selected in this study, and the modalities available for 

understanding their function properties and their drawback, contain a discussion on how to 

solve these problems and finally, outline the aim of this study.  
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I.1.1 Cortical bone  

Stiffness is one important characteristic of bone material biomechanical competence. It 

depends on material and structural properties at several hierarchical lengths scales (Fig. I.1). 

The mechanical properties of bone are altered in the aging population and in osteoporotic 

patients [1;2].  Another important feature of bone tissue is its capacity of regeneration, which 

is most evident as an endogenous healing after a traumatic fracture, but also occurs 

permanently and through the entire skeleton in a process called remodeling.  These 

characteristics lead to a tissue compound that is not only highly heterogeneous and 

anisotropic at all hierarchy levels as a result of perfect adaptation to external and intrinsic 

loading conditions, but also dynamic with respect to tissue resorption, synthesis, and 

maturation.  Mineralization of the collagen fibrils is a process that can be divided into two 

phases.  First phase is called primary mineralization which is a fast process that is associated 

with mineral deposition into the newly formed osteoid.  Second phase is called secondary 

mineralization, which is a slow process associated with further intra- and interfibrillar mineral 

depositions, crystal growth and maturation over a period of several years [3].   

It is well accepted that not only bone quantity but also its quality needs to be  

characterized to understand the mechanisms involved in bone alteration due to  several 

conditions such as physical condition, nutrition, age, pathologies  and treatment [4]. Usually, 

the mechanical properties of bone have been measured at the macroscopic level using 

standard mechanical testing.  However, the primary source of alteration of bone mechanical 

integrity has to be found at tissue level such as defects of mineralization and collagen stability 

[5-7] or microstructural anomalies. Consequently, methods for direct analysis of bone 

microarchitecture [8;9], mineralization [10;11], and mechanical properties [12;13] at the 

microscopic scale  are required to assess the effects of various physiopathological conditions, 

aging or even the effectiveness of treatments.  That fulfills the knowledge gap existing 

between tissue alterations and the resulting mechanical behavior at the macroscopic scale. 

High-resolution imaging modalities, e.g. micro-computed tomography [14;15], 

synchrotron radiation μCT [16-18] and micro-magnetic resonance imaging [19], have been 

applied in addition to histomorphometric analysis for assessing three-dimensional 

microstructural properties in vitro. Among them, x-ray microradiography [20] and 

monochromatic SR-μCT [18] measurements provide complementary information about 
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mineralization at tissue level in 2D or 3D, respectively. However, the main limitation of these 

techniques is that they are unable to give bone elastic properties at tissue level.   

However, several mathematical models have been developed to predict bone elasticity 

from the degree of mineralization [21;22] most often radiographic measurements e.g., dual-

energy x-ray absorptiometry, quantitative computed tomography and SR-μCT. Although 

several studies have showed increase in mineralization with respect to tissue stiffness, the 

principal relation between them is not yet clear and, given the typical variation in density and 

elasticity in most materials [23].  It concludes that mineral density will not be able to 

determine tissue elasticity with sufficient accuracy.  Particularly, information about tissue 

anisotropy cannot be obtained from the measurement of mass density. High resolution 

measurement techniques such as nanoindentation or scanning acoustic microscopy is needed 

to measure elasticity at tissue-level [24;25]. 

Nanoindentation [13;26] and acoustic microscopy [27] are directed at measuring 

material elastic properties and their anisotropy. Nanoindentation is a micro-probing method 

which allows the measurement of elastic modulus with a spatial resolution in some cases of 

better than 1 μm [12;13;28].  Although nanoindentation allows highly localized estimates of 

elastic properties in several locations at the sample surface, it is not adapted to providing a 

detailed spatial distribution of the elastic properties at the specimen surface. This represents a 

current limitation of this technique, given that bone is a non-uniform and heterogeneous 

material. 

Ultrasonic techniques evaluate bone mechanical properties and offer advantages over 

direct biomechanical testing given their nondestructive character (avoiding damage to the 

material during the test).  Multi-scale assessment of bone elastic properties is possible using 

ultrasonic methods. These methods have been widely used for the in vitro investigation of 

bone specimens elastic properties both at the macroscopic or structural level [28-31] and 

microscopic or tissue level [27;32;33]. They are suitable for measuring the regional variations 

of elastic properties at different scales which include [30;31] or exclude the cortical porosity 

[4;25;27;34]. Scanning acoustic microscopy (SAM) used in reflection is a nondestructive 

imaging technique which has been used for the analysis of bone with spatial resolutions in the 

1–140 μm range depending on the ultrasonic frequency and transducer characteristics [27]. 

SAM images represent the spatial distribution of the material surface acoustic reflectivity. 
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Using an adequate calibration procedure, acoustic reflectivity can be translated into acoustic 

impedance values, which is depends on tissue material properties such as density and 

elasticity of the material in the probing direction [27;35;36]. When combined with local 

density estimates (e.g., such as X-ray micro-computed tomography data), acoustic impedance 

estimates can be used to derive tissue stiffness [4;25;37]. Furthermore, it has been shown that 

Z alone is an excellent proxy for the tissue stiffness coefficient in the probing direction 

[34;36]. Therefore, SAM is an appropriate micro-imaging technique for quantitatively 

assessing the microstructure and the spatial distribution of elastic properties of highly 

heterogeneous materials like bone. 

The femur is the longest, strongest, and heaviest bone in the human body.  It is one of 

the principal load bearing bones in the lower extremity [38;39].  It is a common skeletal site 

of fracture in elderly people.  Osteoporotic fractures of the femur usually represent an early 

sign of osteoporosis and may announce future fractures at other sites such as the radius or the 

spine.  Femoral shaft fractures often occur due to high energy forces such as motor vehicle 

collisions. The complications and injuries associated with femur fractures in the adult can be 

life-threatening and may include hemorrhage, internal organ injury, wound infection, fat 

embolism, and adult respiratory distress syndrome [40].  The assessment of cortical bone at 

the radius using X-ray densitometry techniques may be used as a diagnostic tool to predict 

fracture risk [41]  and to initiate therapeutic actions [42;43]. With the advent of a new 

generation of quantitative ultrasound (QUS) devices measuring in vivo the speed of sound at 

the proximal femur [44-46], a parameter sensitive to porosity and tissue stiffness [37;47], it 

becomes necessary to quantitatively assess the microstructure and tissue properties of the 

femur.  For example, combined knowledge of the fine heterogeneous spatial distribution of 

both bone microstructure and elastic properties [4;25;34] can be used as input in 

computational models such as finite-difference methods.  It provides insight into the 

propagation of elastic waves in the femur in an attempt to elucidate what bone properties are 

revealed by quantitative ultrasound techniques and is also beneficial to finite-element 

modeling in relating the heterogeneous tissue elastic characteristics to the macroscopic 

biomechanical behavior of the whole bone at a site of frequent fracture.    

In previous studies, the elastic properties of the human femoral cortical bone were 

analyzed with a limited number of specimens and bone range covered was between 40% and 

70% of the total length of the femur [30;33;48;49].  In addition, each measurement made was 
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still of a discrete nature.  Even though such studies were able to provide some detailed 

information, their discreteness prevented them from providing a continuous model for the 

whole bone, since they did not cover an entire bone.  Their work was mainly of an 

experimental nature in the sense of a test of their ultrasonic technology.  One study [50] was 

found with a range of 15% to 85% of femur length, even though only elastic constants for the 

main diagonal of the reduced fourth order stiffness tensor were analyzed in this range.  

However, those studies were carried out with frequency range of 2 – 5 MHz which determines 

the elastic properties by both bone matrix and porous structure.   

I.1.2 Skeletal muscle   

The most important and unique feature of skeletal muscle tissue is able to contract in 

order to move the bones when stimulated by nerve impulses [51].  In this, muscle fibers are 

stacked lengthwise are surrounded by connective tissue.  In a strong contraction the length of 

a muscle is reduced to about 60 percent of its length when relaxed.  Many pathological 

conditions exhibit a change in mechanical and structural properties of muscle [52-54].  

Muscle dystrophy is a hereditary, degenerative skeletal muscle disease in which the 

contractility of muscle decreases as a result of a loss in the ability of collagen fibers to distend 

[55;56].  The two most notorious variations, Duchenne and Becker comprise the main of 

cases and are extremely debilitating.  Meat industrial interest in the muscle structure and 

constituents is interested with the nutritional value of the tissue.  The quality of the meat is 

related to the marbling or fat % in the tissue [53;57;58].  Muscles with a reasonable 

percentage of fat are ranked as more tender and favorable.  The ability to accurately determine 

the quality of meat based on tissue composition has great economic value to the meat 

industry. 

Pork is the most important meat in Germany with approximately 60 kg consumed per 

capita and year.  Factors like pig breed, gender, feeding, ante mortem handing and post 

mortem treatment haved been shown to affect the final meat quality of the economically 

important loin longissimus muscle [59].  The intramuscular fat content is widely considered as 

one of the major parameters influencing qualify and sensory characteristics of meat [60].  The 

IMF range from 2 to 3.5% in porcine longissimus muscle at the 2nd/3rd rib have been proposed 

as benchmarks for optimal taste [61-63].  However, recent investigations performed in 

German pig populations revealed average IMF values of about 1 to 1.5% indicating that only 
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a minority of the animals actually reach the proposed minimum IMF threshold level of 2% 

[64].    

For the establishment of a sensory quality based marketing system, the classification 

of meat according to the IMF levels is necessary. Several techniques have been proposed to 

estimate the IMF on hanging pig carcasses. Infrared spectroscopy [65] and dual energy X-ray 

absorptiometry [66] and magnetic resonance imaging [67] have been shown to be reasonably 

correlated with IMF. However, these methods are time consuming, therefore they may have 

only limited suitability for high throughput analyses on hot carcasses in common slaughter 

facilities. Ultrasound is a fast and non-destructive method that has been demonstrated to be a 

promising alternative for the prediction of IMF. First studies have either measured the sound 

velocity [68;69] or have analyzed the texture of the gray scale backscatter images [58;70]. 

Although these methods have been quite successful in the prediction of IMF in living steers 

and hot carcasses with R2 values up to 0.75 [70-72], the studies performed in porcine muscle 

were less predictive (R2  0.4) [73;74]. 

During the last decade, spectral analysis of the backscattered ultrasound signals has 

been shown to provide more detailed information about tissue constitution compared to 

conventional image texture or sound velocity analyses [75;76]. One major advantage of 

spectral analysis of the radio frequency RF backscatter signals is that it contains quantitative 

information composition and elastic properties of structures that are comparable to or smaller 

than the acoustic wavelength. The frequency dependence of acoustic backscatter can therefore 

be used to quantify structural dimensions that are not visible in the ultrasound image or to 

differentiate different tissue types [77-80]. In muscle tissue, the major acoustic 

inhomogeneities are considered to be the connective tissue interfaces between adjacent 

muscle fibers and between muscle bundles [75]. Alterations of this structure can be 

considered to affect the backscatter spectrum. Lizzi [81] has introduced several spectral 

parameters that are related to the structure of the scatterers. While the slope of the obtained 

power spectrum m (dB/MHz) is related to the size, midband fit (dB, value of the linear fit at 

the center frequency) and spectral intercept I (dB, extrapolated amplitude value at 0 MHz) are 

affected by size, concentration, and impedance of the scatterers [81;82]. Another common 

spectral estimate is the apparent integrated backscatter amplitude AIB (dB, power spectrum 

within the bandwidth of the transducer) [83]. Tissue boundaries that are separated at distances 

larger than the wavelength and the spatial resolution limit of the imaging system, e.g., the 
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marbling structure in muscle, can often be seen directly in the US grayscale images. A precise 

estimation of distance distributions along the sound propagation path from RF signals is 

possible using cepstral analysis [84].    

The composition of connective tissue is affected by several parameters, e.g., age or 

breeding. Moreover, IMF is known to alter the connective tissue structure due to the 

deposition of fat inside the perimysium, i.e. between the muscle fiber bundles [85]. This 

deposition is associated with a partial destruction of the connective tissue honeycomb 

structure, which  reduces mechanical strength and shear modulus of the tissue [53;54] and 

explains the association with sound velocity. On the other hand, the acoustic properties of fat 

are remarkably different from those of muscle and connective tissue. Therefore, an increasing 

amount of fat deposited between muscle fibers and fiber bundles is hypothesized to alter the 

characteristics of the backscatter power spectrum and to increase the amplitude of reflections 

at muscle bundle boundaries. Moreover, an increase of backscatter and reflections amplitudes 

should result in an increase of the attenuation in muscle [86;87].  

Thus far, only few studies have focused the use of spectral analysis to predict the IMF 

content of bovine muscle [76;88] and porcine muscle [89]. The latter performed analysis of 

unprocessed backscatter signals obtained with a medical diagnostic ultrasound device to 

estimate the intramuscular fat content of porcine loin muscle. Although promising results 

could be obtained (root mean squared error of prediction RMSEP = 0.36%), neither the 

instrument nor the prediction errors have yet proved satisfying for industrial use at slaughter.  

A prerequisite of a reliable ultrasound spectral analysis is an exact knowledge of the sound 

properties at the region of interest (ROI). These properties are affected by system properties, 

e.g., center frequency, bandwidth and sound field produced by the transducer, but also by 

refraction and attenuation in all tissues along the sound propagation path [90]. The 

incorporation of sophisticated calibration and correction methods is anticipated to improve the 

accuracy of ultrasound based IMF predictions [91].  

Many different models have been proposed to extract statistically averaged 

information from the backscattered radio frequency signals measured within a distinct tissue 

volume.  In  recent years, the microstructural tissue features have been successfully derived 

by fitting the measured backscatter spectrum to a theoretical backscatter model that uses form 

factors.  Form factors are functions that approximate the backscatter characteristics of a single 
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scattering structure according to geometry and elastic properties of the scatter and the 

surrounding medium [92;93].  The convergence of fitting between measured and theoretical 

predicted backscatter spectrum can be increased with some restriction of model parameters, 

e.g., with a prior knowledge of scatter size, density and relative acoustic impedance change.     

I.1.3 Specific Aims 

The specific aims are to estimate the anisotropic acoustic properties of cortical bone 

(in this study: human femur) and skeletal muscle (in this study: porcine musculus longissimus) 

at tissue level and macro level, analyze their affection by tissue composition and structural 

properties, provide them as input parameters in their FE simulation model in order to 

understand their adaption during implants and to give a proper interpretation of clinical 

techniques.   

The specific objectives of bone (human femur) measurements are     

a. Develop a new acoustic scanning procedure to determine anisotropic elastic property 

of cortical bone at tissue level.  

b. Analyze the spatial distribution of micro and macro level elastic properties of the 

entire human femur.   

c. Analyze the spatial distribution of structural parameters and the degree of 

mineralization of entire human femur. 

d. Address the relation between structural properties and bone elasticity at micro and 

mesoscale.     
 

The specific objectives of muscle (porcine musculus longissimus) measurements are 

a. Assess anisotropic ultrasonic propagation properties and material properties of single 

muscle fibers.     

b. Determine the acoustic properties of intermediate tissues (skin and fat layers) which 

lie on a sound propagation path between the transducer and the evaluated muscle 

tissue in intact carcass ultrasonic measurement to optimize the correction algorithms 

of backscattered RF signal spectral analysis.      

c. Compare ultrasonic parameters estimated at micro and macro level with compositions 

and structural parameters to find their influence.   

d. Develop a method to predict muscle composition and structural parameters by non-

destructive ultrasonic measurement. 
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I.2 Hierarchical structure of musculoskeletal tissues  

I.2.1 Cortical bone   

I.2.1.1 Cortical bone structure 

 

Figure I.1 Hierarchical structural organization of cortical bone (adapted from [94]). 

Bone is a material arranged in different hierarchical level according to the structural 

components involved.  Structure features on lower levels serve as the building blocks for 

higher levels.  Each hierarchical level contributes to the overall mechanical properties.  A 

detailed classification of the structure hierarchy across the size scales of varying length is 

shown in Fig. I.1 [94-99].  

 Whole bone – contains both cortical and trabecular bone  

 Cortical bone – microstructure of cortical bone is composed of regular, cylindrically 

shaped lamellae (osteons)  

 Osteon – building block of the cortical bone, formed by lamellae (made of 

subsequently rotated sub-lamellae ‘twisted plywood’ assembly) with Haversian 

channels  

 Fibril array – long unidirectional aligned fibrils, bond in an extra fibrillar matrix 

 Mineralized collagen fibril – semi crystalline aggregation of collagen molecules 

 Major components – mineral crystals, collagen molecules, organic molecules and 

water 
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Bone is distinguished into cortical and cancellous types at macroscopic scale.   The 

microstructure of cortical bone is composed of regular, cylindrically shaped units called 

osteons.  Its mechanical properties are influenced greatly by the porosity, the mineralization 

and the organization of collagen fibrils arrays.  It is, therefore, difficult to predict micro-

properties in vivo by measuring mechanical properties at macrostructural level.  In general, 

values for mechanical properties of bone at macrostructral level vary from one bone to 

another as well as within different regions of the same bone.    

At length scales below several microns, the variety of bone tissue are reduced to 

different mineralized collagen fibrils arrangements (Fig. I.2).  At this level, the effective 

stiffness properties of bone depend on the properties of the collagen fibril’s constituents, their 

microstructure, and orientation distribution, also the mineral content and the shape of the 

mineral particles [100].  The main classes of cortical bone are defined as woven bone and 

lamellar bone.  Lamellar bone is a laminated structure similar to plywood [101;102].  

Different theories exist as to how these laminates are organized in bone and in other natural 

occurring tissues.  Regardless, the mechanical properties are determined by the arrangement 

of the lamellae.  Osteonal bone, or Haversian bone, has cylindrical lamellae surrounding a 

central canal, known as the Haversian canal.  Haversian and Volkmann’s canals form an 

interconnected network of porosity in cortical bone tissue, serving the purposes of the 

cardiovascular and nervous systems. Osteons may be considered as fiber reinforcements 

running along the principal direction of the whole bone. In this sense, the remainder of 

cortical bone that is not osteonal bone (i.e. the reinforcements) is called interstitial bone. This 

tissue includes the remnants of old osteons that have been partially remodeled. Finally, a more 

disordered woven bone structure is formed, which has different mechanical properties from 

lamellar bone. Woven bone is typically found in young individuals. As time passes, the 

phenomenon of remodeling transforms this tissue into mature osteonal bone. Whether 

lamellar or woven, all bone tissue at this hierarchical level is comprised of mineralized 

collagen fibrils. 
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a) b) c) d) 

Figure I.2 Schematic depiction of collagen fibril array observed in different collagen-based tissues. a) Parallel 

fibril array, b) woven fiber structure, c) plywood like structure and d) radial fibril arrays[98]. 

At the nanoscale, bone consists of collagen type I molecules (triple helices of length: ~ 

300 nm and diameter: ~ 1.5 nm), self-assembled in a staggered fashion to form collagen 

fibrils with diameter of ~100 nm [98], hydroxyapatite (HA) minerals, water and 

noncollagenous proteins (NCPs) like the extrafibrillar proteins that glue together adjacent 

collagen fibrils [103]. The toughness of bone is determined mainly from a continuous 

collagen matrix.  The organization of the elementary components within the ultrastructure of 

mineralized tissues has some controversy.  This controversy concerns first the distribution of 

mineral and collagen in the ultrastructure, i.e. the question as to how much mineral is present 

inside and outside the fibrils. In fact, the ratio of extrafibrillar to intrafibrillar mineral varies 

from tissue to tissue. Second, the controversy concerns the impact of the organization of the 

elementary components on the mechanical interaction of collagen and hydroxyapatite in the 

ultrastructure.    

I.2.1.2 Mechanical models for bone 

Current experimental techniques in mechanical testing are limited to specific length 

scales and their usage requires a high amount of effort and resources. Micromechanical 

modeling of bone tissue is therefore an attractive, complementary method of investigation, 

which was used in several publications to assess the elastic stiffness properties of bone 

microstructures.   

In the past decade, mechanical models for mineralized collagen fibrils have been 

developed by several investigators.  Akiva et al. [104] calculated the stiffness of a bone 

lamella made of sub-lamellae using a platelet reinforced composite model.  Akkus [105]  used 

micromechanical methods to calculate the elastic stiffness of a mineralized fibril and 
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investigated the partitioning of applied stresses in the composite and varied mineral content 

also mineral shape and investigated the impact on the fibril properties. Yoon and Cowin [106] 

estimated the elastic constants of a single osteonal lamella in a multiscale approach with 

different micromechanical methods taking the contained water into account. Jaeger and Fratzl 

[107] and Kotha et al. [108] introduced a 2D model of a mineralized fibril with a staggered 

mineral platelet arrangement and investigated the influence of changes in geometry and 

mineralization. Hellmich et al. [21] proposed a continuum-micromechanical model 

representing collagen-mineral interaction in the elasticity of mineralized tissues as an open 

mineral foam matrix unidirectionally reinforced by collagen molecule inclusions (Eq.(I.1)).    

௨௟௧௥௔ܥ
ெ்ூ ൌ ቄሺ1 െ ௖݂௢௟ሻ ௙ܿ௢௔௠ ൅ ௖݂௢௟: ܫൣ ൅ ௖ܲ௢௟

௙௢௔௠: ൫ܿ௖௢௟ െ ௙ܿ௢௔௠൯൧
ିଵ
ቅ  

                       : ቄሺ1 െ ௖݂௢௟ሻܫ ൅ ௖݂௢௟ൣܫ ൅ ௖ܲ௢௟
௙௢௔௠: ሺܿ௖௢௟ െ ௙ܿ௢௔௠ሻ൧

ିଵ
ቅ
ିଵ

 
(I.1) 

where 	ܿ௖௢௟ and ௙ܿ௢௔௠ are stiffness tensors of collagen and mineral foam matrix.  ௖݂௢௟ is 

volume fraction of collagen molecules. ௖ܲ௢௟
௙௢௔௠ is the fourth order tensor characterizing the 

interaction between the inclusion and the matrix.  

Recently, Nikolov and Raabe [100]  developed a multiscale micromechanical model 

that leads from the mineralized fibril level to the fibril-array level. Their fibrils are coated by 

mineral to account for extra-fibrillar mineralization.  Resinger and Pahr [94] investigated the 

influence of degree of mineralization and collagen stiffness on fibril and fibril-array stiffness 

using a multiscale continuum micromechanical model.  Justin M. Deuerling et al.[109] 

predicted extracellular matrix elastic constants using the measured orientation distribution 

function for the hydroxyapatite crystals to average the contribution of misoriented mineralized 

collagen fibrils.   

The macroscopic properties measured by low frequency ultrasound are affected both 

by the elastic properties of the tissue matrix and by the porous microstructure.  Rho et al. [28] 

also found that the macroscopic modulus of cortical bone can be predicted by a combination 

of tissue porosity and the tissue "mixture" modulus.  Recently, the mechanical properties of 

cortical bone at mesoscale level has been given particular attention [110-112], in association 

with novel techniques such as nanoindentation [13] and quantitative scanning acoustic 

microscopy (SAM) [27;37;113]. These techniques give access to the elastic properties of the 
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bony matrix mentioned above. Furthermore, SAM and various microscopic imaging 

techniques give access to the structural distribution of mesoscopic porosity.   There is a need 

for reliable methods to give proper interpretation of acoustic microscope and nanoindentation 

data in terms of macroscopic elasticity. In particular, phenotyping, the investigation of 

structure–function relationships and remodeling and numerical modeling of bone response to 

mechanical loads at various length scales would all benefit from such methods.  Mathematical 

models using homogenization techniques and micromechanical methods can give excellent 

insight since they explicitly relate the effective properties to the micro/meso structural 

properties and in the final instance they give relatively accurate predictions of effective 

moduli. 

Several mechanical models proposed in the past two decades provided a great deal of 

insight into the micro– meso–macro relationships.  Recently, Baron et al. [114] and Grimal et 

al. [110] have developed numerical models to compute the elastic properties of cortical bone 

with realistic mesoscale structures derived from images.  W.J. Parnell and Q. Grimal [115] 

have developed a new model to determine effective cortical bone elasticity using asymptotic 

homogenization method by modeling the low frequency elastic wave propagation through an 

idealized material that models the local mesostructure.   

I.2.2 Skeletal muscle  

I.2.2.1 Muscle structure 

 

Figure I.3 Structural organization of skeletal muscle (adapted from www.animal.ufl.edu).  
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From the cellular to the whole muscle level, muscles are organized in a hierarchical 

manner (Fig. I.3).  

 Skeletal muscle – consists of thousands of muscle cells, blood vessels, nerve fibers 

and connective tissue wrappings; covered externally by the epimysium 

 Muscle bundle – bundle of muscle fibers surrounded by connective tissue, 

perimusium 

 Muscle fiber – array of myofibrils, stacked lengthwise; surrounded by endomysium   

 Myofibril – rod-like contractile element; composed of sarcomeres 

 Sarcomere – the contractile unit, composed of myofilaments made up of proteins 

[116] 

Each sarcomere has a band of thick filaments and thin filaments.  In the middle of the 

sarcomere called the A band.  They are flanked on both sides by thin filaments.  The thin 

filaments is anchored to the Z line in the I band in one of their end and the other end partially 

overlaps the thick filaments [51].  Due to the pattern provided by both the filaments, skeletal 

muscle is also called striated muscle. 

The central region of the sarcomere where there is no overlap between those two types 

of filaments called the H zone.  The thick filaments widen slightly at their middle portions, 

and the widened middle portions of adjacent thick filaments are in register. That is called the 

M line. The space between overlapping thick and thin filaments is connected by projections 

called cross bridges from the thick filaments.  In a cross section, each thick filament is 

surrounded by a hexagonal array of six thin filaments and each thin filament is surrounded by 

a triangular array of three thick filaments (Fig. I.4) [51].   

 

Figure I.4 One sarcomere (sectioned lengthwise) and lattice like arrangement of thick and thin filaments (1,2,3 

cross cut views) (adapted from www.physioweb.med.uvm.edu).  
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In skeletal muscle, 80% of the proteins are in the total myofibril content [117].  

Myosin and actin are the structural proteins that make up the myofibrils and are responsible 

for sarcomere contraction in living muscle and rigor mortis in the post-mortem muscle.  The 

primary composite of thick filaments is myosin.  The myosin molecule heads form the cross 

bridges between thick and thin filaments.  Thin filaments contain the contractile proteins, 

actin and other proteins, troponin and tropomyosin.  The -actin is a binding protein found in 

Z disks.   Purified -actin is a rod shaped molecule which can bundle actin filaments together 

into parallel arrays.  The protein titin run parallel to the thick and thin filamentsin the 

sarcomere and attaches the thin filaments to the Z disks.  These titin filaments are very elastic 

and hypothesized to act as springs to help keep the thick filaments centered in the Z disks.   

The myofibrillar proteins are the main water binding components in the muscle.  The 

polar structure of the water molecules causes it to be attracted by positive and negative 

charges of muscle protein. The charged and polar side groups of muscle protein tend be on the 

outside, and in contact with water.  Non-polar side groups tend to be on the hydrophobic 

interior of the protein.  Water molecules are bound by the myofilament network.  This water 

holding capacity is changes depending on the muscle pH value which affects the net charge of 

the myosin molecule. At the isoelectric point of myosin and actin, pH 5.0, where both 

negative and positive charges are almost equal, the bond between actin and myosin causes the 

myofilament lattice to shrink and expel water [118].      

The lipid has four functions in living animals: membrane structural components, 

source of energy, protective component and involvement in cellular recognition.  Plasma 

membrane is made up of two molecular layers of lipid (mostly phospholipids) such that the 

hydrophobic, non-polar, fatty acid tails (fatty acid moieties) are aligned together, leaving the 

hydrophilic, polar, head groups facing outward.  Lipids in adipose tissue contain a large 

amount of trigulceride (99%).  The triglyceride consists of all 3 hydroxyl groups on the 

glycerol molecule being esterified with a fatty acid chain [87] (smith).  Intramuscular fat is 

responsible for marbling seen in certain cuts of beef [119].  In humans, excess accumulation 

of fat is associated with insulin resistance and type 2 diabetes.  

The acoustic properties of muscle are affected by the muscle compositions percentage 

of water, fat and protein [87;89;120].  But those compositions vary for different muscle 

groups.  Since each skeletal muscle type has different compositions, it would be no surprise to 
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find differing acoustic properties.  Also, similar tissue types will produce different acoustic 

parameters depending on whether the muscle is in a diseased state.  Based on this information 

it is important to know the percentage of fat, water, and protein of the skeletal muscle under 

investigation.  

I.2.2.2 Intramuscular connective tissue 

 
a) b) 

Figure I.5 Scanning electron microscope images of intramuscular connective tissue of longissimus muscle.  a) 

The endomysium (E) shows a honeycomb structure, and perimysium (P) consists of several layers of sheets.  B) 

The adipose tissue (A) is observed between muscle fiber bundles during fattening [85].  

Intramuscular fat is deposited inside the perimysium, i.e., between the muscle fiber 

bundles [85].   During the increase of IMF, the adipose tissues are formed in perimysium (Fig. 

I.5). At this time, the ribbon like structure is appeared between the endomysium and the 

connective tissue surrounding fat cells.  This s due to disorganizations of perimysium.  The 

disorganization of the perimysium causes the partial breakdown of the honeycomb structure 

of endomysia, which is bundled by the perimysium [53;54].  Alterations of this structure and 

mechanical strength affect the homogeneity of the muscle.  
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I.3 Acoustic Theory 

I.3.1 Sound propagation in homogeneous medium 

I.3.1.1 Sound propagation  

In the following section the theoretical background of acoustic wave propagation in 

homogeneous, non-attenuated medium is considered.  Sound propagation through a medium 

creates periodic changes in pressure, density and temperature as a function of time.  The 

general wave equation describes the propagation of wave in a non attenuated medium. For the 

pressure variation: 

 
ଶ݌ ൌ

1
ଶݒ
߲ଶ݌
ଶݐ߲

, 
(I.2)

where	݌ሺݔ,  is the speed of ݒ ሻ is excess pressure as a function of distance and time andݐ

sound.  This deviation is developed from the continuity equation and the equation of motion.  

Changes in density related to changes in pressure are described by the equation of state:    

݌  ൌ ௘ݒ
ଶ, (I.3)

where ௘ is the excess density.  The pressure changes are related to a change in particle 

displacement through the equation of motion: 

 ଴
డ௨

డ௧
ൌ െ݌, (I.4)

where ଴is the equilibrium density, ݑሬԦ ൌ ොݔ௫ݑ	 ൅ ොݕ௬ݑ ൅  is the particle displacement ݖ௭̂ݑ

velocity and  is the divergence operator.  The continuity equation is based on the 

conservation of mass and describes the motion of particle which produces a change in density 

ݏ߲ 
ݐ߲
൅  ⋅ ݑ ൌ 0 

(I.5)

where ݏ ൌ ௘ ⁄   is the fractional increase in the density.   
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I.3.1.2 Transmission and Reflection 

The behavior of acoustic waves at the interface between two isotropic media can be 

described by the laws of ray optics.  The reflection and transmission of acoustic wave incident 

on a planar interface are described with the help of a specific medium parameter called 

acoustic impedance Z [121].  The impedance is the product of the density 	of a medium and 

the velocity ݒ of a given wave propagating in it. The unit of impedance is rayl [1 rayl=1 kgm-

2s-1]: 

 ܼ ൌ  ݒ . (I.6)

If the acoustic wave is incident perpendicular to the planar boundary between the mediums 

having the impedance values Z1 and Z2, then the reflection and transmission coefficients are 

described as:   

 
ܴ ൌ

ܼଶ െ ܼଵ
ܼଶ ൅ ܼଵ

, 
(I.7)

 
ܶ ൌ

2ܼଶ
ܼଶ ൅ ܼଵ

. 
(I.8)

If the wave is not perpendicular to the boundary, each refracted ray obeys Snell’s law.  This 

law may alternatively be expressed as the requirement that the tangential components of the 

wave vector be conserved across a boundary, so that ݇ଵ sin ଵ ൌ	݇ଵ sin ଶ		[121].  The 

acoustic normal impedance at the boundary is:  

 ܼ ൌ
 ݒ
cos 

. (I.9)

When the acoustic wave is travelling from fluid to solid medium, the incident wave will 

generate a reflected wave in the fluid and in the solid a longitudinal wave (݈) and a shear wave 

  :The reflection and transmission coefficients for this case  .(ݏ)

 
ܴሺሻ ൌ 	

ܼ௟cosଶ2௦ ൅ ܼ௦sinଶ2௦ െ ܼ
ܼ௟cosଶ2௦ ൅ ܼ௦sinଶ2௦ ൅ ܼ

, 
(I.10)

 
௟ܶሺሻ ൌ 	

2ܼ௟cosଶ2௦
ܼ௟cosଶ2௦ ൅ ܼ௦sinଶ2௦ ൅ ܼ

, 
(I.11)
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௦ܶሺሻ ൌ 	

െ2ܼ௦cosଶ2௦
ܼ௟cosଶ2௦ ൅ ܼ௦sinଶ2௦ ൅ ܼ

. 
(I.12)

Under the condition of normal incidence, the shear waves are not generated and the reflection 

coefficient is reduced to Eq. (I.7) 

I.3.1.3 Theory of Anisotropy  

The material which has different physical properties at different directions is 

anisotropic materials, such as bone, muscle and wood.  The constitutive equation for such a 

material is the conventional form of Hook’s law,   

 ௜ ൌ ܿ௜௝ ௝ . (I.13)

where ௜ and ௝ are the stress and strain tensor.  ݅ and ݆ indicate the orthogonal direction of the 

coordinates (݅, ݆ ൌ  ൫ܿ௜௝൯ is the elastic coefficient matrix.  The stiffness matrix [C] ofܥ  .(1,2,3

a transverse isotropic material in the standard abbreviated subscript notation has the form: 

 

ሾܥሿ ൌ 	

ۏ
ێ
ێ
ێ
ێ
ۍ
ܿଵଵ ܿଵଶ ܿଵଷ 0 0 0
ܿଵଶ ܿଵଵ ܿଵଷ 0 0 0
ܿଵଷ ܿଵଷ ܿଷଷ 0 0 0
0 0 0 ܿସସ 0 0
0 0 0 0 ܿସସ 0
0 0 0 0 0 ሺܿଵଵ െ ܿଵଶሻ/2ے

ۑ
ۑ
ۑ
ۑ
ې

. 

(I.14) 

Stress – strain relations can also be expressed in terms of the compliance tensor S such 

that, ௜ ൌ  where the compliance tensor is the inverse of the stiffness tensor.  For	௜௝௝ݏ

anisotropic material, the compliance and stiffness tensors are related to the material properties 

of Young’s modulus E, Poisson’s ratio , and the shear modulus G.  The compliance tensor of 

a transverse isotropic material is: 

 

ሾܵሿ ൌ 	

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵܧ/1 െଵଶ/ܧଵ െଷଵ/ܧଷ 0 0 0

െଵଶ/ܧଵ ଵܧ/1 െଷଵ/ܧଷ 0 0 0
െଵଷ/ܧଵ െଵଷ/ܧଵ ଷܧ/1 0 0 0

0 0 0 ଵଷܩ/1 0 0
0 0 0 0 ଵଷܩ/1 0
0 0 0 0 0 ൣ2൫1 ൅ ଵଶ൯൧/ܧଵے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

. 

((I.15) 



Chapter I:   Introduction 

 

20 

 

The indices 1 and 3 denote the directions perpendicular (x direction) and parallel (z direction) 

to the long axis of the femur.  The calculation of a sound wave scattering at plane boundaries 

has been described in [122].  The impedance measured normal to the boundary ܼ௡can be 

described in terms of traction force ௜ܶ௡and particle velocities j, 

 െ ௜ܶ௡ ൌ ሺܼ௡ሻ௜௝௝ (I.16)

 ݅, ݆ ൌ ,ݔ ,ݕ  ݖ

where ො݊ is the direction in which the impedance is measured. Eq.(I.16) can be written in 

matrix notation: 

 
െ ௜ܶ௡ ൌ

݊௜௄ܿ௄௅݇௅௝


௝, 
(I.17)

where 

 
݊௜௄ ൌ ቎

݊௫ 0 0
0 ݊௬ 0
0 0 ݊௭

0 ݊௭ ݊௬
݊௬ 0 ݊௫
݊௬ ݊௫ 0

቏, 
(I.18) 

and  

 

݇௅௝ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
݇௫ 0 0
0 ݇௬ 0
0 0 ݇௭
0 ݇௭ ݇௬
݇௭ 0 ݇௫
݇௬ ݇௫ 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

. 

 

(I.19)

The acoustic impedance matrix elements for the direction ො݊ are: 

 
ሺܼ௡ሻ௜௝ ൌ

݊௜௄ܿ௄௅݇௅௝


, 
(I.20)

where ܿ௄௅are the components of the stiffness tensor [C] and  ൌ 2 is the radian frequency. 

The impedance coefficients in symmetry directions x and z are: 

 ሺܼ௡ሻ௫௫ ൌ ܿଵଵ݊௫݇௫ ൅ ܿ଺଺݊௬݇௬ ൅ ܿହହ݊௭݇௭ ൅ ܿହ଺ሺ݊௬݇௭ ൅ ݇௬݊௭ሻ ൅ ܿଵହሺ݊௭݇௫

൅ ݇௭݊௫ሻ ൅ ܿଵ଺ሺ݊௫݇௬ ൅ ݇௫݊௬ሻ 

(I.21)
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 ሺܼ௡ሻ௭௭ ൌ ܿହହ݊௫݇௫ ൅ ܿହହ݊௬݇௬ ൅ ܿଷଷ݊௭݇௭ ൅ ܿଷସሺ݊௬݇௭ ൅ ݇௬݊௭ሻ ൅ ܿଷହሺ݊௭݇௫

൅ ݇௭݊௫ሻ ൅ ܿସହሺ݊௫݇௬ ൅ ݇௫݊௬ሻ 

 (I.22)

For a compressional wave propagation in the x-direction ݇௫ ൌ

ುೣ

, ݇௬ ൌ ݇௭ ൌ 0, ݊௫ ൌ

1, ݊௬ ൌ ݊௭ ൌ 0.  ௉௫	is the phase velocity of the longitudinal wave.  Therefore Eq. (I.21) 

becomes 

 ሺܼ௡ሻ௭௭ ൌ ܿଵଵ݇௫, (I.23)

which can be written in the form: 

 ሺܼ௡ሻ௫௫ ൌ ඥܿଵଵ.   (I.24)

Similarly, the impedance for a compressional wave propagating in the z- direction is: 

 ሺܼ௡ሻ௭௭ ൌ ඥܿଷଷ.  , (I.25)

Eq. (I.24) and Eq. (I.25) show that if the wave propagation direction and particle displacement 

are normal to the interface and the propagation direction is parallel to the direction i, the 

acoustic impedance normal to the surface (Zn)ii is directly proportional to the elastic 

coefficient cii and the mass density . Eq. (I.21) and Eq. (I.22) are valid for the general 

anisotropic case.  Therefore, the impedance for the propagation not parallel to the elastic 

symmetry axes can easily be obtained by rotation of the elastic stiffness tensor [122].  For the 

transverse isotropic case, rotation in the xz plane yields [123]:  

 ܿሺሻ ൌ ܿଷଷܿݏ݋ସ൅ 2ሺܿଵଷ ൅ 2ܿସସሻ݊݅ݏଶܿݏ݋ଶ൅ ܿଵଵ݊݅ݏସ	. (I.26)

where   is the rotation angle. It can be seen that ܿሺ0௢ሻ ൌ ܿଷଷ and	ܿሺ90௢ሻ ൌ ܿଵଵ.  Combining 

Eq. (I.25) with Eq. (I.26) gives 

 ሺܼ௡ሻ ൌ ඥܿሺሻ.  . (I.27)
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I.3.2 Sound propagation in an inhomogeneous medium 

In consideration of sound propagation in real media, it is necessary to start from 

inhomogeneous, attenuating media.  Attenuation is the result of conversion of sound energy 

by absorption and scattering.  The following section describes the mechanisms of absorption 

and scattering. 

I.3.2.1 Scattering 

The scattering of sound waves is the redirection of sound that takes place when waves 

encounter an obstacle (scattering particle) or non-homogeneity.  It can be defined as changes 

of amplitude, frequency, phase velocity or the direction of propagation as the result of an 

obstacle in the medium.  The basic concept introduces the scattered pressure wave composed 

of the actual pressure wave minus the undisturbed wave [124-126].  The shape and intensity 

of scattered field depends mainly on the shape of the scatterer, its compressibility and density 

as well as it physical expansion.  For large particles ݇ܽ ≫ 1 compared with the wavelength, 

sound is considered to be reflected and diffracted rather than scattered as shown in section 

(I.3.1.2).  The concept of scattering in the narrow sense refers to cases where ݇ܽ		1 (Mie 

scattering) or ݇ܽ ≪ 1 (Rayleigh scattering).  Often, the ratio of total diffuse power ܦ௦௧௥ to the 

intensity of incident wave ܫ଴ called effective scattering cross section ௘௙௙  is used as a 

measure for the characterization.   

For the case ݇ݎ ≫ 1 (large distance to the observation point r) and ݇ܽ ≪ 1 (Rayleigh 

scattering), the scattered wave intensity at a scattering particle is: 

 
ோ௔௬௟௘௜௚௛ܫ ൌ ଴ܫ

ସܽ଺

ଶݎସݒ9
ቆ
ଵ െ ଶ
ଵ

൅ 3
ଶ െ ଵ
2ଶ ൅ ଵ

ቇݏ݋ܿ
ଶ

. 
(I.28)

The scattered intensity is proportional to the fourth power of the frequency and the sixth 

power of radius of the particle.  The ௜ compressibility and the densities ௜ only influence the 

angle at which the scattering is zero. The effective scattering cross section is: 

 
௘௙௙ ൌ

4ସܽ଺

ଶݎସݒ9
൭ฬ
ଵ െ ଶ
ଵ

ฬ
ଶ

൅
1
3
ቤ
3ଶ െ 3ଵ
2ଶ ൅ ଵ

ቤ
ଶ

൱.
(I.29)
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For the case ݇ܽ ≪ 1,  ௘௙௙ is only a fraction of the scatterer cross-sectional area. For the 

case	݇ܽ ൌ 1, which corresponds to Mie scattering, leads to complicated results. The simplest 

solution is obtained for the case of a non-compressible particle ( infinite) for ݇ܽ ≫ 1 and 

ݎ݇ ≫ 1	[127]: 

 
ெ௜௘ܫ ൌ ଴ܫ

ܽଶ

ଶݎ4
൭1 ൅ ݐ݋ܿ


2
ଵܬ
ଶሺ݇ܽ ሻ൱݊݅ݏ , 

(I.30)

where ܬଵis the Bessel function of first order. In contrast to Rayleigh scattering, here the 

frequency dependence is given by a complicated form in the square of the Bessel function.  

Also the scattering parameter ݇ܽ has a different effect on the shape of the scattering field.  

I.3.2.2 Absorption 

While sound is propagating through a medium, wave is attenuated by converting some 

of the sound wave into heat.  Absorption is the result of various physical phenomena that 

occur in the propagation of ultrasonic waves in a real attenuating medium.  The weakening of 

the wave by absorption increases with propagation length, shown in Eq. (I.31) based on the 

intensity: 

ܫ  ൌ ଴݁ି௫ܫ , (I.31)

where  is the absorption coefficient and I is the intensity.  The main absorption mechanisms 

are viscous losses, heat conduction and relaxation processes.  In fluids, resistance to sound 

wave penetration is called viscosity.   

 

 ൌ

ݒ
1

√2
ඨඥ1 ൅ ሺሻଶ െ 1

1 ൅ ሺሻଶ
, 

(I.32) 

where  refers to the viscous losses caused by absorption and  the relaxation time.  Another 

mechanism of absorption is caused by heat.  The classical absorption coefficient is composed 

of two derivatives developed by Stokes and Kirchoff including the viscous and thermal 

conductivity losses of the media.   
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௖௟௔௦௦௜௖௔௟ ൌ

ଶ

2଴ݒ
ଷ ቈ
4
3
൅ ሺ െ 1ሻ


ܿ௣
቉, 

(I.33)

where  is the shear viscosity, the heat capacity of  and  is the ratio of the specific heat 

capacity at constant pressure ܿ௣ and constant volume ܿ௏.  The bulk of the energy conversions 

are caused by chemical, thermal and structural absorption mechanisms.  These are also known 

as bulk viscosity [128].    

I.3.3 Sound propagation in biological tissue  

Ultrasonic wave propagating through biological tissue is affected by tissue structures 

that have a varying compressibility and density at different length scales.  The amplitude of 

the original sinnal becomes attenuated as the depth of penetration increases.  Attenuation in 

the biological tissue is due to absorption, reflection and scattering at interfaces between tissue 

layers.   

I.3.3.1 Reflection    

Reflection in biological tissue is predicted by the difference in acoustic impedance of 

the various tissue types at the interface (i.e., the degree of impedance mismatch).  The higher 

the degree of acoustic impedance mismatch is greater the amount of reflection.  Due to 

extremely lower acoustic impedance of air relative to biological tissues, the degree of 

reflection is high at the air/tissue interface.  For this reason, it is important to apply 

conducting gel (an acoustic coupling medium) on surface of transducer to eliminate any air 

pockets between the transducer and the skin surface.  Otherwise most of the ultrasound waves 

will be reflected limiting tissue penetration.   
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I.3.3.2 Scattering         

 

Figure I.6  Scattering geometry showing the transducer active surface ST and the volume Vs enclosing the 

scatterers [129]. 

More information about the physical properties of tissue used in diagnostic ultrasound 

originates from scattering processes.  Tissue identification and clinical diagnosis are routinely 

performed by the observation of scattered ultrasound.  Due to the relevance of the scattering 

processes to the echo and transmission imaging techniques, nowadays research in ultrasonic 

tissue characterization aims at describing tissue microstructure through the analysis of the 

backscattered signal.  The theory behind the scattering process in the biological tissue is 

explained below.    For sound propagation through typical tissues without hard inclusions, the 

variations  and  in density  and compressibility  are small around mean values ଴ and 

଴ with relative variation  and:   

  ൌ ଴ ൅  

  ൌ ଴ ൅  

  ൌ /଴ 

  ൌ /଴. (I.34)

In this case, sound propagation can be described by the wave equation for inhomogeneous 

media for pressure variation ݌൫ݎ,  :and time t [124] ݎ ൯ at pointݐ

 
ଶ݌ െ

1
ܿ଴
ଶ

߲ଶ݌
ଶݐ߲

ൌ
1
ܿ଴
ଶ

߲ଶ݌
ଶݐ߲

൫ݎ, ൯ݐ ൅ ൫ݎ, ൯ݐ .݌ . 
(I.35)
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With the first Born approximation, the wave equation for the Fourier transformed pressures 

௜ܲ൫ݎ, ,ݎ൯ and ௦ܲ൫ݐ   :൯ can be expressed as (where i –incident wave and s - scattered wave)ݐ

 ଶ
௦ܲ ൅ ݇ଶ ௦ܲ ൌ െ݇ଶ௞൫ݎ൯ ௜ܲ ൅ ൫ݎ൯ . ௜ܲ . (I.36)

The solution can be found by the volume integral over a volume Vs containing all 

contributing scatterers (Fig. I.6): 

 

௦ܲ൫ݎ,൯ ൌ න ݇ଶ௞൫̃ݎ൯ ௜ܲ൫̃ݎ,൯݃൫ݎห̃ݎ,൯ ൅
௏ೞ

 ௜ܲ൫̃ݎ,൯ .݃൫ݎห̃ݎ,൯݀ଷ̃ݎ, 
(I.37) 

where  ݃൫ݎห̃ݎ,൯ is the three dimensional free space Green’s function and the gradient 

operator is with respect to ̃ݎ.  When the observation point is far away from the scattering 

volume Vs, the approximation: 

 ݃൫ݎห̃ݎ,൯  െ ݆݇௦݃൫ݎห̃ݎ,൯, (I.38)

holds, where ݇௦ points in the direction of ݎ െ  i.e., from the scatterers to the observation ,ݎ̃

point and ቚ݇௦ቚ ൌ ݇.  When the scattering volume is further away than the transducer radius, 

the incident wave can be approximated locally by a plane wave and: 

  ௜ܲ൫ݎ,൯  െ ݆݇௜ ௜ܲ൫ݎ,൯, (I.39)

can be used.  Here ݇௜ is the wave vector of the incident field with magnitude k.  In this case 

the solution can be simplified further to 

 
௦ܲ൫ݎ,൯ ൌ

௞మ

ସ ׬ ௞൫̃ݎ൯ ௜ܲ൫̃ݎ,൯
ୣ୶୮൫௝௞ห௥ି௥̃ห൯

ห௥ି௥̃ห௏ೞ
݀ଷ̃ݎ, (I.40)

with the joint inhomogeneity function 

 ௞൫̃ݎ൯ ൌ ሺ௞൫̃ݎ൯ ൅ ൫̃ݎ൯
௞೔ .௞ೞ

௞మ
ሻ. (I.41)

Many different models have been proposed in order to extract statistically averaged 

information from the backscattered radio frequency signals measured within a distinct tissue 

volume.  In recent years, the microstructural tissue features have been successfully derived by 
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fitting the measured backscatter spectrum to a theoretical backscatter model that uses form 

factors [92;93].  Form factors (FF) are functions that approximate the backscatter 

characteristics of a single scattering structure according to geometry and elastic properties of 

the scatter and the surrounding medium [93].  The backscattered ultrasound signal from tissue 

can then be modeled by the superposition of scattered waves (approximated by the FF) from 

scatterers with a specific size, shape and distribution [92;93;130;131]. Commonly used form 

factors for biological tissues are the Gaussian, the fluid sphere, and the spherical shell, all 

describing spherically symmetric shapes [132].  For example, the theoretical power spectrum 

of an ensemble of Gaussian scatterers has a closed form solution 

 
௧ܹ௛௘௢௥ሺ݇ሻ ൌ ቆ

ܽ௘௙௙
଺ ௥௘௟ݖ݊

ଶ

36ସ
ቇ ݁ି଴.଼ଶ଻௞

మ௔೐೑೑
ల

 
(I.42)

where ܽ௘௙௙ is the average scatter radius and ݊ݖ௥௘௟
ଶ is the scatter concentration.  Many 

biological structures are anisotropic in terms of structure and elastic properties, form factors 

can be easily changes according to that.    

I.3.3.3 Absorption 

Attenuation of tissue is caused by scattering and absorption.  The exact relaxation 

processes responsible for absorption in tissue are difficult to model.  For this reason 

attenuation in tissue is measured and a parametric model is fitted to the data.  To take 

absorption in biological tissue into account, wave equation (I.37) must be solved for a 

frequency-dependent complex compressibilityሺሻ ൌ ᇱሺሻ െ ᇱᇱሺሻ.  However, the 

imaginary part of the wave vector due to attenuation is small in comparison to the real part, 

allowing the attenuation to be handled as a small perturbation.   

For the homogeneous wave equation in an absorbing medium for a wave propagating 

in positive z direction, the solution is: 

 ܲሺ, ሻݖ ൌ ଴ܲexpሺെ݆݇ݖ െ ሺሻ െ ݆௠௜௡ሺሻሻ, (I.43)

with ሺሻ describing the frequency dependent attenuation and ௠௜௡ሺሻ representing the 

phase caused by the dispersive attenuation due to the Kramers-Kronig relation: 
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௠௜௡ሺሻ ൌ

1

න

ሺ෥ሻ
෥ଶ െ ଶ

݀

ା

ି

෥ . 
(I.44)

In biological tissues  is small in comparison to ݇ݖ.  Therefore, absorption can be 

written for in the received voltage signal by multiplying with the attenuation term 

expሺെ2ሺሻݖሻ corresponding to the depth z in which the factor of 2 accounts for the signal 

being attenuated on the way to the scatter and back to the transducer.   

As the attenuation coefficient ሺሻ is usually not derived analytically but can only be 

measured, different models exist to characterize the frequency dependence of tissue.  For a 

wide range of ultrasound frequency a power function can be fitted to ሺሻ: 

 ሺሻ ൌ  ቚ

2
ቚ

. 

(I.45)

While for water  is two, in biological tissues  is mainly in the range from 1 to 1.5.  When 

the bandwidth of the ultrasonic system is not too large, the power law is often approximated 

by a linear relationship in the investigated frequency interval around a center frequency௖. 

 ሺሻ ൌ ଵ
ି೎
ଶ

൅ ଴ . (I.46)

In the above sections, the theory behind the sound propagation along homogeneous, 

inhomogeneous and biological tissue was explained.  The wave propagation along biological 

tissue depends on their structures and compositions.  Acoustic properties of some of tissues 

are summarized in  
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Table I.1 Acoustic properties of some of biological tissues from the literatures [133-135] 

Tissue 
Speed of sound 

         [m/s] 
Density 

[kg/cm3]
Attenuation 

       [dB/MHz/cm] 
Impedance

          [Mrayl]

Water (37°C) 1523 0.994 0.002 1.52

Fat 1473 0.920 0.63 1.34

Muscle 1580 1.070 1.3 1.71

Liver 1550 1.060 0.94 1.65

Brain 1562 1.030 2.5 1.66

Bone 4080 1.810 15.0 7.8
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II Materials and Methods 

II.1 Complementary methods 

II.1.1 Synchrotron radiation - µCT 

The most important clinical measure for the diagnosis of metabolic bone changes and 

the quantitative evaluation of fracture risk is the so-called bone mineral density (BMD) [136]. 

However, the bone strength does not only depend on mineral density; microarchitectural 

properties play a major role in it [137;138].  Boivin and Meunier [139] assessed the degree of 

mineralization of bone (DMB) which in addition to the amount of bone tissue and 

microarchitectural organization, presumably determines bone strength using quantitative 

microradiography.  The evaluation of DMB was shown to be interesting for precise 

understanding of the therapeutic action of agents for bone diseases.  In particular, synchrotron 

radiation micro computed tomography (SR-µCT) provides 3D images with spatial resolution 

of one micron.  Moreover, the use of a monoenergetic synchrotron beam which averts beam-

hardening effects allows quantitative measurements of the DMB of bone samples.  Indeed, the 

reconstructed gray values of tomographic images correspond directly to a map of the linear 

attenuation coefficient within the sample [140].  Since the absorption depends on the amount 

of mineral content (i.e. hydroxyapatite (HA)), a calibration method (Eq. (II.1)) using 

homogenous water solutions of different concentration of dipotassium hydrogen phosphate 

ܲܪଶܭ) ସܱ), often employed for replacing HA in the medical routine was proposed to evaluate 

the three-dimensional distribution of the degree of mineralization within the sample [10].     

 ሺܧሻ௪௔௧௘௥,௦௔௟௧ ൌ ሾܣா ൅ ሺെ 1ሻ. .ாሿܤ ܿ ൅ ா௪௔௧௘௥ (II.1)ܤ

where ሺܧሻ௪௔௧௘௥,௦௔௟௧ is linear attenuation coefficient of the solution. ܣா	and	ܤா	 are mass 

attenuation coefficients of salt and water respectively and ࢉ is concentration of salt.     
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II.1.2 Histology 

In biology and medicine, histology has been used for several years to visualize or 

differentially identify microscopic structures through the use of histological stains.  It is 

performed by examining a thin slice of tissue under a light microscope or electron 

microscope.  Skeletal muscle has three types of fiber depending on their functional properties, 

e.g., force of contraction, velocity of shortening and endurance [141].  They are: slow twitch 

oxidative (STO) with high endurance to fatigue, fast twitch oxidative (FTO) also enduring but 

with greater metabolic diversity and fast twitch glycolytic (FTG) with limited endurance but 

quick response.  All these functional properties vary according to molecular and cellular 

differences between myofibers.  The muscle fiber shortening speed will depend upon the 

speed of the molecular interactions between actin and myocin, and this depends upon the 

ATPase in the myosin molecules.  The fatigability of a myofiber depends upon its ability to 

produce quantities of ATP rapidly enough to supply the contractile demand.  ATP can be 

produced slowly and continuously by oxidative means, or rapidly for short periods by 

glycolysis. To differentiate between those functional property dependent muscle fibers, 

modified ATPase/NADH-TR staining is performed [142].  Depending on the types of ATPase 

and metabolic enzymes existing in muscle fibers, this type of staining shows various colors 

(Fig. II.1).      

 

Figure II.1  ATPase/NADH-TR stained histology.  The dark gray corresponds to STO, intermediate gray to FTO 

and light gray to FTG.  The white is from connective tissue.   
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II.1.3 Chemical analysis  

The muscle constituents e.g., water, protein and fat were determined by chemical 

analysis.  Depending on the physical and chemical properties of individual constituents, 

different chemical analysis techniques were performed.  In this study, meat quality trait 

related chemical parameters were focused on, such as dry matter, intramuscular fat, protein 

and drip loss.  All these parameters were determined using standard procedure accordance to 

German Food Legislation [143].  Dry matter is the measurement of mass of tissue when 

completely dried using sea sand (Eq. (II.2)).  After removing the dry matter amount from the 

raw muscle tissue mass, the remaining mass corresponds to amount of water content.     

 
ݕݎ݀ %	ݎ݁ݐݐܽ݉ ൌ

݈݁݌݉ܽݏ ݐ݄݃݅݁ݓ ݎ݁ݐ݂ܽ ݀݁݅ݎ݀
݈݁݌݉ܽݏ ݐ݄݃݅݁ݓ ݁ݎ݋݂ܾ݁ ݀݁݅ݎ݀

ݔ 100 
(II.2) 

The amount of intramuscular fat is determined by ether extraction.  First, the sample is 

pre-treated with HCL and filtered.  The filtrate is extracted with petroleum ether using a 

Soxtherm-apparatus [87].  The loss in weight of the sample is the ether extracted material or 

intramuscular fat %.  Protein content is determined by oxidative digestion. Drip loss is 

measured using the EZ drip-loss method [144].  For this, samples were stored in plastic 

containers for 48 H at 4°C.  Drip loss is given as the percentage amount of the weight lost 

compared to the weight of the sample before storage.   All these chemical parameter were 

determined from homogenized samples. 

II.2 Scanning acoustic microscopy principle 

The main hardware components of the scanning acoustic microscope (SAM) are 

shown in the diagram (Fig. II.2): a three-axis high-precision scanning stage, a 200- MHz 

pulser/receiver (Panametrics 5900PR, Waltham, MA), spherically focused transducer 

(V605/60°: Valpey Fisher, Hopkinton, MA; V611: Valpey Fisher, Hopkinton, MA; V311: 

PANAMETRICS, Waltham, USA) and a PC containing two A/D-cards (8 bit AD-card 

CS8500 and 12 bit AD-card CS12400 , Gage Applied Technologies, Inc., Lachine, Mon, 

Canada). All components are controlled by custom software (SAM200; Q-BAM, Halle, 

Germany).   
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Figure II.2  Block diagram of scanning acoustic microscope [128]. 

The samples were completely immersed in a temperature controlled tank filled with 

distilled, degassed coupling fluid at desired temperature. The transducer focal plane was 

placed on the sample surface or inside the sample depended upon the acoustic parameter 

estimation.  Finally, the C-scans were acquired with desired increment along the X and Y 

directions depending on the transducer beam resolution, whereas for each scanned point, the 

entire pulse-echo signal was stored.   

The lateral resolution of spherically focused transducer, Dlateral with numerical aperture 

(N.A. = a/ROC) is determined by the -6 dB transmit-receive beam width in the focal plane 

(Fig. II.3).  
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Figure II.3  Sound field distribution of spherically focused transducer [128]. 

 
௟௔௧௘௥௔௟ܦ ൌ 1.028 

ܥܱܴ
2ܽ

 
(II.3)

where, λ is the acoustic wavelength, ROC is the transducer’s radius of curvature and a is the 

radius of the transducer, respectively.  

The depth of focus Fz, is the distance between points along the beam axis where the 

intensity is 3 dB less compared to the focal point is: 

 
௭ܨ ൌ 7.08  ൬

ܥܱܴ
2ܽ

൰
ଶ

 
(II.4)

The pulse-echo sound field characteristics were determined by the wire technique 

[145] and are summarized for all spherically focused transducers used in this study in Table 

II.1. 

For spherically focused sound fields the condition of plane wave propagation can be 

approximated in the focal point [25;146].  At this point the incoming waves from the 

transducer are in phase and all shear wave components are diminished.  Therefore, if the 

boundary between a liquid and an anisotropic material is placed in the focal plane normal to 

the sound beam axis, the acoustic impedance in the direction normal to the boundary is 

determined by Eq. (I.27) and the reflection coefficient becomes: 

 
ܴ ൌ

ܼଵ െ ܼ଴
ܼଵ ൅ ܼ଴

 
(II.5)
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where ܼ଴ and ܼଵ are the acoustic impedance of liquid and anisotropic material respectively.  

Eq. (II.5) shows that the acoustic impedance can be calculated from confocal reflection 

amplitude measured with acoustic scanning system.   

Table II.1 Pulse echo beam parameters [128;147]. 

Manufacturer 

Model 

Valpey Fisher 

V605/60 (50 MHz) 

Valpey Fisher 

V611 (100 MHz) 

PANAMETRICS 

V311 (10 MHz) 

Medium Water PBS PBS 

Temperature 25 36 36 

Pulse duration ((-20 dB)) 46.0 ns 35.0 ns 110 ns 

Center frequency 44.9 MHz 74.0 MHz 10.6 MHz 

f1 (-6 dB) 26.0 MHz 35.0 MHz 6.8 MHz 

f2 (-6 dB) 63.9 MHz 113.0 MHz 14.5 MHz 

Depth of focus (-6 dB) 169 µm 89.75 µm 14420 µm 

Confocal beam diameter 

(-6 dB) 

23 µm 20.2 µm 640 µm 
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II.3 Cortical Bone 

II.3.1 Sample preparation  

 

 
 

Figure II.4  Schematic overview of cortical bone sample preparation from femur segments and orthogonal 

coordinate system for cortical bone [148]. 

The shaft of one human femur (female, 72 years) was divided into 14 cross sections 

from proximal to distal of thickness approximately 22 mm with a diamond saw (Exakt – 

Trennschleifsystem Makro, Exakt Apparatebau, Norderstedt, Germany). Section 1 

corresponds to the section closest to the hip and section 14 to the section closest to the knee.  

All sections were fixed and dehydrated in a graded series of ethanol (70%, 96% and 100% 

ETOH, immersion for 24 hours in each solution) and embedded in polymethylmethacrylate 

(PMMA) [148].  This procedure ensured that the water content was completely replaced by 

the embedding material.  Then the discs were further divided into four parts from posterior, 

medial, anterior and lateral sections.  To estimate complete anisotropic properties of cortical 

bone, cylindrically shaped samples with a diameter of 4.4 mm and its orientation of the long 

axis parallel to the radial axis of the femur shaft were drilled from all sections using a high 

precision lathe equipped with a diamond milling knife (Fig. II.4).  The final surface 

smoothness was obtained by grinding with successively decreasing grain size (SiC paper 

#2400 and #4000; Struers GmbH, Willich, Germany). 
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II.3.2 Microscopic elastic properties estimation  

II.3.2.1 Data acquisition 

Before preparing cylindrical samples, all the cross sectional and traverse sectional 

samples were scanned with scanning acoustic microscope.  In this case, the SAM described in 

(Sec. II.2) was equipped with spherically focused 50 MHz transducer (V605/60°, Valpey 

Fisher, Hopkinton, USA).    The -6 dB pulse-echo field of the transducer was determined by 

measuring the scattered signal from a 10-µm diameter tungsten wire reflector translated 

throughout the focal region [145].  The sound field characteristics of the transducer are 

summarized in Table II.1. 

The samples were completely immersed in a temperature controlled tank filled with 

distilled and degassed water at 25°C [27].  The sample surfaces were placed in the focal plane 

of the transducer.  C-scans were acquired.  The entire pulse echo signal was stored for each 

scanned point. A scan increment of 16 µm was chosen for the acquisition. 

 

 

Figure II.5  Experimental configuration for the femur cylinder scans [36]. 

For complete anisotropic property estimation of cortical bone from cylindrical sample, 

a rotational stage (DT-80; Micos GmbH, Eschbach, Germany) and a custom made sample 

holder were attached to the microscope (Fig. II.5). This setup allowed precise rotation of the 

cylinders in a temperature controlled water tank.  The distilled and degassed water at 25°C 

used as coupling fluid.   
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For automatic eccentricity-compensated scans of the cylinder surfaces a new scanning 

procedure was developed and implemented in the microscope control software (Fig. II.6a). 

First, a V(,t) scan measured the time-of-flight (TOF) of the cylinder surface reflection at the 

centre of the manually selected x-scan range as a function of the rotation angle  (Fig. II.6b). 

From the TOF the eccentricity of the cylinder long axis relative to the rotation axis was 

calculated.  If the maximum variation of the transducer-sample distance due to an imperfect 

alignment with the rotation axis exceeded 50 µm, a readjustment of the sample was required.  

Otherwise for each rotation angle  the y- and z coordinates with the best alignment of the 

focal point of the transducer with the cylinder surface were calculated. 

For mapping the acoustic impedance at the cylinder surface successive scans in the x 

direction were acquired while the cylinder was rotated stepwise (V(x,,t) scan). After each x-

scan the transducer was repositioned in the y and z directions. The radio frequency (RF) 

signals were captured every 20 µm and every 0.5° in x- and  directions, respectively. The 

rotation step size corresponds to a lateral distance of 19.2 µm between two sampled points at 

the surface of the cylinder. 

 
 

a) b) 

Figure II.6  Eccentricity compensation (a).  From the TOF() measured in the central region of the cylinder the 

deviation from the confocal TOF (17.55 µs) and hence the necessary correction in y and z directions were 

estimated.  The TOF() with eccentricity compensations shows an almost perfect confocal alignment. The entire 

surface reflectivity reconstruction of the sample is shown in (b) [36]. 
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II.3.2.2 Impedance estimation  

a) b) 

Figure II.7  Band-pass filtered confocal pulse-echo signal (gray) and Hilbert-transformed envelope signal 

(black) obtained from a PMMA sample (a).  The amplitude of the Hilbert-transformed signal (circle) was used 

for the impedance estimation.  The unfiltered (gray) and filtered (black) power spectra in (b) show the 

elimination of the DC component by the applied band-pass filter [36]. 

All RF signals were band-pass filtered with cut-off frequencies of 5 and 90 MHz using 

a zero-phase type II Chebyshev filter to remove the DC component as well as unwanted 

signals outside the bandwidth of the transducer (Fig. II.7) [27;37;145;149]. For homogenous 

reference materials (TPX, polystyrene, polycarbonate, PMMA, suprasil, aluminum, 

titanium) the pulse echo signal was measured as a function of the sample-transducer distance.  

A decrease of the reflection amplitude due to a small defocus can be compensated by a TOF 

dependent correction function [4;27;37;150].  The defocus corrected amplitudes of the 

Hilbert-transformed envelope signals were correlated with the known reflection coefficients 

of the reference materials, as described elsewhere [4;27;37].  Briefly, the amplitudes of the 

envelope signals were converted to decibels (0 dB corresponds to the confocal echo 

amplitude).  For each transducer-sample distance the TOF and the corresponding normalized 

intensity were determined (Fig. II.8). It can be seen that the standard error of the correction 

function increases with increasing defocus.  Thus, only the TOF range, where the uncertainty 

results in a relative error of the impedance estimation of less than 1% (for an average 

impedance of Z = 8 Mrayl in bone tissue), was accepted for a defocus correction.  For echoes 

measured within the accepted range the TOF was used to estimate the confocal reflection 
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amplitude. After defocus correction the echo amplitudes were converted into corresponding 

acoustic impedance values using Eq. (II.1).  The above mentioned impedance estimation 

procedure was performed for both femur cross sectional and cylindrical samples.   

 

 

Figure II.8  Defocus correction function (mean and standard error in dB).  The gray area corresponds to the 

range, for which the uncertainty of the defocus correction results in relative error of the impedance estimation of 

less than 1% [36]. 

II.3.2.3 Image segmentation  

To evaluate the impedance of the bone tissue, all voids filled with the embedding 

material, e.g., Haversian canals had to be excluded from further analysis.  Theoretically, the 

best segmentation using thresholds is obtained if the threshold value Zthreshold is: 

 
ܼ௧௛௥௘௦௛௢௟ௗ ൌ

ܣܼ ൅ ܼ஻
2

, 
(II.6)

where ZA and ZB are the impedance values of the materials to be included and excluded, 

respectively.  The segmentation is achieved by considering only pixels with impedance values 

larger than Zthreshold.  In bone the impedance values vary with respect to the probing angle, 

while the impedance of PMMA is independent of  [27].  Moreover, the impedance values of 

osteonal tissue are considerably smaller than those of interstitial tissue [4].  A typical 

impedance value measured in cortical bone shows a narrow distribution of the impedance 

measured in the voids (ZPMMA) and a broad distribution (ZB) that is composed of the 
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impedance values measured in osteonal and in interstitial tissue (Fig. II.9).  As an 

approximation of the impedance value of osteonal tissue needed to calculate the threshold, we 

used: 

 
ܼ௧௛௥௘௦௛௢௟ௗ ൌ

ܣܯܯܼܲ̅ ൅ ሺܼ̅ܤ െ ሺܼ஻ሻሻܦܵ
2

, 
(II.7)

where ܼ̅௉ெெ஺ and ܼ̅஻ are the mean impedance values inside the cavities (which are filled with 

the embedding material PMMA) and in the bone matrix, respectively.  ൫ܼ̅஻ െ  ሺܼ஻ሻ൯ is theܦܵ

approximated mean impedance value of the osteonal tissue, and ܵܦሺܼ஻ሻ is the standard 

deviation of the impedance distribution measured in the entire bone matrix, i.e. osteonal and 

interstitial tissue.  Zthreshold was calculated by an iterative procedure. First, a fixed threshold of 

4.0 Mrayl was used for a coarse segmentation.  The mean impedance value of the voids 

ܼ̅௉ெெ஺  was calculated from all pixels with impedance values below the threshold.  The mean 

ܼ̅஻  and standard deviation ܵܦሺܼ஻ሻ  of bone tissue were calculated from all pixels with 

impedance values above the threshold. From these values the threshold value Zthreshold for the 

final segmentation was calculated using Eq. (II.7). 

 

a) b) 

Figure II.9  The threshold estimation draft shows the impedance along a line trough a typical structural unit in 

cortical bone (a).  An osteon (OS) with a central Haversian canal (HC) is surrounded by interstitial tissue (IS).  

An impedance histogram (b) shows a sharp peak corresponding to the impedance of the embedding material and 

a broad distribution for the values measured in the bone matrix, i.e. osteonal and interstitial tissue.  The 

impedance of osteonal tissue needed for the segmentation was approximated as ࢆഥ࢙࢕	ࢆഥ࡮ െ  ,ሻ.  Moreover࡮ࢆሺࡰࡿ

boundary pixels with artificially altered impedance values (indicated in dark gray) were removed from the 

impedance estimation by eroding the segmentation mask [36]. 
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a) b) 

Figure II.10  Acoustic impedance maps of a) cross section sample from 29.7% of femur length and b) transverse 

section from posterior quadrant region.   

To further minimize the influence of the transducer’s limited lateral resolution, the 

transient area between the cavities and bone were excluded by eroding the threshold binary 

masks with a disk of radius 2 pixels [37].  An example of the surface impedance map for cross 

and transverse sectional sample is shown in Fig. II.10. 

To evaluate the angular dependence of the impedance of the bone tissue from the 

cylindrical sample, Zthreshold () were estimated and applied in the impedance image for each 

probing angle by an iterative procedure:   

 
ܼ௧௛௥௘௦௛௢௟ௗሺሻ ൌ

ܼ௉ெெ஺ ൅ ቀܼ஻ሺሻቁ െ ൫ܼ஻ሺሻ൯ܦܵ

2
. 

(II.8)

Finally, the threshold binary masks were eroded with a disk of radius 2 pixels. The remaining 

pixels were averaged for each probing angle.  An example of the surface impedance map 

after segmentation is shown in Fig. II.11. 

With the assumption of orthotropy or transverse isotropy the elastic symmetry axes of 

the bone tissue are parallel and perpendicular to the femoral long axis and the angular 

dependent acoustic impedance values ܼ̅஻ሺሻ are symmetric about the symmetry axes. In order 

to determine the orientation parallel to the femoral long axis, ܼ̅஻ሺሻ was divided into two 

adjacent 180°-sections ݔ ൌ ܼ̅஻ሺ
∗ሻ and ݕ ൌ ܼ̅஻ሺ

∗∗ሻ, where * = 0,…,0°+180°, 
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** = 0+180°,…,0°+360°, and 0 is an arbitrary angle. The maximum of the cross 

correlation function Rxy(m) between x and the flipped version of y is: 

 ݉௠௔௫ ൌ arg݉ܽݔ௠ ܴ௫௬ሺ݉ሻ. (II.9)

 

  

a) b) 

 

c) 

Figure II.11  Unwrapped acoustic impedance from the surface of the cylindrical sample a). Black and gray 

regions in b) correspond to the voids excluded by the segmentation procedure.  The Z(θ) plot c) shows the mean 

tissue impedance as a function of the probing angle θ.  Z33 and Z11 are impedances along the long axis and radial 

axis of the femur shaft, respectively [36]. 

mmax was calculated for 0°= 0°,…,180°.  The locations of the maxima of mmax(0) coincide 

with the orientations of the elastic symmetry axes (Fig. II.12).  The maximum position, where 

the osteon were cut perpendicular with respect to their long axes, was set to  = 0 (probing 

orientation parallel to the femoral long axis) [36].  It should be noted that this estimation of 

the sample orientation is solely based on the anisotropic impedance values of the bone matrix.        
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Figure II.12  Unwrapped impedance image a) and maximum values of the cross-correlation function mmax of 

adjacent flipped 180°-sections of ( )BZ  , shown in percent b). The maxima of mmax correspond to the 

orientations of the elastic symmetry axes of the bone matrix, i.e. at the first and second maxima the osteons were 

cut perpendicular and parallel to the osteon long axes, respectively [36]. 

II.3.2.4 Elastic coefficients estimation  

Preininger et al. [151] have shown that the acoustic impedance is highly correlated 

with the elastic coefficient which was determined by site–matched analysis of acoustic 

impedance and tissue degree of mineralization (DMB = ݒு஺ு஺)  maps for mature human 

radius and mice femur samples.  The same procedure was applied for this human femur 

sample.  The mass density of the tissue was determined from DMB (Eq. (II.10)) using the 

relation between the individual volume fractions [25] and the constraint that the volume 

fractions of hydroxyapatite, collagen and water added to unity.  The elastic coefficient was 

calculated from the relation between acoustic impedance and density by site-matched analysis 

(Sec. II.A.5) of acoustic impedance map assessed using  scanning acoustic microscope and 

degree of a mineralization map assessed by synchrotron micro-computed tomography.  The 

relations of mass density and acostic impedance with elastic coefficient are shown in Fig. 

III.3. All impedance values from acoustic maps were converted into corresponding elastic 

coefficient using the relation (Eq. (II.11)):  
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 ௧௜௦௦௨௘ ൌ ு஺ு஺ݒ ൅ ௖௢௟௖௢௟ݒ ൅ ுమைுమை (II.10)ݒ

 ܿሺሻ ൌ 0.610ሺܼ̅஻ሺሻሻଵ.ଽଷସ (II.11)

 

The off-axis elastic coefficient c(θ) for a transverse isotropic material is obtained from Eq. 

(II.1).  c() depends on four out of five independent elastic coefficients of the transverse 

isotropic stiffness matrix [C]. c33 and c11 are elastic coefficients parallel and perpendicular to 

the femur long axis, respectively.  Therefore a fit of Eq. (I.26) to c(θ) gives c33, c11, and c* 

(Fig. III.2) with: 

 ܿ∗ ൌ ܿଵଷ ൅ 2ܿସସ (II.12)

c12 and c13 were extracted using continuum micro-mechanical model constraints.  Hellmich et 

al. [152] proposed that the ultrastructure of bone, i.e. the bone tissue matrix without pores, can 

be modeled as an open mineral foam matrix reinforced by collagen inclusions.  With an a-

priori knowledge of the stiffness properties cHA, ccoll, and cH2O  (Table II.2) the stiffness matrix 

[C] is predicted by experimental determination of the volume fractions of hydroxyapatite vfHA 

and collagen vfcol.  According to Hellmich et al. [153],  vfHA is highly correlated (R² = 0.86) 

with c33.  Raum et al. [25] have shown that the relation between the individual volume 

fractions is: 

௖௢௟ݒ 
ுమைݒ

ൌ 0.36 ൅ 0.084݁଺.଻௩ಹಲ, 
(II.13)

with an adjusted R² = 0.996.  With the constraint that the volume fractions of hydroxyapatite, 

collagen and water add to unity, fHA and collagen fcol and finally [C] can be estimated using 

Eq. (II.13).  However, a drawback of the reinforced open-foam model is that only the off-

diagonal stiffness coefficients c12 and c13 are predicted with a reasonable accuracy, while the 

diagonal coefficients are considerably overestimated.  Thus only c12 and c13 were estimated 

from the model and c44 was assessed from Eq. (II.12). 
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Table II.2 Stiffness values for the elementary components of tissue (From Hellmich et al. [154]). 

Phase Bulk modulus k 

[GPa] 

Shear modulus μ 

[GPa] 

Experimental source 

Hydroxyapatite kHA = 82.6 μHA = 44.9 Katz and Ukraincik [155]  

Water k
2HO = 2.3 μ

2HO = 0  

Collagen c3333 = 17.9  

c1111 = 11.7 

c1133 = 7.1  

c1122 = 5.1 

c1313 = 3.3 

Cusack and Miller [156]  

 

II.3.3 Structural parameters estimation   

Structural parameters are extracted from the cross sectional samples. Tissue was 

separated from the pores (Haversian canals and resorption cavities) which are filled with 

PMMA by using the threshold value Zthreshold (Sec. II.A.2.3) without erosion [37].  From these 

binary images, the structural parameter, canal density (number of detected canals within the 

selected cortical bone area , 1/mm2), porosity (ratio between the area covered by the canals to 

the total selected bone area, %), median canal diameter (the equivalent diameter was 

determined from the area of the individual canals, µm) and cortical thickness (mm) were 

extracted [37]. 
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II.3.4 Homogenized mesoscopic elastic coefficients estimation  

 

Figure II.13  The mesoscopic elastic property determination.  Here, local region in the cortical bone the cross 

section is homogenized by considering the medium as periodic and infinite extent along the long axis.  The 

resulting effective properties then define the mesoscopic elastic behavior of this local region. 

[110;115;157](adapted from [115]). 

W.J. Parnell et al. [115] have been developed a new model of cortical bone elasticity 

and used to assess the influence of porosity on the induced anisotropic elastic property of the 

material.  Here, cortical bone was described as two-phase composite material: a soft phase, 

i.e. pores, resorption cavities and Haversian canals containing soft tissues such as cells, blood 

vessels and nerves distributed inside a complex dense matrix phase. The mesoscale porosity is 

embedded in a bony matrix.  In this model, pores in the local region are assumed to be 

periodically distributed within the matrix material, specifically on a hexagonal lattice, which 

leads to a transversely isotropic material for pores with circular cross section (Fig. II.13). The 

input parameters of the model are microscopic elastic properties of bone matrix and 

mesoscale porosity derived from SAM data. The asymptotic homogenization method is used 

to predict the local effective elastic properties by modeling the low-frequency elastic wave 

propagation through an idealized material that gives the local mesostructure. A novel solution 

of the cell problem developed by Parnell & Abrahams [158;159] is used.  The five effective 

properties are defined as  

				ܿଷଷ
∗ ൌ ሺ1 െ ሻሺ݌଴ ൅ 2݉଴ሻ ൅ ሺ݌ଵ ൅ 2݉ଵሻ ൅ ሺ݌ଵ െ   ଷܯ଴ሻ݌

ܿଵଵ
∗ ൌ ሺ1 െ ሻሺ݌଴ ൅ 2݉଴ሻ ൅ ሺ݌ଵ ൅ 2݉ଵሻ ൅ ሾሺ݌ଵ െ ଴ሻ݌ ൅ 2ሺ݉ଵ െ ݉଴ሻሿܯଵ ൅ ሺ݌ଵ െ  ଶܯ଴ሻ݌

				ܿଵଶ
∗ ൌ ሺ1 െ ሻ݌଴ ൅ ݌ଵ ൅ ሺ݌ଵ െ ଵܯ଴ሻ݌ ൅ ሾሺ݌ଵ െ ଴ሻ݌ ൅ 2ሺ݉ଵ െ ݉଴ሻሿܯଶ  

				ܿଵଷ
∗ ൌ ሺ1 െ ሻ݌଴ ൅ ݌ଵ ൅ ሺ݌ଵ െ ଵܯ଴ሻሺ݌ ൅ܯଶሻ  

				ܿସସ
∗ ൌ ሺ1 െ ሻሺ݌଴ ൅ 2݉଴ሻ ൅ ሺ݌ଵ ൅ 2݉ଵሻ ൅ ሺ݌ଵ െ  ଷ (II.14)ܯ଴ሻ݌

where  is the mesocopic porosity of the bone and,  
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 ݉ሺݔሻ ൌ ൜
݉ଵ ൌ μଵ μ଴⁄ , ݔ  ଵܦ
݉଴ ൌ 1, ݔ  ଴ܦ

 

 
ሻݔሺ݌ ൌ ൜

ଵ݌ ൌ ଵ μ଴⁄ , ݔ  ଵܦ
ଵ݌ ൌ ଴ μ଴⁄ , ݔ  ଴ܦ

 

 
݀ሺݔሻ ൌ ൜

݀ଵ ൌ ଵ ଴⁄ , ݔ  ଵܦ
݀଴ ൌ 1, ݔ  ଴ܦ

 
(II.15)

 

μ଴, ଴ and μଵ, ଵ are Lame´ constants of bone matrix and pore respectively. ܦ଴	and ܦଵ are 

domain of matrix and pore respectively.    

This solution is stable for the physiological range of porosity and elasticity variations 

found in bone. The bone tissue matrix which is transverse isotropic is represented by 

hexagonal [157] and pore is modeled as a cylinder of infinite extent in the long axis direction 

filled with water.  The influences of the mesoscale porosity range from 0% to 20% on the 

bone tissue transverse isotropic elastic coefficients are given in Fig. II.14. 0% corresponds to 

microscopic elastic coefficients (without pore inclusion).  Using this asymptotical 

homogenization model, the effective elastic coefficients by the combination of tissue elastic 

coefficients and porosity estimated in this study were analyzed along femur longitudinal, 

circumferential and radial directions.   

 

Figure II.14  Homogenized mesoscopic elastic coefficients c33(∆), c11(□), c12(), c13() and c44(◊)  with inclusion 

of pore volume fraction from 0 to 20%. 
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II.3.5 Degree of mineralization estimation 

 

 

Figure II.15  Schematic of the SR-µCT acquisition setup [160]. 

For bone degree of mineralization (DMB) estimation (Sec. II.1.1), the samples were 

imaged using synchrotron radiation microtomography (SR-µCT) at the European Synchrotron 

Radiation Facility (ESRF, Grenoble, France).  The experiments were done on beamline ID19, 

where a 3D parallel beam μCT setup has been developed [140].  A schematic of the 

acquisition instrumentation is show in Fig. II.15.  A Si(1 1 1) single crystal or double crystal 

monochromator, set to diffract in the symmetrical Bragg reflection geometry, selects the 

appropriate energy from the white SR beam emerging from the storage ring.  The sample is 

mounted on a goniometer including high resolution translations and rotations to position the 

sample and to rotate it in the beam.  A two dimensional detector records the beam transmitted 

through the sample.   

The energy was set at 26 keV.  For each sample 1500 radiographic images fewer than 

1400 angels of view were recorded.  A 3D volume of (600 x 600 x 650) voxels was then 

obtained by applying an exact tomographic reconstruction algorithm, based on filtered back 

projection [160].  The voxel size in the image was 10.1 µm.  Gray levels of these 3D data 

were converted to their corresponding volumetric degree of mineralization values expressed 

as g/cm3 of hydroxyapatite crystals by the calibration method [140;160] (Fig. II.16).  Prior to 

further processing the outer cylinder surface was detected and then the data were transformed 

by translation and rotation operations to align the long axis of the cylinders with the z axis of 

the Cartesian coordinate system.  The site matched acoustic impedance determined from SAM 
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measurement and DMB determined from SR-µCT measured is shown in Fig. II.18. The DMB 

of bone tissue were evaluated by excluding all voids filled with the embedding material using 

3D imaging segmentation procedure as show in Sec. II.A.2.3 for impedance evaluation only 

from bone tissue (Fig. II.17). All post processing was done using custom made MATLAB 

software.      

a) b) 

Figure II.16  a) A 2-D slice extracted from a 3-D gray scale image and the b) corresponding DMB image 

(g/cm3). 

 

Figure II.17  DMB histogram shows a sharp peak corresponding to the DMB of the embedding material and a 

broad distribution for the values measured in the bone matrix image segmentation for DMB estimation from 

bone matrix, i.e. osteonal and interstitial tissues. 
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Figure II.18  Site matched SAM and Synchrotron µCT data [161]. 

II.3.6 Statistical Methods 

To investigate the variation of elastic coefficients, structural parameters and degree of 

mineralization with respect to anatomical locations, analysis of variance (ANOVA) test 

followed by post-hoc Tukey–Kramer multiple comparison tests were performed.  The 

confidence level was set to p = 0.05.  The strength of significant effects is provided by means 

of F values.  Linear regression and Pearson correlation coefficients were used to study the 

association between elastic coefficients, degree of mineralization and structural parameters.  

All statistical computations were carried out using the MATLAB Statistics Toolbox (The 

Mathworks Inc., Natick, MA, USA).  

II.4 Skeletal muscle 

II.4.1 Sample preparation 

 83 pig carcasses of highly varying intramuscular fat content (IMF) (0.63 – 3.16%) 

were selected at a commercial slaughter plant according to carcass weight and fat to lean ratio 

[89].  Mean carcass weight was 95.0 ± 7.1 kg. The animals were stunned with CO2, 

exsanguinated and scalded at approximately 62 °C. For non-destructive investigation of 

muscle characteristics, the ultrasonic measurements (Quantative ultrasonic device, 

Ultrafom300, Sec. II.B.5) were made at suspended carcasses from left half including skin and 

subcutaneous fat layers.  Scanning localization was chosen with respect to the official site of 

carcass classification at 2nd/3rd rib, 7 cm off the carcass split line.  Per carcass three replicate 

scans were performed parallel to the split line using ultrasound contact gel.  Muscle (MW) 
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and back fat width (BW) were determined with a carcass grading probe (Fat-O-Meat’er, SFK 

Technology, Denmark) and pH values (Knick portamess 913 with SE 104 glass type probe) 

was recorded at 2nd/3rd last rib. Average muscle temperature was 38°C.  

Out of 83 pigs, 27 samples were used for further analysis.  Approximately 24 h p.m., 

after chilling of the carcasses over night, three adjacent chops were excised from the 

longissimus muscle at the 3rd/4th and 2nd/3rd last rib for subsequent laboratory analyses. To 

analyze the acoustic properties at intact carcass (Sec. II.B.4), a cylindrical muscle sample 

(about 10g each) per chop was obtained 24 h p.m. at the 2nd/3rd last rib and stored in plastic 

containers for 48 hours at 4 °C. Samples for ultrasound data acquisitions (SAM 10 MHz, Sec. 

II.B.4) were prepared approximately 24 h p.m.   

For muscle’s acoustic property analysis at fiber level (Sec. II.B.3), the samples excised 

from longissimus muscle at the 3rd/4th last rib were snap-frizzed in liquid nitrogen and stored 

at 60°C until use. The frozen samples were sectioned parallel and perpendicular to muscle 

fiber direction approximately 50 µm and 10 µm in thickness for ultrasonic measurement 

(SAM 100 MHz, Sec. II.B.3) and histology respectively. They were placed on glass slides 

(Roth; SuperFrost; Nr. 1879; Karlsruhe, Germany) without cover slips.   

II.4.2 Chemical and structural properties determination  

The muscle pH value (Knick portamess 913 with SE 104 glass type probe) and 

electrical conductivity (EC; Matthäus LF-Star) were recorded 45 min p.m. at the 2nd/3rd last 

rib.  The pH meter was calibrated using 3 buffer solutions at pH 4, 6 and 7 (Carl Roth GmbH, 

Karlsruhe, Germany) and adjusted for temperature.  The pH values were recorded 45 min 

p.m. as the relationships to compositional parameters (e.g., water content) are expected to be 

higher at this time compared to 24 hrs p.m..  Drip loss (EZ) was measured using the EZ drip-

loss method [144].  Briefly, two cylindrical muscle samples (about 10g each) per chop were 

obtained 24 hrs p.m. at the 2nd/3rd last rib and stored in plastic containers for 48 hrs at 4° C.  

The chemical and histology analysis were performed at Department of Animal Sciences, in 

Prof. Michael Wicke’s animal products quality lab at Georg-August-University of Göttingen. 

The intramuscular fat content (IMF), dry matter (DM), and protein (all related to fresh matter) 

were determined from homogenized muscle samples from the 2nd/3rd last rib after removal of 

the subcutaneous fat.   The homogenization was done in a Potter S (Braun Biotech Int. 

GmbH; Melsungen, Germany) homogenizer at 1500 rpm for 30 seconds.  IMF was 
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determined with petroleum ether using a Soxtherm-apparatus after HCl pre-treatment 

according to German Food Legislation [89;143].  The determination of dry matter was 

performed at small samples (~5 g) dried in sea sand at 103°C until equilibrium weight was 

reached. Protein content was determined automatically after oxidative digestion (Elementar 

GmbH, Hanau, Germany). 

Histology samples were obtained 24 hrs p.m. from the samples of the 2nd/3rd last rib. 

The muscle samples were frozen in liquid nitrogen and stored at -60 °C until use. A modified 

ATPase/NADH-TR staining [142] was performed on 10 µm cross cryosections (CM 1900; 

Leica Microsystems GmbH; Wetzlar, Germany). For determination of fiber type proportions, 

slow-twitch oxidative (STO), fast-twitch glycolytic (FTG), and fast-twitch oxidative (FTO) 

fibers were counted and the fiber diameters were determined manually. At least 2 field of 

view and 300 fibers per sample were examined on digital light micrographics (100 x 

magnification; NIS-Elements; Nikon GmbH, Düsseldorf, Germany).  

II.4.3 Evaluation of fiber level acoustic properties of muscle  

Most of the previous studies on skeletal muscle [162-164] have been done at the 

macromolecular level with a low megahertz frequency range from 1 – 20 MHz.  But, it is not 

clear to what degree the oriented structures of the muscle contribute to ultrasonic propagation 

properties.  Only a few studies have been conducted to find variations of acoustic parameters 

at tissue level, e.g., within single muscle fibers.  Tervola [165] has analyzed the change in 

acoustic properties with respect to fat concentration in rat liver. Smith NB and O’Brien [87] 

investigated ultrasonic propagation properties of bovine psoas major, longissimus dorsi and 

lobster extensor muscles. The scanning laser acoustic microscope (SLAM) of central 

frequency 100 MHz was used in those studies.  The SLAM operates in through transmission 

technique and has a comparatively lower resolution than scanning acoustic microscope.  
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II.4.3.1 Ultrasonic data acquisition 

  

a) b) 

Figure II.19  Schematic of muscle fiber level acoustic parameters measurement setup along the a) fiber parallel 

and b) perpendicular to sound propagation direction. 

For the estimation of microscopic acoustic properties of muscle, a 100 MHz central 

frequency transducer (V611, Valpey Fisher, Hopkinton, MA) was equipped with SAM (Sec. 

II.2).  The sound field characteristics of the transducer are summarized in Table II.1.  The 

received echo signals were digitized at 400 MS/s with a 12-bit analogue-to-digital converter 

(CS12400, Gage Applied Technologies, Inc., Lachine, Mon, Canada).  Distilled and degassed 

phosphate-buffered saline at 38°C was used as a coupling fluid.  

Two RF data sets were acquired for each measurement. First, a C – scan was acquired 

from the muscle region by placing the transducer’s focal plane between the front and back 

side reflections of the section and the entire pulse-echo signal was stored.   The scan 

increment between two sampled points was set to 16 µm in both scan directions. Second, a 

B(z)-scan was acquired from the substrate region with the scan increment 4 µm along the z 

axis for defocus correction and impedance calibration [27].  The Hilbert transformed 

amplitude distribution from muscle fiber parallel (sound propagation along the fiber 

orientation) and muscle fiber perpendicular (sound propagation perpendicular to fiber 

orientation) samples are given in Fig. II.20. It shows the arrangement of muscle fibers in 

longissimus muscle along the parallel and perpendicular to the long axis.   Each of the muscle 

fibers (dark) are distinguishable, they are surrounded by the connective tissue endomysium 

(white).  Even muscle bundles are visible, surrounded by perimysium. 
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a) b) 

Figure II.20  Hilbert transformed amplitude distribution from a) muscle fiber parallel and b) muscle fiber 

perpendicular samples. The fibers (dark) are surrounded by the connective tissues (white).    

II.4.3.2 Ultrasonic data analysis 

The front echo coming from the sample surface was very small compared to the back 

echo from the interface sample/substrate (Fig. II.21a).  In order to separate these two echoes, a 

cepstral method was used [84].  Briefly, the power spectrum was calculated from the entire 

RF signal 〈ܵ௠ሺ݂, ,and normalized to the corresponding reference spectrum 〈ܵ௥௘௙ሺ݂	ሻ〉ݖ  	〈ሻݖ

from the glass substrate as shown in Eq. (II.16):   

 
〈ܵ௖௢௥ሺ݂, 〈ሻݖ ൌ

〈ܵ௠ሺ݂, 〈ሻݖ
〈ܵ௥௘௙ሺ݂, 〈ሻݖ

 
(II.16) 

The cepstrum was calculated by taking the Fast Fourier Transformation (FFT) of the 

normalized power spectrum within the frequency bandwidth of the transducer [84].  The 

cepstrum’s maximum peak position max (Fig. II.21b) represents the time of flight difference 

(	 ௠ܶ௕ െ	 ௠ܶ௙) between the front and back echoes (Fig. II.21a).    
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a) b) 

Figure II.21  a) Exemplary radio frequency signals for a single scan position with and without a sample.  The 

cepstrum max value corresponds to time of flight difference between front and back echoes of the muscle sample. 

b)  Cepstrum method used to separate two echoes .The threshold range is marked in gray to exclude the 

connective tissue and sample detached region from the substrate.   

The signal amplitudes from the connective tissue regions between the muscle fibers 

were too small to be detected.  Therefore, connective tissue regions were excluded by a 

threshold in the cepstral amplitude. Moreover, a ௠௔௫	range was defined to exclude regions 

with unlikely high pulse separations, e.g., caused by a detachment of the sample from the 

substrate.  Thickness d and speed of sound   were calculated from travel time differences 

with and without a sample as shown in Eqs. (II.17) and (II.18) [166;167].    

 
݀ ൌ

௢൫ ௦ܶ െ ௠ܶ௙൯
2

 
(II.17)

 
 ൌ

௢൫ ௦ܶ െ ௠ܶ௙൯

൫ ௠ܶ௕ െ ௠ܶ௙൯
 

(II.18)

where  and o (1540 m/s at 38 oC) are speed of sound of muscle and coupling fluid (PBS) 

respectively.  The ultrasound velocity of the PBS (0) was determined from B(z)-scan 

acquired from the substrate region using the definition that the rate of change of distance with 

time.  The RF data taken into account for acoustic parameters estimation were further 

restricted from the mean and standard deviation of thickness estimated from its histogram 

distribution.  Especially in the perpendicular samples, the cutting place may be at the center of 

the muscle fiber, the fiber edge or the connective tissue region.   
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Figure II.22  Example of attenuation coefficient in a single muscle along the fiber in parallel and perpendicular 

directions. 

For acoustic attenuation, the power spectrum 〈࢈࢓ࡿሺࢌ,  was calculated from gated	ሻ〉ࢠ

muscle back echo signal (gate length: 2 times pulse length) and subtracted to the 

corresponding reference spectrum 〈ࢌࢋ࢘ࡿሺࢌ,   as shown in Eq. (II.16).  Then, the spectral	ሻ〉ࢠ

difference was normalized to the sample thickness.  Linear regression was performed on 

normalized power spectrum within the frequency bandwidth (Fig. II.22).  The slope of the 

linear fit provided the attenuation coefficient  in dBMHz-1cm-1.  The PBS solution density 

was measured using a pycnometer at 38 °C.  Then, the PBS impedance ࢆ૙ was estimated 

using its density and sound speed (Eq. (II.19)). A defocus correction and impedance 

calibration were obtained from the B(z)-scan data measured in the substrate regions according 

to [27].  With this calibration the front echo voltage values could be converted into acoustic 

impedance values as shown in Eq. (II.19).  

 The measured impedance and speed of sound were used to estimate density  and 

elastic coefficient c from the relations [25]: 

 ܼ ൌ  (II.19)

 ܿ ൌ ଶ (II.20)

 

respectively.  The processing of the pulse echo data for each scanned position yielded 

parametric maps of sound velocity, acoustic impedance, attenuation and mass density (Fig. 

II.23). 
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a) b) 

c) d) 

Figure II.23  Acoustic parameters from one of the fiber parallel samples.  a) attenuation (dB/MHz/cm), b) speed 

of sound (m/s), c) impedance (Mrayl) and d) density (g/cm3). 
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II.4.3.3 Histology comparison 

a) b) 

Figure II.24  a) A site matched SAM and histology data. b) ATPase/NADH-TR stained histology for fiber type 

differentiation. 

A modified ATPase/NADH-TR staining [142] to differentiate the muscle fiber type’s 

histology is show in Fig. II.24b. The dark gray corresponds to slow twitch oxidative (STO), 

intermediate gray to fast twitch oxidative (FTO) and light gray to fast twitch glycolytic 

(FTG).  A site-matched analysis of the acoustic parameters with histology sections was 

performed to evaluate acoustic differences between the muscle fiber types.  For that, the 

acoustic parameter images were registered with the histology images (Fig. II.24a). The 

acoustic parameters of each fiber type were extracted by applying gray scale threshold values 

to the histology data. Due to the difficulty in fixing the gray boundary value between FTO and 

FTG, fiber types are differentiated as STO and FTO+FTG in this study.  The histology and 

acoustic maps estimated from the fiber perpendicular sections are not comparable because 

sample thickness is close to fiber diameter.   Therefore, acoustic parameters of fiber types 

were analyzed only from fiber parallel sections. 

II.4.4 Estimation of macroscopic acoustic parameters of porcine muscle and back fat 
compound  

For intermediate medium attenuation and refraction correction for backscatter data 

acquisition anticipated to improve non-invasive ultrasound based muscle characteristic 

estimation (Sec. II.B.5), the calculations of reference acoustic parameters from muscle and 

back fat compound are shown in this section.    
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The chops taken from the 2nd/3rd rib last rib were used for skin and back fat acoustic 

parameter estimation (Sec. II.B.1).  All samples were kept in the refrigerator at 4 °C until 

ultrasound measurements were performed within 72 to 96 hrs post mortem. Prior to 

measurement 2 adjacent samples were prepared from each chops as follows: both samples 

were cut to a side length of about 1.5 cm.  The first sample was measured as a complete back 

fat block including skin (compound sample). The second sample was dissected, and the fat 

layers and the skin were measured individually.  For muscle, subsample with an edge length 

of about 1.5 cm was prepared from the excised chops. This subsample was prepared from the 

standard ultrasound scanning localization at M.longissimus  which is official site of carcass 

classification at slaughter to predict meat quality using a B mode device.  That is, at 7cm from 

the middle line of the pig back towards the ventral at 2nd/3rd rib [89]. In this location, muscle 

fiber orientation is 30° to 45° relative to the sound propagation direction.  Care was taken to 

ensure that sample orientation was similar. Prior to ultrasonic measurement the all the samples 

were allowed to equilibrate by keeping them in phosphate buffered saline (PBS) at 38 °C as 

an isotonic medium. 

II.4.4.1 Ultrasonic data acquisition 

 

 

a) b) 

Figure II.25  a) 10MHz SAM scan set-up. Samples are fixed in the middle chamber and 150 A-scans are 

performed.  b) Recorded echo positions used for calculations of the sound velocity.  t1, t4: travel times in PBS; t2: 

pulse position of the front echo;  t3: travel time with sample; v1: PBS sound velocity; v2: sample sound 

velocity[168].  
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For acoustic reference data collection of porcine muscle and back fat compound, a 10 

MHz transducer (V311, PANAMETRICS, Waltham, USA) was equipped with SAM (Sec. 

II.2).  The sound field characteristics of the transducer are summarized in Table II.1..  The 

received echo signals were digitized at 50 MS/s with a 12-bit analogue-to-digital converter 

(CS12400, Gage Applied Technologies, Inc., Lachine, Mon, Canada) and input range was set 

to ±500 mV.  Distilled and degassed phosphate-buffered saline at 38°C was used as a coupling 

fluid. 

II.4.4.2 Ultrasonic data analysis   

 

a) 

 

b) 

Figure II.26  a) Recorded RF signal echo positions used for calculation of the speed of sound and b) 

corresponding power spectrum used for calculation of attenuation. 

The sample was placed in a custom made multi-chamber-holder (Fig. II.25a). This 

chamber holder allowed the acquisition of the echoes from a plane steel reflector with and 

without sample, as well as tight attachment of the sample without compression. The scans 

were performed with a step width of 0.4 by 1 mm, resulting in approximately 150 radio 

frequency (RF) lines per chamber.  For coupling of the acoustic waves the sample and the 

transducer were submerged in degassed phosphate-buffered-saline (PBS, 0.9 % in water v/v) 

as an isotonic medium. The ultrasound velocity of the PBS (PBS) was measured prior to every 

sample measurement and this specific velocity values were used in further calculations. The 

temperature was kept at 38.0°  0.1°C. Prior to each measurement the samples were 

equilibrated in PBS.  
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Ultrasound velocity and acoustic attenuation were analyzed using a custom made 

MATLAB (The Mathworks, Natick, USA) based software package. Briefly, this software 

allows a semi-automatic detection of the front and backside reflections within the sample area 

and the detection of the steel plate reflection in the adjacent reference chambers (Fig. II.25b). 

From these echoes the travel times ti were determined from the position of the maximum of 

the Hilbert-transformed envelope signal [36]. Thickness and sound velocity were calculated 

from travel time differences with and without the sample (Fig. II.26a) using a substitution 

method [167] (Sec. II.B.3.2).   

Acoustic attenuation was estimated by comparing the logarithmic power spectra of 

pulses obtained at the tissue-backplate reflector to the spectra measured in the reference 

chambers (Fig. II.27b). The spectrum difference were normalized to the sample thickness and 

a linear fit was performed within the frequency band for which sufficient signal amplitudes 

were obtained in the attenuated signals (3 to 6 MHz). The slope of the linear fit provided the 

attenuation coefficient in dBMHz-1cm-1.  

Prior to signal analysis, a region of interest (ROI) in the sample chamber (skin or fat or 

muscle) was manually selected, resulting in approximately 75 A-lines per sample (after 

excluding outliers). Each data set was analyzed by two independent trained users to estimate 

the effects in terms of software handling. The mean differences between both users were less 

than 0.1% for sound velocity and less than 2.5% for attenuation. Therefore, the data 

processing was considered as not being affected by insufficient handling of the software if 

performed by trained users. Subsequently, the mean values of both users were used for further 

statistical analyses.   
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II.4.5 Non-destructive estimation of porcine longissimus muscle characteristics 

II.4.5.1 Ultrasonic data acquisition by quantitative ultrasonic device 

  

a) b) 

  

c) d) 

  

e) f) 

Figure II.27  a) Stimulated UF300 transducer, b) estimated necessary time delay to get the focus inside the 

muscle region, Sound field function of UF300 estimated from simulation and experiment without (c) and with 

acoustic lens (d). Contour plot of spatial intensity distribution (in dB) of UF300 with (e) and without (f) acoustic 

lens. 
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Figure II.28  Block diagram of modified Ultrafom 300 ultrasonic measurement system. 

 

 

 

Figure II.29  Ultrasound data acquisition on hanging pig carcasses at slaughter (a). B-mode image of porcine 

muscle and acoustic focus (b).  One of the attenuated RF signals while passing through the medium is illustrated.    

For ultrasound RF data acquisition, a modified Ultrafom300 (SFK Technology A/S, 

Denmark) was used.  The original device consists of a linear array of 64 unfocused transducer 

elements aligned along the y-axis. The nominal center frequency of the elements is 3.2 MHz. 

Each element is excited separately and produces an elliptically shaped sound field with focus 

at a distance of approximately 100 mm.  The beam in the focal plane has -6-dB extensions of 

2.5 mm and 50 mm in the x- and y- directions respectively. This configuration has been 

optimized to measure the acoustic reflections at the muscle rib interface over an area of 

approximately 2.5 mm x 100 mm (with the long dimension parallel to y-axis and the carcass 

split line). It should be noted that this system was not developed for imaging. The near field, 

i.e. the range from the transducer surface to the focal plane, is characterized by an 

inhomogeneous pressure distribution, rendering a quantitative backscatter analysis 
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impossible. Therefore, an acoustic lens was designed to shifts the focus of the sound field 

towards the muscle region and produces smooth spatial and spectral characteristics within the 

muscle region of interest. The necessary radius of curvature ROC of the lens was computed 

using the Field II simulation software [169]. The lens was designed using silicone rubber 

(Elasosil M4641, Wacker Chemie AG, Munich, Germany) mixed with aluminium oxide 

particles (30 wt%; mean diameter: 5 µm).  A time dependent amplification (time gain 

compensation, TGC) of the pulse echo signal was realized by an external function generator 

(HM 8150, HAMEG Instruments GmbH, Mainhausen, Germany) (Fig. II.28). A linearly 

increasing ramp function ensured a good signal-to-noise ratio over the entire depth down to 

the muscle/rib boundary.  With these hardware modifications, the measured center frequency 

of a pulse reflected at a plane reflector in the focal plane was 2.7 MHz. The other spatial, 

temporal and spectral sound field characteristics with and without the lens are summarized in 

Fig. II.27 and Table II.3. 

Ultrasound data acquisition was performed about 45 min post-mortem after carcass 

classification.  The mean carcass temperature was 38°C.  Scanning localization at 

M.longissimus was chosen with respect to the official site of carcass classification at slaughter 

(2nd/3rd last rib) (Fig. II.29a) [89].  The UF300 transducer was placed about 7 cm from the 

middle line of the pig back towards the ventral. As for ultrasonic scanning direction, the 

transducer was positioned perpendicular to the muscle fiber direction.  But, in the intact 

carcass, muscle fibers are not aligned exactly parallel to skin surface at M.longissimus.  So the 

sound propagation direction can consider 30° to 45° relative to fiber orientation.  Three scans 

per carcass were performed and the corresponding data were stored separately.  Sonogel was 

used as a coupling medium. 

The pulse-echoes of all 64 elements were digitized with a sampling frequency of 10 

MHz and 8 bit resolution in a pulse echo time interval of 153 µs and stored on a computer for 

offline processing. All subsequent data processing steps were performed with custom 

functions using MATLAB R2008a software (Mathworks Inc., Natick, MA). 
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Table II.3 Sound field characteristics of Ultrafom 300 with and without acoustic lens. 

Physical Parameters Beam Parameters 

Type Linear Array UF300  Without lens With lens  

No. of elements 64 Pulse duration ((-20 dB)) 0.96 µs 1.5 µs  

Pitch 0.80 mm Center frequency 3.2 MHz 2.7 MHz 

Kerf 0.051 mm Frequency bandwidth 

Range f1 - f2   (-6 dB) 

2.4 – 4.0 MHz 2.1 – 3.5 MHz 

Elevation  18 mm Focus position  95.8 mm 60.8 mm 

Elevation ROC 100 mm Depth of focus (-6 dB) 96.5 mm 35.2 mm 

  Elevation Beam width, 

Y (-6 dB) 

2.5 mm 1.2 mm 

  Lateral Beam width, 

X (-6 dB) 

53.6 mm 28.8 mm 

II.4.5.2 Ultrasonic data pre-processing 

The system specific correction and muscle acoustic parameter estimations were carried 

out off-line.  The muscle region of interest (ROI) was selected from B-mode images 

containing raw data.  The correction steps applied to the time-gated pulse-echo signals prior to 

the spectral and cepstral parameter estimations are described in the following sections.  The 

time-dependent amplification (TGC) was compensated to ensure a uniform amplification 

within the entire focus range [170]. 
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II.4.5.3 Sound field correction (SFC) 

The signal amplitude of reflected and backscattered waves varies with respect to the 

distance from the focal plane. A time-of-flight based defocus correction was used to calibrate 

the system in water at 37 °C [27;171;172]. Briefly, the reflections of a plane 4-wt% agar 

reflector were recorded at successively increasing distances to the transducer. Mass density 

and sound velocity in the agar phantom were agar = 1.003 gcm-3 and agar = 1542 ms-1, 

respectively. The measured confocal reflection amplitude was estimated to be -35 dB smaller 

than that of a perfect reflector. 

 

Figure II.30  Sound field plots along the depth with and without acoustic lens.    

Because the sound velocities in skin, back fat and muscle are different compared to 

those in water, the focus position is shifted in the carcass (Fig. II.30). To compensate for this 

effect, a refraction correction based on the average sound velocities and thicknesses in the 

skin-back fat compound and in muscle has been applied [173]. The back fat compound 

thickness, ݀஻ி௖௢௠௣௢௨௡ௗ and speed of sound, ݒ஻ி௖௢௠ௗ were estimated using their relation (Eq. 

(II.21)) found in vitro study (Sec.II.B.4) from the automatically detected time of flight to the 

back fat-muscle boundary, TOFBFcomd using an iteration method.     

 ஻ி௖௢௠ௗ ൌ ݏ/1555݉ െ 3.94 ݉݉ିଵ݉ିݏଵ݀஻ி௖௢௠ௗ (II.21)
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Briefly, ݀஻ி௖௢௠ௗ is calculated using initial ݒ஻ி௖௢௠ௗ = 1491 m/s [Mean ݒ஻ி from all 54 

samples] with back fat time of flight 

஻ி௖௢௠ௗܨܱܶ) ൌ ௦௞௜௡ܨܱܶ ൅ ௙௔௧	௢௨௧௘௥ܨܱܶ ൅ ௙௔௧	௠௜ௗௗ௟௘ܨܱܶ ൅  ௙௔௧). This result ݀஻ி is	௜௡௡௘௥ܨܱܶ

used in the above relation (Eq. (II.21)) to predict	ݒ஻ி௖௢௠ௗ.  This procedure is repeated until 

the differences between consecutive back fat SOS (	ݒ஻ி௖௢௠ௗ
௞ାଵ െ ஻ி௖௢௠ௗݒ

௞ ) are less than 0.1 m/s.  

Finally, ஻ி௖௢௠ௗ  and ݀஻ி௖௢௠ௗ  were determined from ܱܶܨ஻ி௖௢௠ௗ using this iteration 

method.   

The average sound velocity in muscle νmuscle has been found to be 1620.5 ± 4.6 ms-1 

within the evaluated carcasses [120]. A weak correlation with IMF (R² = .13; RMSE = 4.33 

ms-1) was also found in that study. This variation had no remarkable effect on the refraction 

correction. Therefore, only the mean velocity was included in our correction model. 

The distance z from the transducer of a gated signal within the muscle region was 

estimated using the relation: 

௠௨௦௖௟௘ݖ  ൌ ݀஻ி௖௢௠ௗ ൅ ൫ܱܶீܨ ௔௧௘௣௢௦௜௧௜௢௡ െ ஻ி௖௢௠ௗܨܱܶ ெ௨௦௖௟௘⁄ ൯ .
௠௨௦௖௟௘

2
 (II.22) 

It can be seen in Fig. II.30 that the axial intensity distribution in the back fat muscle 

compound is shifted towards the transducer compared to that in water. The Field II 

simulations were used to estimate the axial shift. Then the pulse echo measured in water at zref 

that exhibits the same decrease of intensity (relative to the focal plane) as that estimated for 

zmuscle was used as a reference signal at TOFGateposition for further calculations.   
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II.4.5.4 Wave front curve compensation (WFCC) 

 

a) b) 

Figure II.31  a) Focused beam projection along propagation direction and b) AIB in phantom with and without 

wavefront curve compensation.  

Due to the curvature of the wave front of the focused sound field, reflections of a 

plane reflector exhibit a further phase cancellation with increasing distance from the focal 

plane. Therefore, the decrease of the measured amplitude of a plane reflector, with respect to 

the defocus distance, is larger than that measured from backscattered signals collected at the 

corresponding time gates.  This amplitude deviation between signals reflected from a plane 

agar reflector after SFC correction and those backscattered within the corresponding time gate 

TOFGateposition was assessed by measurements in a tissue mimicking agar phantom.  This 

phantom was made of graphite powder immersed in agar as described by [166].  The phantom 

was measured using the same device settings as for the muscle measurements and it was 

attached directly to the transducer surface. Fig. II.31b shows the apparent integrated 

backscatter amplitude AIB as a function of the defocus distance with sound field and 

intermediate medium attenuation compensations.  For a proper sound field correction, AIB is 

supposed to decrease linearly with increasing depth.  Due to the curvature of the focused 

beam (Fig. II.31a) before and after the focal plane, the estimated AIBs increased with 

increasing distance from the focal plane (Fig. II.31b). This wavefront curve deviation was 

corrected from this known phantom’s normalized AIBS deviation along the depth (Fig. 

II.31b). 
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II.4.5.5 Attenuation compensation 

The sound waves are attenuated on the two-way travel from the transducer surface to 

the muscle region of interest. Further losses arose from partial reflections at tissue boundaries. 

Refraction of the sound field and attenuation after propagation through skin and back fat were 

estimated using sound velocity and attenuation values assessed in a previous study [168].  The 

muscle attenuation muscle within the ROI was estimated using a sliding window technique as 

proposed by [174;175].  For this, all 64 spectra were averaged for each TOFGateposition and the 

slope of the frequency dependent attenuation was assessed by linear regression. Finally, the 

attenuation of the overlaying back fat tissue BF was compensated. For this, the mean value of 

BFcomd = 2.1 dBMHz-1cm-1, assessed in a previous study, was used [168]. 

II.4.5.6 Spectral parameter estimation 

Figure II.32  a) Estimation of spectral parameters from the normalized power spectrum. b) AIB histogram 

distribution within the evaluated muscle region of interest.  

Backscatter properties of muscle tissue were assessed within a ROI 54 mm x 15 mm 

(i.e. the axial -6dB range from 45 to 59 mm). The normalized power spectra S(f) were 

calculated after the above mentioned corrections, as follows.   

First, a part of the signal was gated using a sliding Hanning window. The positions of 

the first and last windows were placed 10 mm above and 7 mm below the estimated focus 

position respectively. The gate width was equivalent to the 2-fold pulse duration (3 µs), which 

corresponds to a depth range of ~ 15 mm assuming a sound velocity of 1620 m/s in muscle. 

The overlap between adjacent sliding gate windows was set to 50%. The logarithmic power 
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spectrum was normalized to the reference spectrum obtained from the plane agar reflector, 

after SFC, WFCC and AC correction. Spectra intensity within the frequency bandwidth below 

-40 dB (close to noise level) was excluded.  The excluded RF signal percent was stored as one 

of the parameters. The normalized spectra determined from remaining RF signals were 

averaged within the entire ROI.   AIB was calculated in the frequency range between 2.1 MHz 

and 3.5 MHz (Fig. II.31): 

 
ܤܫܣ ൌ

1
݂

නܵሺ݂, ሻݖ ݂݀ 
(II.23) 

Midband fit M and spectral slope m were calculated as described elsewhere [75] and 

illustrated in Fig. II.31a. 

II.4.5.7 Cepstral parameter estimation 

a) b) 

Figure II.33  a) Cepstral parameters estimation. b) Cepstral parameter, p distribution within region of interest 

with Weibull fit.  

The power cepstral data analysis can be described as the Fourier transform of the 

power spectral density of a time signal [84]: 

 
ሺሻܥ ൌ ቚܶܨ ൬ሺ݈݋ ଵ݃଴|ܵ௠௨௦௖௟௘ሺ݂ሻ|ଶሻ െ ቀ݈݋ ଵ݃଴หܵ௥௘௙ሺ݂ሻห

ଶ
ቁ൰ቚ

ଶ

 
(II.24)
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where Smuscle(f) and Sref(f) are the Fourier transforms of the time-gated backscatter signals of 

the muscle and the reference respectively. Cepstral peaks correspond to the occurrence and 

time delay of several echoes within the time gate. Further restrictions are that the time delay 

should be larger than the pulse length, and the analysis is only meaningful within the spectral 

bandwidth of the ultrasound system [176]. The window length was 5 times the pulse width 

and the overlap was set to 90%.  Only the SFC and WFCC corrections were applied for the 

cepstral analysis. Prior to the FT the difference spectrum was preconditioned by removing DC 

and linear components. Similarly to the spectral analysis, signals with cepstral amplitudes 

below -40 dB were excluded. The cepstral first peak intensity value Cfp(fp), the 

corresponding time-delay fp and its standard deviation were calculated by fitting averaged 

cepstrum by Weibull function (Fig. II.33a).  The integrated cepstrum IC: 

 
ܥܫ ൌ

1

නܥሺሻ ݀ 

(II.25)

within the interval  from 0.6 – 1.6 were calculated from the averaged cepstra (Fig. II.33a). 

II.4.6 Statistical Methods 

In muscle studies, the normality of the distribution was tested with the Lilliefors test.  

Linear regression and Pearson correlation coefficients were used to study the association 

between muscle composition, structural parameters and estimated acoustic parameters.  To 

investigate the variation of acoustic parameters of muscle function of fiber orientations, Two-

way ANOVA followed by post hoc multiple comparison Tukey tests were performed.  The 

Bland and Altman method [177], linear regression and Pearson correlation coefficients were 

used to compare tissue composition and structural parameters from the ultrasonic 

measurement and chemical analysis.  Optimal combination of estimated spectral and cepstral 

parameters for predicting the intramuscular fat percentage were evaluated using multifactorial 

linear and nonlinear regression.  All the statistical computations were made using the 

MATLAB Statistics Toolbox (The Mathworks Inc., Natick, MA, USA). 
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III Results 

III.1 Cortical Bone 

III.1.1 Accuracy of elastic coefficient estimation 

In order to verify that the curved surface of a cylindrically shaped sample does not 

have an effect on the measured reflection amplitude, the defocus dependent reflection 

amplitude of a homogenous reference material (PMMA) was compared for flat and 

cylindrically shaped samples (Fig. III.1).  Within the accepted defocus range no significant 

difference of the TOF-dependent reflection amplitude was observed.   

 

Figure III.1 Comparison of the defocus – dependent reflection amplitude of PMMA for flat and cylindrically 

shaped samples. 

Accuracy and reproducibility of the impedance estimation was estimated by measuring 

6 bone samples 2 times on different days.  The average relative reproducibility error of the 

estimated mean impedances given by the root mean square average of the 6 relative standard 

deviations was 0.95%.  The accuracy of the estimation of the angle 0 was in the order of 

 0.48°.  The correlation coefficients R² for the fit of the transverse isotropic model to C() 

was between 0.97 and 0.99 (Fig. III.2). 
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Figure III.2  Example of a fit of the measured data to a transverse isotropic model. The correlation coefficient 

was R2 = 0.979 [36]. 

 

The impedance values measured from flat and cylindrical femur samples were also 

compared. The average impedance values for flat and cylindrical samples were 

Zcross = 7.96 ± 0.32 Mrayl and Z33 = 8.02 ± 0.37 Mrayl (impedance at 0°) for the longitudinal 

direction, Ztrans = 6.69 ± 0.18 Mrayl and Z11 = 6.69 ± 0.22 Mrayl (impedance at 90°) for the 

circumferential direction respectively.   The average relative difference for the longitudinal 

and circumferential direction impedance values were (6.3 ± 21.4) % and (0.5 ± 16.9) %, but 

these differences were not significant (paired t-test for 0°, p = 0.19 and for 90°, p = 0.76).      

III.1.2 Relation between acoustic impedance, mass density and elastic coefficients 

Fig. III.3 shows the relation of Z and  with elastic coefficients c for site-matched data 

obtained from cylindrical human femur cortical bone samples.  It can be seen that Z is 

generally a better predictor for the elastic properties of material than mass density.  While the 

correlation coefficient of a power fit of mass density with elastic coefficients was weak (R2 = 

0.19 (with c33), R
2 = 0.03 (with c11), the acoustic impedance correlates almost perfectly with 

elastic coefficients (R2 > 0.99, p < 0.0001). This is consistent with the fact that the 

correlation between DMB and Z was also moderate (R2 = 0.39) which indicates that Z yields 

elastic information independent of DMB.  
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Figure III.3  Relations between acoustic impedance, mass density and elastic stiffness for human femoral 

cortical bone (dashed line: fit for axial elastic coefficients c33 (●), dotted line: fit for radial elastic coefficient c11 

(x), solid line: fit for combined data).  

 

III.1.3 Spatial distribution of microscopic elastic properties 

Fig. III.4 shows the unwrapped impedance images of the evaluated samples taken 

from the four anatomical quadrants of the cross section at 44.5% of femur length. All the 

impedance images are aligned like the periosteal surface was always at the bottom of the 

images.  The highest impedance values always occur around 0° and 180°.  At these angles the 

Haversian canals are predominantly cut perpendicular to their long axes. Hence, they appear 

as circular or elliptical structures.  At 90° and 270° the impedance values are low and the 

Haversian canals appear as elongated structures.  It can be seen that osteonal tissue 

surrounding the Haversian canals has lower impedance values compared to interstitial tissue.  

Moreover, the absolute impedance values and also microstructural features vary considerably 

between the four samples. 
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a) b) 

c) d) 

Figure III.4  Unwrapped acoustic impedance images of the cylinder surfaces taken from four anatomical 

quadrants: a) posterior, b) medial, c) anterior and d) lateral of cross section at 44.5% of femur length after the 

segmentation process (all excluded pixels are black).  The periosteal surface is always at the bottom of the 

images. 

The transverse isotropic elastic coefficients were determined for 56 (14 x 4) 

cylindrical samples.  The spatially averaged values of bone tissue matrix coefficients and 

technical constants from an entire human femur are listed in Table II.2. 
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Table III.1 Mean and standard deviation of all microscopic elastic coefficients and technical constants. 

Average elastic coefficients Average technical constants 

c33 34.6 ± 3.6 GPa E3 27.4 ± 3.0 GPa

c11 24.1 ± 2.0 GPa G13 7.0 ± 1.1 GPa

c12 10.2 ± 0.8 GPa γ12 0.324 ± 0.024

c13 11.1 ± 0.8 GPa γ13 0.219 ± 0.012

c44 7.0 ± 1.2 GPa γ31 0.323 ± 0.013

 

 

a) b) c) 

Figure III.5  The elastic properties of human femoral shaft were analyzed in three positional directions: a) 

along the longitudinal direction (from proximal to distal), b) along the circumferential direction (in the order: 

posterior, medial, anterior and lateral) and c) along the radial direction (from endosteum to periosteum).   

The elastic properties of the human femoral shaft were analyzed in four ways (Fig. 

III.5): 1) mean elastic coefficients along longitudinal positions (along femur length, from 

proximal to distal); 2) variation of elastic coefficients along longitudinal positions for each 

anatomical quadrants: 3) mean elastic coefficients along circumferential directions (posterior, 

medial, anterior and lateral); and 4) variation of elastic coefficients along radial directional 

positions (along cortical width, from endosteum to periosteum).   
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Table III.2 Three-way ANOVA for microscopic elastic coefficients (F – statistic). Categorical factors are: Long 

axis position (Long – Proximal to Distal), Circumferential position (Circ – posterior, medial, anterior and 

lateral) and Radial position (Radi – endosteal to periosteal). 

 c33 c11 c12 c13 c44 

Long 10.42 * 11.76 * 10.42 * 10.42 * 9.09 * 

Circ 14.53 * 6.04 * 14.49 * 14.44 *  7.39 * 

Radi 10.42 * 8.12 * 10.41 * 10.38 * 2.83 

Long x Circ 13.70 * 7.83 * 13.71 * 13.72 * 8.27 * 

Long x Radi 0.22 0.62 0.22 0.22 0.47 

Circ x Radi 0.32 0.44 0.32 0.32 0.66 

*represents the significant difference at the level 0.05 

Three-way ANOVA of elastic constants with the long axis, anatomical and radial 

positions as categorical factors showed that all directional positions contribute significantly to 

the variances of all elastic coefficients (Table II.2).  Moreover, the second-order interaction 

terms between the long axis position and the circumferential position suggest that the all 

elastic coefficients along anatomical positions are also dependent on the femoral long axis 

position.  The interaction terms long*Radi and Circ*Radi are not significant for all elastic 

constants. 

III.1.3.1 Microscopic elastic coefficients along the longitudinal direction  

The mean microscopic elastic coefficients variations along the femur long axis 

positions are given in Fig. III.6.  The strongest dependence on the axial position was found for 

c33, c12 and c13. Linear increase of the coefficients (R2 = 0.73, p < 0.05) from section 25.7% to 

80.7% of the femur length were observed.  The other coefficients showed lower values in the 

mid- shaft region (40 – 60%) than in the sections close to the distal, and had a lower 

correlation with axial positions (R2  0.23).  The c* values increased along the femur long 

axis (R2 = 0.35).    
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Figure III.6 Mean tissue elastic coefficients c33(∆), c11(□), c12(),c13() and c44(◊) along the femur long axis. 

The variations of all elastic coefficients for four anatomical quadrants along the femur 

long axis are shown in Fig. III.7.  In the posterior quadrant, all the elastic coefficients, c33, c11, 

c12 and c13 (R
2 = 0.49 - 0.73), except for c44, showed linear increase along the long axis from 

proximal to distal sections.  In the anterior quadrant, all elastic coefficients except c44 showed 

similar variation along the longitudinal direction, those values are higher below the mid shaft 

than the regions above the mid shaft region.  The significant changes in the medial region 

along the femur long axis were observed only in elastic coefficients c33, c12 and c13.  In the 

lateral quadrant, the coefficients c33, c12 and c13 increased linearly along the long axis and 

were higher in the sections close to the distal.  The coefficient c11 was lower in the middle 

region than the sections close to proximal and distal.  Proceedings distally, the axial elastic 

coefficient, (c33) values of the four quadrants appears to converge.  It is interesting to note that 

the c33 of the anterior quadrant was significantly higher in the most proximal section and 

lower in the most distal section than the three other quadrants. In contrast to this, the c11 of the 

posterior quadrant was significantly lower in the most proximal section and higher in the most 

distal section than the three other quadrants.  The ranges of all elastic coefficients for the four 

anatomical quadrants along the femur long axis are listed in Table II.3.  The experimentally 

predicted c* has moderate correlation with the femur long axis position in both posterior (R2 

= 0.39) and lateral (R2 = 0.37) quadrants.  In posterior and medial, there were not significant 

changes of c* from proximal to 65% and then increasing to distal.      
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a) b) 

c) d) 

Figure III.7 Mean microscopic elastic coefficients c33(∆), c11(□), c12(), c13() and c44(◊) for four quadrants: a) 

posterior, b) medial, c) anterior and d) lateral along femur length. 

 

Table III.3 The ranges of microscopic elastic coefficients in anatomical positions along the long axis of femur 

cortical bone.  

Anatomical 

position 

c33 

(GPa) 

c11 

(GPa) 

c12 

(GPa) 

c13 

(GPa) 

c44 

(GPa) 

Posterior 27.95 – 40.91 21.79 – 29.01 8.73 – 11.64 9.64 – 12.57 5.96 – 8.95 

Medial 32.81 – 40.26 21.66 – 25.69 9.82 – 11.49 10.74 – 12.43 4.17 – 8.13 

Anterior 32.48 – 41.66 21.11 – 27.51 9.75 – 11.81 10.66 – 12.74 5.21 – 9.08 

Lateral 32.01 – 40.15 21.24 – 26.23 9.64 – 11.47 10.56 – 12.39 4.86 – 9.30 
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III.1.3.2 Microscopic elastic coefficients along the circumferential direction 

Figure  graphically represents the mean elastic constants for four anatomical 

quadrants.  Tukey’s multiple comparison test at the 0.05 significant level shows that the 

posterior quadrant has lower axial coefficient, (c33) than the other four quadrants.  It has 

higher c11, c12 and c13 values than the other quadrants.  Anterior has higher c44 and c* values 

than the other three quadrants.                                              

a) b) 

Figure III.8 Graphical representations of the mean microscopic elastic coefficient, a) c33 and c11 and b) c12 and 

c44  for anatomical quadrants(* p<0.05, ** p<0.001 and *** p<0.0001). 

III.1.3.3 Microscopic elastic coefficients along the radial direction   

The variations of elastic coefficients were also considered with respect to the radial 

position (Fig. III.9). For this, the acoustic impedance data of all anatomical quadrants were 

divided into 10 sections from endosteum to periosteum and the elastic coefficients were 

estimated separately for each section.  The mean elastic coefficients along the radial position 

are given in (Fig. III.9).  Here, 10% corresponds to the section close to the endosteum and 

100% to the section close to the periosteal.  c33, c12 and c13 increased from the endosteum 

towards the central part of the cortex. The maximum is reached between 50 and 70% of the 

cortical width. Between 70% and the periosteum the values decreased again.  However, c11 c44 

and c* did not vary from the endosteum until the central region (~ 60%) and decreased from 

the central region towards the periosteum.  
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Figure III.9 Mean and standard deviation of microscopic elastic coefficients c33 (∆), 

c11(□),c12(●),c13(○) and c44(◊) along the radial direction (5% and 95% correspond to the 

sections adjacent to the endosteum and the periosteum, respectively). 

III.1.3.4 Microscopic anisotropy ratio 

The anisotropy ratio (AR = c33/c11) varied with respect to the long axis and anatomical 

positions (Fig. III.10a and Fig. III.10b).  Along the long axis position, the mean anisotropy 

ratio increased linearly from proximal to distal sections and has moderate correlation (R2 = 

0.38, p < 0.05).  The mean and range of the microscopic anisotropy ratio are 1.46 ± 0.14 and 

1.35 – 1.57.  There were moderate correlations between the microscopic anisotropy ratio and 

the femur long axis position for posterior, medial and lateral quadrants.  Within the anatomical 

quadrants, the anterior has higher values of AR close to the proximal sections and the medial 

has higher values of AR close to the distal sections than other quadrants.  The mean ARs were 

lower in the posterior quadrant than in the other quadrants (Fig. III.10b). The mean 

microscopic AR values for anatomical quadrants; posterior, medial, anterior and lateral are 

1.35 ± 0.09, 1.52 ± 0.11, 1.49 ± 0.09 and 1.48 ± 0.09.  Significant difference in AR along the 

radial direction was found. However, the plot (Fig. III.10c) shows that the radial direction AR 

increased from the endosteum to 55% of the cortical width and then decreased towards the 

periosteum, and also the values are higher at the region close to the endosteum than the 

periosteum.   
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a) b) 

 

c) 

Figure III.10  Variation of tissue level anisotropy ratio of human femur along a) longitudinal, b) 

circumferential and c) radial directions (* p<0.05, ** p<0.001 and *** p<0.0001). 
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III.1.4 Spatial distribution of structural properties  

 

a) b) 

Figure III.11  a) Acoustic impedance image and b) pore distribution of femur cross section 

sample from 33.6% of femur.  

The structural parameters of the human femoral shaft were analyzed in three ways: 1) 

mean structural parameters variation along the long axis direction from proximal to distal; 2) 

variation of structural parameters along the long axis position for each anatomical quadrant; 

and 3) mean structural parameters variation along anatomical quadrants (posterior, medial, 

anterior and lateral).     

Table III.4 Two–way ANOVA for structural parameters (F – statistic).  Categorical factors are: Long axis 

position (Long) and Circumferential direction position (Circ). 

 Cortical Width Porosity Canal Diameter Canal Density 

Long 14.8 * 0.51 0.83 5.91 * 

Circ 1.72 5.23 * 6.28 * 2.04 

Long x Circ 1.36 3.44 * 2.99 * 0.47 

*represents the significant different at the level 0.05 

Two–way ANOVA of structural parameters: porosity, canal diameter and canal density 

with long axis and anatomical position as categorical factors are shown in Table III.4. The 

cortical width and canal density have a significant difference along the long axis position and 

both porosity and canal diameter varied with respect to anatomical quadrants.  There was also 
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significant interaction presented in porosity and pore diameter between quadrants and femur 

along axis positions.        

III.1.4.1 Variation of structural parameters along the longitudinal direction 

a) b) 

c) d) 

Figure III.12  Mean structural parameters along the longitudinal direction a) cortical width, b) porosity, c) 

canal diameter and d) canal density. 

Variations of structural parameters along the femur long axis are shown in Fig. III.12. 

The cortical thickness reached a maximum at sections 40% of femur length and decreased to 

very low values proceeding distally.  ANOVA did not show any significant difference of 

porosity and canal diameter along the long axis.  However, the Fig. III.12 shows that the 

variations of porosity and canal diameter are similar along the long axis and have partial 

linear correlation (R2=0.36).  Both the values increased from the proximal region and reached 

a maximum at 30-40%, decreased to 60-70% and then increased to proximal region.  The 

mean pore density increased linearly from 25% and attained a maximum at 55%, then 
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decreased in the distal region. This canal density has a partially negative linear correlation 

with canal diameter (R2=0.29). 

The structural parameters variations for all anatomical quadrants along the long axis 

were also analyzed.  Variations of cortical thickness were similar for all anatomical quadrants 

along the long axis direction.  In the posterior quadrant, porosity decreased linearly from 

proximal to distal (R2=0.94, p<0.0001).  There were no changes in porosity in the medial 

region.  In the lateral, porosity has a moderate increasing correlation with the long position 

(R2=0.44, p<0.05).  Posterior has a lower canal diameter ( 53 µm) in the sections below 40% 

than above 40% of femur length ( 63 µm).  But in the medial quadrant, the variation is the 

reverse; the cross section below 50% femur length has higher canal diameter ( 80 µm) than 

above 50% ( 65 µm).  Most distal sections (60–80%) had similar diameter values for all 

quadrants.  The canal density increased linearly in both posterior (R2=0.69) and lateral 

(R2=0.36) quadrants along the long axis. The variations of canal density were similar for 

medial and anterior quadrants along the long axis and have the maximum values in the cross 

section for 61.4 % of femur length.  The ranges of structural parameters along the long axis 

for all anatomical quadrants are listed in Table II.5.  

 

Table III.5 The ranges of structural parameters in anatomical quadrants along the long axis  

of femur cortical bone. 

Anatomical  

Quadrant 

Cortical Width  

(mm) 

Porosity 

(%) 

Canal Diameter 

(µm) 

Canal Density 

(mm-2) 

Posterior 3.02 – 5.52 9.25 – 19.15 51.06 – 70.24 8.01 – 18.94 

Medial 2.75 – 7.16 9.20 – 12.94 57.45 – 90.83 10.90 – 17.84 

Anterior 2.35 – 5.81 5.72 – 18.33 51.06 – 81.24 10.19 – 21.15 

Lateral 2.75 – 6.77 6.89 – 19.94 51.06 – 72.23 12.39 – 21.91 
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III.1.4.2 Variation of structural parameters along the circumferential direction 

ANOVA test shows that only porosity and canal diameter have a significant difference 

along the anatomical positions.  The graphical representations of porosity and pore diameter 

for anatomical quadrants are shown in Fig. III.13. Posterior has a higher porosity than the 

anterior and lateral quadrants.  Canal diameters are higher in the medial quadrants than the 

posterior and lateral quadrants.   

a) b) 

Figure III.13  Graphical representations of structural parameters, a) porosity and b) canal diameter along the 

circumferential direction (* p<0.05, ** p<0.001 and *** p<0.0001).   

Along the radial positions, all the cross section samples showed higher porosity and 

pore diameter to regions close the endosteum than the regions close to the periosteum (Fig. 

III.11b).      

 

III.1.5 Spatial distribution of homogenized mesoscopic elastic properties 

Using the asymptotical homogenization model explained in Sec .II.A.4, mesoscopic 

elastic coefficients by the combination of mesoscopic porosity (Sec. III.A.4) and bone matrix 

elastic coefficients (Sec. III.A.3) were analyzed along the femur long axis positions and 

anatomical quadrants.  The spatially averaged values of mesoscopic elastic coefficients and 

technical constants from the entire human femur are listed in Table III.6. 
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Table III.6 Mean and standard deviation of all mesoscopic elastic coefficients and technical constants. 

Average elastic coefficients Average technical constants 

c33 29.5 ± 4.1 GPa E3 23.8 ± 3.4 GPa

c11 18.0 ± 2.5 GPa G13 5.5 ± 1.1 GPa

c12 8.0 ± 1.0 GPa γ12 0.357 ± 0.021

c13 8.6 ± 1.1 GPa γ13 0.189 ± 0.011

c44 5.5 ± 1.1 GPa γ31 0.332 ± 0.012

Three-way ANOVA showed that all directional positions contribute significantly to the 

variations of all mesoscopic elastic coefficients (Table III.7).  The second order interaction 

terms between the long axis position and the circumferential position suggest that all 

mesoscopic elastic coefficients along the anatomical positions are also dependent upon the 

femoral long axis position.      

 

Table III.7 Three-way ANOVA for mesoscopic elastic coefficients (F – statistic). Categorical factors are: Long 

axis position (Long – Proximal to Distal), Circumferential position (Circ – posterior, medial, anterior and 

lateral) and Radial position (Radi – endosteal to periosteal). 

 c33 c11 c12 c13 c44 

Long 9.42 * 8.95 * 9.82 * 9.88 * 8.08 * 

Circ 27.05 * 8.21 * 23.79 * 27.13 *  13.08 * 

Radi 4.44 * 2.01 * 2.45 * 2.02 * 1.84 

Long x Circ 15.10 * 8.40 * 10.36 * 10.78 * 9.66 * 

Long x Radi 0.68 1.66 1.34 1.28 0.66 

Circ x Radi 0.13 0.41 0.17 0.18 0.54 

*represents the significant difference at the level 0.05 
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III.1.5.1 Mesoscopic elastic properties along the longitudinal direction  

The mean mesoscopic elastic coefficients variations along the femur long axis 

positions were shown in Fig. III.14.  All the coefficients showed significant change along the 

longitudinal direction.  The strongest linear dependence on the axial position was found for 

mesoscopic c33 (R
2 = 0.56).  The other mesoscopic elastic coefficients, c12 and c13 and c44 

showed weak correlation with long axis positions (R2 = 0.29 - 34). There were no changes of 

the homogenized elastic coefficients c11 from proximal to 45% and then increased linearly to 

section close to distal.      

 

Figure III.14  Mesoscopic elastic coefficients c33(∆), c11(□), c12(), c13() and c44(◊) along the femur longitudinal 

direction. 

The variations of all homogenized elastic coefficients for the four anatomical 

quadrants along the femur long axis are shown in Fig. III.15.  In the posterior quadrant, all the 

homogenized elastic coefficients increased linearly along the long axis from proximal to 

distal.  There were no significant changes found in the anterior quadrant.  In the medial, the 

mesoscopic elastic coefficients c33, c12 and c13 showed significant differences and an increase 

along femur long axis.  All coefficients reached a maximum value at 65% of femur length in 

these quadrants.   In the lateral quadrant, the homogenized elastic coefficients c11 moderately 

decreased along the femur long axis. c11 has higher values below the mid shaft region than the 

above sections.  The sections from the mid shaft to the distal region (55–80%) had similar 

mesoscopic c33, c11, c12 and c13 values in all anatomical quadrants.  The ranges of all 

homogenized elastic coefficients for the four anatomical quadrants along the femur long axis 

are listed in Table III.8. 
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a) b) 

c) d) 

Figure III.15 Mesoscopic elastic coefficients c33(∆), c11(□), c12(), c13() and c44(◊) for four quadrants: a) 

posterior, b)medial, c) anterior and d)lateral along femur longitudinal direction.  

 

Table III.8 The range of mesoscopic elastic coefficients in anatomical positions along the  

long axis of the femur.  

Anatomical 

position 

c33 

(GPa) 

c11 

(GPa) 

c12 

(GPa) 

c13 

(GPa) 

c44 

(GPa) 

Posterior 19.67 – 35.40 11.37 – 22.00 5.62 – 9.22 5.84 – 9.84 3.36 – 7.13 

Medial 27.67 – 36.15 15.07 – 21.04 7.41 – 9.81 7.85 – 10.63 3.30 – 7.15 

Anterior 27.27 – 36.99 16.27 – 22.39 7.23 – 9.65 7.65 – 10.42 4.67 – 8.13 

Lateral 23.71– 36.82 14.01– 22.31 6.49 – 9.95 6.71 – 10.73 4.03 – 7.65 
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III.1.5.2 Mesoscopic elastic properties along circumferential direction 

 Fig. III.16 shows the graphical representation of variation in mesoscopic elastic 

coefficients within the anatomical quadrants.  Tukey’s multiple comparison test at the 0.05 

significant level shows that posterior has a lower value of mesoscopic elastic coefficients c33, 

c12 and c13 than other quadrants.  The elastic coefficients c11 and c44 were higher in the anterior 

than in the posterior and medial.  The lateral has higher mesoscopic c11 value than the 

posterior quadrant.     

  

a) b) 

Figure III.16  Graphical representations of mean mesoscopic elastic coefficients along circumferential direction 

(* p<0.05, ** p<0.001 and *** p<0.0001). 

III.1.5.3 Mesoscopic elastic properties along the radial direction  

 

Figure III.17 Mean and standard deviation of mesoscopic elastic coefficients c33 (∆), c11(□), 

c12(●), c13(○) and c44(◊) along the radial direction (5% and 95% correspond to the sections 

adjacent to the endosteum and periosteum respectively). 
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The variations of mesoscopic elastic coefficients along the radial position are given in 

Fig. III.17.  Here, 10% corresponds to the section close to endosteum and 100% section close 

to periosteal.  None of the mesoscopic elastic coefficients showed any significant changes 

along radial direction. Only the last section, close to the periosteal had lower values of c33, c12 

and c13 compared to central region (40 – 50%) of cortex.     

III.1.5.4 Mesoscopic anisotropy ratio 

 

a) b) 

 

c) 

 

Figure III.18 Variation of mesoscopic anisotropy ratio along a) longitudinal, b) circumferential and c) radial 

directions (* p<0.05, ** p<0.001 and *** p<0.0001). 

The mesoscopic anisotropy ratio varied with respect to the long axis and anatomical 

positions (Fig. III.18). The mean and range of the mesoscopic anisotropy ratio are 1.67 ± 0.17 

and 1.54 – 1.79.  For all anatomical quadrants, no significant changes in mesoscopic 

anisotropy ratio were found in sections close to proximal and distal along the femur long axis.  
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There were only changes in the middle region from 40 to 60 % of femur length.  The medial 

and lateral had higher anisotropy ratios than the posterior in this region.  Along the 

circumferential direction, the posterior has a lower anisotropy ratio than the other quadrants.  

The medial has a higher value than the anterior and lateral (Fig. III.18b).  The mean 

mesoscopic AR for anatomical quadrants; posterior, medial, anterior and lateral are 1.61 ± 

0.09, 1.75 ± 0.13, 1.66 ± 0.09 and 1.69 ± 0.11.  There were no significant changes of 

mesoscopic anisotropy ratio along the radial direction (Fig. III.18c).    

III.1.6 Spatial distribution of degree of mineralization 

a) b) 

 

c) 

Figure III.19  Variation of DMB of human femur along a) longitudinal, b) circumferential and 

c) radial directions (* p<0.05 and *** p<0.0001). 

The variations in degree of mineralization along three directions are shown in Fig. 

III.19.  The DMB values did not show a significant variation along the long axis.  Only the 

most proximal position at 20.8% had significantly smaller values compared to the central 



Chapter III:   Results 

 

94 

 

regions (around 34% to 74% of the femur length).  The mean and the range of DMB along the 

long axis are 1.102 ± 0.006 and 1.086 – 1.110 g/cm3.  Along the anatomical direction, DMB 

has significantly lower values in the posterior and anterior quadrants than in the medial and 

lateral quadrants. The mean DMB values for anatomical quadrants; posterior, medial, anterior 

and lateral are 1.091 ± 0.022, 1.108 ± 0.013, 1.099 ± 0.016 and 1.109 ± 0.010 g/cm3.   Along 

the radial direction there was not significant difference from the endosteum upto 65% of 

cortical width, and they decreased up to the periosteal. The mean and range of DMB along the 

radial direction are 1.102 ± 0.019 and 1.057 – 1.114 g/cm3.       

III.1.7 Correlation of elastic parameters with structural properties and DMB  

Table III.9 Correction coefficients between the structural parameters and microscopic elastic coefficients of 

human cortical bone.   

 Cortical ݎ

Width 

Porosity Canal 

Diameter 

Canal 

Density 

DMB 

Microscopic elastic coefficients 

ܿଷଷ -0.32*  -0.21 0.13 0.26 0.54* 

ܿଵଵ -0.22 0.09 0.05 0.10 0.29* 

ܿଵଶ -0.32* -0.21 0.13 0.26 0.53* 

ܿଵଷ -0.32* -0.21 0.13 0.26 0.53* 

ܿସସ -0.33* 0.23 -0.02 0.06 0.10 

ܿଷଷ ܿଵଵൗ  -0.15 -0.30*  0.11 0.20 0.32* 

Mesoscopic elastic coefficients 

ܿଷଷ -0.27* -0.62* -0.09 0.19 0.44* 

ܿଵଵ -0.15 -0.72* -0.22 0.16 0.22 

ܿଵଶ -0.20 -0.82* -0.21 0.19 0.40* 

ܿଵଷ -0.19 -0.85* -0.21 0.19 0.42* 

ܿସସ -0.34* -0.19 -0.14 0.13 0.03 

ܿଷଷ ܿଵଵൗ  -0.14 0.11  0.19 0.04 0.32* 

* represents the significant correlation at the 0.05 level 

The influence of structural properties and DMB on microscopic and homogenized 

elastic coefficients, estimated from four anatomical quadrants for all cross sections, was 
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analyzed using linear regression and is shown in Table III.9.  Some of the microscopic and 

homogenized elastic coefficients were partially correlated with cortical thickness and 

decreased with respect to thickness.  None of the other structural parameters showed any 

dependency on bone matrix elastic coefficients.  All homogenized elastic coefficients except 

c44 have strong correlations and decreased with respect to mesoscopic porosity.   

The elastic coefficients c33, c12 and c13 have a moderate correlation and increased with 

the degree of mineralization in both bone matrix and homogenized cases.   The highest 

correlation between tissue level axial elastic coefficient and degree of mineralization is shown 

in Fig. III.20.  

 

Figure III.20  Relation between bone tissue axial elastic coefficient, c33 and volume fraction of hydroxyapatite, 

vfHA from Hellmich et al. [21]and this study. 

The bone tissue elastic coefficient and volume of fraction of hydroxyapatite relation 

was not exactly similar to how it is shown in Hellmich et all [21].  This could be due to 

different fibril orientations, embedding, or other differences in the collagenous organic matrix.   
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III.2 Skeletal muscle 

III.2.1 Chemical and structural parameters of muscle 

The mean and range of the structural and chemical parameters of longissimus muscle 

are given in Table II.10. 

Table III.10 Mean, coefficient of variance and range of chemical parameters and structural parameters of M. 

longissimus are listed. 

  Mean ± STD CV [%] Minimum Maximum

Chemical Parameters 

Intramuscular fat [%] 1.3 ± 0.6 45.7 0.63 3.16

pH 45 6.4 ± 0.2 2.8 6.08 6.74

EZ drip loss [%] 5.7 ± 2.9 51.9 1.29 13.36

Protein [%] 24.0 ± 0.8 3.5 21.82 25.42

Dry matter [%] 25.5 ± 0.7 2.7 24.36 27.00

Structural Parameters 

Bundle Ø [µm] 806 ± 115 14.3 532.48 1103.29

Fiber Ø [µm] 81 ± 7 9.7 68.30 94.90

FTG Ø [µm] 85 ± 8 9.9 68.49 102.49

FTO Ø [µm] 65 ± 10 14.6 45.34 95.61

STO Ø [µm] 70 ± 7 10.3 54.78 81.37

FTG [%] 78 ± 4 4.9 70.82 84.21

FTO [%] 12 ± 3 28.8 6.46 19.28

STO [%]  10 ± 3 29.2 5.88 17.93

FTG – fast twitch glykolytic; FTO – fast twitch oxidative; STO – slow twitch oxidative 
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The highest coefficients of variation were reached for IMF and the amount of drip 

loss.  The CV of the other compositional parameters was rather low, ranging between 2.5 and 

4%. Histological parameters showed mediocre standard deviations with a CV between 5 and 

14%. 

III.2.2 Acoustic parameters of muscle at fiber level 

The acoustic parameters estimated at fiber level using 100 MHz scanning acoustic 

microscope (Sec. II.B.3) are discussed in this section.   

III.2.2.1 Anisotropy of muscle acoustic parameters at fiber level 

The maps acoustic propagation parameters (e.g., attenuation and speed of sound) and 

the material parameters (e.g., impedance and density), estimated from one of the fiber parallel 

muscle samples are shown in Fig. II.23.  The figure contains the parameters only from the 

muscle fibers and all the connective tissue is excluded as mentioned in the section (Sec. 

II.B.3.2).  The mean and range of acoustic propagation parameters (e.g., speed of sound, 

attenuation) and material parameters (e.g.,  impedance, density and elastic coefficient) for 

both fiber orientations of muscle samples are given in Table II.11. 

Table III.11 Mean and range of acoustic propagation parameters and material parameters along fiber parallel 

and perpendicular orientations are listed. 

 Parallel Perpendicular 

 Mean ±std Range Mean ±std Range 

Speed of Sound 1599 ± 14 1573 – 1630 1573 ± 13 1552 – 1596 

  [m/s]   

Attenuation          

α [dB/MHz/cm] 

6.23 ± 0.69 5.08 – 7.85 1.90 ± 0.51 1.00 – 3.25 

  

Impedance           

Z [MRayl] 

1.69 ± 0.01 1.67 – 1.72 1.67 ± 0.01 1.65 – 1.68 

  

Density                 

 [g/cm3] 

1.06 ± 0.01 1.04 – 1.07 1.06 ± 0.01 1.04 – 1.09 

  

Elastic coefficient 

c [GPa] 

2.69 ± 0.03 2.65 – 2.77 2.62 ± 0.02 2.58 – 2.67 
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The attenuation coefficient and speed of sound in each muscle showed a distinct 

difference between measurements of parallel and perpendicular orientation (F = 644 and F = 

43).  For all muscle samples, those parameters were higher along the fiber direction than the 

perpendicular to fiber orientation.  The attenuation plot ሺ݂ሻ for a single #1 sample is shown 

in (Fig. III.22).  In all muscle samples measured, the error bars of the two orientations were 

well separated like this.  The anisotropy ratios, i.e. the ratios of the values measured in the 

parallel direction to the values measured in the perpendicular direction, for the attenuation 

coefficients and speed of sound for porcine longissimus were 3.47 ± 0.86 and 1.02 ± 0.01 

respectively.  The higher anisotropic index for attenuation indicates its higher direction 

dependency compared to speed of sound.    

The elastic coefficients c33 and c11 estimated from acoustic impedance and density for 

the parallel and perpendicular directions are 2.69 ± 0.03 and 2.62 ± 0.02 GPa respectively.   

The mechanical parameters (impedance and elastic coefficients) are significantly higher in the 

parallel direction compared to the perpendicular direction, as in ultrasonic propagation 

parameters (F = 60 and F = 92 respectively).  The significant differences in elastic coefficients 

between both sections are shown in Fig. III.21a.  The anisotropy ratios for impedance and 

elastic coefficient were 1.01 ± 0.01 and 1.03 ± 0.01 respectively.  As expected, the mass 

density was not affected by the direction of measurement.    

 

Figure III.21  Variation of elastic coefficients and density with respect to muscle fiber orientation. 
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III.2.2.2 Acoustic parameters for different fiber types  

As mentioned in the Sec. II.B.3.3 in this study muscle fibers are differentiated into two 

types as STO and FTO+FTG, and their acoustic parameters are compared.  The mean values 

of acoustic parameters of fiber types STO and FTG+FTO along the fiber direction were  = 

1581 ms-1; Z = 1.66 Mrayl;  = 5.59 dB cm-1 MHz-1 and  = 1589 ms-1; Z = 1.68 Mrayl;  = 

6.19 dB cm-1 MHz-1
 respectively.  No significant differences in speed of sound and attenuation 

within the fiber types could be stated.  However, the acoustic impedance values in STO fibers 

were slightly lower than in FTO+FTG fibers (F = 4.99, p = 0.04).        

III.2.2.3 Correlation of microscopic muscle acoustic parameters with compositions 

The linear correlation coefficients of acoustic parameters along the fiber parallel and 

perpendicular orientations and their corresponding anisotropic ratio with muscle composition 

and structural properties are given in Table III.12. 

The IMF content was not correlated with any of the acoustic properties.  Sound 

velocity and attenuation coefficient values increased significantly with increasing drip loss, 

while inverse relations were found with dry matter.  Attenuation of porcine muscle behaves 

similarly in both fiber orientation cases, while the anisotropy of attenuation increased with 

respect to dry matter.  The protein content showed a slight positive relationship with the 

attenuation coefficient and impedance values.  However, none of them were significant.  No 

significant correlation could be found comparing structural parameters from histology (e.g., 

fiber type distribution or diameter) with any of the acoustic parameters (data not shown). 
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Table III.12 Linear correlation coefficient (r) of acoustic parameters of fiber orientation parallel and 

perpendicular to sound propagation with tissue compositions and structural parameters. 

r  IMF Drip loss Protein % Dry matter Glykolytic 

fibers [%] 

Parallel  -0.20 0.35 -0.14 -0.26 0.22 

α -0.34 0.29 0.27 -0.08 -0.03 

Z -0.15 0.00 0.16 -0.06 -0.14 

 0.09 -0.33 0.23 0.21 -0.29 

Perpendicular  0.08 0.11 0.12 0.14 -0.05 

α -0.25 0.25 -0.09 -0.42* 0.21 

Z -0.30 0.37 0.30 -0.11 0.20 

 -0.20 0.10 0.05 -0.16 0.14 

Anisotropy 

index 

 -0.20 0.18 -0.19 -0.29 0.21 

α 0.13 -0.07 0.15 0.44* -0.12 

Z 0.13 -0.34 -0.11 0.04 -0.32 

*represents significant correlation at the 0.05 level  

III.2.3 Macroscopic acoustic reference data of porcine muscle and back fat compound  

For intermediate medium attenuation and refraction correction for backscatter data 

acquisition, anticipated to improve non-invasive ultrasound based muscle characteristic 

estimation, reference acoustic parameters from muscle and back fat compound were 

determined using 10 MHz scanning acoustic microscope (Sec. II.B.4).  Those results are 

discussed in this section.   



Chapter III:   Results 

 

101 

 

III.2.3.1 Acoustic properties of back fat compound 

The mean and rang of individual fat layers acoustic parameters (sound speed, 

attenuation and thickness) are given in Table III.13.  The skin and complete back fat 

compound (skin + all fatlayers) were also estimated.  The mean attenuation and sound speed 

of skin were 2.6 ± 1.1 dB/MHz/cm and 1682 ± 23 m/s respectively.  Thickness of skin 

remained more or less constant for all samples, 2.7 ± 0.4 mm.  And, the mean attenuation and 

sound speed of back fat compound were 2.5 ± 0.6 dB/MHz/cm and 1502 ± 20 m/s 

respectively.   

Table III.13 Mean and range of acoustic parameters of individual fat layers: subcutaneous fat layer (n =20), 

intermediate fat layer (n = 17) and inner fat layer (n = 14).   

 Subcutaneous fat layer Intermediate fat layer Inner fat layer 

 Mean Range Mean Range Mean Range 

Thickness 

[mm]  

4.7 ± 1.5 2.7 – 7.5 4.8 ± 2.0 2.0 – 8.9 3.8 ± 1.0 2.1 – 5.3

Sound speed 

[m/s] 

1435 ± 9 1425 – 1476 1450 ± 22 1426 – 1519 1469 ± 37 1441 – 1562

Attenuation 

[dB/MHz/cm] 

1.6 ± 0.7 0.8 – 3.4 1.6 ± 0.7 0.6 – 4.0 2.7 ± 1.5 1.2 – 6.8

Skin and fat have a significant difference in thickness (F = 28.9, p = 0), sound speed (F 

= 12.74, p < 0.001) and attenuation (F = 4.92, p < 0.05).  Within the fat layers, attenuation has 

significantly different values and no difference in thickness and sound speed.  The inner fat 

layer has a higher attenuation than subcutaneous and intermediate fat layers and there is no 

difference between attenuation in the subcutaneous and inner fat layers.  But, the data shown 

in Table III.13 represents that the subcutaneous fat layer has the lower sound speed and 

increases to inner fat layer. But the thickness is decreasing from the subcutaneous to the inner 

fat layer.  

A strong correlation was found between the back fat compound’s speed of sound and 

thickness (R2 = 0.73, p = 0).  The back fat compound’s speed of sound decreased with 

increasing thickness (Fig. III.22).  To a lesser extent, sound velocity also decreased with 

increasing thickness of the individual fat layers. However, attenuation was less affected by 
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total back fat thickness and thickness of the individual layers respectively, except for the 

intermediate fat layer. 

 

Figure III.22  Linear regression analysis of back fat compound (skin + three fat layers) sound speed versus 

thickness. 

III.2.3.2 Macroscopic acoustic properties of muscle 

The acoustic parameters were measured with the same fiber orientation as for the 

intact carcass, i.e. the muscle fiber orientation was 30° to 45° relative to the sound 

propagation direction. The mean sound speed was 1620 ± 4 m/s and varied from 1610 to 1628 

m/s.  The mean attenuation was 1.02 ± 0.26 dB/MHz/cm and varied from 0.54 to 1.55 

dB/MHz/cm.      

The Pearson correlation coefficients of associations between macroscopic acoustic 

parameters and compositions are summarized in Table III.14..  The acoustic parameters, speed 

of sound and attenuation showed inverse relations with all muscle compositions.  The meat 

quality parameter IMF was moderately correlated with acoustic properties.  Relations between 

the attenuation and histological traits (data not shown) have been found for the amount of 

FTG (r = -0.31) and STO fibers (r = 0.29).  Speed of sound significantly decreased with IMF, 

while an inverse relation was found with protein %.     
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Table III.14 Linear correlation coefficient (r) of macroscopic acoustic parameters with tissue compositions. 

Acoustic 

parameters 

IMF pH Drip loss Protein Dry matter 

Sound speed –0.50 * –0.04 0.17 0.41 * –0.06 

Attenution 0.66 * 0.33 –0.43 * –0.15 0.35 

*represents significant correlation at the 0.05 level  

 

III.2.4 Non-destructive muscle characteristics investigation   

The abbreviations and a short description of acoustic parameters calculated from the 

muscle region of interest using quantitative ultrasonic device RF data (Sec. II.B.5) are given 

in Table III.15. 

III.2.4.1 Estimated parameters from the muscle region of interest 

Table III.15 The acoustic spectral and cepstral parameters extracted from the quantitative ultrasonic device RF 

data are listed.  

Parameters Units Description 

TOFBF µs Back fat compound time of flight 

dBF mm Back fat compound thickness 

SOSBF   m/s Back fat compound speed of sound 

௠௨௦௖௟௘ dB/MHz/cm Muscle attenuation coefficient 

AIB   dB Mean of apparent integrated backscatter amplitude  

M  dB Midbandfit 

m  dB/MHz Backscatter power spectral slope 

RFexcl % 
Percent of rf signals correspond to spectral intensity 

below -40 dB excluded  

IC  Integrated cepstrum  

Cfp(fp)     Cepstrum first peak amplitude 

fp  µs Cepstrum first peak amplitude position 
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Prior to statistical analysis all ultrasound measurements were checked for reliability.  

Out of 218 performed measurement (54 x 3 and 28 x 2), 83 measurements (38%) had to be 

excluded.  The reason for excluding the data were focus area and corresponding ROI at the 

muscle/rib interface, very weak scattering amplitudes resulting in an insufficient SNR, 

multiple reflections of the back fat interfaces in the muscle ROI due to bad coupling and 

spectrum amplitude > 20 dB higher than the remaining distribution.  For 20 out of 82 

carcasses all three ultrasound measurements had to be excluded.  To investigate the relation 

between the acoustic parameters and muscle compositions and structural properties, acoustic 

parameters of three replicate measurements per animal from the remaining carcasses were 

averaged.  The mean and range of all extracted parameters from US data are summarized in 

Table III.16.   

Table III.16 Mean, standard deviation, coefficients of variance (CV), minimum and maximum of extracted 

acoustic parameters are listed. 

Parameters Mean ± STD CV [%] Minimum Maximum

TOFBF [µs] 20.1 ± 4.5 22.2 11.9 30.4

dBF [mm] 15.0 ± 3.1 20.5 8.8 20.7

SOSBF [µs] 1491 ± 14 0.95 1467 1520

αmuscle [dB MHz-1cm-1] 0.77 ± 0.15 19.3 0.54 1.17

AIB [dB] -34.1 ± 4.6 13.5 -42.7 -22.3

M [dB] -34.0 ± 4.4 13.0 -42.1 -22.8

m [dB MHz-1] 4.07 ± 1.17 28.77 1.25 6.33

Excluded RF-signals [%] 24.5 ± 14.6 59.6 1.4 61.1

IC [dB] 2.01 ± 0.10 5.02 1.78 2.23

Cfp(fp) [dB]  2.33 ± 0.14 5.81 2.07 2.64

fp [µs] 1.02 ± 0.01 1.33 0.99 1.05
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No significant difference could be stated between back fat SOS (paired t-test, p = 0.22) 

and thickness (paired t-test, p = 0.15) measured from UF300 back fat TOF and SAM data 

with 10 MHz (Sec. III.B.3.1) [168].   Results of linear regressions analysis of acoustic 

parameters with muscle composition and structural parameters are given in Table III.17. 

Table III.17 Linear correlation coefficient (r) of frequency dependent acoustic parameters with tissue 

compositions and structural parameters. 

 Chemical Parameters Structural Parameters 

Acoustic 

Parameters 

IMF Drip loss Protein % Dry matter Fiber  Bundle  

TOFBF 0.27 * -0.13 

-0.13 

0.13 

-0.28 * 

-0.23 

-0.24 

0.09 

0.06 

-0.09 

-0.10 

-0.13 

0.01 

0.04 0.29 * -0.11 0.02 

0.03 

-0.03 

0.24 

0.08 

0.09 

0.14 

0.20 

-0.07 

-0.11 

-0.13 

-0.28 

dBF 0.25 0.06 0.28 * -0.14 

SOSdBF -0.25 -0.06 -0.28 * 0.14 

௠௨௦௖௟௘ 0.61 * -0.35 * 0.23 -0.19 

AIB 0.56* -0.24 0.31 * -0.30 * 

M 0.56* -0.24 0.31 * -0.30 * 

m 0.04 0.07 0 -0.27 

RFexcl -0.17 -0.18 -0.10 0.34 * 

IC  0.26 * -0.21 0.14 -0.36 * 

  * ௙௣ሺ௙௣ሻ 0.29* -0.19 0.18 -0.41ܥ

௙௣ 0.10 -0.19 0.01 -0.15 

௙௣ (std) -0.21 -0.04 -0.09 0.02 

*Represents the significant correlation at the 0.05 level 
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III.2.4.2 Correlation of spectral parameters with tissue compositions 

Among the muscle composition parameters, only intramuscular fat content and dry 

matter showed reasonable correlation with acoustic parameters.  The spectrum amplitude 

(AIB, M) showed significant positive correlation with those compositions.  Weak correlations 

were also observed between cepstral amplitudes (IC, Cfp) and IMF.  Highest positive 

correlation was observed between IMF and muscle attenuation, muscle.  

III.2.4.3 IMF prediction using the multivariate method 

Multiple regression analysis (MLR) was performed using a variety of estimated 

acoustic parameters.  A highly significant model (R2 = 0.76, RMSE = 0.34%) could be 

obtained by the combination of back fat compound time of flight TOFBF, muscle attenuation 

muscle and spectral slope.  It should be mentioned that, even if muscle was the most important 

variable inside the model, removal of even one of the three variables tremendously increased 

the prediction error.   

௎ௌܨܯܫ ൌ െ2.416	% ൅ ሺ0.108	µିݏଵܱܶܨ஻ிሻ% ൅ ሺ4.755݀ିܤଵݖܪܯ. ܿ݉	௠௨௦௖௟௘ሻ%

െ ሺ0.457	݉	݀ିܤଵݖܪܯሻ% 

(III.1)

The IMF predicted from multiple stepwise regression model was compared with IMF 

estimated from chemical analysis using Bland – Altman plot (Fig. III.23).  The IMF 

determined from chemical analysis and prediction model were 1.53 ± 0.68% and 1.53 ± 

0.61% respectively.  The relative percent difference was (17.8 ± 15.7) % (mean and standard 

error), but this difference was not significant (paired t-test, p = 0.99).  Furthermore, about half 

of the samples could be predicted with a RMSE of 0.2% IMF or less.    
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Figure III.23  Bland-Altman plot shows the comparison of IMF predicted from chemical analysis and 

ultrasound. 

 The results of the classification of the obtained IMFUS  values into the for meat 

quality important threshold levels of < 1 % (LOW), 1-2 % (MID) and > 2 % IMF (HIGH) and 

the comparison with the IMFchem values can be seen in Table III.17.  Overall, about 73% of all 

samples were assigned to the correct IMF class. Furthermore, it should be mentioned that only 

1 sample was falsely classified into the HIGH class. However, this sample had an IMFchem 

value of 1.9% proving the practicability of ultrasound spectral analysis to classify HIGH IMF 

meat correctly. 

Table III.18 Grouping of IMF values into important meat quality threshold levels (LOW: <1 %, MID: 1 – 2 %, 

HIGH: > 2 %) using multiple linear regression analysis versus chemically determined IMF value (n=62). 

 Chem. LOW Chem. MID Chem. HIGH 

US LOW 10 (50 %) 2 (8 %)  

US MID 10 (50 %) 22 (88 %) 4 (24 %) 

US HIGH  1 (4 %) 13 (76 %) 
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III.2.4.4 Correlation of spectral parameters with structural properties 

From structural parameters estimated from histology, fiber diameter showed the 

moderate correlations (up to r = -0.3) with spectral parameters (AIB and M).  All those 

parameters decreased with increasing fiber diameter.  In contrast to fiber diameter, no 

significant correlation could be found between the bundle diameter and any of the acoustic 

parameters. It has weak correlation with cepstrum parameter, ௙௣, but not significant. 

Generally, cepstral parameter ௙௣ represents the scatter size and distances depending on the 

ultrasonic system axial resolution and frequency.  The range of ௙௣ = 0.99 – 1.05 µs 

corresponds to spatial distance range between 800 and 850 µm, which is in the order of the 

primary bundle diameter.  But the average bundle diameter determined from histology is 689 

± 75 µm.  In this quantitative ultrasonic measurement, bundles were oriented 30° - 45° to skin 

surface.  In the histology for fiber and bundle diameter estimation, thin slices of muscle 

samples were prepared by cut perpendicular to fiber orientation.  That difference in fiber 

orientation angle has to be correlated for comparison of histology and cepstrum.  The 

averaged bundle diameter estimated from  ௙௣ after orientation angle correction (~ 30°) is 712 

± 10 µm.   The average relative difference between the bundle diameter estimated from ௙௣	 

and histology was (8.1 ± 7.2) % (mean and standard error).  The histogram of bundle diameter 

estimated from ௙௣	within the evaluated ROI is shown in Fig. III.24.  

 

Figure III.24 Muscle bundle diameter histogram distribution estimated from ࢖ࢌ	within the evaluated muscle 

ROI. 
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IV Discussion 

IV.1 Cortical bone 

Elastic constants of cortical bone are widely used nowadays in conjunction with 

numerical simulations, e.g., deformation or fracture analysis, fracture, or ultrasound wave 

propagation. For these models, accurate knowledge of elastic constants of compact bone 

especially femur which is common skeletal site of fracture in human is necessary.  In previous 

studies, the elastic properties of the human femoral cortical bone was analyzed with limited 

number of specimens and bone range covered was between 40% and 70% of the femur length 

[48;49;178-180].  In those studies, samples were prepared by cutting bone sections in 

different directions relative to a principle axis of symmetry.  This causes a high preparation 

and measurement effort. Even, those studies have been done with a frequency range of 2 – 5 

MHz which determines the elastic properties by both bone matrix and porous structure.  For a 

better understanding of the tissue alteration due to pathological conditions, tissue level elastic 

cortical bone is necessary.         

IV.1.1 Estimation of elastic coefficients of cortical bone   

In this study, a new procedure has been developed to assess the anisotropic elastic 

coefficients of cortical bone at tissue level.  Previous studies have shown that a highly focused 

50-MHz transducer has sufficient lateral resolution for a reliable segmentation of Haversian 

canals from the bone tissue and that the acoustic impedance derived from two-dimensional 

maps of the confocal reflection amplitude is sensitive to elastic tissue anisotropy  [27;36;37].  

In this study the anisotropy estimation was considerably improved by using cylindrically 

shaped samples as opposed to flat sections cut at different angles relative to the femoral long 

axis.  This allowed us to assess a continuous angular spectrum of the acoustic impedance from 

a small sample volume with a single measurement, while for each probing angle a sufficient 

number of measurements were maintained.  Therefore precise fits (R²  0.97) to a transverse 

isotropic elastic model were obtained.  The strong relation between elastic coefficient and 

acoustic impedance was also found (R2 = 0.99) by site-matched analysis of acoustic 

impedance and tissue degree of mineralization maps as shown in previous studies [151].  This 

relation, determined from human femur was used to convert acoustic impedance values into 

stiffness coefficients.  The inspected tissue volume of the cylinders contained a representative 
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ensemble of structural units (osteons and interstitial tissue).  However, the volume was small 

enough to minimize influences due to anatomical variations of elastic tissue properties.  The 

axial (c33) and radial (c11) elastic coefficients were accessed directly from the experimental 

data.  The remaining elastic coefficients were predicted by the incorporation of composite and 

continuum mechanical model constraints of all elastic coefficients of the transverse isotropic 

tissue matrix.  The microscopic level mechanical properties of bone depend on the properties 

of the collagen fibrils constituents, their microstructure, and orientation distribution, also 

mineral content and the shape of the mineral particles [100].     

The diagonal components of the stiffness matrix predicted from the open-foam model 

are sometimes considerably larger compared to the values determined from the fit of c() to 

the transverse isotropic model.  This confirms the finding of Hellmich et al. [21] that only the 

off-diagonal components of the stiffness matrix predicted by this model agree well with 

experimentally derived values.  The main drawbacks of this continuum micromechanical 

model were that the mineralized collagen fibril orientation did not included and also a less 

realistic spherical shape assumption for HA minerals was used.  Several studies are going on 

to improve hierarchical modeling of the elastic properties of cortical bone at micron and 

submicron level as shown in the section [94;100;105].  But until now, there is no efficient 

model available to predict the ultrastructural elastic properties of bone accurately including 

collagen fibril orientation. 

For the estimation of homogenized mesoscopic elastic coefficients of cortical bone, 

the asymptotic homogenization method was used by modeling the low-frequency elastic 

waves propagation through an idealized material that models the local mesostructure [115]. In 

this method, the bone tissue matrix is represented by hexagonal [157] and the pore is modeled 

as a cylinder of infinite extent in the long axis direction filled with water.   
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IV.1.2 Microscopic and mesoscopic elastic coefficients of human femur  

The entire cross sectional measurements showed the Haversian tissue structure for a 

female femur aged 72 year.  This study was the first to report explicitly anatomic variation in 

the elastic properties of human femoral cortical bone tissue, though the necessary data may 

have been available in the previous studies.  Cortical thickness is typically higher in the mid-

femur and proximal mid-diaphysis, making this region most convenient and practical for 

preparing specimens. 

Table IV.1 Comparison of stiffness coefficients of human cortical femur from this study and from selected 

references from the literature. 

Elastic 

Coefficients 

[GPa] 

This study 

Microscopic 

This study 

Mesoscopic 

Ashman et 

al.  [48] 

Yoon and 

Katz [181] 

Espinoza et 

al. [181] 

c33 34.6 ± 3.6 29.5 ± 4.1 27.6 ± 1.7 32.5 ± 0.4 27.3 ± 1.6 

c11 24.1 ± 2.0 18.0 ± 2.5 20.2 ± 1.8 23.4 ± 0.3 19.7 ± 2.1 

c12 10.2 ± 0.8 8.0 ± 1.0 10.0 ± 1.3 9.1 ± 0.4 10.7 ± 0.7 

c13 11.1 ± 0.8 8.6 ± 1.1 10.1 ± 1.7 9.1 ± 0.6 --- 

c44 7.0 ± 1.2 5.5 ± 1.1 6.2 ± 0.7 8.7 ± 0.1 6.2 ± 0.5 

Source Dry Femur  

(Age 72) 

Dry Femur 

(Age 72) 

Wet Femur 

(Age ---) 

Dry Femur 

(Age 57) 

Wet Femur 

(Age 78) 

Ultrasonic 

method 

Pulse echo 

technique       

(50 MHz) 

Pulse echo 

technique    

(50 MHz) 

Continuous  

technique 

(2.25 MHz) 

Transmission 

method        

(5 MHz) 

Transmission 

method     

(2.25 MHz) 

The comparison of elastic coefficients measured with this new procedure and previous 

macroscopic techniques is shown in Table IV.1.  Note that, in those studies, samples were 

prepared from the mid diaphysis and the number of specimens was smaller.  The mesoscopic 

elastic coefficients determined in this study are within the range of values shown in previous 

works.  By comparing mesoscopic elastic coefficient with previous studies using the same 
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femur age range, the axial elastic coefficient was a bit higher in this study.  Several 

investigations reported increased microhardness of the dry bone compared to fresh bone.  

They concluded the decreased water content in bone through the embedding procedure affects 

the elasticity and microhardness of bone sample substantially.  Zimmerman [182] found a 

significant difference of about 4.2% between acoustic impedances measured from native and 

embedded samples.  Turner et al. [24] got Young’s moduli of human cortical bone measured 

using nanoindentation techniques 0 – 20 % higher than by Ashman.  The embedding 

procedure and the cylindrical shaped transverse isotropic fiber of the circular cross section as 

pore inclusion in the homogenization procedure, affect the mesoscopic anisotropic ratio. 

The variation of tissue elastic coefficients of femur diaphysis at 14 spaced locations 

along its length, in four anatomical positions as well as 10 sections along the radial directions 

was analyzed.  All elastic coefficients varied significantly along all three directions.  The 

variation of elastic properties was rather similar in both microscopic and mesoscopic levels. 

Ashman et al. [48] observed that density and stiffness coefficients were greater at the 

50, 60, 70 percent levels of the femur compared  to the 30 and 40 percent level. Ashman et al. 

[48], Bensamoun et al. [30], Weiss et al. [33] and Espinosa et al. [50]  also observed a 

statistically significant decrease in the stiffness coefficient and density of the posterior region 

relative to the other quadrants as shown in this study.  Evans and Lebow [183] showed that 

the ultimate tensile strength and elastic modulus were greatest in the middle third and lowest 

in the proximal third of the femur shaft.  Among the quadrants tested, they found the medial 

quadrant of the middle third have the greatest mechanical properties.  In our case, the medial 

quadrant has a higher axial elastic coefficient and anisotropy ratio in the middle.  They found 

the anterior quadrant of the proximal third have the lowest properties.  Dissimilarities here are 

most likely due to the sectioning difference between the two studies.   

There was no significant changes of the elastic properties from 60 to 80% along femur 

length in all quadrants of both microscopic and mesoscopic scale.  The variations are only 

between 20 to 60% of femur length.  These variations of elastic coefficients reflect the 

different mechanical loads and type of muscle attached affecting fibril orientation and elastic 

properties.  Duda’s mathematical model [184] showed that mechanical stress like, muscle 

force affects the elastic properties of bone.  In the posterior–lateral region, the vastus lateralis 

is connected between 15% and 80% of femur length (Fig. IV.1b).  Their mechanical force 
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effects the Haversian remodelling and that is represented by the variation of elastic 

coefficients along this long axis.  It has been shown in our study that axial elastic coefficients 

and anisotropy ratio increase from proximal to distal in the  posterior and lateral regions along 

femur length [33].  In the anterior region, vastus intermedius is connected between 10% and 

60% of femur length (Fig. IV.1a).   The elastic constants are higher in the anterior quadrant 

than other quadrants in this region.  The elastic coefficient showed the significant change in 

the muscle attached region.  Nearly constant elastic coefficients values occurs at more distal 

sections, where the muscle is connected only at the posterior/lateral region.  The variation of 

DMB and elastic coefficients along the femoral length was slightly opposite to trends in 

maximum strains calculated by numerical models, with the maxima near section close to the 

proximal and increasing towards the distal  [184;185].   

Martin and Atkinson [186] found that in the femur diaphysis, corresponding to 

sections 40 – 60% in the present study, was stronger in medial-lateral bending than in 

anterior-posterior bending.  Kimura and Amtmann [187] also observed reduced compression 

strength in the AP plane relative to the ML plane at the same approximate positions.  This is 

reflected in our results where the medial, lateral anterior quadrants (sections 40 – 60%) had 

greater elastic coefficient and density values was higher in the medial and lateral quadrants.    

 

a) b) 

Figure IV.1  Muscle attachment on human femur. a) vastus intermedius is attached in anterior region and b) 

vastus lateralis is attached in posterior – lateral region [188].  

In the distal region, the extensor and flexor muscles produce large anterior-posterior 

bending moments.  There is also an increase in the AP bending stress from proximal to distal 
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in the human femur.  The femoral elastic properties change accordingly, and as shown in the 

present study the anisotropic ratio reached maximum at the midshaft region for all the 

anatomical quadrants except for the posterior.  Local variations of elastic coefficients from the 

endosteal to the periosteal related to bone remodelling.  But, for old femur used in our study, 

there was no significant variation of elastic properties along the radial direction, only the last 

section close to periosteum showed lower values.   

The detailed locally-assessed data in this study may serve as a real-life input for the 

numerical 3-D FE simulation models instead of the commonly used assumption that bone 

tissue is homogeneous and isotropic.  Moreover, assessment of changes of local tissue 

anisotropy may provide new insight in studies of bone remodelling, e.g., in the course of 

fracture healing, bone pathologies, aging, or adaptation to modified loading conditions at the 

bone-implant interface after endoprosthetic surgeries. 

IV.1.3 Relations of elastic constants with structural parameters and tissue 
mineralization 

 

a) b) 

Figure IV.2  a) Graphical representation of the six different density – modulus equations that were trailed in 

each bone from Austman et al. (2008) and b) from this study.  

The relation of both microscopic and mesoscopic elastic coefficients with structural 

parameters and tissue degree of mineralization are shown in Table III.9.  Several empirical or 

mathematical models have been developed to predict bone elasticity from the degree of 

mineralization (Fig. IV.2a) [23].  Since the elastic coefficients depend on density and sound 

velocity, both bone mineral content and microstructure will affect the estimated coefficient.  
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The results confirm previous findings that degree of mineralization is only weakly correlated 

with elastic properties (R2 = 0.17 - 0.24).  The variation in the relation can be due to different 

fibril orientations, embedding, or other differences in the collagenous organic matrix.  The 

elastic modulus of hydroxyapatite crystals and collagen matrix are vastly different, and factors 

such as mineral crystal and collagen fibril orientations are main factors that affect the tissue 

elastic properties.  The mechanical anisotropy at tissue level is due to the preferred collagen 

fibril orientation with the principal loading direction of bone.  It is well accepted that porosity 

has a strong impact on macroscopic elastic properties of cortical bone as shown in this study.  

In particular, the highly oriented system of Haversian canals does not only affect the absolute 

elastic coefficient values, but also the macroscopic degree of elastic anisotropy [28;189]. 

IV.2 Skeletal muscle 

Many pathological conditions exhibit a change in mechanical and structural properties 

of muscle.  In this study, the meat quality trait related tissue composition mainly focused on 

the estimation of intramuscular fat content using non-destructive ultrasound technique.  First 

studies have either measured the sound velocity [68;69] or have analyzed the texture of the 

gray scale backscatter images [58;70].  Although these methods have been quite successful in 

the prediction of IMF in living steers and hot carcasses [70-72], the studies performed in 

porcine muscle were less predictive [73;74].  During the last decade, spectral analysis of the 

backscattered ultrasound signals has been shown to provide more detailed information about 

tissue constitution compared to conventional image texture or sound velocity analyses [73-

76].  But it is not clear to what degree the oriented structures of muscle contribute to 

ultrasonic propagation properties.  Many different backscatter models have been proposed to 

extract statistically averaged information from the backscattered radio frequency signals 

measured within a distinct tissue volume.  The accuracy of microstructural tissue features 

estimation can be increase with some model parameters restriction, e.g., with a prior 

knowledge of scatter size, density and relative acoustic impedance change.  The discussion is 

arranged in three parts: tissue level, macro molecular level acoustic properties in porcine 

muscle in vitro and ultrasonic propagation and scattering properties in vivo.   
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IV.2.1 Tissue level acoustic properties in porcine muscle in vitro 

The anisotropies of acoustic propagation parameters and material parameters of 

porcine m. longissimus were analyzed at the level of individual fibers at high resolution, using 

a 100 MHz time resolved scanning acoustic microscope.  To avoid thickness assumptions 

cepstrum analysis of RF signal was used for the thickness estimation of a 50 µm thick sample.  

In this study, acoustic parameters were mainly estimated within the fibers and only a few 

bundles were involved.   

Significant differences of ultrasonic propagation parameters were observed between 

parallel and perpendicular fiber directions. In agreement with previous investigations, speed 

of sound and attenuation coefficient measured parallel to the fibers revealed higher values 

than those measured perpendicular to the fiber direction [87;87;162;164;190]. Among the 

measured acoustic parameters, attenuation had the strongest direction dependence.  The 

attenuation anisotropy found in this study was slightly higher compared to earlier 

measurements on longissimus dorsi, psoas major and lobster extensor, which showed ratios of 

1.56 to 1.82 [87], frozen and bovine skeletal muscle [190;191], and fresh canine myocardium, 

which showed ratios of 1.9 to 3.4.  In all cases the difference between speed of sound 

measured parallel and perpendicular to the sound propagation direction is on the order of 

1.02, which is comparable with the range provided in Smith 1996 [87].        

Anisotropic properties of material parameters (impedance, elastic coefficients and 

density of muscle) have also been investigated in this study.  All the material parameters are 

significantly higher along the fiber orientation compared to the perpendicular direction.  Only 

a few studies are available targeting elastic coefficients of muscle tissue at macroscopic level 

[162;192;193].  The elastic coefficients and their anisotropic ratio of porcine longissmus 

muscle was higher than on human myocardium [193] and lower than the formalin fixed 

bovine tendon [192].  As shown in the bone study, acoustic impedance is excellent proxy for 

the muscle stiffness coefficient (R2 = 0.71, RMSE = 0.02) compared to density (R2 = 0.11, 

RMSE = 0.05).   

 The acoustic properties of different muscle fiber types were also compared by using 

the image registration method with histology image.  Even though the differences of sound 

speed within the fiber type were not significant, the slightly lower sound velocity values of 

STO compared to FTG and FTO fibers may be reasoned in higher fat content and lower 
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protein content in STO muscle fiber type [194].  Positive relationships between sound 

velocity and protein content have already been shown in human blood [195]. 

Fiber level acoustic parameters did not show any significant correlation with tissue 

compositions as shown in the other studies [120].  However, this could be explained by the 

fact that intramuscular fat is mainly associated with connective tissue covering primary 

muscle bundles.  In this study, acoustic parameters were mainly estimated within the fibers 

and only a few bundles were involved.  The negative relation between dry matter and acoustic 

parameters is contrary to earlier findings, where a higher amount of water was related to a 

decreasing sound speed and attenuation in both fiber parallel and perpendicular directions in 

porcine muscle [87].  However, this could be explained by in methodical differences and 

tissue type.  First, the use of PBS as a coupling medium may have affected the sample 

balancing the loss of water during storage time, and handling (e.g., freezing, storage, 

temperature) may highly affect the amount of water and therefore also the acoustic 

parameters.     

To our knowledge, this is the first study providing both ultrasonic propagation 

properties and material properties of skeletal muscle at tissue level at close to in vivo 

conditions.  These parameters depend on the tissue compositions and structural parameters of 

tissue.   The echo intensity distribution obtained from in vivo ultrasound image has been used 

to investigate tissue behaviour during the disease state in clinical applications, and fat content 

in muscle in the meat industries. This echo intensity is determined by the difference of 

acoustic impedance between neighbouring tissues. This study will give more details for 

proper interpretation in the in vivo ultrasound analysis.  The measurement techniques used in 

this study can be applied in other tissue types; for example, cartilage and tendon have a higher 

college fiber alignment which affects their mechanical behaviour in different direction.   

The embedding material [196] or cover slip [87;165] which can affect the acoustic 

parameters slightly was not applied in this study. The RF signals used for estimation of 

acoustic parameters are only from the tissue.  However, the measurement system is not able to 

estimate the acoustic parameters when the surface reflection is weak or the thickness is 

approximately thinner than axial resolution of the transducer, because the two reflections from 

sample and substrate surfaces cannot be separated with the cepstrum method [176;196].  The 

range of tissue compositions and number of samples used in this study is comparatively 



Chapter IV:   Discussion 

 

118 

 

smaller than in the previous studies [87].  To improve the analysis of variation of acoustic and 

material parameters with tissue composition, structural parameters and different fiber types, 

more samples have to be investigated with a broad range of chemical and structural 

parameters.   

IV.2.2 Macro molecular level acoustic properties in porcine muscle in vitro 

The molecular level acoustic propagation parameters of porcine m.longissimus were 

analyzed with muscle fiber orientation similar to the measurements on the intact carcass using 

a 10 MHz time resolved scanning acoustic microscope.  The ultrasound parameters estimated 

at molecular level were related to the set of structural and compositional traits of the muscle 

samples under investigation.  Sound velocity in fresh beef muscle measured along the fiber 

axis has been reported to be negatively correlated with IMF (r = -0.82) [76].  This could be 

confirmed by our work for porcine muscle samples measured 24 h.p.m. (r = -0.50).  The 

higher correlations mentioned by Park et al.[76] may be due to the considerably higher IMF 

range in bovine muscle (~ 2-14%). 

In terms of in vivo ultrasound measurement correction algorithms, the obtained 

relationships between compositional parameters and sound velocity are promising.  Besides 

IMF the given sound velocity values can be considered to be mostly independent from the 

compositional parameters investigated in this study. Correlations of sound velocity with e.g., 

protein content or histological traits (not shown) are always minor and never exceed r = 0.41. 

Furthermore, auto-correlations between compositional parameters (e.g., protein) and IMF may 

cause correlations with sound velocity. Overall, the low coefficient of variation (~ 0.3%) of 

sound velocity indicates only a minor effect of muscle structure and composition.  Therefore, 

while sound velocity seems to be unsuitable for IMF determination in porcine muscle as 

stated for bovine muscle or hashed meat, the obtained dataset can be used as reference.  

Attenuation was found to be strongly correlated with IMF (r = 0.66).   These findings 

are in accordance with previous investigations in porcine muscle reporting about 50 % higher 

attenuation in groups with high IMF level [89]. Relationships between the amount of IMF and 

the attenuation have also been published for beef muscle as a decreasing attenuation with 

increasing water content[87]. Minor positive relationships with dry matter obtained during our 

investigations confirm these findings.  
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Contrary to sound velocity, the attenuation seems to be more influenced by IMF. The 

measured coefficient of variation ranges between 25 and 30%, which is about 100 times 

higher than that for sound velocity. Therefore, the usability of attenuation predicting the IMF 

content in loin muscle as already reported in literature [87;89] can be proven by our results. 

As a further advantage, the attenuation was mostly unaffected by compositional parameters 

(including histological differences) besides IMF. Only pH, drip loss, and the amount of FTG 

fibers showed additional minor influences on the attenuation of the native samples. All of 

these relationships however, are rather small compared to those between attenuation and IMF 

and can partially be explained by correlations with the IMF causing an auto-correlation 

between attenuation and the amount of FTG fibers, for example. Therefore, the majority of 

the investigated parameters can be considered to either not influence the attenuation of the 

loin muscle or to be already described by the influence of the IMF. These findings will help to 

classify ultrasound measurements intending to predict compositional traits of muscle. 

IV.2.3 Non-destructive muscle characteristics estimation 

In this study, muscle characteristics were investigated non-destructively using a 

quantitative ultrasonic device by spectral analysis of ultrasonic echo signals.  The sound field 

correction has been done by including the wavefront curve compensation using a normalized 

known phantom AIB distribution and finding the exact reference position while sound 

propagating through the biological tissue medium.  In the previous studies, acoustic properties 

of the prelayered medium (medium between ultrasonic transducer and region of interest) were 

assumed or excluded, which will affect the RF signal in ROI.  Here, those prelayered medium 

effect corrections were improved by the calculation of their thickness and SOS from the RF 

TOFs itself.  In addition to the spectral parameters used in previous studies for estimation of 

tissue characteristics [77;78;197], the cepstral parameters are also extracted from the RF 

signals, which are independent of  any intermediate mediums effect compensation.     

The ultrasonic parameters estimated in this study show moderate correlations with 

tissue composition and structural parameters (Table III.17). A moderate positive relationship 

with the IMF has been found for TOFBFcomd.  Our previous study [120], showed only a weak 

relation between SOSBFcomd and muscle compositions.  So, change in TOFBFcomd may be 

mostly due to their thickness.  Muscle attenuation revealed a high correlation with IMF 

confirming our SAM (Sec. III.B.3.2) and earlier results [89].  Only a few studies have 

reported relations between IMF and spectral and cepstral parameters.  Mörlein et al. [89] 
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analyzed a wide range of parameters obtained with the medical ultrasound device of center 

frequency 3.5 MHz.  While Mörlein stated no significant relationships between IMF and 

cepstral parameters, the present study reports correlations of up to r = 0.29.  Procedural 

differences (e.g., the used frequency or the signal processing) have affected the results.  

The IMF deposition in the perimysium during fattening of the muscle disorganizes and 

breaks down the honeycomb structure of endomysia.  That decreases the mechanical strength 

of the muscle [53;198].  A reduction in mechanical strength due to increased IMF [53;198] 

can therefore be considered to affect the ultrasonic backscatter intensity due to differences in 

scatter size, structure and elastic properties, i.e. acoustic impedance of the connective tissue. 

Midband fit and AIB are associated with the size and the acoustic impedance of the scattering 

structures [81;82] 

Structural parameter, fiber diameter revealed a moderate correlation with the estimated 

parameters.  The findings suggested that the backscatter parameters most affected by fiber 

diameter (scatter size) than ultrasonic propagation properties like attenuation and speed of 

sound [120].  As shown in the backscatter model proposed by Lizzi et al. [199], the slope of 

the obtained power spectrum (m) is related to the size and midband fit (M) and spectral 

intercept are affected by size, concentration, and impedance of the scatterers.  Here, the fiber 

diameter has a very weak negative correlation with the spectral slope.  This can be explained 

by the varying fiber orientation angle.  As all the measurements were performed on hog 

carcass, the angle differed between the animals and an exact determination was not possible.  

The scattering strength represented by midband fit and AIB depends on multiple factors, 

including fiber diameter, concentration and relative acoustic impedance between fiber and the 

surrounding medium, here connective tissue.  The increase of IMF will reduce the fiber 

diameter, which could be the reason for the inverse correlation of fiber diameter, and IMF 

with spectral parameters midband fit and AIB.  The cepstral parameter ௠௔௫	represents the 

scatterer diameters and distances depending on the axial resolution of the ultrasonic system 

[176].  However, the weak correlation between ௠௔௫	and bundle diameter in this study could 

be due to the muscle ROI size, and the number of bundles taken into account for histology 

and ultrasonic analysis were different and the fiber orientation angle with respect to sound 

propagation may vary within the animals. 
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The obtained linear correlations suggest the feasibility to predict the IMF content. 

Promising candidates for IMF prediction were found among the estimated spectral 

parameters. In the present investigation multiple linear regression yielded an R2 of .76 and an 

RMSE of 0.34% IMF. In the previous investigation [89], IMF could be predicted with a large 

set of spectral parameters using partial least-squares regression (R2 = 0.58, RMSE = 0.36%).  

In contrast to spectral analysis, image analysis of in vivo ultrasound scans allowed the 

prediction of porcine loin IMF with R2 of 0.48 and an RMSE of 0.71% IMF [200] and R2 = 

0.32; RMSE: 1.02%) [73]. B-mode image analysis of bovine longissimus muscle scans 

resulted in R2 values comparable to the present investigation (up to 0.75) [58;70]. Higher R² 

in beef may be due to the broader IMF range (from 1% to more than 11%) of bovine muscle 

[70].   Compared to the previous study [89], the number of acoustic parameters needed for 

IMF prediction could be reduced. This could be achieved by improved algorithms for 

ultrasound data pre-processing to correct system specific and intermediate tissue effects. 

Furthermore, the ability to correctly classify 73% of the carcasses into 3 IMF groups 

(thresholds at 1 and 2%) proves the practical use of ultrasound spectral analysis. The correct 

classification of 92% of all carcasses into 2 classes is a further improvement to earlier 

investigations in which nearly 80% of the carcasses were classified into 2 IMF groups 

(threshold at 2% IMF) using discriminant analysis [89].  

In this study, we have been able to show that different spectroscopic variables 

extracted from ultrasound backscattering can be related to muscle composition and structural 

parameters by analyzing spectral and cepstral parameters in the backscatter ultrasound.  All 

the system dependent correction measurements were carried out at temperature of 38°C.  The 

results suggest that the proposed method is feasible for non-invasive IMF estimation in 

commercial abattoirs.  The IMF is mainly associated with connective tissue covering primary 

muscle bundles.  It is well known that the mechanical properties of dystrophic muscle vary 

significantly with progression of the disease.  These changes have been related to an increase 

in connective tissue content and changes in structural properties [52].  With the simultaneous 

estimation of spectral and cepstral parameters, which are affected by tissue composition and 

structural parameters, future muscular dystrophy diagnosis techniques can be improved using 

the proposed spectral analysis method.  However, the correlation used for intermediate tissue 

effect correlations was estimated from porcine longissimus muscle, which is not feasible for 

other muscle types [119].   
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V Summary 

A musculoskeletal system is an important organ system that gives the ability to move 

the body. It is made of bone, muscles, cartilage, tendon, ligaments, joints and connective 

tissue.  Its primary functions are supporting the body, protecting vital organs and allowing 

motion.  The large tissue part involving for this functional properties in this system are bone 

and muscle.  Both bone and muscle have the highly oriented underlying extracellular matrix 

structure to perform mechanical and biological functions.  Many pathological conditions such 

as physical condition, age, genetic background and treatment change the mechanical and 

structural properties of both tissues.  There are a number of clinical imaging techniques that 

are used to assess the functional properties of musculoskeletal tissues in every day clinical 

diagnosis.  Among them, ultrasound technique shows considerably more promise for tissue 

characterization within a clinical setting.  For clear understanding the influence of various 

pathological conditions on biological system, the micro architecture and functional properties 

of that system at tissue level should be analyzed.  The ultrasonic technique has an advantage 

to assess those properties at multiple-scale.   

Stiffness is one important characteristic of bone material biomechanical competence.  

It is a material arranged in different hierarchical levels according to the structural components 

involved.  Major components of the cortical bone are mineral crystal, collagen molecules and 

water.  Structural features on lower levels serve as the building blocks for higher levels.  Each 

hierarchical level contributes to the overall mechanical properties as a whole.  The femur is 

the longest, strongest and heaviest bone in the human body.  It is one of the principal load 

bearing bones in the lower extremity [40].  It is a common skeletal site of fracture in elderly 

people.  To understand the mechanisms involved in bone alteration due to several conditions, 

not only bone quantity but also bone quality have to be characterized at tissue level.   

In this study, the elastic properties for a human femur were measured in detail using a 

new cylindrical shaped sample ultrasonic scanning procedure at microscopic level.   The 

results showed that bone tissue is anisotropic and varies depending on the anatomical 

location.  Because sample preparation, measurement and data analysis are straight forward, 

systematic screening studies are realistic.  The scalar quantity, degrees of mineralization was 

determined by synchrotron radiation µCT measurement.  The results confirm previous 

findings that degree of mineralization is only moderately correlated with tissue elastic 
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properties, and their coefficients of variation are comparatively smaller than tissue elastic 

properties.  The mechanical anisotropy at microscopic level is due to the preferred collagen 

fibril orientation with the principal loading direction of bone. It is well accepted that porosity 

has a strong impact on the macroscopic elastic properties of cortical bone.  In particular, the 

highly oriented system of Haversian canals does not only affect the absolute elastic values, 

but also the macroscopic degree of elastic anisotropy.  The mesoscopic anisotropic stiffness 

matrixes were estimated by the combination of microscopic stiffness matrix of bone tissue, 

determined from the cylinder measurement and porosity by an asymptotic homogenization 

model.  As shown in the previous findings, pore inclusion in bone matrix reduces the elastic 

efficiency and increases the degree of elastic anisotropy.   

The detailed locally-assessed data in this study may serve as a real-life input for 

numerical 3-D FE simulation models instead of the commonly used assumption that bone 

tissue is homogeneous and isotropic.  Moreover, assessment of changes of local tissue 

anisotropy may provide new insight in research of bone remodeling, e.g., in the course of 

fracture healing, bone pathologies, aging, or adaptation to modified loading conditions at the 

bone-implant interface after endoprosthetic surgeries.   

Muscle is the composition of multiple bundles of muscle fibers binded together by 

connective tissue.  It contains water, proteins, lipids, carbohydrates and minerals.  The fibers 

of muscle are made up of a number of different proteins arranged in a very specific manner.  

Muscle contraction takes place when force is produced by the shortening of muscle fiber 

which causes the movement of bone.  Meat industrial interest in the muscle structure and 

constituents of skeletal muscle is concerned with the nutritional value of the tissue.  The 

quality of the meat is related to the marbling or the amount of fat in the tissue.  Muscles with 

a reasonable percentage of fat are ranked as more tender and favorable. The ability to 

accurately determine the quality of meat based on tissue composition has great economic 

value to the meat industry.       

Pork is the most important meat in Germany with approximately 60 kg consumed per 

capita and year. The intramuscular fat content, IMF is widely regarded as one of the major 

parameters influencing qualify and sensory characteristics of meat.  In this study, IMF of the 

m.longissimus on suspended pig carcasses was predicted non-invasively using a quantitative 

ultrasonic device and ultrasonic properties were analyzed at fiber level.  The structural 
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properties like muscle fiber size, geometry and their distribution, ultrasonic propagation 

parameters, e.g., speed of sound and attenuation, and material properties, e.g., elastic 

coefficient and apparent density and their behavior with respect to tissue composition and 

fiber orientation of muscle in fiber level were analyzed at in vivo conditions using a high 

resolution time resolved scanning acoustic microscope.  The acoustic properties of individual 

fiber types have also been analyzed for the first time. As shown in the previous studies, for all 

parameters except scalar quantity, apparent density showed the higher values along the fiber 

than perpendicular.  Among those, attenuation has the most direction dependency. The 

acoustic parameters were not affected by fiber types.      

The meat quality parameter, the IMF estimation model was developed non-

destructively using a quantitative ultrasonic device by analyzing the frequency dependent 

spectral parameters.  The compensation function for the system transfer function and 

intermediate medium effect correction for data analysis has been improved.  The simultaneous 

estimation of tissue composition and structural parameters with this technique can provide 

more information about tissue characteristics in clinical application.  The data provided at 

tissue level and investigated ultrasound backscattering from muscle tissue, can be used in a 

numerical simulation FE model for acoustical backscattering from muscle for the further 

improvement of diagnostic methods and equipment.   

This research represents the detailed ultrasonic characterization of musculoskeletal 

tissues at microscopic and macroscopic level, with respect to their composition, for further 

improvement of diagnostic methods. 
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