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Abstract

We introduce orbital functionals
∫

β simultaneously for each com-
mensurability class of orbital surfaces. They are realized on infinitely
dimensional orbital divisor spaces spanned by (arithmetic-geodesic real 2-
dimensional) orbital curves on any orbital surface. We discover infinitely
many of them on each commensurability class of orbital Picard surfaces,
which are real 4-spaces with cusps and negative constant Kähler-Einstein
metric degenerated along an orbital cycle. For a suitable (Heegner) se-
quence

∫
hN , N ∈ N, of them we investigate the corresponding formal or-

bital q-series
∞∑

N=0

(
∫

hN )qN . We show that after substitution q = e2πiτ and

application to arithmetic orbital curves Ĉ on a fixed Picard surface class

the series
∞∑

N=0

(
∫
Ĉ

hN )e2πiτ define modular forms of well-determined fixed

weight, level and Nebentypus. The proof needs a new orbital understan-
ding of orbital hights introduced in [Ho1] and Mumford-Fulton’s ratio-
nal intersection theory on singular surfaces in Riemann-Roch-Hirzebruch
style. It has to be connected with Zeta and Theta functions of hermitian
lines, indefinit quaternionic fields and of a matrix algebra along a research
marathon over 75 years represented by Cogdell, Kudla, Hirzebruch, Za-
gier, Shimura, Schoeneberg and Hecke. Our aim is to open a door to an
effective enumerative geometry for complex geodesics on orbital varieties
with nice metrics.
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1 Introduction

In the monograph [Ho1] we defined orbital hights for orbital curves on orbital
surfaces. In the most important cases of orbital hyperbolic surfaces (Picard sur-
faces), which are real 4-dimensional with cusps with negative constant curvature,
the orbital curves appear as geodesics of real dimension 2. The orbital hights
are rational numbers explicitly defined in algebraic geometric terms. They can
also be expressed by zeta function values, see [Feu], ch. III, and from the differ-
ential geometric viewpoint they are volumes of fundamental domains of discrete
subgroups of a unitary group.

In this paper we define groups of orbital divisors and extend the orbital sig-
nature hights to functionals ȟ0 on the orbital divisor spaces. Additionally, we
extend and transfer Mumford-Fulton’s rational intersection theory on complex
surfaces with (normal) singularities in Riemann-Roch-Hirzebruch style to func-
tionals on the orbital divisor spaces. On orbital Picard surfaces the (arithmetic-
geodesic) orbital curves can be normed by positive integers. Using these norms
we find all these orbital curves as supports of a well- defined sequence HN ,
N ∈ N+, of special orbital (Heegner) divisors. They also define orbital function-
als ȟN on orbital divisor spaces, nicely compatibile with finite orbital coverings
of orbital surfaces.

Writing
∫

β for an orbital functional β̌ we define formal q-series
∞∑

N=0

(
∫

hN )qN .

They are applicable to each orbital curve Ĉ on any orbital Picard surface
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defining a formal Taylor series ΦĈ(q) in q with rational coefficients ȟn(Ĉ),
n = 0, 1, 2, 3, ....

Substituting q = e2πiτ we get convergent series denoted and defined by

ΦĈ(τ) =
∞∑

N=0

(
∫
Ĉ

hN)qN =
∞∑

N=0

(ȟN (Ĉ))qN(1)

= ȟ0(Ĉ) +
∞∑

N=1

(Ĉ · HN )X̂Γ
qN(2)

on the upper half plane H with orbital (rational) intersection product ( · )X̂Γ
on

orbital Picard surfaces X̂Γ supported by the Baily-Borel compactification X̂Γ of
XΓ := Γ\B, Γ a Picard modular group acting on the complex two-dimensional
unit ball B.

The first sections are dedicated to the construction of orbital functionals and
to the proofs of their fundamental properties. At the end of this procedure we
can prove that the orbital Heegner series ΦD̂(τ) and ΦĈ(τ) are the same up
to a degree factor, if D̂ is a finite orbital covering of Ĉ. The scaling constant
term ȟ0(Ĉ) in (1) is in any case the orbital signature hight of Ĉ. If we know
one Heegner series ΦD̂(τ) and its properties of the orbital covering class of Ĉ,
then we know (essentially) all. For arithmetic orbital curves D̂ on neat Picard
surfaces the modular properties of the Heegner series are known by work of
Cogdell. It extends now to the general main result 6.6 of this paper, valid for all
arithmetic curves on each Picard surface: The Heegner series are modular forms
of explicitly determined weight (three), level and Nebentypus. Level group and
Nebentypus depend only on the commensurability class of Picard surfaces.

With help of preparing work by Hecke, Schoeneberg, Kudla and Cogdell we
are able to connect our series with congruence Theta functions and - via Mellin
transformations - with congruence Zeta functions. This will be summerized in
the last sections. More precisely, there are three types of such functions we
need. Hecke’s congruence Theta and Zeta functions of lattices of hermitian
lines sit in cusp lattices of Picard surfaces. One needs Hecke’s results of 1926;
no later explicit reference seems to be possible. The modular curves on Picard
surfaces, characterized by the existence of cusps, are closely connected with
Theta and Zeta functions of the matrix algebra Mat2(Q) investigated by Cogdell
in [Cog1]. Arithmetic-geodesic curves without cusps are Shimura curves. They
are connected with congruence Theta and Zeta functions of indefinit quaternion
algebras introduced and investigated by Schoeneberg [Sch] in 1936 following
ideas of Hecke. Their application to Picard curves goes essentially back to
Kudla’s paper [Ku] transfering ideas and work of Hirzebruch-Zagier [HZ] from
the Hilbert modular to ball cases.

In section 7 we present an example on the quasi-hyperbolic Picard plane
of a Gauß lattice. The Fourier coefficients of the Heegner series are explicitly
described in simple arithmetic terms on two different ways. The N-th coefficient
counts our quasi-geodesics of fixed norm N up to intersection multiplicities. For
a better understanding of our motivations we recommend the reader to look
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first to the example in Section 7. It is also closely connected with my lectures
[Ho2] presented in the Varna Conference of 2001.

2 Orbital divisors on orbital surfaces

Let X̂ = X ∪X∞ be a complex compact normal algebraic surface with at most
quotient and (ball) cusp singularities. These singularities are precisely defined
and classified in my monograph [Ho1]. The cusp singularities (including also
some marked smooth points) form a finite set X∞ of embedded points. Together
with an orbital (see below) Weil divisor

B̂1 = v1Ĉ1 + .... + vrĈr, r ≥ 0, vi ≥ 2,

Ĉi irreducible, we get an orbital surface X̂ := (X̂, B̂1). We fix B̂1 and call it
the basic divisor of X̂. Orbital (in the global sense) means: There is a Galois
covering p̂G : Ŷ −→ X̂ = Ŷ /G with Galois group G ⊆ Aut Ŷ and restriction
pG : Y −→ X = X/G, Y smooth satisfying

Conditions 2.1

• B̂1 is the branch divisor of p̂G;

• the ramification index over Ĉi coincides with vi, i = 1, ..., r;

• the points of Y ∞ := Ŷ \ Y are (purely) elliptic singularities;

• the components of the preimage curves p̂∗G(Ĉi) are smooth on Y ;

• their proper transforms on the minimal singularity resolution Y ′ of Ŷ
have only transversal intersections with the exceptional divisor T = E(µ)
of µ : Y ′ −→ Ŷ , which is a disjoint sum of elliptic curves on Y ′.

Definition 2.2 . If the above properties are satisfied, we call X̂ an orbital
surface with (defining) basic orbital divisor B̂1, see (8). The coverings p̂G or
the restrictions pG are called finite uniformization of X̂ or X, respectively.

We will use the notations

p̂G : Ŷ −→ X̂, pG : Y −→ X,

with fat letters in order to signalize the orbital structures. Uniformizations are
not uniquely determined by the orbital surface X̂. Notice also, that each finite
uniformization defines a commutative diagram

(3)

Y ′ Ŷ

G\Y ′
X̂

�µ

�

p′
G

�

p̂G

�
ϕ

3



with vertical Galois coverings and horizontal birational morphisms.
Restricting p̂ = p̂G to suitable small analytic open neighbourhoods we have

around each point R = p̂(S) of X̂ a local finite uniformization ÛS −→ V̂R =
GS\ÛS with branch curve (germes) supported by all components Ci going
through R and corresponding ramification indices vi. Via inductive limit we
get a local orbital morphism S −→ R from the embedded point S ∈ Ŷ to the
embedded orbital point

(4) R = lim←− (V̂R, B̂1 restricted to V̂R).

An orbital point R ∈ X̂ is trivial, iff R is a smooth surface point outside of B̂1.
In this case we do not distinguish the notations R and R. It is a basic orbital
point on X̂, iff R is a singular point of X̂ or a singular point of B̂1. The basic
orbital zero cycle B̂0 of X̂ is defined as the finite formal sum of all basic orbital
points of X̂:

(5) B̂0 =
∑

X̂�R basic orbital

R.

Now we want to define orbital curves Ĉ on X̂ supported by an irreducible
curve Ĉ on X̂. For this purpose we look back to an orbital uniformization p̂G

of X̂. The diagram (3) restricts to

(6)

D′ D̂

p′G(D′) =: G\D′
Ĉ,

�

�

�
�

where D̂ is an (arbitrary) irreducible component of p−1
G (Ĉ) and D′ is the proper

transform of D̂ on Y ′. We assume the following

Conditions 2.3 • D′ is a smooth curve;

• D′ intersects T = E(µ) transversally at each common point;

• GD′ :=
⊕

g∈G gD′ is a divisor whose support has at most ordinary sin-
gularities.

Uniformizations with these properties are called Ĉ- uniformization of X̂. Each
singularity S of GD′ lying on D′ is called a G-cross point of D′. If the action
of GS on the set of curve germs of GD′ is not transitive, the we call S a
honest G-cross point of D′. These points are projected along p′G onto the set of
singularities of G\D′.
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(7) Sing G\D′ = p′G({honest G-cross points of D′}).
Obviously, the image points of Sing G\D′ on X̂ are also curve singularities of
Ĉ. These image points are precisely all Ĉ-singularities, which are not resolved
by ϕ. As in (4) we define for each singularity R of Ĉ the Ĉ-orbital point R on
X̂ taking into account the branch situation again locally around. The whole set
of Ĉ-orbital points on X̂ consists of the Ĉ-orbital points just described and the
X̂-orbital points with support on Ĉ.

Definition 2.4 . Let Ĉ ⊂ X̂ be an irreducible curve allowing a Ĉ-uniformiza-
tion of X̂. The pair

Ĉ = (vĈĈ;
∑

Ĉ�R Ĉ-orbital

R)

with ramification index vĈ ∈ N+ of pG at Ĉ is called an orbital curve on X̂,
and the sum of the second component is the orbital cycle on Ĉ.

With the conditions 2.1 it is not difficult to see that each component Ĉi

defines an orbital curve Ĉi. These basic orbital curves have common Ĉi- uni-
formizations. Namely, each finite X̂- uniformization is a Ĉi-uniformization of
X̂. We refer to [Ho1] for comparision, where we restricted ourselves essentially
to branch curves. The basic orbital divisor of X̂ is the formal sum

(8) B̂1 := Ĉ1 + ..... + Ĉr,

and the basic orbital cycle of X̂ is defined as formal sum

B̂ := B̂1 + B̂0 = Ĉ1 + ... + Ĉr +
∑

X̂�R basic orbital

R.

Definition 2.5 . The group DivZ X̂ of orbital divisors on X̂ is the free abelian
group generated by all orbital curves on X̂:

DivZ X̂ =
⊕

X̂⊃Ĉ orbital

Z · Ĉ

Remark 2.6 . As in [Ho1] we can define orbital curves and orbital points on
them purely locally on the given orbital surface X̂ via local intersections along
local finite uniformizations.

Let X̂ be an orbital surface. If R belongs to X∞, we call R an orbital point
at infinity or cusp point. The other orbital points R ∈ B̂0 are called (honest)
finite orbital points or quotient points. Cusp points are supported by cusp
singularities, which are locally finite quotients of elliptic points. Quotient points
are supported quotient singularities, which are locally finite quotients of smooth
surface points. In both cases it may happen that the supporting point is regular.
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Heights of orbital curves

Let p̂ : Ŷ −→ X̂ and q̂ : Ŷ −→ Ẑ be finite uniformizations with the same
covering surface Ŷ . If the supporting Galois covering p̂ factors though q̂, then
we call the induced orbital morphism Ẑ −→ X̂ a finite orbital surface covering.
Its restriction D̂ −→ Ĉ to two orbital curves on Ẑ or X̂, respectively, is a finite
orbital curve covering, by definition. The orbital surfaces together with such
finite orbital coverings X̂ −→ X̂ as morphisms define the category OrSf of
orbital surfaces. Similarly, we dispose on the category OrCr of orbital curves
with the finite orbital curve coverings as morphisms.

Definition 2.7 . A hight on OrCr is a non-zero map

h : OrCr −→ Q

satisfying

(9) h(D̂) = [D̂ : Ĉ]h(Ĉ)

for all finite orbital curve coverings D̂ −→ Ĉ. Thereby [D̂ : Ĉ] denotes the
degree of the underlying curve covering D̂ −→ Ĉ.

In the the appendix 10 we prove explicitly that such orbital curve heights
exist. Here we need only one type of them, namely the signature hights hτ (Ĉ)
of orbital curves Ĉ. The explicit formula looks like

(10) hτ (Ĉ) :=
1

vĈ

(C̃2) +
∑

hτ (R),

where the sum runs through all orbital points R onĈ, and C̃ is the (smooth)
proper transform of Ĉ ⊂ X̂ on a special well-defined Ĉ- model of X̂, which is
smooth along C̃. The contributions hτ (R) are rational numbers composed by
singularity and weight data of R and the basic orbital curves through R. For
branch curves of uniformizations the formulas can be already found in [Ho1].
For the precise contributions in (10) we refer to Definition 10.9 in the appendix.

3 Orbital functionals

Let X̂ be an orbital surface, DivZ X̂ its orbital divisor group and F a field. We
only need the fields Q and R of rational and real numbers. The F -vector spaces

DivF X̂ := F ⊗ DivZ X̂

are infinite dimensional in general, at least for our quasihyperbolic cases X̂ =
X̂Γ. We call it the F -divisor space of X̂.

We correspond to each finite orbital covering p̂ : Ŷ → X̂ the F -linear map

p̂# = p̂#F : DivF Ŷ −→ DivF X̂
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extending F -linearly the correspondences D̂ �→ [D̂ : Ĉ]Ĉ, where D̂ is an orbital
curve on Ŷ covering the orbital curve Ĉ on X̂ supported by p̂(D̂). With a
little modification we define the orbital direct image homomorphisms using the
orbital degree

[D̂ : Ĉ] :=
vĈ

vD̂

[D̂ : Ĉ]

instead of the geometric covering degree [D̂ : Ĉ]:

p̂# : DivF Ŷ −→ DivF X̂, D̂ �→ p̂#D̂ := [D̂ : Ĉ]Ĉ

The latter object is called the orbital direct image of D̂. After orbitalization of
direct images we want to orbitalize also our hights on OrCr introduced in the
last section.

Definition 3.1 . A (rational) orbital height h on OrCr corresponds to each
orbital curve Ĉ a rational number h(Ĉ) such that h(D̂) = [D̂ : Ĉ]h(Ĉ) for all
orbital curve coverings D̂ → Ĉ.

From any height h on OrCr satisfying the degree formula (9) it is easy to
change to the corresponding orbital height h setting

h(Ĉ) :=
1

vĈ

h(Ĉ).

Namely, from the degree compatibility of h follows immediately

h(D̂) =
1

vD̂

· h(D̂) =
[D̂ : Ĉ]

vD̂

h(Ĉ) =
[D̂ : Ĉ]vĈ

vhD̂)
h(Ĉ) = [D̂ : Ĉ]h(Ĉ)

Example 3.2 The signature height hτ changes in this manner to the orbital
signature hight hτ .

Remark 3.3 We will omit the index Q in DivQ X̂ keeping this base field exten-
sion in mind. This will be also done for the field index R, if there is no danger
of misunderstanding.

Now we consider functionals

fX̂ : Div X̂ −→ R

which are nothing else but linear maps on the orbital divisor spaces.

Definition 3.4 . A set
f̌ = {fX̂; X̂ ∈ OrSf}

is called an orbital functional on OrSf iff it is compatible with orbital direct
images along finite orbital coverings. This means that hX̂ ◦ p# = hŶ holds for
all finite orbital coverings p : Ŷ −→ X̂.
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Example 3.5 . Each orbital height h on OrCr extends linearly to an orbital
functional ȟ. The extension is done objectwise on each orbital divisor space
Div X̂. The compatibility with orbital finite coverings comes from the defining
hight property 3.1 for the orbital curves generating the orbital divisor spaces.
Especially, the orbital signature hight extends to the orbital signature functional.

It is quite natural to give a relative definition on commensurability classes of
OrSf . Commensurability is the smallest equivalence relation putting an orbital
surface and any orbital finite covering of it into the same class. The class of X̂
is denoted by [X̂]. We denote the corresponding full subcategory of OrSf by
the same symbol. By restriction we define orbital functionals on [X̂] in obvious
manner. In the same manner the commensurability class [Ĉ] of an orbital curve
Ĉ on X̂ is well-defined. It consists of orbital curves on objects of [X̂]. It is also
considered as a category with finite orbital curve coverings as morphisms.

Now we fix an infinite sequence

Ȟ = (ȟ0, ȟ1, ..., ȟN , ...)

of orbital functionals, say with rational values on rational orbital divisors. It
defines a very formal series

Ȟ(q) :=
∞∑

N=0

ȟN · qN

with a variable q. Applied to orbital curves Ĉ we get formal power series

HĈ(q) :=
∞∑

N=0

hN (Ĉ) · qN ∈ Q[[q]].

For orbital finite coverings D̂ −→ Ĉ we get the relations

(11) HD̂(q) = [D : C] · HĈ(q).

Now we substitute q = e2πiτ , τ ∈ H := {z ∈ C; 
z > 0}. For suitable
sequences of orbital functionals we expect and will construct convergent series
(holomorphic functions)

ΦĈ(τ) = ΦȞ
Ĉ

(τ) :=
∞∑

N=0

hN (Ĉ) · e2πiNτ

on the Poincaré upper half plane H. Both, HD̂(q) and ΦĈ(τ), are called orbital
series of the sequence Ȟ of orbital functionals.

Definition 3.6 . The sequence Ȟ of orbital functionals is called modular iff
for each orbital curve Ĉ for which Ȟ is applicable, the attached series ΦĈ(τ) is
a (holomorphic) modular form.
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This means that there is a congruence subgroup Γ of Sl2(Z) and a positive
integer k (weight) such that

ΦĈ(
aτ + b

cτ + d
) = (cτ + d)k · ΦĈ(τ).

for all γ =
(

a b
c d

) ∈ Γ.

Remark 3.7 . If Ȟ is a sequence of orbital functionals on a commensurabil-
ity class [X̂] and Ĉ is an orbital curve on X̂, then the attached orbital series is
uniquely determined up to a rational factor by the orbital series of any represen-
tative D̂ of [Ĉ]. This follows immediately from the relations (11). Especially,
the proof of modularity can be done by checking this property for only one rep-
resentative ΦD̂(τ).

Convention 3.8 . At the end of this section we explain the use of integral
sign

∫
in orbital series as presented in the abstract and introduction. Classical

integrals are understood as functionals. Setting∫
Ĉ

h := h(Ĉ)

is only a converse style of writing (until now), in order to present orbital series
in a more familiar manner with a glance to Fourier series.

Notation 3.9 . The orbital signature hight will be denoted by ȟ0 instead of ȟτ .
Applied to an orbital curve we identify

h0(Ĉ) = hτ (Ĉ) =
∫
Ĉ

h0

The notation indicates that we constructed the constant term of modular orbital
series. The next section prepares the construction of higher terms.

4 Orbital intersection products

We will now introduce a bilinear symmetric rational intersection product

Div X̂ × Div X̂ −→ Q

for orbital divisors on orbital surfaces X̂. Via linear extension it suffices to
explain (Ĉ · D̂) for each pair Ĉ, D̂ of orbital curves on X̂. Let π : X̃ −→ X̂ be

a singularity resolution with exceptional divisor E = E(π) =
s∑

i=1

Ei on X̃. The

intersection matrix of the irreducible components is negative definite, see [Mu].
We say that two Q-divisors

A, B ∈ DivQ X̃ := Q ⊗ Div X̃
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are orthogonal, iff its intersection product (A,B)X̃ on X̃ is equal to 0. In this
case we write A⊥B. For an arbitrary (irreducible) curve Ĉ on X̂ we define

π#(Ĉ) = C̃ +
s∑

i=1

λiEi,

by the orthogonality conditions

π#(Ĉ)⊥E1, . . . , Es

and with proper preimage C̃ of Ĉ on X̃ and uniquely determined rational coef-
ficients λi by these conditions. By Q-linear extension we get a Q-linear map.

π# : DivQX̂ := Q ⊗ DivX̂ −→ DivQX̃

from Weil to Cartier Q-divisors. The rational intersection product of two curves
Ĉ, D̂ on X̂ is defined as

(Ĉ · D̂) = (Ĉ · D̂)X̂ := (π#(Ĉ) · π#(D̂)).

Fulton proved in [Fu], 8.3.11, that this intersection product does not depend on
the choice of the singularity resolution π. Mumford used in [Mu] the minimal
singularity resolution. This works for arbitrary normal compact complex alge-
braic surfaces X̂. By obvious extension we dispose on a Q-bilinear symmetric
intersection map

( . · . )X̂ : DivQX̂ × DivQX̂ −→ Q.

If ϕ : X ′ −→ X̂ is a birational morphism of normal surfaces with exceptional

divisor E = E(ϕ) =
s∑

i=1

Ei on X ′ we can now extend the above considerations

in order to define

ϕ#(Ĉ) = C ′ +
s∑

i=1

λiEi,

by the orthogonality conditions

ϕ#(Ĉ) ⊥ E1, . . . , Es.

Thereby C ′ is the proper transform of the curve Ĉ. Ivinskis proved in [Iv] that
the linear extension to ϕ# : DivQ X̂ −→ DivQ X ′ behaves functorially, that
means

(ϕ ◦ ψ)# = ψ# ◦ ϕ#

for any birational morphism ψ from another normal surface onto X ′. Applied
to singularity resolutions ψ we get the compatibility of ϕ# with the rational
intersection products:

(ϕ#D1 · ϕ#D2)X′ = (D1 · D2)X̂ , Di ∈ DivQ X̂, i = 1, 2.
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Example 4.1 . A neat orbital surface is an orbital surface with only elliptic
singularities, and without basic orbital curves. The exceptional locus E(µ) of
the minimal resolution µ : Y ′ −→ Ŷ of singularities is a disjoint sum T =
T1 + ... + Th of elliptic curves. For a curve D̂ with proper transform D′ on Y ′

one finds

(12) µ#(D̂) = D′ − (D′ · T1)
(T 2

1 )
T1 − ..... − (D′ · Th)

(T 2
h )

Th =: D′ + D∞

because this rational divisor is orthogonal to T1, . . . , Th. Since µ#D is orthogonal
to T1, . . . , Th, the intersection product with µ#(Ĉ) for a curve Ĉ on Ŷ is

(Ĉ · D̂) = (µ#Ĉ · µ#D̂) = ((C ′ + C∞) · (D′ + D∞)) = (C ′ · (D′ + D∞))

= (C ′ · D′) + (C ′ · D∞) = (C ′ · D′) − (C ′ · T1)(D′ · T1)
(T 2

1 )

− . . . − (C ′ · Th)(D′ · Th)
(T 2

h )
.

Especially, we obtain

(Ĉ · Ĉ) = (C ′ · C ′) − k2
1/s1 − ..... − k2

h/sh

with
ki = ki(C) := #C ∩ Ti = (C ′ · Ti), si := (T 2

i ).

These formulas are valid on the minimal resolution Y ′ of singularities of any
Picard modular surface Ŷ = B̂/Γ with neat B-lattice Γ and singularity resolving
compactification divisor T = T1 + ... + Th.

Now we come back to the orbital surfaces X̂. Take two orbital curves Ĉ, D̂ on
it and set

(Ĉ · D̂) = (Ĉ · D̂)X̂ :=
1

vĈvD̂

(Ĉ · D̂)X̂ .

We extend also this orbital intersection product to the symmetric bilinear orbital
intersection map

( . · . )X̂ : Div X̂ × Div X̂ −→ Q.

We need some functorial properties. Let p̂ : Ŷ −→ X̂ be a finite covering
of degree deg p̂ = [Ŷ : X̂] of normal surfaces, Ĉ1, Ĉ2 two (irreducible) curves on
X̂ and p̂∗Ĉ1, p̂∗Ĉ2 their inverse images on Ŷ . Then the degree formula

(13) (p̂∗Ĉ1 · p̂∗Ĉ2) = [Ŷ : X̂] · (Ĉ1 · Ĉ2)

is valid. The proof can be found in [Iv], p. 38. The formula extends bilinearly
to any pair of (Weil) Q-divisors on X̂. We remember that

(14) p̂∗Ĉ =
∑

D̂i→Ĉ

viD̂i =
h∑

i=1

viD̂i,
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where vi is the ramification index of p̂ at the irreducible component D̂i of p̂∗Ĉ.
It holds that

(15) [Ŷ : X̂] = d1v1 + d2v2 + ..... + dhvh, di := [D̂i : Ĉ].

As a corollary one gets the projection formula

(p̂#D̂ · Ĉ ′) = (D̂ · p̂∗Ĉ ′),

for curves Ĉ = f(D̂), Ĉ ′ = f(D′) on X̂ and D̂, D′ on Ŷ . Thereby the direct
image is defined by

(16) p̂#D̂ := [D̂ : f(D̂)]f(D̂) = [D̂ : Ĉ] · Ĉ.

The projection formula is well-known for divisors on smooth surfaces. For the
sake of completeness we prove it for Galois coverings p̂ : Ŷ −→ X̂ = Ŷ /G, G =
Gal(Y/X). Then we have v = vi in (14), d = di in (15), hence [Ŷ : X̂] = vdh.
From the degree formula (13) we get

[Ŷ : X̂](Ĉ · Ĉ ′) = (p̂∗Ĉ · p̂∗Ĉ ′) = v(D̂1 · p̂∗Ĉ ′)+ ....+v(D̂h · p̂∗Ĉ ′) = vh(D̂ · p̂∗Ĉ ′).

We used the G-invariance of p̂∗C ′, {D̂i; i = 1, ..., h} and of the intersection
product on Ŷ . On the other hand the Definition (16) of direct images yields

[Ŷ : X̂](Ĉ · Ĉ ′) =
vdh

d
(p̂#D̂ · Ĉ ′).

Now the projection formula follows by comparision.

�
Now we define for orbital finite surface coverings p̂ : Ŷ −→ X̂ the orbital

preimage
p̂−1(Ĉ) := D̂1 + ... + D̂h.

of orbital curves on X̂ with the notations of (14).
If p̂ is a Galois covering, then vi = v(p̂) =: v, i = 1, ..., h in (14). Uniformizing

p̂ , which is possible by definition of finite orbital coverings, we see that vĈ =
v · vD̂. Therefore the identity

p̂∗Ĉ =
vĈ

vD̂

h∑
i=1

D̂i =
vĈ

vD̂

p̂−1Ĉ

holds in all Galois cases. We give the following orbital version of the projection
formula

Proposition 4.2 . For the finite orbital covering p̂ : Ŷ −→ X̂ supporting the
orbital curve covering D̂ → Ĉ it holds that

(17) (D̂ · p̂−1Ĉ′) = [D̂ : Ĉ](Ĉ · Ĉ′).

for each orbital curve Ĉ′ on X̂.
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Proof. If p̂ is supported by a Galois covering p̂, then

(D̂ · p̂−1Ĉ′) =
1

vD̂vD̂′
(D̂ · p̂−1Ĉ ′) =

1
vD̂vĈ′

(D̂ · vĈ′

vD̂′
p̂−1Ĉ ′)

=
1

vD̂vĈ′
(D̂ · p̂∗Ĉ ′) =

[D̂ : Ĉ]
vD̂vĈ′

(Ĉ · Ĉ ′)

=
[D̂ : Ĉ]
vĈvĈ′

(Ĉ · Ĉ ′) = [D̂ : Ĉ](Ĉ · Ĉ′).

Now let p̂ be an arbitrary finite orbital covering. We take uniformizations

û : Ẑ
q̂−→ Ŷ

p̂−→ X̂, Ê −→ D̂ −→ Ĉ

For û and q̂ we are in the Galois situation. Therefore

(Ê · û−1Ĉ′) = [Ê : Ĉ](Ĉ · Ĉ′),

(Ê · q̂−1(p̂−1Ĉ′)) = [Ê : D̂](D̂ · p̂−1Ĉ′).

The left-hand sides coincide and

[Ê : D̂]
[Ê : Ĉ]

= [D̂ : Ĉ].

Now (17) follows immediately.

�

Let us write p̂# for the linear extension of p̂−1 from orbital curves to the
orbital divisor groups. We dispose on linear homomorphisms

p̂# : Div X̂ −→ Div Ŷ , p̂# : DivŶ −→ Div X̂

with nice functorial behaviour. Namely, for A ∈ Div X̂ and D̂ ∈ Div Ŷ the
relations (17) extend bilinearly to the

Orbital Projection Formula:

(18) (p̂#D̂ · A)X̂ = (D̂ · p̂#A)Ŷ.

Theorem 4.3 . Let X̂ be an orbital surface. Each orbital divisor A on it
defines an orbital functional ȟA on the relative category OrSf X̂ of all orbital
surfaces Ŷ covering X̂. It extends linearly the basic correspondence

D̂ �→ hA(D̂) := (D̂ · p̂#A)Ŷ

for orbital curves D̂ ⊂ Ŷ along orbital finite surface coverings p̂ : Ŷ −→ X̂.

�
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5 Arithmetic orbital divisors

Let K be a fixed imaginary quadratic number field with ring of integers O = OK .
A Picard lattice (over O) is a hermitian O-lattice Λ with a hermitian form
< . , . >: Λ×Λ −→ O of signature (2,1). A Picard modular group corresponding
to Λ is a subgroup Γ of Aut V commensurable with the automorphism group
Γ1 := Γ1(Λ) of Λ, called the full Picard modular group of Λ. The lattice defines
the the hermitian K- or C-vector spaces V := Q⊗Λ or VR := R⊗V , respectively,
isomorphic to K3 respectively C3 (forgetting the hermitian structure). Through
the paper we will use the notations

Λ− := {λ ∈ Λ; < λ, λ > < 0}, Λ+ := {λ ∈ Λ; < λ, λ > > 0},
Λ0 := {λ ∈ Λ; < λ, λ > = 0};

V − := {v ∈ V ; < v, v > < 0}, V + := {v ∈ V ; < v, v > > 0},
V 0 := {v ∈ V ; < v, v >= 0};
V −

R := {v ∈ VR; < v, v > < 0}, V +
R := {v ∈ VR; < v, v > > 0},

V 0
R := {v ∈ VR; < v, v >= 0};

The corresponding elements are called negative, positive, or isotrope, respec-
tively. Projectivising we get embeddings

B := PV −
R ⊂ PVR = P2, ∂B = PV 0

R ⊂ P2.

The elements of
∂KB := P2(K) ∩ ∂B

are called (K-)rational boundary points of B.
B is isomorphic to the standard complex unit ball {(z1, z2) ∈ C2; |z1|2 +

|z2|2 < 1}. The elements of the Picard modular group Γ ⊂ U(VR) ∼= U((2, 1), C)
act on B by fractional linear transformations via embedding

PΓ ⊂ PGl(VR) ∼= PGl3(C).

This action is properly discontineous. The Picard modular groups Γ are arith-
methmetic ball lattices. The quotient surface XΓ := Γ\B and its Baily-Borel
compactifications X̂Γ is called the Picard modular surface of Γ. The compact-
ification locus consists of finitely many normal points coming from rational
boundary points, precisely:

X̂Γ = X̂Γ � Γ\∂KB.

Endowed with the compactified branch divisor of the infinite locally finite cov-
ering pΓ : B −→ XΓ we get the orbital Picard surfaces XΓ and X̂Γ. Each
sublattice Γ′ of Γ induces an orbital finite covering X̂Γ′ −→ X̂Γ. If Γ′ is a neat
sublattice of Γ, then we write X̂Γ′ instead of X̂Γ′ because pΓ′ is a universal
covering, which has no ramification. If, moreover, Γ′ is a normal subgroup of Γ,
then X̂Γ′ −→ X̂Γ is a finite uniformization with Galois group G = Γ/Γ′.

14



Let L be a line in P2 defined over K (K-line). A K-disc D on B is a non-void
intersection of B with a K-line. The group NΓ(D) of all elements of Γ acting
on D is an arithmetic D-lattice. Conversely, each linear subdisc D of B, for
which NΓ(D) is a D-lattice, must be a K-disc. An arithmetic curve on X̂Γ is
the closure Γ̂\D of a quotient curve Γ\D ⊂ XΓ, D a K- disc. The corresponding
orbital arithmetic curve is denoted by Γ̂\D. The notations are justified by the
following

Proposition 5.1 . Each arithmetic curve Ĉ = Γ̂\D on X̂Γ has a Γ̂\D-uniformi-
zation realized by a surface X̂Γ′ with a suitable neat normal sublattice Γ′ of Γ.
Therefore arithmetic curves are orbital in the global sense.

This has been proved in [Ho1], Prop. 4.4.12. Namely, we constructed there
D-neat ball lattices Γ′ by means of principal congruence subgroups. The curve
D̂ = Γ̂′\D satisfies the conditions 2.3 by definitions.

�

The ball B has a hermitian metric with negative constant holomorphic sec-
tional curvature (hyperbolic, Bergman metric). For the explicit construction we
refer to [BHH]. The above subdiscs are geodesics. These structures go down to
XΓ and Γ\D, if Γ is neat and the curve smooth. In general we have to move some
curves and points (branch locus, degeneration locus) from XΓ to preserve this
nice metric together with the geodesic property of the embedded quotient curve.
We say that XΓ has a quasi-hyperbolic structure and Γ\D is quasi-geodesic, in
general. There exists a finite covering with complete hyperbolic structure and
complete geodesic covering of Γ\D.

The orbital curves have moduli but the arithmetic curves are rigid by the
arithmetic nature of definition: you cannot move K-discs on B without leaving
this set.

Definition 5.2 . The group of orbital arithmetic divisors Divar X̂Γ is the free
abelian subgroup of Div X̂Γ generated by all orbital arithmetic curves on X̂Γ.

Theorem 5.3 . Let ȟ be the signatur functional of the divisor functor on OrSf
and Ĉ = Γ̂\D the orbital arithmetic curve on X̂Γ of the K- disc D ⊂ B. The sig-
nature hight of Ĉ is the half of the Euler-Poincar volume of of a ΓD-fundamental
domain on D:

(i) hτ (Ĉ) = 1
2volEP (ΓD) < 0;

(ii) The orbital signature hight is
h0(Ĉ) = 1

2vĈ
volEP (ΓD) < 0.

Proof. From the first formula the second follows by definition of the orbital
signature. For the first we dispose on a Proportionality Theoerem characterizing
orbital ball quotients and orbital disc quotients Ĉ on them, see [Ho1], ch. IV,

15



Theorem 4.9.2. In this monograph we introduced also orbital Euler heights he

for orbital curves denoted by ef there. Then the (Prop 1)-part of the theorem
says in our terms that he(Ĉ) = 2hτ (Ĉ) < 0. Moreover, we know from [Ho1],
Prop. 4.7.4, that he(Ĉ) = volEP (ΓD) < 0.

�

Now we restrict our orbital divisor functor to the subcategory OrSf(Λ) of
orbital Picard surfaces of a fixed Picard-lattice Λ. In this category we do not al-
low other morphisms than finite orbital coverings p̂ : X̂Γ′ −→ X̂Γ corresponding
to Picard modular groups Γ′ ⊂ Γ of Λ. The main purpose for the restriction to
OrSf(Λ) is to get more orbital functionals ȟ defined only there, not extendable
to OrSf . We will call them arithmetic orbital functionals.

6 Orbital Heegner series

Let D = B ∩ L be the K-disc with K-line L on P2. Each K-line is the projec-
tivization La := Pa⊥, a⊥ the (indefinite) orthogonal complementary subspace
of Ca in VR, where a belongs to V +, see section 5. All elements of the K-line
Ka define the same K-line La and the same K-disc D = Da = B ∩ La. So we
can and will assume that a ∈ Λ+. We fix Λ and set for positive integers N

Λ(N) := {λ ∈ Λ; < λ, λ > = N}
D(N) := {Da; a ∈ Λ(N)}

Definition 6.1 . The N -th orbital Heegner divisor on X̂Γ, is the orbitalized
reduced Weil divisor

(19) HN(Γ) = HN(Λ,Γ) :=
∑

D(N)�D mod Γ

Γ̂\D

For neat lattices Γ′ it is the same to write

(20) HN (Γ′) = HN(Γ′) =
∑

Λ(N)�a mod Γ′

Γ̂′\Da

because γ(a) = c · a, γ ∈ Γ, c ∈ C, implies c = 1. Namely, c must be a unit root
in this case. But a non-trivial unit root cannot be an eigenvalue of an element
of Γ by the definition of neat groups. Therefore a and b are Γ-equivalent iff Da

and Db are.
For each sublattice Γ′ of Γ and the corresponding finite covering p : X̂ ′

Γ → X̂Γ

it holds that

(21) HN(Γ′) = p#HN(Γ)

because p# is the linear extension of p−1.
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Theorem 6.2 . The orbital intersection functionals

hN,Γ : Div X̂Γ −→ Q, A �→
∫
A

hN = (A · HN(Γ))

form an orbital functional ȟ =
∫

h on OrSf(Λ).

Proof. As in the proof of Theorem 4.3 we use the Orbital Projection Formula
(18) in order to check the p#-compatibility for finite coverings p as above. With
(21) one really gets

(p#D̂ · HN(Γ)) = (D̂ · p#HN(Γ)) = (D̂ · HN(Γ′))

for each D̂ ∈ Div X̂Γ′ .

�
The orbital functional ȟ of Theorem 6.2 with the characteristic property

(22) hN(D̂) = [D̂ : Ĉ] · hN(Ĉ).

for orbital curve coverings D̂ → Ĉ is called the orbital Heegner functional on
OrSf(Λ)

Together with the orbital signature functional ȟ0 we dispose now on a well-
defined sequence Ȟ of orbital Heegner functionals ȟN , N = 0, 1, 2, 3, ... on each
category OrSf(Λ) of orbital Picard surfaces.

Remark 6.3 . Observe that the N -th orbital Heegner divisors and functionals
for N > 0 depend on the norm sets of K-discs on B. These norm sets have
been choosen by means of hermitian lattice Λ we started with in section 5. So
we should write more precisely ȟN,Λ instead of ȟN only. But we will fix K and
Λ and keep it in mind in order to simplify the notations.

Definition 6.4 . We call

Ȟ(q) = ȞΛ(q) :=
∞∑

N=0

ȟNqN = ȟ0(A) +
∞∑

N=1

qN

∫
hN

the orbital Heegner series of the Picard lattice Λ. The series

HeegA(q) = h0(A) +
∞∑

N=1

qN

∫
A

hN

is called the orbital Heegner series of the orbital divisor A ∈ Div X̂Γ.

The orbital degree formula (11) for sequences of orbital functionals specia-
lizes to

(23) HeegD̂(q) = [D : C] · HeegĈ(q)

with the notations of (22).
Substituting q = e2πiτ , we ask for orbital divisorsA producing holomorphic

functions ΦA(τ) = HeegA(e2πiτ ) on the upper half plane H and their properties.
We need the most familiar cases of hermitian lattices described in the following
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Definitions 6.5 . The norm n(Λ) of an hermitian lattice Λ over OK is the
additive subgroup of Z generated by all elements < λ, λ >, λ ∈ Λ. A maximal
lattice is maximal in the set of O- sublattices of V = K⊗Λ with the same norm.
A Z-maximal lattice is a maximal O- lattice Λ with norm n(Λ) = Z. We say
that Λ belongs to a unimodular class iff Λ is commensurable with a unimodular
hermitian OK-lattice.

The discriminant of the quadratic extension K/Q is denoted by DK/Q. It defines

the Dirichlet character χK :=
(

DK/Q

·

)
on Z. The modular group Sl2(Z) is

denoted by G. For 0 �= m ∈ N+ we dispose on congruence subgroups

G0(m) := {( a b
c d

) ∈ G; c ≡ 0 mod m}

The vector space of G0(m)-modular forms on H of wight k and Nebentypus
χK is denoted by Mk(m,χK). It consists of all holomorphic functions f(τ)
satisfying the functional equations

(24) f(
aτ + b

cτ + d
) = (cτ + d)kχK(d)kf(τ)

for all elements
(

a b
c d

) ∈ G0(m).

Main Theorem 6.6 . Let Λ be a Z-maximal Picard lattice over OK in a
unimodular class, OrSf(Λ) the corresponding orbital category of Picard surfaces
X̂Γ and A ∈ Divar X̂Γ . Then the orbital Heegner series ΦA(τ) belongs to
M3(DK/Q, χK) and has Q-rational coefficients;

Proof. The bilinearity of orbital intersection products yields ΦA1+A2(τ) =
ΦA1(τ) + ΦA2(τ) for A1, A2 ∈ Divar X̂Γ. Therefore it suffices to check that
ΦĈ(τ) is a modular form of the announced type for all arithmetic curves Ĉ
on X̂. Because of the direct image compatibility (23) along orbital coverings
X̂Γ′ → X̂Γ the problem is reduced to arithmetic orbital curves D̂ = D̂ = Γ̂′\D ⊂
X̂Γ′ = X̂Γ′ for neat congruence subgroups Γ′ of Γ1. It suffices even to prove the
modular property for only one neat Picard modular group Γ′ because all Picard
modular groups of Λ are commensurable with each other, and a neat one exists.
This will be done in section 8 restricting to neat natural congruence subgroups.
Originally, this proof is due to Cogdell [Cog0], [Cog1]. We give only a simplified
outline of it.

7 Leading example

We want to illustrate the use of our geometric method to get an explicit mo-
dular Heegner series. Comparision with the analytic method yields interesting
formulas for elementary arithmetic functions sitting in the Fourier coefficients.

Let O = Z[i] be the ring of Gauß integers with discriminant δ = 2i and Λ′ =
O3 the unimodular hermitian lattice with metric represented by the diagonal
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matrix
(

1 0 0
0 1 0
0 0 −1

)
. With Γ′

1 := Γ1(Λ′) =: SU((2, 1),O) ∼= P(Aut Λ′) we define
the congruence subgroup Γ = Γ′

1(1 + i) with respect to the O-ideal (1 + i).
Unfortunately, Λ′ is not Z-maximal, but has the Z-maximal extension

(25) Λ := O

(
0

−(1+i)/2
(1−i)/2

)
+ O

(
1
1
i

)
+ O

(
(1−i)/2

0
(1+i)/2

)
with scew diagonal Gram matrix

(26)
(

0 0 δ−1

0 1 0
δ̄−1 0 0

)
=

(
0 0 − i

2
0 1 0
i
2 0 0

)
.

corresponding to the Witt basis presented in (25). So Γ belongs to the com-
mensurability class of Γ1(Λ), and our theory is applicable to this ball lattice.
Consider the three norm-1 vectors

c0 =
(

1
1
1

)
, c1 =

(
0
1
0

)
, l1 =

(
(1+i)/2
(1−i)/2

0

)
∈ Λ.

The images of the corresponding discs Dc0 , Dc1 , Dl1 are denoted by C0, C1,
L1, respectively. In [HV] we proved that the complex projective plane is the
Baily-Borel compactification of Γ\B. Moreover, there are precisely three cusp
points K1,K2,K3. The (compactified) branch divisor of pΓ is supported by the
quadric Ĉ0 and three tangents Ĉ1, Ĉ2, Ĉ3 as drawn in the following picture:

(27)
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P1 P2

P3

Ĉ0

Ĉ1Ĉ2

Ĉ3

K1K2

K3

L̂1L̂2

L̂3

Γ̂\B = P2

The factor group Γ\Γ1(O3) is isomorphic to the symmetric group S3. It acts in
geometrically obvious manner effectively on P2 and on the configuration (27).
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The branch weights vĈi
of the orbital curves Ĉi, i = 0, 1, 2, 3, are equal to

4. The seven irreducible curves of the configuration are all disc quotients with
norm 1. Using the geometric formulas for signature heights in [Ho1], originally
in [HPV], we calculated

h0(Ĉ0) = hτ (Ĉ0) =
1
4
[(C ′2

0 ) + 0 + 0] = −1
2
, h0(Ĉ0) = −1

8

Moreover, the first orbital Heegner divisor is

H1 = Ĉ0 + Ĉ1 + Ĉ2 + Ĉ3 + L̂1 + L̂2 + L̂3

on the orbitalized projective plane P2 = Γ̂\B. Since the orbital intersection
product on P2 is supported by the usual intersection product for curves on the
plane it is not difficult to calculate

h1(Ĉ0) = (Ĉ0 · H1) =
1
4
(Ĉ0 · H1) =

1
4

(
1 +

1
2

+
1
2

+
1
2

+ 2 + 2 + 2
)

=
17
2

So we know the first two coefficients of the Heegner series

HeegĈ0
(q) = −1

8
+

17
2

q + ...

From Koblitz’ monograph [Kob], IV.1 Prop. 4, we pick out the following

Proposition 7.1 . Let χ = χK be the Dirichlet character of the Gauß number
field K = Q(i) with discriminant DK/Q = 4. The ring of G0(4)-modular forms
of Nebentypus χ is generated by ϑ2 with Jacobi theta series

ϑ :=
∑
n∈Z

qn2
= 1 + 2

∑
n>0

qn2

and the Hecke theta series

θ :=
∑

0<u odd

σ(u)qu = q ·
∞∏

m=1

(1 − q4m)4
∞∏

n=1

(1 + 2qn)4,

where σ(m) denotes the sum of natural divisors of m ∈ N.

Notice that

ϑk =
∑
N∈N

ak(N)qN for positive integers k,

where ak(N) is the number of Z-solutions of the quadratic equation
x2

1 + x2
2 + ... + x2

k = N , see [BF], VIII.1.
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Corollary 7.2 . The space M3(4, χ) of G0(4)-modular forms of weight 3 and
Nebentypus χ coincides with the two-dimensional complex vector space generated
by the series

(28)

ϑ6 =
∞∑

N=0

a6(N)qN

= 1 + 12q + 60q2 + 160q3 + 252q4 + 312q5 + .....,

ϑ2θ = q + 4q2 + 8q3 + 16q4 + 26q5 + .....

=
∞∑

N=0

(
N∑

1=u odd

σ(u)a2(N − u)

)
qN

It follows that each series
∑

hNqN ∈ M3(4, χ) is completely determined by the
first two Fourier coefficients h0 and h1, namely

∞∑
N=0

hNqN = h0ϑ
6 + (h1 − 12h0)ϑ2θ

=
∞∑

N=0

(
h0a6(N) + (h1 − 12h0)

N∑
1=u odd

σ(u)a2(N − u)

)
qN

With h0 = − 1
8 , h1 = − 17

2 we get our Heegner series explicitly with elementary
arithmetic Fourier coefficients:

(29) HeegĈ0
(q) =

∞∑
N=0

(
−a6(N)

8
+ 10

N∑
1=u odd

σ(u)a2(N − u)

)
qN

Cogdell (unpublished) determined also at the end of his thesis [Cog0] the
Heegner series for c0 and neat principal congruence subgroups Γ1(M), M > 2.
He filled stepwise the explicit Gauß lattice data in his analytic proof of the main
theorem for neat congruence subgroups of ideals. The reader is invited to do
this in the outline of proof given in the next section. Up to a natural scaling
factor depending on M he received

Cogdc0 :=
∞∑

N=0

(N − 1
12

)a2(N)qN + 2
∞∑

N=1

(
N∑

m=1

σ(m)a2(N − m)

)
qN

= − 1
12

+
17
3

q +
65
3

q2 + 40q3 +
257
3

q4 +
442
3

q5 + ....

We get the normalizing constant term − 1
8 by multiplying Cogdell’s series with

3
2 . Then we get another presentation of our Heegner series, namely,

HeegĈ0
(q) =

∞∑
N=0

(
(
3N

2
− 1

8
)a2(N) + 3

∞∑
N=1

N∑
m=1

σ(m)a2(N − m)

)
qN
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Comparing Fourier coefficients of both presentations of the Heegner series we
obtain as amusing byproduct an elementary formula for the number of Z-points
on the boundary of the real six-dimensional ball with radius

√
N , namely

a6(N) = (1 − 12N)a2(N) +
N∑

m=1

(80δ(m) − 24)σ(m)a2(N − m)

with the parity symbol

δ(m) :=

{
0, m even
1, m odd

We also checked the formula by a computer for 0 ≤ N < 100. The author did
not know these relations before. Can one prove them in elementary manner ?

Remark 7.3 . The geometric way is simply applicable to any arithmetic geode-
sic Ĉ on the orbital Picard plane P2. One has only to calculate the orbital
signature h0(Ĉ) and the orbital intersection h1(Ĉ) = (Ĉ·H1) to get the attached
Heegner series HeegĈ(q) via Corollary 7.2. The problem is to recognize more
arithmetic curves. Until now we only know the seven modular curves on P2

drawn in Picture (27). The knowledge of the Heegner series of only one of them
yields a counting procedure for all, because each of them has a degree contribution
in some Fourier coefficients. Our geometric method is also applicable to other
orbital Picard surfaces, especially to the well-classified ones, in hopefully effective
manner.

8 The Theta functions in the background

The Main Theorem is an immediate consequence of the following

Decomposition Theorem 8.1 . The Heegner series ΦĈ(τ) has the following
additive decompositions

(30) ΦĈ(τ) = Φfin

Ĉ
(τ) + Φ∞

Ĉ
(τ),

(31) Q[[q]] � Φfin

Ĉ
(τ) = Φ3(τ) − Φ1(τ),

(32) Q[[q]] � Φ∞
Ĉ

(τ) = Φ∞
3 (τ) + Φ∞

1 (τ),

with relation

(33) Φ∞
1 (τ) = Φ∞

1 (τ), hence ΦĈ(τ) = Φ3(τ) + Φ∞
3 (τ).
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and qualities:

(34) Q[[q]] � Φ1(τ) = Φ∞
1 (τ) ∈ M1(DK/Q, χK),

(35) C[[q]] +
1
y

C[[q]] � Φ3(τ) ∈ Mnon−hol
3 (DK/Q, χK),

(36) C[[q]] +
1
y

C[[q]] � Φ∞
3 (τ) ∈ Mnon−hol

3 (DK/Q, χK).

The latter two series define analytic functions with complex values in the two
real variables x = �(τ), y = 
(τ) by absolute convergence on H : y > 0. The
upper index non−hol emphasizes that the functions are not holomorphic; but the
transformation laws are the same as in (24) for the wight k = 3.

The proof is a 76-year marathon through the theories of Theta and Zeta
functions. The main splitting (30) has been well- prepared in Example 4.1. For
orbital curves Ĉ, D̂ on X̂ with proper transforms C ′, D′ on X ′ we proved the
relation

(Ĉ · D̂) = (C ′ · D′) + (C∞ · D′),

changing the roles of Ĉ and D̂ with

T1, ..., Th ⊥ D′ + D∞ = π#D̂ ∈ DivQX ′.

We extend it to the Heegner divisors ĤN = HN (X̂Γ), N ∈ N+, defined in (19)
with proper transforms H ′

N on X ′ and the decompositions

T1, ..., Th ⊥ H ′
N + H∞ = π#D̂ ∈ DivQX ′.

The N -th coefficient of the Heegner series ΦĈ(q) splits into

(Ĉ · ĤN ) = (C ′ · H ′
N ) + (C∞ · H ′

N ).

It defines our splitting (30)

ΦĈ(q) = Φfin

Ĉ
(q) + Φ∞

Ĉ
(q)

setting

Φfin

Ĉ
(q) := h(Ĉ) +

∞∑
N=1

(C ′ · H ′
N )qN ∈ Q[[q]],

Φ∞
Ĉ

(q) :=
∞∑

N=1

(C∞ · H ′
N )qN ∈ qQ[[q]].

Now we split the latter series in its single cusp contributions. We let κ1, ..., κh

be a complete set of representatives mod Γ of the K-rational boundary set ∂KB,
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also called Γ-cusps. Writing κmod Γ indicates that κ runs through such a (fixed
but arbitrarily choosen) set of representatives. With

C∞ =
∑

κ mod Γ

λκTκ =
n∑

i=1

λiTi.

and

(37) Φκ(τ) :=
∞∑

N=1

(Tκ · H ′
N )qN

we get

Φ∞
Ĉ

(q) =
∞∑

κ mod Γ

λκΦκ(q),

The coefficients have been already calculated in (12), namely

λκ = − (C ′ · Tκ)
(T 2

κ )
= − (C ′ · Ti)

(T 2
i )

∈ Q, κ = κi.

Lemma 8.2 (Cogdell [Co], Lemma 2.4 (ii)). With the above notations it holds
that

(38) −(T 2
κ ) = M · ∣∣DK/Q

∣∣ , hence λκ =
(C ′ · Tκ)

M · ∣∣DK/Q

∣∣
and

(39) Φ∞
Ĉ

(q) =
1

M · ∣∣DK/Q

∣∣ ∑
κ mod Γ

(C ′ · Tκ)Φκ(q).

This series is closely related with the holomorphic function on H of theta type

(40) θκ(τ) :=
∑

A∈Λκ
2

e2π<A,A>τ .

We have to explain Λκ
2 . Cogdell proved in [Cog0] the existence of a Witt de-

composition of (the Z-maximal Picard lattices) Λ with respect to κ. This is
an orthogonal decomposition of Λ into an indefinite sublattice of rank 2 and a
positive definite one together with a κ-Witt basis W1,W2,W3 of V satisfying
KW1 = Kκ,

(41) Λ = (a−1W1 ⊕ āW3) ©⊥ aā−1W2,

W1, W3 isotropic, W2 positive and a the ideal defined by a−1W1 = K ·W1 ∩Λ.
By suitable choice of W1 we can and will assume that a is an OK-ideal. Now
take the positive summand of this decomposition to define
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(42) Λκ
2 := aā−1W2.

θκ(τ) does not depend on the choice of the κ-Witt basis.

Transformation Law 8.3 (Hecke [He1]). θ(τ) ∈ M1(DK/Q, χK).

The transformation law and some others below are related with congruence
Zeta functions. These connections will be outlined below. By careful counting
of intersection points Cogdell found

(43) (Tκ · H ′
N ) = N · M2 · ∣∣DK/Q

∣∣ · #Λκ,N
2

in [Cog2] (Lemma 6.2) with

Λκ,N
2 := Λ(N) ∩ Λκ

2 , Λ(N) := {λ ∈ Λ; < λ, λ >= N}.

Comparing coefficients of Φκ(τ), see (37), with those of the derivative of θκ(τ)
the relations (43) yield

Φκ(τ) =
M2 · ∣∣DK/Q

∣∣
2πi

d
dτ

θκ(τ).

From Shimura’s paper [Sh2] based on ideas of Maaß [Ma] we pick out the dif-
ferential operator ∂1 := 1

2πi (
1

2iy + ∂
∂τ ) in two variables and also the

Transformation Law 8.4 . ∂1θ
κ(τ) ∈ Mnon−hol

3 (DK/Q, χK).

�

Moreover, we obtain the

Decomposition 8.5 . Φ∞
Ĉ

(τ) = Φ∞
3 (τ) + Φ∞

1 (τ),

which is (32) with

(44) Φ∞
3 (τ) = M

∑
κ mod Γ

(C ′ · Tκ)∂1θ
κ(τ),

(45) Φ∞
1 (τ) :=

M

4πy

∑
κ mod Γ

(C ′ · Tκ)θκ(τ)

This follows immediately by applying ∂
∂τ = 2πi∂1 − 1

2iy to (39).

�
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We proved (32) in the Decomposition Theorem 8.1 together with the qualities
(34) and (36) there. Now we come to the more complicated ”finite part” Φfin

Ĉ
(q)

of (30).
For Ĉ = Γ̂\D, D = Dc ⊂ B, c ∈ Λ+, V1 := Kc, V = V1 ©⊥ V0, Cogdell

introduced in [Cog2] the hermitian sublattices

Λ1 := V1 ∩ Λ (positive definit) , Λ0 := V0 ∩ Λ (indefinit),

and
Λ′ := Λ1 ©⊥ Λ0

of Λ. With the dual lattices in V0, V1, V , respectively, indicated by the upper
index #, we get the cofinite tower

(46) Λ1 ©⊥ Λ1 = Λ′ ⊆ Λ ⊆ Λ# ⊆ Λ
′# = Λ#

1 ©⊥ Λ#
1

of hermitian lattices in V . The arithmetic group ΓD coincides with the isotropy
group Γc because neat lattices dosn’t contain any element with non-trivial unit
roots as eigenvector. It acts on the lattices of the tower (46) and on the orthog-
onal summands appearing there, hence on the finite residue class groups. The
inertia subgroup of Λ0 is defined as

(47) Γ0
D := {γ ∈ ΓD; γ|Λ#

0 /Λ0
= idΛ#

0 /Λ0
}

with obvious notations. Now we are able to define for A0 ∈ Λ#
0 and A1 ∈ Λ#

1

the following series of congruence theta type

(48) θ0(τ ;A0) :=
∑

V +
0 �Y0≡A0(Λ0)

Y0 mod Γ0
D

e2πi<Y0,Y0>τ ,

(49) θ1(τ ;A1) :=
∑

V1�Y1≡A1(Λ1)

e2πi<Y1,Y1>τ .

It is clear that the running vectors Y0, Y1 belong to Λ#+
0 or Λ#+

1 , respectively.
A longer counting procedure due to Cogdell summerizing suitable products of
θ0- and θ1-functions yields the

Decomposition 8.6 ([Co 0],[Co 1], Prop. 5.1).

Φfin

Ĉ
(τ) =

∑
Λ�Z mod Λ′

(δ(Z0)hσ(Ĉ) +
1

[ΓD : Γ0
D]

θ0(τ ;Z0)θ1(τ ;Z1)

with decompositions Z = Z0 + Z1, Z0 ∈ Λ#
0 , Z1 ∈ Λ#

1 , signature hight hσ and
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δ(A0) :=

{
1, if A0 ∈ Λ0

0, else

Hecke proved in [He1] that the θ1-series are holomorphic on H satisfying the
following

Transformation Law 8.7 .

θ1(τ + n;A1) = e2πi<A1,A1>n · θ1(τ ;A1), n ∈ Z;

θ1(−1
τ

;A1) =
−iτ√

[Λ#
1 : Λ1]

∑
Y ∈Λ#

1 mod Λ1

e2πiTrK/Q<A1,Y >θ1(τ ;Y ).

For isotropic lattices Λ0 Cogdell [Cog2] added to the θ0-series two residue
summands in order to get similar transformation laws. He introduced

(50) E0(τ ;A0) := −Res0Z0(s;A0) − 1
y
Res1/2Z0(s;A0) + θ0(τ ;A0),

The Zeta function Z0(s;A) and the reason for the modularisation effect 8.8
below will be explained and presented in the next section 9. Cogdell [Cog2], p.
128, calculated also the explicit values of the residues, namely

(51) −Res0Z0(s;A0) = δσ(A0) := δ(A0)hσ(Γ̂\D
0

D),

(52) −Res1/2Z0(s;A0) =
ν∞(A0)

4π

with
ν∞(A0) = ν∞

c (A0) =
∑

∂K(D)�κ mod Γ0
D

νκ(A0),

and

νκ(A0) =

{
1, if κ ∈ KA0 + Λ0

0, else.

For anisotropic lattices Λ0 the role of Z0 are played by other Zeta functions,
see the next section 9. Both cases come together setting

(53) E0(τ ;A0) := δσ(A0) +
1
y

ν∞(A0)
4π

+ θ0(τ ;A0)

with ν∞(A0)
4π := 0 in the anisotropic case.
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Transformation Law 8.8 ([Co 0], Prop. 5.2).

E0(τ + n;A0) = e2πi<A0,A0>n · E0(τ ;A0), n ∈ Z;

E0(−1
τ

;A0) =
τ2√

[Λ#
0 : Λ0]

∑
Y ∈Λ#

0 mod Λ0

e2πiTrK/Q<A0,Y >E0(τ ;Y ).

A composition of θ1 and E0 is the following non- holomorphic but real ana-
lytic function

(54) g(τ ;A) :=
1

[ΓD : Γ0
D]

· E0(τ ;A0) · θ1(τ ;A1),

with
Λ

′# � A = A0 + A1, A0 ∈ Λ#
0 , A1 ∈ Λ#

1 .

The transformation laws 8.7 and 8.8 imply immediately the

Transformation Law 8.9 .

g(τ + n;A) = e2πi<A,A>n · g(τ ;A), n ∈ Z;

g(−1
τ

;A) =
−iτ3√

[Λ′# : Λ′]

∑
Y ∈Λ′# mod Λ′

e2πiTrK/Q<A,Y >g(τ ;Y ).

Now it is time to define

(55) Φ3(τ) = ΦĈ,3(τ) :=
∑

Λ�Z mod Λ′
g(τ ;Z)

with

Transformation Law 8.10 ([Co], Th. 5.1). Φ3(τ) ∈ Mnon−hol
3 (DK/Q, χK)

coming from 8.9.

After substitution of (50) with explicit residues (51) and (52) into the g(τ)-
terms of Φ3(τ) and some counts a comparision with the θ0, θ1 product sum in
8.6 yields

Decomposition 8.11 . Φ3(τ) = Φfin

Ĉ
(τ) + Φ1(τ)

with the holomorphic function

(56) Φ1(τ) = ΦĈ,1(τ) :=
∑

Λ�Z mod Λ′

Mν∞
c (Z0)
4πy

θ1(τ ;Z1)

and Z = Z0 +Z1 explained in Lemma 9.12 below. For details of the calculations
we refer again to [Cog2], p. 130.

Now the decompositions and the transformation laws in the Decomposition
Theorem 8.1 have all been recognized. It remains to verify the relation (33).
Comparing N -th Fourier coefficients one gets after count comparisions the fol-
lowing relations between the θκ’s and the θ1’s:
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Lemma 8.12 . For D = Dc let κ ∈ ∂KD be a ΓD-cusp. With

Λ0 := Λ ∩ κ⊥,Λ1 := Λ ∩ Kc, Λ′ := Λ0 ©⊥ Λ1

and decompositions Z = Z0 + Z1 in Λ#
0 ©⊥ Λ#

1 it holds that

θκ(τ) =
∑

Λ�Z mod Λ′
µκ(Z)θ1(τ ;Z1),

where

µκ(Z) =

{
0, if (Z0 + Λ0) ∩ Kκ = ∅
1, else.

Summation over the cusps modulo Γ yields∑
κ mod Γ

(C ′ · Tκ)θκ(τ) =
∑

Λ�Z mod Λ′
νc(Z0)θ1(τ ;Z1),

which proves (33) using the definitions (45) and (56) of Φ∞
1 (τ) or Φ1(τ), respec-

tively.

9 From Zeta functional equations
to Theta transformation laws

A) The cusp functions

Hecke introduced in Hecke [He2] congruence Zeta functions for quadratic number
fields. We restrict our attention to a fixed arbitrary imaginary quadratic number
field K = Q(δ) with with discriminant D = DK/Q < 0 and inverse δ =

√
D of

the different. Let 0 �= a ⊂ OK be an ideal and ρ ∈ a.

(57) ζ(s) = ζ(s; ρ, a,
√

D) :=
∑

0 �=µ≡ρ(a
√

D)

1
N(µ)sN(a)s

These series extend to meromorphic functions on C with at most one pole.
There are at most two possible (simple) poles at s = 0, 1. The congruence Zeta

functions belong to a class of Dirichlet L-series L(s) =
∞∑

n=1

an

ns with functional

equations reflecting s �→ 1 − s. We refer to [BF], ch. 7 3, for a fast informa-
tion. Setting R(s) := (2π

λ )−sΓ(s)ζ(s) for a suitable λ ∈ R+, the corresponding
functional equations have the simple form

Functional Equation 9.1 .

R(s) = ±R(1 − s).
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There is a ring isomorphism to a class of theta-type functions on H with special
transformation law corresponding

∞∑
n=1

an

ns
←→ ϕ(τ) =

∞∑
n=0

ane
2πin

λ τ

with a0 = ± λ
2π Res1L(s). Mellin’s inversion formula

e−τ =
1
2π

∫ ∞

−∞

Γ(σ + it)
zσ+it

dt, s = σ + it,

applied to ϕ(t) yields the following analytic relation between ϕ(τ) and L(s):

ϕ(iy) = a0 +
1
2π

∫ ∞

−∞

R(s)
ys

dt, σ � 0.

On this way the functional equation (9.1) leads to the transformation law

ϕ

(
−1

τ

)
= ±(

τ

i
)ϕ(τ).

for ϕ(τ). It is also well-known that, conversely, the transformation law implies
the functional equation.

The theta series corresponding to the congruence Zeta functions (57) are

ϑ(τ ; ρ, a,
√

D) =
∑

µ≡ρ(a
√

D)

e2πiτ
N(µ)
N(aδ)

as pointed out by Hecke in [He2] around formula (56) there. Hecke proved first
the theta transformation law in his earlier paper [He1].

We are most interested on the case ρ = 0 in (57), that means on the ideal
zeta functions

(58) ζ(s) = ζ(s; a,
√

D) :=
∑

0 �=µ∈a
√

D)

1
N(µ)sN(a)s

corresponding to ideal theta functions

ϑ(τ ; a,
√

D) =
∑

µ∈ρ(a
√

D)

e2πiτ
N(µ)
N(aδ)

In this case one has λ = |δ| =
∣∣∣√D

∣∣∣ in the functional equation, see [He2], around
formula (68).

A littlebit more generally, Hecke introduced in his earlier article [He1] the
following zeta functions.
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Definition 9.2 ([He], 1926). The congruence theta function of the integral
ideal b in K, ρ ∈ b and Q ∈ N is the holomorphic function on H defined by

ϑ(τ ; ρ, b, Q
√

D :=
∑

µ≡ρ(bδQ)

e2πiτ
N(µ)

N(δb)Q , τ ∈ H.

satisfying the following transformation law:
Proposition ([He], Satz 7). For γ =

(
a b
c d

) ∈ Sl2(Z), c ≡ 0modD, the
following transformation law holds

ϑ(γτ ; ρ, b, Q
√

D) = χK(δ)e2πi
N(abρ)
N(δb)Q ϑ(τ ; aρ, b, Q

√
D).

�

Restricting to ρ = 0 we set

ϑ(τ ; b, Q) := ϑ(τ ; 0, b, Q
√

D) =
∑

µ∈bδQ)

e2πiτ
N(µ)

N(δb)Q

and obtain the modular

Transformation Law 9.3 . ϑ(γτ ; b, Q) = χK(δ)ϑ(τ ; b, Q).

It is clear that ϑ(τ ; b, Q) depends only on the ideal class of b. Therefore the
definition extends correctly to all fractional ideals b.

Proof of the transformation law 8.3. We have only to verify that the theta
functions (40) at cusps κ are of the above Hecke type. We used a Witt decom-
position (41) of the hermitian O-lattice Λ with positive orthogonal component
Λ2 = Λκ

2 = aā−1W2. With Q :=< W2,W2 > ∈ N+ (without loss of generality)
and b := aā−1δ−1 we get

θκ(τ) =
∑

A∈Λκ
2

e2π<A,A>τ =
∑

ν∈aā−1

e2πN(ν)<W2,W2>τ

=
∑

µ∈aā−1δQ

e2πτ
N(µ)

N(δ)Q =
∑

µ∈bδQ

e2πτ
N(µ)

N(bδ)Q

= ϑ(τ ; b, Q)

because N(b) = 1.

�

B) The Zeta and Theta functions of modular curves

Let Ĉ = Γ̂\D ⊂ X̂Γ = Γ\B be a modular curve. We have D = DW =
PW⊥(R) for suitable W = W2 ∈ Λ+ uniquely determined by D up to K∗-
multiplication. We set Λ0 = Λ0(D) := Λ ∩ W⊥ and let Λ1,1 be a maximal
O-sublattice of W⊥ with < Y, Y >∈ Z for all Y ∈ Λ1,1 (signature (1, 1)). Ĉ is
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a modular curve iff C∞ �= ∅, that means W⊥ and also Λ0 are isotropic. In the
opposite case C = Ĉ one calls Ĉ a Shimura curve on X̂Γ.

There is a well-known transfer from O-lattices of rank 2 to Z-lattices in
Mat2(Q) and their orders. For details we refer to Shimura’s paper [Sh1], where
it is done also for Shimura curves. Fix a Z-basis 1, ω of O and an O-basis W1, W3

of W⊥. One corresponds to C ∈ W⊥ with W1,W3- coordinates ( α
γ ) =

(
a+bω
c+dω

)
the matrix

(
a b
c d

)
=: ϕ(C) ∈ Mat2(Q).

It is clear that O-lattices in W⊥ map onto Z-lattices in Mat2(Q). Each
Z- lattice L defines an order OL := {g ∈ Mat2(Q); g(L) ⊆ L}. Maximal O-
lattices in W⊥ are corresponded in this way to maximal orders of Mat2(Q). Up
to Gl2(Q)- conjugation there is only one maximal order in Mat2(Q), namely
Mat2(Z), see Eichler [Ei]. This is also a maximal lattice with respect to the sym-
metric bilinear form (X,Y ) := Tr(X ·Adj(Y )) on Mat2(Q), where Tr denotes
the matrix trace and Adj(Y ) is the adjoint matrix of Y . So we can arrange by
suitable basis choice that Λ1,1 corresponds to Mat2(Z). Using TrK/Q < . , . >

on W⊥ the Q-linear isomorphism ϕ becomes an isometry. Altogether we get a
commutative isometry diagram

(59)

ϕ : W⊥ ←→ Mat2(Q)⋃ ⋃
Λ1,1 ←→ Mat2(Z)⋃ ⋃
Λ0 ←→ L⋂ ⋂
Λ#

0 ←→ L#

with isometry group transfers

(60)
ρ : SU(W⊥) ←→ Sl2(Q)⋃ ⋃

Γ0
D ←→ Γ

where Γ is defined by the inertia group Γ0
D introduced in (47). Notice also that

the (projective / fractional) actions on D of the groups on the left-hand side are
transfered to actions on the upper half plane H. For more details we refer also
to the original thesis of Cogdell [Cog0], section 6.

Now we work with the structures on the right-hand side in the above dia-
grams, especially with (fixed) L, L#, Γ instead of Λ0, Λ#

0 or Γ0
D, respectively.

Definition 9.4 (Cogdell [Cog1], p. 181). For A ∈ L# the functions

ζ(s;A) :=
∑

L#�Y ≡A(L)
det Y �=0, mod Γ

1
|det Y |2s

are called modular congruence Zeta functions.
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The same notation should be used for its Γ-function modification

Z(s;A) := (2π)−2sΓ(2s)ζ(s;A).

These Zeta functions define via estimations ad hoc holomorphic functions on
the complex half plane �(s) > 1. There is an integral representation

(61)
π

4s − 2
Z(s;A) =

∫
Gl2(R)+/Γ

ϑ1(g;A)|g|2sdg

with
ϑ1(g;A) :=

∑
O �=Y ≡A(L)

e−πQ(Y ),

where Q is the quadratic form X �→ Q(X) := Tr(tX · X) on Mat2(R). Using
Poisson sums Cogdell proved the following

Transformation Law 9.5 . ϑ(g;A) = (det g)−2

V ol(L)

∑
B∈L#/L e2πi(A,B)ϑ(ǧ;B)

with

V ol(L) :=
∫

Mat2(R)/L

dY =
√

[L# : L], ǧ := (Adj(g))−1 =
g

det g
.

Cogdell also introduces

ζ0(s;A) :=
∑

L#�Y ≡A(L)
det Y >0, mod Γ

1
|det Y |2s

because the difference series ζ2(s;A) defined by

2ζ0(s;A) = ζ(s;A) + ζ2(s;A)

comes with alternating signs at the summands and has therefore a holomorphic
extension to C. With

Z0(s;A) := (2π)−2sΓ(2s)ζ0(s;A), Z2(s;A) := (2π)−2sΓ(2s)ζ2(s;A)

we receive the relation.

(62) 2Z0(s;A) = Z(s;A) + Z2(s;A).

Cogdell’s central result is the following:
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Theorem 9.6 ([CoZ]). The Zeta functions Z(s;A) and Z0(s;A) have mero-
morphic extensions to C with (at most) three simple poles at s = 0, 1, 1

2 with
residues

Res0Z(s;A) =
δ(A)
2π

V ol(Sl2(R)/Γ) =
1
2
Res0Z0(s;A)

Res1Z(s;A) =
V ol(Sl2(R)/Γ)

2πV ol(Γ)
=

1
2
Res1Z0(s;A)

Res1/2Z(s;A) = −ν∞(A0)
4π

=
1
2
Res1/2Z0(s;A), see (52).

with

δ(A) =

{
0, if A ∈ L

1, if A /∈ L.

They satisfy the

Functional Equations 9.7 .

Z(1 − s;A) = − 1√
[L# : L]

∑
B∈L#/L

e2πi(A,B)Z(s;B)

Z0(1 − s;A) = − 1√
[L# : L]

∑
B∈L#/L

e2πi(A,B)Z0(s;B).

It turns out that the inverse Mellin transform

f(y) =
1

2πi

∫ σ+i∞

σ−i∞
Z0(s;A)y−sds, y ∈ R, σ = �(s),

of Z0(s;A) coincides with

θ0(iy;A) =
∑

X≡A(L)
det X>0, mod Γ

e−2πy det X .

But this is the restriction to the positive part of imaginary axes of

θ0(τ ;A) =
∑

X≡A(L)
det X>0, mod Γ

e−2πiτ det X , y = 
(τ),

introduced in (48) in original Λ0-terms. For the translation we have to use the
diagrams 59 and 60.

Unfortunately, θ0(τ ;A) is not a modular form. As in the case of classical
Dirichlet series one has to add residue terms, but two instead of one, to get the
modular transformation law we look for. This has the price to leave holomorphic
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functions but not the class of real analytic functions of τ = x + iy ∈ H in two
variables x, y. Cogdell introduces

E0(τ ;A) := −Res0Z0(s;A) − 1
y
Res1/2Z0(s;A) + θ0(s;A),

With a result of Maaß and the Z0-functional equation he proves the transfor-
mation law

E0(−1
τ

;A) =
1

τ2
√

[L# : L]

∑
B∈L#/L

e2πi(A,B)E0(τ ;B),

which is the difficult part of 8.8 for the function E0 in Λ0-terms.

C) The Zeta and Theta functions of Shimura curves

Following ideas of Hecke Schoeneberg introduced in [Sch] (1936) congruence
Zeta functions of indefinit quaternion scew fields S over (the center) Q. Let d
be the different ideal of S, I be a maximal order in S, I ′ its conjugate, a a right
ideal in I, ρ ∈ a and Q a positive integer.

Definition 9.8 (Schoeneberg). The congruence Zeta functions of S are defined
as

ζ(s; aQd, ρ) := N(aQd, ρ)s
′∑

µ≡ρ(aQd)

mod ×(aQd)′1

1
|N(µ)|s

where N = n2 denotes the absolute norm on S, n denotes the norm and (aQd)′1
is the group of units of I ′ congruent 1mod aQd.

These series define ad hoc holomorphic functions for �(s) > 1 extendable
to meromorphic functions on C with at most two (simple) poles at 0, 1. Now
let q be a positive quadratic form on Q4 represented by the symmetric matrix
Q = (qij) ∈ Gl4(Q) with respect to the canonical basis and ωk, k = 1, .., 4, a
Z-basis of I. Both together define the quadratic form

fq : I → Q, ω =
∑

ukωk �→
∑
i,j

qijuiuj =: fq(ω),

on I and the congruence theta functions

ϑ(ω; aQd, ρ, q) :=
∑

µ≡(aQd)

eπfq(ωµ)/|n(a)|Q 4
√

det(Q)N(d).

As in the modular case one gets via a Mat2(R)- integration functions Φ con-
necting congruence Zeta and Theta functions, namely:

Φ(s; aQd, ρ,Q) =
∫

F1

[ϑ(ω; aQd, ρ,Q) − δρ,0] · |N(ω)|s−1dU,

Φ(s; aQd, ρ,Q) =
π−2s(det(Q)s/2

(Q2|n(d)|)s
Γ(s;Q)ζ(s; aQd, ρ),
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where F1 is a fundamental domain with respect to our unit group (aQd)′1, and
the Gamma- function factor is

Γ(s;Q) = det(Q)−s/2|∆|(s−1)/2π3/2Γ(s)Γ
(

s − 1
2

)
with discriminant ∆ of I.

On this way Schoeneberg uses transformation laws for the Theta functions
to get the functional equation for the congruence Zeta functions

Functional Equation 9.9 .

ζ(1−s; aQd, ρ) =
(2π)2(1−2s)

(Q2n(d))2s

Γ(2s)
Γ(2 − 2s)

∑
a�α mod aQd

e2πs
(

αρ′
|n(a)|Qn(d)

)
ζ(s; aQd, α).

Shimura transfered in [Sh1] hermitian spaces of signature (1, 1) over imaginary
quadratic number fields to indefinit quaternion spaces over Q together with the
transfer of unitary group action to unit group actions of quaternion orders with
diagrams similar to 59, 60 but with S instead of Mat2(Q) and the automorphism
group of a maximal order instead of Sl2(Q). Along this way Kudla translated in
[Ku] Schoeneberg’s quaternionic congruence Zeta and Theta series to hermitian
ones as described in 9.4, (48). He observed that the related function E0(τ ;A0)
defined in (53) is the Mellin transform of θ0(iy;A0). Then Kudla discovered in
the cocompact unitary case the important composed function g(τ ;A), see (54)
with nice transformation law 8.9. For more details we refer to [Ku], section 8.

10 Appendix:
Signature heights of orbital curves

For our geometric constructions and applications we need explicit formulas for
signature hights of orbital curves and the proof of the height property (9). We
extend Section 2 using immediately the notations there. There are two types of
finite orbital points: Let

ÛS −→ V̂R = ÛS/GS

be a representative local finite uniformization of R, R ∈ X = X̂ \ X∞. If the
finite isotropy group GS is abelian, then we call R an abelian (orbital) point.
Otherwise we say that R is non-abelian. From the classification of finite orbital
points in [Ho1] respecting the singularity type of R ∈ X and the local branch
situation around we know that the definitions are correct. This means that
both cases are well-distinguished. Each abelian point is supported by a cyclic
singularity. This is a surface singularity locally isomorphic to (C2, 0)/Z, Z �= 1
a finite cyclic subgroup of Gl2(C), where small means that 1 is not an eigenvalue
of any non-trivial element of Z. Sometimes it is convenient to include also a
smooth point (with Z = 1) in our terminology. Then we use the notion of cyclic
point for both cyclic cases, the non-trivial and the trivial, together.
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We are able to remove cusp points and non-abelian points substituting them
by elliptic curves or projective lines. For this purpose consider a global uni-
formization Ŷ −→ X̂, and blow up the cusp singularies of Ŷ to elliptic cusp
curves as described in diagram 3. The p′G-images of these curves on X ′/G are
elliptic again or isomorphic to P1. Now we blow up all points S ∈ Y with non-
abelian isotropy group GS to exceptional lines LS . Then one gets a model Y 0 of
Y ′ and birational morphisms Y 0 −→ Y ′ −→ Ŷ . Going down to the G-quotient
surfaces we obtain birational morphisms X ′ −→ Y ′/G −→ X̂. Now it is clear
that

• X ′ has only cyclic singularities;

• the exceptional (Weil) divisor of ϕ′ : X ′ −→ X̂ is a disjoint sum of
projective lines and, perhaps, some elliptic curves.

The orbital surface X′ defined by the branch divisor of the quotient morphism
Y 0 −→ X ′ = Y 0/G has only abelian orbital points. It is uniquely determined
by X̂, more precisely by its non-abelian and infinite orbital points. We call it
the B̂0-model of X̂.

• the proper transform C ′
i on X ′ of the component Ĉi of B̂1 has at most

double points as singularities;

• the curve singularities of C ′
i are precisely the (non-resolved) singularities

of Ĉ sitting at abelian points of X̂.

Namely (see [Ho1]), the (smooth) the tangent directions of germes at S ∈ Y of
the ramification locus of the Galois covering Y −→ X are eigenlines of reflections
of GS . They are separated after blowing up S. If GS is non-abelian, there are at
most three GS-inequivalent reflection lines. The image germes through LS/GS

are smooth and separated. For abelian GS there are at most two GS-inequivalent
reflection lines in the tangent plane.

Now consider an orbital curve Ĉ on the orbital surface X̂.

Definition 10.1 . Critical points of Ĉ are the singularities of Ĉ, the cusp
points and the non-abelian orbital points of X̂ supported by Ĉ-points.

Lemma-Definition 10.2

. There is a unique model X0
Ĉ

of X̂ and a birational morphism ϕ′
Ĉ

: X0
Ĉ
−→ X̂

factorizing through X ′ with the following

Conditions 10.3

• The proper transform C0 of Ĉ on X0
Ĉ

is a smooth curve;

• the exceptional (Weil-) divisor E(ϕ′
Ĉ

) is a disjoint sum of elliptic or
smooth rational curves;

• E(ϕ′
Ĉ

) is contracted by ϕ′
Ĉ

onto the critical points of Ĉ;
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• C0 crosses the components of E(ϕ′
Ĉ

) at each common point.

We call X0
Ĉ

the C0-model of X̂. Thereby we say that C ′ crosses a curve L at a
regular surface point, if the intersection is transversal there. If the intersection
point is a cyclic singularity, say locally isomorphic to (C2, O)/Z, then cross-
ing means: locally isomorphic to the intersection of the images of two different
Z-eigenlines on C2. This property can be equivalently defined via minimal res-
olution of the cyclic singularity, see below.

Proof of Lemma 10.2. We work with a Ĉ-uniformization Ŷ of X̂, diagrams
3, 6 and the notations around. Moreover, we dispose already on the models Y 0,
X ′ after blowing up points with non-abelian G-isotropy groups. The conditions
2.3 for D′ are preserved for the proper transform D0 of D′ on Y 0 and the
exceptional divisor E(ψ0) of ψ0 : Y 0 → Y ′ → Ŷ . The set of honest G-cross
points of D0 lies outside of E(ψ0). Now we have only to blow up these G-cross
points to get a model Y 0

Ĉ
. Going down to the G-quotient surfaces we see that

X0
Ĉ

:= Y 0
Ĉ

/G −→ X ′ = Y 0/G

resolves the singularities of D′/G ⊂ X ′ by substituting each of these points by a
projective line. Moreover, the conditions of 10.3 are satisfied for C0 = D0/G ⊂
X0

Ĉ
.
For the proof of uniqueness we have to look carefully to the resolution X0

Ĉ
→

X ′ of the D′/G-singularities supported by cyclic surface points R. Let S be a
(honest) G-cross point of D′ over R and L = LS ⊂ Y 0

Ĉ
the exceptional line over

S. The abelian isotropy group GS acts on L. Let S1, S2 be the points on L
corresponding to two different eigenlines of GS in the tangential representation
GS ⊂ Gl (TS). Their image points R1, R2 on LS/G ⊂ X0

Ĉ
are the only possible

surface singularities on L/GS ⊂ X0
Ĉ

. The curve germs of GD′ at R correspond
to different fibres in the normal bundle N of L in Y 0

Ĉ
, which is a GS-bundle.

On this way we get bijective correspondences

{GD′-components at S}/GS ⇔ {branches of D′/GatR}(63)
⇔ {branches of C0through LS/GS}.

The (smooth) branches of C0 through LR = LS/GS are separated because C0

is smooth. Each of them crosses the exceptional line LR. On LR there are at
most two (cyclic) surface singularities R1, R2. Now take a minimal (surface)
singularity resolution of R1 and R2. Altogether we get a linear singularity
resolution of R with the marked component L′

R, the proper transform of LR.
Linear means, that the resolving curve consists of a linear tree of (at most)
transversally intersecting projective lines. Because of crossing intersections the
transformed curve germes intersect transversally the marked line or one of the
two external lines of the tree but not at a singularity of the tree. Since we
have at least two C0-curve germes through the tree, it is easy to see that a
contraction of the tree to one projective component Lj (producing at most two
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cyclic surface points on it) with the crossing condition for the C0-germes is only
possible for Lj = LR.

�

Altogether we have for each X̂-orbital curve Ĉ on X̂ a commutative diagram

(64)

Y 0
Ĉ Y 0 Y ′ Ŷ

X0
Ĉ X′ Y′/G X̂

�

�

�

�

�

�

�
� � �

with corresponding orbital curve coverings

(65)

D
′0 D0 D′ D̂

C0 C′ D′/G Ĉ
�

�∼

�

�∼

�

�

�
� � �

Let γ be a smooth curve germ through a point R on the surface X̂ supporting
the orbital surface X̂. We only need curve germs localizing global curves. If
R is not a cusp point we consider a (finite) local uniformization S → R with
Galois group GS and a preimage germ δ of γ through S. Then γ is called an
eigen germ at R, if the tangent line of δ is an eigenline of an element of GS not
belonging to the symmetry subgroup ZGS of GS defined as

ZGS := ρ−1(ρ(GS) ∩ Zl2(C)),

where Zl2(C) denotes the center of Gl2(C) and ρ the tangential plane represen-
tation of GS at S. We say that GS is symmetric iff ZGS = GS and call R a
symmetry point in this case. The blowing up of the smooth surface point S to
the exceptional line Let LS defines the modification X ′(R) −→ X̂ plugging in
the quotient line LR = LS/GS . The ineffective kernel of GS with respect to
the action on LS is ZGS . A honest GS-eigen line in the tangent plane TS is an
eigen line of a non-central element of GS . The honest eigenlines are in bijective
correspondence with all isolated fixed points on LS of elements of GS . If GS is
non-symmetric, these fixed points go down to two (if GS is abelian) or three (if
GS is non-abelian) marked (branch) points P1, P2, (P3) on LR, which are cyclic
surface points. This marking is uniquely determined by R only. It is easy to
check that

10.4 γ is an eigen germe at R iff its proper transform γ′ on X ′(R) crosses
LR at one of these marked two or three points.
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This fact allows to define eigen germes purely geometrically on X̂.

Definition 10.5 . The weight of an orbital point R on X̂ is defined as

vR :=

⎧⎪⎨⎪⎩
1, abelian point
∞, cusp point
vLR

, non-abelian

where the latter number is the ramification index of LS (or LR) with respect to
the Galois-covering LS −→ LR of orbital curves.

Let Ĉ be an orbital curve on X̂, R a critical point of its supporting curve Ĉ and
LR the exceptional line on X0

Ĉ
over R. Remember that the proper transform C0

on X0
Ĉ

crosses LR at each common point. Especially, the LR-intersecting curve
germes of C0 are smooth and separated. Its number is denoted by BrR(Ĉ). It
is clear that

BrR(Ĉ) = number of curve branches of Ĉ at R.

Lemma-Definition 10.6 . If Ĉ has a branch at R, which is an eigen germe,
then also the others germes of Ĉ at are eigen germes. In this case we say that
Ĉ has eigen branches at R or, equivalently, R is an eigen point of Ĉ.

Proof. Assume that there are at least two Ĉ- branches at R, which means that
R is a curve singularity of Ĉ. Looking at a Ĉ-uniformization Y ′ → Y ′/G with
curve covering D′ → D′/G, see diagram 6, we know from (7) that the branches
come from G-equivalent points on D′, which are not NG(D′)- equivalent. But
if the branch of D′ at S (over R) has eigen vector direction with respect to GS ,
then the G-equivalent branches must have the same property.

�

Example 10.7 . All orbital points of any component Ĉi of the basic orbital
divisor are eigen points, because the covering D̂i on a finite uniformization is
pointwise fixed by at least one non-trivial group element.

Corollary 10.8 . If Ĉ has eigen branches at the orbital point R ∈ X, then for
the number of branches of Ĉ at R it holds that

• BrR(Ĉ) ∈ {1, 2, 3}, if R is non-abelian;

• BrP (Ĉ) = 2, if R is abelian and R a singularity of Ĉ.

So we have only triple or double singular points as curve singularities at eigen
points of Ĉ.

Proof. This follows immediately from 10.4.

�
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Now we need minimal resolutions of cyclic singularities. A cyclic singularity
is of type < d, e >, if it is isomorphic to (C2, O)/diag(ζ, ζe), with a primitive
d-th unit root ζ and e ∈ N, relative prime to d, 0 ≤ e < d. From the isomorphy
classification of singularities it is well- known that two singularities of types
< d, e > and < d′, e′ > are isomorphic iff d = d′ and e = e′ or ee′ ≡ 1 mod d.
So dP := d is well-defined. In order to distinguish them we introduced in [Ho1]
an orientation related with a curve germe γ on a surface crossing another one
at the cyclic singularity P of type < d, e >. The minimal resolution of P is a
linear tree of projective lines Li, i = 1, ..., r, with selfintersections −bi ≤ −2,
calculable by the continued fractions

d/e = b1 − 1� b2 − ..... − 1� br−1 − 1�br,

or
d/e′ = br − 1� br−1 − ..... − 1� b2 − 1�b1.

The crossing property is equivalenly reflected by one of the following two possi-
bilities for the proper transform γ′ of γ on the resolving surface: either γ′ crosses
L1 or it crosses Lr (outside of L2 respectively Lr−1, if r ≥ 1). In the first case
we set eP (γ) = e, in the latter case eP (γ) = e′. The pair < dP , eP (γ) > is called
the γ- oriented type of the cyclic singularity P . We set

Σ0 = Σ0(C0,X0) := {cyclic surface singularities P ∈ C0 ⊂ X0};
hP (Ĉ) =

eP (C0)
vdP

Σ′ = Σ(C ′) := {singular points P ′ of C ′}

hP ′(Ĉ) :=

{
2

vĈdP ′ , P ′ eigen point of C ′

BrP ′(C ′), else

Σna = Σna(Ĉ, B̂0) := {non-abelian orbital points Q ∈ X}

hQ(Ĉ) :=

{
BrQ(Ĉ)

dQ(Ĉ)vQ
, Q eigen point of Ĉ

BrQ(Ĉ), else

These rational numbers are called local signature hights of Ĉ at the points
P , P ′, Q, respectively.

Thereby dQ(Ĉ) := dPi
(C ′), i ∈ {1, 2, 3}, where Pi is a (marked) cross point

of LQ and C ′. If C ′ goes through two of them, then their preimages on the blown
up surface Y ′ of a finite uniformization Ŷ of X̂, as described around diagram
3, are G-equivalent. Otherwise the point Pi would be uniquely determined.
Therefore the singularity type of Pi , hence also dPi

, does not depend on the
choice of Pi ∈ C ′.

Definition 10.9 . With the above notations and the minimal singularity reso-
lution X̃ −→ X0

Ĉ
with proper transform C̃ of C0 we call
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(66) h(Ĉ) :=
1

vĈ

(C̃2) +
∑

P∈Σ0

h(P ) +
∑

P∈Σ′
h(P ′) +

∑
Q∈Σna

h(Q)

the signature hight of Ĉ.

Let p̂ : Ŷ −→ X̂ and q̂ : Ŷ −→ Ẑ be finite uniformizations with the same
covering surface Ŷ . If the supporting Galois covering p̂ factors though q̂, then we
call the induced orbital morphism Ẑ −→ X̂ a finite orbital surface covering. Its
restriction D̂ −→ Ĉ to two orbital curves is a finite orbital curve covering. For
the general definitions of orbital morphisms we refer to [Ho1]. We are now able
to generalize the degree formula in [Ho1] for orbital branch curves to arbitrary
orbital curves.

Theorem 10.10 . For finite orbital curve coverings as above it holds that

(67) h(D̂) = [D̂ : Ĉ]h(Ĉ).

Proof. Since the degree is multiplicative for compositions of curve coverings,
it suffices the degree formula (67) for the case Ẑ = Ŷ := (Ŷ , Y ∞). For smooth
open orbital curves we defined signature heights hτ in [Ho1]. If there are more-
over only abelian points on the underlying orbital surface, the signature hight
depends only on selfintersection of the supporting (compact curve) curve and
all cyclic singularities on it. This happens in the case C0 ⊂ X0

Ĉ
. Its signature

hight is

hτ (C0) =
1
v
(C̃2) +

∑
P∈X0

Ĉ

eP (C0)
vdP

, v = vĈ.

Since eP (C0) = 0 for smooth surface points, the sum runs only over the cyclic
singularities, which form the finite set of all singularities. Comparing with (66)
we see that hτ (C0) is nothing else but h(C0). Especially, this is also true also
for the orbital curve D

′0 on Y 0
Ĉ

, where we have simply

hτ (D
′0) = h(D

′0) = (D
′0 · D′0)

because of absence of singularities. The degree formula for hτ has been already
proved in [Ho1] for this situation. Therefore it holds that

(68) (D
′0 · D′0) = h(D

′0) = [D̂ : Ĉ]h(C0).

Our strategy is to shift this formula stepwise from the left side to the coverings
on the right hand side in the diagrams 64 and 65. We have first to count the
number #′ of blown up points of the morphism Y 0

Ĉ
−→ Y 0 because

(69) h(D0) = (D0 · D0) = (D
′0 · D′0) + #′ = h(D

′0) + #′.
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These points ly over the points P ′ ∈ Σ′ = Σ(C ′) ⊂ X. For fixed P ′ we can
count the points S ∈ D0 over P ′. This number BlP ′(D0) is equal to BrP ′(C ′) ·
degD0 · #GD0,S by (63), where

GD := NG(D)/ZG(D),

with

NG(D) := {g ∈ G; g(D) = D}, ZG(D) := {g ∈ G; g|D = idD}.

for a finite group G acting effectively on a surface supporting the curve D. If
P′ is not an eigen point of C′, we have GD0,S = 1. If P′ is an eigen point, then
GS is abelian of order v2dP ′ , hence #GD0,S = vdP ′ , and BrP ′(C ′) = 2. In any
case, by the definitions before (66), we get BlP ′(D0) = [D̂ : Ĉ]hP ′(Ĉ). The sum
over all P ′ ∈ Σ′ and 69 yield

h(D0) = h(D
′0) + [D̂ : Ĉ](

∑
hP ′(Ĉ)).

Together with 68 and Definition 10.9 applied to C′ we get

h(D0) = [D̂ : Ĉ](h(C0) +
∑

hP ′(Ĉ)) = [D̂ : Ĉ]h(C′).

In the same style one shifts the formula further to the covering D′ → D′/G to
get the resulting formula (67). The check of more details is left to the reader.

�
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