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� Introduction

As a rule phase spaces of the most interesting classical Hamiltonian systems are cotangent
bundle of smooth con
guration manifolds and their quantization does not present serious
problems �see Sect��
� However� the 
rst step � the prequantization � produces only
part of the quantum numbers and one should use other devices in order to obtain the
spectrum of the complete set of Dirac observables� Here we present a detailed treatment
of a concrete dynamical system and show that reduction in stages �either at classical or
quantum level
 produces the desired information about the spectrum� The system in
question is the one�parameter deformation family of the Kepler problem known as MIC�
Kepler problem�see Sect� �
� We should point out that despite geometric quantization
concept is thirty years old such treatment is absent even for the standard Kepler problem�
A possible explanation of this situation can be traced back to the general fact that one can
quantize unambiguously only functions which are polynomials up to a second degree in
phase space coordinates while the square of the angular momentum which is fourth degree
polynomial does not belongs to this set� On the other side the choice of the momentum
as an element of the complete set of observables is dictated by the spherical symmetry of
the problem� Another wellknown fact is that the symmetries manifest themselves in the
possibilities of separating the variables in the Schr�odinger equation in di�erent coordinate
systems and this is connected with the existence of constants of motion� Simultaneous
diagonalization of the Hamiltonian and the third components of momentum and Runge�
Lenz vector corresponds to separation of variables in parabolic coordinates and has been
noticed by Bargmann� Working in much more abstract setting we will follow essentially
the same idea in order to derive missing quantum numbers� �From mathematical point of
view the results which will be presented below follow from quantization of the momentum
map associated with free torus actions on some symplectic �toric
 manifolds�

� Geometric Quantization

��� Kostant�Souriau Programme

On any symplectic manifold �M��
 the symplectic form � generates a Lie algebraic struc�
ture in the space R��M
 of smooth real�valued functions on M� The problem for 
nding
the representations of R��M
 was approached for the 
rst time by Dirac�	� in the case
�M � R�n� � � dp � dq
� and after that has been generalized by Segal��� for the phase
spaces which are cotangent bundles and 
nally by Kostant��� and Souriau��� for arbitrary
symplectic manifolds� The starting point is the observation that if we are able to asso�
ciate with every classical variable a quantum one then the commutator of two quantum
variables should represents up to a multiplicative number the Poisson bracket of the clas�
sical ones� This part of the programme can be easily realized and nowadays is referred as
prequantization� Below we summarize the relevant notion and de
nitions�

De�nition ��� The symplectic manifold �M � �
 is pre	quantizable if ������ is in the
image of the map

	



H�
Cech�M�Z
 � H�

deRham�M�R
� ���	


where � � denotes the de Rham cohomological class�
When M is a compact manifold this condition is equivalent to

	

��

Z
�

� � Z� for every two� cycle � � H��M�Z
� ����


and produces the quantization of charge� spin and energy levels of some physical systems�
If �M��
 is pre�quantizable� there exists a hermitian line bundle L � M � whose Chern

class is
	

��
���� equipped with a connection r which curvature form is �i� and hermitian

scalar product h� � 
 that is invariant with respect to the parallel transport��� �� �� ���
The irreducibility of the representations which is the second stage �quantization
 of the
programme is achieved by introducing additionally a new structure called polarization�
A real polarization over M is a such map that juxtapose to each point m � M a real
subspace Fm � Tm�M
 which is maximally isotropic integrable distribution�

Example ��� Let Q be a smooth manifold and let T �Q be its cotangent bundle� If fpi� qig
are the local canonical coordinates in T �Q� then an easy check shows that the vector �elds

X� �
�

�p�
� X� �

�

�p�
� � � � � Xn �

�

�pn

de�ne a real polarization over T �Q which is known as vertical polarization�

Example ��� The two	dimensional sphere does not allows real polarization because of
the non	existence of non	singular real vector �eld on S��

This situation suggests also the generalization of the above notion� namely� A complex
polarization over M is a map F which assigns to each point m � M a subspace Fm of
T C
m �M
 which is maximally isotropic integrable distribution� and besides the distribution

Dm � Fm � �Fm is of some 
xed dimension � at each point m � M� The polarization F
is called K�ahlerian if Fm � �Fm � �� For any kind of polarization F the potential � of the
symplectic form � �i�e� � � d�
 is called an adapted to it if ��X
 � � for every X � F�
The quantum pre�Hilbert space is built up by the polarized sections of L which de
nition
is as follows� Let M��� L�r and F be as de
ned above� The polarized sections of L form
the line bundle

LF � fs � Sect�L
 �rXs � �� for all X � X�M�F 
g�
In order to have true Hilbert space we need some measure�or density
 which is an element
of a second line bundle� This can be introduced if we consider the elements of the cotangent
bundle T ��M
 that vanish on F and form a subbundle F � � T �

C�M
 which is called
annihilator of F� By the very de
nition of the symplectic form we have that the map

	 � F � i�	
� � F �

�



is an isomorphism of F and F �� This means that we can form the line bundle KF � �nF �

over M that will be further referred as a canonical bundle of F� If f	�� 	�� � � � � 	ng is a
basis of F � then

K� � i�	�
� � i�	�
� � � � � � i�	n
�

is a basis in KF and for every g � GL�n� C
� �Kg
� � detg�K��
Let �M��
 be a symplectic manifold and F is a complex polarization on it� We will say
that M is a metaplectic manifold if there exists a line bundle N��� over M such that

N��� �N��� � KF �

One can show that �M��
 is metaplectic if and only if the 
rst Chern class of KF is
zero modulo two and this property does not depend on the choice of F � In this case the
group H��M�Z�
 parameterizes the set of �square roots�� i�e� the set of all N

��� which

satisfy the above condition� The sections of N
���
F which are constant along F are called

half�forms normal to F�
The line bundle �Q � LF � N

���
F over M is called a quantum line bundle because its

sections are considered as elements of the Hilbert space HF � The classical observables
which can be quantized directly are those that preserve the polarization F � i�e� ff �
R��M
 � �Xf � F � � Fg� where Xf is de
ned by the equation i�Xf 
� � � df� If 
 � s���
where 
 � �� �Q
� s � ��LF 
� � � ��N���

F 
 are sections of the corresponding line bundles�
the associated with f quantum operator acts in HF as speci
ed below �

�f�

 � ��irXf
� f
s� � � is� L�Xf
�� ����


Identifying the sections of LF with functions on M �which is possible because LF is a line

bundle
 the action of �f in HF can be written in the form

�f
 � ��iXf � ��Xf
 � f
�� � � i�� L�Xf
� ����


where � is the potential one form of ��
Actually this explicit formula has found very few applications �cf� Sect� � 
 as most of the
considerations end with checking the consistency of the scheme relying on ����
�

��� Czyz�Hess Scheme

After cotangent bundles and co�adjoint orbits K�ahlerian manifolds form another impor�
tant class of symplectic manifolds� According Darboux theorem all symplectic manifolds
�of 
xed dimension
 are locally the same but in practice they appear with some additional
geometric structure� It presence in the setting of geometric quantization helps in many
cases to answer de
nitely the question if the given symplectic manifold �M��
 allows
such quantization� A trivial example is provided by even�dimensional complex projective
spaces� The well�known fact for these manifolds is that

H��CP �n�Z�
 �� Z��

�



On the other hand we know that the symplectic manifold �M��
 can be quantized ifM is a
metaplectic manifold� i�e� H��M�Z�
 � �� So� even�dimensional complex projective spaces
can not be treated in Kostant�Souriau scheme � On the other hand they appear as orbit
manifolds of the odd�dimensional harmonic oscillators which form an important class of
dynamical systems � Fortunately this problem can be taken away by slight modi
cation of
geometric quantization scheme as developed by Czyz��� and Hess��� and outlined bellow�

De�nition ��� Let �M��
 be such K
ahlerian manifold that �q� � �
��
���� �

�
c��M
 belongs

to the image of 
 � H��M�Z
 � H��M�R
 and q is positive� i�e� q��
 	 � for any
positively oriented two	cycle � � H��M�R
� The complex line bundle Q whose �rst Chern
class c��Q
 is q is called quantum bundle�

If the bundles LF and N
���
F exist then there exists also the bundle �Q � LF � N

���
F so

that c�� �Q
 � c��Q
 and therefore �Q and Q are equivalent� Among symplectic manifolds
the K�ahlerian ones are those which possess canonical anti�holomorphic polarization that
makes identi
cation of quantum states with holomorphic sections quite natural� Now�

xing a positive harmonic representative � � c��Q
 and connection r which curvature is
���i� we are in position to de
ne also and r � invariant hermitian structure h�� � 
 on
Q� We recall that� the curvature of the hermitean metric h� on the bundle Q satis
es

i

��
� �� log h� 
 �

��
� 	

�
c��M
�

The space of holomorphic sections H���M�Q
 of Q can be converted into Hilbertian space
H if we introduce the scalar product

� s� t ��

Z
M

h��s � t
 � � �� � ��� � s� t � ��M�Q
 � n �
	

�
dimM�

and where  � ��
��	
n�n�����

n!
�� � �� � � � � � �� is the natural volume form on M� If our

manifoldM is simply�connected the hermitian structure is de
ned up to a positive factor
and H is de
ned up to an isomorphism which depends on the choice of the connection
r� The representations are build up following the prequantization recipe in which �L� �

is exchanged for �Q� ��
 i�e� to the classical observable �i�e� a function f on the phase
space
� there corresponds a quantum operator

��f
 � End H��M�Q
� ��f
s � ��irXf
� f
s

where s � H��M�Q
� and now the vector 
eld Xf is de
ned by�

i�Xf
�� � � df�

The only problem here is that �� is not always non�degenerated� More detailed exposition
can be found in Czyz��� and Hess����

�



� Classical and Quantum Reductions

When a Lie group G acts symplectically�canonically
 on the phase space �P� �
 of the
Hamiltonian system �P� ��H
 leaving the Hamiltonian H invariant it generates quite
naturally a mapping from P into the dual space g� of its Lie algebra g whose components
are integrals of motion for the dynamical system� This means that the motion takes place
inside a constraint submanifold C � P and sometimes possesses gauge degrees of freedom�
Passing on a new manifold where they are discarded is known for centuries in mechanics
as reduction procedure and its modern formulation given below is due to Marsden and
Weinstein �	���

Theorem ��� Let �P� �
 be a symplectic manifold on which acts canonically the Lie group
G� and J � P � g� be the Ad�	equivariant momentum mapping of this action� Let us
suppose that � � g� is a regular value of J and that the isotropy group G� act freely and
properly on J����
� Then P� � J����
�G� is a symplectic manifold with a symplectic
form de�ned by ����� � i��� where �� � J����
 � P� is the canonical projection and
i� � P� � P is the embedding� Let H � P � R is G	invariant Hamiltonian function�
The �ow induced on P� is also a Hamiltonian one with Hamiltonian function H� de�ned
by the relation H� � �� � H � i��
If the Hamiltonian system �M�� �H
 allows a symmetry group action commuting with
that of G� the reduced system �P� � ��� H�
 keeps this symmetry�
A special case of the above theorem which will be of immediate interest in the sequel is the
case when P is a cotangent bundle T ��M
 of some manifold M on which acts freely and
properly the one�parameter Lie group G� Let M � N � M�G be the induced principal
G�bundle and �� be the connection one�form� The reduced symplectic manifold P� is
symplectomorphic with T �N which symplectic form �� is the sum of the canonical form
on T �N and a magnetic term �� �Nd�� where �N is the canonical projection �N � T �N � N
�		��
Thus� each Hamiltonian system with symmetry can be treated as dynamical system either
on �P� �
 or �P�� ��
 and what is more important � there is no formal distinction at classical
level between working on the initial or reduced phase space� There are plenty of strong
results concerning the quantum mechanical counterpart of this situation which tell us
when quantization and reduction are coherent procedures �see �	�� 	�� 	�� 	��
� In order
to give the reader the "avor what to expect in this situation and because we will make
use of it we quote the following result�

Theorem ��� �Guillemin
Sternberg������ Let us suppose that the �extended� phase
space �P� �
 is a compact and quantizable� G is a compact Lie group� � � g� is a reg	
ular value of J and F is a K
ahlerian G	invariant polarization over P� Then� there exists
an isomorphism between the G	invariant sections of LF and the sections of the quantum
line bundle over the reduced phase space �P�� ��
�

The situation is even more favorite � in the above setting the reduction and �pre
� quan�
tization are interchangeable procedures�

�



� The MIC�Kepler Problem

The Hamiltonian system �T � #R�� �� H�
 � where

T � #R� � T ��R� n f�g
 � f�p� q
 � R� � R� � q 
� � g

 � � d� � �� � � �
�X

j��

pjdqj � �� � �����jqj�

�X

i�j�k��


ijkqidqj � dqk� ���	


H� �
	

�
jpj� � ��r � ����r�� jqj� � q�� � q�� � q�� � r�� � � � � R� � � ��

is known as the MIC�Kepler problem�	�� 	��� Using more or less standard physical termi�
nology� the problem consists in studying the motion of charged particle in a 
eld which is
a superposition of a magnetic monopole 
eld �B� � ���q�jqj� and the 
elds generated by
the Newtonian potential ���r and centrifugal potential ����r�� We will see that the en�
ergy level submanifolds H��

� �E
 for negative values of the energy are 
lled up with closed
orbits� This hints a presence of �hidden� symmetry and �accidental� degeneracy of the
spectrum� Actually� the �hidden� symmetry of the Hamiltonian system �T � #R�� �� H�
 is
SO��
 generated by the constants of motion

�L� � �q � �p � ��q�r � �A� � ��L� � �p� ��q�r
�
p�H��

which have interpretation of a �total angular momentum� and generalized Runge�Lenz
vector� The names are borrowed by the standard Kepler problem which can be viewed as
a special �point� of this one�parameter deformation family� The classical Kepler problem
�� � �
 was geometrically quantized by Simms�	�� and Mladenov$Tsanov�	��� Here we
will apply the geometric quantization to extended and the reduced phase spaces of the
Hamiltonian system �T � #R�� �� H�
 which results in coinciding spectra� We will present
them as

Theorem ��� �Mladenov
Tsanov������ The discrete spectrum �bound states� of the
MIC�Kepler problem �� 	 �xed� � 	 �xed and quantized� consists of energy levels �

EN � �����N� � N � j�j� 	� j�j� �� j�j� � � � �

The magnetic charge � can take the values

� � �� � 	
�
� � 	� � �

�
� � � � � �

and the multiplicity of the energy level EN is �

m�EN 
 � N� � ���

�



� Conformal Kepler Problem

The Hamiltonian system �T � #R��  � H�
� where �

T � #R� � T ��R� n f�g
 � f�y� x
 � R� �R� � x 
� � g�

 � dy � dx �
�X

j��

dyj � dxj ���	


and
H� �

�jyj� � ��� ��jxj� � � � 
xed constant

is known as a conformal Kepler problem ����� Let us introduce additionally two other
Hamiltonian functions on the phase space �T � #R� � 
� namely� that one of the Harmonic
oscillator �

K
�
�
�jyj� � ��jxj�� �� � �� an arbitrary positive constant�

and that one of the �momentum� �

M �
	

�
�x�y� � x�y� � x�y� � x�y�
�

Lemma ��� Let E � � and � �
p��E� Then

H��
�
�E
 � K��

�
���


and the �ows de�ned by the Hamiltonians H� and K
�
coincide on these hypersurfaces up

to re	parameterization�

Proof� Taking into account the above de
nition it is obvious that we have

�jxj��H
�
� ����
 � K

�
� �� �

which proves the 
rst statement� Further on H� and K	 will be denoted by H and K�
In order to prove the second one we need only to notice that the Hamiltonian vector 
elds
XH and XK when restricted to energy level submanifolds H���E
 � K�����
 are related
as follows �

�jxj�XH � XK �

and so the proof of the lemma is complete�
The complex coordinates on �T � #R� � 
 written below depend on the same arbitrary pos�
itive constant � chosen above

z� � ��x� � ix�
� i�y� � iy�
� z� � ��x� � ix�
� i�y� � iy�
�

����


z� � ��x� � ix�
� i�y� � iy�
� z� � ��x� � ix�
� i�y� � iy�
�

�



In these coordinates T � #R� � C
� nD� where

D � fz � C
� � z� � ��z� � z� � ��z� g�

and the symplectic form  turns out to be �up to a multiplicative constant
 the standard
K�ahler form on C �

 �
i

��
dz � d�z �

i

��

�X
j��

dzj � d�zj�

Finally� the hamiltonian functions K and M can be written in these coordinates as

K � �jz�j� � jz�j� � jz�j� � jz�j�
�� ����


and
M � �jz�j� � jz�j� � jz�j� � jz�j�
���� ����


It should be noted that these hamiltonians and the symplectic form  are well de
ned
over the manifold

#C � � C
� n f�g � T � #R��

Let Kt � Mt denote the "ows of the Hamiltonian systems � #C
� � � K
� � #C � � �M
�

Lemma ��� For every z � #C � and s� t � R� the corresponding �ows are�

Ktz � � ei	tz� � e
i	tz� � e

i	tz� � e
i	tz� 
� ����


Msz � �eis��z�� e
is��z�� e

�is��z�� e
�is��z� 
� ����


In particular� the "ows of all three Hamiltonians H�K and M commute where de
ned�
Proof� The explicit expressions for the "ows Kt �Ms are obtained by direct calculations�
The last assertion follows from these expressions and Lemma ��	�
In view of the lemma that have been just proved� the "ow Ms de
nes a symplectic U�	
�
action over #C � � The �momentum� for this action is M itself� Let us remark that the set
D and consequently its complementary set T � #R� are invariant under this U�	
�action�
Through every point there pass just one orbit and the Hamiltonian function H invariant
on these orbits� All this means that the Hamiltonian system �T � #R� � � H
 can be reduced
with respect to U�	
� The result of this reduction is summarized in the following lemma �

Lemma ��� ���� ��� Let � � R be the value of the momentum map of the lifted Hopf
action on T � #R�� Then

M����
�U�	
 � T � #R�

and when reduced  and H produce  � and H�� i�e� one ends with the MIC�Kepler
problem�

�



Besides� if one reduce the constants of motion of the conformal Kepler problem �

M� � �z��z� � z��z� � z��z� � z��z�
��� A� � �z��z� � z��z� � z��z� � z��z�
���

M� � �z��z� � z��z� � z��z� � z��z�
���i A� � �z��z� � z��z� � z��z� � z��z�
���i ����


M� � �jz�j� � jz�j� � jz�j� � jz�j�
��� A� � �jz�j� � jz�j� � jz�j� � jz�j�
���
one gets the momentum �L� and the generalized Runge�Lenz vector �A� which are con�
stants of the motion for the MIC�Kepler problem�

� Quantization of the Extended Phase Space

De�nition ��� The level hypersurfaces of the map J � C �nD � R�� J�z
 � �K�z
�M�z


are called energy	momentum manifolds�

EM�� � �
 � f�y� x
 � T � #R� � K � �� � M � �g�
Under reduction EM�� � �
 falls down �via ��
 over the energy hypersurface H� � �����
�� �

p��E
 of the MIC�Kepler problem� As a set EM�� � �
 is not empty if � and �
satisfy the condition

�j�j � ���
In this section we suppose �by the reasons that will be clari
ed in the next one
 that we
have strong inequality �j�j � ��� Following ��	� �see also ���������
 we will change our
viewpoint and will consider �T � #R� � 
 as an �extension� of �T � #R�� �
�
We will prove Theorem ��	 working with the complex coordinates de
ned in ����
 � the

polarization F �spanned� by the anti�holomorphic directions f �

��z�
�
�

��z�
�
�

��z�
�
�

��z�
g and

adapted potential � � � i

��
�zdz of  � The Hilbert space consists of �wave functions� of

the form 
 � �� � where � is holomorphic and

� � �dz� � dz� � dz� � dz�

����

Essentially Dirac%s idea concerning quantization in the presence of constraints that are
not eliminated at the classical level is that they should be enforced at the quantum one�
In our case the constraints K � �� and M � � select the energy�momentum manifold
EM�� � �
 and therefore the acceptable quantum states are those that belong to the
subspace HJ of H de
ned below �

HJ � f
 � H � �K
 � ��
 � �M
 � �
 g�
Taking into account all of the above and formula ����
 we write down the quantized version
of our operators as

�K
 � ��z�
�

�z�
� z�

�

�z�
� z�

�

�z�
� z�

�

�z�
� �
�� �

� ��N � �

 � ��
 � N � �� 	� �� � � �

�



and
�M
 �

	

�
�z�

�

�z�
� z�

�

�z�
� z�

�

�z�
� z�

�

�z�

�� � � �
 �

where � is a homogeneous monom of degree N in z�� z�� z� and z��
Introducing N � N �� � 	 and solving

�N
p��E � ���

we obtain the energy spectrum EN � �����N� as well

n� � n� � n� � n� � �N � ��
n� � n� � n� � n� � �� � ni 	 �� i � 	� �� �� ��

The last constraint relation is equivalent to Dirac%s quantization of the magnetic charge �

� � �� � 	
�
� � 	� � �

�
� � � � � �

Besides we get �
n� � n� � N � �� 	 � N� � �� 	� �� ���

and
n� � n� � N � �� 	 � N� � �� 	� �� ���

which combined tell us that the possible values of N are given by the formula N � j�j�	 �
j�j� � � j�j� � �� � �
In order to 
nd the degeneracies m�EN 
 one should notice that � can be represented as a
product ���z�� z�
����z�� z�
 of homogeneous monomials of degree N� and N� respectively�
So� the dimension of the Hilbert space H��N is �

m�EN 
 � dimH��N � �N� � 	
�N� � 	
 � N� � ���

and this ends the proof of the theorem�

Remark ��� The Hilbert space H��N is the carrier space for the unitary irreducible rep	
resentation �N�

�
� N�

�

 � �N����

�
� N����

�

 of the global symmetry group of the MIC�Kepler

problem Spin��
 �� SU��
� SU��
 ��	 half	integer� or SO��
 ��	integer��

The wave functions in H � �H��N are labeled uniquely by four quantum numbers which

are the eigenvalues of the complete set of commuting operators �M��
� �H�N
� �M��m
� �A���
�
where

�M�
 �
	

�
�z�

�

�z�
� z�

�

�z�
� z�

�

�z�
� z�

�

�z�


 � m
 ���	


and
�A�
 �

	

�
�z�

�

�z�
� z�

�

�z�
� z�

�

�z�
� z�

�

�z�


 � �
� ����


	�



Looking at ���	
 and ����
 one can conclude immediately that m and l can take either
integer or half�integer values� It is to be noted also that this result is closely related
with convexity theorem of the torus actions on symplectic manifolds ����� Indeed� let us
consider the "ows U
 � V� generated by M� and A��

U
z � �e
i
��z�� e

�i
��z�� e
�i
��z�� e

i
��z� 
 ����


V�z � �e
i���z�� e

�i���z�� e
i���z�� e

�i���z� 
 ����


in conjunction with Kt and Ms� Doing so we realize that we have at disposition an action
of the four�torus T � on our symplectic manifold � #C � � 
� Introducing new �time� variables

�� � �t�
s

�
�
�

�
�
�

�

�� � �t�
s

�
� �

�
� �

� ����


�� � �t� s

�
� �

�
�
�

�

�� � �t� s

�
�
�

�
� �

�

this action takes the form

&��� z
 � �ei��z�� e
i��z�� e

i��z�� e
i��z�
 ����


and the associated moment J	 is readily given by

J	�z
 �
	

��
�jz�j�� jz�j�� jz�j�� jz�j�
 ����


which makes obvious that the image set is convex� Besides� our representation space is
spanned by the homogeneous polynomials of degree N in the variables z�� z�� z�� z� on
which the torus element g � �ei�� � ei�� � ei�� � ei��
 is represented by the transformation

X
anz

n �
X

an e
i�
nzn� ����


The multi�indices n � �n�� n�� n�� n�
 which appear above obey n� � n� � n� � n� � N
and provide labels for the irreducible multiplicity�free representations �N of the torus T ��

� Quantization of the Orbit Manifolds

In Section � we have established that the energy level submanifolds consist entirely of
closed orbits� This allows H��

� �E
 to be factorized with respect to dynamical "ow and
the so obtained manifold H��

� �E
�U�	
 � O��E
 is known as an orbit manifold� Its
complete description as a symplectic manifold is given below �

		



Theorem 	�� �Mladenov
Tsanov������ Let E � � and � �
p��E� Then �

i� if �j�j � �� O��E
 �� P � � P �

ii� if �j�j � �� O��E
 �� P �

iii� if �j�j � �� H��
� �E
 � �

The reduced symplectic form over P � � P � is �

 ��E
 �
������ ��


�
�� �

������ ��


�
�� ���	


where

�j �
i

��

d�j � d��j
�	 � j�j�
� � j � 	� � ����


and ���� ��
 are whichever non�homogeneous coordinates on P
� � P ��

The symplectic form over P � in item ii
 is the respective non�zero component of O��E

�depending on the sign of �
� This theorem reduces quantization of the MIC�Kepler
problem to geometric quantization of the compact K�ahler manifolds P � � P � and P ��
The proof is based on the following lemma�

Lemma 	�� O��E
 �� J������ �
�U�	
� U�	
�

Proof� When � 
� � the orbits of the Hamiltonian H coincides with that of K described
by Lemma ��	 � In particular� none of them belongs to #C � nT � #R� � D nf�g and therefore
we have one�to�one correspondence between the orbits of the MIC�Kepler problem on the
energy hypersurface H� � E and the orbits of the torus action on J������ �
 described
in Lemma ��� and this implies that the orbit spaces are identical�
What remains to be done in order to prove Theorem ��	 is to describe properly J������ �
�
For that purpose we remark that the system of equations K � ��� M � � is equivalent
to the system

jz�j� � jz�j� � ����� ��
� jz�j� � jz�j� � ����� ��


so we can conclude that

J������ �
 �

��
�

S� � S� when �j�j � ���
S� when �j�j � ���
� when �j�j � ���

The projection p � S� � S� � P � � P � is de
ned through the Hopf%s map of the corre�
sponding factors

p�z�� z�� z�� z�
 � ��z� � z��� �z� � z��
�

where �z� � z��� �z� � z�� are the homogeneous coordinates over P
��P �� In accordance with

Lemma ��� the projection p is just the factor�map

J������ �
 � J������ �
��U�	
� U�	



	�



In this way item i
 of the Theorem ��	 is proven� It is obvious that the restriction of p on
the non�trivial factor gives the map we are needed in order to prove ii
� Finally� item iii

is a trivial statement and what else has to be done is to compute the reduced symplectic
form� In the non�homogeneous coordinates

���� ��
 � �z��z�� z��z�


over P � � P �� p is simply

p�z�� z�� z�� z�
 � ���� ��
�

Referring to Lemma ��� we can write

p� ��E
 �  jS��S� �

where S��S� are spheres de
ned above� An easy check in coordinates shows that this is
true which means that Theorem ��	 is also proved�

De�nition 	�� The line bundle L over the compact K
ahler manifold X is called positive�
if Z

�

c��L
 	 �� for every positively oriented cycle � � H��X�Z
�

For this type of bundles H��X�O�L

 
� ��

Theorem 	�� �see Gri�ths 
 Harris ������ The group H��P ��P �
 � Z�Z is generated
by ����� ���� and

c��N
���
F 
 � �	

�
c��P

� � P �
 � � ����� � ����
�

In view of the prequantization condition ����
 we have

	

��
 ��E
 � N��� �N��� � N�� N� � Z�

which means that
�� � �� � �N�

��� �� � �N��

as well

� �
	

�
�N� �N�
 � � � ���N� �N�
 �

	�



Introducing N � �
�
�N� � N�
� we get immediately N� � N � � � N� � N � � as well

the energy spectrum of the MIC�Kepler problem EN � �����N�� The Hilbert space
H��P ��P � � QN
 is non�trivial if the 
rst Chern class of the line bundle QN � P ��P �

c��QN 
 � �N� � 	
���� � �N� � 	
����

is positive� i�e� N�� N� 	 	 andN 	 j�j�	� Finally� the degeneraciesm�EN
 of the energy
levels EN which coincide with dimensionalities of the spaces of holomorphic sections of
quantum line bundles QN are calculated by Riemann�Roch�Hirzebruch theorem�

m�EN
 � dimH��O��E
� QN
 � N� N� � N� � �� �

Remark 	�� The observables M� and A� in the complete set which survive under reduc	
tion can be expressed in the nonhomogeneous coordinates ���� ��
 over O��EN
 as follows�

M��N
� �

N�

�

	� j��j�
	 � j��j� �

N�

�

	� j��j�
	 � j��j�

A��N
� �

N�

�

	� j��j�
	 � j��j� �

N�

�

	� j��j�
	 � j��j� �

The expression for the third component of the Runge�Lenz vector is actually the momen�
tum mapping of the circular action around vertical axes of the spheres� If we 
x its value
to be � then the momentum manifold

N�
j��j�

	 � j��j� �N�
j��j�

	 � j��j� �
N�

�
�
N�

�
� � � N � � ����


is either the sphere S� when N � � � �� four points when N � � � � or the empty set
in the case N � � � �� This can be seen quite easily if we introduce the following set of
coordinates

�� �

�
N�

	 � j��j�
����

��� �� �

�
N�

	 � j��j�
����

�� ����


in which ����
 becomes obviously

j��j� � j��j� � N � �� ����


In the 
rst of the above listed cases we have a free action of SO��
 on J����
 and therefore
we can factorize it� The reduced manifold is topologically the sphere S� and the reduced
symplectic form is

�� � ���N � �
�� ����


where � is the form ����
 written in any of the non�homogeneous coordinates on the
projective line ��� � ���� Now the quantization condition reads

�N � �
� � � � k�� k 	 � ����


	�



from which follows that the maximal value of � is N � 	� Using Riemann�Roch theorem
one can easily 
nd that the number of the global holomorphic sections of the reduced
quantum bundle Lk over the sphere S

� is k � 	 � N � � � Introducing � �� ����� the last
function M��N

� from the complete set of observables can be written as

�N � �

	� j�j�
	 � j�j� � � ����


while the corresponding �quantum� operator is

��� �
��
�N � �� 	 � �� ����


The spectrum of this operator in ��S��O�Lk

 consists of equidistant of step two integer
or half�integer eigenvalues m � ��k � ���k � � � �� � � � ��k � �� �� k � ��� At classical
level ����
 is just the momentum map of the circle action around the third axe of the
sphere S� �so we can forget the additive constant �
 and if jmj � N � � this action is free�
This means that the inverse image of the momentum map is a circle and after reduction
we end with a point as reduced phase space� The representation space associated with
this point is one�dimensional as the only SO��
�invariant section which descends from S�

is the constant section� This can be seen also in another way if we remember that since
the very 
rst days of quantum mechanics there are attempts to associate the volume in
the phase space with the number of the pure states� This was proven to be assymptocally
true �up to universal factor
 by Heckman on the basis of the Duistermaat�Heckman exact
stationary phase formula ����� The main ingredient of this formula is the set of 
xed
points of the action which till now were not taken into account in our considerations� The
S� action on S� was treated in ���� and the result �in our notation
 is �

vol�S�
m
 �

��
�
	 if jmj � N � �� a point

� if jmj 	 N � �� empty�
���	�


The S� diagonal action on S��S� which has four 
xed points mentioned above is studied
by Wu ���� and in that case

vol
�
�S� � S�
�

�
�

��
�
���N � �
 if N � � � ��

� if N � � � ��
���		


Finally the volume of the orbit manifold O��N
 is ��
�N�N� and all this coincides with

the results we have obtained before�
In view of the complete coherence of the results obtained at all level of consideration�
starting with the extended and ending with a point� we can conclude that the reduction�
quantization technique is the right and straightforward formalism for the treatment of sys�
tems with high symmetries� The missing quantum numbers can be derived by quantizing
various symplectic manifolds which appear at di�erent stages of the reduction procedure�
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