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Summary 
The adoptive transfer of T cell receptor (TCR) gene-modified T lymphocytes into patients is 

associated with potential risk factors. First, auto-immunity may occur if a tumor-associated 

antigen is targeted on normal tissue, if TCR chain mispairing leads to the formation of an 

auto-reactive receptor or if an otherwise anergic endogenous receptor specific for an auto-

antigen becomes activated. Second, retroviral integration could lead to malignant transforma-

tion of the T cell. Therefore, it is essential to have the possibility to deplete the transferred T 

cells in vivo in case of severe side effects. The available safety modalities such as suicide 

gene/prodrug systems or cell surface proteins that are targeted by specific antibodies comprise 

disadvantages rendering them less feasible for the application in adoptive therapy with TCR 

gene-modified T cells. 

In this thesis, a new safeguard has been developed which is based on a TCR-intrinsic depletion 

mechanism and can eliminate auto-reactive TCR-redirected T cells. By introducing a 10 amino 

acid-long sequence of the human c-myc protein (myc-tag) into the murine OT-I and P14 TCRs 

or the human gp100 TCR it was possible to deplete TCR-expressing T cells in vitro and in 

vivo with a myc-specific antibody. Depending on the antibody isotype, either complement lysis 

or antibody-dependent cell-mediated cytotoxicity could be induced. The T cells maintained 

equal function compared to cells expressing the wild-type receptor as shown by MHC-

tetramer binding and cytokine secretion.  

Importantly, the in vivo depletion of adoptively transferred T cells could prevent disease in an 

auto-immune mouse model. Here, splenocytes transduced with a myc-tagged OT-I TCR were 

injected into RIP-mOVA mice which express the OT-I-specific antigen ovalbumin in the β-islet 

cells of the pancreas. Destruction of these cells by the adoptively transferred T cells led to se-

vere diabetes in untreated mice. Animals which received a myc-specific antibody after T cell 

transfer remained healthy and showed no increase in blood glucose levels. 

The developed safeguard allows termination of adoptive therapy in case of severe side-effects. 

The strategy is superior to previous ones as it relies on a TCR-intrinsic mechanism which does 

not require introduction of an additional gene. Safety is not hampered by loss or low 

expression of the transgene and immunogenicity in humans is unlikely. 
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Zusammenfassung 

Der adoptive Transfer von T-Zellrezeptor- (TZR-) modifizierten T Zellen ist mit potentiellen 

Risiken verbunden. Erstens können Autoimmunreaktionen auftreten, wenn Tumor-assoziierte 

Antigene auf normalem Gewebe erkannt werden, Fehlpaarung der TZR-Ketten zur Bildung 

eines autoreaktiven Rezeptors führen oder ein sonst anerger endogener Rezeptor aktiviert 

wird, der ein Autoantigen erkennt. Zweitens besteht das Risiko der malignen Transformation 

der Zelle durch Insertionsmutagenese des Retrovirusvektors. Daher ist es notwendig, die 

transferierten T Zellen im Falle schwerer Nebenwirkungen eliminieren zu können. Verfügbare 

Sicherheitsmechanismen wie Suizidgene oder Oberflächenmoleküle, die von spezifischen Anti-

körpern erkannt werden, sind für adoptive Therapie mit TZR-modifizierten T Zellen aufgrund 

vieler Nachteile ungeeignet. 

In dieser Arbeit wurde ein neuer Sicherheitsansatz entwickelt, der auf einem TZR-

intrinsischen Depletionsmechanismus beruht und autoreaktive, TZR-veränderte T Zellen eli-

minieren kann. Durch Einfügen einer 10 Aminosäure-langen Sequenz des humanen c-myc Pro-

teins (myc-tag) in murine (OT-I, P14) und humane (gp100) TZRs konnten TZR-

exprimierende T Zellen in vitro und in vivo mittels eines myc-spezifischen Antikörpers deple-

tiert werden. Abhängig vom Isotyp des Antikörpers konnte Komplement-abhängige Lyse oder 

Antikörper-vermittelte zelluläre Zytotoxizität gezeigt werden.  Die T Zellen behielten ver-

gleichbare Funktionalität hinsichtlich Antigenerkennung und Zytokinsekretion wie Zellen, die 

den Wild-Typ Rezeptor exprimierten.  

Die in vivo Depletion adoptiv transferierter T Zellen verhinderte lethalen Diabetes in einem 

Mausversuch. Im verwendeten Modell wurden Splenozyten, die mit einem myc-getagten OT-I 

TZR transduziert wurden, in RIP-mOVA Mäuse injiziert, die in den Inselzellen des Pankreas 

das OT-I-spezifische Antigen Ovalbumin exprimieren. Zerstörung der Inselzellen durch die 

transferierten T-Zellen induzierte lethalen Diabetes in unbehandelten Mäusen. Tiere, denen ein 

myc-spezifischer Antikörper verabreicht wurde, zeigten keine Symptome. Dieser neuartige 

Sicherheitsmechanismus erlaubt es, adoptive T Zelltherapie abzubrechen, falls schwere Ne-

benwirkungen auftreten. Im Gegensatz zu früheren Strategien beruht diese auf einem TZR-

intrinsischen Mechanismus, bei dem kein zusätzliches Gen eingebaut werden muss. Die Si-

cherheit des Ansatzes wird durch Verlust oder Herunterregulierung des Transgens nicht beein-

flusst und Immunogenität im Menschen ist unwahrscheinlich. 
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1 Introduction 

1.1 The T cell receptor complex 

The structure of the T lymphocyte antigen receptor resembles in many features that of an an-

tibody Fab fragment. The T cell receptor (TCR) is a heterodimer consisting of either a TCRα-

chain and a TCRβ-chain (for αβ T cells) or a TCRγ-chain and a TCRδ-chain (for γδ T cells) 

which are covalently linked by a disulfide bond. The majority of T cells express αβ TCRs. γδ T 

cells only make up about 5% of the peripheral T lymphocyte population and their precise role 

in the immune system and in tumor immunology is still under debate (reviewed in [1,2]). In 

this study, only the structure and function of αβ TCRs will be discussed.  

The TCR chains are expressed on the cell surface and each consists of an N-terminal variable 

part (V) that mediates the binding to antigen and the major histocompatibility complex 

(MHC), a constant region (C) that harbors the inter-molecular disulfide bond, a charged 

transmembrane domain and a short cytoplasmic tail that is involved in signal transduction 

(Figure 1A). The variable and constant parts are linked by a joining region (J) in the case of 

TCRα or a diversity region (D) and a joining region in the case of TCRβ. The existence of 

various V, J and D segments, which are recombined to one Cα segment or one of the two Cβ 

segments (Cβ1 and Cβ2) during T cell maturation, and the presence of three hypervariable 

complementarity determining regions (CDRs) in the variable domains of both TCR chains are 

the basis for the high diversity of TCRs. Each T cell expresses only one type of TCR and it 

was estimated that 108 – 109 different T cell clones circulate in any individual allowing the 

recognition of a multitude of pathogens. 

Analysis of various crystallized TCR fragments (reviewed in [3,4,5]) revealed that each vari-

able and constant domain display an immunoglobulin (Ig)-like “β-barrel” structure that con-

sists of three to four anti-parallel β-sheets facing three similar sheets on the other side (Figure 

1B). Only Cα diverges from this predicted Ig fold as its outer strands exhibit a random coil 

structure rather than β-sheets which may be the reason for an observed higher lability of the 

TCRα-chain [6,7,8].  

On the cell surface, the TCR chains are expressed in complex with the CD3 subunits γ, δ, ε 

and ζ which associate to covalently linked CD3ζζ homodimers and non-linked CD3γε and 

CD3δε heterodimers [9]. The extracellular parts of CD3ε and CD3γ are predicted to adopt an 
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Ig-fold [10]; and the cytosolic region of all CD3 molecules harbor immuno-receptor tyrosine-

based activation motifs (ITAMs) which can be phosphorylated and play a role in recruiting 

downstream signal transducers (Figure 1A). The stoichiometric composition of the TCR/CD3 

complex is still controversially discussed. Some studies suggest that two TCRαβ heterodimers 

are clustered with one CD3γ and CD3δ chain, two CD3ε chains and two CD3ζ chains (Figure 

1C), others report that only one TCRαβ molecule is involved (reviewed in [11,12]. However, 

there is compelling evidence that the formation of multivalent TCR/CD3 complexes upon 

MHC binding is required for full T cell activation [13,14,15].  

 

FIGURE 1: Schematic and crystal structure of the αβ TCR complex. (A) A schematic drawing of a TCR, show-

ing the TCRα-chain (purple) and the TCRβ-chain (blue) linked by a dilsulfide bond (yellow). Accessory CD3 

molecules (green) mediate the signal transduction via ITAM motifs (red boxes). (B) Crystal structure of the extra-

cellular part of the murine 2C TCR. The numbers in the V regions indicate the CDR loops. Adapted from [6]. (C) 

Presumed model of a TCR-CD3 cluster. 

Several binding sites in the TCR chains have been identified that are crucial for the associa-

tion with CD3 molecules. The FG loop in the Cβ domain – a large solvent-exposed protrusion 

– forms a cavity that is predicted to interact with one CD3ε subunit [16]. Also, critical amino 

acids in the extracellular and transmembrane parts of  Cα and Cβ have been found that medi-

ate the assembly with CD3ζ [17]. 

In contrast to antibodies, TCRs cannot recognize free antigens; instead they bind small pep-

tide fragments that have been processed intracellularly and loaded on MHC molecules. Cyto-

toxic CD8-positive cells recognize antigens bound to MHC class I, whereas CD4-positive T 
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helper cells are specific for MHC class II-presented antigens. The peptide-MHC class I com-

plexes are found on the surface of nearly every cell and represent the cell’s whole proteome. 

Upon binding of the TCR to its cognate peptide-MHC complex, an immunological synapse 

between the T cell and the target cell is formed that leads to recruitment of specific molecules, 

e.g. adhesion proteins, to lipid rafts. The affinity of TCRs for their specific antigen is rather 

weak when compared to that of an antibody. Therefore, the interaction is further stabilized by 

coreceptors, such as CD4 and CD8 which bind to invariable parts of the MHC molecule. 

 

1.2 T cell immuno-therapy for cancer 

The role of the immune system in tumor development has been discussed for more than a cen-

tury. Ehrlich postulated already in 1909 that the immune system might protect the host from 

cancer [18]. Some fifty years later, Thomas and Burnet formulated the cancer immuno-

surveillance hypothesis [19,20] saying that lymphocytes were eliminating continuously devel-

oping transformed cells. Though this hypothesis in the context of non-virally induced tumors 

is still highly debated today [21,22] numerous studies have demonstrated that cancer cells 

have an antigen pattern which is distinct from that of normal cells and that T cells can specifi-

cally recognize these tumor antigens (a list of known human tumor antigens can be found in 

[23]).  

Although tumor-infiltrating lymphocytes (TILs) have been isolated from many human or ani-

mal malignancies, their presence alone is obviously not sufficient to reject an established tu-

mor. One reason for this may be that many tumor antigens are auto-antigens that are aber-

rantly expressed in cancerous tissue, and therefore, may be only of low immunogenicity. T 

cells recognizing auto-antigens are usually deleted in the thymus during negative selection and 

auto-reactive lymphocytes that escape this central tolerance machinery are mainly of low af-

finity. Furthermore, it has been shown by Willimsky et al. that spontaneously developing tu-

mors – although expressing a tumor-specific transplantation rejection antigen – can induce 

general T cell unresponsiveness and tolerance [24]. 

Nevertheless, the potential of T cells to infiltrate into tissues and to specifically recognize and 

destroy a cell presenting a foreign antigen make them a useful tool in anti-cancer therapy. The 

obstacles that inhibit naturally occurring tumor-specific lymphocytes might be overcome by 
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adoptive T cell transfer as this therapy provides the means to inject a large number of cells 

and to select or engineer T cells with a high affinity to one or several tumor antigens. Addi-

tionally, previous irradiation or chemotherapy of the patient can give the transferred T cells a 

proliferative advantage and augment the presentation of tumor antigens [25]. 

 

1.2.1 Transfer of unmodified T cells 

The principle of adoptive T cell therapy is to isolate T cells either from the patient or an al-

logeneic donor, expand and activate them in vitro and transfer them back into the patient. To 

date, the most successful clinical application of T cell therapy is the treatment of chronic mye-

loid leukemia by MHC-matched allogeneic stem cell transfer [26,27]. It is assumed that donor 

T cells that are transferred along with the stem cells are the main effectors in preventing re-

lapse. Most likely, disparities in minor histocompatibility antigens between donor and recipi-

ent are recognized and account for the elimination of residual malignant cells [28,29]. A hint 

to that is the observation that the anti-tumor effect is markedly decreased when T cells are 

depleted from the graft or when bone marrow derived from a genetically identical twin is 

transferred [30]. Still, an increased graft-versus-leukemia (GvL) effect also seems to correlate 

with increased incidence of graft-versus-host disease (GvHD) – an often lethal complication 

that occurs when the transplanted T cells attack normal tissue. 

A second successful approach of transplanted T cells has been the treatment of virally-induced 

tumors which are frequent in immuno-suppressed patients, e.g. after stem cell or organ trans-

plantation. Reinfused autologous or donor T cells effectively restored immunity against Ep-

stein-Barr virus (EBV) [31,32,33,34] or cytomegalovirus (CMV) [35,36,37] and prevented 

lympho-proliferative disorders. A strong advantage in this type of application is the possibility 

to select, expand, clone and characterize antigen-specific T lymphocytes in vitro before trans-

fer.  

The translation of this approach to non-virally induced malignancies, however, was only of 

limited success (reviewed in [38]). This is most likely due to the lower immunogenicity of non-

viral tumor antigens and the lower precursor frequency of TILs compared to virus-specific 

and allo-reactive T cells.  One exception to this rule seems to be melanoma from which fre-

quently large numbers of highly lytic TILs can be isolated [39]. Redefined culture and treat-

ment conditions recently led to objective responses in 30 to 80% of melanoma patients in 
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recent clinical trials [40,41]. Still, given the required laborious and time-consuming ex vivo 

expansion of TILs, this therapy will only be available for a limited number of patients. 

 

1.2.2 Transfer of gene-modified T cells 

The genetic modification of T lymphocytes in vitro before adoptive transfer allows endowing 

these cells with enhanced properties or defined antigen receptors and might overcome many 

obstacles observed with unmodified T cells. Engineering T cells with a desired specificity by 

gene therapy has the advantage that (i) large numbers of therapeutic lymphocytes can be cre-

ated in relatively short time compared to the long and cumbersome expansion of unmodified 

tumor-reactive T cells, (ii) specificities other than naturally occurring can be employed and 

(iii) treatment will also be feasible for patients from which TILs could not be isolated. 

 
Chimeric antibody receptors (CARs) 

CARs are fusion proteins of antibody Fv fragments and a TCR signaling domain [42] that 

recognize antigens independent from MHC. They have  a high, antibody-like affinity and T 

cells transduced with CARs have been shown to kill tumor cells in vitro (reviewed in [43]). In 

a first clinical trial the in vivo function of CAR-transduced T cells specific for an epitope of 

carboxy-anhydrase-IX (CAIX), but also auto-immunity, was reported [44]. An important 

drawback in the use of CARs, though, is their restriction to cell surface tumor antigens which 

greatly limits their broad application. Furthermore, their high affinity bears the risk of auto-

immunity when the tumor-antigen is also expressed on a normal cell.  

 

T cell receptors 

Another strategy to confer a T cell with tumor-specificity is the transfer of TCR genes. High-

affinity TCRs for human tumor-associated antigens can either be isolated (i) from rare, highly 

reactive human TILs, (ii) by generation of peptide-specific, allo-reactive T cells [45], (iii) from 

HLA-transgenic mice immunized with human tumor antigens [46,47] or (iv) by in vitro 

mutagenesis using yeast or phage display techniques [48,49,50]. To date, a large panel of 

TCRs against viral and tumor antigens has been isolated which, when genetically transferred 

into a T cell, were able to redirect its specificity (reviewed in [51,52,53,54]). Genetic modifica-

tion can either be transient through RNA electroporation or stable through the use of retrovi-
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ral vectors. An initial clinical trial using PBLs transduced with a melanoma-antigen specific 

TCR has led to partial remission in some patients [55]. Still, many hurdles regarding the effi-

ciency of TCR gene-modified T cells in tumor therapy have to be overcome. One is the high-

level expression of the transgene, which can be hampered by competition with the endoge-

nous TCR or by formation of mispaired TCR heterodimers composed of one endogenous and 

one transgenic TCR chain. Furthermore, the choice of the retroviral vector and composition 

of the transgene cassette have been shown to be important [7,56]. A second hurdle is the se-

lection of the target antigen. In general, two groups of tumor antigens have been identified: (i) 

tumor-specific antigens (TSAs) that are only expressed on tumor tissue and are caused by ran-

dom mutations of different cellular genes, and (ii) tumor-associated antigens (TAAs) that are 

found over-expressed in cancer cells, but also – albeit at a lower level – on normal tissue [23]. 

As TSAs are usually not shared between different patients, TAAs have been more extensively 

studied for use in immuno-therapy but bear the risk of therapy side effects when non-tumor 

tissue is damaged. Ideally, one would find a TCR specific for an antigen which is only ex-

pressed on the tumor, but shared between patients such as viral tumor antigens, p53 or ras 

mutation hotspots, or newly created epitopes of fusion proteins such as bcr-abl. Finally, it has 

been shown that recognition of tumor cells alone is not sufficient to lead to tumor rejection 

due to the expansion of antigen-loss variants. To allow efficient elimination of the tumor, it is 

also necessary to target the tumor stroma [25,57,58]. In line with this, anti-angiogenic treat-

ment or tumor site irradiation can augment T cell therapy response. While the first leads to 

shortage of blood supply of tumor cells, the latter promotes the cross-presentation of tumor-

antigens by the stroma cells which thus become a target of adoptively transferred T cells.  

 

1.3 Risk factors of adoptive T cell therapy 

Despite first clinical responses achieved with genetically engineered T lymphocytes, several 

risk factors in the treatment of patients have to be considered. These can either results from 

the choice of the target antigen or the genetic manipulation of the T cell itself. 

 

1.3.1 Recognition of tumor-associated antigens on self-tissue 

Tumor-associated antigens are the most thoroughly studied targets in T cell based immuno-

therapy. The clinical application of a TCR which recognizes a TAA, however, bears the risk of 
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auto-immunity when the engineered T cells damage TAA-expressing non-tumor tissue. In 

some cases, mild auto-reactivity may well be tolerated as a side effect of the therapy. If, how-

ever, essential tissue is affected, it is desirable to have a possibility to eliminate the transferred 

T cells. 

Adverse effects by adoptive T cell therapy have already been observed in some clinical trials 

and mouse models. In two independent studies, the destruction of melanocytes (vitiligo) and 

uveitis was seen in patients which had received melanoma antigen-specific T cells [40,41]. 

Vitiligo was also observed in tumor-bearing mice which received T cells specific for the mela-

noma antigen gp100 for treatment [59]. In another trial, patients with renal cell carcinoma 

were treated with PBLs genetically modified with a CAR specific for an epitope of CAIX. 

Here, liver cytotoxicity occurred due to specific reaction of the infused CAR-modified T cells 

with CAIX-expressing epithelial cells of the bile ducts and the study had to be discontinued 

[44]. Such auto-immune reactions in adoptive immuno-therapy most likely depend on the 

antigen level [60]. They can hardly be predicted, may vary from patient to patient and will 

become very important when TCR-redirected T cells are routinely used for therapy. 

 

1.3.2 Formation of heterodimers by endogenous and transgenic TCR   

It has been observed that the introduced TCR chains can individually form mixed het-

erodimers with the α- and β-chains of the endogenous TCR [61,62]. The extent of mispairing 

seems to both depend on the stability of the inter-chain interaction (preferential pairing), and 

on the intrinsic stability of the respective TCR chain and its ability to compete with the en-

dogenous chain for export and accessory proteins (weak and strong TCRs [61]). The occur-

rence of mixed heterodimers has two principal consequences. First, it reduces the amount of 

correctly paired therapeutic TCR on the cell surface, and thereby most likely the functional 

reactivity of the engineered T cell. Second, if a polyclonal pool of T cells is TCR-modified, the 

specificity of the mispaired TCRs cannot be predicted and they might have auto-reactive ca-

pacity. 

Several strategies have been tested that promote preferential pairing of the desired TCR 

chains. For example, the introduction of an additional disulfide bond [63,64], leucine zipper 

motifs [65] or the inverse exchange of an amino acid pair in the interface of the TCRα and 

TCRβ constant regions [66] stabilized the interaction of the transgenic TCR chains. Also, the 
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use of murine constant regions instead of human both enhanced the binding to human CD3 

molecules and supported preferential pairing [67,68]. Willemsen et al. constructed chimeric 

single chain and two chain TCRs which did not pair with the endogenously expressed TCR 

chains [69]. Still, it remains unclear whether these amino acid modifications will be immuno-

genic and cause unwanted elimination of the transferred T cells by the host’s immune system. 

Van der Veken et al. introduced a TCR into γδ T cells, whose endogenous TCRs are unable to 

form heterodimers with αβTCRs [70]. However, it is not known whether engineered γδ T cells 

will exhibit the same anti-tumor function in vivo as αβ T cells. Another option would be the 

use of RNA interference (RNAi) to down-regulate the endogenous TCR chains and the gen-

eration of a codon-modified transgenic TCR which is not influenced by the RNAi mechanism. 

 

1.3.3 Activation of an endogenous auto-reactive TCR 

Another safety concern is the possible activation of the endogenous TCR. While some data 

show that signaling through one TCR in dual-specific T cells is receptor-specific [71], others 

demonstrate that activation of the introduced TCR may also induce a response of the endoge-

nous receptor [72]. Most likely the observed cross-activation varies in different model systems 

and cannot be predicted when polyclonal T cells are transduced. Although clonal deletion in 

the thymus eliminates the majority of T cells with high-affinity auto-reactive TCRs, low-

affinity auto-reactive T lymphocytes escape central tolerance mechanisms [73,74]. If these T 

cells are transduced with a second TCR and become activated, they may react against self-

tissue. Just as for the prevention of TCR heterodimers, the use of RNAi to modulate the ex-

pression of the endogenous TCR, or the pre-selection of T cells with a defined, non-auto-

reactive specificity before transduction [75,76,77] might avoid this risk. 

 

1.3.4 Insertional mutagenesis and transformation 

It is assumed, that for prevention of relapse the long-term persistence of infused tumor-

specific T cells is necessary. For this, stable TCR expression in the transduced T cells is essen-

tial. So far, all techniques that support stable expression require integration of the transgenic 

DNA into the host genome. Most effective delivery systems (e.g. retroviruses), however, allow 

only non-site-specific insertion which bears the risk of malignant transformation if the inte-

gration affects the expression of an oncogene. Until recently it has been assumed that integra-
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tion occurs randomly. Considering the small proportion of gene-encoding regions in the hu-

man genome, it seemed very unlikely that oncogenes will be a target site for the vector.  

Reports of serious adverse events in an otherwise successful clinical trial of gene therapy for 

X-linked severe combined immuno-deficiency (X-SCID), however, demonstrated retrovirus-

induced lympho-proliferative disease  in 4 of 9 treated patients in one study and 1 of 10 

treated patients in a second study [78,79,80]. In four of the cases it was reported that retrovi-

ral integration activated expression of the proto-oncogene lmo2 which finally led to the onco-

genic transformation [79]. Since then, numerous studies analyzed retrovirus integration sites 

in human and murine cells and showed that integration occurs non-random and preferentially 

in the 5’ region of transcriptionally active genes [81,82,83,84,85]. In the X-SCID trials, the 

fact that hematopoietic progenitor cells were transduced, which are probably more prone to 

transformation due to deregulation of expression, might have contributed to development of 

leukemia. In the case of retroviral transduction of T lymphocytes with a suicide gene, also 

preferential integration sites and deregulated expression profiles were found. This, however, 

seemed to have no consequences for the T cell biology and no clonal selection in patients was 

observed [86,87]. Whether genetic modification of T cells or hematopoietic stem cells using a 

TCR influences the expression pattern and leads to loss of polyclonality still needs to be ana-

lyzed. Besides, many attempts have been made to construct self-inactivating retroviral vectors, 

non-integrating vectors or vectors with site-specific integration and high efficiency [88,89,90] 

which in the future might overcome the obstacle of insertional mutagenesis. 

In sum, immuno-therapy with TCR-modified T cells bears the potential risk of auto-immune 

side effects and malignant transformation of the T cell. Although approaches have been tested 

that avoid some specific risk factors, a general safety strategy allowing in vivo depletion the 

adoptively transferred T cells – thereby terminating the therapy – is desirable. 

 

1.4 Potential safety mechanisms 

In the case of severe side effects, several treatments allow the in vivo suppression of T cells. 

The administration of T cell-specific antibodies or corticosteroids can block auto-immune 

reactions, but also abolishes desired – e.g. anti-viral – immune responses. Therefore, a way to 

specifically eliminate the transferred lymphocytes is preferable. For this, several strategies have 
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been suggested. Among them are (i) suicide genes of viral or bacterial origin which drive the 

cell into apoptosis upon application of a prodrug, (ii) fusion proteins of cellular apoptosis-

inducing molecules that cluster upon administration of a dimerizer drug, (iii) transgenic cell 

surface molecules which can be targeted by specific depleting antibodies, and (iv) MHC mul-

timers that deliver cytotoxic substances to a specific T cell pool. The feasibility of these strate-

gies in the context of therapy with TCR-modified T cells is discussed below. 

 

1.4.1 Suicide gene/prodrug systems 

The most thoroughly studied suicide gene so far is the thymidine kinase of Herpes Simplex 

Virus type 1 (HSV-TK). This enzyme plays a key role in the phosphorylation of thymidine to 

produce dTMP (Figure 2A). Unlike cellular kinases, the viral enzyme has very broad substrate 

specificity and also converts pyrimidine and purine analogs such as acyclovir and ganciclovir 

(GCV) (Figure 2B). The mono-phosphorylated forms of these analogs are further phosphory-

lated by cellular kinases and incorporated into nascent DNA leading to an arrest of DNA syn-

thesis, DNA fragmentation and finally apoptosis of the cell. 

 

FIGURE 2: HSV-TK can phosphorylate thymidine and nucleotide analogs. (A) Thymidine is phosphorylated by 

cellular kinases or HSV-TK to thymidine-mono-phosphate (dTMP) and further to thymidine-tri-phosphate 

(dTTP) which can be incorporated into a replicating DNA strand. To the free OH- group, further nucleotides can 

be attached. (B) HSV-TK also phosphorylates nucleotide analogs like GCV, which in their tri-phosphorylated form 

are integrated in the newly synthesized DNA. As no further nucleotides can be attached to GCV, the replication 

process is discontinued. 
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HSV-TK in combination with the prodrug GCV has already been applied as a suicide gene in 

a variety of animal tumor models and for some human cancers (reviewed in [91,92,93]). 

More recently, it was suggested as a safety modality in patients who develop GvHD after do-

nor lymphocyte infusion following T cell-depleted allogeneic hematopoietic cell transplanta-

tion (reviewed in [94,95,96]).  Several clinical phase I-II trials have tested the safety and effi-

cacy of this approach in humans [97,98,99,100]. Though application of HSV-TK in T 

lymphocytes was demonstrated to be safe and partially successful, the trials also revealed sig-

nificant disadvantages of the strategy. Major limitations of the HSV-TK system are: (i) immu-

nogenicity of the HSV-TK gene product resulting in immune responses and the elimination of 

transferred gene-modified T cells [99,101,102], (ii) transgene silencing or inhomogeneous 

transgene expression which leads in cells expressing low levels of HSV-TK to the development 

of ganciclovir-resistance [103,104], (iii) the prodrug ganciclovir cannot be used to treat up-

coming viral infections (e.g. of CMV or EBV) in patients, and (iv) the restriction to proliferat-

ing cells which impedes elimination of slowly dividing T cells usually present in chronic 

GvHD. Apart from HSV-TK a number of other suicide gene of prokaryotic and eukaryotic 

origin are known. Their high expected immunogenicity, however, has restrained their use in 

therapy. 

 

1.4.2 Apoptosis-inducing fusion genes and dimerizer prodrugs 

An alternative to the HSV-TK-induced cell cycle arrest is to employ the cell’s own mechanisms 

of apoptosis (illustrated in Figure 3A). Several different strategies attempted to construct fu-

sion proteins in which a signaling domain of a protein involved in the apoptosis pathway (e.g. 

the DED domain of FADD, the FasR intracellular domain or a modified caspase 9) was linked 

to a FK506 binding protein (FKBP) [105,106,107,108]. Administration of a synthetic dimer-

izer prodrug leads to cross-linking of the FKBP domains and activates apoptosis (Figure 3B).  
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FIGURE 3: Mechanism of apoptosis induction by a caspase 9 fusion construct. (A) Pathway of Fas-induced 

apoptosis. By binding of Fas ligand (FasL) to the Fas receptor (FasR) the receptor molecules form a cluster bring-

ing the death effector domains (DED, red boxes) in close proximity. This recruits FADD which subsequently leads 

to activation of downstream caspases. Cytochrome C release from mitochondria mediates the conversion of pro-

caspase 9 into its activated form. (B) Structure of the caspase 9-FKBP fusion construct. Upon application of the 

prodrug the molecules multimerize which mimics the process of caspase 9 activation. 

Compared to HSV-TK, apoptosis-inducing fusion genes comprise a lower risk of evoking an 

immune response against the transgene products as all of the fusion protein components are 

of human origin. Still, it cannot be excluded that an immunogenic peptide at the fusion sites 

of the several domains is generated, finally leading to an unwanted elimination of the trans-

ferred T cells. Besides, in vitro experiments with the caspase 9 transgene and a first in vivo 

study with the Fas-linked constructs in non-human primates revealed that a small proportion 

of T cells showed resistance to elimination and that in these cells the expression of the trans-

gene was reduced [108,109,110]. Most likely all of the approaches depend on high levels of 

transgene expression and comprise the risk that silencing of the fusion construct abrogates the 

possibility of elimination. Furthermore, the use of apoptosis-inducing molecules like Fas or 

FADD that act upstream of many apoptosis inhibitors, such as bcl-2, bcl-xL or c-FLIP, might 

lead to inhibition of T cell depletion when these molecules become up-regulated. This, how-

ever, is not the case for caspase 9, which is a late-stage apoptosis pathway molecule and main-

tains its function in T cells over-expressing anti-apoptotic proteins.  
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1.4.3 CD20 and CD20-depleting antibodies 

CD20 is a cell surface molecule mainly expressed by B lymphocytes. It acts as a calcium chan-

nel in the cell membrane and is presumably involved in B cell activation. Its precise function, 

however, is still not known. Introna et al. and van Meerten et al. used retroviral or lentiviral 

vectors to transduce T lymphocytes with the CD20 cDNA [111,112,113]. They could show 

that CD20 can be expressed on a high level on primary human T cells and T cell lines and 

that the transduced cells can be enriched via CD20 surface expression. Furthermore they 

demonstrated that CD20-modified T cells can be depleted by incubation with a CD20-specific 

antibody and complement factors. 

One advantage of this strategy is the availability of a CD20-specific antibody which is well 

characterized and approved for clinical use. This monoclonal antibody (Rituximab) has origi-

nally been developed for the treatment of CD20-positive B cell lymphomas, but is now also 

used in some B cell-associated auto-immune diseases. The large clinical experience with Ri-

tuximab would ease the implementation of this safety approach in a clinical setting. Com-

pared to the above described safety approaches, modification of T cells with CD20 has the 

advantage that the molecule is very unlikely to be immunogenic as the entire transgene is of 

human origin. 

Still, administration of the antibody would also lead to the unwanted elimination of the pa-

tient’s B cells. Furthermore, resistance of lymphoma cells to Rituximab treatment has been 

reported [114] and the efficacy of depletion has been demonstrated to depend on the level of 

transgene expression [115]. As survival of CD20-modified T lymphocytes will most likely not 

depend on functional CD20 expression, mutations in the transgene or silencing of the trans-

gene may occur, rendering the T cells resistant to elimination. An additional concern is that 

the presence of the B cell-specific CD20 molecule in T lymphocytes might alter their pheno-

type. Although there is a small subset of T cells expressing CD20 naturally [116], the function 

of the molecule in these cells remains unclear. Serafini et al. analyzed CD20-modified T cells 

in vitro with respect to antigen-specific and allo-induced cytokine release, chemotaxis and the 

expression of activation markers [117]. They observed no differences between mock-

transduced and CD20-transduced T lymphocytes. However, it cannot be excluded that in vivo 

the CD20 molecule might affect the homing behavior or function of the T cell. 
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1.4.4 Cytotoxic tetramers 

MHC multimers are broadly used for the detection and quantification of specific T cell popu-

lations in vitro and in vivo. By coupling a cytotoxic agent to the MHC molecule, it is also 

possible to deplete T cells of certain specificity.  Yuan et al. fused MHC tetramers to the short-

range, alpha-emitting isotype 225Ac which specifically killed their cognate T lymphocytes in 

culture [118]. In a different approach, Hess et al. coupled MHC tetramers to the type I ribo-

some-inactivating protein saporin [119]. When these tetramers bind to the specific TCR, the 

entire complex becomes internalized into the cell where saporin inhibits protein synthesis fi-

nally leading to apoptosis. When injected into mice, the saporin-MHC tetramers were able to 

deplete about 75% of the target T cells. However, in this experiment also mild, transient cyto-

toxic side effects like loss of body weight and hepatopathy were observed. A similar strategy 

was used by Casares et al. who constructed MHC class II chimeras coupled to doxorubicin, 

an antimitogenic drug [120]. 

Although the clonal deletion of T cells by cytotoxic tetramers seems advantageous, this ap-

proach also comprises several drawbacks. First, MHC tetramers coupled to cytotoxic agents 

have low structural stability. Though they might be useful in depleting T cells ex vivo (e.g. 

from grafts), their in vivo application might be hampered by their short half-life and their in-

ability to infiltrate poorly vascularized tissues. Second, the injection of cytotoxic substances 

into patients might lead to unwanted bystander effects and their specificity needs to be care-

fully evaluated. Third, the in vivo administration of MHC multimers has been shown to 

modulate immune function. Some studies found that injection of soluble MHC induced anti-

gen-specific T cell unresponsiveness [121,122], while others revealed that it has a T cell-

activating effect [123,124]. Finally, the production and safety testing of individualized suicide 

tetramers for each tumor antigen-specific TCR would be very cost-intensive. 

In sum, all of the described safety mechanisms comprise several limitations rendering them 

inappropriate for T cell therapy with TCR gene transfer. Combining two different safety ap-

proaches may overcome some of the disadvantages [125,126]; however, this very much com-

plicates the generation of TCR-modified T cells. Apart from depleting tetramers, all strategies 

require introduction of at least one additional gene into T cells. Retroviral vectors – the most 

commonly used system to stably transduce T cells – only have a limited transgene capacity. 

Considering the size of the TCRα- and TCRβ-chain genes it is unlikely that vectors that carry 

an additional gene can efficiently transduce T cells. Hence, PBLs will necessarily have to be 
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independently transduced with a TCR and a second gene-encoding vector. This increases the 

number of retroviral integrations into the host cell genome, and thus the risk of insertional 

mutagenesis [127]. Also, the purification and analysis steps needed to ensure that all TCR-

redirected cells express the safety modality will prolong the in vitro culture time and decrease 

their functionality [128]. Table 1 summarizes the advantages and disadvantages of each ap-

proach. 

 

Safety approach Advantages Drawbacks 

HSV-TK / GCV 

 clinically approved prodrug ـ

 safe and partially efficient in ـ

clinical trials 

 immunogenicity ـ

 slow response ـ

 gene silencing or deletion ـ

 no GCV treatment possible ـ

-dependence on expression level, purifica ـ

tion, insertion of additional gene 

Apoptosis-inducing 

fusion proteins 

 fast response ـ

 low expected immunogenicity ـ

 possible cytotoxicity ـ

-dependence on expression level, purifica ـ

tion, insertion of additional gene 

CD20 / CD20-mAb 

  clinically approved antibody ـ

 no immunogenicity expected ـ

 fast response ـ

 unwanted elimination of B cells ـ

 possible change of phenotype ـ

-dependence on expression level, purifica ـ

tion, insertion of additional gene 

Cytotoxic tetramers 

 not dependent on expression ـ

level, purification, insertion of 

additional gene 

 structural instability ـ

 individualized, cost-intensive production ـ

 possible cytotoxic bystander effects ـ

 immunomodulation ـ

TABLE 1: Safety modalities for adoptive T cell transfer. 
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1.5 Outline of this thesis 

The aim of this thesis was to develop a method for the specific depletion of adoptively trans-

ferred TCR-gene modified T cells. Such safeguard has to meet several criteria: (i) it should not 

interfere with TCR function; (ii) it should be specific, efficient and rapid; and (iii) the imple-

mentation in a clinical setting should be feasible.  

With respect to this, the objective was to select a short amino acid sequence (tag) and intro-

duce it into the TCR structure so that it can be recognized by a tag-specific antibody. In vivo, 

the binding of a depleting tag-specific antibody would then lead to a specific elimination of a 

T cell expressing the tag-modified TCR. 

For this purpose, the myc-tag – a peptide derived from the human c-myc protein – was in-

serted into various positions of the model murine TCR P14 gene. The wild-type and myc-tag-

modified TCRs were cloned into retroviral vectors which were used to transduce murine T 

lymphocytes. The properties of the expressed TCR molecules were analyzed in vitro: 

• First, it was tested whether introducing a myc-tag allowed expression and assembly of the 

TCR on the cell surface and if so, whether the expression level was influenced by the myc-

tag. 

• Second, it needed to be investigated whether the myc-tag was inserted in a conformation 

in which it could be bound by a myc-specific antibody. 

• Third, complement-mediated depletion assays were performed to see whether the binding 

of a myc-specific antibody was able to induce depletion of the T cells in vitro. 

• Fourth, the function of T cells transduced with a myc-modified TCR – including antigen 

binding and cytokine secretion upon antigen stimulus – was analyzed and compared to T 

cells transduced with a wild-type TCR.  

 

Having found a position for myc-tag insertion which allowed functional expression of the 

TCR and supported lysis by a myc-specific antibody, the objective was to test the universality 

of this approach when applied to other TCRs. Therefore, a second murine TCR (OT-I, specific 

for an ovalbumin-derived peptide) and one human TCR (gp100, specific for a common mela-

noma antigen) were modified with a myc-tag in the same position. Murine and human T cells 

transduced with these TCRs were analyzed as described above.  
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Finally, the application of the safeguard was investigated in vivo. For this, T cells transduced 

with a myc-tag-modified OT-I TCR were transferred into RIP-mOVA mice which express 

ovalbumin in the pancreatic islet cells. As without treatment the mice succumb to auto-

immune diabetes, it was analyzed whether application of a myc-specific antibody allowed the 

specific depletion of the auto-reactive OT-I T cells and hence a rescue of the animals from the 

otherwise lethal disease. 
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2 Material and Methods 

2.1 Material 

2.1.1 Oligonucleotides 

Oligonucleotides were obtained as lyophilized stocks from MWG Biotech or TIB MOLBIOL. 

Oligonucleotides for insertion of a myc-tag into different positions of a TCR 

TCR Position Primer Sequence 

P14α  fwd TTTGCGGCCGCAGTCTAGGAGGAATGGACAAG 

  rev GCCCTGTACATCAACTGGACCACAGCCTCAG 

 AN myc1 TCCTCCTCGCTGATCAACTTCTGCTCGCCATTCACCCCGGCTAGATGTAGG 

  myc2 AGAAGTTGATCAGCGAGGAGGACCTGCAGCAGAAGGAGAAACATGACCAGC 

 CS myc1 ATCTTCTTCAGAAATAAGCTTTTGCTCGGAGTCAAAGTCGGTGAACAGGCAGAG 
GGT 

  myc2 CAAAAGCTTATTTCTGAAGAAGATCTGGGAACGTTCATCACTGACAAAACTGTG 

P14β  fwd TTTGCGGCCGCCTGAGAGGAAGCATGTCTAAC 

  rev GGGCCGTGTACATCAGGAATTTTTTTTCTTGACC 

 BN myc1 ATCCTCCTCAGAGATCAGTTTTTGCTCAGCCTCCATGTGTTTTGTTCCCAG 

  myc2 CAAAAACTGATCTCTGAGGAGGATCTGGCAGTCACCCAAAGTCCAAGAAGCAA 

 L1 myc1 CTCCTCTGAAATCAGTTTTTGCTCAAGCCCATGGAACTGCACTTGGCAGCGG 

  myc2 GAGCAAAAACTGATTTCAGAGGAGGATCTGCCCAAACCTGTCACACAGAACATC 

 L2 myc1 CTCCTCGCTGATCAGCTTCTGCTCCTCTGACAGCCCATGGAACTGCACTTGG 

  myc2 CAGAAGCTGATCAGCGAGGAGGACCTGCCTGTCACACAGAACATTAGTGCCGAG 

 L3 myc1 TCCTCCTCGCTGATCAGCTTCTGCTCGTCCTCCTCTGACAGCCCATGGAACT 

  myc2 GAAGCTGATCAGCGAGGAGGACCTGACACAGAACATTAGTGCAGAGGC 

 XL myc1 TCCTCCTCGCTAATCAGCTTCTGCTCTGGCCACTTGTCCTCCTCTGACAGCCCA 

  myc2 AGAAGCTGATTAGCGAGGAGGACCTGGAAGGCTCACCCAAACCTGTCACACA 

OT-Iα  fwd TTTGCGGCCGCAGTCTAGGAGGAATGGACAAG 

  rev GCCCTGTACATCAACTGGACCACAGCCTCAG 
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 AN myc1 TCCTCCTCGCTGATCAACTTCTGCTCGCCATTCACCCCGGCTAGATGTAGG 

  myc2 AGAAGTTGATCAGCGAGGAGGACTTGCAGCAGCAGGAGAAACGTGACCAGC 

gp100α  fwd CTGCGGCCGCCATGGTGAAGATCCGG 

  rev CCTGTACATCAGCTGGACCACAGCCGCA 

 AN myc1 CTCCTCGCTGATCAGCTTCTGCTCGGCACTTACACAGCTTAACTGGAGCCAC 

  myc2 AAGCTGATCAGCGAGGAGGACCTGGCCAAAAATGAAGTGGAGCAGAGT 

 

Oligonucleotides for insertion of a second myc-tag 

Primer Sequence 

M1 GATCAGCGAGGAGGACCTGGAGCAGAAGTT 

M2 GATCAACTTCTGCTCCAGGTCCTCCTCGCT 

 

Oligonucleotides for cloning of P2A-linked TCR chains 

TCR Primer Sequence 

P14 fwd TTTGCGGCCGCAGTCTAGGAGGAATGGACAAG 

 P2Arev GGGACCGGGGTTTTCTTCCACGTCTCCTGCTTGCTTTAACAGAGAGAAGTTCGTGGCGCCG
CTTCCACTGGACCACAGCCTCAGCGTCATG 

 P2Afwd GGCAGCGGAGCCACGAACTTCTCTCTGTTAAAGCAAGCAGGAGACGTGGAAGAAAACCCCG
GTCCCATGTCTAACACTGCCTTCCCTGAC 

 rev CCGGAATTCTCAGGAATTTTTTTTCTTGACC 

OT-I fwd TTTGCGGCCGCAGTCTAGGAGGAATGGACAAG 

 P2Arev GGGACCGGGGTTTTCTTCCACGTCTCCTGCTTGCTTTAACAGAGAGAAGTTCGTGGCGCCG
CTTCCACTGGACCACAGCCTCAGCGTCATG 

 P2Afwd AACTTCTCTCTGTTAAAGCAAGCAGGAGACGTGGAAGAAAACCCCGGTCCCATGTCTAACA
CTGTCCTCGCTGATTCT 

 rev GGGCCGTGTACATCAGGAATTTTTTTTCTTGACC 

 

Oligonucleotides for sequencing of genes in the MP71 vector 

Primer Sequence 

fwd CAGCATCGTTCTGTGTTGTCT 

rev CACCTGAACTAGTAATTACATATCC 



Material and Methods

 
22 

2.1.2 Plasmids and retroviral vectors 

Name Description 

pcDNA3.1gag/pol 
Eukaryotic expression vector encoding murine leukemia virus (MLV) gag and 
pol genes; a gift from C. Baum (Hannover, Germany) 

pALF-10A1GaV 
Eukaryotic expression vector encoding murine leukemia virus (MLV) env gene 
10A1; [129] 

MP71-P14α(X) 
Retroviral vector MP71 [56] expressing the P14 TCRα-chain (with a myc-tag 
in position X) 

MP71-P14β(X) 
Retroviral vector MP71 expressing the P14 TCRβ-chain (with a myc-tag in 
position X) 

MP71-OT-Iα(X) 
Retroviral vector MP71 expressing the OT-I TCRα-chain (with a myc-tag in 
position X) 

MP71-OT-Iβ Retroviral vector MP71 expressing the OT-I TCRβ-chain 

MP71-gp100α(X) 
Retroviral vector MP71 expressing the gp100 TCRα-chain (with a myc-tag in 
position X) 

MP71-gp100β(X) 
Retroviral vector MP71 expressing the gp100 TCRβ-chain (with a myc-tag in 
position X) 

MP71-P14α(X)-P2A-P14β Retroviral vector MP71 expressing the P14 TCRα- (with a myc-tag in position 
X) and TCRβ-chain linked by a P2A peptide 

MP71-OT-Iα(X)-P2A-OT-Iβ Retroviral vector MP71 expressing the P14 TCRα- (with a myc-tag in position 
X) and TCRβ-chain linked by a P2A peptide 

 

2.1.3 Peptides and tetramers 

Ova-peptide (SIINFEKL), gp33-peptide (KAVYNFATM) and gp100-peptide (IMDQVPFSV) 

were purchased as HPLC-purified products from Biosyntan. PE- or APC-labeled tetramers 

were used to stain gp100 TCR (Immunomics), P14 TCR (Immunotech) and OT-I TCR (D. 

Busch, Munich, Germany). 

 

2.1.4 Mice strains 

C57BL/6J mice were purchased from Charles River. B and T cell-deficient Rag-1-/- (B6.129S7-

Rag1tm1Mom) mice were obtained from The Jackson Laboratory. RIP-mOVA mice (a gift from 

T. Brocker, Munich, Germany) express chicken ovalbumin under control of the rat insulin 

promoter in the β-islet cells of the pancreas [130]. All mice were housed and bred at the ani-
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mal facility of the Max Delbrück Center for Molecular Medicine, Berlin, Germany. Animal 

experiments were approved by the responsible institution and performed according to na-

tional and regional regulations. 

 

2.1.5 Cell types and media 

Cell type Source Description Medium 

293T American Type 
Culture Collection 
(ATCC) CRL-11268 

Human embryonic epithe-
lial cells 

DMEM + GlutaMAX I (GIBCO), 10% active 
fetal calf serum (FCS, Biochrom), 100 IU/ml 
Pen/Strep (GIBCO) 

Plat-E [131] Ecotropic packaging cell 
line based on 293T, stable 
expression of MLV gag-pol 
and env genes 

DMEM + GlutaMAX I, 10% heat-inactivated 
FCS, 100 IU/ml Pen/Strep, 
1 μg/ml puromycin (Sigma), 10 μg/ml blasti-
cidin (MP Biomedicals) 

58 [132] TCRα- and TCRβ-negative 
variant of BW5147 cell line 
(murine T cell lymphoma) 

T cell medium (RPMI 1640 + GlutaMAX I, 
10% heat-inactivated FCS, 1 mM HEPES pH 
7.25 (Sigma), 100 IU/ml Pen/Strep) 

B3Z [133] Hybridoma of a lacZ-
inducible derivative of 
BW5147 and ova-specific T 
cell clone B3 

T cell medium 

Jurkat76 [134] TCR-deficient derivative of 
J.RT3-T3.5 Jurkat cells 

T cell medium 

RPMI 8866 G. Trinchieri, Phila-
delphia, USA 

Human lymphoblastoid cell 
line 

T cell medium 

T2 ATCC CRL-1992, P. 
Cresswell, New 
Haven, USA 

Human TAP-deficient hy-
bridoma 

T cell medium, 50 μM mercaptoethanol 
(Sigma) 

T2-Kb H. Schreiber, Chi-
cago, USA 

T2 transfected with H2- Kb DMEM + GlutaMAX I, 5% heat-inactivated 
FCS, 100 IU/ml Pen/Strep, 
1 mg/ml G418 (Invitrogen) 

Murine 
splenocytes 

Spleens of C57BL/6J 
mice 

 CMM medium (RPMI 1640 + GlutaMAX I, 
10% heat-inactivated PAN-FCS (PAN Bio-
tech), 1 mM HEPES, 1% Na-Pyruvat 
(GIBCO), 100 IU/ml Pen/Strep, 50 μM mer-
captoethanol) 

Human 
PBLs and 
NK cells 

Healthy donors  PAN T cell medium (RPMI 1640 + GlutaMAX 
I, 10% heat-inactivated PAN-FCS, 1 mM 
HEPES pH 7.25, 100 IU/ml Pen/Strep, 10-100 
IU/ml rhIL-2 (Chiron)) 
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2.1.6 Antibodies 

Specificity Conjugate Clone Isotype Host Application Source 

Human CD28  CD28.2 IgG1 Mouse PBL stimulation BD 

Human CD3  OKT3 IgG2a Mouse PBL stimulation CILAG 

Human CD3ε Fluorescein 
isothiocyanat 
(FITC) 

SK7 IgG1 Mouse Flow cytometry 
(FC) 

BD 

Human CD56 Allophyco-
cyanin (APC) 

B159 IgG1 Mouse FC BD 

Human TCR 
vβ8 

Phyco-
erythrin (PE) 

56C5.2 IgG2a Mouse FC Immunotech 

Mouse CD16/32  2.4G2 IgG2b Rat Fc receptor block BD 

Mouse CD28  37.51 IgG2 Syrian 
hamster 

Splenocyte stimu-
lation 

BD 

Mouse CD3  145-
2C11 

IgG1 Armenian 
hamster 

Splenocyte stimu-
lation 

BD 

Mouse CD3e FITC 145-
2C11 

IgG1 Armenian 
hamster 

FC BD 

Mouse CD3ε APC 145-
2C11 

IgG1 Armenian 
hamster 

FC BD 

Mouse CD8α  53-6.7 IgG2a Rat IHC BD 

Mouse CD8α APC 53-6.7 IgG2a Rat FC BD 

Mouse TCR vα2 APC B20.1 IgG2a Rat FC Caltag 

Mouse TCR 
vβ5.1, 5.2 

PE MR9-4 IgG1 Mouse FC BD 

Mouse TCR 
vβ8.1, 8.2 

PE MR5-2 IgG2a Mouse FC BD 

Myc-tag  9E10 IgG1 Mouse In vivo depletion Hybridoma su-
pernatant (ATCC 
CRL-1729) 

Myc-tag  3A7 IgG2a Mouse In vitro depletion US Biological 

Myc-tag   Polyclonal Rabbit FC Santa Cruz 

Ovalbumin   Polyclonal Rabbit IHC Acris 

Rabbit IgG PE  Polyclonal Goat FC Santa Cruz 

Mouse IgG Fc   Polyclonal Rabbit In vitro depletion Jackson Immu-
noResearch 
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2.2 Methods 

2.2.1 Molecular biology 

Polymerase chain reaction (PCR) 

Site-directed mutagenesis PCR using overlapping primers was performed to insert a myc-tag 

sequence into the TCR or to generate vectors in which the TCRα and TCRβ chains were 

linked by a P2A element. For this, two separate PCRs (PCR1 and PCR2) were carried out 

yielding partially overlapping fragments which at the 5’ or 3’ end contain the newly intro-

duced sequence. In a third reaction (PCR3), the two products were combined in an annealing 

step resulting in a complete gene carrying the modification, which was then amplified by addi-

tion of primers. Figure 4 shows a schematic layout of the procedure. 

5‘
5‘3‘
3‘

5‘
5‘3‘
3‘

5‘
5‘3‘
3‘

5‘
5‘

3‘
5‘

5‘
3‘

PCR1

PCR3
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3‘
5‘

5‘
3‘

3‘
5‘

5‘
3‘

 

FIGURE 4: Design of site-directed mutagenesis PCR using pairs of overlapping primers. Green: Primers specific 

for the TCR sequence. Red: Myc-tag or P2A sequence. 
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Reaction mix PCR1/2:  100 ng plasmid DNA 
  1.5 μl primer 1 (20 μM) 
  1.5 μl primer 2 (20 μM) 
  2 μl dNTPS (10 mM) (NEBiolabs) 
  10 μl 10x Thermo Pol buffer (NEBiolabs) 
  2 U Deep Vent DNA Polymerase (NEBiolabs) 
 ad 100 μl H20 

 

The following primer pairs were used (for sequences see Material section). 

Insertion of the myc tag:  PCR1 (fwd / myc1) PCR2 (rev / myc2) 

Cloning of P2A vectors:  PCR1 (fwd / P2Arev) PCR2 (rev / P2Afwd) 

 

PCR1/2 cycle: 1) 95°C 180 s 
 2) 95°C 60 s 
 3) 56 - 68°C 60 s 
 4) 72°C 60 s / 1 kb product length 
 

 (steps 2 to 4 repeated 30 times) 
 

 5) 95°C 60 s 
 6) 72°C 600 s 
 

DNA products of PCR1 and PCR2 were purified using MinElute PCR Purification Kit 

(Qiagen) and used for an annealing reaction. 

Annealing reaction mix:  100 ng product PCR1 
  100 ng product PCR2 
  2 μl dNTPS (10 mM) (NEBiolabs) 
  10 μl 10x Thermo Pol buffer (NEBiolabs) 
  2 U Deep Vent DNA Polymerase (NEBiolabs) 
 ad 100 μl H20 

 

Annealing cycle: 1) 95°C 180 s 
 2) 95°C 60 s 
 3) cool down from 95°C to 45°C with 5°C / 30 s 
 4) 72°C 60 s / 1 kb product length 
 

 (steps 2 to 4 repeated 5 times) 
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After the annealing reaction, 1.5 μl primer 1 (fwd, 20 μM) and 1.5 μl primer 2 (rev, 20 μM) 

were added and PCR3 cycle was performed similar to PCR1/2. The product was purified with 

MinElute PCR Purification Kit. Correct length of all PCR products was confirmed by agarose 

gel electrophoresis using DNA1-kb-marker (Sigma) as a control. 

 

Enzymatic restriction and dephosphorylation of DNA 

DNA restriction was performed either in analytical scale to confirm correct insert orientation 

after ligation or in a preparative scale to prepare fragments for cloning. Enzymes were pur-

chased from NEBiolabs and Fermentas; buffers and reaction conditions were applied accord-

ing to the manufacturer. Digestion was usually performed for 1 h. If different buffer condi-

tions needed to be used for two enzymes in one restriction, DNA was first digested with one 

enzyme, then precipitated with ethanol and centrifugation, and finally taken up in a buffer 

appropriate for the second enzyme. 

Analytical scale reaction mix:  0.5 μg plasmid DNA 
  2 μl 10x reaction buffer 
  5 U restriction enzyme 
  0.2 μl 100x BSA (NEBiolabs) if required 
 ad 20 μl H20 

Preparative scale reaction mix:  6 μg plasmid DNA 
  5 μl 10x reaction buffer 
  20 U restriction enzyme 
  0.5 μl 100x BSA (NEBiolabs) if required 
 ad 50 μl H20 

Before subsequent ligation, 5’ phosphate residues of vector fragments were enzymatically re-

moved to avoid re-ligation of cohesive vector ends.  

Dephosphorylation mix:  50 μl preparative restriction mix 
  5 μl 10x dephosphorylation buffer (Roche) 
  2 U Alkaline Phosphatase (Roche) 
 ad 100 μl H20 

Dephosphorylation was performed at 37°C for 30 min. 
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DNA extraction from agarose 

To isolate specific DNA fragments after enzymatic restriction, the whole reaction mix was 

loaded onto 0.6 to 2% agarose gels containing 0.5 μg/ml ethidium bromide (Serva) and run at 

120 V for 15 to 45 min.  DNA bands were visualized with ultraviolet (UV) light and frag-

ments of the right size were cut out of the gel. DNA was extracted from gel slices using Easy-

Pure DNA purification kit (Biozym). 

 

Ligation of DNA fragments 

DNA concentration and length of digested vector and insert were determined. The fragments 

were combined in a molar vector : insert ratio of 1:3 using 100 ng vector DNA. Ligation was 

performed with Rapid Ligation Kit (Roche) according to the manufacturer’s instructions. Fi-

nally, CaCl2-treated, chemo-competent bacteria were transformed with the ligated product. 

 

Phosphorylation and annealing of oligonucleotides for insertion of a second tag 

First, oligonucleotides M1 and M2 were separately phosphorylated using T4 kinase for 1 h at 

37°C. 

Phosphorylation mix: 10 μl primer M1 (100 μM) 
 10 μl primer M2 (100 μM) 
 20 U T4 polynucleotide kinase (Fermentas) 
 4 μl 10x T4 ligase buffer (Fermentas) 
 14 μl H20 

Phosphorylated oligonucleotides were annealed by incubation at 95°C for 5 min and subse-

quently decreasing temperature slowly to 4°C. 

 

Transformation of bacteria 

CaCl2-treated, chemo-competent Escherichia coli (E. coli) strains XL-1 blue and SCS110 

(dam-deficient) (both Invitrogen) were thawed on ice. 40 μl of bacterial suspension were 

mixed with 1 μg DNA for transformation of plasmid DNA or 10 μl of the ligation reaction 
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mix for transformation of ligated DNA. The mix was incubated on ice for 20 min. Heat shock 

was performed by incubating the solution at 37°C for 1 min and afterwards on ice. Subse-

quently, 1 ml of SOC medium was added and bacteria were cultured at 37°C and 220 rpm in 

an incubator for 1 h. 100 to 1000 μl of the suspension was plated on LB-agar plates contain-

ing 100 μg/ml ampicillin (Roth). As all used plasmids expressed β-lactamase under control of 

a bacterial promoter, ampicillin resistance is conferred to transformed bacteria. 

SOC medium: 20 mM glucose (Roth) 
 2 %  tryptone (Roth) 
 0.5 % yeast extract (Roth) 
 10 mM NaCl (Roth) 
 2.5 mM KCl (Roth) 
 10 mM MgCl2 (Roth) 

 10 mM MgSO4 (Roth) 

LB medium: 1 % tryptone 
 1 % NaCl 
 0.5 % yeast extract 

LB-agar: 1.5 % agar (Roth) 
 in LB medium 

 

Plasmid DNA preparation from bacteria and sequencing 

Isolation of plasmid DNA from E. coli was performed using Spin Plasmid Mini Kit (Invitek) 

for small scale preparations or DNA Maxi Kit (Qiagen) for large scale preparations; both 

were applied according to the manufacturer’s instructions. Amplification of the correct plas-

mid was verified by enzymatic restriction. Sequencing of plasmid DNA was performed at 

MWG Biotech using vector-specific primers. 

 

2.2.2 Cell culture 

Cultivation and cryo-preservation of cell lines and primary cells 

If not stated otherwise, cells were cultured in exponential growth phase at 37°C, 5% CO2 and 

95% humidity in a HERA cell 240 incubator (Kendro Laboratory Products). Suspension cells 

were passaged and supplied with fresh medium twice a week. For passaging of adherent cells, 

medium was removed; cells were washed with PBS and treated with 0.05% trypsin-EDTA in 



Material and Methods

 
30 

PBS (GIBCO) for 3 min. Medium was added and cells were seeded in tissue culture flasks at a 

lower density. For cryo-preservation, medium was removed; cells were taken up in FCS with 

10% DMSO (Sigma) and transferred into cryo-tubes (Greiner). For 24 h, cryo-tubes were 

stored in cryo-containers (Nalgene) at -80°C, after which they were placed in liquid nitrogen. 

To thaw cells, cryo-tubes were incubated at 37°C. Immediately after thawing cells were taken 

up in 10 ml cold medium, centrifuged and supplied with pre-warmed medium. 

 

Isolation and stimulation of human PBMCs 

Human PBMCs were derived from the blood of healthy donors after informed consent. After 

donation, 50 ml blood were mixed with 50 ml T cell medium. 50-ml centrifugation tubes 

(Greiner) were filled with 12.5 ml Ficoll separating solution (Biochrom) on which 25 ml of 

the medium-diluted blood was layered. The tubes were centrifuged at 650 x g with reduced 

acceleration and deceleration for 20 min. Lymphocytes accumulated at the interphase from 

which they were removed with a pipette and transferred into a new tube. Cells were washed 

twice with 50 ml T cell medium and finally taken up in T cell medium containing PAN-FCS. 

For stimulation, 24-well non-tissue culture plates (Greiner) were coated with anti-hCD3 anti-

body and anti-hCD28 antibody (5 μg and 1 μg in 0.5 ml PBS per well, respectively) at 37°C 

for 2 h. Afterwards wells were incubated with 0.5 ml 2% BSA solution at 37°C for 30 min 

and washed with PBS. 1 x 106 PBLs were seeded in 1 ml medium per well and 100 IU/ml 

rhIL-2 were added. 

 

Isolation and stimulation of human natural killer (NK) cells 

NK cells were isolated from Ficoll gradient-separated PBMCs. For this, 2 x 107 PBMCs were 

taken up in 20 ml T cell medium, seeded in a T150 tissue culture flask (Techno Plastic Prod-

ucts) and incubated at 37°C in a horizontal position for exactly 30 min thus allowing mono-

cytes and dendritic cells to adhere to the cell culture plastic. Subsequently, the non-attached 

lymphoid cells were carefully removed and counted. Per well of a 6-well plate 1.5 x 106 PBLs 

were seeded in a volume of 5 ml together with 3 x 105 interleukin-12-producing RPMI 8866 

feeder cells which had been irradiated with 30 Gy. NK cells were cultured for 5 to 6 days and 
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then stimulated by addition of 100 IU/ml rhIL-2 for another 24 h. This method reproducibly 

yielded a culture containing 50 to 60% CD3-negative/CD56-positive NK cells. 

 

Isolation and stimulation of murine splenocytes 

Mice were sacrificed, spleens removed and placed into a 3-cm dish containing RPMI 1640 

medium. Organs were minced and the cell suspension centrifuged at 200 x g for 5 min. Cells 

were taken up in 2 ml ACK lysis buffer per spleen for 90 s to lyse red blood cells. The reaction 

was stopped by addition of 25 to 50 ml medium. After centrifugation cells were washed in 20 

ml medium, filtered using a cell strainer (BD) and finally seeded in T150 tissue culture flasks 

at a density of 2 x 106 cells/ml. For stimulation,  

1 μg/ml anti-mCD3 antibody, 0.1 μg/ml anti-mCD28 antibody and 10 IU/ml rhIL-2 were 

added. 

ACK lysis buffer: 150 mM NH4Cl (Merck) 
 1 mM KHCO3 (Roth) 
 0.1 mM Na2EDTA (Roth) 

 pH 7.2 

 

Transient transfection by calcium phosphate precipitation 

For transient transfection of cells, calcium phosphate precipitation was used. Per well,  

7 to 9 x 105 Plat-E or 293T cells were seeded in 3 ml medium into 6-well plates one day be-

fore transfection. This way, cells were about 60% confluent at the time point of transfection. 

Precipitation mix per well:  18 μg total DNA 
  15 μl CaCl2 2.5M (Sigma) 
 ad 150 μl H2O 

 

After mixing DNA, CaCl2 and H2O in 15-ml polystyrene tubes (Greiner), 150 μl transfection 

buffer were added dropwise while vortexing the mix. After 15 min at room temperature, 

when DNA had complexed with CaPO4 precipitates, 300 μl were added per 6-well. After 6 h 

incubation, medium was exchanged. 
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Transfection buffer:  16 g NaCl 
  740 mg KCl 
  500 mg NaHCO3 (Roth) 
  10 g HEPES 
 ad 1 l H2O 

 pH 6.75 

 

Production of retrovirus supernatant and transduction of T cells 

For transduction of murine cells, ecotropic retrovirus was produced by transient transfection 

of the packaging cell line Plat-E with 18 μg viral vector DNA per well of a 6-well plate. Hu-

man T cells were transduced with supernatant generated by transiently transfecting 293T cells 

with 6 μg pcDNA3.1gag/pol, 6 μg pALF-10A1GaV and 6 μg viral vector DNA per well of a 

6-well plate. 48 h after transfection, virus supernatant was harvested, filtered using 0.45-μm 

pore-size filters (Whatman) and either used directly for transduction or stored at -80°C until 

use. 

To increase transduction efficiency, 6-well or 24-well non-tissue culture plates were coated 

with 25 μg/ml RetroNectin CH-296 (RN, TaKaRa Biomedicals) by adding 400 μl to 24-wells 

or 1 ml to 6-wells and incubating for 2 h at room temperature. For blocking the same volume 

of a 2% BSA solution was added and plates were incubated at 37°C for 30 min. After rinsing 

the wells with 2.5% HEPES in PBS, cells and viral supernatant were added. To facilitate effi-

cient fusion of the retrovirus envelope with the cell membrane, 4 μg/ml protamine sulphate 

was applied. Then, plates were spinoculated at 800 x g and 32°C for 90 min. 

Depending on the cell type to transduce, different protocols were employed. 

i) Cell lines were generally transduced once in RN-coated 24-wells using 1 x 105 cells 

in 1 ml medium and 1 ml viral supernatant per well.  

ii) Murine splenocytes were transduced twice at day 1 and day 2 after isolation. For 

this, 6 x 106 cells in 0.5 ml medium were seeded in RN-coated 6-wells and 3 ml vi-

rus supernatant was added per well. At the time point of the first transduction, 

anti-mCD3 and anti-mCD28 antibody and rhIL-2 were added at the same concen-

tration as used for stimulation. For the second transduction, 3 ml medium was re-
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moved from the wells and substituted with 3 ml new virus supernatant. This time, 

only rhIL-2 was used. 

iii) The first transduction of human PBLs was performed 48 h after isolation by add-

ing 1 ml virus supernatant supplemented with 100 IU rhIL-2 to the cells cultured in 

the antibody-coated 24-wells. For the second transduction 24 h later, the cells of 

one well were split into three and seeded into RN-coated 24-well plates to which 1 

ml rhIL-2 containing virus supernatant was added. 

Expression of the virus-encoded transgene was usually analyzed 72 h after transduction by 

flow cytometry. 

 

Flow cytometry 

For staining of cell surface antigens, about 5 x 105 cells were incubated with 1 μg antibody in 

100 μl PBS at 4°C for 20 to 40 min. Subsequently cells were washed twice in  

1 ml PBS and, if necessary, the procedure was repeated with a secondary antibody. Finally 

cells were taken up in 200 μl PBS and fluorescence intensity was measured with a  

FACSCalibur device and CellQuestPro software (BD). Data analysis was performed with 

FlowJo software (Tree Star). To discriminate between living and dead cells, staining with 

propidium iodide (PI, Sigma) or 7-amino-actinomycin D (7-AAD, BD) was accomplished by 

adding the substances to the cells 10 min before measurement without a washing step. 

For the flow cytometric analysis of peripheral lymphocytes of mice, 50 μl blood were mixed 

with 50 μl PBS and 1 μg antibody and incubated at room temperature for 30 min. If blood 

was derived from Rag-1-/- mice, samples were pre-incubated with 1 μg anti-CD16/32 antibody 

for 5 min to block Fc receptors. Red blood cells were lysed using FACS Lyse/Wash Assistant 

(BD) and samples were measured as described. 

 

Fluorescence-activated cells sorting (FACS) 

FACS was performed to enrich cells for a certain surface antigen using a specific antibody. For 

this, about 2 x 107 cells were centrifuged, taken up in 500 μl PBS and about 10 to 20 μg of 
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antibody were added. Cells were incubated at 4°C for 30 min and subsequently washed twice 

in 10 ml FACS-PBS. If necessary, the labeling was repeated with a secondary antibody. Before 

sorting, cells were filtered using a cell strainer, centrifuged and finally taken up in 2 ml FACS-

PBS. Sorting was performed with a FACSAria or FACSVantage device (both BD). Sorted cells 

were collected in FACS-RPMI, centrifuged and taken up in the appropriate medium addition-

ally supplemented with 10 μg/ml gentamycin (Gibco) and 200 U/ml Pen/Strep to prevent bac-

terial contamination. Sorting results were analyzed by flow cytometry. 

FACS-PBS: 1 % inactivated FCS 
 200 U/ml antibiotic / fungicide mix (Gibco) 
   in PBS 

 

FACS-RPMI: 15 % inactivated FCS 
 200 U/ml Pen/Strep 
 10 μg/ml gentamycin 
 10 mM HEPES 
 in RPMI + GlutaMAX I 

 

Magnetic-activated cell sorting (MACS) 

MACS was applied for sorting of myc-positive PBLs as they appeared to be too sensitive to 

FACS. Cells (5 x 107 to 1 x 109) were centrifuged and taken up in running buffer (0.8 ml per 1 

x 108 cells) and anti-myc microbeads (200 μl per 1 x 108 cells, μMACS c-myc tagged protein 

isolation kit human, Miltenyi Biotec). After 20 min incubation at 4°C, PBLs were washed 

twice in running buffer, filtered using a cells strainer and finally taken up in 500 μl running 

buffer. MACS LS separation columns (Miltenyi Biotech) were fixed in a magnet (Miltenyi Bio-

tec), equilibrated with 3 ml running buffer and cells were applied. The columns were washed 

3 times with 3 ml running buffer, before removing them from the magnet. Bead-labeled cells, 

that had bound to the column were eluted with 5 ml running buffer, centrifuged and taken up 

in the appropriate medium. After sorting, PBLs had to be restimulated. 

Running buffer: 2 % EDTA (Roth) 
 1 % FCS 
 in Mg2+ and Ca2+ free PBS (Gibco) 
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Peptide-specific restimulation of PBLs 

T2 cells were incubated with 10 μM peptide in serum-free medium for 2 h at 37°C, irradiated 

with 63 Gy and washed twice. Per well of a 24-well plate, 1 x 106 PBLs were seeded together 

1 x 105 peptide-loaded T2 cells in 1.5 ml medium supplemented with 150 IU/ml rIL-2. Cells 

proliferated for 1 to 2 weeks; then IL-2 concentration was decreased to 10 IU/ml to allow 

PBLs to enter resting phase. Immunologic assays were performed 2 to 3 days thereafter. 

 

Cytokine release assay 

Target cells (T2, T2-Kb or splenocytes) were incubated with different amounts of peptide in 

serum-free medium at 37°C for 2 h and washed twice. Per well, 1 x 105 effector cells were co-

cultured with peptide-loaded targets in a 1:1 ratio in 96-well round-bottom plates (Corning 

Costar, Munich, Germany) at 37°C for 24 h. The supernatant was harvested, frozen and later 

tested for human IFN-γ or murine IL-2 amount by enzyme-linked immuno-sorbent assay 

(ELISA; sensitivity 4 or 2 pg/ml, respectively; eBioscience) according to the manufacturer’s 

instructions. 

 

Complement-mediated cytotoxicity (CDC) assay 

Exponentially growing cell lines or Ficoll-purified PBLs were seeded in a 96-well plate (Corn-

ing Costar) with 1 x 105 cells/well in depletion medium (RPMI 1640 medium supplemented 

with 25 mM HEPES and 0.3% BSA). Cells were labeled with 1 μg myc-specific antibody/well 

(clone 3A7) at 4°C for 1 h, washed and incubated with rabbit complement (for murine T cell 

lines: LOW-TOX-M; for PBLs: Rabbit Complement MA, both Cedarlane) diluted 1:6 to 1:12 

in depletion medium at 37°C for 2 h. For live and dead cell discrimination, cells were stained 

with 1 μg PI or 3 μl 7-AAD for 10 min and analyzed by flow cytometry. Cells incubated with 

either antibody or complement alone served as controls. Percent of specific depletion was cal-

culated as [% cytotoxicity (antibody+complement) – % cytotoxicity (complement alone)] / 

[100% – % cytotoxicity (complement alone)] x 100. 
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Antibody-dependent cell-mediated cytotoxicity (ADCC) assay 

TCR-transduced PBLs which had been enriched by MACS and subsequently restimulated 

were used as targets and autologous NK cells as effectors. Lysis was performed by incubating 

5 x 103 51Cr-labeled target cells (100 μCi per sample) with effector cells in E:T ratios from 

50:1 to 2:1 in the presence of 1 μg myc-specific antibody (clone 9E10) and 1 μg rabbit anti-

mouse IgG1-Fc polyclonal antibody. After 4 h co-cultivation, 75 μl of supernatant was trans-

ferred onto LumaPlates-96 (Perkin Elmer) which were allowed to air-dry. Scintillation was 

analyzed using a TopCount device (Perkin Elmer). Spontaneous release was measured by in-

cubating target cells alone, maximum release by directly counting labeled cells. Percent spe-

cific lysis was calculated as [cpm (experimental) – cpm (spontaneous)] / [cpm (maximal) – 

cpm (experimental)] x 100.  

 

Adoptive T cell transfer 

If not stated otherwise, RIP-mOVA mice were sub-lethally irradiated with 4 Gy one day be-

fore adoptive transfer. Age- and sex-matched recipient mice were injected in the tail vein with 

2 x 107 (RIP-mOVA mice) or 5 x 106 (Rag-1-/- mice) TCR-positive splenocytes (as determined 

by FACS staining) one day after the second transduction. For depletion of adoptively trans-

ferred cells, 500 μg myc-specific antibody (clone 9E10) were injected intraperitoneally (i.p.) 2 

d (RIP-mOVA) or 13 d (Rag-1-/-) after adoptive transfer. Expansion and depletion of cells was 

monitored by flow cytometry of blood samples. Diabetes development in RIP-mOVA mice 

was followed by measuring blood glucose levels with Ascensia ELITE SENSOR strips (Bayer, 

Leverkusen, Germany). Mice with blood glucose levels higher than 14 mM at two consecutive 

days were considered diabetic. 

 

Immunohistochemical (IHC) staining 

The pancreas of sacrificed mice was embedded in Tissue Tek (Sakura Finetek) and frozen in 

liquid nitrogen. Microsections of the organs were prepared, mounted on microscope slides 

and fixed with acetone. Slides were pre-incubated subsequently with Protein Block (Immu-

notech) and PBS/1% BSA/1% donkey serum. Ova antigen was stained with a polyclonal rab-
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bit anti-ova antibody (Acris) and secondary donkey anti-rabbit coupled to Alexa594 (Molecu-

lar Probes). CD8-positive cells were detected with rat anti-CD8α antibody (BD) and secon-

dary donkey anti-rat antibody coupled to Alexa488 (Molecular Probes). Nuclei were visual-

ized with DAPI. Images were obtained with Axiovert 200 microscope and AxioVision Rel. 4.5 

software (both Zeiss). 
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2.3 Companies 

Acris (Hiddenhausen, Germany) 

Amersham (Buckinghamshire, UK) 

ATCC (Manassas, USA) 

BD (Heidelberg, Germany) 

Biochrom (Berlin, Germany) 

Biosyntan (Berlin, Germany). 

Biozym (Hess. Oldendorf, Germany) 

Caltag Laboratories (Karlsruhe, Germany) 

Cedarlane (Hornby, Canada) 

Charles River (Sulzfeld, Germany) 

Chiron (Marburg, Germany) 

CILAG (Sulzbach, Germany) 

eBioscience (San Diego, USA) 

Fermentas (St. Leon-Rot, Germany) 

Gibco (Karlsruhe, Germany) 

Greiner Bio-One (Frickenhausen, Germany) 

Immunomics (Fullerton, USA) 

Immunotech (Marseille, France) 

Invitek (Berlin, Germany) 

Invitrogen (Karlsruhe, Germany 

Jackson ImmunoResearch (West Grove, USA) 

Merck (Darmstadt, Germany) 

Miltenyi Biotec (Bergisch Gladbach, Germany) 

Molecular Probes (Karlsruhe, Germany) 

MP Biomedicals (Eschwege, Germany) 

MWG Biotech (Ebersberg, Germany) 
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Nalgene (Rochester, USA) 

NEBiolabs (Frankfurt a.M., Germany) 

PAN Biotech (Aidenbach, Germany) 

Perkin Elmer (Waltham, USA) 

Qiagen (Hilden, Germany) 

Roche (Grenzach-Whylen, Germany) 

Roth (Karlsruhe, Germany) 

Sakura Finetek (Zoeterwoude, Netherlands) 

Santa Cruz (Santa Cruz, USA) 

Sigma (Taufkirchen, Germany) 

TaKaRa Biomedicals (Otsu, Japan) 

Techno Plastic Products (Trasadingen, Switzerland) 

The Jackson Laboratory (Bar Harbor, USA) 

TIB MOLBIOL (Berlin, Germany) 

Tree Star (Ashland, USA) 

Whatman (Middlesex, UK) 

Zeiss (Oberkochen, Germany) 
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3 Results 

3.1 Introduction of a myc-tag into different positions of the murine 

P14 TCR 

In this thesis, the amino acid (aa) sequence 410 - 419 of the human c-myc protein (myc-tag) 

sought to be introduced into the structure of a TCR in a position where it can be recognized 

by a myc-specific antibody without interfering with TCR function. For this, crystal structures 

of human and murine TCRs [3] were inspected visually. Four different regions were identified, 

which (1) were protruding from the TCR structure and therefore seemed more likely to be 

accessible for an antibody and (2) were located outside of the CDR regions, which are primar-

ily responsible for the binding to the peptide-MHC complex. Figure 5 depicts these four re-

gions - namely the N-termini of the TCRα- and TCRβ-chain, the FG loop of Cβ and the c-

strand of Cα - in the crystal structure of the 2C TCR [6]. 

1

2

3

4

 

FIGURE 5: Regions for insertion of a myc-tag into a TCR. Crystal structure of the 2C TCRα-chain (purple) 

and TCRβ-chain (blue). The arrows indicate the four regions selected for insertion of the myc-tag. (1: N-terminus 

of TCRα-chain, 2: c-strand of Cα, 3: N-terminus of TCRβ-chain, 4: FG loop of Cβ). Adapted from [6]. 
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As a model, the murine P14 TCR (recognizing the glycoprotein-derived peptide 33 - 41 of 

lymphocytic choriomeningitis virus, gp33) was chosen. For modification of the four described 

TCR regions two different strategies were applied: either the myc-tag was directly inserted 

between two amino acids of the TCR sequence, or ten amino acids of the original TCR se-

quence were replaced by the tag. For some regions, it was tested whether insertion of two ad-

jacent tags was superior to insertion of only one myc-tag regarding the binding of a myc-

specific antibody. Finally, nine different myc-tagged TCRs were designed as described in Table 

2 and visualized in Figure 6. 

TABLE 2: Positions of myc-tag insertion in the murine P14 TCR. 

In case of the N-terminal modifications it had to be considered that the first amino acids of 

the translated protein comprise the signal peptide which is cleaved during TCR processing 

and export. Therefore, the myc-tag needed to be inserted between the signal peptide and the 

first amino acid of the mature protein. For identification of the signal peptide cleavage site the 

SignalP 3.0 software [135] was used. In this program, for each amino acid the probability to 

be part of a signal peptide (S score), and the probability to be part of a cleavage site (C score) 

is determined. From these two values the Y score is calculated which estimates where the 

probability of cleavage is highest. Figure 7A and B show the S, C and Y scores of the P14 

TCR chains indicating the putative cleavage position. 

TCR chain Position Description 

P14α CS Exchange of aa 170-179 of strand c in the Cα region with one myc-tag 

 AN Fusion of one myc-tag to the N-terminus of the α-chain 

 DAN Fusion of two myc-tags to the N-terminus of the α-chain 

P14β BN Fusion of one myc-tag to the N-terminus of the β-chain 

 L1 Exchange of aa 242-251 of the FG-loop in the Cβ-region with one myc-tag 

 L2 Exchange of aa 244-253 of the FG-loop in the Cβ-region with one myc-tag 

 L3 Exchange of aa 246-255 of the FG-loop in the Cβ-region with one myc-tag 

 DL Exchange of aa 244-253 of the FG-loop in the Cβ-region with two myc-tags 

 XL Insertion of one myc-tag after aa 248 into the FG-loop of the Cβ-region  
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FIGURE 6: Positions of myc-tag insertion in the murine P14 TCR. The 10 aa myc-tag sequence was incorpo-

rated into the sequence of the TCRα- (A) or TCRβ-chain (B). In five variants, sequences of the original TCR were 

exchanged by one or two myc-tag sequences (1). Numbers indicate the first and last aa position of the original 

sequence that was replaced. Four variants were generated, in which one or two myc-tags were inserted (2). Here, 

numbers indicate the amino acid position behind which the tag was introduced. The name of each variant accord-

ing to Table 2 is given in brackets. (S: signal peptide, V: variable region, D: diversity region, J: joining region, C: 

constant region). The asterix marks the position [DAN] which was later used for modification of different human 

and murine TCRs. 

Furthermore, it was analyzed whether addition of the myc-tag to the N-terminus of the ma-

ture proteins leads to changes in the cleavage probability. Therefore, the designed amino acid 

sequence of the N-terminal myc-tag-modified TCR chains was analyzed using the SignalP 3.0 

software. As seen in Figure 7C and D the proposed cleavage site of the signal peptide is not 

affected by insertion of the myc-tag both in the TCRα- and in the TCRβ-chain. 

For retroviral transduction the MP71-PRE vector was employed. This vector harbors the long 

terminal repeats (LTRs) of mouse myeloproliferative sarcoma virus (MPSV), a leader sequence 

of murine embryonic stem cell virus and the woodchuck hepatitis virus posttranscriptional 

regulatory element (PRE) and has been shown to lead to efficient expression of transgenes in 

murine and human T cell lines and primary lymphocytes [56,61,136,137,138].  Retroviral 

vectors were generated encoding either the non-modified wild-type (wt) TCR (P14/TCRwt) or 

the TCR with one of the myc-tag modifications (P14/TCRmyc[X], X being the described posi-

tion of myc-tag insertion of Table 1). The myc-tag was inserted by site-directed mutagenesis 

PCR using pairs of overlapping primers. In TCRs with two myc-tags, the second tag was in-
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troduced by ligation of the TCR vector containing one myc-tag with a double-stranded oli-

gonucleotide encoding the second tag.  

 

FIGURE 7: Fusion of a myc-tag to the N-terminus of the mature P14 TCRα– and TCRβ–chains does not alter 

the signal peptide cleavage position. (A,B) The peptide sequence of the P14 TCRα– and TCRβ–chain was analyzed 

using SignalP 3.0 software. The position with the highest Y score indicates the putative cleavage site of the signal 

peptide (VNG-QQ for the α–chain and MEA-AV for the β–chain). (C,D) Similarly, the modified 

P14/TCRmyc[AN] and P14/TCRmyc[BN] amino acid sequences which carry a myc-tag between the proposed 

signal peptide and the mature protein were analyzed. The myc-tag sequence is boxed in red. 

 

3.2 Expression analysis of myc-tagged P14 TCRs 

To analyze whether the myc-tag-modified P14 TCRs can be expressed on T cells, retroviral 

particles were generated by transfection of Plat-E cells with the TCR gene-containing MP71 

vectors, and used to transduce the murine T cell line B3Z. Cells were enriched by FACS sort-

ing using vα2- and vβ8-specific antibodies. Seven days after sorting, expression of the TCR 

was analyzed by flow cytometry with a vα2- and vβ8-specific antibody.  
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FIGURE 8: All myc-tagged P14 TCRs are expressed in the murine T cell line B3Z. B3Z cells were transduced 

with one of the P14/TCRmyc and subsequently sorted for vα2 and vβ8 expression. (A) Cells were stained with 

vα2- and vβ8-specific antibodies and analyzed by flow cytometry. The number of double-positive cells after sort-

ing is given in percentage. Untransduced cells (neg) or cells transduced with P14/TCRwt (both boxed in grey) 

were used as a control. (B) Mean fluorescence intensity (MFI) of the TCRα-chain (black bars) and TCRβ-chain 

(grey bars) staining was determined. The depicted relative MFI values indicate the expression level of the myc-

tagged TCR relative to expression of the wt TCR chain which was set to 100%. 

Figure 8 shows the percentage of TCR-positive T cells as well as the mean fluorescence inten-

sity (MFI) for each TCR chain, which indicates the level of expression. All myc-tagged P14 

TCRs were expressed on B3Z cells. Some TCRs (e.g. P14/TCRmyc[AN, DAN and XL] re-
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tained a similar expression level of the TCR when compared to P14/TCRwt. However, the 

MFI of some modified TCR chains (e.g. the β-chain of P14/TCRmyc[DL] or the α-chain of 

P14/TCRmyc[CS]) was lower when compared to P14/TCRwt.  

Next, it was analyzed whether the myc-tag modified TCRs can be detected by a myc-specific 

antibody. B3Z cells transduced with the different P14/TCRmyc or P14/TCRwt retroviral vec-

tors were stained with a myc-specific antibody and analyzed by flow cytometry (Figure 9). 

 

FIGURE 9: Only some myc-tag modified TCRs can be detected by a myc-specific antibody. (A) P14/TCRmyc-

transduced and –enriched B3Z cells were analyzed by FACS using a myc-specific antibody. Untransduced cells 

(neg) or cells transduced with P14/TCRwt (both boxed in grey) were used as controls. Numbers indicate the per-

centage of sorted cells that stained positive with the antibody. (B) An overlay of the histograms shows distinct 

levels of myc-tag detection of different TCRs. 
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Only four of the nine TCRmyc (namely AN, DAN, XL, DL) could be detected with a myc-tag 

specific antibody.  

To reproduce these findings, a second murine T cell line, TCR-deficient 58 cells, was trans-

duced with P14/TCRwt or those myc-tagged P14 TCRs, which bound the myc-specific anti-

body in B3Z cells (AN, DAN, DL, XL). The cells were sorted by FACS for TCR expression 

and analyzed as before with vα2- and vβ8-specific antibodies (Figure 10).  

 

FIGURE 10: P14/TCRmyc [AN, DAN, DL and XL] are expressed in a TCR-deficient T cell line. 58 cells were 

transduced with P14/TCRmyc [AN, DAN, DL and XL] retroviral vectors and subsequently sorted for vα2 and 

vβ8 expression. Cells were stained with vα2- and vβ8-specific antibodies and analyzed by flow cytometry. The 

number of transduced cells after sorting is given in percentage. Untransduced cells (neg) or cells transduced with 

P14/TCRwt (both boxed in grey) were used as a control.  

As in B3Z cells, P14/TCRmyc [AN, DAN, DL and XL] were expressed comparably to the wt 

TCR. In this experiment, the MFI of the TCR chains did not allow to determine their relative 

expression level as 58 cells are TCR-deficient. Thus, the introduced TCR does not have to 

compete with the endogenous TCR for CD3 and TCR export components. Therefore, protein 

instability due to the introduced modification does not have a similarly strong impact on TCR 

expression level as observed in B3Z cells, which possess an endogenous TCR [7].  

Next, it was analyzed whether the myc-tagged P14 TCRs were also detected by a myc-specific 

antibody when expressed in 58 cells. Therefore, the transduced cells were stained with a myc-

specific antibody and analyzed by flow cytometry (Figure 11). 
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FIGURE 11: P14/TCRmyc [AN, DAN, DL and XL] can be detected by a myc-specific antibody when ex-

pressed in a TCR-deficient murine T cell line. (A) P14/TCR-transduced 58 cells that were enriched for TCR ex-

pression were analyzed by FACS using a myc-specific antibody. Untransduced cells (neg) or cells transduced with 

P14/TCRwt (both boxed in grey) were used as controls. Numbers indicate the percentage of sorted cells that 

stained positive with the antibody. (B) An overlay of the histograms shows distinct levels of myc-tag detection of 

different TCRs. 

Consistent with the previous results, the four myc-tagged P14 TCRs [AN, DAN, DL and XL] 

could be detected by a myc-specific antibody in the T cell line 58. In both analyzed murine T 

cell lines the variant [DAN] showed the highest detection level whereas detection of the vari-

ant [DL] was lowest. Anti-myc antibody staining of P14/TCRmyc[XL] and P14/TCRmyc[AN]  

displayed some variation between 58 and B3Z cells.  However, in both cell lines the fluores-

cence intensity of [XL] and [AN] was higher than that of [DL] and lower than that of [DAN]. 
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3.3 Myc-tagged P14 TCRs allow in vitro cell depletion 

To analyze whether murine T cell lines expressing P14/TCRmyc could be depleted in vitro, 58 

cells enriched for P14 TCR expression were subjected to complement-mediated lysis. For this, 

the T cells were incubated first with a myc-specific antibody and subsequently with rabbit 

complement factors. If antibody has bound to its antigen on the cell surface, complement fac-

tors bind to the Fc part of the antibody and induce a signaling cascade leading to specific lysis 

of the cell. As a control for unspecific lysis, cells were also incubated with complement alone. 

After incubation, 7-AAD staining was performed to discriminate between viable and dead 

cells. Flow cytometry results are shown in Figure 12A. Specific lysis was calculated under con-

sideration of unspecific lysis mediated by incubation with complement alone (Figure 12B). 

 

FIGURE 12: P14/TCRmyc[DAN] and [DL] support complement depletion of T cells. (A) 58 cells transduced 

with P14/TCRmyc [AN, XL, DL or DAN] and enriched for TCR expression were incubated with a myc-specific 

antibody and rabbit complement factors. Viable and dead cells were discriminated by staining with 7-AAD and 

FACS analysis. P14/TCRwt-transduced cells were used as a negative control (boxed in grey). Numbers indicate 

the percentage of dead cells for specific (blue) or unspecific lysis (grey). (B) From these data, percentage of specific 

depletion was calculated. The experiment was performed twice with reproducible results. 

When incubated with complement alone, unspecific cell lysis of 9 to 16% was observed. Spe-

cific depletion could only be demonstrated for P14/TCRmyc[DAN] (83%) and [DL] (40%). 

P14/TCRwt-transduced cells and cells transduced with P14/TCRmyc[AN] and [XL] were not 

depleted by a myc-specific antibody. Because depletion in the case of P14/TCRmyc[DAN] was 

most efficient, solely this variant was further studied (now designated as “TCRmyc” only).   



Results 

 
49 

3.4 Functionality of myc-tagged P14 TCR is retained 

For the potential clinical application of myc-tagged TCRs it is essential that the receptor func-

tion is not impaired by the insertion of the tag. For functional characterization of 

P14/TCRmyc, antigen binding as well as cytokine secretion were analyzed. The first was ac-

complished by staining with specific peptide-MHC multimers, the latter by detection of IL-2 

secretion upon antigen stimulation. For this, the α-chain and β-chain genes of P14/TCRwt and 

P14/TCRmyc were combined in one single MP71 retroviral vector and linked by the 2A ele-

ment of porcine teschovirus (P2A) yielding MP71-P14α-P2A-P14β and MP71-P14αmyc-P2A-

P14β, respectively. These vectors were used to transduce splenocytes of B6 mice which were 

subsequently stained with a P14-specific and an irrelevant tetramer. Both TCRs similarly 

bound the P14 tetramer as shown by comparable MFI in flow cytometry (Figure 13A). 

 

FIGURE 13: P14/TCRmyc functions comparable to P14/TCRwt. (A) B6 splenocytes were transduced with 

P14/TCRwt or P14/TCRmyc. After 72 hours the cells were stained with a CD8-specific antibody, a P14-specific 

MHC-tetramer and an irrelevant tetramer (irr). Untransduced cells (neg, boxed in grey) served as a negative con-

trol. Cells shown are gated on CD8 expression. Numbers indicate the MFI of the specific tetramer staining. The 

experiment was repeated twice with similar results. (B) For peptide titration, 58 (CD8α+) cells were transduced 

with P14/TCRwt or P14/TCRmyc. Cells were stained with vα2- and vβ8-specific antibodies and analyzed by 

FACS. Transduction efficiency is given in percentage. Untransduced 58 (CD8α+) cells were used as a negative 

control (neg, boxed in grey). (C) 1 x 105 P14/TCRwt- or P14/TCRmyc-transduced or untransduced 58 (CD8α+) 

cells (neg) were stimulated for 24 hours with 1 x 105 B6 splenocytes pulsed with 100 μM to 100 pM gp33 pep-

tide. IL-2 concentration of the culture supernatant was analyzed by ELISA. Unloaded splenocytes cells (w/o) or 

splenocytes loaded with irrelevant peptide (irr) served as negative controls. Data represent mean values of dupli-

cates and error bars indicate the standard deviation (SD). 
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For detection of cytokine secretion, CD8α-positive 58 cells were transduced with the P2A-

linked P14/TCRmyc or P14/TCRwt retroviral vectors with a similar transduction efficiency of 

57-59% (Figure 13B) and stimulated with gp33 peptide-loaded B6 splenocytes. Secretion of 

murine IL-2 was detected in a peptide concentration-dependent manner and was similar for 

cells transduced with either TCR (Figure 13C). 

 

3.5 Generation and characterization of OT-I/TCRmyc – a second 

murine TCR with a myc-tag 

To study whether a myc-tag introduced into the same position of a different TCR was also 

capable of serving as a target site for anti-myc antibody-specific depletion, the murine OT-I 

TCR (recognizing the ovalbumin-derived peptide 257 – 264, ova) was modified with a myc-

tag in position [DAN] as described for the P14 TCR. The OT-I TCR α-chain (wt or myc) and 

β-chain were cloned into separate MP71 vectors which were used to transduce 58 cells. Cells 

were enriched for TCR expression with vβ5-specific antibodies by FACS. Flow cytometry 

analysis using vα2- and vβ5-specific antibodies showed similar expression of both TCRs 

(Figure 14A). Incubation with a myc-specific antibody revealed only binding to OT-

I/TCRmyc-modified cells, but not to OT-I/TCRwt-transduced cells (Figure 14B).  

 

FIGURE 14: Expression of OT-I/TCRmyc and OT-I/TCRwt is comparable. TCR-deficient 58 cells were trans-

duced with OT-I/TCRmyc or OT-I/TCRwt retroviruses and enriched by FACS with a vβ5-specific antibody. TCR 

expression was detected by staining with vα2- and vβ5-specific antibodies (A) or a myc-specific antibody (B) and 

anlyzed by flow cytometry. Untransduced 58 cells (neg, boxed in grey) served as a negative control for TCR ex-

pression. Numbers indicate the percentage of sorted double-positive T cells. 
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Furthermore, it was analyzed whether 58 cells transduced with OT-I/TCRmyc can be depleted 

by a myc-specific antibody in vitro. Therefore, the T cells were enriched for OT-I/TCRmyc 

expression and subjected to complement mediated lysis as described. Depletion was analyzed 

by 7-AAD staining and flow cytometry (Figure 15A). Specific lysis was calculated under con-

sideration of unspecific lysis mediated by incubation with complement alone (Figure 15B). As 

seen for P14/TCRmyc, OT-I/TCRmyc-transduced T cells were depleted with a high efficiency 

by incubation with a myc-specific antibody (78%). 

 

FIGURE 15: OT-I/TCRmyc-transduced 58 cells can be depleted by complement. (A) TCR-deficient 58 cells 

were transduced with OT-I/TCRmyc and enriched with vβ5-specific antibodies. For depletion, cells were incu-

bated with rabbit complement factors and a myc-specific antibody (blue) or rabbit complement alone as a control 

(grey). 7-AAD was used to discriminate between living and dead cells. Percentages represent 7-AAD-positive, dead 

cells. OT-I/TCRwt-transduced cells served as a negative control (boxed in grey). (B) From these data, percentage 

of specific depletion was calculated. The results represent data from one of at least two independent experiments 

with comparable results.  

To determine whether OT-I/TCRmyc functions comparable to its wt counterpart, specific an-

tigen binding and cytokine secretion upon antigen stimulus were analyzed. For this, B6 

splenocytes were transduced with OT-I/TCRmyc or OT-I/TCRwt. 72 hours after transduction 

cells were stained with an OT-I-specific tetramer and an irrelevant tetramer as a control 

(Figure 16A). 

Cytokine release was analyzed by transducing CD8α-positive 58 cells with the wt or the myc-

tagged TCR (Figure 16B), and incubating the cells with ova peptide-loaded T2-Kb cells. After 

24 hours IL-2 concentration of the supernatant was determined by ELISA (Figure 16C). OT-

I/TCRmyc-transduced cells bound the specific peptide-MHC tetramer comparable to OT-

I/TCRwt-transduced cells as indicated by a similar MFI in the FACS staining. Furthermore, 

IL-2 secretion was similar for both TCRs and was peptide concentration-dependent. Untrans-
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duced 58 cells or cells incubated with unloaded T2-Kb cells or an irrelevant peptide did not 

show significant cytokine release. 

 

FIGURE 16: Myc-tagged OT-I TCR functions comparable to wt OT-I TCR. (A) B6 splenocytes transduced 

with OT-I/TCRwt or OT-I/TCRmyc were stained with a CD8-specific antibody, an OT-I-specific tetramer and an 

irrelevant tetramer. Cells shown are gated on CD8 expression. Untransduced splenocytes (neg) were used as a 

control (boxed in grey). Numbers indicate the MFI of the tetramer staining. (B) CD8α-positive 58 cells were 

transduced with the myc-tagged or wt OT-I/TCR, stained with vα2- and vβ5-specific antibodies and analyzed by 

FACS. Numbers show the percentage of transduction efficiency. (C) 1 x 105 OT-I/TCRwt- or OT-I/TCRmyc-

transduced 58 (CD8α+) cells were stimulated for 24 hours with 1 x 105 T2-Kb cells pulsed with 100 μM to 100 

pM ova peptide. As a control untransduced 58 cells were used (neg). IL-2 concentration of the culture supernatant 

was analyzed by ELISA. Unloaded T2-Kb cells (w/o) or T2-Kb cells loaded with irrelevant peptide (irr) served as 

negative target controls. Data represent mean values of duplicates and error bars indicate the SD. 

 

3.6 In vivo depletion of T cells transduced with myc-tagged TCRs 

Complement-mediated lysis experiments showed that TCRmyc-modified T cells could be de-

pleted by a myc-specific antibody in vitro. To analyze whether depletion was also efficient in 

vivo, splenocytes of B6 mice were transduced with either OT-I/TCRwt or OT-I/TCRmyc ret-

roviruses. One day after transduction, cells were injected i.v. into T and B cell-deficient Rag-1-

/- mice. This mouse strain was chosen because (i) adoptively transferred T cells can easily be 

tracked in the blood without the use of congenic markers and (ii) the lymphopenic situation 

of the mice resembles that of a pre-conditioned patient before adoptive transfer in the clinic. 
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Blood samples were taken 13 days after injection and stained with a CD8- and a myc-specific 

antibody (for TCRmyc-transduced T cells) or CD8-, vα2- and vβ5-specific antibodies (for 

TCRwt-transduced T cells), respectively. Flow cytometry analysis demonstrated the presence 

of the adoptively transferred cells in the blood of all mice (Figure 17A). For depletion, 500 μg 

of a myc-specific antibody were injected i.p. and blood samples were analyzed one day later 

by flow cytometry as described before. In mice that received OT-I/TCRmyc-transduced T cells 

and antibody, no myc-positive cells could be detected, indicating that TCRmyc-transduced T 

cells were completely depleted. In contrast, in mice that received OT-I/TCRwt T cells and an-

tibody or in mice, which did not receive antibody treatment, the population of adoptively 

transferred cells remained unchanged (Figure 17B). 

 

FIGURE 17: T cells transduced with myc-tagged TCRs can be depleted in vivo. Splenocytes of B6 mice were 

transduced with OT-I/TCRmyc. 5 x 106 TCR-transduced cells were adoptively transferred i.v. into Rag-1-/- recipi-

ents. (A) After 13 days blood was stained for presence of CD8- and myc-positive cells. (B) One group of mice 

received 500 μg of a myc-specific antibody i.p. for depletion. One day after antibody injection blood samples were 

collected and analyzed again with CD8- and myc-specific antibodies. As a control, one group of mice received 

OT-I/TCRwt-transduced cells, which were stained with CD8-, vα2- and vβ5-specific antibodies, and anti-myc 

antibody treatment (boxed in grey). The stainings show cells gated on CD8 expression and are representative for 

one of two treated animals.  
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3.7 Depletion of TCRmyc-transduced T cells in a mouse model of 

auto-immune disease  

In this work, it has been shown that OT-I/TCRmyc-transduced T cells can be depleted by a 

myc-specific antibody in vitro and in vivo, and that their function was comparable to that of 

OT-I/TCRwt-transduced T cells. On that account, the RIP-mOVA mouse model was chosen to 

analyze whether myc-tagged TCRs can be used to prevent an auto-immune disease.  

This mouse model has been extensively studied with regard to antigen-specific auto-immunity 

[60,130,139]. RIP-mOVA mice express ovalbumin under the control of the rat insulin pro-

moter (RIP) in the β-islet cells of the pancreas [130]. If transgenic OT-I T cells are transferred 

into these mice, they develop auto-immune diabetes due to destruction of the insulin-

producing cells by the T cells. In this model, disease onset is extremely rapid: as early as day 

two after adoptive transfer insulitis – defined by infiltration of the islets with lymphocytes – 

can be detected. Blood glucose values increase from normal to highly glycemic (>14 mM) 

within 24 hours at day four or five after adoptive transfer and mice have to be sacrificed at 

day six to ten due to severity of symptoms.  

In publications, which show diabetes disease in RIP-mOVA mice due to adoptive transfer of T 

cells, usually OT-I T cells from OT-I transgenic mice were employed. Only de Witte et al. de-

scribed the transfer of OT-I/TCR-transduced T cells, but here additional infection with ova-

expressing viruses was needed to stimulate an ova-specific immune response [140].  

Hence, it was first analyzed whether polyclonal B6 T cells which were transduced with the 

OT-I TCR are capable of inducing diabetes in RIP-mOVA mice. In a first attempt, different 

numbers of OT-I/TCRwt-transduced splenocytes were injected. However, no increase in blood 

glucose levels could be observed although the same number of transgenic T cells was sufficient 

for disease induction. Therefore, it was tested whether pre-treatment of the RIP-mOVA mice 

with cyclophosphamide or total body irradiation gave the transferred cells an advantage due 

to homeostatic proliferation in the lymphopenic recipient. Splenocytes of B6 mice were trans-

duced with OT-I/TCRwt retroviruses. One day later, TCR expression was analyzed by flow 

cytometry using vα2- and vβ5-specific antibodies to determine the percentage of transduced T 

cells. Either 1.5 x 106 or 1.5 x 107 OT-I TCR-positive cells were injected i.v. into RIP-mOVA 

mice of which one group had been sub-lethally irradiated with 5 Gy one day before adoptive 
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transfer and a second had received 50 mg cyclophosphamide per kg body weight two days 

before adoptive transfer. As a control, one mouse was treated either with irradiation or cyclo-

phosphamide, but did not receive T cells. Expansion of the OT-I-transduced T cells was fol-

lowed by staining of blood samples seven days after transfer (Figure 18A). Diabetes onset was 

controlled by measurement of blood glucose concentration (Figure 18B).  

 

FIGURE 18: OT-I TCR-transduced T cells induce diabetes only in previously irradiated RIP-mOVA mice. B6 

splenocytes were transduced with OT-I/TCRwt and 1.5 x 107 or 1.5 x 106 OT-I TCR-positive T cells were injected 

i.v. into RIP-mOVA mice (n=1) which had either been irradiated or treated with cyclophosphamide before adop-

tive transfer. (A) Seven days after transfer blood samples were stained with CD8-, vα2- and vβ5-specific antibodies 

and analyzed by FACS. As a control blood from mice, which had either been irradiated or received cyclophos-

phamide but were not injected with T cells, was tested. Blood from an untreated B6 mouse served as a control for 

the endogenous vα2- and vβ5-positive T cell population. Cells shown are gated on CD8 expression. (B) Blood 

glucose levels of all mice were determined and followed up to 30 days. The data of irradiated mice are depicted 

using filled symbols; that of mice treated with cyclophosphamide using open symbols. 
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Only in mice which had been irradiated, a significant number of vα2/vβ5-positive T cells 

could be detected in peripheral blood. However, of those mice only the one which had re-

ceived the higher number of cells showed an increase in blood glucose concentration. 

In a second experiment it was analyzed (i) whether it was possible to prevent or cure the T 

cell-induced diabetes by administration of a myc-specific antibody and (ii) which was the ap-

propriate time-point for antibody treatment. As destruction of islet cells and increase in blood 

glucose level is very rapid in this model, the time-span between transfer of T cells and admini-

stration of the antibody might be crucial. B6 splenocytes were transduced with OT-I/TCRmyc 

retroviruses. One day later the percentage of vα2/vβ5-positive cells was determined by FACS 

(data not shown) and 1.5 x 107 OT-I TCR-positive T cells were injected into RIP-mOVA mice 

which had been irradiated using 5 Gy one day earlier. As a control, one mouse did not receive 

T cells. Blood glucose levels were followed (Figure 19). On day four after T cell transfer, first 

mice showed increased blood glucose values and were injected i.v. with 500 μg of myc-specific 

antibody (group “late myc-ab”). One group of mice, which at this time-point still exhibited 

normal blood glucose concentration, was treated in the same way (group “early myc-ab”). As 

a control, a third group did not receive antibody treatment. To determine whether multiple 

administration of antibody was necessary to cure the diabetes, half of the animals in group 

“late myc-ab” were treated repeatedly (again on days 6, 10 and 13) with 500 μg of myc-

specific antibody (group “late myc-ab (rep)”). 

As seen in Figure 19, only the group of mice which had received the antibody before blood 

glucose values increased could be effectively treated. After administration, glucose level first 

increased, but dropped soon and reached normal values at day 30 to 40 after transfer. Mice of 

this group were further analyzed up to day 100 and no increase in glucose concentration or 

disease symptoms were observed. Animals which received the antibody at a time-point when 

they already exhibited high glycemia could not be treated successfully. All mice in the groups 

“late myc-ab”, “late myc-ab (rep)” and “no myc-ab” had to be sacrificed due to severe diabe-

tes symptoms (weakness, loss of weight). These data show, that depletion of T cells via a myc-

tagged TCR is able to treat mice suffering from auto-immune T cell-induced diabetes. How-

ever, because the chosen model system is so rapid, depletion of the T cells has to be carried out 

at an early time-point after T cell transfer. 
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FIGURE 19: Auto-immune diabetes induced by OT-I/TCR-transduced T cells can only be cured by an early 

administration of antibody. B6 splenocytes were transduced with OT-I/TCRmyc and 1.5 x 107 transduced cells 

were transferred into irradiated RIP-mOVA mice. One mouse did not receive T cells as a negative control. Animals 

of both groups “late myc-ab” and “early myc-ab” (each n=2) were injected on day 4 after transfer with 500 μg 

myc-specific antibody. Note that mice in the first one are glycemic at this time-point, whereas in the second one 

mice show normal blood glucose levels.  Mice in group “late myc-ab (rep)” (n=2) received additionally the same 

dose of antibody on days 6, 10, and 13. As a control animals in group “no myc-ab” (n=2) were not treated with 

antibody. Blood glucose levels were determined and are depicted as mean values from animals in one group, SD is 

indicated by the error bars. 

Next, the depletion of OT-I/TCRmyc-transduced T cells in RIP-mOVA mice was analyzed in 

an experiment using larger groups of animals (n=5/group) and compared to OT-I/TCRwt-

transduced cells. Furthermore, efficiency of depletion in the pancreas and in lymphoid organs 

(lymph nodes, spleen) was determined by FACS and IHC staining. For this, splenocytes of B6 

mice were transduced with either OT-I/TCRmyc or OT-I/TCRwt retroviruses. One day later, 

cells were injected i.v. into sub-lethally irradiated RIP-mOVA mice as described. For treatment, 

500 μg of a myc-specific antibody were injected i.p. two days after adoptive transfer. None of 

the animals which received OT-I/TCRmyc T cells and antibody treatment developed diabetes 

as measured by blood glucose concentration until the end of the observation period on day 

100. In contrast, all animals in the control groups receiving either OT-I/TCRwt T cells plus 

antibody or OT-I/TCRmyc T cells but no antibody succumbed to the disease within four to 

five days after adoptive T cell transfer and had to be sacrificed two to six days after onset of 

disease due to severe symptoms (Figure 20).  
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FIGURE 20: Treatment of auto-immune insulitis mediated by myc-specific antibody depletion of OT-

I/TCRmyc transduced auto-reactive T cells. B6 splenocytes were transduced with either OT-I/TCRwt or OT-

I/TCRmyc retroviruses and 2 x 107 TCR-positive cells were injected i.v. into sub-lethally irradiated RIP-mOVA 

mice. Mice which were irradiated but received no cells served as a negative control. 500 μg of a myc-specific anti-

body was administered i.p. into all mice that had received T cells harboring the TCRwt and half of the mice 

which had received T cells carrying the TCRmyc. Blood glucose concentration was determined. Depicted are 

mean values of all animals (n=5) in one group; error bars indicate SD. 

 

FIGURE 21: Immunohistology shows T cell infiltration and destruction of islets in the pancreas. (A) Two days 

after adoptive transfer, pancrei of mice from each group were analyzed by IHC with ovalbumin- (red) and CD8- 

(green) specific antibodies. Nuclei were stained with DAPI (blue). (B) Pancreatic sections from diabetic and anti-

body-treated mice were stained on day six in the same way. Insets show larger parts of the tissue at a lower mag-

nification. 
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IHC staining of pancreatic sections of injected mice (but not control animals) two days after 

transfer showed infiltration of pancreatic islets with CD8-positive T cells demonstrating the 

very early onset of insulitis (Figure 21A). In stainings from pancrei isolated at day six after 

transfer from severely sick, diabetic mice (that had either received OT-I/TCRwt-transduced 

cells plus antibody or OT-I/TCRmyc-transduced cells but no antibody) revealed complete 

lacking of ova-expressing islet cells due to destruction by OT-I T cells. Also, infiltrating CD8-

positive T cells could still be found in the tissue. In contrast, animals that had received 

TCRmyc-transduced T cells and antibody treatment exhibited intact islet structure and lack of 

T cells in the pancreas (Figure 21B). 

Furthermore, OT-I tetramer-positive T cells were detected in mesenterial lymph nodes (Figure 

22A) and spleens (Figure 22B) of diabetic mice, but not in treated animals as shown by flow 

cytometry. 

 

FIGURE 22: Depletion of OT-I/TCRmyc T cells can be detected in mesenterial lymph nodes and spleen.  Lym-

phocytes were isolated from (A) mesenterial lymph nodes and  (B) spleen of animals from all groups and analyzed 

with a CD8-specific antibody and OT-I specific tetramer using flow cytometry. Lymphocytes from mice that did 

not receive T cells served as a negative control (boxed in grey). Depicted cells are gated on positive CD8 expres-

sion. 
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3.8 Expression and function of the human myc-tagged TCR gp100 

So far, murine model TCRs modified with a myc-tag have been analyzed in this study. For the 

application of the myc-tag safeguard in the clinic, however, it is necessary to determine 

whether human myc-tagged TCRs retain their function and can be employed for specific cell 

depletion, as well. For this, a myc-tag was introduced into a human TCR which is reactive 

against the peptide 209 - 217 of the melanoma antigen gp100. In particular, the gp100 TCR 

was modified with two myc-tags at the N-terminus of the TCRα-chain – corresponding to the 

position [DAN] which mediated the depletion of murine T cells transduced with the P14 or 

OT-I TCR. The gp100 TCRα- and TCRβ–chain genes were cloned into separate MP71 vectors 

which were used to generate retroviral particles. For expression analysis, the TCR-deficient 

human T cell line Jurkat76 was transduced. The cells were enriched with a β-chain-specific 

antibody and sub-cloned by limiting dilution. Several clones were analyzed by flow cytometry 

using CD3-, myc- and vβ8-specific antibodies. Results of one representative clone are shown 

in Figure 23. Both, the modified and the wild-type TCR were expressed on Jurkat76 cells as 

detected with a vβ8-specific antibody (Figure 23A). Because no antibodies are available for 

the detection of the gp100 TCRα-chain, this staining could not be performed. Only Jurkat76 

cells transduced with gp100/TCRmyc, but not cells transduced with gp100/TCRwt could be 

stained with a myc-specific antibody by flow cytometry (Figure 23B).  

 

Figure 23: The human gp100/TCRmyc can be expressed comparable to gp100/TCRwt and is detected by a myc-

specific antibody. (A) The TCR-deficient human T cell line Jurkat76 was transduced either with gp100/TCRwt or 

gp100/TCRmyc, enriched with vβ8-chain-specific antibodies and subcloned by limiting dilution. TCR expression 

was analyzed by flow cytometry staining with a vβ8-specific antibody. Untransduced cells (neg, boxed in grey) 

served as a negative control. (B) Jurkat76 cells transduced with gp100/TCRmyc were stained with a myc-specific 

antibody and analyzed by flow cytometry. Cells transduced with the unmodified wild-type receptor served as a 

control. The data show results of one representative clone of several that were tested. 
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For functional comparison of gp100/TCRwt and gp100/TCRmyc, human PBLs were trans-

duced with the two TCR retroviral vectors. Antigen binding and cytokine response were ana-

lyzed by staining with peptide-MHC tetramers and measuring IFN-γ secretion upon cultiva-

tion with peptide-pulsed target cells. Both TCRs similarly bound the gp100 tetramer as 

demonstrated by comparable MFI in flow cytometry (Figure 24A). Upon stimulation with 

gp100 peptide-loaded T2 cells, PBLs transduced with either TCR secreted comparable 

amounts of IFN-γ (Figure 24B).  

 

FIGURE 24: The human gp100/TCRmyc functions comparably to its TCRwt counterpart. (A) PBLs were 

transduced with gp100/TCRwt or gp100/TCRmyc retroviruses and stained with a vβ8-specific antibody and a 

gp100-specific tetramer. Untransduced PBLs (neg, boxed in grey) show the background of endogenous vβ8-

positive T cells.  Numbers indicate the MFI of the tetramer staining. (B) gp100/TCRwt- or gp100/TCRmyc-

transduced PBLs were co-cultured with T2 cells pulsed with 10 μM to 10 pM gp100 peptide for 24 hours. Un-

transduced PBLs were used as a negative control (neg). Culture supernatant was analyzed for IFN-γ content by 

ELISA. Unloaded T2 cells (w/o) or T2 cells loaded with an irrelevant NYeso1-derived peptide (irr) served as nega-

tive target controls. Data represent mean values of duplicates and error bars indicate SD. The results were repro-

duced in two independent experiments and with two different donors. 

 

3.9 In vitro depletion of human T cells expressing myc-tagged TCR 

gp100 

To show that gp100/TCRmyc-modified T cells can be depleted by a myc-specific antibody in 

vitro, PBLs were transduced with gp100/TCRmyc retroviruses and enriched using myc-

specific MACS beads. Subsequently, the sorted cells were specifically restimulated with gp100 

peptide-pulsed T2 cells and IL-2. Seven days after restimulation, PBLs that were 85% to 99% 
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positive for myc-expression were analyzed for depletion by two different effector mechanisms: 

CDC and ADCC. 

To investigate CDC,  a myc-specific antibody and complement factors were added subse-

quently to the myc-tag-enriched PBLs. 7-AAD staining was performed to discriminate be-

tween viable and dead cells and specific lysis was calculated (Figure 25A). 

For analysis of ADCC, the T cells were incubated first with a myc-specific antibody and sub-

sequently with NK cells which served as effectors to mediate T cell lysis. To avoid allo-

reactions, autologous NK cell cultures from the same donor were employed in the assays. To 

determine specific lysis, the myc-tag-enriched PBLs were radioactively labeled with 51Cr and 

the release of radioactivity into the supernatant was measured. (Figure 25B). Depending on 

the assay, 31% to 65% of the gp100/TCRmyc-transduced cells were depleted in the presence 

of a myc-specific antibody, whereas cells incubated without antibody showed only low unspe-

cific lysis. 

 

FIGURE 25: T cells transduced with gp100/TCRmyc can be depleted in vitro by complement- and cell-

mediated lysis. PBLs were transduced with gp100/TCRmyc retroviruses, sorted for myc-positive cells and restimu-

lated with gp100 peptide-pulsed T2 cells. (A) For complement-mediated depletion, cells were incubated with a 

myc-specific antibody and rabbit complement factors. 7-AAD staining was used to discriminate between living 

and dead cells. Cells incubated without antibody served as a control. (B) For cell-mediated lysis, autologous 

PBMCs enriched for NK cells were used as effector cells. 51Chromium-labeled TCRmyc-positive PBLs were incu-

bated with effector cells in E:T ratios from 50:1 to 2:1. A myc-specific antibody and a secondary rabbit anti-

mouse IgG1 antibody were added and lysis was measured in a standard four-hour chromium release assay. Sam-

ples without antibody served as a control. Data represent mean values of duplicates and error bars indicate the 

SD. Similar results were obtained in an independent experiment with a different donor. 
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4 Discussion 

Adoptive T cell therapy with TCR-modified T cells is superior to previous cellular immuno-

therapy approaches for several reasons. First, generation of a large number of gene-modified 

lymphocytes is rapid and efficient, taking less than two weeks with the current protocols. Sec-

ond, tumor-reactive T cells can be produced for every patient regardless of pre-existence of 

TILs. Third, transfer of TCR genes allows endowing T cells with specificities that can be more 

efficient than those naturally occurring, e.g. high-affine receptors for auto-antigens.  

Most likely, results of several clinical trials will be published in the upcoming years. They will 

not only allow to assess the efficacy of TCR-redirected T cells in humans, but also to define 

which possible side effects of the therapy are actually relevant in a patient. From one initial 

clinical study no severe adverse effects were reported [55]. However, the transferred T cells 

were of low avidity and did not persist long-term in most of the patients [55,141]. Accord-

ingly, a tumor response was detectable, but limited. Progress in the recent years, however, has 

made it possible to generate TCR-modified T cells with high-affinity TCRs expressed at a high 

level [52]. Also, culture conditions have been defined to induce long-persistent central memory 

T cells [138,142]. Increase in efficiency, however, also bears the risk of enhanced side effects, 

especially auto-immunity. Certainly, with more clinical data available, the need for an induc-

ible termination of therapy will become more obvious. Currently described safety strategies 

are for many reasons not suitable for TCR-redirected T cells. In this thesis, a novel safety ap-

proach was analyzed, based on a TCR-intrinsic mechanism. This safeguard does not impair 

the function of the T cells and allows their highly specific and efficient elimination in vivo. 

 

4.1 Generation and expression of myc-tagged TCRs 

Initially, nine different myc-tagged P14 TCR were generated, in which the myc-tag was in-

serted at several positions in the TCR sequence, either as a single or – to increase anti- myc 

antibody avidity – as a double tag. The chosen sites were selected (i) to protrude from the 

compact structure of the variable and constant regions to facilitate antibody accessibility and 

(ii) not likely to be involved in antigen-recognition which might hamper the function of the 

modified TCR. When the expression of the myc-tagged TCRs was analyzed in a murine T cell 

line with antibodies specific for both TCR chains, all could be stained on the cell surface. 
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However, for some TCRs (e.g. P14/TCRmyc[L1] or P14/TCRmyc[BN]) the detection level was 

reduced indicating that myc-tag insertion interfered with the stability of the TCR structure 

leading to a lower expression rate or changed the epitope of the TCR-specific antibody which 

thus bound with a lower affinity. Staining with a myc-specific antibody was successful in only 

four of the nine myc-tagged TCRs. In the others, the incorporation into the TCR structure 

might have forced the myc-tag into a conformation in which it might not be recognized by the 

antibody. For the myc-specific antibody clone 9E10 it is known that it requires an extended-

loop conformation of the epitope to mediate proper binding (personal communication W. 

Höhne, Charité, Berlin, Germany). Perhaps, the myc-tag adopts this conformation only in 

some of the TCRs, but not in others. When the tag was fused to the N-terminus of the TCRα-

chain, detection with a myc-specific antibody was augmented when two tags were inserted as 

compared to one. This indicates that employing two adjacent tags might indeed increase anti-

body avidity to the T cell. 

The myc-tagged TCR that was recognized best by the myc-specific antibody and later found 

to mediate sufficient depletion (P14/TCRmyc[DAN]) showed no decrease in expression level. 

Similar results were obtained when the murine TCR OT-I and the human TCR gp100 were 

modified with two myc-tags in the same position.  

 

4.2 Depletion of TCRmyc-transduced T cells in vitro 

The four myc-tagged P14 TCRs that were detected by a myc-specific antibody were analyzed 

for their ability to mediate depletion of transduced T cells. Performing a complement deple-

tion assay, significant cell lysis was only achieved by the TCR vectors that carried two myc-

tags (P14/TCRmyc[DL] and P14/TCRmyc[DAN]). It is known that the amount of epitopes 

available for the antibody is crucial for complement-mediated depletion because the cross-

linking of several antibody constant regions augments activation of C1q, the initial factor of 

the classical complement pathway [143]. Most likely, the presence of two tags provides more 

epitopes in close proximity and may facilitate the parallel binding of two antibody molecules 

which is beneficial for depletion. 

Complement depletion of T cells transduced with P14/TCRmyc[DAN] was of higher efficacy 

compared to T cells expressing P14/TCRmyc[DL]. Therefore, this position of myc-tag inser-
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tion was studied further and used to modify additional TCRs. Transduction of human and 

murine T cells with gp100/TCRmyc[DAN] and OT-I/TCRmyc[DAN], respectively, also al-

lowed efficient elimination of the lymphocytes by treatment with myc-specific antibody and 

complement. Compared to the murine T cell lines, the percentage of depletion was lower for 

human PBLs (about 80% versus 65%). One reason for this is that the purity of myc-positive 

cells after enrichment was generally higher for the T cell lines and that the remaining myc-

negative cells in the culture could not be eliminated. Probably using a second sorting step 

would overcome this problem. Another point may be the influence of T cell-intrinsic factors, 

such as activation state, cell cycle phase and expression of anti-apoptotic molecules. In this 

regard, a T cell line comprises a much more homogenous population of cells than PBLs. Fur-

thermore, the capacity of rabbit complement factors to lyse murine T cells might be higher as 

compared to human. Still, given the time after which depletion was analyzed (two hours), the 

overall efficacy of T cell lysis by the TCRmyc safety approach is very high. Assays in which 

the potential of the HSV-TK gene is analyzed are usually performed for several days to 

achieve similar results [105,106,144].  

To demonstrate that depletion of TCRmyc-transduced T cells can also employ other effector 

mechanisms, cell-mediated lysis assays were performed with TCRmyc-transduced PBLs as 

targets and autologous NK cells as effectors. Specific lysis of the PBLs was observed though 

this was lower as compared to the complement assays. This, however, might be due to the 

intrinsic property of the antibody to elicit specific effector functions. Ideally, a myc-specific 

antibody used for depletion of adoptively transferred T cells in a patient should be able to 

induce several effector mechanisms with a high efficiency (see also chapter 4.6.1).  

 

4.3 Function of TCRmyc-transduced T cells 

A prerequisite for any safeguard for adoptive T cell therapy is that is does not interfere with 

the function of the T cell. Although numerous crystal structures of TCRs or parts thereof have 

been published, it still remains unclear how exactly signal transduction within the TCR/CD3 

complex is managed [3].  In this study, the structure of the TCR was genetically modified. This 

might on one hand change the mode of antigen binding or, on the other hand, have an impact 

on the conformation of the whole molecule rendering it incapable of signal transduction. 

Therefore, the functionality of each modified receptor was analyzed. Antigen recognition was 
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assessed by staining transduced primary T cells with fluorescently labeled peptide-MHC 

tetramers. Both, the number of T cells that bound the tetramer and the intensity of binding 

were not reduced for the myc-tagged TCRs compared to their wt counterparts suggesting that 

the myc-tag insertion did not interfere with the recognition of the cognate peptide-MHC 

complex. Signal transduction was analyzed by measuring the amount of secreted cytokines 

upon antigenic stimulation of TCRmyc-transduced T cells. For the murine TCRs, the T cell 

line 58 was employed which secretes detectable amounts of IL-2 upon stimulation. Similarly, 

in the human system, IFN-γ production by gp100/TCRmyc- transduced primary human T 

cells was assessed. For every analyzed myc-tagged TCR, the quantity of cytokines upon stimu-

lation with different amounts of antigen was comparable to that of the wt receptor indicating 

that antigen specificity and signal transduction are not affected by the safeguard.  

The finding that function of the T cell is maintained in three different investigated receptors 

suggests that the position chosen for insertion of the myc-tag might be suitable for most 

TCRs. 

  

4.4 Depletion of TCRmyc-transduced T cells in vivo 

The efficiency of antibody-mediated depletion may differ in vitro and in vivo. First, the local 

concentration of the antibody, complement components or effector cells can vary. Second, 

permeability of tissue may be an important issue in vivo. Third, while in vitro only one effec-

tor mechanism at a time was analyzed, several may act together in a patient thereby enhanc-

ing depletion. Therefore, the possibility to eliminate auto-reactive T cells by the myc-tag safe-

guard was determined in the RIP-mOVA mouse model. In contrast to RIP-OVAlow mice, these 

animals have a high expression level of ovalbumin in the pancreas. Hence auto-reactivity is 

not transient and very rapid. This model was chosen to demonstrate the efficiency of the 

TCRmyc safety approach under drastic conditions. 

Here, auto-immune diabetes by transfer of OT-I TCR-transduced T cells was only inducible by 

prior total body irradiation of the animals. This is in accordance with data from clinical trials 

or other mouse models showing that rendering the host lymphopenic provides a proliferative 

advantage for subsequently transferred cells by eliminating regulatory T cells and other cells 

competing for a limited pool of cytokines [145,146,147]. For treatment, administration of the 
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myc-specific antibody was required before increase of blood glucose levels were detectable in 

order to rescue mice from lethal diabetes. If the antibody was injected at a later time-point, 

prevention of lethality was not possible. In a clinical setting, this pre-emptive treatment, how-

ever, is not feasible. Here, T cell therapy would only be terminated in case severe auto-immune 

side effects become obvious. Still, several facts underline that this necessity is model-specific. 

Disease onset in RIP-mOVA mice is extremely rapid: as early as day two after adoptive trans-

fer infiltrating lymphocytes were detected in the pancreatic islets (insulitis). As therapeutic 

anti-myc antibody administration at this time-point was still possible, it can be assumed that 

the antibody was able to penetrate the pancreatic tissue and eliminate the TCRmyc-modified 

T cells in situ. Without treatment, blood glucose values increased from normal to highly gly-

cemic (>14 mM) within 24 hours at day four or five after adoptive transfer and mice had to 

be sacrificed at day six to ten due to severity of symptoms. In a patient, careful analysis of 

several indicators of auto-immunity should be feasible allowing an earlier time-point of 

treatment. Also, additional administration of immuno-suppressive drugs – an option which 

was not studied in the RIP-mOVA model – can support antibody-mediated depletion in case 

of rapidly progressing auto-reactivity. 

Nevertheless, it would be desirable to analyze the myc-tag safeguard system in a mouse model 

in which disease onset is slower and early symptoms of auto-reactivity can easily be followed. 

Then, therapeutic instead of prophylactic treatment should be feasible. 

 

4.5 Advantages of the TCRmyc safeguard over others 

In chapter 1.4 the properties of existing safety approaches have been discussed. All of them 

comprise several drawbacks rendering them more or less inappropriate for the use in adoptive 

transfer of TCR-modified T cells emphasizing the need to develop a more suitable strategy. 

The most compelling advantage of using myc-tagged TCRs as a safeguard is that this strategy 

is TCR-intrinsic. The expression of the transgene is directly linked to the suicide mechanism 

and no additional genes need to be transferred. This avoids purification steps after transduc-

tion as adverse effects are only expected by TCR-modified T cells which automatically carry 

the safety switch. Furthermore, downmodulation of suicide genes, which has been observed 

for example for HSV-TK [77,103,125,148]. In the case of TCRmyc, downregulation of the 
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safeguard is coupled to the loss of transgenic TCR expression. As auto-immunity is caused by 

activation of the introduced TCR chains, their down-regulation most likely also terminates 

the side effects. 

Immunogenicity, which has been shown to lead to unwanted elimination of cells expressing 

suicide genes, is unlikely to occur for TCRmyc as the molecule consists entirely of human pro-

teins. Immune reactions against the myc-specific antibody can be avoided by producing par-

tially or fully human antibodies. 

A further requirement for a safety system is high specificity and low cytotoxicity meaning the 

absence of side effects on other cells. Although not yet tested in patients, administration of a 

myc-specific antibody is not expected to cause tissue damage. First, c-myc is not expressed on 

the cell surface of a normal cell. Second, as a cell cycle regulator and proto-oncogene its ex-

pression is tightly regulated and at a relatively low level in normal cells. Still, it has been 

shown that the shortest peptide sequence needed to give a strong antibody binding signal of 

the 9E10 myc-specific antibody clone is KLISEEDL [149] and it cannot be excluded that this 

sequence is part of an MHC-presented peptide. 

In sum, many of the obstacles known for other safety systems can be overcome by the use of 

myc-tagged TCRs. Important issues related to the implementation of the safeguard into a 

clinical setting and several limitations of the developed approach are discussed in chapters 4.6 

and 4.7.  

 

4.6 Implementation of the safeguard into a clinical setting 

Protocols for efficient generation of TCR-modified T cells for clinical use have been success-

fully established [55] and will not be discussed here. This chapter focuses instead on the spe-

cific issues related to the applicability of the TCRmyc safety strategy in patients. 

 

4.6.1 Availability of a myc-specific depleting antibody 

Three general effector mechanisms of antibodies have been described: (i) blocking of signal 

transduction of receptor molecules, (ii) depletion by activation of the complement system and 

(iii) ADCC. Ideally, an antibody used for elimination of auto-reactive T cells in vivo should 
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elicit all of the three responses to achieve a maximum effect. Which of the two last mecha-

nisms is induced, largely depends on the antibody isotype. Human IgG1 and IgG3 antibodies 

are both capable of recruiting human NK cells by binding to Fc receptors and inducing ADCC 

as well as initiating a complement cascade. As IgG3 exhibits a shorter half-life, most antibod-

ies in clinical studies are of the IgG1 isoform [150]. When murine antibodies are used in hu-

mans, ADCC is best triggered by the isotype IgG3, and complement lysis by IgG2a 

[151,152]). IgM antibodies, which are most efficient in complement activation, are not of 

clinical relevance due to their short serum half life. A disadvantage of the administration of 

murine antibodies is their immunogenicity. Frequently, the induction of human anti-mouse 

antibody (HAMA) responses has been observed which may impede subsequent treatment with 

the same antibody [153]. Hence, attempts have been made to either humanize the antibodies 

by replacing murine with human sequences, or to obtain fully human antibodies from phage 

display or human Ig locus-transgenic mice [154]. 

An alternative option is to make use of an antibody which has already been tested for safety 

in a clinical trial. In 2005, 18 different monoclonal antibodies had been approved for clinical 

use in the US and Europe, and more than 150 were in clinical trials [155]. The majority of 

them targets overexpressed oncoproteins (tumor therapy), cell surface molecules of immune 

cells (immuno-modulation) or viral proteins (treatment of infections). However, most of these 

antibodies will not be suitable for the safety strategy described in this work. First, the epitopes 

of many antibodies have not yet been defined. This, however, is necessary, as only a short tar-

get sequence can be introduced into a TCR. Second, high specificity of the antibody for the 

adoptively transferred T cells is desired. Most likely, antibodies that recognize oncoproteins 

(e.g. Her2, EGFR) or molecules of the immune system (e.g. CD4, CTLA-4) will provoke un-

wanted side effects on other cell types. Third, the epitope tag itself should not be immuno-

genic which can not be excluded if parts of viral proteins are employed. Nevertheless, if one 

finds an appropriate alternative antibody-tag-combination, their applicability to the TCRmyc 

safeguard system needs to be analyzed. 

 

4.6.2 Universality of the safeguard for different TCRs 

Ideally, the TCRmyc safety approach should be applicable to every TCR employed in clinical 

studies. In this study, the myc-tag has been fused to one TCR chain N-terminus which is part 
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of the variable region. Every TCR used for therapy, however, has its unique variable domain; 

and although all are expected to adopt an Ig-like fold, minor differences in the tertiary struc-

ture exist and not all TCR variable segments have been crystallized. It is not clear whether the 

insertion of a myc-tag will maintain expression and function of every therapeutic TCR and 

will allow efficient depletion of transduced T cells. In this thesis, two mouse TCRs with two 

different TCRα-chains belonging to the same variable region familiy (vα2) and one human 

TCR have been analyzed; and all tested TCRs were suitable for application of the safeguard. 

Still, it would be interesting to test TCRs with various TCRα variants to see if differences ex-

ist. Probably, for some TCRs the insertion of only one tag might be sufficient for elimination 

or even required for maintenance of function. If the approach is found not to be universal for 

all TCRs, it might be necessary to re-evaluate the TCRmyc strategy for every therapeutic re-

ceptor going into a clinical trial anew. Instead of introducing the myc-tag into the variable 

region of a TCR, one might also consider the modification of the constant part to achieve 

universality. Unfortunately, in this work none of the constant region mutations led to suffi-

cient recognition of the tag by a myc-specific antibody that allowed depletion. 

 

4.7 Eventual limitations of myc-tagged TCRs as a safeguard 

4.7.1 Immunogenicity of TCRmyc 

A disadvantage with many safety approaches is their immunogenicity as they are usually of 

viral or bacterial origin or comprise artificial fusion proteins [99,101,102]. An immune reac-

tion against the adoptively transferred cells might lead to their unwanted premature elimina-

tion and also prevent the survival of a second graft. Myc-tagged TCRs consist entirely of hu-

man protein sequences: the rearranged αβ TCR chains and two 10 aa stretches of the c-myc 

protein. Therefore, the risk of immunogenicity is rather low. Still, it can not be excluded that 

at the fusion site between the tandem tags or between the tag and the N-terminus of the 

TCRα chain an immunogenic peptide in context with some MHC alleles is generated which is 

recognized by the immune system of the patient. Furthermore, c-myc is a nuclear protein, and 

central humoral tolerance to nuclear proteins is not that strict [156,157]. Berger et al. injected 

T cells modified with a Fas-FKBP suicide construct into macaques and observed an immune 

response against the transferred cells. Detailed analysis, however, revealed that this was di-

rected against epitopes that differed between the human and macaque sequence, but not 
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against the fusion sites [109]. Such an approach could also be used to test the immunogenicity 

of myc-tagged TCRs. Still, this would not give conclusive data about the reaction of a large 

number of patients with a multitude of different MHCs. In this work, murine T cells that were 

modified with murine TCRs fused to the human myc-tag were injected into mice. The se-

quence of the human myc-tag differs from the corresponding mouse sequence in 3 of 10 aa. 

Hence, there is the possibility that the transgene is recognized by the mouse immune system as 

foreign. In the performed experiments, however, the recipient mice were always immuno-

deficient at the time-point of T cell transfer, either because of the genetic background of the 

employed mouse strain (Rag1-/- mice) or because of previous treatment with cyclophos-

phamide or irradiation. Thus, these experiments do not allow assessing the immunogenicity of 

myc-tagged TCRs. 

Nevertheless, it was experienced in clinical trials that adoptively transferred T cells engraft 

better in lymphopenic patients [41,158] and pre-treatment with non-myeloablative, lympho-

depleting drugs before transfer seems to become a standard procedure. In lymphocyte-

depleted patients the immunogenicity of any transgene might not be of importance, though. 

And even repopulating endogenous lymphocytes are likely to be ignorant of foreign peptides 

due to peripheral tolerance mechanisms. 

 

4.7.2 Elimination of activated T cells 

Upon activation of a T cell, the TCR/CD3 complex becomes downmodulated which has been 

shown to be caused by increased intracellular degradation of the constantly recycling mole-

cules [159]. Thus, efficient elimination of TCRmyc-transduced T cells by a myc-specific anti-

body might be hampered if the cells are activated due to auto-reactivity and the number of 

TCRmyc molecules on the surface is reduced. It has been demonstrated that the amount of 

epitopes is critical for mediating depletion [143]; and also the results presented in this work 

show that efficient complement lysis was only achieved with the TCRmyc variant that showed 

highest anti-myc antibody staining suggesting that the quantity of myc-tag epitopes is of im-

portance. In the in vitro data presented in this study, however, TCR downmodulation could 

not be analyzed. The T cells subjected to complement lysis assays were either a T cell line (58 

cells) or primary human PBLs. The 58 T cell line barely shows receptor downmodulation 

upon stimulation (data not shown) and the PBLs were in resting phase, which employs culture 
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conditions with low IL-2 concentration, at the time-point of the depletion assay. Accordingly, 

the in vitro data do not allow drawing conclusions about the efficiency of elimination of acti-

vated TCRmyc T cells. In contrast, it can be supposed that the T cells depleted in the in vivo 

experiments were – at least to some extend – activated. First, the T cells were injected after 

three days of mitogenic stimulation with anti-CD3/CD28 antibodies and high-dose IL-2. Sec-

ond, when injected into Rag-1-/- mice, the T cells underwent homeostatic lymphopenia-

induced expansion which correlates with an activated phenotype [160]. Third, in RIP-mOVA 

mice the depletion was carried out at a time-point when the transferred T cells had already 

migrated to the pancreas and most likely encountered their antigen. Probably, several effector 

mechanisms are involved in antibody-induced depletion in vivo which allows the elimination 

of activated T cells. Still, it might be interesting to compare the in vitro depletion efficacy of 

activated and resting T cells side by side and to characterize the phenotype of in vivo depleted 

T cells by staining for activation markers. 

 

4.7.3 Elimination of transformed T cells 

Retroviral insertion into the genome of a host cell bears the risk of malignant transformation 

through activation of oncogenes. In this case, it is desirable to have the possibility to eliminate 

the leukemic T cells in the patient by a safeguard mechanism. In this work, it has not been 

analyzed whether the TCRmyc safety approach is applicable to treat integration-induced leu-

kemia. The only clinical trial for adoptive cell therapy, in which transformation was observed, 

is the genetic modification of stem cells from X-SCID patients with the gene for the cytokine 

receptor common gamma (γc) chain [78,79]. However, several aspects argue against inser-

tional mutagenesis by TCR gene transfer. First, in contrast to the X-SCID studies, the trans-

duced T cells are not hematopoietic progenitors but differentiated lymphocytes. Recent data 

indicate that transfer of various single oncogenes is detrimental in stem cells, but does not 

lead to transformation of T cells (personal communication D. v. Laer, Georg-Speyer-Haus, 

Frankfurt a.M., Germany). Second, it is not yet known whether the TCR transgene does pro-

vide a direct proliferative advantage for the T cells whereas expression of the γc chain in stem 

cells is clearly essential for stimulation by many growth-promoting cytokines [161].  

Still, it is not clear whether transformed T lymphocytes might escape myc-specific antibody 

depletion by either downregulation or loss of TCRmyc expression or acquisition of comple-
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ment resistance. Antigen-loss variants have been described in antibody-treated B cell lympho-

mas [162]; and resistance to antibody therapy has been observed even when the antigen is still 

expressed [114]. In a transformed T cell, expression of the transgenic TCR might not be essen-

tial for T cell survival. Hence, loss of TCRmyc expression might not lead to reduced prolifera-

tion but abrogates the possibility of elimination. Some tumor cell lines have been demon-

strated to overexpress complement inhibitory molecules rendering them insensitive to 

complement-mediated lysis [163,164,165]. Further mechanisms of resistance include an ele-

vated apoptotic threshold or altered susceptibility to cellular cytotoxicity. 

Thus, it remains desirable to determine the influence of retroviral transfer of TCR genes into 

human T cells; e.g. by analysis of integration loci, loss or maintenance of polyclonality and 

growth behavior over an extended period of time. Another possibility is to transfer an onco-

gene additionally to the TCR genes – as to mimic activation of endogenous oncogenes – and 

to study whether the T cells become transformed. Then, anti-myc antibody-mediated deple-

tion of these T cells could be analyzed. 

 

4.7.4 Elimination of T cells expressing TCR heterodimers 

If a T cell is genetically modified with a therapeutic TCR four different receptor combinations 

can be expressed: the transgenic TCR, the endogenous TCR and mispaired heterodimers of 

the α- and β-chain of the transgenic and endogenous TCR. Depending on the “strength” of the 

TCRs – meaning its intra- and inter-chain stability and interaction with CD3 subunits – only 

one, several or all of the combinations are found on the T cell surface [61,62]. The safeguard 

proposed in this thesis work relies on expression of the myc-tagged transgenic TCRα-chain. In 

an unfortunate scenario, a heterodimer of the endogenous α-chain and the introduced β-chain 

recognizes an auto-antigen and causes auto-immunity. If this heterodimeric TCR is dominant 

over the other variants, the myc-tagged TCRα-chain might not be expressed at all, hence pro-

viding no possibility of T cell elimination. To exclude this, one might also introduce a tag into 

the TCRβ-chain. In this study, however, modification of the P14 TCRβ-chain with one myc-

tag did not lead to recognition by a myc-specific antibody. Therefore, it needs to be analyzed 

whether a double myc-tag (as in the P14 TCRα-chain), a flexible linker between the tag and 

the N-terminus of the TCR chain or the choice of a different tag support the depletion of 

auto-reactive T cells via the TCRβ-chain.  
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4.7.5 Activation of auto-reactive T cells by the myc-specific antibody 

Several monoclonal antibodies specific for the TCR/CD3 complex have been identified that 

have both depleting and activating capacity. One example is the anti-human CD3 antibody 

OKT3 which stimulates human PBLs in vitro, but can be used for depletion of CD3-positive T 

cells in the presence of complement [166,167]. Similarly, the anti-murine CD3ε antibody 145-

2C11 acts as a mitogen in T cells in vitro and in vivo, but is also described to induce immuno-

suppression by lymphocyte depletion [168,169]. Some factors that determine the effects of an 

anti-TCR/CD3 antibody are (i) the antibody isotype, (ii) the presence of serum complement 

factors or cells capable of mediating ADCC and (iii) the dose of the administered antibody 

[170]. 

Preliminary experiments revealed that an immobilized myc-specific antibody can – in the ab-

sence of complement – induce activation of a TCRmyc-transduced indicator cell line in vitro 

(data not shown). Hence, there is the theoretical risk that administration of a myc-specific 

antibody might further stimulate auto-reactive TCRmyc T cells in vivo. In the performed ani-

mal experiments, however, no activation of the transferred T cells was observed. Instead, ap-

plication of the antibody led to a rapid depletion of the T cells (< 1 day) and prevented onset 

of auto-immune disease. It might be interesting though to evaluate the activating capacity of a 

myc-specific antibody on TCRmyc T cells, e.g. by injection of a low dose of antibody, a non-

depleting antibody or the use of antibody fragments which lack the parts necessary for deple-

tion. In the absence of auto-reactivity, this would provide a tool to specifically stimulate adop-

tively transferred tumor-reactive T cells in a patient thereby enhancing an anti-tumor immune 

response. 

 

4.8 Future prospect 

Certainly, several clinical trials using TCR-modified T cells will be carried out in the upcoming 

years. When efficiency of this therapy improves, an increase in the risk of auto-immune side 

effects is expected emphasizing the need for a reliable safety strategy. This study demonstrated 

that the introduction of a short peptide sequence into a TCR molecule allows the specific 

elimination of T cells that express the TCR while maintaining full function. However, some 

limitations of this approach have been discussed. 
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For translation into a clinical setting it will be most important to obtain a clinically approved 

antibody. Currently, only murine myc-specific antibodies of IgG1 or IgG2a isotype are com-

mercially available. Of those, only the hybridoma of clone 9E10 (an IgG1 antibody) can be 

obtained from ATCC and the variable fragments of this antibody have been cloned into bacte-

rial expression vectors [171]. However, application of a myc-specific antibody in a clinical 

trial bears several economic hurdles. First, clinical scale production of the antibody under 

good manufacturing practice (GMP) conditions will be very cost-intensive. Second, before 

administration in a clinical trial with TCR-modified T cells it might be necessary to test the 

general safety of the antibody in humans in a separate study. Third, humanization of the anti-

body or production of a fully human antibody requires further expenses. With our available 

means, generation of a murine, humanized or fully human GMP-grade myc-specific antibody 

is difficult. Therefore, emphasis will be laid on finding an alternative peptide with properties 

comparable to those of the myc-tag that is recognized by a clinically characterized antibody. If 

a suitable sequence is found, a model TCR will be modified with the alternative tag and ana-

lyzed for maintenance of function and efficiency of elimination. Another important point will 

be to show the universality of the approach. It would be very interesting to compare myc-tag 

modified TCRs with different Vα segments. Plenty of TCRs have been isolated from various 

labs and it should be possible to obtain model TCRs of the most common segments. Also, 

candidate TCRs that are suggested for clinical trials will be analyzed. 

The application of the myc-tag strategy is not limited to TCRs. In fact, several gene therapy 

approaches using cell surface-expressed transgenes could benefit from a specific safety modal-

ity. In the laboratory of H. Abken (Division Tumorgenetics and Immunology, Uniklinik Köln, 

Cologne, Germany) CAR molecules are currently being modified with a myc-tag and analyzed 

for their capability to mediate depletion of T cells. Similar to TCRs, CAR-transduced T cells 

can be employed for adoptive cell therapy, but bear the risk of auto-immune side effects. Ad-

ditionally, in our laboratory Nicole Scheumann started to introduce a myc-tag into the γc 

chain and could demonstrate that B cells and T cells modified with the myc-tagged transgene 

can be depleted in vivo and in vitro. Gene therapy with this molecule has recently led to the 

development of T cell leukemia in some patients due to retroviral integration; and trials have 

been discontinued until safety is ensured. A third adoptive therapy with an urgent need for a 

safeguard is the transfer of allogeneic T cells into patients that had received a hematopoietic 

stem cell transplant from the same donor. Though this treatment is highly effective against 

relapse and virus-induced lymph-proliferative diseases, a high incidence of severe, often lethal 
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GvHD requires a possibility to eliminate allo-reactive T cells in the patient. The modification 

of the lymphocytes with a membrane-anchored tag prior to transfer could allow treating 

GvHD while probably maintaining the anti-tumor effect.  

Apart from acting as a safeguard, the introduction of a tag into the TCRα-chain offers the 

possibility of staining the molecule with a specific antibody, e.g. for FACS analysis without 

loss of functionality. As currently only very few monoclonal antibodies for different Vα vari-

ants are available this for the first time provides the means to differentially detect the trans-

genic TCRα-chain among the endogenous ones. Initial data from Simone Reuss in our labora-

tory show that a myc-tag and an HA-tag can be employed to discriminate between two 

different TCRα-chains of the same subfamily which has not been possible so far. 
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5  Abbreviations 

7-AAD 7-amino-actinomycin D 

aa Amino acid 

ADCC Antibody-dependent cell-mediated cytotoxocity 

APC Allophycocyanin 

ATCC American Type Culture Collection 

B6 mice C57BL/6J mice 

CAR Chimeric antibody receptor 

CDC Complement-mediated cytotoxicity 

CDR Complementarity determining region 

CMV Cytomegalovirus 

CTL Cytotoxic T lymphocytes 

DED Death effector domain 

DNA Deoxyribonucleic acid 

E. coli Escherichia coli 

E:T Effector to target 

EBV Epstein-Barr virus 

ELISA Enzyme-linked immunosorbent assay 

FACS Fluorescence-activated cell sorting 

FasL Fas ligand 

FasR Fas receptor 

FC Flow cytometry 

FCS Fetal calf serum 

FITC Fluorescein isothiocyanat 

FKBP FK506 binding protein 

γc chain Cytokine receptor common gamma chain 

GCV Ganciclovir 

GFP Green fluorescent protein 

GMP Good manufacturing practice 

GvHD Graft-versus-host disease 

GvL Graft-versus-leukemia 

HAMA Human anti-mouse antibody 

HSV-TK Herpes Simplex Virus thymidine kinase 

i.p. Intraperitoneal 

i.v. Intravenously 

IHC Immunohistochemistry 

IL-2 Interleukin-2 
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ITAM Immunoreceptor tyrosine-based activation motif 

LNGFR Low-affinity nerve growth factor receptor 

LTR Long terminal repeat 

MACS Magnetic-activated cell sorting 

MFI Mean fluorescence intensity 

MHC Major histocompatibility complex 

MLV Murine leukemia virus 

NK cells Natural killer cells 

ova Ovalbumin 

P2A 2A element of porcine teschovirus 

PBMC Peripheral blood mononuclear cells 

PBL Peripheral blood lymphocytes 

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction 

PE Phycoerythrin 

PI Propidium iodide 

PRE Posttranscriptional regulatory element 

rhIL-2 recombinant human interleukin-2 

RIP Rat insulin promoter 

RN RetroNectin 

RNAi RNA interference 

SD Standard deviation 

TAA Tumor-associated antigen 

TCR T cell receptor 

TIL Tumor-infiltrating lymphocyte 

TSA Tumor-specific antigen 

UV Ultraviolet 

wt Wild-type 

X-SCID X-linked severe combined immuno-deficiency 
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