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1 Introduction

As a rule phase spaces of the most interesting classical Hamiltonian systems are cotangent
bundle of smooth configuration manifolds and their quantization does not present serious
problems (see Sect.2). However, the first step — the prequantization — produces only
part of the quantum numbers and one should use other devices in order to obtain the
spectrum of the complete set of Dirac observables. Here we present a detailed treatment
of a concrete dynamical system and show that reduction in stages (either at classical or
quantum level) produces the desired information about the spectrum. The system in
question is the one-parameter deformation family of the Kepler problem known as MIC—
Kepler problem(see Sect.4). We should point out that despite geometric quantization
concept is thirty years old such treatment is absent even for the standard Kepler problem.
A possible explanation of this situation can be traced back to the general fact that one can
quantize unambiguously only functions which are polynomials up to a second degree in
phase space coordinates while the square of the angular momentum which is fourth degree
polynomial does not belongs to this set. On the other side the choice of the momentum
as an element of the complete set of observables is dictated by the spherical symmetry of
the problem. Another wellknown fact is that the symmetries manifest themselves in the
possibilities of separating the variables in the Schrodinger equation in different coordinate
systems and this is connected with the existence of constants of motion. Simultaneous
diagonalization of the Hamiltonian and the third components of momentum and Runge—
Lenz vector corresponds to separation of variables in parabolic coordinates and has been
noticed by Bargmann. Working in much more abstract setting we will follow essentially
the same idea in order to derive missing quantum numbers. ;From mathematical point of
view the results which will be presented below follow from quantization of the momentum
map associated with free torus actions on some symplectic (toric) manifolds.

2 Geometric Quantization

2.1 Kostant-Souriau Programme

On any symplectic manifold (M, w) the symplectic form w generates a Lie algebraic struc-
ture in the space R*°(M) of smooth real-valued functions on M. The problem for finding
the representations of R (M) was approached for the first time by Dirac[1] in the case
(M = R*™, w = dp A dq),and after that has been generalized by Segal[2] for the phase
spaces which are cotangent bundles and finally by Kostant[3] and Souriau[4] for arbitrary
symplectic manifolds. The starting point is the observation that if we are able to asso-
ciate with every classical variable a quantum one then the commutator of two quantum
variables should represents up to a multiplicative number the Poisson bracket of the clas-
sical ones. This part of the programme can be easily realized and nowadays is referred as
prequantization. Below we summarize the relevant notion and definitions.

Definition 2.1 The symplectic manifold (M , w) is pre-quantizable if [w/2m] is in the
image of the map



H(z,’ech(Mv Z) — Hc%eRham(M7 R)? (21)

where [ | denotes the de Rham cohomological class.
When M is a compact manifold this condition is equivalent to

1
5. | @ € Z, for every two — cycle o € Hy(M,Z). (2.2)
™ g
and produces the quantization of charge, spin and energy levels of some physical systems.
If (M,w) is pre-quantizable, there exists a hermitian line bundle L — M, whose Chern

class is 2—[w], equipped with a connection V which curvature form is —iw and hermitian
7

scalar product h(, ) that is invariant with respect to the parallel transport[3, 5, 6, 7].
The irreducibility of the representations which is the second stage (quantization) of the
programme is achieved by introducing additionally a new structure called polarization.
A real polarization over M is a such map that juxtapose to each point m € M a real
subspace F, C T,,(M) which is maximally isotropic integrable distribution.

Example 2.2 Let Q) be a smooth manifold and let T*Q) be its cotangent bundle. If {p;, ¢}
are the local canonical coordinates in T*Q), then an easy check shows that the vector fields
0 0 0

Xi=—, X
1 ap17

=, Xy=—
2 apZ7 7 apn

define a real polarization over T*(Q) which is known as vertical polarization.

Example 2.3 The two-dimensional sphere does not allows real polarization because of
the non-existence of non-singular real vector field on S2.

This situation suggests also the generalization of the above notion, namely: A complex
polarization over M is a map F' which assigns to each point m € M a subspace F}, of
T,,C (M) which is maximally isotropic integrable distribution, and besides the distribution
D,, = F,, N F,, is of some fixed dimension s at each point m € M. The polarization F
is called Kahlerian if F,, N F}, = 0. For any kind of polarization F the potential § of the
symplectic form w (i.e. w = df) is called an adapted to it if 6(X) = 0 for every X € F.
The quantum pre-Hilbert space is built up by the polarized sections of L which definition
is as follows: Let M,w, L,V and F be as defined above. The polarized sections of L form

the line bundle
LF = {s€ Sect(L);Vxs =0, forall X € X(M,F)}.

In order to have true Hilbert space we need some measure(or density) which is an element
of a second line bundle. This can be introduced if we consider the elements of the cotangent
bundle T%(M) that vanish on F' and form a subbundle F° C T, (M) which is called
annihilator of F. By the very definition of the symplectic form we have that the map

veEF = i(v)w € F°
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is an isomorphism of F' and F°. This means that we can form the line bundle Kr = A"F*°
over M that will be further referred as a canonical bundle of F. If {vy,vs,...,v,} is a
basis of F', then

K, =i(v)w Ni(vg)w A ... Ai(v,)w

is a basis in Kr and for every g € GL(n, C), (KY), 6 = detg.K,.
Let (M,w) be a symplectic manifold and F' is a complex polarization on it. We will say
that M is a metaplectic manifold if there exists a line bundle N/ over M such that

N1/2 ® N1/2 — KF

One can show that (M,w) is metaplectic if and only if the first Chern class of Kp is
zero modulo two and this property does not depend on the choice of F. In this case the
group H'(M,7,) parameterizes the set of “square roots”, i.e. the set of all N*/? which
satisfy the above condition. The sections of N 1{/ ? which are constant along F' are called
half-forms normal to F.

The line bundle Q = LF ® leﬁ over M is called a quantum line bundle because its
sections are considered as elements of the Hilbert space H. The classical observables
which can be quantized directly are those that preserve the polarization F,ie. {f €
R>*(M);[Xys, F| C F'}, where X is defined by the equation i(Xf)w = —df. If ¢ = s®v,
where ¢ € T(Q), s € [(LF), v e F(N;/z) are sections of the corresponding line bundles,
the associated with f quantum operator acts in H¥ as specified below :

() = (=iVx, + fls®@v —is ® L(X})v. (2.3)

Identifying the sections of L with functions on M (which is possible because L is a line
bundle) the action of f in H¥ can be written in the form

fo = (—=iX; = 0(Xg) + flo®@v —ip ® L(X;)v (2.4)

where 6 is the potential one form of w.
Actually this explicit formula has found very few applications (cf. Sect.6) as most of the
considerations end with checking the consistency of the scheme relying on (2.3).

2.2 Czyz-Hess Scheme

After cotangent bundles and co-adjoint orbits Kahlerian manifolds form another impor-
tant class of symplectic manifolds. According Darboux theorem all symplectic manifolds
(of fixed dimension) are locally the same but in practice they appear with some additional
geometric structure. It presence in the setting of geometric quantization helps in many
cases to answer definitely the question if the given symplectic manifold (M,w) allows
such quantization. A trivial example is provided by even-dimensional complex projective
spaces. The well-known fact for these manifolds is that

H*(CP*, 7)== L.
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On the other hand we know that the symplectic manifold (M, w) can be quantized if M is a
metaplectic manifold, i.e. H(M,Zsy) = 0. So, even-dimensional complex projective spaces
can not be treated in Kostant-Souriau scheme . On the other hand they appear as orbit
manifolds of the odd-dimensional harmonic oscillators which form an important class of
dynamical systems . Fortunately this problem can be taken away by slight modification of
geometric quantization scheme as developed by Czyz[8] and Hess[9] and outlined bellow.
Definition 2.4 Let (M,w) be such Kdihlerian manifold that [q) = 5=[w] — 3¢1(M) belongs
to the image of € : H?*(M,Z) — H*(M,R) and q is positive, i.e. q(o) > 0 for any
positively oriented two-cycle o € Hy(M,R). The complex line bundle Q) whose first Chern
class ¢1(Q) is q is called quantum bundle.

If the bundles LF and N7 exist then there exists also the bundle Q = L ® N¥? so
that ¢;(Q) = ¢1(Q) and therefore ) and @ are equivalent. Among symplectic manifolds
the Kahlerian ones are those which possess canonical anti-holomorphic polarization that
makes identification of quantum states with holomorphic sections quite natural. Now,
fixing a positive harmonic representative n € ¢;(Q) and connection V which curvature is
—2min we are in position to define also and V - invariant hermitian structure h,(, ) on
(). We recall that, the curvature of the hermitean metric h, on the bundle () satisfies

1 .= w 1
gaaloghn ~ % - icl(M)

The space of holomorphic sections H°((M, Q) of Q can be converted into Hilbertian space
‘H if we introduce the scalar product

1
<s,t>:/ hy(s, ), w,=2mn, s,tel'(M,Q), n:§dimM.
M

(_1)n(n—1)/2

|
manifold M is simply—c%hnected the hermitian structure is defined up to a positive factor
and H is defined up to an isomorphism which depends on the choice of the connection
V. The representations are build up following the prequantization recipe in which (L,w)
is exchanged for (Q,w,) i.e. to the classical observable (i.e. a function f on the phase
space), there corresponds a quantum operator

and where €, := wy Awy A ... Awy is the natural volume form on M. If our

0(f) € End H*(M,Q); 0(f)s = (=iVx, + f)s
where s € H*(M, @), and now the vector field X is defined by:

i(Xf)wy = — df.

The only problem here is that w, is not always non-degenerated. More detailed exposition
can be found in Czyz[8] and Hess[9)].



3 Classical and Quantum Reductions

When a Lie group G acts symplectically(canonically) on the phase space (P,w) of the
Hamiltonian system (P,w, H) leaving the Hamiltonian H invariant it generates quite
naturally a mapping from P into the dual space g* of its Lie algebra g whose components
are integrals of motion for the dynamical system. This means that the motion takes place
inside a constraint submanifold C' C P and sometimes possesses gauge degrees of freedom.
Passing on a new manifold where they are discarded is known for centuries in mechanics
as reduction procedure and its modern formulation given below is due to Marsden and
Weinstein [10].

Theorem 3.1 Let (P,w) be a symplectic manifold on which acts canonically the Lie group
G, and J : P — g* be the Ad*-equivariant momentum mapping of this action. Let us
suppose that 1 € g* is a reqular value of J and that the isotropy group G, act freely and
properly on J~'(u). Then P, = J='(n)/G, is a symplectic manifold with a symplectic
form defined by mw, = i,w where m, : J Y (w) — P, is the canonical projection and
iy © Py, — P is the embedding. Let H : P — R is G-invariant Hamiltonian function.
The flow induced on P, is also a Hamiltonian one with Hamiltonian function H, defined
by the relation H, om, = H o1,.

If the Hamiltonian system (M,w, H) allows a symmetry group action commuting with
that of G, the reduced system (P, ,w,, H,) keeps this symmetry.

A special case of the above theorem which will be of immediate interest in the sequel is the
case when P is a cotangent bundle T*(M) of some manifold M on which acts freely and
properly the one-parameter Lie group G. Let M — N = M /G be the induced principal
G-bundle and & be the connection one-form. The reduced symplectic manifold P, is
symplectomorphic with 7*N which symplectic form w, is the sum of the canonical form
on TN and a magnetic term p7yda where 7y is the canonical projection 7y : T*N — N
[11].

Thus, each Hamiltonian system with symmetry can be treated as dynamical system either
on (P,w) or (P,,w,) and what is more important - there is no formal distinction at classical
level between working on the initial or reduced phase space. There are plenty of strong
results concerning the quantum mechanical counterpart of this situation which tell us
when quantization and reduction are coherent procedures (see [13, 12, 14, 15]). In order
to give the reader the flavor what to expect in this situation and because we will make
use of it we quote the following result:

Theorem 3.2 (Guillemin € Sternberg[13]). Let us suppose that the (extended) phase
space (P,w) is a compact and quantizable, G is a compact Lie group, 0 € g* is a reg-
ular value of J and F' is a Kdhlerian G-invariant polarization over P. Then, there exists
an isomorphism between the G-invariant sections of LY and the sections of the quantum
line bundle over the reduced phase space (Py,wy).

The situation is even more favorite - in the above setting the reduction and (pre)- quan-
tization are interchangeable procedures.



4 The MIC—Kepler Problem

The Hamiltonian system (T*R* Q,, H,), where

TR =T (R*\{0}) = {(p.q) € B> x B*; ¢ # 0}

3

3
Q# = d9 + O'# y 9 = ijdq]' y O'# = —u/(2|q|3) Z eijkqidqj A\ qu, (41)

j=1 ijk=1
1
Hp:§|p|2_a/r+u2/2r2’ P=@+@+@=1" a, pcR a>0,

is known as the MIC-Kepler problem[16, 17]. Using more or less standard physical termi-
nology, the problem consists in studying the motion of charged particle in a field which is
a superposition of a magnetic monopole field éﬂ = —uq/|q|* and the fields generated by
the Newtonian potential — a//r and centrifugal potential p?/2r?. We will see that the en-
ergy level submanifolds H, L(E) for negative values of the energy are filled up with closed
orbits. This hints a presence of “hidden” symmetry and “accidental” degeneracy of the
spectrum. Actually, the “hidden” symmetry of the Hamiltonian system (T*R3, Q,, H,)is
SO(4) generated by the constants of motion

L' =qxp+pg/r, A" = (L" x §+ a/r)//—H,,

which have interpretation of a “total angular momentum” and generalized Runge-Lenz
vector. The names are borrowed by the standard Kepler problem which can be viewed as
a special “point” of this one-parameter deformation family. The classical Kepler problem
(= 0) was geometrically quantized by Simms[18] and Mladenov & Tsanov[19]. Here we
will apply the geometric quantization to extended and the reduced phase spaces of the
Hamiltonian system (7R3, Q,, H,,) which results in coinciding spectra. We will present
them as

Theorem 4.1 (Mladenov & Tsanov[17]). The discrete spectrum (bound states) of the
MIC-Kepler problem (« - fized, p - fived and quantized) consists of energy levels :

Exy = —a*/2N?, N = |u|+ 1, ||+ 2, |ul+3...

The magnetic charge p can take the values

1 3
p=0,%+-, +£1,+2 £2...
2 2

and the multiplicity of the energy level Ey is :

m(Ey) = N* — p?.



5 Conformal Kepler Problem
The Hamiltonian system (7*R*, Q, H_), where :

T*R'=T*(R*\ {0}) = {(y,2) € R' xR'; = #0},

4
Q:dy/\dac:Zdyj/\dxj (5.1)

j=1
and
H, = (Jy|* — 8a) /8|z|*, «a —fixed constant

is known as a conformal Kepler problem [20]. Let us introduce additionally two other
Hamiltonian functions on the phase space (T*R*,2), namely, that one of the Harmonic
oscillator:

K, = (Jy]* + X*[z]?) /2, A — an arbitrary positive constant,

and that one of the “momentum” :
1
M = 5(1'192 — Toy1 + T3Ys — T4Y3).

Lemma 5.1 Let E < 0 and A =/ —8E. Then
1 1
H (E) = KA (4a)

and the flows defined by the Hamiltonians H, and K, coincide on these hypersurfaces up
to re-parameterization.

Proof. Taking into account the above definition it is obvious that we have
Alz)*(H, + \*/8) = K, — da,

which proves the first statement. Further on H, and K, will be denoted by H and K.
In order to prove the second one we need only to notice that the Hamiltonian vector fields
Xy and X when restricted to energy level submanifolds H=!(E) = K~!(4a) are related
as follows:

4|$|2XH = XK,

and so the proof of the lemma is complete.
The complex coordinates on (T*R*, Q) written below depend on the same arbitrary pos-
itive constant A chosen above

7 = MNay+iz) —i(yr + 1y2), 20 = Mxs + tx4) — i(ys + iya),
(5.2)
z3 = AMxr —iza) —i(yr — iy2), zg = Mg — izg) —i(yYs — iYa).



In these coordinates T*R* = C* \ D, where
D:{Z€C4,Zl = —23,22:—24},

and the symplectic form  turns out to be (up to a multiplicative constant) the standard
Kihler form on C*

. . 4
! s b A dzs
Q= _dz N\ ds = 4)\;dz]/\dzj.

Finally, the hamiltonian functions K and M can be written in these coordinates as
K = (|za]* + [z2]* + |23 + [2a]*) /4 (5.3)

and
M = (|21 + |22* — |28]* = |24]*) /8A. (5.4)

It should be noted that these hamiltonians and the symplectic form Q are well defined
over the manifold _ ‘

C'=C*"\ {0} > T*R".
Let K;, M; denote the flows of the Hamiltonian systems (C*,Q, K), (C*,Q, M).

Lemma 5.2 For every z € C* and s,t € R, the corresponding flows are:

A

KtZ — (ei)\tzl7 €i)\t22, ei tZg, 6i)\t2:4), (55)

MSZ — (61'5/2Z17 6’58/22:2,671.8/22:3,€7i8/22:4 ) (56)

In particular, the flows of all three Hamiltonians H, K and M commute where defined.
Proof. The explicit expressions for the flows K;, M, are obtained by direct calculations.
The last assertion follows from these expressions and Lemma 5.1.

In view of the lemma that have been just proved, the flow M defines a symplectic U(1)-
action over C*. The “momentum” for this action is M itself. Let us remark that the set
D and consequently its complementary set 7*R* are invariant under this U(1)-action.
Through every point there pass just one orbit and the Hamiltonian function H invariant
on these orbits. All this means that the Hamiltonian system (7*R*,Q, H) can be reduced
with respect to U(1). The result of this reduction is summarized in the following lemma:

Lemma 5.3 [20, 17] Let p € R be the value of the momentum map of the lifted Hopf
action on T*R3. Then '

MY (u)/U) =TR?
and when reduced 2 and H produce ), and H,, i.e. one ends with the MIC-Kepler
problem.



Besides, if one reduce the constants of motion of the conformal Kepler problem :

My = (2122 + 2221 — 23Z4 — 2423) /8 Ay = (2129 + 2221 + 2324 + 2423) /8A

My = (2125 — 2221 + 23Z4 — 2423) /8\i Ay = (2129 — 2021 — 2324 + 2423) /8Ni (5.7)
My = (|21]* = |2 = [zs]* + |2a)/8X As = (|21]* — |22 + |25 — |2a]*) /8A

one gets the momentum L* and the generalized Runge—Lenz vector AP which are con-
stants of the motion for the MIC—Kepler problem.

6 Quantization of the Extended Phase Space

Definition 6.1 The level hypersurfaces of the map J : C'\D — R?, J(z) = (K(z), M(2))
are called energy-momentum manifolds.

EM(X, p) ={(y,z) e T"R*; K =4da, M =p}.
Under reduction EM (X, ) falls down (via 7,) over the energy hypersurface H, = —\?/8
(A = V—8FE) of the MIC—Kepler problem. As a set EM(A, ) is not empty if A and g

satisfy the condition
Apl < 2a.

In this section we suppose (by the reasons that will be clarified in the next one) that we
have strong inequality A|u| < 2a. Following [21] (see also [22]-[23]) we will change our
viewpoint and will consider (T*R*, Q) as an “extension” of (T*R?,Q,,).

We will prove Theorem 4.1 working with the complex coordinates defined in (5.2) , the

. . D o o0 0
polarization F' “spanned” by the anti-holomorphic directions {—, — , — ,— } and
. 821 822 823 824
. ? . . .
adapted potential # = —4—2dz of 2. The Hilbert space consists of “wave functions” of

the form 1 = ¢ ® v where ¢ is holomorphic and
v=(dzy Ndzy N\ dzg N dz4)1/2.

Essentially Dirac’s idea concerning quantization in the presence of constraints that are
not eliminated at the classical level is that they should be enforced at the quantum one.
In our case the constraints K = 4a and M = p select the energy-momentum manifold
EM(A, 1) and therefore the acceptable quantum states are those that belong to the
subspace H; of H defined below :

Hy={ € H; Ky =datp, Mp=pp}.
Taking into account all of the above and formula (2.4) we write down the quantized version
of our operators as

. 0 0 0 0
Ky = Mz— — — — 42
v (z1821+Z2822+z38z3+z48z4+ ) @

= AN +2)¢ = o), N=012,...
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and 19 9 P
M = = (2 —— v
V=glag -t ag -y~ ag

where ¢ is a homogeneous monom of degree N in zy, 2o, 23 and z4.
Introducing N = N/2 + 1 and solving

2NV —-8EF = 4a,

we obtain the energy spectrum Ey = —a?/2N? as well

— =) Qv =y,

ny+ng+ng+ng= 2N —2,
ny+mne—ng—ng= 24, n; >0,1=1,2,3,4.

The last constraint relation is equivalent to Dirac’s quantization of the magnetic charge:

1 ] 3
T2 T2 o
Besides we get :

ni+n=N+pu—1=N,=0,1,2, ...

and
ng+ng=N—-—pu—1=MNo=0,1,2, ...

which combined tell us that the possible values of N are given by the formula N = |u|+1,
ul+2,[ul + 3,

In order to find the degeneracies m(Ey) one should notice that ¢ can be represented as a
product ¢1(21, 22).p2(23, 24) of homogeneous monomials of degree N7 and N> respectively.
So, the dimension of the Hilbert space H, v is:

m(EN) = dim%#,]\z = (N1 + 1)(N2 + 1) = N?— ,uz,

and this ends the proof of the theorem.

Remark 6.2 The Hilbert space H, n is the carrier space for the unitary irreducible rep-
resentation (N1 N2) = (N+5_1, al 5 Nob=ly of the global symmetry group of the MIC-Kepler

problem Spin(4) = SU(2) ® SU(2) (u- half-integer) or SO(4) (p-integer).

The wave functions in H = ®H,, y are labeled uniquely by four quantum numbers which

are the eigenvalues of the complete set of commuting operators M (1), H(N), Ms(m), As(0),
where

- 1 0 0 0

M3¢—§(318—21—22822 —238 —i-Z4a 4)7,b—m7,b (6.1)
and 1 0 0 0 0

A = (15— — 2o+ 255 — — 24 =) = 1. (6.2)

Oz 0z 023 024

10



Looking at (6.1) and (6.2) one can conclude immediately that m and [ can take either
integer or half-integer values. It is to be noted also that this result is closely related
with convexity theorem of the torus actions on symplectic manifolds [23]. Indeed, let us
consider the flows U, V, generated by M; and As,

Uz = (eic/zz17 e—i§/2z2, e‘i</2z3, ez‘c/zz4) (6.3)

V.z = (6”/221, e 20y, @22, e’iT/2z4) (6.4)

in conjunction with K3 and M. Doing so we realize that we have at disposition an action
of the four-torus 7* on our symplectic manifold (C*, Q). Introducing new “time” variables

b= M+
s ¢ T
NI (65)
s T
by = M— ;- é + :
S R
this action takes the form
B(p, 2) = ("1 21, €922y, €172, €1%12) (6.6)
and the associated moment Jp is readily given by
Talz) = (Il 12, sl 24P (6.7

which makes obvious that the image set is convex. Besides, our representation space is
spanned by the homogeneous polynomials of degree A in the variables z;, 2o, 23, 24 on
which the torus element g = (e!?1, €92, ¢'%s_ ¢!%4) is represented by the transformation

Z apz" — Z a, €02, (6.8)

The multi-indices n = (ny, ny, ng, ng) which appear above obey ny + ng + n3 + ny = N
and provide labels for the irreducible multiplicity-free representations par of the torus 7.

7 Quantization of the Orbit Manifolds

In Section 5 we have established that the energy level submanifolds consist entirely of
closed orbits. This allows Hljl(E) to be factorized with respect to dynamical flow and
the so obtained manifold H,*(E)/U(1) = O,(F) is known as an orbit manifold. Tts
complete description as a symplectic manifold is given below :

11



Theorem 7.1 (Mladenov & Tsanov[17]). Let E <0 and A =+/—8E. Then :

i) if Mpl < 2a O.(E) = Pl x P!
i) if Mp| =2« O,.(E) =Pt
iii) if Alp| > 2 H;Y(E)=0

~—

The reduced symplectic form over P! x P! is:

2 (2c0 + A 2 (2c0 — A
0, (E) = ( L (/\ D)

b\ wWa (7].)

where _
b o b G A
T2m (14 ¢?)?

and ((1, (3) are whichever non-homogeneous coordinates on P' x P1.

The symplectic form over P! in item i) is the respective non-zero component of O, (E)
(depending on the sign of ). This theorem reduces quantization of the MIC-Kepler
problem to geometric quantization of the compact Kihler manifolds P! x P! and P!.
The proof is based on the following lemma:

j=1,2 (7.2)

Lemma 7.2 O,(E) 2 J Y4a,p)/U(1) x U(1).

Proof. When p # 0 the orbits of the Hamiltonian H coincides with that of K described
by Lemma 5.1 . In particular, none of them belongs to C*\ T*R* = D\ {0} and therefore
we have one-to-one correspondence between the orbits of the MIC-Kepler problem on the
energy hypersurface H, = E and the orbits of the torus action on J !(4«, i) described
in Lemma 5.2 and this implies that the orbit spaces are identical.

What remains to be done in order to prove Theorem 7.1 is to describe properly J = (4a, 11).
For that purpose we remark that the system of equations K = 4a, M = pu is equivalent
to the system

[ + |22 = 420+ M), |zl + [zaf? = 420 — Ap)
so we can conclude that

S3 x 83 when A|u| < 2a,
J Yda,p) =4 S3 when \|p| = 2a,
0 when A|p| > 2.

The projection p : S3 x 3 — P! x P! is defined through the Hopf’s map of the corre-
sponding factors

p(21,22,23,2’4) = ([Zl : Zz], [23 : Z4]),

where [21 : 29], [23 : 4] are the homogeneous coordinates over P* x P. In accordance with
Lemma 7.2 the projection p is just the factor-map

T da, p) — T (4o, ) /(U(1) x U(1))

12



In this way item 7) of the Theorem 7.1 is proven. It is obvious that the restriction of p on
the non-trivial factor gives the map we are needed in order to prove 7). Finally, item 4i7)
is a trivial statement and what else has to be done is to compute the reduced symplectic
form. In the non-homogeneous coordinates

(C1, G2) = (22/ 21, 24/ 23)

over Pt x P!, pis simply

p(zl,zz,z?n 2’4) = (C17 Cz)-

Referring to Lemma 7.2 we can write
p*Q#(E) = Q\S?’XS?’ )

where S3 x S% are spheres defined above. An easy check in coordinates shows that this is
true which means that Theorem 7.1 is also proved.

Definition 7.3 The line bundle L over the compact Kahler manifold X is called positive,
if

/cl(L) >0, for every positively oriented cycle o € Hy(X,Z).

For this type of bundles H°(X,O(L)) # 0.

Theorem 7.4 (see Griffiths € Harris [24]). The group H*(P'x P') = Z&Z is generated
by [wi], [w2] and

1
a(NE%) = =5a (Pt < P = = ([ + [«wa)).
In view of the prequantization condition (2.2) we have
1
2—Q”(E) :N1w1—|—N2w2, Nl,NQ € Z,
T
which means that
200 + )\/,L = )\Nl
20 — A\ = AN,

as well .
/,in(N]_—Ng), )\:404(N1+N2)

13



Introducing N = 3(N; + N,), we get immediately Ny = N 4+ p, Ny = N — p as well
the energy spectrum of the MIC-Kepler problem Ey = —a?/2N?. The Hilbert space
H°(P! x P' | Qy) is non-trivial if the first Chern class of the line bundle Qy — P! x P!

c1(Qn) = (N1 — Dfwi] + (N2 — 1)[w,]

is positive, i.e. Ny, N > 1and N > |u|+1. Finally, the degeneracies m(FEy) of the energy
levels Fy which coincide with dimensionalities of the spaces of holomorphic sections of
quantum line bundles @@y are calculated by Riemann—Roch—Hirzebruch theorem:

m(Ey) = dimH®(0,(E), Q) = Ny N = N* — i* .

Remark 7.5 The observables Mz and As in the complete set which survive under reduc-
tion can be expressed in the nonhomogeneous coordinates ((1, C2) over O, (Ey) as follows:
Nz 1—|Gf

M- GP N

s 2 1+1]G2 2 1+]GP

N1—|Gf | Mol -Gl

2 1+|GI2 2 141G

The expression for the third component of the Runge-Lenz vector is actually the momen-

tum mapping of the circular action around vertical axes of the spheres. If we fix its value
to be ¢ then the momentum manifold

G G N1 Ny
+ N =—+——4=N-/ 7.3
TGP T LGP 2 2 (7-3)

N _
.A.37 —

is either the sphere S® when N — ¢ > 0, four points when N — ¢ = 0 or the empty set
in the case N — ¢ < 0. This can be seen quite easily if we introduce the following set of

coordinates 12 12
N]_ N2
_ : == 7.4
o <1+|<1|2> s <1+|<2|2> “ (74)

in which (7.3) becomes obviously
6?4+ [&]* = N — ¢ (7.5)

In the first of the above listed cases we have a free action of SO(2) on J~!(¢) and therefore
we can factorize it. The reduced manifold is topologically the sphere S? and the reduced

symplectic form is
we =2m(N —{)o, (7.6)

where o is the form (7.2) written in any of the non-homogeneous coordinates on the
projective line [{; : &]. Now the quantization condition reads

(N—0lo—0=ko, k>0 (7.7)
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from which follows that the maximal value of ¢ is N — 1. Using Riemann-Roch theorem
one can easily find that the number of the global holomorphic sections of the reduced
quantum bundle L, over the sphere S? is k+1 = N — ¢ . Introducing £ := & /& the last
function M from the complete set of observables can be written as

1—|¢P
1+ (¢

(N —0) + o (7.8)

while the corresponding “quantum” operator is

9,
—2—=+N—-(—-1 . 7.9
96t +p (7.9)
The spectrum of this operator in T'(S?, O(L;)) consists of equidistant of step two integer
or half-integer eigenvalues m € [—k + pu, =k + pu+2,...,—k + p— 2,k + p]. At classical

level (7.8) is just the momentum map of the circle action around the third axe of the
sphere S? (so we can forget the additive constant p) and if |m| < N — ¢ this action is free.
This means that the inverse image of the momentum map is a circle and after reduction
we end with a point as reduced phase space. The representation space associated with
this point is one-dimensional as the only SO(2)-invariant section which descends from S?
is the constant section. This can be seen also in another way if we remember that since
the very first days of quantum mechanics there are attempts to associate the volume in
the phase space with the number of the pure states. This was proven to be assymptocally
true (up to universal factor) by Heckman on the basis of the Duistermaat-Heckman exact
stationary phase formula [25]. The main ingredient of this formula is the set of fixed
points of the action which till now were not taken into account in our considerations. The
St action on S? was treated in [26] and the result (in our notation) is :

1 if |m| < N —{, a point
vol (S2) = (7.10)
0 if |m| > N — ¢, empty.

The S? diagonal action on S% x S? which has four fixed points mentioned above is studied
by Wu [27] and in that case

2m(N —¢) if N—¢>0,
vol ((S* x S?),) = (7.11)
0 if N—¢<0.

Finally the volume of the orbit manifold O,(N) is 47*N; N> and all this coincides with
the results we have obtained before.

In view of the complete coherence of the results obtained at all level of consideration,
starting with the extended and ending with a point, we can conclude that the reduction—
quantization technique is the right and straightforward formalism for the treatment of sys-
tems with high symmetries. The missing quantum numbers can be derived by quantizing
various symplectic manifolds which appear at different stages of the reduction procedure.
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