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Abstract  

Carbon-based materials such as graphite, graphene and carbon nanotubes are 

promising materials for printable flexible electronics. Therefore, there is a need for 

an in-depth scientific understanding of the electronic properties of carbon-based 

materials as well as for prototypical technologically relevant electronic devices.  

This work focusses on the electronic properties of graphene on the one hand, 

and on the application of graphenes and other carbon-based hybrid materials for 

transparent electrodes on the other hand. Accordingly, the first part of the work, 

which is the larger one, is of fundamental nature and focusses on the electronic 

interaction between graphene and mica as a substrate. The second, smaller part 

deals with the design of novel conductive inks based on graphene and other carbon-

based hybrid materials for applications in printed electronics, in particular for the 

production of transparent electrodes. 

Graphene on mica is a very well defined system, which provides atomically flat 

graphene extending over several square micrometers. Layer-dependent surface 

potential variations of single and few layered graphenes on mica were probed with 

Kelvin Probe Force Microscopy. This allowed to estimate the screening length of 

graphene on mica. Local variations of the surface electrostatic potential above single 

layer graphene, originating from confined fluid interfacial monolayers of water 

between the mica and the graphene, were monitored with Scanning Force 

Microscopy, Electrostatic Scanning Force Microscopy and Raman spectroscopy. This 

allowed to quantify the doping of graphene by the confined water layers. Exfoliation 

of graphene onto adsorbed nanostructures on mica allowed to control the strain of 

graphene at the nano-scale. Nanostructuring was achieved by first coating mica with 

submonolayers of dendronized polymers of different generations and subsequently 

depositing graphene. This approach provides new opportunities for the control of 

the electronic properties of graphene by strain. 
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Finally, novel conducting carbon-based inks were designed and transparent 

electrodes were fabricated therefrom. The formulations of the inks were optimized 

for printing on plastic substrates.  
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Zusammenfassung 

Kohlenstoff-basierte Materialien wie Graphit, Graphen und 

Kohlenstoffnanoröhren haben ein hohes Potenzial für eine zukünftige druckbare 

flexible Elektronik. Daher gibt es sowohl Bedarf an tiefgründigem Verständnis der 

elektronischen Eigenschaften dieser Materialien als auch an prototypischen, 

technologisch relevanten elektronischen Bauelementen.  

In dieser Arbeit wurden einerseits die elektronischen Eigenschaften von 

Graphenen und andererseits die Verwendung von Graphenen und Kohlenstoff-

basierten Hybridmaterialien als transparente Elektroden untersucht. Entsprechend 

ist der erste, umfangreichere Teil der Arbeit Grundlagen-orientiert und fokussiert 

auf die elektrostatische Wechselwirkung zwischen Graphen und dem Substrat 

Glimmer. Der zweite, kleinere Teil befasst sich mit der Entwicklung leitfähiger Tinten 

auf der Basis von Graphenen und anderen Kohlenstoff-basierten Hybridmaterialien 

für Anwendungen in der druckbaren Elektronik, insbesondere für die Herstellung 

transparenter Elektroden.  

Graphen auf Glimmer ist ein sehr wohldefiniertes System, in dem das Graphen 

über mehrere Quadratmikrometer atomar flach ist. Schichtdickenabhängige 

Variationen des Oberflächenpotentials von einzel- und mehrlagigen Graphenen auf 

Glimmer wurden mittels Kelvin Probe Rasterkraftmikroskopie untersucht. Damit 

konnte die elektrostatische Abschirmlänge von Graphen auf Glimmer bestimmt 

werden. Lokale Variationen des Oberflächenpotentials innerhalb einer Graphenlage, 

verursacht durch eingeschlossene Wasserschichten zwischen Graphen und Glimmer, 

wurden mit Rasterkraftmikroskopie, elektrostatischer Rasterkraftmikroskopie und 

der Raman-Spektroskopie untersucht. Dies ermöglichte es, die Dotierung von 

Graphen durch eingeschlossene Wasserschichten zu quantifizieren. Außerdem 

wurde gezeigt, dass Graphen auf molekular modifiziertem Glimmer lokal auf der 

Nano-Skala dehnbar ist. Dabei wurde der Glimmer durch das Aufbringen von 

dendronisierten Polymeren verschiedener Generationen auf Nanometer-Skala 

modifiziert. Dies eröffnet neue Möglichkeiten, die lokalen elektronischen 

Eigenschaften von Graphen durch Dehnung zu kontrollieren. 
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 Schließlich wurden Kohlenstoff-basierte leitfähige Tinten hergestellt, daraus 

transparente Elektroden hergestellt, und die Formulierungen der Tinten für das 

Drucken auf Plastiksubstrate optimiert. 
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1. Introduction 

1.1 Graphene/Substrate System 

Graphene is monoatomically thick network of sp2-hybridized carbon atoms, 

which are arranged in a honeycomb structure (Fig. 2.1).  Its unique electronic 

properties make graphene a promising candidate to replace conventional silicon 

electronics or to serve as a complement to the latter. Due to its 2D electronic 

structure the electronic properties of graphene are sensitive to the presence of 

adsorbates and of the underlying substrate. Therefore, in order to incorporate 

graphene into electronic devices, there is a need for an optimal dielectric substrate 

that provides a substrate-supported geometry while retaining the quality achieved 

with a suspended sample [1]. Particularly,  the performance and reliability of a 

graphene field effect transistor (FET) can be dominated by the graphene/substrate 

environment [2]. 

Charge carrier mobilities in graphene are, in turn, strongly dependent on the 

doping level of the graphene [3-5], wherein the doping of graphenes by molecular 

adsorbates, i.e. chemical doping, is considered as a promising route to control 

electron transport in graphenes. It has been demonstrated that molecules confined 

between graphene and the underlying substrate can be used to control doping of 

graphene [6]. Thus, a control of doping, in particular of unintentional doping [7], of 

graphene needs to be achieved with a reliable method that has to be identified.  

Noteworthy, a morphological corrugation can strongly influence the transport 

properties of the supported graphene [8]. It was found that substrate induced 

corrugations can modify the electric conductivity of graphene [9].  

The interfacial interaction between graphene and its substrate, which varies 

from strong chemical bonds for epitaxial graphene on a single-crystal substrate [10-

14]  to weak van der Waals forces for mechanically exfoliated graphene on an 

amorphous substrate (e.g., SiO2) [15-17], plays a critical role in determining the 

morphology of supported graphene [8], which correlates with the electronic 
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properties of graphene. To achieve control of graphene topography at the nano-

scale is therefore crucial for fabricating graphene-based electronic devices. 

In the first part of this work the impact of bare and nanostructured mica 

substrates on electronic properties of graphene is investigated using Scanning Force 

Techniques and Raman Spectroscopy. In chapter 5.1 the surface potential variations 

of single and few layer graphenes (FLG) on mica are reported as probed with Kelvin 

Probe Force Microscopy (KPFM). This allowed to quantify the screening of graphene 

on mica. In chapter 5.2 Scanning Force Microscopy (SFM), Electrostatic Force 

Microscopy (EFM) and Raman Spectroscopy were used to investigate both the 

structure and the electronic properties of graphene conforming to molecular water 

layers on the mica surface. In chapter 5.3 dendronized polymers of different 

generations were deposited onto an atomically flat mica substrate and then 

covered with graphene. Subsequently the topography of the graphene covering the 

dendronized polymers on mica were imaged with the SFM. 

1.2 Graphene and other carbon-based hybrid materials for flexible 

electronics 

An emerging field of electronics is “printable flexible electronics”, which offers 

a completely new field of electronic applications, based on mass production, which 

is due to the possibility to print all the components of the electronic device by cheap 

printing methods, used nowadays in the printing industry. Flexible electronics 

requires flexible, highly conducting (with respect to the area of their application) 

electrodes, which cannot be realized by ITO, due to its mechanical fragility [18]. 

Moreover, the price for ITO grows and dominates in some cases the price of an 

electronic device. Therefore, industry experiences growing needs for cheap 

transparent and highly electrically conductive electrodes. Carbon based materials 

(CBM), such as graphenes, carbon nanotubes (CNT) and conducting polymers, in 

particular PEDOT:PSS, are considered to be promising candidates to replace ITO. 

Processing of CBMs into transparent and conducting electrodes, however, is difficult 

for a few reasons, which will be described below.  
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It is difficult to process films from CNTs. For example pure CNTs cannot be 

dissolved well in common solvents. In order to improve the solubility of CNTs in 

water one has to add amphiphilic molecules to the solvent [19]. However, 

amphiphilic molecules coat CNTs, thereby increasing their solubility on the one 

hand, but on the other hand the amphiphile coating prevents the formation of CNT 

percolation networks and therefore hampers the electrical conductivity of CNT 

films, reducing it by several orders of magnitude [20, 21].  Sonication of graphite 

flakes in some common organic solvents exfoliates the flakes and results in low 

concentration solutions of graphenes [22]. Films prepared from such solutions 

exhibit poor electrical conductivity [23] due to the relatively small size of graphenes 

in solution, which do not create a percolation network upon drying. If properly 

dispersed, CNTs can be easily deposited onto transparent plastic films to form a 

transparent conductive coating from a solution, using diverse printing techniques 

such as slot-die-coating [24], screen- and ink-jet-printing [25, 26], or roll-to-roll [27] 

transfer. 

Therefore, the aim of the second part of the work is to provide novel ink 

formulations based on mixtures of CBMs. On the one hand the inks should provide 

an optimal percolation network to achieve the highest conductivity and on the other 

hand they are optimized for printing and can therefore be applied for printing of 

transparent electrodes on diverse substrates. The focus here is laid on homogenous 

ink dispersions and homogeneous film formation of printed films, accompanied with 

superior optical and electrical characteristics of the films. The results of this part of 

the work are presented in chapter 5.4. 
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2. Scientific background 

The scientific background required for understanding of the results obtained 

in this work is presented in this section.  Chapter 2.1 is dedicated to the first part of 

the thesis and is related to Chapters 5.1-5.3. Chapter 2.2 consequently contains the 

scientific background, which is essential for understanding the results presented in 

Chapter 5.4.   

2.1 Graphene 

This chapter is dedicated to the physical background of graphene. 

Informations about structural and optical properties, electronic structure and 

doping of graphene are provided.  The mechanical exfoliation of graphene on mica 

accompanied with the optical detection of graphene is described.  

  

2.1.1 Structure 

Structurally, graphene is a one-atom-thick planar sheet of sp2-bonded carbon 

atoms that are arranged in a honeycomb crystal lattice [28] as illustrated in figure 

2.1. Each carbon atom in graphene is connected to its three nearest neighbours by 

strong planar σ bonds that involve three of its valence electrons occupying the sp2-

hybridized orbitals [29].  

 

Fig.  2.1: Structure of graphene. Hexagonal lattice consisting of two atoms (A and B) per unit 

cell (a) which is spanned by two primitive translation vectors 𝒂��⃗ 𝟏 and 𝒂��⃗ 𝟐. Brillouin zone of graphene 

(b). K, K’ and Г are important symmetry points of the Brillouin zone of graphene. 
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These bonds are responsible for the planar structure of graphene and for its 

mechanical and thermal properties [29]. The fourth valence electron is located in 

the half-filled 2pz orbital orthogonal to the graphene plane and forms a weak π 

bond by overlapping with other 2pz orbitals [29]. These delocalized π-electrons are 

crucial for the electronic properties of graphene. 

 

2.1.2 Electronic structure  

The electronic structure of graphene computed within the tight-binding 

approximation, can be described with the following relation [30, 31]: 

𝐸 = ±𝛾�1 + 4 cos2
𝑎𝑘𝑥

2
+ 4 cos

𝑎𝑘𝑥
2

cos
√3𝑎𝑘𝑦

2
 

 

(2.1) 

The electronic dispersion of the π-bands in the graphene Brillouin zone is 

vizualized in figure 2.2. The electronic structure of graphene exhibits energy bands 

with linear dispersion crossing at K and K’ points (Fig. 2.2b) and can be described as 

a linear dispersion with the equation 𝐸(𝒌) = ħ𝑽𝑭𝒌 [32].  

 

 

Fig.  2.2: (a) The electronic dispersion of the π-bands in the graphene Brillouin zone 

(Reprinted from [33]) (b).  
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This expression relates the electron wave vector k with the energy by a Fermi 

velocity vF , which is found to be close to 106 m/s [34, 35]. The Fermi levels are 

located at the point of band crossing, which is called the Dirac point [36].  Due to 

the absence of the band gap at K and K’- points the graphene behaves as a zero-gap 

semiconductor, where the mass of carriers is regarded as zero (Dirac fermion) [37].  

 

2.1.3 Optical properties 

The optical properties of graphene are a direct consequence of its 2D 

structure and gapless electronic spectrum [29]. For photon energies in the range of  

0.5-1.2 eV [38] the optical conductivity in the linear dispersion regime of graphene 

[33] is a universal constant, which is independent of frequency: σ(ω) = e2/4ħ (Fig. 

2.3), where e is the electron charge and ħ the reduced Plank constant [29, 38, 39].  

 

Fig.  2.3:  Absorption spectra for three different graphene samples on SiO2 (Reprinted from 

[40], Copyright (2014) by the American Physical Society). The black curve corresponds to the 

universal absorbance. 

Consequently absorbance P (∝ σ(ω)), transmittance T and reflectance R -are 

also universal constants, which are determined only by fundamental constants. 

Especially, the ratio of absorbed to incident light intensity for monolayer graphene is 

proportional to the fine structure constant α = e2/ ħ c = 1/137 ,  P = (1 − T ) ≈ πα = 
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2.3% [29], where c is the velocity of light. For a few layers of graphene stacked on 

top of each other the absorbance increases gradually for the first few layers [41]. 

 

2.1.4 Mechanical exfoliation of graphene on a substrate 

Mechanical exfoliation provides graphenes of high quality. However they are 

usually small in size, typically 5-5000µm2. This method allows to produce graphenes 

without defects and without of any annealing methods. Usually graphenes are 

exfoliated using a scotch tape but it has been demonstrated that this method 

contaminates graphenes [42]. A layer of contamination confined between graphene 

and the substrate is typically introduced if scotch tape is used. Therefore, the 

exfoliation method has been modified as described below.  

 

Fig.  2.4: Optical detection of graphenes on mica 

Graphenes were mechanically exfoliated onto a freshly cleaved muscovite 

mica surface (Ratan mica Exports, V1 (optical quality)) in a glove box (LABmaster, M. 

Braun Inertgas-Systeme GmbH) with less than 5 ppm of each H2O and O2. For that, a 

thin graphite flake was peeled off freshly cleaved highly oriented pyrolytic graphite 

(HOPG, grade ZYB, Advanced Ceramics) and gently pressed onto and subsequently 

removed from the mica surface. This sample preparation has been demonstrated to 
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result in a substantially reduced amount of surface contamination [42]. The samples 

prepared in the glove box were then transferred to ambient with ambient relative 

humidities (RH) being below 30%.  Single and double layer graphenes were localized 

optically , thicker graphenes were identified with scanning force microscopy (SFM) 

[41] and verified with Raman Spectroscopy. A typical optical image of graphenes on 

mica is presented in figure 2.4. 

 

2.1.5 Doping of graphene 

In semiconductor doping can be usually realized by incorporating foreign 

atoms into the bulk which introduce extra holes or electrons in the semiconducting 

material [43]. It is also possible to achieve doping through charge exchange with 

dopants situated at the surface [43, 44]. This kind of doping is labelled as “Surface 

Transfer Doping” [45, 46] and can be realized in graphene. 

The scenario of doping in graphene is depicted in figure 2.5. For undoped or 

charge neutral graphene the Fermi-level is located at the Dirac-point. If extra 

electrons are transferred to graphene the Fermi-level shifts towards the conduction 

band (Fig. 2.5c). Consequently, if electrons are transferred from graphene the Fermi-

level shifts towards the valence band (Fig. 2.5b). 
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Fig.  2.5: Illustration of doping of graphene. The electronic structure of graphene with the 

linear energy dispersion at the K-point. Green cone below the Fermi-level (EF) corresponds to the 

valence band and blue cone above the Fermi-level corresponds to the conduction band. For 

undoped graphene (a) the Fermi-level EF, whose position is indicated with the dashed line, 

coincides with the Dirac-point K. The Fermi-level is shifted away from the Dirac-point for p- (b) and 

n-doping (c).    

Interestingly, the doping of graphene can be probed with Raman-spectroscopy 

[6, 47-51] due to strong electron-phonon coupling in graphene [50]. If the Fermi 

energy of graphene is changed, there is a reduction in the interaction between 

phonons and interband electron-hole pairs, thus changing the effective force  

constant of the lattice vibrations [35]. Within the framework of time-dependent 

perturbation theory it is possible to evaluate the relationship between the Fermi-

level shift and the shift of the G- and 2D-Raman modes [47]. The following equation 

relates the Fermi-level shift with the shift of the G-Raman mode [47]:  

ħ𝜔𝐺 − ħ𝜔𝐺0 = 𝜆 �|𝐸𝐹| +
ħ𝜔𝐺

4
𝑙𝑙 �

2𝐸𝐹 − ħ𝜔𝐺

2𝐸𝐹 + ħ𝜔𝐺
�� (2.1) 

where 𝜔𝐺0  is the position of the G-mode 𝜔𝐺  at the Dirac-point, 𝜆 = 𝐴𝑢𝑢𝐷2

2𝜋𝜔𝐺𝑀𝑉𝐹
2.  

Auc is the area of the graphene unit cell, M is the carbon atom mass, D is the 

electron-phonon coupling strength and VF is the Fermi velocity [47]. 

The most elegant derivation of the relation of the Fermi-level shift on the 

phonon dispersion of graphene is presented by Popov et al. [52].  
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2.2 Functional inks  

Functional inks are essential parts of industry and they are of fundamental 

interest. Functional inks, as the name implies, contain functional materials (pigments) 

which provide desired functional property to the ink. In this work conductive pigments   

are investigated. Ink formulations were developed, made on the basis of conductive 

pigments, which were optimized for printing applications. Additionally, the films 

fabricated from these inks were characterized. The aim is a homogeneous film 

formation of dry films. The key challenge is thereby to prepare a conductive film from 

the ink without disturbing the intrinsic conductivity of the pigments. 

This chapter provides an overview of the relevant physical background, which is 

necessary for understanding the results reported in Chapter 5. 4. 

 

2.2.1 Surface tension 

Surface (interfacial) tension  is the energy required to create a unit surface of 

area A, which is defined as = ( / ) , ,  [38] and has a dimension . G is the 

Gibbs free energy of the total system, A the interfacial area, T the temperature, P the 

pressure, and n the total number of moles in the system. In terms of wetting of the 

substrate and film formation the surface tension of functional inks plays a crucial role 

and is an important parameter for the formulation of functional inks.  

For liquids a surface tension or surface energy is determined from the forces 

between molecules and surfaces [53]. Wetting, surface tension and the contact angle 

are strongly connected with each other as it will be discussed in the following.  As a 

drop of a liquid comes in contact with the flat surface of a solid substrate, a contact 

angle  between the drop and the substrate is formed (Fig. 2.6). Moreover three 

phases, which are considered to be in equilibrium, are formed: solid-liquid (SL), liquid-
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gas (LG) and solid-gas (SG) phase. These three phases can be quantified in terms of 

surface tensions [53]:  , , , which are related by the Young’s equation: 0 =  cos  [38]. 

 

Fig.  2.6: Schematic representation of a liquid drop on flat substrate surface. 

Based upon Young’s equation one can classify the wetting of the surface by a 

liquid knowing the surface tension of the liquid and the substrate; thereby one can 

quantify what is good and bad wetting. In general, the liquid wets the substrate in if 0 < 90°. If the liquid is water the surface which offers a contact angle smaller than 

90° is called hydrophilic, if > 90° it is hydrophobic and if > 150°  the surface is 

called superhydrophobic [54]. The contact angle of water can often be changed by 

chemically modifying surfaces by addition of certain solute molecules into the medium 

that adsorb onto the surfaces [53]. For instance surfactants like NaDDBs [55] or SDS [56] 

reduce the contact angle of aqueous CNT dispersion on glass largely leading to 

improved wetting of the substrate by the dispersion. Also the addition of alcohols to 

water reduces the surface tension of water [57]. Within the framework of this 

dissertation aqueous dispersions will be investigated.   

 

2.2.2 Inter-particle forces 

The interaction between the particles in a dispersion is an essential aspect for 

understanding the rheological properties of functional inks.  
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Tadros [58] describes four types of inter particle forces: hard sphere, soft 

(electrostatic), van der Waals, and steric. Hard-sphere interactions, which are repulsive, 

become significant only when particles approach each other at distances slightly less 

than twice the hard-sphere radius [59]. Colloidal interactions are described by the inter-

particle potential [53, 60]. For non-charged, spherical particles of radii , it is common 

to assume that the van der Waals interactions are non-retarded [53] and additive [60]. 

The resulting van der Waals potential between the particles, V(r), where r is the inter-

particle distance, is given by  ( ) =  for  and ( )  for [60, 61]. 

 For all separations, r, the inter-particle potential is proportional to the particle 

size, . The other proportionality constant is Aeff, the effective Hamaker constant which 

depends on the nature of the particles and the intervening liquid [53, 60, 62, 63]. 

 

2.2.3 Polymeric stabilization 

Polymers can be used as stabilizers of colloidal particles in dispersions [64] against 

flocculation [65], i.e. with steric stabilization for uncharged or an electrostatic 

stabilization mechanism for charged polymers. Steric stabilization occurs due to the 

presence of physical barriers adsorbed on particles that prevent the particles from 

coming close enough to allow the van der Waals attractive forces between particles to 

dominate [63, 65, 66]. 

Polymers can be effective stabilizing agents only if the polymer – solvent 

interactions are more favourable than the polymer – polymer interactions [59]. These 

interactions determine the conformation of the polymer once it is adsorbed on a 

surface, and hence determine the minimum separation distance which can be achieved 

through the adsorbed layers [63]. The key to steric stabilization is to increase the closest 

distance of approach between particles in order to minimize van der Waals attractive 

forces [60, 62, 66]. 
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When two particles with adsorbed polymers approach, the polymer molecules 

are crowded, the result being that the polymer configurational entropy is reduced [61]. 

This results in a repulsive force that keeps the particles apart [61]. The extent of the 

interaction is controlled by the radius of gyration [67, 68] and the state of the polymer 

in the solvent [61]. For stable suspension the radius of gyration must be larger than the 

extent of van der Waals forces [61, 69]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Materials  

24 

 

 

 

 

 

3. Materials 

This section provides an overview of the materials used within this work besides 

graphene, which is separately presented in Chapter 2.1.  Mica has been used as a 

dielectric substrate, on which graphenes were mechanically exfoliated. The results, 

where mica was used, are presented in Chapters 5.1 – 5.4. 

Other Materials such as PEDOT:PSS, CNT’s and GO have been used to prepare 

conducting inks for electrodes. These results are presented in Chapter 5. 5. Note, that 

the dendronized polymers are explicitly described in Chapter 5.3. 

3.1 Mica  

Micas belong to the group of phyllosilicate minerals exhibiting a two-dimensional 

sheet structure [70]. There are several kinds of mica minearals. In this work muscovite 

mica is used. Muscovite is a 2 : 1 layered dioctahedral aluminosilicate with the formula 

KAl2(Si3,Al)O10(OH)2 [71]. Structurally, each irreducible muscovite layer consists of one 

layer of octahedrally coordinated Al3+ ions, which is sandwiched between two 

tetrahedral silicate layers with vertices pointing toward the octahedral layer [70]. 

Within tetrahedral units aluminum is randomly substituted for silicon with a ratio of 1 : 

3 to compensate the negative charge of adjacent mica layers, and potassium 

counterions are present in 12-fold oxygen coordination [70, 71]. 

After the cleavage, half of the potassium ions are assumed to be left to preserve 

electroneutrality of the surface as a whole [70, 71]. However, the positions of the ions 
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and their distribution over the surface are not well defined from the experimental point 

of view [6, 70]. Since the interaction between potassium and the surface is of ionic 

nature, the binding is strong enough to prevent diffusion of potassium ions across the 

surface at room temperatures [71].  

Graphene on mica exhibits an atomically flat structure [72] without any 

detectable defects at the nanometer scale [73].  

Muscovite mica is birefringent and, in the visible range, transparent, where the 

transparency scales with the thickness of the mica substrate. The latter can be adjusted 

by simple mechanical cleavage of mica using either blade or scotch tape. It has been 

elegantly demonstrated by Dorn e . [41], that the optical contrast of graphenes on 

mica can be enhanced if using special optical set-up1 for the graphene detection. 

3.2 Carbon Nanotubes - CNT                   

Carbon nanotubes (CNT) are allotropes of carbon having a cylindrical shape [74]. 

They are categorized into Single-Walled (SW) and Multi-Walled (MW) – CNTs, where the 

SWCNT’s can be structurally described as graphene rolled up into a cylinder with a 

diameter in the range of 1-2 nm. The length of a SWCNT is typically 10-50μm but can be 

as large as several mm [75]. Similarly, multi-walled carbon nanotubes consist of 

coaxially arranged, nested cylinders of graphene [75] (or carbon shells), with an 

adjacent shell separation of 0.36 nm [74, 76] and with  diameters of several tens of 

nanometers (Fig. 3.1). 

                                                       
1 Illuminating from the back, i.e. through the mica, and using crossed polarizers, the component of the 

light reflected from the last interface between mica and air is filrered out. This is due to the 
birefringent nature of mica and the fabry-perot-effect arising from the layered structure of mica 
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Fig.  3.1: Image of a MWCNT consisting of two walls (Reprinted from [76] Copyright (2014), with 

permission from Elsevier). 

 Nowadays, MWNTs and SWNTs are produced mainly by three techniques: arc-

discharge, laser-ablation, and catalytic growth [74]. 

CNT’s are considered as promising candidates for transparent electrodes [56] due 

to their high electrical conductivity combined with high optical transparency.    

3.3 Graphene Oxide 

Graphene oxide (GO) or graphite oxide [77] can be obtained  by chemical 

oxidation of graphite [78] combined with ultrasonication. Structurally it is a graphene 

sheet derivatized by carboxylic acid groups at the edges and by phenol hydroxyl and 

epoxide groups mainly on the basal plane [77, 79-82] (Fig. 3.2). GO is known to 

disperse, in particular in water due to the –COOH groups on its edges [77].  
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Fig.  3.2: Chemical structure of GO. 

Interestingly, the basal plane of GO is hydrophobic, due to a network of 

hydrophobic polyaromatic islands of unoxidized benzene rings [77, 79, 83]. That implies 

that GO can be viewed as an amphiphile. Concerning the electronic properties GO is an 

insulator [84] but through reduction, where a significant fraction of the contained 

oxygen is removed, the conductivity of GO can be largely improved  [84-86]. Within this 

work it has been shown that GO can be used as film forming agent in conductive ink 

formulations to improve film formation and eliminate the coffee ring effect as it is 

demonstrated in chapter 6.5. GO used in this work was prepared with Hummers’ 

method [78]. 

3.4 PEDOT:PSS 

PEDOT:PSS (Fig. 3.3) belongs to the class of intrinsically conducting polymers 

(ICPs) which are commonly used as electrodes or hole injection layers in organic light-

emitting devices. PEDOT:PSS exhibits relatively high work function values of 4.8 to 5.7 

eV, depending on the formulation and the preparation parameters [87, 88], which 

makes it highly suitable as hole-injection layer in devices [89].  
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Fig.  3.3: Chemical structure of PEDOT:PSS. 

PEDOT:PSS exhibits different electrical conductivities depending on the quality 

and preparation.  Within this work, commercially available dry re-dispersible palettes of 

PEDOT:PSS (AGFA company) were used. This form of the polymer allows to create own 

ink formulations containing PEDOT:PSS, which are the subject of chapter 5.5. 
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4. Experimental methods 

This section provides an overview of the experimental techniques which have 

been employed in this work. In particular, Electrostatic and Kelvin Probe Force 

Microscopy as well as Raman spectroscopy were used, and the theoretical background 

will be provide in the following. The experimental setups, which were used for the 

experiments will be illustrated in the next chapter. 

 

4.1 Scanning Force Microscopy 

The basic concept of the scanning force microscope (SFM) is to probe the force 

between the sample surface and a sharp SFM-tip on a flexible cantilever by measuring 

the deflection of the cantilever while scanning it line-wise across the surface (Fig. 

4.1.a). From this the morphology of the surface is deduced. The bending of the 

cantilever is measured optically with a laser beam reflected from the cantilever into a 

position-sensitive photodiode [90, 91]. There are different methods of the SFM 

operating principle to obtain informations about sample topography.  
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Fig.  4.1: Schematic view of the basic principle of the tapping mode SFM (a), where the 

cantilever oscillates at its resonance frequency and scans the substrate surface. The Lennard-Jones-

Potential with corresponding SFM-regimes (b).  

The images presented in this work were acquired using the “tapping mode” [92, 

93]. In this mode the change of the free oscillation amplitude of the cantilever due to 

the “tapping” of the surface with the tip is measured with a feedback-loop. Driven by 

piezo crystals, the cantilever laterally scans the sample and the sample morphology on 

the scan path leads to varying tip-sample interactions, which modify the oscillation 

amplitude of the cantilever away from a given set-point [87]. This variation is used to 

vertically adjust the tip-sample distance to regain the set-point value of the amplitude 

via the feedback system, which finally generates a topographic image of the sample 

[87]. The interaction between the atom on tip apex and the surface is simplified to be 

of van der Waals nature (Fig. 4.1b). 
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4.2 Electrostatic Force Microscopy - EFM 

EFM is a scanning force technique to probe electronic properties of surfaces. It is 

a non-destructive technique, which allows to probe the work function of metallic 

samples [94, 95]  as well as the surface potential of a dipole layer [96, 97]. EFM has 

been shown to be applicable to graphene [49, 96, 98] and to probe graphene-substrate 

electronic interactions [49, 94, 97]. 

The EFM-Method is a dual-pass technique, where the EFM-Phase signal detection 

is usually acquired in a two-pass (lift) mode (Fig. 4.2). In the first pass (Fig. 4.2a), the 

SFM tip traces the sample topography in tapping mode. In the second (interleave) pass 

(Fig. 4.2b) along the same scan line, the tip is biased with a DC voltage VT and retraces 

the topography acquired in the first pass, at a fixed lift height of 30 nm above the 

surface.  

 

Fig.  4.2: Schematic representation of EFM. The first pass is recorded in tapping mode (a) and 

the second pass in lift mode (b), where the tip traces the topography acquired in the first pass and 

while a DC bias VT is applied between the tip and sample. The phase shift between the driving force 

and bias modulated oscillation of the cantilever due to the electrostatic force is measured (green curve 

in (b) right image). 
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The cantilever is mechanically driven at its resonance frequency, and the phase 

shift of the cantilever oscillation is imaged as a function of tip position. The phase shift 

 due to tip-sample capacitive coupling is expressed as [99, 100]: 

= ~( ( , ))  (4.1) 

where VT is the bias applied between the back electrode and the tip and Vs(x,y) is 

the local electrostatic potential. This method gives information about the surface 

potential differences on the sample surface. The EFM measurements in this work were 

performed with a scanning force microscope (Digital Instruments – Nanoscope IV) using 

conductive, Pt-coated SiN cantilevers. The cantilevers had a typical resonance 

frequency of 70 kHz and a spring constant of 2 N/m with a typical tip apex radius of 20 

nm, as specified by the manufacturer (Olympus Corporation). 

4.3 Kelvin Probe Force Microscopy - KPFM 

Similar as EFM, the KPFM is also a scanning force technique to study electronic 

properties of samples, in particular the surface potential. KPFM has been applied for 

the investigation of the work function of graphene [94, 95]. The detailed description of 

the method is reflected in the text below. 

The KPFM measurements were performed with the Scanning force microscope 

(Digital Instruments – Nanoscope IV) using conductive, Pt-coated SiN cantilevers. The 

cantilevers had typical resonance frequency of 70 kHz and spring constant of 2 N/m 

with a typical tip apex radius of 20 nm, as specified by the manufacturer (Olympus 

Corporation). The surface potential (SP) signal detection was acquired in a two-pass 

(lift) mode. In the first pass, the AFM tip traces the sample topography in tapping mode. 

In the second (interleave) pass along the same scan line, the tip is biased 

simultaneously with a DC- (VDC and an oscillating AC-voltage (VAC) at the cantilever 

resonance frequency ( AC) and retraces the topography acquired in the first pass, at a 

fixed lift heights of 30 nm above the surface.  Considering the system tip-sample as a 
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parallel plate capacitor (Fig. 4.3), the force acting between the plates of a capacitor 

separated by a distance z can be expressed as the first derivative of the energy E within 

the capacitor: 

= ( ) = 12 ( )
 (4.2) 

where C is the capacitance and V is the voltage. The voltage between tip and 

sample has three components, namely the work function difference including the 

surface potential of a dipole layer on top of a sample , the VDC and the oscillating 

VAC, both applied by a feedback loop of the instrument.  

Thus it follows: 

= + + sin ( ) (4.3)

Inserting the expression for V into equation (4.2) one obtains the expression for 

the force acting between the plates of the capacitor, which has three components: 

( ) = + +  (4.4)

Where the spectral component of the electrostatic force between the sample and 

the tip at the  can be expressed as [101]: 

= ( ) sin( )                                         (4.5) 

 is the surface potential of the sample. By inspection of this equation one can 

notice that by monitoring the electrostatic force at AC with a lock-in amplifier, VDC can 

be adjusted by a feedback circuit to minimize the force on the cantilever to the null 

condition (VDC =  ) [101].  
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Fig.  4.3: Scheme of a build-in potential difference  or contact potential difference due to 

different work functions (a-c), and due to the addition of a dipole layer * (d). Electrically not wired 

metals with different work functions (a) and electrically wired metals (b) with common Fermi level and 

build-in electric field E between the plates arising from the Fermi-level alignment and associated 

contact potential difference  . A voltage VDC =   applied between the plates (c) compensates the 

contact potential difference  and therefore the electric field between the plates vanishes. An 

additional dipole layer on top of a metal plate (d) produces an electrostatic (surface) potential * 

additional to , and therefore the electric field between the plates associated with the potential of a 

dipole layer is E*. 

The value of the surface potential measured with KPFM is more accurate than 

measured with EFM; however, the lateral resolution of KPFM is 120±10 nm, whereas 

the EFM provides a lateral resolution of approximately 60±10 nm (Fig. 4.5). Therefore, 

the combination of these two methods could provide more accurate quantitative 

information about the surface potential.  
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4.3.1 Work function and surface potential 

The work function of a solid is the energy, which is required to bring the electron 

from the chemical potential of the solid into the vacuum. The total work function of a 

metal depends on the bulk chemical potential and the electrostatic potential across the 

metal surface [102]. The work function is experimentally known to be different for 

different faces of a crystal by amounts ranging from one-tenth to half a volt [103]. The 

origin of the latter is attributed to the Smoluchowski-effect [103]. 

 

Fig.  4.4: Adsorption of a molecular layer on a metal (top) and a corresponding energy diagram that 

shows the change of the electrostatic potential V on the metal surface produced by the dipole layer 

∆𝑽𝒎𝒎𝒎 .   

Another phenomenon is the adsorption of atomic or molecular species on a metal 

surface. This will also induce changes of the work function [104] as it will be described in 

following. In particular upon adsorption of a molecular layer, the work function change 

can be computed with the Helmholtz equation [101], which relates the surface potential 

produced by a molecular layer with its dipole moment. This scenario is depicted in figure 

4.4. 
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 Using the equation: 

∆𝑊𝑓 = 𝑊𝑓0 + ∆𝑉𝑚𝑚𝑚𝑒 = 𝑊𝑓0 + 𝜇��⃗
𝐴𝐴𝐴0

                                             (4.6)  

the change of the work function upon the adsorption of the molecular layer can be 

estimated. 𝑊𝑓0  is the work function of a metal before the adsorption of molecular layer, 

∆𝑉𝑚𝑚𝑚 is the electrostatic potential difference produced by a molecular layer and e is the 

elementary charge. 

4.4 Spatial resolution of EFM and KPFM   

The spatial resolution of KPFM and EFM was estimated as it is depicted in figure. 

4.5. 

 

Fig.  4.5: Estimate of the spatial resolution of KPFM and EFM. KPFM-potential (a) and EFM-phase-

image for different tip-voltages (c) of single graphene on mica. Potential (b) and EFM-Phase-profile for 

VT=1.5V (d) taken along white line in (a) and (c) for KPFM- and EFM-images with corresponding Gaussian 

fits respectively. The spatial resolution of each method was estimated from the standard deviation σ of 

the Gaussian fit. 
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4.5 Raman Spectroscopy 

4.5.1 Theory 

Raman spectroscopy is a commonly used optical and non-invasive experimental 

method, for probing phonons. Raman spectroscopy is based on the inelastic scattering of 

monochromatic light within the studied sample, accompanied by the generation or 

annihilation of different elementary excitations, in particular phonon vibrations [105]. 

In general Raman spectroscopy is associated with the polarizability α of the atoms 

or molecules to be probed. The polarizability is a tensor which acts a proportionality 

constant between induced dipole moment and the strength of the electric field of the 

incident light [106]. An electric field induces polarization (dipole moment) in an atom or 

molecule, which can be described by the following equation. 

�⃗� = 𝛼𝐸�⃗  (4.7) 

 The Gross selection rule [107]  states that the polarizability of a molecule should 

change during vibration. That implies  𝜕𝜕
𝜕𝜕
≠ 0, where q is the normal coordinate of the 

vibration. In case of an oscillating electric field, as it is the case in Raman-experiments, the 

electric field can be expressed as: 

𝐸 = 𝐸0 sin(𝜔𝑖𝑡) (4.8) 

As a consequence the polarizability of the atoms is then modulated by the lattice 

vibrations with the frequency 𝜔𝜕 [106], which is coupled to the optical field, as follows 

[106, 107]: 

𝛼 = 𝛼0 + 𝛼1 sin(𝜔𝜕𝑡) (4.9) 

Thus the polarization induced by the electric field becomes: 

�⃗� = 𝐸0�𝛼0 + 𝛼1 sin�𝜔𝜕𝑡�� sin(𝜔𝑖𝑡) =

= 𝐸0 �𝛼0  sin(𝜔𝑖𝑡) +
1
2
𝛼1 cos�𝜔𝑖 − 𝜔𝜕�𝑡 −

1
2
𝛼1 cos�𝜔𝑖 + 𝜔𝜕�𝑡� 

(4.10) 
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From this equation one can see that scattered light consists of three components, 

namely one elastic and two inelastic.  

 

Fig.  4.6: Schematic representation of the spectrum arising from light scattering experiments which 

contains the Raman- and Rayleigh-peaks. Note, that usually the incident light corresponding to Rayleigh-

peak has to be filtered out since its intensity exceeds the intensity of Raman- signal by several orders of 

magnitude. The peak of incident light, which is elastically scattered (Rayleigh) is localized at the frequency  

𝝎𝒊 and the stokes- and anti-stokes lines are localized at frequencies 𝝎𝒊+𝝎𝒒 and 𝝎𝒊-𝝎𝒒 respectively. Note 

that the Raman line shape is Lorentzian2 [106].  

At frequency 𝜔𝑖 (first term in equation 4.10) the light is scattered elastically 

(Rayleigh scattering). The second and third term in equation 4.10 represent inelastically 

scattered light (Raman scattering), wherein the frequency of incident light is downshifted 

(stokes) or upshifted (anti-stokes) by the vibration frequency of atom  𝜔𝜕 (Fig. 4.6). 

 

 

 

 

                                                       
2 This is a consequence of the fact that the photon excitation can be modelled as damped harmonic , 

damped by the interaction with other excitations in the system. 
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4.5.2 Raman Spectrum of graphene  

Raman spectroscopy is a non-invasive method to probe phonons in graphene [101, 

105]. It can be used to identify the number of graphene layers [101], estimate the amount 

of doping and the presence of disorder [95, 102, 103], study graphene’s edges [36, 104, 

108], and quantify anharmonic processes and thermal conductivity [30, 32]. 

The typical features in a Raman spectrum of graphene are the G- (~1580 cm-1) and 

the 2D- mode (~2700 cm-1) [94]. To interpret the Raman spectra in graphene it is 

essentially to understand the phonon dispersion of graphene [31], which is very elegantly 

described in [31].  

The unit cell of graphene contains two atoms and thus there are six phonon bands 

[31]. Therefore, there are three optical and three acoustic phonon dispersion branches.  

Since within the framework of this dissertation only G- and 2D-modes are important, i 

focus only on them. The G-mode corresponds to a first order Raman scattering process 

[28] and it is due to the in-plane stretching of the carbon-carbon bonds [29] (Fig. 4.7). 

Noteworthy, two optical branches at the Г-point3, iLO and iTO (Fig. 4.7)  correspond to the 

same frequency, i. e. this Г-point  phonon is  doubly degenerated [41].  Therefore, two 

phonon branches corresponding to the G-mode are depicted in figure 4.7 (inset above the 

G-mode). 

                                                       
3 A symmetry point in phonon dispersion of graphene at the center of the graphene’s brillouin zone 
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Fig.  4.7:  Raman spectrum of graphene with pronounced G- and 2D- modes with Lorentzian fits (a). 

The insets represent different phonon vibrations corresponding to each Raman peak. iLO and iTO stands 

for in-plane longitudinal optical and in-plane transversal optical branch, respectively. Schematic 

representation of a single- (b) and double-resonance process (c) corresponding to G- and 2D-modes 

respectively. The blue cones in (b, c) indicate the linear dispersion of the electronic structure of graphene 

at the K- (left) and K’-point (right) (c). 

The vibrations associated with the 2D mode are depicted in figure 4.7 near to the 

2D-peak. In contrast to the G-modes, the 2D-mode arises from a second order resonance 

process [29], to which two phonons with opposite wave vectors participate [42]. In this 

second order resonance process an incident phonon excites an electron-hole pair, then 

the electron and hole experience scattering on TO phonons and the process is finished by 

the recombination of the electron-hole pair with the emission of a photon [41]. 
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4.6 Humidity controlled Raman Spectroscopy 

The experimental set-up used in this work for Raman Spectroscopy within a RH-

Control chamber is depicted in Fig. 4.8. This set-up allows to probe samples, in particular 

graphenes, at different RH. 

 

Fig.  4.8: Schematic representation of the experimental set-up for humidity dependent Raman 

Spectroscopy. 

A diffraction limited laser spot (532 nm, 1.4 mW) with a spot size of approximately 

1µm was used as the excitation source for the Raman measurements. The spectrometer 

SP-150, Acton Research Corporation, equipped with a LN/CCD-1340/100-EB/1, Roper 

Scientific was used. The accuracy to detect peak-shifts was better than 2 cm-1. A CCD-

camera was used to identify the graphenes. An avalanche photodiode (APD) was used to 

record reflection images upon scanning of the sample. This allowed to place the laser spot 

onto a position of interest. For the humidity variation the samples were placed inside the 

RH-control chamber (Fig. 4.8), purged either directly with dry nitrogen or with dry 

nitrogen bubbled through Milli-Q water to reduce and increase the RH, respectively. RH 

and temperature were measured with a sensor (testo 635 of Testo GmbH) located in close 

proximity of the SFM head.  
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4.7 Humidity controlled  SFM-, KPFM and EFM-Experiments 

This section provides a brief description of the set-up for humidity controlled SFM-, 

KPFM- and EFM-Experiments. The instrument, which was used for the SFM-, EFM- and 

KPFM-Experiments, was a Scanning force microscope (Digital Instruments – Nanoscope 

IV).  

 

Fig.  4.9: Experimental set up for humidity controlled SFM, EFM and KPFM-Experiments. 

The instrument was placed inside a chamber (Fig. 4.9) and purged either with dry 

nitrogen or with with dry nitrogen bubbled through Milli-Q water to decrease or increase 

the RH, respectively.  
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4.8 UV-VIS 

UV-VIS spectroscopy has been employed to characterize the optical transmission of 

the films presented in section 5.4. The UV-VIS-Spectra of the dried films on various plastic 

substrates were taken using the Absorption-Spectrometer SHIMADZU UV2101 (revision 

2.2). Measurements were performed against a reference sample, such that the signal 

difference is caused only by the dry film itself.   

4.9 TEM-imaging 

To characterize the dispersions presented in section 5.4 transmission electron 

microscopy (TEM) has been employed. TEM was performed with a JEOL JEM2100 

transmission electron microscope at a beam energy of 200 keV (LaB6 illumination). 

4.10 Sheet resistance 

For the sheet resistance measurements, two contacts were drawn by a silver colloid 

solution, separated by a square area of a transparent electrode, and then the resistance 

was measured by a zero-calibrated multimeter. The average resistance was obtained from 

five measurements. To ensure the correctness of the sheet resistance measurements, the 

sheet resistance measured with a home-built four-point probe was compared and no 

noticeable differences were detected.  
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5. Results and Discussion 

5.1 Layer dependent Surface potential  variations of few layer graphenes 

(FLG) on mica 

5.1.1 Introduction 

The Electronic properties of graphene are strongly sensitive to the underlying 

substrate [1, 48, 109]. The quantitative understanding of charge transfer at interfaces and 

the spatial distribution of the resulting charge carriers is a critical input to electronic 

device design [2]. Particularly, the performance and reliability of a graphene field effect 

transistor (FET) can be dominated by the graphene/substrate environment [2, 110-112].  

Kelvin Probe Force Microscopy (KPFM) is a versatile tool for quantitative and 

qualitative investigations of electronic properties of surfaces at the nanoscale. It has been 

applied to monitor the formation of dipoles at the graphene/substrate interface as well as 

the distribution of charge carriers in different graphene layers [48].  

Mica is atomically flat dielectric substrate and therefore graphene on mica is of high-

quality, since mica provides atomically flat support over large areas [72]. Therefore, 

graphene on mica is of high technological interest.  

The surface potential variations of single and few-layer graphene sheets on mica 

were investigated by means of Scanning Force Microscopy (SFM), Kelvin Probe Force 

microscopy (KPFM). It will be demonstrated that the surface potential variation of 

graphene on mica decreases exponentially with the graphene thickness. From this 

dependency the electrostatic screening length is estimated to 1.3 nm (≈4 layers), which is 

in excellent agreement with the screening length in graphite estimated experimentally. 

[92].  Moreover It will be shown that the Thomas-Fermi approach, which predicts a 

power-law dependence of the surface potential decrease and describes the screening of 

graphene on SiO2 [96], does not fit for graphene on mica.  
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5.1.2 Experimental 

Graphenes were mechanically exfoliated onto a freshly cleaved muscovite mica 

surface and verified following the procedure described in section 2.1.4. KPFM 

measurements were performed according to section 4.3. Mica sheets were glued onto 

metal discs with silver colloidal solution. The discs were used as back electrode for KPFM 

measurements. Thicknesses of mica sheets were in the range 50-100 �m. The typical time 

between sample preparation and SFM imaging was half an hour.  

 

5.1.3 Results 

Figure 5.1a displays SFM height-images of the graphene topography on mica with 

different number of graphene layers. From the KPFM image (Fig. 5.1b), surface potentials 

of single-, bi-, and triple-layer graphenes were determined relative to the bulk graphite 

(see below), using the histogram (Fig. 5.1c) to -108mV, -45mV, and -18mV, respectively. 

The distribution of the surface potential within the graphene layers was amazingly 

homogeneous with a scattering of only 1.7±0.1 mV (Fig. 5.1d), which, within the error, is 

equal for single-, bi- and triple- layer graphene. 
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Fig.  5.1: SFM-height image (a) and the corresponding surface potential map (b) of single and few-

layer graphenes on mica. (c) Histogram of the surface potential distribution (relative to bulk graphite) 

acquired from the dashed red region in (b) containing mica, single, bi and triple-layer graphene. (d) 

Normalized histograms of the surface potentials taken from single, bi- and triple layer graphene regions in 

(b). The histograms were fitted with Gaussians with standard deviations of 1.7±0.1 mV.     

The cross-section of the surface potential (SP) taken across a region going through 

mica, single, bi-, triple- and four-layer graphene is depicted in Fig. 5.2a. Remarkably, the 

SP of mica is larger than of single graphene. The SP-difference of FLG relative to bulk 

graphite is depicted in Fig. 5.2b. Noticeably, the surface potential of FLG increases with 

increasing graphene thickness, approaching a limit for graphenes containing five and more 

layers (Fig. 5.2b). A SP of 11-layer graphene (-120 mV) was considered as bulk since the SP 

variations starting from 5 layer graphene did not change any more.  
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Fig.  5.2: Surface potential cross section taken from the red line in Fig. 5.1b across mica, single, bi- 

and triple-layer graphene (a). Dependence of the surface potential of graphene versus graphene layer 

thickness relative to bulk graphite (b) with corresponding fits. The red curve corresponds to the surface 

potential dependence derived from the Thomas-Fermi model [96] and the black curve is an exponential 

fit. 

Each point in Fig. 5.2b is an average from three different samples. The screening 

length estimated from the exponential fit (Fig. 5.2b) is (1.3±0.1) nm, which is equal to four 

graphene layers. 

 

5.1.4 Discussion 

The increasing surface potential of graphene with increasing graphene thickness 

implies p-doping of graphene [48, 49, 96, 113]. The small scattering of the data arising 

mainly from the KPFM resolution of the surface potential indicates that no large 

contaminations or charged domains are present at the graphene mica interface. In 

contrast, in previous studies of graphene on SiO2, strong surface potential fluctuations 

within one graphene layer were induced by partial screening of charged impurities at the 

graphene SiO2 interface [48, 114]. The findings here confirm the high quality of graphenes 

on mica which are not only atomically flat [72] but also exhibit very small surface potential 

fluctuations.  

While the surface potential variations within each graphene layer are vanishingly 

small, there are surface potential differences between adjacent graphene layers. 

Remarkably, the surface potential scales exponentially with the graphene layer thickness, 
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approaching saturation at about five graphene layers. In previous studies [49, 96, 97, 115] 

the dependence of the surface potential of graphene on the number of layers was 

successfully described with Thomas-Fermi theory. This predicts that the charge-transfer 

between graphene and the substrate drives the surface potential contrast of a single layer, 

while the free mobile charges in the subsequent graphene layers effectively screen the 

surface potential, which is then completely screened off after approaching a bulk limit of 

five layers [96]. 

Thus a few layer graphene with a number of layers > 5 layers exhibits characteristics 

of a bulk metal with an equipotential surface, where the influence from the underlying 

substrate is completely gone. The final result of the Thomas-Fermi approach is that the 

surface potential of graphene scales with ~1/D2, where D is the graphene layer thickness 

[96]. It has been also intended here to use Thomas-Fermi theory to explain the results 

(Fig. 5.2a, red curve), but it was not consistent with the experimental data (Fig. 5.2b). 

 This can be attributed to the different interaction between graphene and the mica 

substrate compared to graphene and SiO2. Noteworthy, it was already demonstrated that 

doping of graphene and thereby the direction of the dipoles at the graphene/substrate 

interface is crucially dependent on the preparation methods of graphenes and it is 

strongly influenced by the underlying substrate  [42, 97, 109, 116, 117]. The last has been 

attributed to p-doping [41, 97, 109, 115] or to an effective blocking of the charge transfer 

between graphene and the substrate [97]. These results imply that the screening 

properties of graphenes are sensitive to the preparation method.  

The exponential increase of the surface potential with the graphene layer thickness 

might be attributed to the screening by massive charge carriers [96]. Indeed it has been 

demonstrated that the interlayer screening in graphene can be exponential [118], which is 

a consequence of graphene interlayer coupling. The interaction between graphene layers 

as well as the interaction between graphene and the substrate can affect the character of 

the π wave function in graphene as it has been experimentally demonstrated using Angle-

Resolved-Photoemission Spectroscopy ARPES [118]. The latter can result in π-band 

splitting and lead to an electronic transition from two dimensional in single layer 

graphene to three dimensional in the multilayer graphene  [118].   
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In conclusion, the electrostatic screening of single and few-layer graphenes on mica 

has been experimentally demonstrated. The surface potential generated by interfacial 

dipoles at the graphene/mica interface and its dependence on the number of graphene 

layers has been probed by KPFM. The surface potential decreases exponentially with the 

number of graphene layers with a screening length of 4 graphene layers. 
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5.2 Dependence of charge transfer between water and graphene on the 

thickness of the water film 

 

5.2.1 Introduction 

Charge transfer (CT) at interfaces of solids and molecular adsorbates is of 

fundamental and practical importance in the fields like organic light emitting diodes 

(OLEDs), photo-catalyzes, photo-voltaic processes and electronics [119, 120]. Doping of 

graphenes by molecular adsorbates, i.e. chemical doping, is considered as a promising 

route to control electron transport in graphenes. Formation of water adlayers is 

ubiquitous at ambient, therefore charge transfer between water molecules and graphene 

is of a practical importance. In particular magnitude and direction of CT between water 

molecules and graphene onto which they adsorb has been predicted to vary depending 

on the structure of the water layers [117, 121, 122]. 

There is discrepancy in the recent literature reports on charge transfer between 

water molecules and graphene. It has been reported that single water molecule 

adsorption dopes graphenes with holes [123]. Layers of water molecules confined 

between graphene and solid support have been reported to dope graphene positively 

with doping growing with the water layer thickness [117] but also to block charge transfer 

between graphene and mica substrate [116]. The later implies no graphene doping by the 

interfacial water molecules. It has ben also argued recently that water layers confined 

between graphene and mica can be substantially impacted by contaminations due to 

sample preparation [42] . Therefore, I investigated graphene samples exfoliated on mica in 

a particular clean way. I will demonstrate in the following that my graphene samples on 

mica are substantially different from the previous report [116]. Mica does not dope 

graphene in my hands, while water layers dope graphene positively with doping 

increasing for water layer thickness.    
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5.2.2 Experimental 

Graphenes were mechanically exfoliated onto a freshly cleaved muscovite mica 

surface and verified following the procedure described in section 2.1.4. 

Mica sheets were glued onto metal discs with silver colloidal solution, the discs were 

used as back electrode for EFM measurements. Thicknesses of mica sheets were in the 

range of 50÷100 µm verified with mechanical profilometer. The typical time between 

sample preparation and SFM imaging was half an hour. The heads of the employed SFM 

instruments were operated inside a bell-jar chamber, purged either directly with dry 

nitrogen to reduce, or with dry nitrogen bubbled through Milli-Q water to increase RH. RH 

and temperature were measured with a sensor (testo 635 of Testo GmbH) located in close 

proximity of the SFM head. The calibration fidelity of the sensor is ±2.5% RH in the 

addressed RH range, as provided by the manufacturing company. RH values indicated in 

the text are the displayed values. Scanning force microscope (Digital Instruments – 

Nanoscope IV) was operated in tapping mode with a J-scanner at a typical scan rate of 6 

minutes per image with SiN cantilevers with typical resonance frequencies of 300 kHz and 

the spring constants of 42N/m.  

The EFM measurements were performed according to the procedure described in 

section 4.2. 

A diffraction limited laser spot (532 nm, 1.4 mW) was used as the excitation source 

for the Raman measurements. The spectrometer (SP-150, Acton Research Corporation, 

equipped with a LN/CCD-1340/100-EB/1, Roper Scientific). The heads of the employed 

SFM instruments were operated inside a home-built environmental control system, bell-

jar chamber, purged directly either with dry nitrogen or with dry nitrogen bubbled 

through Milli-Q water to decrease or increase humidity respectively. Relative humidity 

(RH) and temperature were measured with a sensor (testo 635 of Testo GmbH) located in 

close proximity of the SFM head. I investigated three different samples and acquired more 

than 70 Raman-spectra. The G and 2D modes in spectra were fitted with Lorentzian 

functions to determine the peak positions. 
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5.2.3 Results 

Figure 5.3 displays SFM height images of a single layer graphene attached to a 

double layer graphene, acquired under variable RHs. At the initial 26% ambient RH 

graphene exhibits 2.8±0.5 Å depressions (Fig. 5.3a). Increase of humidity eliminates the 

depressions, such that at 50% RH graphene becomes flat. Raising of the humidity up to 

90% causes growth of flat and compact protrusions in the graphene topography with a 

height of 5.0±0.5 Å with the error being standard deviation. Protrusions grow more 

readily within thinner graphenes (Fig. 5.4). Subsequent drying with dry nitrogen flow 

caused shrinkage of most protrusions and their eventual vanishing. In a few cases it was 

observed that protrusions that were exceeding few micrometers in diameter still did not 

completely vanish after 60 minutes of drying. 

 

Fig.  5.3: SFM height images of single layer graphene (highlighted with dashed line) next to double 

layer graphene, taken under variable RHs. a) ambient 26%, b) 50%  and c) 90% RHs. d) and e) are cross 

sections taken along the solid lines on the inserts in a) and b) respectively.   

Dependence of graphene topography on relative humidity has been attributed 

previously to a fluid layer of water molecules wetting the slit pore between graphene and 
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mica surface [4] with graphene replicating topography of the layer.  

At ambient humidities below 30% RH the depressions were attributed to the layer 

not yet completely wetting the pore. The depressions are attributed to graphene lying 

directly on mica substrate. Furthermore, protrusions growing in graphene topography are 

attributed to the variable thickness of the water layer confined in the pore and replicated 

by the graphene topography (Fig. 5.3). This is supported by the dependence of EFM 

contrast on the thickness of graphene (see below). The flatness of graphene supported by 

a monolayer of water molecules at intermediate humidities indicates homogeneity of the 

water layer and consequently absence of any substantial defects or contaminations 

confined between graphene and mica substrate (Fig. 5.3b) [42]. The height of protrusions 

at high RHs substantially exceeds the depth of the depressions at low RHs. Therefore, 

protrusions cannot be explained with the growth of the second layer of water molecules 

on top of the first one with the structure identical to the first layer; rather structure of 

water film within protrusions must be different from that of a monolayer. Different 

structures of the water film confined under graphene could give rise to different doping 

levels of graphene. Thus I proceed with EFM to map electrostatic potential and Raman to 

quantify graphene doping. It will be designate in the following graphene in direct contact 

with mica as 0lw, on monolayer of water molecules as 1lw and on top of protrusions as 

2lw. 
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Fig.  5.4: SFM image of graphene flake containing on mica at 95% RH containing graphenes from 

one to thicker ones around 8 layers. Graphene layer number is labeled with roman numbers. 

Figure 5.5 displays SFM height and corresponding EFM phase images acquired on 

single layer graphenes under variable humidities. Both depressions in graphene 

topography under low RH and protrusions under high RH can be well recognized.  The 

phase shift dependences on Vtip over the 0wl, 1wl and 2wl areas can be well fitted with 

polynomial of the second order. From the valley point of the parabola (Fig. 5.5 g, h) I  

estimated the surface potential differences to be +100±20 mV and +100±25 mV between 

0wl and 1wl; and between 1lw and 2lw respectively with the errors being the standard 

deviations. The EFM phase contrast between 0wl-1wl and 1wl-2wl declined with graphene 

thickness (Fig. 5.6), which is attributed to screening of electrostatic potential by thicker 

graphenes eventually leading for thicker graphenes to equipotential surface typical for 

bulk metals [96].  
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Fig.  5.5:  (a) and (b) SFM-height and (c)-(f) corresponding EFM phase images at different tip-bias 

acquired on a single layer graphenes at different RHs. Electrostatic force spectroscopy (EFS) micrographs 

taken on 0lw and 1lw (g) and on 1lw and 2lw (h) respectively. Surface potential difference of 100mV is 

estimated from the valley points of the parabolas. 

EFM phase shift is sensitive to local electrostatic potential. Uncompensated charges 

are unreasonable for samples at ambient, this assumption is also supported by the 

independence of electrostatic potential on the tip-surface distance (not shown). Decrease 

of the EFM contrasts with the number of graphene layers implies that the layer of 

molecules inducing the electrostatic potential differences must be confined between 

graphene and mica. 
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Fig. 5.6: EFM-phase image of few-layer graphene on mica (a). EFM-phase of the 2lw versus 

graphene thickness. 

 Thus correlation of electrostatic potential with graphene topography can be 

attributed to a dipole layer of either ordered water molecules replicated by graphene or 

of CT between the molecules and graphene or combination thereof. 2D and G Raman 

peaks of graphene are known to be highly sensitive to graphene doping [49, 113]. Thus, 

the humidity dependent Raman spectroscopy of single layer graphenes has been 

performed to quantify their doping levels.   
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Fig. 5.7: (a) 2D (Y-axis) plotted versus G (X-bottom axis) Raman-modes recorded on single layer 

graphenes under variable humidities; at 0-45% RH (black squares), 50-98% RH (red hollow circles) and 

Raman-mapping data from Fig. 5.8, blue triangles. The colored lines in the graphs indicate the positions of 

the G-modes for undoped graphene (grey), 1lw (blue) and 2lw (black).  Line fitting of all data points (red 

line) gives slope of 0.73±0.05 expected for p-doping of graphene [47]. X-top axis is the Fermi level shift 

calculated from the position of the G-mode according to [47, 124]. 

 Thus correlation of electrostatic potential with graphene topography can be 

attributed to a dipole layer of either ordered water molecules replicated by graphene or 

of CT between the molecules and graphene or combination thereof. 2D and G Raman 

peaks of graphene are known to be highly sensitive to graphene doping [49, 113]. Thus, I 

performed humidity dependent Raman spectroscopy of single layer graphenes to quantify 

their doping levels.   
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Fig. 5.8: SFM images of graphene flake with the presence of 2lw (bright spots, indicated with white 

arrows in (b)) and 1lw (surrounding of bright spots) region (a). (b) is the zoom of framed white dashed 

region in (a). Raman-spectra taken at 45% RH on the sample (a) (starting from bottom to top), mapped 

along the numbered line, where each Raman-Spectrum in (c) corresponds to the number in (a). The size 

of the number labels approximately the size of the laser spot.  The region of highest G-peak value (red) in 

(c) correlates with the big 2l w region in (a) (bright features) and smaller G-peak values correlate with 1lw 

region (surrounding of bright  features in (a, b)). (d) represents the position of G- versus 2D-raman mode.  

I followed dependences of G and 2D Raman modes on RH for five independent 

samples. I increased the RH in steps of ten percent and for each RH, I took three to five 

Raman spectra from different areas within single layer graphenes.  Both G and 2D-modes 

upshift with the increasing of humidity (Fig. 5.7) from 0% to 50% RH, where I found 

erasing of depressions, and from 50% to 98% RH, where i found growth of protrusions in 

graphene topography. The upshift of the G-mode is accompanied with the narrowing of its 

width (Fig. 5.9). Line fitting of 2D on G dependence gives slope of 0.73±0.05 (Fig. 5.7).  
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Fig.  5.9: FWHM (width ωG) versus the position of the G-mode recorded on single layer graphenes 

under variable humidities; at 0-45% RH (black squares), 50-98% RH (red hollow circles) and Raman-

mapping data from Fig. 5.8, blue triangles. The colored lines in the graphs indicate the positions of the G-

modes for undoped graphene (grey), 1lw (blue) and 2lw (black).   

 The experimental setup used in this work does not allow performing in-situ SFM 

imaging and Raman spectroscopy to directly correlate Raman peaks with graphene 

topography. Yet, Raman mapping combined with subsequent SFM imaging allowed to 

correlate topography and Raman spectra. That is, SFM imaging of three samples at 

ambient 8-10% RH, within 24 hours after their exposure to 98% RH revealed large area 

protrusions in graphene topography (Fig. 5.8). I attributed them to protrusions grown 

previously at high RHs and still persisting at ambient. The highest surface coverage with 

islands within the excitation area (laser spot) was nearly 100%, assuming laser spot to be 

1 µm in diameter. The Raman spectra taken previously within protrusions show indeed 

the largest upshifts of G and 2D modes (Fig. 5.8).  
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5.2.4 Discussion  

Upshift of G and 2D Raman modes and the slope of the upshift (Fig. 5.7) implies 

graphene to be p-doped with doping increasing from 0lw through 1lw to 2lw [125]. Yet 

scattering of a few data points could be attributed to strains in graphene [125] arising 

from graphene deformations on wetting and dewetting patterns. The samples we 

investigated at low RHs exhibited always mixtures of 0lw and 1lw (Fig. 5.3). Therefore, the 

absolute position of G mode on samples with large 0lw areas implies graphene to be 

mostly un-doped in direct contact with mica. This conclusion is supported by the 

observation of substantial broadening of the G-mode (Fig. 5.9) [47]. The shift of the G-

mode was recalculated to the Fermi level shift (Fig. 5.7) [47, 124]  and graphene charge 

carrier densities correspondingly. The charge carrier densities for 1lw and 2lw are are (2.9-

9) · 1012 cm-2 and (1.2-2.4) · 1013 cm-2 respectively estimated following [48, 116], with the 

bounds estimated from the error margins of G-peak positions. 

Muscovite mica is a natural crystal composed of aluminosilicate layers  

electrostatically bound together by positively charged potassium cations (K+) 

compensating the negative charge of the layer surfaces [116]. Cleavage of mica 

propagates along the ionic layers with the potassium ions remaining on either side. Thus 

the two freshly cleaved mica surfaces must be electrostatically neutral on average. Doping 

of graphenes exfoliated on mica surface has been predicted to depend on local density of 

potassium ions and corresponding surface electrostatic charge with zero doping for 

electrostatically neutral mica surface [70]. The localization of doping has been 

experimentally demonstrated [4]. EFM phase maps of 0wl areas reveal uniform surface 

potential within the lateral resolution of the EFM of 60 nm in my case (Fig. 4.5). This, 

together with the reproducibility from sample to sample of electrostatic potential 

difference between 0wl and 1wl can be explained with graphene being un-doped in the 

direct contact with mica. This conclusion is supported by the Raman measurements. 

Contradiction with the previous reports [4, 116] of graphene to be doped in direct contact 

with mica can be attributed to high quality of mica in my case with low density of, e.g. 

ionic impurities. Furthermore, mica cleavage and graphene exfoliation under glove box 
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conditions in my case could prevent reaction of surface potassium ions with ambient 

carbon oxides [70]. 

Positive electrostatic potential shifts from 0lw to 1lw and from 1lw to 2lw can be 

explained with dipole layers within 1lw and 2lw areas with dipoles pointing upwards, i.e. 

positive charges being closer to the SFM tip (Fig 5.5 g, h). Raman measurements reveal 

graphene to be positively doped within the 1lw and 2lw areas, respectively, with doping 

level within 2lw areas larger to compare with 1lw areas. Electrostatic potential shifts ∆𝑉𝑑 
can be estimated from the charge densities 𝜎𝜕, derived from the Raman measurements, 
assuming plane capacitor geometry with the charge separation d:  ∆𝑉𝑑 = 𝜎𝜕𝑑/𝜀0 , with 𝜀0 

being the vacuum permittivity. Assuming d to be 0.3 nm, i.e. the distance between 

graphene and neighboring layer of water molecules, ∆𝑉𝑑  can be estimated to be (200-

350) meV and (635-1200) meV for the shifts between 0-1lw and 1-2lw respectively.  

Smaller EFM experimental ∆𝑉𝑑 values could be due to partial screening by single layer 

graphene [49, 96] or due to depolarization effects. 

Increase of graphene hole doping with the thickness of the interfacial layer has been 

previously demonstrated for graphene on sapphire [117]. It is difficult to discuss exact 

mechanism of that, still I will discuss one possible explanation in the following. Larger p-

doping of graphene within 2lw to compare with 1lw can be due to different structure of 

the layers and in particular orientation of water molecules within the layers [121, 122, 

126, 127].  The 2.8 Å height of 1lw can be explained with a fluid mono-layer of water 

molecules [73]. The heights of the 2lw areas substantially exceeds the one would expect 

for the insertion of an additional layer of water molecules with the structure similar to 

that of the first layer. Thus to explain 2lw height I have to assume insertion of a bilayer of 

water molecules on top of the 1lw water monolayer. Strains in graphene generated by the 

additional height of the layer must be overcompensated by the energy gain of the water 

bilayer structure. Dependence of 2lw area density on graphene thickness indicates the 

substantial contribution of the strain. This implies water molecules within 2lw to be 

structurally ordered. The height of the 2lw layer of 5.0±0.5 Å substantially exceeds 3.7 Å, 

one would expect for an insertion of bilayer of lh ice [128]. It is tempting to ascribe my 

case to the bilayer ice predicted to form between two hydrophobic surfaces and 

experimentally observed to form on graphene at low temperatures [124]. The first layer of 
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water molecules on hydrophilic and in particular ionic surfaces has been demonstrated to 

be hydrophobic indeed [124] .   

In conclusion, it has been demonstrated that variation of ambient humidity allows 

modifying local structure of water molecular film confined between graphene and mica. 

At humidities lower than 30% RH the film de-wets, bringing graphene in direct contact 

with mica; at humidities higher than 70% RH, i observed growth of 5.0±0.5 Å high islands. 

I attribute the islands to bi-layers of water molecules growing on top of the first mono-

molecular layer. EFM imaging combined with Raman spectroscopy demonstrates that 

graphene is not doped in direct contact with mica, becomes positively doped on top of a 

monolayer of water molecules and substantially more positively doped on top of the bi-

layer. This demonstrates dependence of graphene doping on the structure of water layer.  
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5.3 Graphene replicating dendronized polymers 

 

5.3.1 Introduction  

Graphene has been demonstrated to be highly bendable and stretchable to follow 

the topography of a solid surface with the precision down to single macromolecules (N. 

Severin et al. [129]). The question remains, in how far the locally strained graphene may 

have an impact on the conformation of the replicated macromolecules. 

Dendronized polymers (denpols) consist of a linear backbone surrounded by a dense 

cladding of structurally regular dendritic branches (dendrons), anchored to each repeat 

unit. The diameter of denpols can be systematically tuned by varying the dendron 

generation (Fig. 5.10).  

SFM height measurements of denpols on muscovite mica were reported previously 

[130, 131]. Mica, a naturally occurring layered crystal exhibits macroscopically large 

atomically flat hydrophilic cleavage planes. For this reason it is often used for deposition 

and SFM imaging of nano-sized objects as they can be most easily recognized on an 

atomically smooth surface. At ambient conditions, mica is covered with a layer of water 

molecules whose thickness depends on the ambient humidity [73, 132]. The water layer 

can form a meniscus between SFM tip and mica surface, when the tip comes in contact 

with the surface [133, 134], thereby influencing SFM imaging. The denpols investigated 

here are hydrophobic, i.e. they are soluble in chloroform but not in water. Therefore, one 

can expect different interactions of the SFM tip with the hydrophilic mica surface and the 

hydrophobic denpols, with the interaction also being dependent on the ambient humidity 
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[133-135]. Furthermore, soft objects like denpols can deform and even get damaged by 

the SFM tip hammering on the surface when operating in tapping-mode. The apparent 

height of the molecules on SFM height images, for the reasons described above, can be 

expected to be sensitive to the SFM scan parameters.  
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Fig.  5.10: Repeat units of 1-5th generation dendronized polymers  with the structural formula of 

(N-t-butoxycarbonyl) Boc. 
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In order to follow the topography of the molecules, graphene must become 

deformed locally and consequently the molecules may be expected to be compressed by 

the restoring force. In this case, this force [136] and thereby the compression of the 

molecules may be expected to be proportional to graphene thickness. 

Furthermore, even when graphene provides substantial mechanical protection of 

the covered molecules [129], the pressure developed by the SFM tip can still deform 

graphene covered molecules. I investigated, whether SFM measured heights of graphene 

replicas of molecules provide more reliable information on the height of the molecules as 

compared to measurements of uncovered molecules. 

 

5.3.2 Experimental 

The denpols (Fig. 5.10) were deposited onto muscovite mica by spin coating a 

chloroform solution (1÷10 mg/l) onto a freshly cleaved mica surface at 10-30 rps. 

Subsequently graphenes were mechanically exfoliated from graphite (Advanced Ceramics, 

grade ZYB) onto the surface at ambient conditions, as described previously (4). The 

ambient relative humidities during the preparation were 28÷50% RH. SFM images were 

recorded with commercial scanning force microscope (SFM, Multimode IV Bruker 

Corporation) operated in tapping mode using Si cantilevers (Olympus Corp.) with a typical 

resonance frequency of 300 kHz and a spring constant of 42 N/m. The nominal tip apex 

radius was 7nm with an upper limit of 10nm as specified by the manufacturer. SFM 

images were acquired under ~0-60% RH and ambient temperatures. The humidity was 

lowered by purging the SFM chamber with dry nitrogen and it was raised by purging the 

SFM chamber with nitrogen bubbling though a gas washing bottle filled with Milli-Q 

water. First-order line subtraction and plane corrections were applied to SFM images to 

compensate for thermal drifts and sample inclination. 
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5.3.3 Results 

The topography of graphenes deposited onto mica, which had been pre-covered 

with denpols replicates well the topography of the molecules. Figure 5.11 displays 

examples of height and phase images of generation 3 denpols (PG3) on mica covered 

partially by a few layers of graphene. The surfaces of the graphenes on mica between the 

denpols are rather smooth (Fig. 5.12), i.e. their height histograms can be well fitted with 

Gaussian functions with a half width, which can be attributed to instrumental noise (Fig. 

5.12b).  

 

Fig.  5.11: SFM a) height and b) phase image, taken simultaneously of PG3 denpols on mica covered 

partially by a few layer graphene. Graphene covered areas can be well recognized on the phase image b) 

by the darker contrast. The area identified optically to be covered with three layers graphene (III) is 

indicated directly on the image. 

The step edges can be attributed to the steps between graphenes of different 

thickness. The tapping-mode phase of areas covered with graphenes is homogeneous, 

implying that there is no surface contamination of the graphenes. 
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Fig.  5.12: (a) SFM height image of a few layer graphene deposited on a mica surface covered with 

denpols. Single layer graphene (SLG) is indicated directly on the image for convenience. (b) Histogram 

from the area indicated in (a) with solid rectangle can be well fitted with a Gaussian function (red line) 

with standard deviation 42 pm.  

Figure 5.13 displays cross sections of denpol graphene replicas and of the uncovered 

molecules for various SFM cantilever amplitude damping ratios (DR) (𝐷𝐷 ≡ �1 − 𝐴𝑚
𝐴𝑟
� ∗

100, where Am and Ar are the cantilever amplitudes during measurement and retracted, 

respectively). Larger damping ratios imply higher pressures from the tip onto the surface 

during imaging.  
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Fig.  5.13: (a) Averaged cross sections of PG3 denpols (averaged on 12 denpols, where six are on 

bare mica and six PG3 replica. Six cross sections from each denpol) uncovered (black opened circles) and 

covered with triple layer graphene (red filled circles) estimated from height images taken with 6% DR. (b) 

Averaged cross sections (averages on two PG3 denpols, one on single and the other on triple graphene 

replica with 20 cross sections each) of PG3 replicas of graphenes of different thickness indicated directly 

on the graph for convenience. (c) Averaged cross sections of graphene replicas of PG3 denpols (averages 

on one denpol, with 11 cross sections)  imaged with variable DPs indicated directly on the graph for  

convenience. (d) Averaged cross sections of uncovered PG3 denpols imaged with variable DPs as indicated 

directly on the graph for convenience.  

Apparent height as well as the full width at half maximum (FWHM) (Fig. 5.13) of the 

uncovered molecules depend on the scan parameters. The apparent height of uncovered 

molecules becomes smaller for larger DRs, which can be attributed to either SFM tip 

compressing or laterally displacing the molecules (Fig. 5.15). Note that uncovered 

molecules can be also damaged for larger DR as demonstrated in figure. 5.14. 
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Fig.  5.14: SFM height images of PG3 polymers acquired with a) soft (damping 80%) and b) hard 

(damping 30%) imaging in tapping mode. Dashed rectangles are guides to the eye and underline areas 

being not covered with graphene. In soft tapping (a) the denpols are visible and their shapes appear to be 

similar to that under graphene, while in hard tapping they appear to be partially scratched away (b). 

Below graphene the denpols are unperturbed irrespective of the SFM damping. 

The height of the graphene molecular replicas does neither depend, within the 

tested range and experimental error, on DR of cantilever amplitude (Fig. 5.13c) nor on the 

thickness of the graphenes (Fig. 5.13b).  
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Fig.  5.15: (a) and (b) display schematically two possible denpol deformations due to interaction 

with the SFM tip. a) SFM tip (arrow) pushes the molecule (blue circle) and deforms it (green ellipse), 

thereby decreasing its apparent height. (b) SFM Tip punching the molecule displaces it laterally (from the 

initial blue conformation to displaced green one). This should increase apparent FWHM of the molecule. 

Reduction of the apparent height is not straightforward, still it is believed it can be justified for the case 

that the displaced portion of the molecule tends to relax back (i.e. from green to blue) due to the 

restoration force of the denpol backbone. (c) Graphene conforms to molecules, i.e. adhesion to surface 

indicated with the arrows is strong enough to deform the graphene shape to the shape of the molecules. 

This immobilizes the molecules [129], i.e. it reduces lateral displacements occuring in (b). Similarly, it can 

prohibit deformation of the molecules as in a) in case the molecules are shape persistent in three 

dimensions.   

Thus, taking into account that I proved the apparent height of graphene replica of 

the molecules to be insensitive to the scan parameters, I carried on with the height 

measurements of graphene molecular replicas for denpols of generations 1 to 5 (Fig. 

5.16).  
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Fig.  5.16: Height of denpol graphene replicas plotted versus denpol generation (black circles).  The 

error bars are the standard deviations. The statistics is baes on 10 different samples, where 30 to 46 single 

denpols were analysed. For comparison, the literature values [131] of denpol heights on mica (red 

squares) and heights of denpol graphene replicas offset by the height of the water monolayer (3±0.5 Å, 

open blue circles, see discussion below) are added. 

In order to compare cross sections of uncovered denpols with their graphene 

replicas, I remind that in the absence of denpols graphene does not lie directly on the 

mica surface, rather it rests on a monolayer of water molecules, coming from the ambient 

[73]. To check, whether in the samples investigated here also a monolayer of water exists, 

I imaged graphene covered denpols at variable humidities and observed the growth of 

fractal like depressions in graphene planes between denpols with a depth of 3±0.5 Å (Fig. 

5.17a), similarly to the case of graphene exfoliated directly on mica [73]. The molecular 

graphene replicas were not affected upon varying the humidity, except for the case when 

growing fractal depressions touched or grew “through” the molecules. In this case, the 

height of graphene replicas of the molecules increased locally on the depth of the fractal 

depressions (Fig. 5.17d). Increase of the humidity to 50% eliminated the depressions [73]. 

I considered this as the proof of the existence of the monolayer of water molecules 

confined between graphene and mica also in this case. The increase of the apparent 

height of the denpols locally upon receding of the water monolayer implies that the 
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denpols are embedded in the water layer (Fig. 5.17d). Therefore, the thickness of the 

water layer (3±0.5 Å) to the measured heights of the denpol graphene replicas was added 

to estimate the real height of the molecules under graphenes (Fig. 5.16).  

  

 

Fig.  5.17: SFM height images of single layer graphene replicas of PG3 denpols on mica recorded at 

a) 1 % RH, b) the same area as in a) after humidity was raised to 50 % RH c) cross sections along the grey 

lines indicated in a) and b). d) model: denpols are embedded in a monomolecular layer of water 

molecules; therefore dewetting of the layer as in a) locally increases the height of the denpols.  

 

5.3.4 Discussion 

The results for the heights of denpols covered with graphenes (Fig. 5.16) are 

somewhat surprising as it will be discuss in the following. One can argue that graphene 

must become locally deformed to adopt the shape of a denpol and the restoring force of 

the graphene then tends to flatten the denpols. Young’s modulus of a few layers of 

graphene does not vary largely with the sample thickness and is close to Young’s modulus 

of bulk graphite [137].  
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The bending elasticity of graphenes grows with the number of graphene layers. 

Therefore, for a given denpol generation, the graphene restoring forces must grow with 

the number of graphene layers. Thus one can expect smaller heights of denpols under 

thicker graphenes, which is however not the case. Furthermore similar heights of covered 

and uncovered molecules for first through the third denpol generation suggest that the 

molecules under graphenes do not become flattened by graphene. I find that an average 

cross section of PG4 denpols on mica on images made with small DPs is the same within 

the error as the published one. Therefore it is concluded that PG4 denpols become indeed 

flattened under graphenes, which is attribute to the stiffness of graphene. 

Knowing the bending elasticity of graphene and its ability to cover macromolecules 

with a high level of precision, the results lend themselves to a method to control strain in 

graphene by means of a nano-structured substrate, which can be realized through nano-

structuring of mica with denpols. Since the deformation of graphene scales almost linearly 

with the diameter of the denpols the deformation of graphene covering the substrate can 

be tuned through the size of denpols.   

In conclusion, SFM measurements of graphene covered dendronized polymers on 

mica for generations: PG1- PG5 has been performed. The heights of graphene covered 

denpols on mica are found to be insensitive to the SFM scanning parameters. I find that 

the heights of graphene covered denpols increase with denpol generation, which is in 

agreement to the literature. While the height of generations PG1-PG3 denpols covered by 

graphene are in a good agreement with the heights of uncovered molecules, wherein the 

height of PG4 and PG5 denpols covered by graphene is substantially smaller. That implies 

that graphene replicates denpols of generation PG1-PG3 with high precision, while 

measurements on denpols of generations PG4, PG5 reveal a tendency toward higher 

generation denpols to become flattened by graphenes, which implies that the bending 

elasticity of graphenes grows with the number of graphene layers.  

These results provide a method to locally control the deformation in graphene and 

thereby design strain engineered electronic devices [8, 9] .  
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5.4 Conductive carbon-based inks  

This chapter deals with design of conductive carbon-based inks, wherein the inks 

are produced from mixtures of different carbon-based materials such as graphite, 

graphene, GO, SWCNT, MWCNT and conductive polymer, PEDOT:PSS. 

 

5.4.1 Scope  

The aim of the work presented in this chapter was to design inks for: i) transparent 

electrodes with the sheet resistance on the order of <100 Ω/square at a transmittance of 

>75% and ii) conducting non-transparent flexible electrodes with a sheet resistance less 

than 20 Ohm/square4. A common requirement on the inks i) and ii) was to ensure 

homogeneous and stable dispersion combined with superior film formation resulting in 

homogeneous dried conductive films without film rupture  and coffee ring effects without 

of using either surfactants or insulating polymeric binders. Additionally the rheology of 

the inks was optimized for industrial printing methods such as: slot-die coating, dip 

coating and screen-printing.  

In section, 5.4.3 special combination of solvents without usage of surfactants or 

other additives for fabrication of homogeneous conductive films with functionalized CNTs 

is presented. This combination is called “Fugitive wettability enhancer” and patented in a 

patent application (AKZ 102013223569.0). In section 5.4.4 Graphene-CNT-Ink is 

presented. Transparent electrodes made using the ink are fabricated, using dip coating 

and characterized electrically and optically.  Section 5.4.5 presents SWCNT - PEDOT:PSS – 

ink, which is used for fabrication of highly conductive and transparent electrodes. Finally, 

in section 5.4.6 GO-based ink for fabrication of transparent or non-transparent electrodes 

is presented and the film properties of the ink are discussed.    

 

                                                       
4 We also achieved the resistance of less than 1 Ohm/square. In the patent application (AKZ 

102013225908.5) highly flexible non-transparent electrodes using conductive binder are described, 
which can be used as printed IC-interconnects. Their resistance is less than 1 Ohm.   
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5.4.2 Experimental 

Graphene/CNT-Ink 

Uncoated and unmodified multiwalled CNTs (Nanostructured and Amorphous 

Materials Inc.) were dispersed in several different dispersions containing ultrasonically 

exfoliated graphenes from graphite (Quing Dao Black Dragon Graphite Co., Ltd). 

Dissolution works both, if i add CNT to a solution of graphenes or if i sonicate a solid 

mixture of CNT and graphite flakes. Example 1: sonication of graphite flakes and CNTs 

solid mixture in ethanol, iso-propanol as well as the mixtures of the solvents and water. 

Example 2: a disperison of graphenes in ethanol has been prepared by sonication of 

graphite flakes for 20 hours. CNTs were dissolved in the graphene-ethanol solution. 

Uncoated CNTs are not soluble in ethanol. The dispersion was used for thin film 

fabrication one day after the sonication was finished. This step is necessary to let 

undispersed agglomerates settle down at the ground of the bottle. 

SWCNT/PEDOT:PSS-Ink 

Unmodified SWCNTs (Plasmachem) at concentration 0.5g/L were sonicated in 

Ethanol and for three minutes. PEDOT:PSS pallettes (AGFA Inc.) were dispersed in 

deionized water at concentration 8g/L. 20% Ethylene Glycol (EG) and 10% Ethanol was 

added to the PEDOT:PSS dispersion in deionized water so that the resulting concentration 

of the ink was: 70% Water, 20% EG and 10% Ethanol. The resulting ink was prepared by 

adding the PEDOT:PSS dispersion into the SWCNT dispersion in Ethanol so that the 

concentration of PEDOT:PSS became 3 g/L with 0.2 g/L SWCNT. 

GO-based-Ink 

A dispersion of graphite (1g/L) (Quing Dao Black Dragon Graphite Co., Ltd) and 

unmodified MWCNTs (2g/L) (Nanostructured and Amorphous Materials Inc.) in deionized 

water (50%) and 1-propanol (50%) is ultrasonicated for two hours. A graphene oxide 

solution in water with concentration of 7g/l was prepared using hummers method [78] 

and added to graphite/MWCNT dispersion resulting in GO concentration of 4 g/L. 

Subsequently a solution of PEDOT: PSS as prepared in SWCNT/PEDOT:PSS-Ink was added 
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at concentration of 2 g/L. The mixture is applied onto a surface of PET by drop casting or 

dip coating [138, 139]. 

 

5.4.3 Fugitive wettability enhancer 

The motivation of this part of the work was to avoid thin film rupture of printed ink 

made from COOH-functionalized CNTs deposited by dip-coating [138] on plastic substrate 

without any surfactants, binders or other film forming additives of insulating nature. As 

result a solvent with improved wettability has been developed and successfully applied to 

other non COOH-functionalized CNT - based inks. 

CNTs can be easily deposited onto transparent plastic films to form a transparent 

conductive coating from solution using diverse printing techniques such as slot-die-

coating [24], screen- and ink-jet-printing [25, 26] or roll-to-roll [27] transfer. 

The most suitable method to disperse CNTs in water is to functionalize them with 

COOH-groups [140], which allows to produce homogeneous and stable dispersions. In 

order to produce conductive ink for deposition on plastic substrates, the following 

problems need to be solved: i) homogeneous dispersion of CNTs in the ink to provide a 

good percolation network on the substrate, ii) sufficiently good rheological properties to 

allow proper wetting of the required substrate, iii) low annealing temperatures (<100°C) 

(i.e. no amphiphilic molecules) to avoid the degradation of the plastic substrates.   

Up to date, there are numerous water based CNT ink formulations. However, their 

problem is that water has a quite large surface tension (70mN/m), which results in an 

insufficient wetting of the ink and thereby leads to problems with the deposition of the 

ink on the substrate. Therefore the substrates may be chemically treated in order to 

improve the wetting ability of the ink [141]. Chemical treatment however produces 

functional groups on the substrate and therefore has disadvantages:  i) functionalized 

groups on the substrate produce defects, which can largely reduce the sheet conductivity 

and ii) it makes the production process more complicated and expensive. Alternatively 

organic solvents with lower surface tension can be added, which improves the wetting of 
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the substrate. However commonly used organic co-solvents such as Isopropanol, Ethanol 

and other alcohols have much lower boiling points that water and therefore the following 

problems arise: After the substrate is wetted by the dispersion one usually observes phase 

separation between water and co-solvent as well as inhomogeneous evaporation of the 

resting solvent causing de-wetting effects. This, in turn, results in inhomogeneous layers 

with defects and reduced sheet conductivity [56, 142].  

A way was found to avoid the problem of phase separation and thereby to produce 

homogeneous wetting of the substrate with CNT ink without adding any binders and 

without any high boiling point solvents.  

COOH-functionalized MWCNTs (Plasmachem) were used to prepare the ink 

formulation. Ink has been made of following components: CNT: Water, 1-Propanol. The 

CNTs were dispersed in deionized water at concentration of 2 g/L with subsequent 

ultrasonication for 30 minutes.  50% of 1-Propanol was added into the aqueous CNT 

dispersion. The resulting dispersion was ultrasonicated for 15 minutes. The H20/1-

propanol mixture is remarkable in the following two aspects: Since 1-propanol has a low 

surface tension (21.22 mN/m at 20°C), it highly increases the wetting ability of CNT-ink 

compared to the case of pure water. The boiling point of 1-propanol is 97°C (at normal 

pressure), which is similar to that of water (100°C). Therefore both solvents evaporate 

with approximately the same rate homogeneously from the substrate without leading to 

inhomogeneities on the substrate. A transparent conductive electrode is made through 

deposition of the ink via Dip- and mask-assisted bar-Coating-techniques5 on PE-foil. For 

the mask assisted technique a mask was made of 50µm thick PE-foil. Noteworthy, that 

after each coating step the coated substrate was immediately placed into the oven at 

110°C for one minute for curing. Highly clean film preparation conditions are crucial for 

the quality of resulting films. 

Optical image of the CNT-dispersion containing fugitive wettability enhancer is 

displayed in figure 5.18. The dispersion is homogeneous and stable for several months.  

                                                       
5 This method is described in Patent application AKZ 102013223569.0 
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Transparent conducting films made of functionalized CNTs are presented (Fig. 5.18b-

d). The films were prepared using mask-assisted bar-coating-techniques, which is a 

promising tool for fabrication of large area films. To study the film formation I used as 

reference ink-formulation (Ink-ref) where I replaced 1-propanol by Iso-propanol (boiling 

point 82°C). The other components of the Ink were the same. The films prepared using 

ink-ref exhibit poor film forming properties as it is displayed in figure 5.18b (left film) and 

c).  While the films prepared using the ink containing 1-propanol shows homogeneous 

film (Fig. 5.18b right film and d). 

 

Fig.  5.18: Optical image of the dispersion (a) containing only COOH-functionalized MWCNTs, H20 

and 1-Propanol. Optical images of transparent films on PE with inhomogeneous (c) and homogeneous (d) 

film formation prepared from ink-ref and the ink containing 1-propanol. 

I followed film formation process starting from wet (immediately after coating) to 

dry film as it is demonstrated in figure 5.19. After coating the wet films are relatively 

homogeneous for both inks (Fig. 5.19a, d) although some inhomogeneities arising from 

non-perfect wet film distribution over the substrate are visible. But this phenomenon is of 

minor nature and doesn’t affect the quality of dried film if using the fugitive wettability 

enhancer as I will show it in the following. 
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Fig.  5.19: Film formation from wet to dry film for the ink-ref and ink containing 1- propanol. Films 

of Ink-ref (a-c) and of the ink containing 1-propanol (d-f). Wet films immediately after coating (a, d), after 

ten seconds (b, e) after five minutes.   

Ten seconds after coating the film starts to dry and first inhomogeneities become 

visible in case of ink-ref as indicated with black arrows in figure 5.19b. While film prepared 

using Ink containing 1-propanol remains homogeneous. Five minutes after coating the 

films are dry in both cases and film made using ink-ref is highly inhomogeneous (Fig. 

5.19c) containing dark spots and ruptures (dewetts) while film prepared using 1-propanol 

containing ink is highly homogeneous (Fig. 5.19f).  

The physics behind the formation of thin films is quite complex. It was reported that 

so called marangoni-flows6 are responsible for the rupture of the thin CNT-films [56]. The 

authors claimed that the film rupture could be avoided if the dewetting velocity is low 

enough to allow the liquid film to dry before dewetting causes any defects. In other 

words, dewetting is avoided when the film drying time is much shorter than the dewetting 

time [56]. Thus, they attempted to slow down the dewetting by enhancing the viscosity of 

the coating fluid. To realize it they used special combination of surfactants in combination 

with SWCNT dispersion in water. However the drawback of using surfactants in fabrication 

of transparent conducting films is obvious and therefore i looked for alternatives.  

To ensure sufficient wetting of the CNT-dispersion on the one hand, which was 

already shown to be the case upon addition of alcohols to aqueous CNT-dispersion, and 

minimize the film rupture on the other hand, I used an alcohol that has a boiling point 

close to that of water. Thus this two-component solvent consisting of water and 1-

                                                       
6 Surface tension gradient driven flows within the thin film 
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propanol eliminates the problem of phase separation and film rupture. The dewetting 

caused by different evaporation rates of the solvents is eliminated due to approximately 

the same boiling point of both solvents. An interplay between marangoni-forces and 

evaporation of the solvent is elegantly described in [143].  

These findings provide an experimental support of the proposed phenomenon. Up 

to today it was a great challenge to produce thin transparent conductive electrodes from 

solution without of using of surfactants. I introduce a term “fugitive wettability modifier” 

and provide an alternative method for fabricating thin functional films from solution 

which is of clear importance for printed electronics.  

 

5.4.4 Graphene – CNT – ink 

The aim of this section was to find a way to prepare a homogeneous dispersion with 

unmodified MWCNTs and without addition of surfactants or any insulating polymers. It 

was found that addition of graphenes into the MWCNT dispersion helps to 

homogeneously disperse the CNTs. As result a conductive ink was obtained and 

transparent electrodes were fabricated using this ink and characterized. 

Figure 5.20 a displays the optical image of MWCNTs in Ethanol. One can clearly 

notice the pure MWCNTs are not soluble in Ethanol since the MWCNTs sediment at the 

bottom part of the bottle immediately after putting them in Ethanol. Optical image of the 

dispersion containing graphene and MWCNTs is presented in Fig. 5.20b.   

 

Fig.  5.20: Optical images of MWCNT without graphenes in ethanol (a) and with graphenes after 20 

hours sonication (b), five times diluted (inset). TEM-image of MWCNT/graphene - dispersion. 
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The image implies that together with graphenes the MWCNTs are very well disprsed 

in Ethanol. The inset in Fig. 5.20b suggests that the dispersion is highly homogeneous 

without a presence of any agglomerates. TEM-imaging (Fig. 5.20C) suggests that the 

dispersion indeed contains both components graphenes and MWCNTs.  

Films prepared by Dip-Coating [138] of CNT/graphene dispersions are visually very 

homogeneous, transparent and they are also conductive. The optical images of the 

transparent films with their optical spectra are presented in figure 5.21a and b. The 

transmittance versus sheet resistance is depicted in figure 5.21c. 

 

Fig.  5.21: Optical image of MWCNT/graphene film on PET (a) at 80% transmittance (550nm).  UV-

spectra of the MWCNT/graphene-films (b) taken at different transmittance on PET, where the dashed red 

curve represents the film in (a). Transmittance versus sheet resistance of the MWCNT/graphene-films on 

PET (c), the point highlighted with red dashed lines characterizes the film in (a). 

A method to prepare solutions of CNTs and graphenes in common solvents is 

invented. Such solutions can be used, e.g., as low cost ink for printing of highly 

transparent and highly conducting electrodes, which is of clear technological importance. 
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The advantage of this method is usage of low cost graphite flakes, CNTs and common 

solvents including the solvents with low boiling point what makes the solutions suitable 

for printing on flexible plastic substrates and overcomes thermal annealing at higher 

temperatures. The most closely related inks patented contain amphiphile molecules to 

dissolve CNTs [23]. As I discussed above amphiphile molecules worsen electrical 

conductivity of the resulting films, which this methods overcomes. Graphenes should 

furthermore stabilize the structure of a graphene-CNT film [144]. 

It can be envisioned that graphene-CNT solutions invented in this work can be used 

for preparation of carbon based bulk composite materials. GO – CNT composite materials 

are considered to be promising for commercialization [145, 146].  Replacement of GO 

onto graphene can potentially improve tensile strength of the composites due to 

substantially higher structure integrity of graphenes to compare with GOs; and it should 

also improve electric conductivity of the composites due to high electric conductivity of 

graphenes.  Furthermore, the inks I invented are fully compatible with the recently 

published production method of CNT fibrils [147]. Flexible graphene flakes can potentially 

improve tensile strength of the fibrils. 

Moreover such CNT-graphene dispersions can be used to produce surface coatings 

by, e.g., spray coating [148], which can be envisioned as antistatic, electromagnetic fields 

shielding and anticorrosive coatings. 
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5.4.5 SWCNT/PEDOT:PSS-Ink 

Single Walled Carbon Nanotubes (SWCNT) and conducting polymer PEDOT:PSS are 

the most promising materials among all to fabricate printable transparent and highly 

conductive electrodes to compete with ITO on plastic not least due to the fact that they 

are mostly composed of carbon – one of the most abundant and environmentally friendly 

elements. 

PEDOT:PSS - and SWCNT-coatings can be highly conductive at the transparency 

>75% comparable to that of ITO on Polyethylene-therephthalate (PET). But there are still 

problems of thermal and UV-stability of PEDOT:PSS and the dispersing of SWCNT in a 

suitable solvent.  

It is difficult to process films from pure SWCNTs. PEDOT:PSS is highly hydrophilic and 

can be dissolved in common solvents which in turn determine conductivity of films 

produced thereof. It is known that the addition of high boiling point solvents such as 

Ethylene Glycol (EG) or Dimethylsulfoxide (DMSO) boosts the conductivity of PEDOT:PSS 

films up to several orders of magnitude [149]. Therefore a suitable mixture of the solvents 

has to be found to ensure: i) the highest conductivity of the film and ii) the best 

rheological properties to produce a homogeneous wetting of the substrate.  

Unmodified SWCNTs become well dispersed in solutions of PEDOT:PSS as it is 

evidenced by optical imaging of the SWCNT/PEDOT:PSS-dispersion (Fig. 5.22). The 

dispersion is stable for at least three month without any noticeable appearance of 

agglomerates even after three month. TEM-imaging (Fig. 5.22b-d) of the 

SWCNT/PEDOT:PSS-dispersion reveals a large content of SWCNTs, in particular bundles of 

SWCNTs, in the dispersion as it can be concluded through the presence of rigid rod-like 

tubular structures with uniform and sharp diameter, which are typically for the CNTs.  
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Fig.  5.22: Optical image of dispersion as prepared (a) and diluted five times (inset). TEM – images 

of SWCNT/PEDOT:PSS films (b-d). Dashed frames in (b) highlight the zoom-in areas presented in (c) (black 

dashed frame) and (d) (white dashed frame in (a)). White arrows emphasize the regions of SWCNTs which 

are enwrapped by PEDOT:PSS, red arrow highlights the SWCNT, which has uniform diameter and is 

therefore not enwrapped. White dashed frame in (d) highlights the region of the SWCNT bundle which is 

wrapped by PEDOT:PSS as it is demonstrated in (e).  

One can also conclude that PEDOT:PSS is also present in the dispersion by analyzing 

the surrounding area of the SWCNT-bundles. There are regions of SWCNT-bundles, which 

are amorphous and exhibit variable diameter (Fig. 5.22c, white arrow and Fig. 5.22d, 

white arrows and white dashed rectangle). This is attributed to wrapping of SWCNT-

bundles by PEDOT:PSS. The structure of unwrapped SWCNT-bundles with uniform 

diameter is highlighted in figure 5.22c with red arrow. The latter implies that PEDOT:PSS 

wraps the SWCNT-bundles leading to amorphous features around the SWCNT-bundles 

and modifies the sharp tubular structure of the SWCNT-bundles. At some place one can 

identify blobs around the SWCNT-bundles (Fig. 5.22d, white dashed rectangle). The model 

of enwrapping-phenomenon [150] of SWCNT-bundles by PEDOT:PSS is depicted in figure 

5.22e. 
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The resulting thin films from SWCNT/PEDOT:PSS-ink are highly homogeneous, 

transparent an smooth as it is displayed in figure 5.23. The SFM-imaging reveals that the 

films are smooth (Fig. 5.23b,c).  The films are stable at ambient – I could not detect any 

variation of resistance, homogeneity and optical transparency during at least 3 months. 

Also bending of the film on PE, PET and PETG substrates down to the bending radius of 

5mm didn’t cause any noticeable change of their sheet resistance. 

The films are thermally stable: annealing up to 400°C did not have any noticeable 

effect on the resistance, and optical properties. Annealing of PEDOT:PSS thick films at 

400°C makes the films insulating, while the mixed films remain highly conductive (no 

noticeable change in sheet resistance) even after thermal annealing at 400°C for 

5minutes. For thin films at 80% transmittance the sheet resistance increased 3 times after 

annealing at 400 °C for 5 minutes.   

 

Fig.  5.23: Optical image of SWCNT/PEDOT:PSS – film on Polyethylene terephthalate glycol-

modified (PET-G) (a) at transmittance of 95% and sheet resistance of 600 Ohm/Sq. SFM-image of 

SWCNT/PEDOT:PSS - films (c) on PET-G. Corresponding height with the standard deviations (σ) taken from 

the Gaussian fits of the histogram. The roughness of the film was estimated from the standard deviation 

of the fit. 
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The films are highly electrically conductive at high transparencies (for example: 

sheet resistance less than 600 /square at 94% and less than 200 /square at 80% 

transparency) (Fig. 5.24).  

The sheet resistance Rs and transmittance T(λ), measured at a wavelength of 550 

nm in TCFs, were related by:  

𝑇(𝜆) = (1 +
188.5
𝐷𝑆

𝜎𝑚𝑜
𝜎𝐷𝐷

)−2 (5.1) 

 
with characteristic σDC and optical σop conductivity of the film. The properties of 

TCFs with different Rs and T values could be compared using the ratio σop / σDC as the 

figure-of-merit [55, 151], which are typically used to qualify transparent and conducting 

films. 

 The σop / σDC value could be obtained from the slope of 𝑇
1
2/(1 − 𝑇

1
2)) versus the Rs 

plot, as derived from Eq. 5.1. The higher this value the better is the performance of the 

films. I obtained the value of σop / σDC to 28±1, which is comparable to that reported in 

[57]. However films prepared in that paper were treated with gold-ions and prepared in 

more complicated way than the films presented in this work. 

 

Fig.  5.24: UV-spectra of the SWCNT-PEDOT:PSS-films (a) at different transmittance on PETG. 

Transmittance versus sheet resistance of the SWCNT/PEDOT:PSS-films (b). 

The method described in this section allows using common solvents including the 

solvents with low boiling points. Thus, no annealing at high temperatures is required to 

remove the solvent from the film. This makes the solutions described in this work suitable 

for printing on common flexible plastic substrates, since common plastic substrates have 
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the glass transition temperature in the range of 100-120°C and thus cannot be annealed. 

The most closely related inks use modified SWCNT [152, 153]. Films produced thereof 

either must be additionally processed, resulting in an increased costs accompanied with 

increasing complexity of the fabrication process, or the process of modification itself 

requires aggressive acids. As it has been discussed above amphiphile molecules and 

polymeric binders worsen electrical conductivity of the resulting films, which the method 

presented in this section overcomes. 

 

Fig.  5.25: SFM-images of MWCNT- (a) and SWCNT/PEDOT:PSS - films (c) on PETG. Corresponding 

height histograms (b) for SWCNT (black squares) and MWCNT (red circles) with the standard deviations 

(sigma) taken from the Gaussian fits of the histograms. The roughness of the films was estimated from 

the standard deviations of the fits. 

 Furthermore, it can be envisioned that PEDOT:PSS should stabilize the structure of a 

PEDOT:PSS-SWCNT film, i.e. the film is more homogeneous and stable. Higher 

homogeneity of the film can be attributed to enwrapping [150] of SWCNTs by PEDOT:PSS. 

This is supported by TEM imaging (Fig. 5.22). An essential advantage of my conducting 

transparent SWCNT-films is that they are much smoother (Fig. 5.25) than the films made 

from MWCNT. The latter point is crucial for fabricating light-emitting devices. Also the 

combination PEDOT:PSS with SWCNTs introduces a new component in printed electronics 

– “conductive binder”, which has superior electrical and mechanical properties and can 

potentially replace conventional binders consisting of insulating polymers. The role of 
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conducting binder has been demonstrated in the patent application (AKZ 

102013225908.5). It has been demonstrated that combination of SWCNT and PEDOT:PSS 

in combination with silver- flakes and nanoparticles is very promising for fabrication of 

highly conductive and flexible films with a sheet resistance of <1Ohm without thermal 

annealing at temperatures above 100° C. These films can be applied also in flexible 

electronics where very low resistances are required, for instance for printing of electronic 

IC-boards. 
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5.4.6 GO-based inks 

Conductive inks which can be used to produce coatings on different substrates is of 

high technological interest in the industry in applications like antistatic coatings, thermally 

dissipative coatings, electromagnetic shielding [154], fabrication of sensors [155].  

Fabrication of field effect transistors has been demonstrated [156].  

Currently there are different types of conductive inks available which are mostly 

either silver based or carbon based. Although the silver based inks can be used to produce 

films exhibiting superior conductivity to compare with other types of inks, they are more 

expensive to produce due to the price of the silver. They have a limited shelf life, (due to 

sedimentation of silver particles). Films made from silver containing inks require typically 

annealing at high temperatures and sintering. Moreover the films made of those inks are 

fragile. This makes them to be not well suitable for flexible electronic applications. 

Mechanical flexibilities of films produced with commercial silver based inks depend on the 

ratio of the binder and silver particles, wherein the binder content serves as film-forming 

agent and needs to be removed to make the films conductive. Usually ratio of silver 

particles to binder is high in order to maintain good conductivity of ink which in turn 

reduces flexibility introduced by binder. 

Carbon based inks are cheaper and films made thereof are more robust than their 

silver analogues. Typically, carbon black is used as the filler in such inks. However the 

conductivities of carbon  black based films are at least two orders of magnitude lower 

than of silver films and the films must be annealed at temperatures >150° as well if a 

polymeric binder is used.  

The use of conductive polymers like PEDOT:PSS as a binder has been demonstrated 

[157, 158].  The films show good conductivity as well as good film forming properties. 

However the amount of PEDOT:PSS used in these films was large which is not cost-

efficient.  Polymeric binders are usually used to ensure sufficient film forming properties, 

i. e. to produce homogeneous films and make them less fragile. The polymeric binders 

such as PVP, Ethyl Cellulose are insulators, thus adding them to graphene dispersions 
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results in good film forming properties but also reduction of conductivity of the films by 

several orders of magnitude.     

Graphenes, CNTs and graphene oxide (GO) have recently become the objects of 

increased interest for variable technological applications. Graphene have high: electrical 

conductivity, thermal conductivity, barrier properties and mechanical strength, also high 

thermal conductivity which then introduces new applications such as efficient heat sinks 

[159]. It has been shown also that graphite flakes can be exfoliated to graphenes and 

dispersed in variable solvents.  But graphene solutions processed this way are low 

concentrated and therefore not suitable for printing on substrates due to insufficient film 

forming properties. The films produced from graphene solutions exhibit low conductivity 

comparable to Chemical Vapor Deposited (CVD) graphenes.  

Films produced from CNTs can be highly conductive. However it is difficult to 

process films from CNTs without using surfactants or chemically treating them in highly 

aggressive acids. Recently it was shown that pure CNTs can be dissolved in solutions 

containing graphene oxides [160]. However, due to the insulating nature of GO these films 

show pure conductivity. There is a need of new conductive inks addressing the drawbacks 

listed above. 

Drop-casted inks of two different dispersions on glass (ultrasonicated in Ethanol for 

10 minutes) are presented in figure 5.26a, with a drop of GO-based-ink (Fig. 5.26a left) 

and PEDOT:PSS-dispersion (Fig. 5.26a right). Visual inspection suggests that the contact 

angle of the drop corresponding to the GO-based-ink is substantially smaller than that of 

the drop of PEDOT:PSS-dispersion.  
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Fig.  5.26: Optical images of drop-casted wet films of GO-based-ink and PEDOT:PSS-dispersion on 

glass (a). Optical image of the films after 30 seconds drying on a heating plate at 90° C (b) and the image 

dry films (c).  Zoom-in areas of the regions in (c) framed with black and red dashed square (d) highlighting 

the dry films of GO-based-ink and PEDOT:PSS-dispersion respectively. Model representing drying process 

without (f) and  with coffee-stain-effect (g). The drying time in (f) and (g) scales from left to right.    

This observation implies better wetting of the glass substrate by GO-based-ink. 

Upon drying at 90°C on the heating plate the lateral shape of the drops changes and the 

drop becomes smaller implying that the evaporation of the volatile solvents occurs. This 

observation is displayed in figure 5.26b, after 30 seconds drying. 10 minutes after drying 

the volatile solvents are evaporated completely and only the solid particles that are 

pinned to the glass substrate remain (Fig. 5.26c). Noticeable is that the shape of dried 

films differs completely from the shape of initial drops. Also the shape of dried film of GO-

based-ink and of PEDOT:PSS-dispersion are different. The dry film of PEDOT:PSS-dispersion 

(Fig. 5.26e) exhibits a pronounced “coffee-stain-effect” [110], which is schematically 

depicted in  figure 5.26g.  

During drying, drop edges become pinned to the substrate, and capillary flow 

outward from the center of the drop brings suspended particles in the dispersion to the 

edge as evaporation proceeds. After evaporation, suspended particles are left highly 

concentrated along the original drop edge [110]. The dry films of GO-based-ink were 

highly conductive and exhibited a resistance of 20±2 Ω/Sq, which didn’t change after 

annealing of the films at 400°C for ten minutes. The dry PEDOT:PSS films exhibited the 

same resistance but thermal annealing at 400° C even for five minutes made the films 

insulating. To test mechanical flexibility, the films of GO-based inks on PET were bent 

down to the bending radius of 5mm. The resistivity of the films didn’t noticeably changed 

even after bending which suggests high mechanical flexibility of the films. 
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The shape of the dry film of the GO-based-ink is almost uniform, in particular at the 

edges. Interestingly, that no coffee-stain-effect is observed with the dry film of GO-based-

ink and this film is more uniform. This finding implies that the suspended particles are 

pinned to the substrate more uniformly and the capillary flow from the center of the drop 

doesn’t so strongly as in case of PEDOT:PSS-dispersion. This effect could be explained 

through the stronger interactions between the particles within the drop of the ink as well 

as the anisotropic shape of the particles, which produces strong capillary interactions 

between the particles [110, 161-164]. Note that this capillary interaction has been 

characterized in prior experiments as long-ranged and very strong [110, 163, 165-167].  It 

is also possible the GO facilitates the pinning of the contact line and freezes all the 

particles so that they in turn cannot be transported to the edges of the drop by the 

capillary flow, which leads to the elimination of the coffee-stain-effect. It has been 

reported that films containing GO can suppress the coffee-ring-effect [168].  Noteworthy 

is that such homogeneous film formation of the GO-based-ink as depicted in figure 5.25d 

was observed only if all of the components (MWCNT, PEDOT:PSS, Graphite and GO) were 

included in the ink.  

In conclusion the ink formulation based on GO was fabricated. Dry film produced 

from the ink were homogeneous and didn’t exhibit a coffee-stain-effect as the films made 

from PEDOT:PSS. The films exhibited a sheet resistance of 20±2 Ω/Sq and were thermally 

stable up to 400°C without any noticeable change in sheet resistance. High mechanical 

flexibility make makes the film to promising candidate for flexible electronic applications. 
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6. Summary and Outlook  

The aim of this work was to investigate the electronic properties of graphenes with 

the focus on graphene-substrate electronic interaction in the first part and fabricate 

carbon-based transparent and electrodes for flexible electronics applications in the 

second part. 

The electronic properties of graphene were investigated providing new insights into 

electrostatic screening properties of graphene on mica and revealing exponential 

dependence of surface potential of graphene on graphene layer number. Doping of 

graphene by confined water layers was investigated, providing experimental evidences for 

p-doping of graphene by confined water layers, with the magnitude of doping depending 

on the thickness of water layers. This demonstrates dependence of graphene doping on 

the thickness of water layers.  

It was shown that covering of dendronized polymers, of different generations, on 

mica by graphene is a method to locally control the deformation of graphene and thereby 

design strain engineered electronic devices.  

Novel type of conducting printable inks was developed and the transparent 

electrodes made thereof were fabricated and characterized. Transparent electrodes based 

on graphene and MWCNT were fabricated. Chemically exfoliated graphenes has been 

shown to disperse the MWCNTs acting as dispersing agent.  

Transparent electrodes based on SWCNT exhibited superior properties than the 

state of the art. Moreover these inks were optimized for large area industrially relevant 

applications. The transparent electrodes prepared by dip-coating from the SWCNT-based 

inks are flexible and optimized that only one printing step is required to obtain sufficient 

characteristics of the electrode. An essential advantage of conducting transparent films 

based on SWCNT instead of MWCNT is that they are much smoother than the films made 

from MWCNT. The latter point is crucial for fabricating light-emitting devices. 

 A method to improve the film forming properties of conducting inks was found 

which is based on special combination of the solvents without using of any additives 
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which is an obvious technological advantage for the printed electronics industry. 

Graphene Oxide based ink was developed which exhibits a sheet resistance of 20 Ω/Sq 

and overcomes the “Coffee Stain (ring)” effect, which is of great technological importance 

since the Coffee stain effect cause problems in printing industry. This ink could be 

applicable for ink-jet of screen printing methods to print homogeneous conducing films or 

traces on flexible substrates.   

It is noteworthy to mention that the inks can be used to fully print Organic Light-

Emitting devices where the SWCNT-ink can serve as transparent anode and the GO-ink as 

cathode.  

As outlook for the first part of the work, further investigations on the structure of 

confined water using STM could provide more insight to the electronic structure of 

graphene confining water layers. It is also of interest to find a method to manipulate the 

structure of confined water and probe in-situ electronic properties of graphene. The EFM-

Method has been shown to be a promising tool for studying of electronic properties of 

graphene at the nanoscale and it could be extended to the other classes of molecules, 

which can be confined by graphene.    It would be interesting to get insight of surface 

potential modulation of graphene covering dendronized polymers using the EFM. Raman 

spectroscopy of graphene covering dendronized polymers could provide insight the 

doping of graphene by dendronized polmyers or quantify strain. The Conductive AFM 

could provide means to probe electrical current of graphene which structure is modified 

by the denpols.     

It is envisioned to fabricate fully printed Organic Light Emitting Devices (OLED) or 

Organic Solar Cells (OCS) from the inks that were invented in this work. Up to today there 

is a number of light-emitting polymers or small molecules that can be solution processed 

and therefore incorporated into the electronic devices. The next step would be the design 

of fully printed flexible OLED based display.     
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