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Abstract

This paper solves the equilibrium bid functions of third— and higher—price auc-
tions for a large class of distribution functions of bidders’ valuations, assuming
the symmetric independent private values framework, and risk neutrality. In
all these auctions, equilibrium bids exceed bidders’ valuations, and bidders
raise their bids when one moves to a higher price auction, and lower bids when
the number of bidders is increased.
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1 Introduction

In the analysis of independent private value auctions it is a common exercise to
compare equilibrium bidding in first— and second—price auctions. While truth-
ful bidding is a (weakly) dominant strategy in second-price auctions, bidders
necessarily “shade” their bids below their valuations when they participate in
a first—price auction. Therefore, switching from a second— to a first—price auc-
tion leads to lower bidding. However, when the number of bidders is increased,
the participants of a first-—price auction raise their bids, which in turn reduces
the gap between the two equilibrium bidding rules.

From first— and second—price auctions one may extrapolate, and design
third— and higher—price auctions, where the winner pays the third-highest bid,
or more generally the k—th highest bid, for £ > 2. This raises the question: can
one also extrapolate how equilibrium bidding changes when one moves from
second— to third— and higher—price auctions, and when the number of bidders
is increased?

The present paper solves equilibrium bid functions of third— and higher—
price auctions for a large class of distribution functions of bidders valuations,
assuming the symmetric independent private values framework and risk neu-
trality. The solutions imply the following general properties of the k—price
auction, for k > 2,

1. equilibrium bids exceed bidders’ valuations (the opposite of “shading”)

2. moving to a higher—price auction leads to higher bidding (equilibrium
bids increase in k)

3. equilibrium bids diminish when the number of bidders is increased

4. moving to a higher—price auction tends to increase the variance of the
equilibrium price.

These properties delineate a general pattern of how equilibrium bidding rules
change as we move from first— to second—, and higher—price auction, all the
way to the n—th price auction, where the winner pays “only” the lowest bid,
and they may explain the predominance of first—price auctions.

Third—price auctions were considered for the first time by Kagel and Levin
[1993], who solved the equilibrium bid function assuming uniformly distributed
valuations, and who identified some further general properties, but did not give
a general solution of equilibrium bid functions.

Third-price auctions have been useful to test the predictive power of auc-
tion theory in laboratory experiments (see Kagel and Levin [1993]).
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2 Preliminaries

The solution builds upon some generally known results that are briefly sum-
marized in this section, after stating basic assumptions and notation. It shows
how the indirect solution method introduced by Riley and Samuelson [1981] is
useful to solve even relatively complicated auctions.

Assumptions Consider a k-price auction, where a single unit is sold to
n > k > 3 risk neutral bidders. This auction is characterized by three rules: 1)
the item is awarded to the highest bidder (ties are handled by some allocation
rule); 2) the winner pays the k—th highest bid; 3) only the winner pays.

The analysis assumes the symmetric independent private values framework.
From the seller’s perspective (and that of rival bidders), buyers’ valuations
Vi,...,V, are continuous, iid, random variables, with distribution function
(cdf) F(v), and density function (pds) f(v), on the support [0,v], v > 0.

Bidders’ strategy is their bid function b(v) : [0,0] — R4, and participation
rule &g (v) : [0,0] — {0,1}. We characterize symmetric equilibria, where each
bidder bids according to the same bid function b7(v), and assume that all
bidders have an incentive to participate, which is always the case when the
item is unconditionally awarded to the highest bidder.

Bidders’ probability of winning is denoted by p, and their (ex ante) expected
payment by €. To avoid confusion, random valuations are written in capital
and realizations in lowercase letters.

Order statistics Order statistics are a useful tool for analyzing auctions.
Arrange the n > 2 iid random valuations Vi, V5, ... .V, in ascending order of
magnitude, and write them as V{;) < Vjg) < ... < V(). The random variable
Viry is called the r—th “order statistic” (r = 1,2,... ,n); V{y) is the “lowest”,
and V() the “highest valuation”.

Order statistics are necessarily dependent, because of the inequality rela-
tionship between them, and they are not identically distributed, even when
the underlying V’s are iid random variables.

The probability density (pds) of the r-th order statistic V{,) is fy, (z) =
#&_T)!F(m)“l (1 — F'(z))"™" f(z). And the conditional pds of V), given
Visy = v (s > 1), is just the pds of V{,) in the smaller sample size (s — 1), drawn
from the parent distribution truncated on the right at v (see Theorem 2.7 in

David [1970]). Therefore, for x < v,

_ (s —1)! F)F(x)y = (Fo) — F(a))™ "
Fiolt= )= =i == Floy

(2.1)

This result will be used repeatedly.
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Basic results All auctions that award the item to the highest bidder are pay-
off equivalent, give rise to the same allocation rule, and exhibit strict monotone
increasing equilibrium bid functions (see Riley and Samuelson [1981] and My-
erson [1981]). In particular, they all share the same equilibrium probability of
winning, and the same equilibrium expected payments, which are summarized
below.

Proposition 1 (Riley/Samuelson (1981)) Consider auctions that award
the item to the highest bidder. In equilibrium, the probability of winning, p*(v),
and (ex ante) expected payments E*(v) are

p*(0) = Pr{Vi_) < v} = F(o)"! (2:2)
£ (v) = vF(v)"1 — /0 F(z)"'da (2.3)

The equilibrium expected payment has an appealing interpretation:

Proposition 2 (Expected payment) The conditional equilibrium expected
payment, conditional upon winning, is equal to the conditional expected value

of the second highest valuation: E[Vi,_qy | Vin) = v],
&) = p*(v;n)E[V(n—l) | V(n) = v] (2.4)
— / e(n — 1)F(2)"2f(z)dz. (2.5)
0
Proof By (2.3) one has

r=v

&) = aF(x)!

— [ Pyt (2.6)
=0 0
= [ aln = O)F@) R f(a)de. 27)
0
Utilizing (2.1), it follows immediately that the latter is equal to p*(v;n) E[V(n-1) |
Viny = vl i= J @ fv_yy Vimy=o(@)d. .

For simple but complete proofs of these and other basic results of auction
theory consult the extensive survey by Wolfstetter [1996].

3 Equilibrium Bid Functions

Proposition 3 (Third—price auction) Consider the third-price auction, where
the highest bidder wins, and pays “only” the third highest bid, and assume the
probability distribution function F is log—concave. Then, the equilibrium bid
function is

(3-rd price auction). (3.1)
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Proof In a third-price auction one has
&) = p(vin)Eb5(Vin-z) | Vi) = 0]
= p*(v; n)/o b;(:z;)fv(n_z))mn)zv(x)dx

= (1= =2) [ B P ER) - Fe)fa)de. (3.2

Use (2.5) from Proposition 2, and one has for all v

| ey (a)de = (0 =2) [ b5(e)F(2) (P (o) - FESe

Twice differentiate this identity with respect to v, rearrange, and one ob-
tains the asserted equilibrium bid function.

This derivation assumes that the equilibrium bid function is strict mono-
tone increasing in v. The assumed log—concavity' of I’ entails that o) g
) : . o i .. J)
increasing which assures that the equilibrium bid function is indeed increas-

ing. [ ]

Proposition 4 (Generalization) Consider the k-price auction, where the
highest bidder wins, and pays “only” the k—th highest bid, k € {2,3,... ,n},
and assume F' is log—concave. Then, the equilibrium bid function is

k=2 F(v)
n—k+1 f(v)

br(v) =v+ (k—price auction). (3.4)

Proof In a k-—price auction one has £*(v) = p*(v;n) E[b(Vin—r+1)) | Vin) = ).
By a procedure similar to the above, one arrives at the following identity in v

/0” e(n— 1) F(2)"2f(2)de = (3.5)
[ ) g P () = P e (30)

Differentiate this identity (k — 1)-times, dividing by f(v) after each round
of differentiation (including the last). Then, one obtains for the right-hand
side (RHS) of (3.5)

RHS = b;(v)(z_i'F(v)”_k. (3.7)

LA function F is log—concave if In(F') is concave. Log concavity is frequently assumed in
information economics, and it is assured by all standard distribution functions; see Bagnoli
and Bergstrom [1989].
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To apply the same procedure to the left—hand side (LHS) of (3.5) is more te—
dious. Using the product rule of differentiation (g(x)h( =33 ( )
and the rule for the r—th derivative of the polynomlal ;/)( )= a”, Pl (:1;) =

r! (T):Jc” ", one obtains, after some rearranging,

(n—1)! K k=2 Fv)
LHS = 7 p(y)n . 3.8
(n—k)! (v) ern—k+1f(v) (3:8)
Equate RHS and LHS, and one has the asserted bid function. The assumed
montonicity is again assured by the log—concavity of F. [ ]

From these results, the properties of the k—price auction postulated in the
introduction follow immediately.

Example 1 (Kagel/Levin (1993)) If valuations are uniformly distributed
on the support [0,1], one has bj(v) = nﬁ;qu’ as in Kagel and Levin. Inci-
dentally, in this case bi(v) covers all considered auctions — from the first—
price auction, where bidders bid a fraction of their valuation, bi(v) = ”n;lv,

to the n—th price auction, where bidders bid (n — 1) times their valuation,

bx(v) =(n—1)v.

Remark 1 In the case of a uniform distribution of valuations it is easy to see

that the variance of the random equilibrium price Py, tends to increase in k,
since

k(n—1)
(n—k+ D +1Pm 427" 5

Var(P;) = Var (b};(‘/(n—k-l—l))) =

This suggests that the seller finds second—, third, and higher—price auctions
unappealing in terms of risk, which may explain the prevalence of first—price
auctions.

4 Conclusions

Third— and higher price auctions have four striking properties: 1) bids are
higher than the own valuation; 2) equilibrium bids increase when one moves to
a higher—price auction; 3) equilibrium bids diminish as the number of bidders
is increased; and 4), the riskiness of the random equilibrium price tends to
increase as one moves to higher—price auctions.

Once one has figured out why it pays to “speculate”, and bid higher than
one’s own valuation, it is easy to interpret the third property. Just keep in
mind that a rational bidder may get “burned”, and suffer a loss, because the
k—th highest bid is above the own valuation. As the number of bidders is

(),
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increased, it becomes more likely that the k—th highest bid is in close vicinity
to the own valuation. Therefore, it makes sense to bid more conservatively
when the number of bidders is increased.

Finally, the fourth property suggests that a risk averse seller should always
prefer lower order k—price auctions, and should most prefer the first—price
auction. While the second—price auction is always appealing because of its
overwhelming strategic simplicity, third— and higher—price auctions are strate-
gically just as complicated as the first—price auction, but in addition expose
the seller to unnecessary risk.
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