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Abstract

We study the average behaviour of the well�known greedy algorithms for the one�dimensional

knapsack problem with Boolean variables when the number of variables n tends to in�nity� It is

supposed that the right�hand side b of the constraint depends linearly on n� i�e� b � �n� It is

shown that if � �
�

�
�

t

�
then the primal and the dual greedy algorithms have an asymptotical

tolerance t�

� Introduction

Our main object is the classical knapsack problem with Boolean variables� It consists in
�nding

f � � maxf
nX
j��

cjxjj
nX
j��

ajxj � b� x � B
n
g� ���

All coe�cients in ��� are positive� The standard interpretation of the problem ��� is the
following� we have to �ll a knapsack of capacity b with the most pro�table subset of items
from f�� � � � � ng� where each item j is characterized by its utility cj and weight aj� The Boolean
variables xj equal � if the item j is chosen� and 	 otherwise�

Without loss of generality� we can suppose that aj � b for all j �otherwise the variables
xj for wich this inequality is violated can be excluded�� and that

Pn
j�� aj � b �otherwise the

problem ��� is trivial� and its optimal solution is x� � ��� � � � � ���� Besides� we shall suppose
that c�

a�
�

c�
a�
� � � � �

cn
an

� �
�

i�e�� the variables xj are numbered in the non�increasing order of their �utility densities� cj�aj�
The condition �
� is often called the regularity condition�

The problen ��� has numerous applications� and it is one of the main models of combinato�
rial optimization� From the viewpoint of the general complexity theory� it is NP �hard� This
means that exact algorithms with polynomial complexity can only exist in the case P � NP �
Therefore� the main research e
orts are now concentrated around approximate methods for
the problem ���� and this tendency is characteristic for the entire combinatorial optimization�

Among these approximate methods� the so�called greedy methods play a major role� They
can be interpreted as discrete analogs of gradient �or steepest�ascent� methods in continuous
optimization� Their undoubted advantage is that for the problem ��� they work in linear time
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�if the regularity condition �
� is ful�lled�� The greedy methods do not guarantee optimality�
however� theoretical estimations of their worst�case performance can be given� Details can be
found in the review paper ����

The idea of the greedy algorithm for the problem ��� consists in a consecutive selection
of items with the largest density cj�aj until the knapsack capacity admits it� More formally�
the algorithm starts with a feasible solution x � �	� � � � � 	� and consecutively replaces zeroes
by ones in the order of decreasing ratios cj�aj �i�e�� from the left to the right�� every time the
feasibility of the corresponding solution is checked� The process terminates after obtaining
the last feasible solution� This solution xG is called the greedy solution� the corresponding
objective function value is denoted by fG�

An idea which is in some sense opposite� consists in a consecutive rejecting the least
pro�table items �again� in the sense of the ratios cj�aj� until the remaining ones �t in the
knapsack� In accordance with the usual terminology� such algorithms can be called dual
algorithms� Therefore the greedy algorithm described above will sometimes be termed primal�
More formally� the dual greedy algorithm starts with an infeasible solution x � ��� � � � � �� and
consecutively replaces ones by zeroes in the order of increasing ratios cj�aj �i�e�� from the
right to the left�� Every time the feasibility of the current solution is checked� The process
terminates when the �rst feasible solution is obtained� This solution xDG is called the dual
greedy solution� the corresponding objective function value is denoted by fDG�

First of all we note that the primal and the dual greedy solutions can be di
erent �even if
all inequalities in the regularity condition �
� are strict�� The simplest example is

maxf�x� � �x� � x�j
x� � 
x� � x� � �� x � B
�
g� ���

Here we have xG � ��� 	� ��� xDG � ��� 	� 	��
Up to now� practically no attention to the analysis of dual greedy algorithms was paid�

The reason was probably the following �folklore theorem��

Proposition � The dual greedy algorithm for the problem ��� can be arbitrarily bad�

It is natural to estimate the performance of the dual greedy algorithm by the ratio RDG �
fDG�f �� The assertion means that RDG can take arbitrarily small values� To prove this� we
consider the following one�parametric family of instances of ����

maxf�x� � 
�x�jx� � �x� � �� x � B
�
g� ���

where � � ��
� We have x� � �	� �� and f � � 
�� At the same time� xDG � ��� 	�� fDG � ��
Thus� RDG � ��
� tends to zero when ����

We discuss brie�y some connections between primal and dual greedy solutions� To this
end� we shall need several de�nitions� For any vector x � B

n
� we call its fragment any set

of its consecutive components equal to �� A fragment is maximal if it cannot be extended to
the left and to the right� There is a natural ordering of maximal fragments� Vectors having a
unique maximal fragment are called connected� Consider now vectors from B

n
satisfying one

of the conditions

x� � x� � � � � � xn� ���

x� � x� � � � � � xn� ���

It is clear that such vectors either do not contain any fragments �i�e�� they are null vectors�
or they have exactly one maximal fragment� that is� they are connected� We call vectors

�



satisfying ��� lower connected� and vectors satisfying ��� upper connected� Thus� lower con�
nected vectors have the form ��� � � � � �� 	� � � � � 	�� and upper connected vectors � the form
�	� � � � � 	� �� � � ����

Now we consider again the problem ���� We note that the primal greedy solution is not
necessarily connected �cf� the example ����� The following assertion holds�

Proposition � Let xG� xDG be respectively the primal and the dual greedy solutions to the
problem ���� Then

�� xDG is lower connected�
�� xDG � xG �the inequality is componentwise� where the equality takes place if and only

if xG is lower connected�
�� xDG contains the �rst maximal fragment of xG and only this fragment�

From the assertion 
� and the positivity of the objective function coe�cients it follows
that fDG � fG� In other words� the dual greedy algorithm cannot be better than the primal
one� We formulate the last assertion in a somewhat extended form which will be important
later� Consider the linear relaxation of ��� which consists in �nding

fLR � maxf
nX
j��

cjxjj
nX
j��

ajxj � b� 	 � xj � �� j � �� � � � � ng� ���

Corollary� The following inequalities hold

fDG � fG � f � � fLR� ���

It is well�known that the optimal solution xLR to the linear relaxation ��� has the form

xLR � �x�� � � � � xk��� xk� 	� � � � � 	��

where x� � � � � � xk�� � �� 	 � xk � �� and the index k is determined as

k � maxfsj
s��X
j��

aj � bg

or� equivalently� as

k � minfsj
sX

j��

aj � bg�

The number k is called the critical index for the problem ���� Its de�nition implies that

k��X
j��

aj � b�
kX

j��

aj � b�

In another terminology� this means that k is the �rst index �skipped� by the primal greedy
algorithm� or� equivalently� that �x�� � � � � xk��� is the �rst maximal fragment of the vector xG

�or� according to the assertion �� of Proposition 
� the unique maximal fragment of xDG��
The value of xk can be easily found explicitly�

xk �
b�

Pk��
j�� aj

ak
� ���

�



Thus we have
xLR � �F� xk� 	� � � � � 	��

where F is the maximal fragment of xDG� 	 � xk � �� From this if follows immediately that

fLR � fDG � ckxk� ��	�

where k is the critical index� and xk is determined by ����
The proofs together with a generalization of these results to more general combinatorial

structures �independence systems� can be found in �
�� ����
We showed above that the dual greedy algorithm can be arbitrarily bad� On the other

hand� this algorithmwas successfully used �as a subroutine� in solving some applied large�scale
problems where it gave remarkably good results� This controversy between bad theoretical
and good actual performance of an algorithm can be� as usually� resolved by studying not the
worst�case but the average behaviour of this algorithm�

We began to implement this general program in �
� �see also the preliminary publication
����� Roughly speaking� it was shown there that if� for a random set of coe�cients� the �fea�
sibility probability� tends to � with the growth of the number of variables then the objective
function values for the primal and the dual greedy algorithms� with a large probability� di
er
insigni�cantly from the optimal value� However� this result had in a certain sense a condi�
tional character� It remained to �nd bounds for the right�hand side of the problem for which
this theorem is non�trivially true �see some short comments concluding �
��� This is the main
subject of the present paper�

� The main result

Our main assumption is rather traditional in the investigation of the average behaviour of
algorithms� We suppose that all coe�cients cj� aj� j � �� � � � � n are independent random
variables uniformly distributed on �	���� The assumption about b will be made a little later�

We denote zj � cj�aj� Let z
k be the random variable equal to the �n� k � ���th term of

the variational series determined by the n�tuple of random variables z�� � � � � zn� i�e� z
� � z� �

� � � � zn� We introduce now the random variables ck� ak as follows� If zk � cq�k��aq�k�� we let

ck � cq�k�� a
k � aq�k��

We are interested in the behaviour of approximate algorithms for problems with n variables
when n grows� Suppose that we are applying to a combinatorial optimization problem some
approximate algorithm A� We denote this algorithm by An to stress the dependence on the
number of variables� We say that the algorithm An has the asymptotical tolerance t if

P�f � � fAn � t� ��
n��

��

where f � is the optimal value� t � 	�
This de�nition is rather general� Further we shall consider the knapsack problem ���� and

An will be the greedy algorithm� We formulate now our main result�

Theorem � If b � �n where

� �
�



�

t

�
�

then the primal and the dual greedy algorithms have the asymptotical tolerance t�

�



The proof of this theorem will be split into several stages�
First of all� we de�ne the following events �the notation was introduced in the Introduc�

tion��

An � fLR � fDG � t

Bn
k � xLR � ��� � � � � �� �� 	� � � � � 	�� where the component � � �	� �� has the number k�

k � �� � � � � n�

Bn
n�� � x

LR � ��� � � � � ��

Cn
k � ck � t� k � �� � � � � n�

Choose a t� � t and denote

N � n
�
��

t�




�
�

We formulate now two conditions�

C o n d i t i o n ��
Pn

k�N P�C
n

k� ��n��
	�

C o n d i t i o n 
�
Pn��

k�N P�B
n
k � ��n��

��

The general idea of the proof of the main Theorem � is that the validity of Conditions �
and 
 implies the assertion of this theorem� We establish �rst some auxilary results�

Lemma � The following implication holds

An �
nX

k�N

Bn
kC

n
k �Bn

n��

�

P r o o f� We have Bn
n��A

n � Bn
n��� and the assertion follows from the relations

An � Bn
�A

n � � � ��Bn
nA

n �Bn��An �

� Bn
�C

n
� � � � ��Bn

nC
n
n �Bn

n�� �
nX

k�N

Bn
kC

n
k �Bn

n���

Lemma � The following inequalities hold

P�An� �
nX

k�N

P�Bn
kC

n
k � �

nX
k�N

�P�Bn
k ��P�C

n

k���

P r o o f� We have

� � P�Bn
k � Cn

k � � P�Bn
k � �P�Cn

k ��P�Bn
kC

n
k ��

Therefore
P�Bn

kC
n
k � � P�Bn

k � �P�Cn
k �� � � P�Bn

k ��P�C
n

k��

and this implies the assertion�
It can be seen from Lemma � that if in the conditions of Theorem � there is a N � N�n�

for which Conditions � and 
 hold� then the main Theorem � will be proved� We shall seek
N of the form N � nt�� 	 � t� � �� It will be shown that if we take t� � �� t�

�
where

��
t

�
� ��

t�

�
� ��

then for N � nt� the Conditions � and 
 will be ful�lled� In the next section the validity of
Condition � for N � nt� will be demonstrated�

�



� The proof of Condition �

First of all we �nd the main probabilistic characteristics of the random variables cj� aj in�
troduced at the beginning of the previous section� We use the standard notation �cf� ����
Ch�VI�

b�j � �� n� �� �� t� �

�
n� �

j � �

�
��� t�j��tn�j ����

for the probability of j�� successes in n�� Bernoulli trials with the success probability �� t�
The values �realizations� of the random variables cj� aj will be denoted by �j� �j respectively�

Lemma � The density fj��j� of the random variable cj is

fj��j� � 
n

�
n� �

j � �

�
�j

Z �

�

�
xj����� x�n�jdx�

�
�



n

�
n� �

j � �

�
�j

Z �

�

�j
�

��� y�j��yn�j��dy� ��
�

P r o o f� It is easy to see that

P�zj � z� �

������
�����

	 z � 	
z



	 � z � �

��
�


z
z � ��

����

Fix an index j � f�� � � � � ng� We get from ���� that the probability that some j � � of the
random variables zj will take the value � �j��j and the remaining random variables will be
greater than �j��j is �taking into account that any random variable can occupy the place j�

p��j��j� �

�����
����
nb�j � �� n� ��

�j

�j

�
�j
�j

� �

nb�j � �� n� �� ��
�j

�j

�
�j
�j

� ��
����

It follows that the probability of the event

cj � ��j� �j ���j�� a
j � ��j� �j ���j�

equals
p��j��j���j��j � o���j��j��

Therefore the joint density r��j� �j� of the random variables cj� aj is

r��j� �j� � p��j��j�� ����

and the density of cj will be

fj��j� �
Z �

�
r��j� �j�d�j� ����

Using the representation ����� we get from ���� � ����

fj��j� � n

�
n� �

j � �

�Z �j

�

�
�j

�j

�j���
��

�j

�j

�n�j
d�j�

�



� n

�
n� �

j � �

�Z �

�j

�
��

�j

�j

�j��� �j

�j

�n�j
d�j�

Changing the variables �j��
�j� � x in the �rst integral and �j��
�j� � y in the second one�
we get the representation ��
��

Lemma � The distribution function Fj�t� of the random variable cj for 	 � t � � is

Fj�t� � n

�
n� �

j � �

�
t�
Z �

�

�
xj����� x�n�jdx�

�
�

�
n

�
n� �

j � �

�
t�
Z �

�

t
�

��� x�j��xn�j��dx� ����

� n

�
n� �

j � �

� Z t
�

�
��� x�j��xn�jdx�

P r o o f� We have

Fj�t� �
Z t

�
fj��j�d�j �

� 
n

�
n� �

j � �

�Z t

�
�j

Z �

�

�
xj����� x�n�jdx d�j�

�
�



n

�
n� �

j � �

�Z t

�
�j

Z �

�

�j
�

��� y�j��yn�j��dy d�j�

The �rst of these integrals is calculated directly� and the second one can be easily found by
partial integration� Letting

u �
Z �

�

�j
�

��� y�j��yn�j��dy� dv � �j d�j�

we get� after elementary transformations� the representation �����

Lemma � The density gj��j� of the random variable aj is

gj��j� � 
n

�
n� �

n� j

�
�j

Z �

�

�
xn�j��� x�j��dx � ����

�
�



n

�
n� �

n� j

�
�j

Z �

�

�j
�

��� y�n�jyj��dy�

P r o o f� The formula ���� could be obtained similarly to ���� �that is� by integration of the
joint density r��j� �j� over �j�� Another reasoning consists in the following� The inequalities

c�

a�
�

c�

a�
� � � � �

cn

an

are equivalent to
an

cn
�

an��

cn��
� � � � �

a�

c�
�

Therefore the density of aj is equal to the density of cn�j��� Substituting in ��
� �j instead
of �j and replacing j in the exponents by n� j � �� we get �����

Now we can proceed to the proof of Condition ��

�



Theorem � Let N � nt�� where t� � �� t�

�
� t� � t� Then the Condition �

nX
k�N

P�Cn
k � ��n��

	

is ful�lled�

P r o o f� We have
P�Cn

k � � �� Fk�t��

where Fk�t� is the distribution function of the random variable ck� It follows from the repre�
sentation ���� that

Fk�t� � n

�
n� �

n� j

� Z t
�

�
��� x�k��xn�kdx �

k��X
���

�
n

�

��
��

t




��� t



�n��
�

From this we get

P�Cn
k � � ��

k��X
���

�
n

�

��
��

t




��� t



�n��
�

Therefore

P�Cn
k � �

nX
��k

�
n

�

��
��

t




��� t



�n��
�

Thus�
nX

k�N

P�Cn
k � �

nX
k�N

nX
��k

�
n

�

��
��

t




��� t



�n��
�

Transforming the double sum in the right�hand side� we get

nX
k�N

P�Cn
k � �

nX
j�N

�j �N � ��

�
n

j

��
��

t




�j� t



�n�j
� ����

Now we can prove that the right�hand side of ���� tends to zero when n � �� and the
required assertion follows� The technical details of this proof are given in Appendix ��

The proof of Condition 
 will be performed by using the Tchebyshev�s inequality� this
requires some preparations�

� The joint distribution of ak and a
l

Our next goal is the computation of the joint distribution of two random variables ak and al�
We introduce �rst the random variables uj � aj�cj� We have uj � ��zj where zj was de�ned
at the beginning of Section 
� Thus� u� � u� � � � � � un�

Similarly to the proof of Lemma �� it is easy to show that

P�uj � u� �

������
�����

	 u � 	
u



	 � u � �

��
�


u
u � ��

�
	�

�



We choose two arbitrary indices k� l from f�� � � � � ng such that k � l� Further� choose
two arbitrary ordered indices from f�� � � � � ng and denote then by ik� il� The number of such
choices is




�
n




�
� n�n� ���

Consider the sets

S� 	 f�� � � � � ng n fik� ilg� jS�j � k � �
S� 	 f�� � � � � ng n �S� 
 fik� ilg�� jS�j � l � k � �
S� � f�� � � � � ng n �S� 
 S� 
 fik� ilg�� jS�j � n� l�

The number of possible choices of ik� il� S�� S�� S� is

n�n� ��
�n� 
��

�k � ����l � k � ����n� l��
�

�
n�

�k � ����l � k � ����n� l��
� c�n� k� l��

Choose four number �k� �k� �l� �l between 	 and � such that �k��k � �l��l� Consider the
conditional probability

	�ik� il� S�� S�� S�� �k��k� �l��l� �

� P

�
ui �

�k
�k

� ik � S��
�k
�k

� ui �
�l
�l
� i � S�� ui �

�l
�l
� i � S�juik �

�k
�k

� uil �
�l
�l

�
�

From the independence of ui we get

	�ik� il� S�� S�� S�� �k��k� �l��l� �

� P�ui �
�k
�k

� ik � S��P�
�k
�k

� ui �
�l
�l
� i � S��P�ui �

�l
�l
� i � S��� �
��

For ik� il� S�� S�� S� de�ned above� all probabilities 	�ik� il� S�� S�� S�� �k��k� �l��l� are
equal� Therefore the sum of all probabilities 	�ik� il� S�� S�� S�� �k��k� �l��l� over all ik� il� S��
S�� S� equals

p��k��k� �l��l� � c�n� k� l�	�ik� il� S�� S�� S�� �k��k� �l��l��

This implies that the probability of events

ak � ��k� �k ���k�� ck � ��k� �k ���k��
al � ��l� �l ���l�� cl � ��l� �l ���l�

is
p��k��k� �l��l���k��k��l��l � o���k��k��l��l�

if �k��k � �l��l� and is zero otherwise� Therefore the joint density r��k� �k� �l� �l� of the
random variables ak� ck� al� cl will be

r��k� �k� �l� �l� �
�
p��k��k� �l��l� �k��k � �l��l
	 �k��k � �l��l�

Now� using �
	�� we �nd the probabilities in the right�hand side of �
��� Here three cases
are to be considered�

�



C a s e ��
�k
�k

� ��
�l
�l
� ��

�k
�k

�
�l
�l
� In this case we have

p� � c�n� k� l�
�
�k

�k

�k��� �l

�l

�
�k

�k

�l�k���
��

�l

�l

�n�l
�

C a s e 
�
�k
�k

� ��
�l
�l

� �� In this case

p� � c�n� k� l�
�
�k

�k

�k���
��

�l

�l

�
�k

�k

�l�k��� �l

�l

�n�l
�

C a s e ��
�k
�k

� ��
�l
�l

� ��
�l
�l

�
�k
�k

� Here we have

p� � c�n� k� l�
�
��

�k

�k

�k��� �k

�k

�
�l

�l

�l�k���
��

�l

�l

�n�l
�

Thus�

r��k� �k� �l� �l� �

���������������
��������������

p�

�
�k
�k

�
�l
�l

�
if

�k
�k

� ��
�l
�l
� ��

�k
�k

�
�l
�l

p�

�
�k
�k

�
�l
�l

�
if

�k
�k

� ��
�l
�l

� �

p�

�
�k
�k

�
�l
�l

�
if

�k
�k

� ��
�l
�l

� ��
�k
�k

�
�l
�l

	 if
�k
�k

�
�l
�l
�

Therefore the joint density hk l��k� �l� of the random variables ak and al equals

hk l��k� �k� �
Z �

�

Z �

�
r��k� �k� �l� �l�d�k d�l �

�
Z
��

p�

�
�k
�k

�
�l
�l

�
d�k d�l �

Z
��

p�

�
�k
�k

�
�l
�l

�
d�k d�l �

�
Z
��

p�

�
�k
�k

�
�l
�l

�
d�k d�l� �

�

where

�� � ����k� �l� � f��k� �l�j
�k
�k

� ��
�l
�l
� ��

�k
�k

�
�l
�l
� 	 � �k � �� 	 � �l � �g

�� � ����k� �l� � f��k� �l�j
�k
�k

� ��
�l
�l

� �� 	 � �k � �� 	 � �l � �g

�� � ����k� �l� � f��k� �l�j
�k
�k

� ��
�l
�l

� ��
�k
�k

�
�l
�l
� 	 � �k � �� 	 � �l � �g�

We denote the integrals in the right�hand side of �

� by I�� I�� I� respectively� Consider
the �rst of these integrals

I� � c�n� k� l�
Z
��

�
�k

�k

�k��� �l

�l

�
�k

�k

�l�k���
��

�l

�l

�n�l
d�k d�l�

�	



Changing the variables �k��
�k� � x� �l��
�l� � y� we get

I� �
�

�
c�n� k� l��k�l

Z
��

�

xk���y � x�l�k����� y�n�ly��dx dy�

Here the integration domain ��� in the new variables turns out to be dependent on the ratio
�l��k� For the case �l��k � � we have

I� �
�

�
c�n� k� l��k�l

Z �

�

�k
�

��� y�n�ly��
Z y

�k
�

xk���y � x�l�k��dx dy� �
��

and for the case �l��k � � �

I �� �
�

�
c�n� k� l��k�l

Z �

�

�l
�

��� y�n�ly��
Z y

�k
�

xk���y � x�l�k��dx dy� �
��

Elementary technical details are omitted� Consider the second integral in �

��

I� � c�n� k� l�
Z
��

�
�k

�k

�k���
��

�l

�l

�
�k

�k

�l�k��� �l

�l

�n�l
d�k d�l�

Changing the variables �k��
�k� � x� �l��
�l� � y� we get

I� � c�n� k� l��k�l

Z �

�

�
yn�l

Z �

�

�k
�

xk����� y � x�l�k��dx dy� �
��

Here the integration domain in the new variables x� y is a rectangle independent on the ratio
�l��k�

In the third integral from �

�

I� � c�n� k� l�
Z
��

�
��

�k

�k

�k��� �k

�k

�
�l

�l

�l�k��� �l

�l

�n�l
d�k d�l

we change the variables �k��
�k� � x� �l��
�l� � y and obtain

I� � �c�n� k� l��k�l

Z �

�

�
��� x�k��

Z x

�
�x� y�l�k��yn�ldy dx� �
��

In this case the initial integration domain depends on the ratio �l��k� but the integration
domain in the new variables x� y turns out to be the same triangle�

Thus� we can summarize the considerations of this section in the form of the following
assertion�

Theorem �	 nsity hk l��k� �l� of the random variables ak� al equals

hk l��k� �l� �

����
���
I� � I� � I�

�l
�k

� �

I �� � I� � I�
�l
�k

� �

where I�� I
�
�� I�� I� are de�ned in ����� ��	�� ��
�� ���� respectively�

��



� The expected value and the variance of a� � � � �� a
N

Let again

N � n
�
��

t�




�
�

where t� � t �cf� Section 
�� We introduce the notation

AN �
NX
k��

ak�

Our next goal is the computation of E�AN��

Lemma �� The following representation holds

E�AN� �



�
n
Z �

�

�

N��X
k��

�
n� �

k

�
xn�k����� x�k dx�

�
�

�
n
Z �

�

�
y
N��X
k��

�
n� �

k

�
��� y�n�k��yk dy� �
��

The proof will be given in Appendix 
�
In the sequel we shall use the following lemma which is an analogue of the Law of Great

Numbers� Introduce the notation �cf� ���� � VI�

Bn � B�mn � 
� n� �� �� x� �
mn��X
j��

�
n� �

j

�
��� x�jxn�j��� �
��

where 
 is an arbitrary �xed number �may be� non�positive�� It is understood here that if 

is not an integer then the summation is extended to dmn � 
e�

Lemma �� The following assertions hold�
�� Let mn � �n� where � � �� x� Then Bn � � if n���
�� Let mn � �n� where � � �� x� Then Bn � 	 if n���

P r o o f� The value Bn in �
�� is the probability of at most mn � 
 successes in n � �
Bernoulli trials with the success probability ��x� Denote by sn�� the random variable equal
to the number of successes in n � � Bernoulli trials� Since from �� we have � � x � �� it is
possible to choose an � � 	 such that

�� x � � � ��

Then for n su�ciently large

Bn � P�sn�� � �n� ����� x � ��� � P

�				 sn��n� �
� ��� x�

				 � �
�
�

According to the Law at Great Numbers� the last probability tends to � when n ��� The
�rst assertion is established� The second assertion can be proved similarly�

Further� for N � n��� t�

�
� we have the following assertion

��



Theorem �� The expected value of AN is

E�AN� � n
�
�



�

t�

�

�
� o�n�� �
��

P r o o f� Consider the integral representation �
�� for E�AN�� given in Lemma ���
According to Lemma �
 �for mn � N � 
 � ���� the �rst integrand in �
�� for n su�ciently
large will tend to � for �� t�

�
� �� x� �i�e�� for x � t�

�
� and will tend to 	 for x � t�

�
� Now we

use Lebesgue�s bounded convergence theorem� The integral of the limiting function is

Z �

�

t�

�

�dx �
�



�

t�



�

Thus� the �rst summand in the right�hand side of �
�� will be




�
n
�
�



�

t�




�
� o�n� � n

�
�

�
�

t�

�

�
� o�n��

The second integrand in �
�� by Lemma �
 will be tend to � for all y � �� t�

�
� that is� for all

y in the integration domain� Therefore the second summand is

�

�
n
Z �

�

�
y dy � o�n� �

�

�
n � o�n��

Thus� both summands together yield

E�AN� � n
�
�



�

t�

�

�
� o�n��

as asserted�
Now we compute the variance V�AN� taking again N � n��� t�

�
��

Lemma �� The following representation holds

V�AN� �
�



n
Z �

�

�

N��X
k��

�
n� �

k

�
xn�k����� x�kdx�

� 
n
Z �

�

�

N��X
k��

�
n� �

k

�
��� y�n�k��ykdy � ��	�

�
�

�
n�n� ��

Z �

�

NX
l��

�
n� 


l � 


��
��

�




�n�l��



�l��
d��

�



�
n�n� ��

Z �

�

�

NX
l��

�
n� 


l � 


�
yn�l��� y�l��dy �

�
�

�
n�n� ��

Z �

�

NX
l��

�
n� 


l � 


�
yn�l����� y�l��dy �

� �E�AN��
��

The proof which is quite technical is given in Appendix 
�

Theorem �� The following assertion holds

V�AN� � o�n��� ����

��



The proof is similar to the proof of Theorem ��� it is based on Lemma �
 and Lebesgue�s
theorem� Consider the representation ��	�� The �rst two summands in ��	� are processed in
the same way as in the proof of Theorem ��� The �rst summand is

�



n
Z �

�

t�

�

dx� o�n� �
�



n
�
�



�

t�




�
� o�n��

and the second one


n
Z �

�

�
y�dy � o�n� �

�

�
n� o�n��

Thus� the �rst two summand together yield

�



n
�
��

t�




�
� o�n��

which is of order O�n��
We proceed similarly� Rewrite the integrand in the third summand of ��	� in the form

�
�




�� N��X
k��

�
n� 


k

��
��

�




�n�k����



�k
�

It will tend to � for �� t�

�
� �

�
� that is for � � 
� t�� Thus� the third summand will be

�

�
n�n� ��

Z �

�

�
�




��
d� � o�n�� �

�

��
n�n� �� � o�n���

The fourth integrand by Lemma �
 will tend to � for �� t�

�
� ��y� i�e� for y � t��
� Therefore

the fourth integral equals




�
n�n� ��

Z �

�

t�

�

dy �
�

�
n�n� ����� t�� � o�n���

Rewriting the �fth integrand in the form

y
N��X
k��

�
n� 


k

�
��� y�kyn���k�

we see that it tends to � for y � t��
� Therefore the �fth integral is

�
�

�
n�n� ��

Z �

�

t�

�

ydy � o�n�� �
�

�
n�n� ����t��� � �� � o�n���

The sum of the third� the fourth anf the �fth integrals is then

n�n� ��
�
�

��
�

�

�
��� t�� �

�

�
��t��� � ��

�
� o�n�� � n�n� ��

�
�



�

t�

�

��
� o�n���

Further� from Theorem �	 we have

�E�AN��
� � n�

�
�



�

t�

�

��
� o�n���

Collecting all summands in ��	� yields

V�AN� � O�n� � n�n� ��
�
�



�

t�

�

��
� n�

�
�



�

t�

�

��
� o�n�� � o�n���

The theorem is proved�

��



� The proof of Condition �

Let� as earlier� N � n��� t�

�
�� t� � t� We introduce the random variables

Yn �
a� � � � �� aN

n
�

Theorem �� For any � � 	

P�jYn � E�Yn�j � ��� � for n���

P r o o f� According to Tchebyshe
�s inequality�

P�jYn � E�Yn�j � �� �
V�Yn�

��
�

Furthermore we have

V�Yn� �
�

n�
V�AN� � o����

since� by Theorem ��� V�AN� � o�n��� Therefore

P�jYn �E�Yn�j � ��� 	 if n���

and the complementary probability tends to �� The theorem is proved�
We proceed now to the proof of Condition 


n��X
k�N

P�Bn
k � ��n��

��

We suppose that b � b�n��

Theorem �� If b�n� � �n� where

� �
�



�

t�

�
�

�



�

t

�
�

then the Condition � is satis�ed�

P r o o f� We have

n��X
k�N

P�Bn
k � �

n��X
k�N��

P�Bn
k � � P�AN � b�n��� ��
�

We proved earlier �Theorem ��� that

E�AN� � n
�
�



�

t�

�

�
� o�n��

It follows from the conditions of our theorem that

E�AN�

n
� � � �

or
E�Yn� � � � ��

��



Therefore

P�AN � �n� � P�a� � � � �� aN � �n� � P

�
a� � � � �� aN

n
� �

�
�

� P

�
a� � � � �� aN

n
�E�Yn� � �

�
� P

�
�� �

a� � � � �� aN

n
� E�Yn� � �

�
�

� P

�				a
� � � � �� aN

n
� E�Yn�

				 � �
�
� P�jYn � E�Yn�j � ��� ��

The last equality follows from Theorem ��� Thus� we see from ��
� that the Condition 
 is
satis�ed�

Now the validity of our main theorem is implied by Theorems � and ���
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� Appendix �

Completion of the proof of Theorem �

We stopped at the inequality �����

nX
k�N

P�C
n

k� �
nX

j�N

�j �N � ��

�
n

j

��
��

t




�j� t



�j
� ����

We estimate the sum in the right�hand side of this inequality� Denote

b
�
j� n� ��

t




�
� bj �

�
n

j

��
��

t




�j� t



�n�j
�

The well�known calculation �cf� ���� Ch� VI� n��� shows that

bj
bj��

�
�n� j � ����� t

�
�

j � t
�

� � �
�n� ����� t

�
�� j

j � t
�

�

It follows that the sequence fbjg decreases for j � �n� ����� t
�
�� Therefore for our choice of

N the �rst summand in the right�hand side of ���� will be maximal for n su�ciently large�
Indeed� for N � n��� t�

�
�� t� � t we have

n
�
��

t�




�
� n

�
��

t




�
�

which implies

n �



� t

t� t�

�
�

Carrying out in ���� the maximal summand� we get

nX
k�N

P�C
n

k� �

�
n

N

��
��

t




�N� t



�n�N�
� �

nX
j�N��

�j �N � ��
bj
bN

�
�

�

�
n

N

��
��

t




�N� t



�n�N�
� � 


bN��

bN
� �

bN��

bN
� � � �� �n�N � ��

bn
bN

�
�

We have

bN��

bN
�

�n�N���� t
�
�

�N � �� t
�

� �� ����

bN��

bN
�

�n�N��n�N � ����� t
�
��

�N � ���N � 
�� t
�
��

�

Replacing n�N � � in the nominator by n�N and N �
 in the denominator by N ��� we
increase the fraction� Thus�

bN��

bN
�

�n�N����� t
�
��

�N � ���� t
�
��

� ���

��



Further we can proceed inductively� We have

nX
k�N

P�C
n

k� �

�
n

N

��
��

t




�N� t



�n�N
�� � 
�� ��� � � � �� �n�N � ���n�N��

where � � �� Passing to the limit by n� we have to take into account that �� as de�ned in
����� depends on n� Substituting into ���� N � n��� t�

�
�� we have

� �
�n� n��� t�

�
����� t

�
�

�n��� t�

�
� � �� t

�

�
t�

�
��� t

�
�

t
�
��� t�

�
� � �

n
t
�

�

Discarding in the denominator the summand �
n
t
�
� we increase the fraction� Thus

� � � �
t�

�
��� t

�
�

t
�
��� t�

�
�
�

We see that � � � �because t� � t� and that � � ��n�� � when n��� This yields

nX
k�N

P�C
n

k� �

�
n

N

��
��

t




�N� t



�n�N
�� � 
� � ��� � � � ���

Obviously

� � 
� � ��� � � � � � �� � �� � �� � � � ��� �
�

�

�� �

��
�

�

��� ���
�

Therefore� passing in the last inequality to the limit� we get

lim
n��

nX
k�N

P�C
n

k� � lim
n��

�
n

N

��
��

t




�N� t



�n�N �

��� ���
�

Now we see that the right�hand side tends to zero when n ��� since the last multiplicand
does not depend on n� The theorem is proved�

�	 Appendix �

Proof of Lemma ��

We �nd �rst the expected value of ak� The density gk��k� of the random variable ak was
found in Lemma � �cf� ������ We have

E�ak� �
Z �

�
�kgk��k�d�k �

� 
n

�
n� �

n� k

�Z �

�
��
k

Z �

�

�
xn�k��� x�k��dx d�k � ����

�
�



n

�
n� �

n� k

�Z �

�
��
k

Z �

�

�k
�

��� y�n�kyk��dy d�k�

��



The �rst integral in the right�hand side of ���� is




�
n

�
n� �

n� k

�Z �

�

�
xn�k��� x�k��dx� ����

and the second one will be found by partial integration� Let

Z �

�

�k
�

��� y�n�kyk��dy � u� ��
k d�k � dv�

We have

v �
�

�
��
k� du � �

�




�
��

�k



�n�k��k



�k��
d�k�

The second integral in the right�hand side of ���� will be then

�



n

�
n� �

n� k

��
�

�

Z �

�

�k
�

��� y�n�kyk��dy � ��
k

				�
�
�

�

�

Z �

�
��
k

�
��

�k



�n�k��k



�k��
d�k



�

The �rst term in brackets is zero� and the second one� after obvious simpli�cations �we let
�k�
 � y� can be rewritten as

�

�
n

�
n� �

n� k

�Z �

�

�
��� y�n�kykdy� ����

The expected value of ak is the sum of ���� and ����� i�e�

E�ak� �



�
n

�
n� �

n� k

�Z �

�

�
xn�k��� x�k��dx�

�

�
n

�
n� �

n� k

�Z �

�

�
��� y�n�kykdy�

For the expected value of
PN

k�� a
k we have� after elementary transformations�

E�
NX
k��

ak� �



�
n
Z �

�

�

NX
k��

�
n� �

n� k

�
xn�k��� x�k��dx �

�

�
n
Z �

�

�

NX
k��

�
n� �

n� k

�
��� y�n�kykdy �

�



�
n
Z �

�

�

N��X
k��

�
n� �

k

�
xn�k����� x�kdx�

�

�
n
Z �

�

�
y
N��X
k��

�
n� �

k

�
��� y�n�k��ykdy�

Thus� the representation �
�� is proved�

�� Appendix �

The proof of Lemma ��

We have from the de�nition

V�AN� � E�A�
N�� �E�AN��

� �

�
NX
k��

E��ak��� � 

X

k�l�N

E�akal�� �E�AN��
�� ����

��



We calculate the �rst sum in the right�hand side of ����� The density gk��k� of the random
variable ak is given by Lemma � �cf� ������ We have

E��ak��� �
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�
��
kgk��k�d�k �
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n

�
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n� k
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k
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n� k

� Z �

�
��
k
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�

�k
�

��� y�n�kyk��dy d�k� ����

The subsequent calculations are identical to those in the proof of Lemma �� �cf� Appendix

�� We get
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�
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�
yk����� y�n�kdy� ��	�

Summing these expressions� we have

NX
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�
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�
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k

�
��� y�n�k��ykdy�

Thus� we have found the �rst two terms in the representation ��	��
Now we proceed to the calculation of the second sum in the right�hand side of ����� Recall�
that the joint density hkl��k� �l� of the random variables ak and al equals �Theorem �	�

hkl��k� �l� �

�
I� � I� � I� for �l � �k

I �� � I� � I� for �l � �k
����

where
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The coe�cient c�n� k� l� equals

c�n� k� l� �
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�k � ����l � k � ����n� l��
�

Using ����� we see that
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�
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Denote the integrals in the right�hand side of ���� by J�� J
�
�� J� and J� respectively� We

write down these integrals explicitly� performing the elementary integration and replacing�
for notational convenience� �k by � and �l by �� This yields
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Taking these representations into account� we can rewrite the second sum in the right�hand
side of ���� as
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� ����

Denote the four summands in square brackets in ���� by S�� S�� S�� S
 respectively� First of
all� we have to transform the double sums in ����� An elementary calculation shows that

c�n� k� l��
l � 


k � �

� � n�n� ��

�
n� 


l � 


�
�

We have
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X
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�
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where C � �
��
n�n� ��� Note that the sum in the inner integral is

l��X
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�
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�
xk�y � x�l�k�� � �x� �y � x��l�� � yl���

�the same observation will be used in the sequel�� Calculating the remaining integral
Z y

�
�

x��dx �



�
�

�

y
�

we get �taking into account the value of C de�ned above�
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Denote the integrals �without their coe�cients� in the last representation of S� by S�� and
S��� Consider S�� and compute it by parts letting
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dy� dv � �
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We have
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Now we apply the partial integration to S��� This yields� in a similar manner
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�the intermediary calculations are omitted�� Thus�
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Consider the second summand S� from ���� and apply to it the same transformation� This
yields
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Denote the summands �without their coe�cients� in this representation of S� by S�� and S��
respectively� Consider S�� and denote its �inner part� �without the integration over �� by
S�
��� Compute S�

�� by partial integration letting
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Now we have
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Here we apply again the partial integration procedure to both integrals in this representation
of S��� We omit the intermediary calculations� The �nal result is
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We consider now S�� and denote by S�
�� its �inner part� �without the integration over ���
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will be again found by partial integration� It yields
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Now we have
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Each of these integrals is found again by partial integration �details are omitted�� We get
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The second summand S� in ���� is the sum of ���� and ����
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Consider the third integral in ����� After elementary transformations similar to those we
made for S�� we get
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Consider the last summand S
 in ����� Applying a similar transformation� we get
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Now� using the representations for S�� S�� S�� S
 given in ����� ����� ��
�� ���� respectively� we
can get the �nal expression for the second sum in the right�hand side of ����� After obvious
simpli�cations this yields
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Thus� we got the third� the fourth and the �fth summands in the representation ��	�� The
proof of Lemma �� is now complete�
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