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On the average behaviour of greedy algorithms for the knapsack
problem

Gennady Diubin and Alexander Korbut *

Abstract

We study the average behaviour of the well-known greedy algorithms for the one-dimensional
knapsack problem with Boolean variables when the number of variables n tends to infinity. It is
supposed that the right-hand side b of the constraint depends linearly on n, i.e. b = An. It is
shown that if A > % — % then the primal and the dual greedy algorithms have an asymptotical
tolerance t.

1 Introduction

Our main object is the classical knapsack problem with Boolean variables. It consists in
finding

n n
ff=max{d ¢z;| Y ajz; <b, x € B"}. (1)

j=1 j=1
All coefficients in (1) are positive. The standard interpretation of the problem (1) is the
following: we have to fill a knapsack of capacity b with the most profitable subset of items
from {1,...,n}, where each item j is characterized by its utility ¢; and weight a;. The Boolean

variables x; equal 1 if the item j is chosen, and 0 otherwise.

Without loss of generality, we can suppose that a; < b for all j (otherwise the variables
x; for wich this inequality is violated can be excluded), and that >ipa; >b (otherwise the

problem (1) is trivial, and its optimal solution is z* = (1,...,1)). Besides, we shall suppose
that . . .
d>2>..> (2)
aq (5] Qp

i.e., the variables z; are numbered in the non-increasing order of their ”utility densities” ¢;/a;.
The condition (2) is often called the regularity condition.

The problen (1) has numerous applications, and it is one of the main models of combinato-
rial optimization. From the viewpoint of the general complexity theory, it is N P-hard. This
means that exact algorithms with polynomial complexity can only exist in the case P = NP.
Therefore, the main research efforts are now concentrated around approximate methods for
the problem (1), and this tendency is characteristic for the entire combinatorial optimization.

Among these approximate methods, the so-called greedy methods play a major role. They
can be interpreted as discrete analogs of gradient (or steepest-ascent) methods in continuous
optimization. Their undoubted advantage is that for the problem (1) they work in linear time
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(if the regularity condition (2) is fulfilled). The greedy methods do not guarantee optimality;
however, theoretical estimations of their worst-case performance can be given. Details can be
found in the review paper [1].

The idea of the greedy algorithm for the problem (1) consists in a consecutive selection
of items with the largest density ¢;/a; until the knapsack capacity admits it. More formally,
the algorithm starts with a feasible solution z = (0,...,0) and consecutively replaces zeroes
by ones in the order of decreasing ratios ¢;/a; (i.e., from the left to the right); every time the
feasibility of the corresponding solution is checked. The process terminates after obtaining
the last feasible solution. This solution 2% is called the greedy solution; the corresponding
objective function value is denoted by f¢.

An idea which is in some sense opposite, consists in a consecutive rejecting the least
profitable items (again, in the sense of the ratios ¢;/a;) until the remaining ones fit in the
knapsack. In accordance with the usual terminology, such algorithms can be called dual
algorithms. Therefore the greedy algorithm described above will sometimes be termed primal.
More formally, the dual greedy algorithm starts with an infeasible solution z = (1,...,1) and
consecutively replaces ones by zeroes in the order of increasing ratios ¢;/a; (i.e., from the
right to the left). Every time the feasibility of the current solution is checked. The process
terminates when the first feasible solution is obtained. This solution 2”¢ is called the dual
greedy solution; the corresponding objective function value is denoted by fP¢.

First of all we note that the primal and the dual greedy solutions can be different (even if
all inequalities in the regularity condition (2) are strict). The simplest example is

max{6x1 + 41‘2 + 1‘3|21‘1 + 21‘2 + T3 S 3, T e Bg} (3)

Here we have z¢ = (1,0,1), 2% = (1,0,0).
Up to now, practically no attention to the analysis of dual greedy algorithms was paid.
The reason was probably the following ”folklore theorem”.

Proposition 1 The dual greedy algorithm for the problem (1) can be arbitrarily bad.

It is natural to estimate the performance of the dual greedy algorithm by the ratio Rpg =
fPC/f*. The assertion means that Rpg can take arbitrarily small values. To prove this, we
consider the following one-parametric family of instances of (1):

max{3x; + 2Az3|x; + Az < A\, z € IB%Q}, (4)

where A > 3/2. We have 2* = (0,1) and f* = 2)\. At the same time, 2°% = (1,0), fP¢ = 3.
Thus, Rpe = 3/2\ tends to zero when A — oc.

We discuss briefly some connections between primal and dual greedy solutions. To this
end, we shall need several definitions. For any vector z € B", we call its fragment any set
of its consecutive components equal to 1. A fragment is mazimal if it cannot be extended to
the left and to the right. There is a natural ordering of maximal fragments. Vectors having a
unique maximal fragment are called connected. Consider now vectors from B" satisfying one
of the conditions

Ty 2> Tg 2 00 2 Ty, (5)

It is clear that such vectors either do not contain any fragments (i.e., they are null vectors)
or they have exactly one maximal fragment, that is, they are connected. We call vectors



satisfying (5) lower connected, and vectors satisfying (6) upper connected. Thus, lower con-
nected vectors have the form (1,...,1,0,...,0), and upper connected vectors - the form
0,...,0,1,...1).

Now we consider again the problem (1). We note that the primal greedy solution is not
necessarily connected (cf. the example (3)). The following assertion holds.

Proposition 2 Let 2%, zP% be respectively the primal and the dual greedy solutions to the
problem (1). Then

1) 2P% is lower connected;

2) xPG < 29 (the inequality is componentwise) where the equality takes place if and only
if 9 is lower connected;

3) xPC contains the first mazimal fragment of ¢ and only this fragment.

From the assertion 2) and the positivity of the objective function coefficients it follows
that fP¢ < 9. In other words, the dual greedy algorithm cannot be better than the primal
one. We formulate the last assertion in a somewhat extended form which will be important
later. Consider the linear relaxation of (1) which consists in finding

IR =max{} ¢;z;|Y ajz; <b,0<z; <1,5=1,...,n} (7)
7=1 7j=1
Corollary. The following inequalities hold
fDG S fG S f* S fLR- (8)

It is well-known that the optimal solution z%% to the linear relaxation (7) has the form

LR
= (xy,..., Tk 1,2k, 0,...,0),

where z1 =--- =z, 1 =1, 0 <z <1, and the index k is determined as
s—1
k = max{s| > a; < b}
=1
or, equivalently, as

k = min{s| > a; > b}.
7=1

The number £ is called the critical index for the problem (1). Its definition implies that

k—1 k
Z a; <b, Z a; > b.
7=1 7j=1

In another terminology, this means that k£ is the first index ”skipped” by the primal greedy
algorithm, or, equivalently, that (zy,..., 7, 1) is the first maximal fragment of the vector z¢
(or, according to the assertion 3) of Proposition 2, the unique maximal fragment of z°%).
The value of x; can be easily found explicitly:

k—1

Qg

Tk

(9)



Thus we have
vt = (F, 14,0, ...,0),

where F' is the maximal fragment of 7%, 0 < z;, < 1. From this if follows immediately that
FER — 06 = oy, (10)

where k is the critical index, and zy is determined by (9).

The proofs together with a generalization of these results to more general combinatorial
structures (independence systems) can be found in [2], [3].

We showed above that the dual greedy algorithm can be arbitrarily bad. On the other
hand, this algorithm was successfully used (as a subroutine) in solving some applied large-scale
problems where it gave remarkably good results. This controversy between bad theoretical
and good actual performance of an algorithm can be, as usually, resolved by studying not the
worst-case but the average behaviour of this algorithm.

We began to implement this general program in [2] (see also the preliminary publication
[4]). Roughly speaking, it was shown there that if, for a random set of coefficients, the ”fea-
sibility probability” tends to 1 with the growth of the number of variables then the objective
function values for the primal and the dual greedy algorithms, with a large probability, differ
insignificantly from the optimal value. However, this result had in a certain sense a condi-
tional character. It remained to find bounds for the right-hand side of the problem for which
this theorem is non-trivially true (see some short comments concluding [2]). This is the main
subject of the present paper.

2 The main result

Our main assumption is rather traditional in the investigation of the average behaviour of
algorithms. We suppose that all coefficients ¢;, a;, j = 1,...,n are independent random
variables uniformly distributed on [0,1]. The assumption about b will be made a little later.
We denote z; = ¢j/a;j. Let z* be the random variable equal to the (n — k + 1)-th term of
the variational series determined by the n-tuple of random variables 2y, ..., z,, i.e. 2! > 22 >
.-+ > 2" We introduce now the random variables ¢*, a* as follows. If 2¥ = ¢ /aqm), we let

We are interested in the behaviour of approximate algorithms for problems with n variables
when n grows. Suppose that we are applying to a combinatorial optimization problem some
approximate algorithm A. We denote this algorithm by A,, to stress the dependence on the
number of variables. We say that the algorithm A,, has the asymptotical tolerance t if

P(f* = f4 <t) — 1,

where f* is the optimal value, ¢ > 0.
This definition is rather general. Further we shall consider the knapsack problem (1), and
A, will be the greedy algorithm. We formulate now our main result.

Theorem 3 If b = An where

1t
A>—— -,
2 3
then the primal and the dual greedy algorithms have the asymptotical tolerance t.



The proof of this theorem will be split into several stages.
First of all, we define the following events (the notation was introduced in the Introduc-
tion):
A™ - fLR—fDGSt
B : z"® = (1,...,1,,0,...,0), where the component o € [0,1) has the number £,
k=1,...,n.
B st =(1,...,1)
Cr.c" <t k=1,...,n.
Choose a t' < t and denote

We formulate now two conditions.

Condition 1. X} xP(C}) — 0.

n—o0
Condition 2. Sy P(BY) — L

The general idea of the proof of the main Theorem 3 is that the validity of Conditions 1
and 2 implies the assertion of this theorem. We establish first some auxilary results.

Lemma 4 The following implication holds

A S BRCE+ Bl

k=N

Proof. Wehave B A" = B} |, and the assertion follows from the relations
A" =BJA" + .-+ BIYA" + B" A" O

DBICl+---+BlCr+ B, D> BiCp+Bl,,.
k=N
Lemma 5 The following inequalities hold

P(A") > Y P(BLCY) > Y [P(By) — P(C))].
k=N k=N
Proof Wehave

1>P(By+Cp)=P(B) +P(Cy) — P(BRCY).

Therefore
P(B;C}) > P(B}) + P(C}) — 1 = P(B}) — P(C}),
and this implies the assertion.

It can be seen from Lemma 5 that if in the conditions of Theorem 3 there is a N = N(n)
for which Conditions 1 and 2 hold, then the main Theorem 3 will be proved. We shall seek
N of the form N = nty, 0 < ty < 1. It will be shown that if we take to =1 — % where

t '
1 5 <1 5 <A,
then for N = nty the Conditions 1 and 2 will be fulfilled. In the next section the validity of
Condition 1 for N = nty will be demonstrated.



3 The proof of Condition 1

First of all we find the main probabilistic characteristics of the random variables ¢/, a/ in-

troduced at the beginning of the previous section. We use the standard notation (cf. [5],
Ch.VI)

b(j—1,n—11—¢t) = (;‘: i) (1= )1 (11)

for the probability of j —1 successes in n—1 Bernoulli trials with the success probability 1 —#.
The values (realizations) of the random variables ¢/, a’ will be denoted by 7;, ; respectively.

Lemma 6 The density f;(v;) of the random variable ¢’ is

1

B = (2 oy [F e ey +

j—1
1 (n—1 3 : .
- . PR e T e
2n<j B 1)% /lg(l )yt dy. (12)
P roof. Itiseasy to see that
0 2 <0
z 0<z<1
P(z; <z)=14(2 - (13)
1
- — > 1.
2z ‘

Fix an index j € {1,...,n}. We get from (13) that the probability that some j — 1 of the
random variables z; will take the value < v;/a; and the remaining random variables will be
greater than v;/a; is (taking into account that any random variable can occupy the place j)

nb(j—l,n—l,;—j) R
f)/. a.
p(vi/ey) = ST (14)
nb(j —1,n—1,1—--2) L <1.
20éj Oéj
It follows that the probability of the event
d € [y, + Dyl @ €[, d? + Aoyl
equals
p(vj/0y) Doy vy + o( Aoy Ay).
Therefore the joint density r(c;,7;) of the random variables ¢/, a is
r(ey, ;) = p(vi/ ), (15)
and the density of ¢/ will be
1
fii) = [ 7@ )day. (16)

Using the representation (11), we get from (14) - (16)

n—1\ %/ a;\/" a; \"7
(~) = _J 1— _J> .

6



-1 1 J=1 S\ "I
T ) N = €
j—1 20 205
Changing the variables «;/(27;) = x in the first integral and ~,/(2c;) = y in the second one,
we get the representation (12).

Lemma 7 The distribution function F;(t) of the random variable ¢ for 0 <t <1 is

—1 5 . .
F](t) = n(n 1>t2/ IL']_I(]_ —l')n_]dl'+
0

+
| =
N
VRS
. 3

|
=
N——
~
no
M\
(N1
~—~
—
8
N—r
<
—
8
3
<
Do
QL
=
+
~—~
—
\]
N—r

Proof Wehave
¢
Fi(t) = /fj(%)d%:
0 . t L
= 2n<n_1>/ fyj/ij_l(l—x)"_jdxdvj—l—
]n—l %
) o,

The first of these integrals is calculated directly, and the second one can be easily found by
partial integration. Letting

1
2 i—1 n—j—2
u= /ﬁ(l —y) Ty T Ty, do = 5 dn;,
2
we get, after elementary transformations, the representation (17).
Lemma 8 The density g;j(c;) of the random variable a’ is

gila;) = 2n (" B 1) o /0 2" (1 — 2y ldw + (18)

n—17j

—-Nn — .
3"\n i) y)" Ty Py

2

Proof. The formula (18) could be obtained similarly to (16) (that is, by integration of the
joint density r(c;,y;) over ;). Another reasoning consists in the following. The inequalities

¢ "
> > >
al — a? an
are equivalent to
an anfl al
- > > > =
c cn—l c

Therefore the density of o’ is equal to the density of ¢"~/*!. Substituting in (12) «; instead
of ; and replacing j in the exponents by n — j + 1, we get (18).
Now we can proceed to the proof of Condition 1.



Theorem 9 Let N = nty, wherety =1 — %, t' <t. Then the Condition 1

> P(C}) — 0

n— 00

18 fulfilled.

Proof Wehave o

where Fy(t) is the distribution function of the random variable c*. It follows from the repre-
sentation (17) that

n—1 : k=1 /n t\Y/t\"7Y
Fiu(t) > / 1— 2)F g Fdy = (1--) (-) .
k()_n<n—j>o( x) v v Vz::ol/ 2 2
From this we get
k-1 n ENY /E\"Y
P(C*) <1-— 1—-— -
(C) < ,;:%(y)( 2) (2)
Therefore
o n n t v t n—v
P(CH) < 1—- - .
( ’“)—;C<y>< 2) (2)
Thus,

Sorcn < 55 ()0~ Q)

> pep<yu-veu(t)(i-5)(3)" (19

Now we can prove that the right-hand side of (19) tends to zero when n — oo, and the
required assertion follows. The technical details of this proof are given in Appendix 1.

The proof of Condition 2 will be performed by using the Tchebyshev’s inequality; this
requires some preparations.

4 The joint distribution of ¢* and &

Our next goal is the computation of the joint distribution of two random variables a* and a'.
We introduce first the random variables u/ = a’/c’. We have v/ = 1/27 where 2/ was defined
at the beginning of Section 2. Thus, u! < u? < ... <™.

Similarly to the proof of Lemma 6, it is easy to show that

0 u <0

u 0<u<l
1

11— — 1.
2u v

co



We choose two arbitrary indices k, [ from {1,...,n} such that & < [. Further, choose

two arbitrary ordered indices from {1,...,n} and denote then by i, i;. The number of such
choices is
2( ) =nn—1)
5| =nin :
Consider the sets
51C{1,...,n}\{ik,il}, |Sl|:k—1
SQC{1,...,n}\(51U{ik,il}), |SQ|:Z—I€—1

Sg = {]_,,TL}\(SlUSQU{Zk,Zl}), |53| =n-—I.
The number of possible choices of i, 7;, Sy, Sz, S3 is

(n—2)! B
L o 7y vy M

n!

(k— 1) - - Di(n—1)!

= c(n,k,l).

Choose four number ay, Yk, oy, v between 0 and 1 such that oy /vy, < ay/v. Consider the
conditional probability

7 (ig, i1, S1, S2, S35, Ok [V, /Y1) =

1

. 673 o . ap . 673 Qy
:P<ui < —L ik € Sy — <y < —, 0 € Syyu; > — i € Sslu, = —,uy, = —).
Yk Vi " " Vi "

From the independence of u’ we get
W(ik,il,Sl,SQ,Sg,Olk/’)’k,Ofl/f)/l) -
=P < i e SHP(E <uy < i€ S)Pui > i€ Sy). (21)

Yk Yk " Vi
For iy, i;, S, Sa, S3 defined above, all probabilities 7 (i, i;, S1, Se, Ss, /K, i /71) are
equal. Therefore the sum of all probabilities 7 (i, i;, S1, S2, Ss, a /Vk, cu/v1) over all i, iy, Sy,
Ss, S5 equals
plak/ Ve, ar/v) = c(n, k, ) (ig, i, S1, Sy S3, k[ Yey 01 /1)

This implies that the probability of events

a* € ag, o + Doy, & € [y, e+ Dyl
a' € oy, + Ay, &€ [y, v+ Ay
is
plak/ Vi, au /) Do Ay Ay Ay + o( Do Ay Doy Ay;)

if ag/ve < /v, and is zero otherwise. Therefore the joint density r(ag, vk, u, ) of the

random variables a*, c¥, a', ¢! will be

o/ caf/ ) /e < o/
T(Otk,%,az,’n) - {0 O%/%C > Oéz/’Yz-

Now, using (20), we find the probabilities in the right-hand side of (21). Here three cases
are to be considered.



Case 1.%§1,%§1,%<%
Yk M Yk "

plzc(n " l)<%>kl<ﬂ_%>lkl<l_ﬂ>nl
T2 20 2 2

« «
Case 2. —kgl,—l>1. In this case

. In this case we have

Yk N
k—1 l—k—1 n—l
Dy = c(n,k,1)<ﬂ> (1 o %) (l) .
27y, 200 2 20y
Case 3. %>1,%>1,%>%. Here we have
Vi M M Vi
k—1 l—k—1 n—l
Yk Yk M M
(- 3) -2 02
Ps C(n ) 2ak QOék 20([ 2@1
Thus,
(2520 i g, Hog, M
Y& N Yk M Vi M
e e .
T(ak,’m, &z,%) = zk Zl Zk Zyl o o
p3<—k,—l> if—k>1,—l>1, Py
Ve N Yk N Yk N
0 if ad > ﬂ.
\ Yk "

Therefore the joint density hg;(ax, o) of the random variables a* and a! equals

1 1
hii(ag, ve) = /O/OT(Oék,’Yk,Oél,%)d’ka%:

TG Qo
= / p1<—k,—l>d%d%+/ p2<—k,—l>d%d%+
951 Ve N Q2 Ye N

ap o
+ / p3<—k, —l>d% di, (22)
Q3 Ye N
where

Q= Qlapa) = {2 <1, 2 <, P o<y <1,0<y <1}
Yk M Yk M

Qy = QYlaw, o) = { (% N) % < 1,% >1,0< % <1,0<y <1}
& I
o a o o

O = Wl a) ={(1)|—>1,—>1, =<2 0<5<1,0<y <1}
Yk N Yk M

We denote the integrals in the right-hand side of (22) by I, Iy, I3 respectively. Consider
the first of these integrals

k—1 I—k—1 n—I
I = ¢(n, k, l)/ (ﬂ) <ﬂ _ ﬂ) <1 _ ﬂ) dyg dry.
1951 2’)% 2"}/1 2’)% 2’)/1

10



Changing the variables oy /(2v) = x, oy/(27,) = y, we get

1
I = Zc(n’ k, l)akaz/ 2"y — ) TN =)y P da dy.
Q/

1

Here the integration domain €2} in the new variables turns out to be dependent on the ratio
oy /ay,. For the case a;/ay < 1 we have

y
(1—y)" by 2 k’?’(y — x)l’k’ldx dy, (23)

Yk

2

|>r (N1

1
I, = 1 c(n, k l)akal/

M

and for the case o;/ay > 1 -

y

1 3
I = 1 c(n, k l)akal/ (1—y)"~ y k_?’(y — x)l_k_ldx dy. (24)

ol

2

Elementary technical details are omitted. Consider the second integral in (22):

k-1 I—k—1 n—l
I, = ¢(n, k,l)/ <%> <1 _ %> <l> dryk, dv;.
Q2 Q’Yk 20y Q’Vk 20y

Changing the variables ay/(2v) = x, v/ (20y) =y, we get

IZ—cnklakal/ ”l/

Here the integration domain in the new variables z, y is a rectangle independent on the ratio

Oq/&k.
In the third integral from (22)

Vk Vk YT\
e 02 @2 G
s C(n g l) Q3 2ak 2ak 20{1 2@[ d"}/k d’}/l

we change the variables v, /(2a4) = z, v/(2¢y) = y and obtain

1 —y— )z dy. (25)

R‘ no|=

™M

[SIE

I3 = 4e(n, k, l)akal/

0

(=2 [y dy do. (26)

In this case the initial integration domain depends on the ratio «;/ay, but the integration
domain in the new variables z,y turns out to be the same triangle.

Thus, we can summarize the considerations of this section in the form of the following
assertion.

Theorem 10 nsity hy (o, ) of the random variables a*, a' equals

L+L+1, 2o

Qg

hkl(Oék,Oéz) = o
I{+1—2+[3 —>1

Q;

where Iy, I, Iy, I3 are defined in (23), (24), (25), (26) respectively.

11



5 The expected value and the variance of a! + - -- + a”

/
Nzn(l—t—>,
2

where ¢’ < t (cf. Section 2). We introduce the notation

Let again

N
AN == Z Clk.
k=1
Our next goal is the computation of E(Ay).

Lemma 11 The following representation holds

E(A /INZ1< ) A R LY/
gn 01 y Z (n . 1) —y)" Ty dy. (27)

The proof will be given in Appendix 2.
In the sequel we shall use the following lemma which is an analogue of the Law of Great
Numbers. Introduce the notation (cf. [5], . VI)

B,=B(m,+pn—-11-z)= Y ( ,
=0 \ J

)(1 — ) "I (28)

where f is an arbitrary fixed number (may be, non-positive). It is understood here that if u
is not an integer then the summation is extended to [m,, + u].

Lemma 12 The following assertions hold:
1) Let m,, > An, where A > 1 —x. Then B, — 1 if n — oo;
2) Let m,, < An, where A <1 —x. Then B, — 0 if n — oc.

P roof. The value B, in (28) is the probability of at most m, + u successes in n — 1
Bernoulli trials with the success probability 1 —x. Denote by s,,_; the random variable equal
to the number of successes in n — 1 Bernoulli trials. Since from 1) we have 1 —z < A, it is
possible to choose an £ > 0 such that

l—x+e< A\

Then for n sufficiently large

By >P(su1 < (n—1)1-2+e)) > P(‘;”_ll —(1-2)

<)

According to the Law at Great Numbers, the last probability tends to 1 when n — oco. The
first assertion is established. The second assertion can be proved similarly.
Further, for N = n(1 — %) we have the following assertion

12



Theorem 13 The expected value of Ay is

1 7
E(Ay) = n<§ — 5) + o(n). (29)
P r o o f. Consider the integral representation (27) for E(Ay), given in Lemma 11.
According to Lemma 12 (for m,, = N, p = —1), the first integrand in (27) for n sufficiently
large will tend to 1 for 1 — % >1—uz, (ie., for z > %) and will tend to 0 for z < % Now we
use Lebesgue’s bounded convergence theorem. The integral of the limiting function is
1

1
“ldr = —
v 2

2
Thus, the first summand in the right-hand side of (27) will be
2 /1t 1

(3 3) *om =n(3-3) +om

The second integrand in (27) by Lemma 12 will be tend to 1 for all y < 1 — %, that is, for all
y in the integration domain. Therefore the second summand is

t,

4 3 1
—n/ ydy + o(n) = =n+ o(n).
3 Jo 6

Thus, both summands together yield
1t

E(Ay) = n<§ _ 5) +on),

as asserted.
Now we compute the variance V(Ay) taking again N =n(1 — £).

Lemma 14 The following representation holds

Lo (n=1\ ng k
V(Ay) = §n/0 > Pk (1—2)%dx+
k=0
s /n—1
+ 2 > ( (1 —y)" " ytdy + (30)
k=0

- [E(4n)*
The proof which is quite technical is given in Appendix 2.
Theorem 15 The following assertion holds
V(Ay) = o(n?). (31)

13



The proof is similar to the proof of Theorem 13; it is based on Lemma 12 and Lebesgue’s
theorem. Consider the representation (30). The first two summands in (30) are processed in
the same way as in the proof of Theorem 13. The first summand is

1 /3 1 /1
571/%2 dz +o(n) = §n<§ — 5) + o(n),
and the second one

1
2 1
2n/ y*dy + o(n) = it o(n).
0

Thus, the first two summand together yield
1 t
§n(1 _ 5) +o(n),

which is of order O(n).
We proceed similarly. Rewrite the integrand in the third summand of (30) in the form

<Oz>3N2:2 (n—2>< a\" k2 ok

(-G

2) = k 2 2

It will tend to 1 for 1 — £ > 2, that is for & < 2 — #'. Thus, the third summand will be
2 7 2

Suin 1) [ (2) doc+ ofn®) = senln 1)+ ofn?)

5" | g) dato(n’)=zen(n o(n?).
The fourth integrand by Lemma 12 will tend to 1 for 1 —% > 1—y,i.e. fory > t'/2. Therefore
the fourth integral equals

2

gn(n —1) /; dy = %n(n —1)(1 =) + o(n?).

Rewriting the fifth integrand in the form
N—2
n—2 n—2—
vy ( L >(1—y)’“y =t
k=0
we see that it tends to 1 for y > #//2. Therefore the fifth integral is

N [ vy + o(?) = %n(n () = 1) + o(n?).

9
The sum of the third, the fourth anf the fifth integrals is then
_ il_flw_) 2 _ _<l_t_'>2 2
n(n 1)(36 + (=1 + (1) = D) + o) =n(n = 1)(5 - ) +ol?).
Further, from Theorem 10 we have
1 \?
BAx) =n*(5 - 5) +on?),
2 3
Collecting all summands in (30) yields
1 t\? 1 t\?
V(Ay) = O(n) +n(n —1) (5 - 5) - n2<§ - 5) +o(n?) = o(n?).

The theorem is proved.
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6 The proof of Condition 2

Let, as earlier, N = n(1 — t2—'), t' < t. We introduce the random variables

_a1+...—|—aN
= " .

Ya

Theorem 16 For anyec >0
P(|Y,-EY,)|<e)—1 for n— oc.
P r oo f. According to Tchebysheff’s inequality,

V(Ya)

P(|Y, —E(Y,)|>¢) <

Furthermore we have

1
V() = V() = o),
since, by Theorem 15, V(Ayx) = o(n?). Therefore
P(lY,—E(Y,)|>¢)—=0 if n— oo,

and the complementary probability tends to 1. The theorem is proved.
We proceed now to the proof of Condition 2

n+1
> P(Bp) — 1.
=N n—oo
We suppose that b = b(n).
Theorem 17 If b(n) = An, where
1t 1 t
A> - - >=-_ =
27372 %
then the Condition 2 is satisfied.
P roof. We have
n+1 n+1
S P(BY) > Y P(B)=P(Ay < bn)).
k=N k=N+1

We proved earlier (Theorem 13) that

E(Ay) = n(% — g) + o(n).

It follows from the conditions of our theorem that

E(A
%+5<)\

or
E(Y,)+e <A

15
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Therefore

P(Ay <XMn) = P(a1+---+aN§)\n):P<a1 )
> P(M_E(Yn) >>P< a ooa¥ E(Yn)§s>:
_ P(M_E(Yn) Ss)zP(|Yn—E(Yn)|§5)_>1_

The last equality follows from Theorem 16. Thus, we see from (32) that the Condition 2 is
satisfied.
Now the validity of our main theorem is implied by Theorems 9 and 17.
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9 Appendix 1

Completion of the proof of Theorem 9
We stopped at the inequality (19):

gigfméﬁ)g ﬁi(j—-Aﬁ+1)<?><1__3>j<t>{

=~ 2 2
We estimate the sum in the right-hand side of this inequality. Denote

om-2)=0=()0-9' )

The well-known calculation (cf. [5], Ch. VI, n.3) shows that

b1

b _(n—j+D-3)  @+Da
j-i j-

It follows that the sequence {b;} decreases for j > (n+1)(1 — %). Therefore for our choice of

N the first summand in the right-hand side of (33) will be maximal for n sufficiently large.
Indeed, for N = n(1 — —) t' <t we have

t t
1- =) >n(1-=
”( 2) ”( 2)’
e
n > .
t—t
Carrying out in (33) the maximal summand, we get

é;P@@§<Z>@—§fKQWW@+ ng—N+)%>:

which implies

~ (W02 ) (et e e
We have
b]l;f;l _ (n (_NN_,)_(ll); %) — (34)
byie . (n=N)(n—-N-1)(1 - L’
by (N + 1)(N +2)(%)?

Replacing n — N — 1 in the nominator by n — N and N + 2 in the denominator by N + 1, we
increase the fraction. Thus

b2 < (n— N)2(1 - 2)2

by (N + 1)2(L)° =’

17



Further we can proceed inductively. We have

t t

R (Z) (1-5) (5) 0 aat e N

where o < 1. Passing to the limit by n, we have to take into account that «, as defined in
(34), depends on n. Substituting into (34) N =n(1 — L), we have

_(n-n(1-§)A-§) _ §L-9)

Q-5 +15  §0-5)+55

Discarding in the denominator the summand 1 , we increase the fraction. Thus

a< f=
We see that 5 < 1 (because ¢’ < t) and that « = a(n) —  when n — oco. This yields
N

Speh< (3)(-5)"(5) "0warea

k=N

Obviously

1+2ﬂ+362+---:(ﬁ+62+63+---)’:<1€ﬁ>,: (1_15)2.

Therefore, passing in the last inequality to the limit, we get

i 2P < pm (3)(-3) () g

Now we see that the right-hand side tends to zero when n — oo, since the last multiplicand
does not depend on n. The theorem is proved.

10 Appendix 2

Proof of Lemma 11

We find first the expected value of a*. The density gi(ay) of the random variable a* was
found in Lemma 8 (cf. (18)). We have

B = [ cugilon)dos =
_ ( )/ ak/ 7)1z day, + (35)
% (n B 1) / /g;(l —y)" Y dy doy.

18



The first integral in the right-hand side of (35) is

Z(nt / k(] _ g)k-1q (36)
STL n—k o T T X,

and the second one will be found by partial integration. Let

1
/; (1 — )" y*=3dy = u, o} day = dv.

2

- 1 3 1 Qg —k (073 k-3
v=gob du=—5(1-F) (F) dow
The second integral in the right-hand side of (35) will be then

1 (n—1\[1 3 L 8 ap\"F fa\ 3
L L 1 — ) —Fub =3y . o3 _/ 3<1__k> <_k> don |
2n<n—k>[3/‘*—k( y)" "yt dy %O+6 . 5 5 oy

2
The first term in brackets is zero, and the second one, after obvious simplifications (we let

ar/2 = y) can be rewritten as
4 (n—1 3
= 1—y)"ytdy. 37
(0 ) o ortay 37

The expected value of a* is the sum of (36) and (37), i.e

2 (n—1 3 4 (n—1 3
ky _ “ 2 n—k(1 _ \k—1 = - 204 \n—k k
E(a") = 3n<n_ k>/o (1 — )" dr + 3n<n_ k>/o (1—y)" "y dy.

For the expected value of & a* we have, after elementary transformations,

E(gj1 a) = ; kZI (” - }ﬁ) "R — x)" e + n/ Z (” B 1> (1 — )" Fyldy =

= n / Z(”_1> 21— a)hde n/lyz<n_1> (1—y)" " ydy.

Thus, the representation (27) is proved.

We have

11 Appendix 3

The proof of Lemma 14

We have from the definition
V(Ay) = E(A}) — (E(4Ay))* =
= kX_: E((a")’) +2 Y E(d"d) - (E(4y))* (38)

k<I<N
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We calculate the first sum in the right-hand side of (38). The density gx(ax) of the random
variable a* is given by Lemma 8 (cf. (18)). We have

B(@?) = [ adlon)dos =
_ (”_1>/ ak/ 2)Fda doy, +
N (n—1> / y /

The subsequent calculations are identical to those in the proof of Lemma 11 (cf. Appendix
2). We get

B((a)?) = %n(Z - ;) /0 R = 2)F T + 2n (Z B ;) /0 (1 = )" Fdy. (40)

Summing these expressions, we have

SE(@) = n 1 ¥

>r Wl

)"y dy doy. (39)

(B k
1 N—-1
3 n—1
+ 2n/2 y? ( " )(1 —y)" Yy,
0 k=0

Thus, we have found the first two terms in the representation (30).
Now we proceed to the calculation of the second sum in the right-hand side of (38). Recall,
that the joint density A (ay, ;) of the random variables a* and a' equals (Theorem 10)

[1—|—1—2—|—1—3 fOI'Oé[<C¥k
h = 41
kl(ak,al) {I{ + I+ 13 for a; > ay ( )
where
1 3 n—t, -2 [Y k-3 I—k—1
I, = 1 c(n, k l)akal/k(l —y)" "y, Ty —a) dy dx, (42)
El el
1 B y
Io= enk l)akaz/2(1 —y)" Ty Ay — ) Ty da (43)
% 2
L = enk,l) akal/ n- l/k — )Ry d, (44)
Iy = de(n,k, Dok /5(1 - x)k’l/ (z —y) * 1y dy da. (45)
0 0
The coefficient ¢(n, k, 1) equals
n!
k,l) =
kD) = F o= E = D =1
Using (39), we see that
1 ra 1 1
E(d*d) = / / ’ apoylidogdoy +/ / aroqlidogdoy, +
0 Jo 0 Ja
1,1 Lo
+ / / OékOélIQdOéldOék +/ / OékOéljngéldOék. (46)
0 Jo 0 Jo
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Denote the integrals in the right-hand side of (45) by Ji, Ji, Jo and J3 respectively. We
write down these integrals explicitly, performing the elementary integration and replacing,
for notational convenience, oy by a and o; by 3. This yields

1

I = e(n k1) // 252/2 Ly~ / 2)= "y d df do =

= —c (n, k1) / a/ (1-y / lk Ydy dx dao,
T o= Ze(n k1) // 252/5 Ly~ / 2)=Fdy dz dj do,
Jy = c¢(n, k) / / a252/ yn_l/ ¥ 31—y — 2) 7y da df do =

0 Jo 0 2
1 Lo [T ot [T ks I—k—1
= —c(n,k,l)/ a/ y" / (1l —y—x) dy dx do,

1

Js = 4e(n, k1) // 252/5 )k /Ox(x—y)l_k_ly”_ldydxdﬁda:

4

= Yk [P0 [y ayar,

=

Taking these representations into account, we can rewrite the second sum in the right-hand
side of (38) as

2 Y E(d"d) =

kE<I<N
= [12/ k<zl<:N c(n, k,1) /% ~ly~ / z)F "t dy da do +
Sy, nwﬁ v /
+ g 22 c(n, k,1) / %( 1—z)F ! /Om(a:—y)lkly"ldydx]. (47)

Denote the four summands in square brackets in (47) by Sy, Sa, S3, Sy respectively. First of
all, we have to transform the double sums in (47). An elementary calculation shows that

c(n, k,1) n—2
— 1 — -1 .
[~z " )<l—2>
k—1
We have
S1 12/ > e(n, k1) /5( y)" ly’Q/yxk’3(y x) 7y dy do =

k<I<N
-1

B 5 n—2 ot 2 [Y ! I—k—1,_—2 _
= C’/Oa/ Z<1_2>1 )"y /az<k ) — 1) x “drdyda =

2 k=1
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_ c/ /E<z—2> nl—?/ Z( ) — 2)! 2 e dy da,

where C' = 5n(n — 1). Note that the sum in the inner integral is

lf(lf)x’“(y )= (k- o) =y

k=0

(the same observation will be used in the sequel). Calculating the remaining integral

y 2 1
/ v %dr == — -,
B a Y

we get (taking into account the value of C' defined above)
1 1 -2
S = —n(n— 1)/ a4/ Z <7Z 2) — )"y dy da—

— —n n—1) / /2 Z (n - 2) — )"y Pdy da.

Denote the integrals (without their coefficients) in the last representation of S; by Si; and
S1o. Consider S7; and compute it by parts letting

s n—2
=1 Z < )(1 - y)nflyl%dy, dv = o*da.

1M /n—2 a\" o\t 1
_ = 1— — s _ = 5.
du = 5 E (l 2)( 2) <2> da, U—5a

1,2 (n—2 L
S o= _&5/ Z " (1 - y)n_lyl_4dy‘ +
5) a [ —2 0
1 X (n-2 a\" o\t
— 1- 2 Z) da=
10/az<l—2>< 2) (2) “
16 n—2 a\" Lo\
= — 1—— — da.
5/02:(1—2)( 2> (2) “
Now we apply the partial integration to Si,. This yields, in a similar manner

B[S0

(the intermediary calculations are omitted). Thus,

Then

We have

1 1
Sl == én(n — ].)SH — ﬁn(n — 1)512 ==

S Y 1 [ Y AT
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Consider the second summand S, from (46) and apply to it the same transformation. This
yields

S = 4/ / > c(nk,l) /;(1 —y)" 'y /ay 2" 3y — 2)" P Yy dw dB da =

k<I<N

1 1 1 3 Y -2 2 1
= Zn(n—l)/0 042/ 5 %Z<7_2>(1—y)”ly?y”(a—ﬁdydﬁdaz

_ 1 ( _1) ! /162 %i n—2 (1_ )n—l l74d dﬁd _
2nn 5 «Q 5 s & [_9 Y y Y «Q
1 1 1 5 n—2

_ -1 2/ 2 1 — )"ty 5 .
=1 [ o | B : §<1_2>( y)" 'y Pdy d do

Denote the summands (without their coefficients) in this representation of Sy by Sy and S
respectively. Consider Sy; and denote its "inner part” (without the integration over «) by
S9,. Compute S9, by partial integration letting

u= [T ("B -y, do = Bas
=/, o y)"y dy,  dv = B7dp.

Then

LN
531 = 553/52

Now we have

1 1
So1 = §n(n—1)/ Sy da =
0

1 Lo fim(n—2 n—l, 14
= —-n(n— 1)/ « / > (1 —y)" "y *dy da+
6 0 =\l —2

Q

2

e [of 200D

Here we apply again the partial integration procedure to both integrals in this representation
of Sy1. We omit the intermediary calculations. The final result is

Sor = —n(n — 1) /0 (" B 2) (1 - %)nl@)mda. (49)

We consider now Sy and denote by 532 its "inner part” (without the integration over «).

The integral
0 Lo [ (n—2 n—l, 1-5
Sz2:lﬂ/gz o |A=u)" Ty dydp

2 =2
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will be again found by partial integration. It yields
1 3 & -2
Sp = —3z0’ /; > (7;_ 2) (1—y)" "y dy+

LS

S (n—2
— / / Z(?_2> (1— )"y Py da+

2 =2
3200057 G) we

Each of these integrals is found again by partial integration (details are omitted). We get

T 1Y i (R B A

The second summand Sy in (46) is the sum of (48) and (49)

Sy = —n n—1) /0 Z (7:;) (1 - %)n_l@)mda. (51)

Consider the third integral in (46). After elementary transformations similar to those we
made for 57, we get

Now we have

1 ! 3
Sy = —/ / c(n, k,D)y" /2 "1 -y — o)y do da =
0 2

k<I<N

_ n—l/ /OZ<7Z__2>yn—l(1—y)”/_ ~2d dy da.

2

The inner integral equals (2/«) — 2. Thus,

2 P _
S3 = 3" n—l/ /2;<l—2> "1 —9y)2dy da —

l

Consider the last summand Sy in (46). Applying a similar transformation, we get

M

o= 5 3 ek [a=a) [ () g =

k<I<N
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— gKKNc(n,k,z)/fy"—l /j(1 )"z — y) 'y do =

— gn(n - l)é (?:;) Ul y" (1 — )" 2(; y)dy —

- o[ E (D)o

- Ly [ yz (l_ 2) ) ylay, (53)

Now, using the representations for Sp, Sy, S3, Sy given in (48), (51), (52), (53) respectively, we
can get the final expression for the second sum in the right-hand side of (38). After obvious
simplifications this yields

2 > E(dd) = 2(Si+ S+ S5+ 81 =
k<I<N
_ S n—l/o (n—2><1_%>nz<%>z+1da+
+ 2 n—1) /0 Z(?:2> y" (L - y)' Py~
_ Snn—l /0 y2<7:22> (1 —y)dy.

Thus, we got the third, the fourth and the fifth summands in the representation (30). The
proof of Lemma 14 is now complete.
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