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Abstract

In a first part, we consider a domain {2 with Lipschitz boundary, which

is relatively compact in an n-dimensional Kéhler manifold and satisfies some
“log §-pseudoconvexity” condition. We show that the Cauchy-Riemann equa-
tion with exact support in €2 admits a solution in bidegrees (p,q), 1 < ¢ < n.
Moreover, the range of the Cauchy-Riemann operator acting on smooth
(p,n — 1)-forms with exact support in € is closed. Applications are given
to the solvability of the tangential Cauchy-Riemann equations for smooth
forms and currents for all intermediate bidegrees on boundaries of weakly
pseudoconvex domains in Stein manifolds and to the solvability of the tan-
gential Cauchy-Riemann equations for currents on Levi-flat C'R manifolds of
arbitrary codimension.
In a second part, we study the Cauchy-Riemann equation with zero Cauchy
data along a hypersurface with constant signature. Applications to the solv-
ability of the tangential Cauchy-Riemann equations for smooth forms with
compact support and currents on the hypersurface are given. We also prove
that the Hartogs phenomenon holds in weakly 2-convex-concave hypersur-
faces with constant signature of Stein manifolds.

Keywords:
Cauchy-Riemann equation, pseudoconvex domain, extension of C'R func-
tions, Levi-degenerate hypersurfaces



Zusammenfassung

In einem ersten Teil betrachten wir ein relativ kompaktes Gebiet €2 einer n-
dimensionalen Kéhler-Mannigfaltigkeit, mit Lipschitz-Rand, welches eine ge-
wisse “log §”-Pseudokonvexitit besitzt. Wir zeigen, daf§ die Cauchy-Riemann
Gleichung mit exaktem Trager in ( fiir alle Bigrade (p,¢) mit 0 < ¢ <n—1
eine Losung besitzt. Aulerdem ist das Bild des Cauchy-Riemann Operators
auf glatten (p,n — 1)-Formen mit exaktem Trager in 2 abgeschlossen. Wir
geben Anwendungen fiir die Losbarkeit der tangentialen Cauchy-Riemann
Gleichungen fiir glatte Formen und Stréme auf Rédndern von schwach pseu-
dokonvexen Gebieten Steinscher Mannigfaltigkeiten und fr die Losbarkeit der
tangentialen Cauchy-Riemann Gleichungen fiir Strome auf Levi-flachen CR
Mannigfaltigkeiten beliebiger Kodimension.

In einem zweiten Teil untersuchen wir die Cauchy-Riemann Gleichung mit
Randbedingung Null entlang einer Hyperfliche mit konstanter Signatur. Wir
geben Anwendungen fiir die Losbarkeit der tangentialen Cauchy-Riemann
Gleichung fi glatte Formen mit kompaktem Tréger und fiir Strome auf der
Hyperflache. Wir zeigen auch, dafl Hartogs-Phdnomen in schwach 2-konvex-
konkaven Hyperflichen mit konstanter Signatur Steinscher Mannigfaltigkei-
ten gilt.

Schlagworter:
Cauchy-Riemann Gleichung, pseudoconvexes Gebiet, Fortsetzbarkeit von C'R
Funktionen, Levi-degenerierte Hyperflachen



Contents

1 L? estimates for the d-operator
1.1 Hermitian vector bundles . . . . . . .. ... ... ... ....
1.2 L? theory on complete manifolds . . . . ... ... ... ...
1.3 General estimates for 0 . . . . . . . ... .. .. ... .. ...
1.4 0 on weakly pseudoconvex manifolds . . . . .. ... .. ...

2 Elliptic operators
2.1 The Sobolev spaces . . . . . . ... ... ... ... ... ..
2.2 A regularity theorem for elliptic operators . . . . . .. .. ..

3 The pseudoconvex case
3.1 Pseudoconvex domains in Kahler manifolds . . . . . . . . . ..
3.2 The L? estimates . . . . . . . . . . . ...
3.3 The 0-problem with exact support . . .. ... .. ......
3.4 The d-equation for extensible currents . . . . . .. ... ...

4 The weakly ¢g-convex case
4.1 Basic properties of weakly g-convex domains . . . . . .. . ..
4.2 Construction of a family of metrics . . . . . .. .. ... ...
4.3 The L? estimates . . . . . . . . . . ... ... ... ...,
4.4 The 0-equation with exact support . . . . .. .. ... ....

5 Applications to C'R manifolds
5.1 The tangential Cauchy-Riemann complexes . . . . . . . .. ..
5.2  Boundaries of weakly pseudoconvex domains . . . . . . . . ..
5.3 Applications to Levi flat CR manifolds . . . . . ... ... ..
5.4 Hypersurfaces with constant signature . . . . . .. .. .. ..
5.5 Examples . . . .. ..

A Some results of real analysis
A.1 A regularized distance function . . . . .. ... ... ... ..

ii

24
24
26

32
32
34
37
42

46
46
20
61
68

71
71
74
78
82
87

90



A.2 Imbeddings of Sobolev spaces on Lipschitz domains . . . . . .
A.3 A cut-off function . . . . .. ...
A4 A partition of unity . . . . ... ..o

il



Introduction

In this thesis, we study the 0-problem with exact support in certain do-
mains with Levi-degenerate boundaries. This is the following problem:

Consider a complex manifold X and a relatively compact domain 2 CC
X. Let f€Cx(X)N Kerd be a smooth d-closed (p, ¢)-form on X such that
suppf C Q (in other words, f vanishes to infinite order at the boundary of
). We want to find a smooth (p,q — 1) form v on X satisfying

o { ou=f

suppu C Q

We will give some positive answers to the problem (%), , for two different
types of domains.

The first type will be a domain satisfying a certain pseudoconvexity con-
dition, which we call "log d-pseudoconvexity”. More precisely, let (X, w) be
an n-dimensional Kéahler manifold and €2 CC X a domain. Let § be the
boundary distance function of €2 with respect to w. We assume that €2 has
Lipschitz boundary and is log d-pseudoconvex, that is 00(—1logd + h) > Cw
for some C' > 0 and some bounded function h on §2.

Let E — X be a holomorphic vector bundle and set
k Ie) k o)
Ch (X, 0L E) = {f € C},(X. E) | suppf 0}, k€ NU {+oo},

HP(X,Q,E) = CX(X,Q, E) N Kerd/d(C,_1(X,Q, E)).

Our result is then the following:

TheoreT 1 -
HPX QE)=0for0<p<n, 0<qg<n-—1and H?"(X,Q, E) is sepa-
rated.

For example, if X is a Stein manifold, then any 2 CC X, which is locally
Stein, satisfies the log d-pseudoconvexity condition (see [Ele75]). The same
is true if (X, w) has positive holomorphic bisectional curvature, that is 710X
is positive in the sense of Griffiths (see [Tak64], [Ele75], [Suz76]).

The case where Q@ CC C™ and 0f) is piecewise smooth was settled in
[MS99] using some kernel method. On the other hand, if X is compact and

1



INTRODUCTION 2

HP(X,E) = H?9 (X, E) = 0, then solving the J-problem with exact sup-
port (x),, in 2 is equivalent to solving the d-equation with regularity up to
the boundary in X \ Q in bidegree (p, g—1). This equation has been discussed
in [HIOO0] under the same assumption on 2. If {2 has smooth boundary, then
Theorem 1 implies that smooth functions (more generally, smooth forms of
certain bidegrees) satisfying the tangential Cauchy-Riemann equations on

0f) extend to holomorphic functions in €. This has been previously proved
in [Ohs99].

The proof of Theorem 1 consists essentially of two steps. In the first step,
we use L? estimates with weights =% for large N € N. More precisely, com-
bining the standard L? estimates in the form of [Dem82] with some duality
argument, we obtain the following result:

Let f be a 0-closed (0, q)-form on  with values inE 1<¢g<n-1
Then there exists a (0,q — 1)-form u on {2 satisfying du = f in the sense of
distributions and

[ ks v < [ 125y cav,
Q Q
provided the integral on the right hand side is finite and N is sufficiently large.

Now, since €2 has Lipschitz boundary, the integral on the right hand side
will be finite for every N if f vanishes to infinite order at the boundary of
2. Thus we obtain a solution u which is square integrable with respect to
the weight 6=V, It is then natural to ask whether this solution maybe van-
ishes to some finite order at the boundary. In fact, the second step consists
of showing that the minimal L? solution satisfies u € Cgfji )1 (X,Q, E) with

s(N) ~+/N.

Finally, if one starts with f vanishing to infinite order at the boundary,
then, applying a Mittag-Leffler procedure, one gets a solution u which also
vanishes to infinite order at the boundary. Also, the separation statement
in the theorem is proved similarly. One in fact shows that the range of 9
consists of all (p,n)-forms orthogonal to holomorphic (n — p, 0)-forms with
polynomial growth at the boundary.

Theorem 1 and its dual version yield information about the tangential
Cauchy-Riemann equations on boundaries of smooth weakly pseudoconvex
domains (by weakly pseudoconvex we mean that the Levi form of the bound-
ary is semi-positive). We prove the following theorem, which generalizes well
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known statements in case the boundary is strongly pseudoconvex.

Theorem 2
Let X be an n-dimensional Stein manifold and 2 CC X a weakly pseudocon-
vex domain with smooth boundary M. Then we have HP4(M) = H?:9 (M) =

cur

0for0<p<mn,1<q<mn-—2. Moreover H?°(M), H?O(M), HP"~(M)

and HP" =Y (M) are infinite dimensional and, if n > 3, separated.

Let us also mention that under the hypothesis of Theorem 2, if @ CC C",
the tangential Cauchy-Riemann equations for smooth forms have been stu-
died in [Ros82]. The dual version of Theorem 1 can also be applied to show
the following:

Theorem 3
Let X be an n-dimensional Stein manifold and Q@ CC X a smooth weakly
pseudoconvex domain. Let M be a Levi-flat hypersurface in X, such that M
intersects O transversally and Q\ M has ezxactly two connected components.
Then HPI(MNQ)=0for0<p<n,1<¢g<n-1.

By an induction argument, the above result can also be generalized to
Levi-flat C'R manifolds of arbitrary codimension k& > 1 by taking nice generic
intersections of Levi-flat hypersurfaces.

Next, we discuss the d-problem with exact support in some weakly ¢-
convex domains. We consider the following situation:

Let X be an n-dimensional Stein manifold and 2 CC X a smooth strictly
pseudoconvex domain. Let M be a real hypersurface of class C* intersecting
0 transversally such that €\ M has exactly two connected components.
We suppose that M = {0 = 0} where p is a C*> function whose Levi form
has exactly p™ positive, p’ zero and p~ negative eigenvalues on T°M for
eachze M, p +p’+pt =n—1. Weput D=QN{p<0}. Let E — X
be a holomorphic vector bundle.

Our result is then as follows.
Theore@ 4 o
HP (X, D,E) =0 for 0 <p<mn, q<p’+pt and H??’ P+ (X D E) is

separated.

Under the assumption that M is strictly g-convex, the d-equation with
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vanishing along M has been studied by Andreotti and Hill in order to ob-
tain a Poincaré lemma for the tangential Cauchy-Riemann operator on hy-
persurfaces. Also, in the setting of strictly g-convex (or concave) domains,
the d-equation with exact support has been studied by Sambou in his the-
sis, where he proves some Dolbeault isomorphism between the tangential
Cauchy-Riemann cohomology groups of smooth forms and currents on hy-
persurfaces (see [Sam99], [Sam01]). Let us also mention that M. Derrid]

[Der81] has studied the d-equation with exact support and L? regularity in
certain weakly g-convex domains in C".

The proof of Theorem 4 follows the same scheme as the proof of Theorem
1, but this time it is far more difficult to obtain the L? estimates. The crucial
point is to construct a metric on D which permits to prove L? estimates with
inverse powers of the boundary distance as weight functions as before for
some appropriate bidegrees.

The dual version of Theorem 4 then leads to the following application.

Theorem 5
HEI(MNQ) =0, ¢>n—min(p~,p*) —p°.

In particular, the above theorem gives a Poincaré lemma for currents on
this particular type of hypersurfaces. For smooth forms, the corresponding
Poincaré lemma was obtained by V. Michel, who studied the d-equation with
regularity up to the boundary in weakly ¢g-convex domains near a point where
the number of negative eigenvalues of the Levi form is constant (see [Mic93]).

Theorem 4 also leads to the following theorem.

Theorem 6

Assume that M is a closed connected real hypersurface of a Stein mani-
fold which has signature (p=—,p° p™) at each point. Then HPI(M) = 0,
¢ <min(p~,p*) +p° - 1.

Here H?9(M) denote the tangential Cauchy-Riemann cohomology groups
of smooth forms with compact support on M. This in turn has the following
interesting corollary.

Theorem 7
Assume moreover that p~ + p° > 2, p* + p° > 2 and that M is globally
minimal. Then the Hartogs phenomenon for CR funtions holds in M.
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Note that the assumption of global minimality is necessary only to assure
that the weak analytic continuation principle for C'R functions holds in M.
It is however satisfied as long as p™ # 0 or p~ # 0. An interesting case is
e.g. the one of signature (1,1, 1).

The Hartogs phenomenon has already been previously discussed on hy-
persurfaces whose Levi form has at least ¢ positive and ¢ negative eigenvalues
everywhere. Indeed, Henkin [Hen84] proved that for ¢ = 1, the Hartogs phe-
nomenon holds in sufficiently small open sets. For ¢ = 2, it was proved in
[LT91] that the Hartogs phenomenon holds globally if M is closed in a Stein
manifold. For ¢ = 1, however, a counterexample was given in [HN96], which
shows that the Hartogs phenomenon fails to hold globally.

This thesis is organized as follows. In Chapter 1, we provide a (nonexhaus-
tive) introduction to L? estimates for the d-operator on complex ma-nifolds.
In Chaper 2, we study the regularity of the equation Lu = f, where L is
an elliptic operator on an open set 2 C R", whose principle symbol can be
controlled by some power of the boundary distance of {2, and f vanishes to
some finite order at the boundary of 2. This regularity result will provide
the desired vanishing at the boundary of the minimal L? solutions mentioned
in the sketch of Theorem 1. In Chapter 3, we discuss the weakly pseudocon-
vex case and prove Theorem 1. Theorem 4 is proved in Chapter 4, and in
Chapter 5, we give the applications to C'R manifolds.

Acknowledgements. This thesis was prepared while I was staying at the
Institut Fourier in Grenoble and at the Humboldt-Universitat in Berlin. The
travels between the two institutions were financed by the European network
“Complex analysis and analytic geometry”. I would also like to thank the
mathematiciens which I met at both institutions for valuable mathematical
as well as personal discussions. In particular, I am gratefully indebted to
Christine Laurent and Jiirgen Leiterer for having supervised and encouraged
this work, while at the same time letting me a huge amount of liberty in
choosing my research topics, which I appreciated very much.



Chapter 1

L? estimates for the d-operator

In this chapter we briefly describe the most important L? estimates for the
O-operator on holomorphic hermitian vector bundles over complex manifolds.
We first recall the most basic definitions of hermitian differential geometry
related to the concepts of connection and curvature of a vector bundle. We
then state some purely functional analytic theorems before turning to L>
theory on Riemannian manifolds. We introduce the concept of a complete
metric. Proving the fundamental approximation theorem for complete met-
rics, we explain why it is particularly convenient to work with complete met-
rics. We then turn to the d-operator on holomorphic vector bundles, stating
the Bochner-Kodaira-Nakano identity and Nakano’s inequality. At the end
of this chapter, we prove the general existence theorem on weakly pseudo-
convex manifolds, allowing also non complete metrics and singular weights.
There is nothing original in this chapter. Almost everything is shamelessly
copied from Demailly’s beautiful book [Dem]. All the left-out details and
proofs can be found there.

1.1 Hermitian vector bundles

Let X be an n-dimensional complex manifold and let (z1,...,z,) be holo-
morphic local coordinates on some open set 2 C X (we usually think of
as being just an open set in C"). We write z; = x; + iy;, Z; = x; — iy;, and
dzj = dz; + idy;, dz; = dxj — idy;.

A (p, q¢)-form on X is a differential form of total degree p+ ¢ with complex
coefficients, which can be written as

u(z) = Z urs(2)dzy N dzy

[I|=p,|J|=¢

6
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where [ = (iy,...,1,) and J = (j1,...,J,) are multiindices (arranged in in-
creasing order) and dz; = dz;; A ... Ndz;,, dZ; = dZ; N... \Ndz;,.

We denote by AP9T*X the vector bundle of complex-valued (p, q)-forms
over X and by C°(X) (resp. Cf (X)) the smooth (resp. C*) sections of
APAT*X .

In this setting, the exterior derivative du of the (p, ¢)-form w is

du = 3 (a“” dzy, + a“”dzk) Adzp A dzy

2 0z
I|=p|J|=g1<k<n = F K

We may therefore write du = du + Ou with uniquely defined forms du of type
(p+1,q) and Ju of type (p,q + 1) such that

ou
ou = Z IJde/\dZ[/\dEJ,
Zk
[|=p,|J|=¢,1<k<n
Fu = 3 ML o N dzy A dz
= k I J

|=p,|J|=g,1<k<n

The operator 0 is usually called the Cauchy-Riemann operator and satisfies
000 =0.

Let E be a C* vector bundle of rank 7 over X. We denote by C;% (X, E)
the space of C* sections of the bundle APT*X ® E.

Now let us consider a holomorphic vector bundle ¥ — X. By defini-
tion, this means that we have a collection of trivializations Eyy, ~ U; x C",
r = rankF, such that the transition matrices g;;(z) are holomorphic. We
consider the complex of E-valued smooth (p,q)-forms. Again, C;% (X, E)
possesses a canonical d-operator. Indeed, if u is a smooth (p, q)-section of
E represented by forms u; € Co5(U;,C") over the open sets U;, we have
the transition relation u; = gjruy; this relation implies ('_9uj = gjkguk (since
0g,1. = 0), hence the collection (Ju;) defines a unique global (p, ¢+ 1)-section
ou.

Let us recall that a Riemannian metric on a (real) differentiable manifold
M is a positive definite symmetric form

g= Z gjr(z)dr; ® dxy,

1<j,k<n
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on the tangent bundle TM, where (x1,...,z,) are local coordinates for M.
We usually assume that the coefficients g;;(z) are smooth. Then, for any
tangent vector £ = ZQ% € T, M, one defines its norm with respect to g
J
by
2= > gm@)&é

1<jk<n

If M is moreover assumed to be oriented, one defines a corresponding volume
element

dVy = y/det(g;i(z)) dzy A ... Ndzy,

whenever (z,...,x,) fit with the given orientation. It is easy to check by
the jacobian formula that this definition of dV/} is independent of the choice
of coordinates.

On any coordinate open set 2 C M, we can use the Gram-Schmidt orthogo-
nalization procedure in order to construct an orthonormal frame ((i, ..., ()
for T'M,q for the metric g. The dual basis ((j, ..., () defines an orthonormal
frame for the dual metric, furthermore, any p-form can be written in a unique
way u =Y, urC;. We define the (pointwise) Riemannian norm of u to be
jul? = >, [ur]*. In this way, we get a Riemannian metric on APT*M, which
is actually independent of the initial choice of the orthonormal frame ((j).

Now, we consider the complex case. Let X be a complex n-dimensional
manifold. A hermitian metric on X is a positive definite hermitian form of
class C* on T'X; in a coordinate system (zi,...,2,), such a form can be
written h(z) = >, < pep, Pin(2)dz; @ dzy, where (hjx) is a positive hermitian
matrix with C* coefficients. Thanks to the hermitian condition m = huj,
our form h can be written as h = g — iw, where

1<j,k<n

g(&n) =Reh(&n) = (2)&T% + i (2)E)

Z
Z 2) (&5 + 1),
k<

l\')lr—k [\')|>—l

w(&,n) = —Imh(&, n) Z R (2) (& — njgk)7 Le.

1<],kz<n
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w=-Imh = % Z hjk(2)dz; N dZy.

1<j,k<n
By definition, w is the fundamental (1,1)-form associated with h. Since w
and h are ”isomorphic”’objects, we usually do not make any difference and
will think of hermitian metrics as being positive (1, 1)-forms. A hermitian
manifold is a pair (X,w) where w is a C* positive definite (1, 1)-form on X.
Here a (1, 1)-form w = i ) wjpdz; AdZy is said to be positive definite, denoted
by > 0, resp. positive (> 0), if and only if

§— ijkﬁjfk
is a positive (resp. semi-positive) hermitian form on C".

Let E be a complex vector bundle of rank r over a smooth differentiable
manifold M. A connection D on E is a linear differential operator of order
one

D :CX(M,E) — C2, (M, E)

q+1
such that
D(f Au) =df Nu+ (—=1)%* f A Dy

for all forms f € C;°(M), u € C;°(M, E). On an open set 2 C M, where E
admits a trivialization 0 : Ejo ~ {2 x C", a connection D can be written

Du~ydu+T Au

where I' € C°(2, Hom(C",C")) is an arbitrary matrix of 1-forms and d acts
componentwise. It is then easy to check that

D?*u 2~ (d0 +T AT) Auon Q.
Since D? is a globally defined operator, there is a global 2-form
O(D) € C*(M,Hom(E, F))
such that D*u = ©(D) Au for every form u with values in E. ©(D) is called

the curvature of D.

Assume now that F is endowed with a C* hermitian metric along the
fibers and that the isomorphism FEjo ~ € x C" is given by a C* frame (e,).

We then have a canonical sesquilinear pairing
C(M,E)xC (M,E) — Cx (M, E)

(u,0) +— {u,v}
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given by
{u,v}:Zu,\/\ﬁu<e,\,eu>, UZZUA®6M v:Zvué@eM.
A

The connection D is said to be hermitian if it satisfies the additional property
d{u,v} = {Du,v} + (—1)%{u, Dv}.

Assuming that (ey) is orthonormal, one easily checks that D is hermitian if
and only if I'* = —I'. In this case O(D)* = —O(D), thus

i©(D) € C3°(M,Herm(E, E)).

We now concentrate ourselves on the complex analytic case. If M = X is
a complex manifold X, every connection D on a complex C* vector bundle
E can be split in a unique way as a sum of a (1,0) and of a (0, 1)-connection,
D = D'+ D" In alocal trivialization 6 given by a C*> frame, one can write

D'u~y ou+T' Au,

D"u ~y Ou+T" A,

with I' = I + I, The connection is hermitian if and only if [' = —(I"")* in
any orthonormal frame. Thus there exists a unique hermitian connection D
corresponding to a prescribed (0, 1) part D”.

Assume now that the bundle FE itself has a holomorphic structure. The
unique hermitian connection for which D" is the O-operator as defined before
is called the Chern connection of E. In this situation, we will write 0 instead
of D'.

In a local holomorphic frame (ey) of Ejq, the metric is given by the hermitian
matrix H = (hy,), hay = (€x, e,). We have

{u,v} = Zh,\uu,\ AT, = u N Hy,
A

where Tu is the transposed matrix of u. Easy computations yield that

O(D) ~p O(H '0H)  on Q. (1.1)
In particular, the Chern curvature tensor O(FE) := ©(D) is such that

iO(F) € C7 (X, Herm(E, E)).
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Moreover, it is important to observe that
@(E@F) =@<E)®IdF+IdE®@(F) and
O(E*) = —'O(F)

where ¢ denotes transposition.

Let (z1,...,2,) be holomorphic local coordinates on X and let (ey)1<r<r
be an orthonormal frame of E. Writing

iO(E) = Y cdzy AdE @ ® ey,

=Sy =10 L AN

we can identify the curvature tensor to a hermitian form

é(E)@ Rv,{®v) = Z Cjkkuéjgkvkvp

=Sy =00 L A M S

on T'X ® E. This naturally leads to the following concepts of positivity:

_ The vector bundle F is said to be positive in the sense of Griffiths if
O(FE)((®v,£®v) > 0 for all non zero decomposable tensors E Qv € TX ® E.

The vector bundle F is said to be positive in the sense of Nakano if

O(E)(r,7) = chmﬂjﬁku >0
for all non zero tensors 7 = Y 7;,0/0z;®e) € TX®E. We then write £ > 0.

Example. Assume that F is a line bundle. The hermitian matrix H =
(h11) associated to a trivialization 0 : Ejq ~  x C is simply a positive
function which we find convenient to denote by e=%, ¢ € C*(Q,R). In this
case, the curvature form ©(F) can be identifiend with the (1,1)-form 90y,
and

iO(E) = i0dp
is a real (1,1)-form. E is positive in either the sense of Griffiths or the sense
of Nakano if and only if i00y > 0.

1.2 L? theory on complete manifolds

A few preliminaries of functional analysis will be needed here. Let Hi, H,
be complex Hilbert spaces. We consider a linear operator T' defined on a
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subspace Dom T C H; (called the domain of T) into Hs. The operator T is
said to be densely defined if Dom T is dense in Hy, and closed if its graph

GrT ={(z,Tz) | x € DomT}

is closed in H; x Has.

Assume now that T is closed and densely defined. The adjoint 7% of T' (in
Von Neumann’s sense) is constructed as follows: Dom 7™ is the set of y € H,
such that the linear form

DomT > z — (T'z,y)2

is bounded in the H;-norm. Since Dom T is dense, there exists for every y
in Dom 7™ a unique element 7%y € H; such that (T'z, y)s = (x, T*y); for all
x € Dom T*. It is immediate to verify that Gr T = (Gr(=T))* in H; x Ha.
It follows that T* is closed and that every pair (u,v) € H; X Hy can be
written

(u,v) = (z,—Tx)+ (T"y,y), x € DomT, y € DomT".
Take in particular u = 0. Then
s+ Ty=0, v=y-Te=y+TTy (v,y)2=|yl5+ Tyl

If v € (DomT*)* we get (v,9)s = 0, thus y = 0 and v = 0. Therefore T* is
densely defined and our discussion implies:

Theorem 1.2.1
If T : Hy — Hs is a closed and densely defined operator, then its adjoint

T* is also closed and densely defined and (T*)* = T. Furthermore, we have
the relations Ker T* = (Im T)* and (Ker T)+ = Im T*.

Consider now two closed and densely defined operators T, S
Hy — Hy — Hs

such that S oT = 0. The starting point of all L? estimates is the following
abstract existence theorem.

Theorem 1.2.2
There are orthogonal decompositions

Hy = (Ker SNKerT*) & Im T & Im S¥,
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Ker S = (Ker SNKerT*) @ Im7T.
In order that ImT = Ker S, it suffices that

|T*z |3 + ||Sz||3 > C||z|j3, for all z € Dom SN DomT*

for some constant C' > 0. In that case, for every v € Hy such that Sv = 0,
there exists u € Hy such that Tu = v and

1
Jul} < ol
In particular
ImT=ImT =KerS, ImS*=ImS* =KerT".

Let (M,g) be a Riemannian manifold and let Fj, F» be hermitian C*
vector bundles over M. Then we can define the spaces L*(M, F;) of square-
integrable sections of F; with respect to the metrics of M and F;. If P :
C>®(M, F) — C*(M, F5) is a differential operator with smooth coefficients,
then P induces a non bounded operator

P L*(M,Fy) — L*(M, F),

as follows: if u € L*(M, Fy), we compute Pu in the sense of distribution
theory and we say that v € DomP if Pu € L*(M, Fy). It follows that P is
densely defined, since DomP contains the set D(M, F}) of compactly sup-
ported sections of C*(M, Fy), which is dense in L*(M, Fy). Furthermore
GrP is closed: if u, — u in L*(M, F}) and Pu, — v in L2(M, ), then

Pu, —s Puin the weak topology of distributions, thus we must have Pu =0
and (u,v) € GrP. By the preceeding general results, we see that P has a
closed and densely defined Von Neumann adjoint (ﬁ)* We want to stress,
however, that (P)* does not always coincide with the extension P* of the
formal adjoint P* : C*°(M, F,) — C*®(M, Fy), computed in the sense of dis-
tribution theory. In fact u € Dom(ﬁ)*, resp. u € Domﬁ, if and only if there
is an element v € L(M, F}) such that (u, Pf) = (v, f) for all f € DomP,
resp. for all f € D(M, Fy). Therefore we always have Dom(ﬁ)* C DomP+
and the inclusion may be strict because the integration by parts to perform
may involve boundary integrals for (ﬁ)* This is why we have to introduce
the concept of complete metrics.

Let (M, g) be a Riemannian manifold of dimension n, with metric

Z gjk(x)dr; @ dwg.
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The length of a path 7 : [a,b] — M is by definition

b b
10) = [ W Oldt = [ alr(o); (06 i
The geodesic distance of two points z,y € M is
6(z,y) =infl(y) with y(a) =z, y(b) = v,
B!
if z,y are in the same connected component of M, §(z,y) = 400 otherwise.

The following standard definitions and properties will be useful in order
to deal with the completeness of the metric.
Definitions.

(i) A riemannian manifold (M, g) is said to be complete if (M,0) is com-
plete as a metric space.

(ii) A continuous function v : M — R is said to be exhaustive if for every
c € R the sublevel set M. = {x € M | 1(x) < ¢} is relatively compact
mn M.

(iii) A sequence (K,),en of compact subsets of M is said to be exhaustive if
M =U,K, and if K, is contained in the interior of K,.1 for all v.

Lemma 1.2.3
The following properties are equivalent:

(i) (M,gq) is complete;
(11) there exists an exhaustive function ¢ € C>°(M,R) such that |di)|, < 1;

(i11) there exists an exhaustive sequence (K,),en of compact subsets of M
and functions v, € C*°(M,R) such that

1, = 1 in a neighborhood of K,, suppv, C }O(VH,
0<4, <1and |di,|, <27

Let E — M be a differentiable hermitian vector bundle. Let us consider
the Hilbert space Lf,(M ,E) of p-forms u on M with values in E, having
measurable coefficients, such that

l|u|* = / lu?dV < +o0.
M
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We denote by < , > the global inner product on L2-forms. Let D be a
hermitian connection on E. We denote by 0 the formal adjoint of D and put
A = D6+ 6D. Extended in the sense of distribution theory, these operators
are thus closed and densely defined operators on L3 (M, E) = @, L2(M, E).
We also introduce the spaces DP(M, E) of compactly supported forms in
C;°(M, E). The theory relies heavily on the following important result.

Theorem 1.2.4
Assume that (M, g) is complete. Then

(i) Do(M, E) is dense in DomD, Domd and DomD N Domé respectively
for the graph norms

w ull + 1Dull, w = fluf + [[oull, v Jlull + | Dul| + [[ou]].

(ii)) D* =6, 0* = D as adjoint operators in Von Neumann’s sense.
(iii) One has ((u, Au) = || Dul||*+ ||0u||* for every u € DomA. In particular
DomA C DomD N Domd, KerA = KerD N Kerd,

and /\ is self-adjoint.

(w) If D* =0, there are orthogonal decompositions
Li(M,E) =H*(M,E)®ImD @ Imé,

KerD = H*(M,E) & ImD,

where H*(M,E) = {u € L2(M,E) | Au= 0} C C*(M, E) is the space
of L? harmonic forms.

Sketch of the proof. (i) We show that every element u € DomD can be
approximated in the graph norm of D by smooth and compactly supported
forms. By hypothesis, u and Du belong to L2(M, E). Let (1,) be a sequence
of functions as in Lemma 1.2.3 (iii). Then ¢¥,u — wu in LZ(M, E) and
D(v,u) = 1, Du+ dip, A u where

|dipy Al < |dipy | Ju] < 27%[ul.

Therefore dy, A u — 0 and D(¢,u) — Du. After replacing u by v, u,
we may therefore assume that v has compact support, and by using a finite
partition of unity on a neighborhood of supp u, we may also assume that
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supp u is contained in a coordinate chart of M on which F is trivial. Let
" be the connection form of D on this chart and (p.) a family of smoothing
kernels. Then u * p. € Do(M, E) converges to u in LZ(M, E) and

D(ux*pe) — (Du) % p. =T A (uxp) — (T Au) * pe

because d commutes with convolutions (as any differential operators with
constant coefficients). Moreover (Du) * p. converges to Du in L2(M, E) and
LA (uxp:), (T' Au)*p. both converge to I' Au since I' A e acts continuously on
L?. Thus D(u * p.) converges to Du and the density of D,(M, E) in DomD
follows. The proof for Domé and DomD N Domd is similar, except that the
principal part of J no longer has constant coefficients in general. The con-
volution technique requires in this case a lemma due to K.O. Friedrichs (see
e.g. [Dem]), which we omit here.

The assertion (ii) is equivalent to the fact that
{(Du,v)) = {(u, ov)), Vu € DomD, Vv € Domd.
By (i), we can find u,, v, € De(M, E) such that
u, —u, v, —v, Du,— Du, anddv, — dvin L2(M,FE),

and the required equality is the limit of the equalities
(Duy,v,)) = (uy, 0v,)).

We skip the proof of (iii) and remark that (iv) is an immediate conse-
quence of (ii), (iii) and Theorem 1.2.2. O

On a complete hermitian manifold (X, w), there are of course similar re-
sults for the operators D', D", ¢, 6", 0, 0" attached to a hermitian vector
bundle E.

1.3 General estimates for 0

Let (X,w) be a hermitian manifold, and let £ be a hermitian holomorphic
vector bundle over X. We denote by D = d + 0 its Chern connection (or
Dg if we want to specify the bundle), and by § = 0* + 9" the formal adjoint
operator of D. Another important operator is the operator L of type (1,1)
defined by

Lu=wAu
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and its adjoint A:
{(u, Av)) = (Lu, v)).

[e.9]

If A,B are endomorphisms of CJ
defined by

(X, E), their graded commutator is

[A,B] = AB — (—1)®BA

where a, b are the degrees of A and B respectively.

We can now state the fundamental Bochner-Kodaira-Nakano identity,
which is the basis of all L? vanishing theorems for hermitian holomorphic
vector bundles. It expresses the antiholomorphic Laplace operator [1” =
99" + 90 in terms of its conjugate (' = 99* + 9*9, plus some extra term
involving the curvature of £ and the torsion of the metric w.

Theorem 1.3.1

0" =0+ [i©O(E),A] + [0, 7] — [0,77],
where T is the operator of type (1,0) defined by 7 = [A, dw] on CX(X, E).
For a large class of manifolds, called Kahler manifolds, the above identity

has a much simpler form, expressing [1” —[1" as an operator of order 0 closely
related to the curvature of E.

Definition. w is a Kdhler metric if Ow = 0.
(X, w) is said to be a Kdhler manifold if w is a Kahler metric.

Corollary 1.3.2
If w is a Kahler metric, then

0" =00 + [i0(E), Al.

Now assume that w is a complete hermitian metric. Then for every form
u € DomdNDomd of bidegree (p, ¢) we have the following a priori inequality

;(!\51&!\2+\I5*UI!2) > ([i0(E), Alu, u))—%(HTUHQHIT*UHZJrHFUI|2+HF*UHQ)7
(1.2)

provided the integrals on the right hand side are finite. This inequality is
known as Nakano’s inequality.
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Indeed, for every u € DP4(X, E), since ((0"u,u)) = ||0u®> + ||0 u||* and
(O'u,u)) = ||0ul|* + ||0*u||?, we get from Theorem 1.3.1
10u]]? + [10"u]* =
[0ull® + [[0"ull* + ([EO(E), Alu, w)) + ([0, 7w, w)) — ([0, 7"]u, ).
Moreover, we have
([0, 7w, w) = (077w, w)) — (770u, u))
= (7", 0"u)) — (Ou, Tu))
1 * *
> =57 ul® + 107ull® + 19ull® + [Irull®).

Analogously, we find

* 1 — a* 9 =,
([0, 7w u) = =5 (IFull® + 10 ull® + [0ull® + [[Full®),

thus establishing (1.2) for all u € DP(X, E). This result is easily extended
to every u € Domd N Domd" by density of DP(X, F) in virtue of Theorem
1.2.4 (i).

In virtue of the general Theorem 1.2.2, Nakano’s inequality yields a va-
nishing theorem for the 0-cohomology if, for some bidegree (p, ¢), the right
hand side of (1.2) can be made > C/||u||? for some C' > 0.

We would also like to mention that there are far more precise inequa-
lities than (1.2) (see e.g. [Dem86]). However, since we will use exactly this
inequality in Chapter 4, we content us with this statement.

In the case where w is a Kéhler metric, the same reasoning as above yields

of course
10ul]® + [[0"ul]* > ([iO(E), Alu, u) (1.3)

for every u € Domd N Domd of bidegree (p,q) if [iO(F), A] acting on
APIT* X ® E is semi-positive.

1.4 O on weakly pseudoconvex manifolds

Let (X,w) be a Kéhler manifold and F — X a hermitian holomorphic
vector bundle. Then the operator

A = [I9(E), A]
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acting on AP4T*X ® FE is of fundamental importance, as shown by the fol-
lowing existence theorem, which is the basic result of L? theory on Kihler
manifolds.

Theorem 1.4.1
Let E — X be a hermitian holomorphic vector bundle over a complete
Kahler manifold (X,w). Suppose A%’?w 18 a positive hermitian operator, and

let f € L2 (X, E) satisfy Of =0 and

/X (ALY f, F)dV,, < +oo,

q > 1. Then there exists u € L2 (X, E) such that Ou= f and

/X uf Vs = /X (AEL) T f, V.

We include a proof of this theorem, since we have not given a proof of
Theorem 1.2.2, which is basically the same.

Proof. Consider the Hilbert space orthogonal decomposition
2 = L
L, (X, E) = Kerd © (Kerd)—,

observing that Kerd is weakly (hence strongly) closed. Let v = vy + vy be
the decomposition of a smooth form v € DP4( X, FE) with compact support
according to this decomposition (v;, vy do not have compact support in

general!). Since (Kerd)*: = Imd C Kerd and f,v; € Kerd by hypothesis,

we get 0 vy = 0 and

|<f,v>|2:\<f7v1>|2§/

X

(ABS)7LF, F)dV, / (AP oy 1) dV,

X

thanks to the Cauchy-Schwarz inequality. The a priori inequality (1.3) ap-
plied to u = v; yields

/ (AR o 01)dVe, < [[001|]* + (1070 |> = (1070 ||* = 1|87
D'
Combining both inequalities, we find

() < ( /X (ALY f, PV, [T ol
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for every smooth (p,¢)-form v with compact support. This shows that we
have a well defined linear form

w=dvr— (v,f), L

p,q—1

(X,E)>d (D"(X,E)) — C

on the range of 8" This linear form is continuous in L? norm and has norm
< C with

o= /X (AR )1, F)ydV,) 2.

By the Hahn-Banach theorem, there is an element u € Lf,’q_l(X , E) with

|u|| < C, such that (v, f)) = (8 v, u)) for every v, hence du = f in the sense
of distributions. The inequality ||u|| < C is equivalent to the last estimate
in the theorem. 0

Remark. One can always find a solution u € (Kerd)*: otherwise replace
u by its orthogonal projection on (Kerd)t. This solution is clearly unique
and is precisely the solution of minimal L? norm of the equation du = f. We

have u € Img*, thus u satisfies the additional equation
d'u=0.

Consequently 0"y = 0 0u = 8 f. If f € Coo (X, E), the ellipticity of 0"
shows that u € C3% (X, E).

With Theorem 1.4.1 in mind, it is important to compute the term
At = [i(E), Al

In particular, we want to know when it is > 0. Unfortunately, this operator
can be quite complicated in general. It turns out, however, that A%’i} is
positive under the assumption that FE is positive in the sense of Nakano.
Moreover, if E is a line bundle and A\; < ... < ), are the eigenvalues of
iO(F) with respect to w, we have

(IO(E), AJu,u) > (A + ...+ A |ul?
if u is of bidegree (n, q).

We now introduce a large class of complex manifolds on which the L2
estimates will be easily tractable.
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Definition. A complex manifold is said to be weakly (resp. strongly) pseu-
doconvex if there exists an exhaustion function ¢ € C*°(X,R) such that
i00¢ > 0 (resp. > 0) on X, i.e. 1 is plurisubharmonic (resp. strictly
plurisubharmonic). A strongly pseudoconvex manifold is also called a Stein
manifold.

Lemma 1.4.2
Every weakly pseudoconvex Kdahler manifold (X, w) carries a complete Kdhler
metric @.

Proof. Let ¢ € C*(X,R) be an exhaustion function which is plurisub-
harmonic on X. After adding a constant to ¢, we can assume ¢ > 0. Then
O = w +100(¢)?) is a Kahler metric and

O = w+ 2O + 2ionh A O > w + iy A 0.

Since dyp = O + v, we get |dip|s = v/2|0¢|s < 1 and Lemma 1.2.3 shows
that 0 is complete. O

If we apply the main L? existence theorem (Theorem 1.4.1) to a sequence
w. of complete Kahler metrics, we see, by passing to the limit, that the
theorem even applies to non necessarily complete metrics if our manifold is
pseudoconvex. Precisely, we have the following result:

Theorem 1.4.3
Let (X,w) be a Kdhler manifold (w is not assumed to be complete). Assume
that X is weakly pseudoconver. Let E be a hermitian holomorphic vector
bundle over X and assume that there exists a positive continuous function
v: X — R such that

iO(E) > yw ® Idg.

Then for any (n,q)-form f with L% coefficients, ¢ > 1, such that Of = 0
and

/ Uf2AV, < oo,
X

there exists u € L2 (X, E) such that Ou = f and

n,q—1

1
/ lul?dV,, < —/ v fIPAV,.
X qJx
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Proof. Indeed, under the assumption on E, we have
(AGLu,u) > qylul?,

hence ((AjL) "u,u) < ;v 'ul>. The assumption that f is only L, instead
of f € L?L’q(X , E) is not a real problem, since we may restrict ourselves to
X.={z € X | ¢Y(x) < ¢} CC X, where ¢ is a plurisubharmonic exhaustion
function on X. Then X, is itself weakly pseudoconvex (with exhaustion
function ¢, = 1/(¢ —4)), hence X, can be equipped with a complete Kéhler
metric w.. = w + €idd(¥p?) (cf the proof of Lemma 1.4.2). For each (c,¢),
Theorem 1.4.1 yields a solution u.. € L2 (X, A" 'T*X®FE) of the equation

5%15 = f on X, such that

[l v < [ (AL Y
Xe

c

A simple computation shows that the integral on the right hand side is mono-
tonically decreasing with respect to the metric, hence

[ ot rnav, < [ )t pan

c

1 _
/ Lppav,.
x q

Therefore the solutions u.. are uniformly bounded in L? norm on every
compact subset of X. Since the closed unit ball of an Hilbert space is weakly
compact (and metrizable if the Hilbert space is separable), we can extract a
subsequence

IN

2

uck,sk —uc Lloc

converging weakly in L? on any compact subset K C X, for some ¢ — 400
and ¢; — 0. By the weak continuity of differentiations, we get again in the
limit Ou = f. Also, for every compact set K C W, we get

/ |u|ide gliminf/ [Uey e
K k— oo K

by weak L2 convergence. Finally, we let K increase to X and conclude that

the desired estimate holds on all of X. O

2
Wep,ep - Yepiek

An important observation is that the above theorem still applies when
the hermitian metric on F is a singular metric with positive curvature in the
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sense of currents.

Theorem 1.4.4

Let (X,w) be a Kdhler manifold. Assume that X is weakly pseudoconver.
Let E be a hermitian holomorphic vector bundle and let ¢ € Li.. be a weight
function (no further regqularity assumption is made on ¢). Suppose that

for some continuous positive function v on X. Then for any (n,q)-form f
with L3, coefficients, ¢ > 1, satisfying Of = 0 and [, v~ f|*dV., < +oo,

loc

there exists u € L, , (X, E) such that Ou= f and

1
/ lu|*e~?dV,, < —/ v fPe PV,
X q.Jx

Proof (Sketch). The general proof is based on regularization techniques
for plurisubharmonic function (see e.g. [Dem82]). It is technically involved
essentially because the required regularization techniques are difficult in the
case of arbitrary manifolds. We will therefore just explain the proof in the
simple case when X = () is a weakly pseudoconvex open set in C" with a
plurisubharmonic exhaustion function . Then the functions ¢. = ¢ * p.,
where (p.) is a family of smoothing kernels, is well defined, smooth on €2, =
{z € Q| Y(z) < ¢} for e small enough. Moreover, it satisfies a lower bound
of the form

i00¢. ® Idp > v.w ® Idp — iO(E)

for some continuous function 7. converging uniformly to v on compact subsets
of ) as ¢ — 0. We define new hermitian metrics h. on the vector bundle
E by multiplying the original metric A with the weight e™%¢ ie. we set
h. = he=%=. Then

From Theorem 1.4.3 we thus get solutions u.. on X, such that
1

ucePe sV, < % [ e,
qJx,

Xe

whenever 7. > 0 on X.. As ¢. > ¢ converges to ¢ monotonically, we
conclude by extracting weak limits and applying Lebesgue’s monotone con-
vergence theorem as before. O



Chapter 2

Elliptic operators with
polynomial growth at the
boundary

In this chapter we prove some regularity results for certain elliptic operators
on a bounded domain 2 CC R”. Namely, we will consider an elliptic operator
L, whose principal symbol can be controlled by some power of the boundary
distance of 2. We show that if 2 has Lipschitz boundary and if u is a smooth
function on € satisfying Lu = f, where f vanishes to some finite order at the
boundary of €2, then also u vanishes to some finite order at the boundary.

2.1 The Sobolev spaces

The purpose of this section is to fix some terminology and to recall some of
the basic properties of Sobolev spaces (see [Fol76] for more details).

Let D(R™) be the space of C* functions on R" with compact support, and
S the Schwartz space of rapidly decreasing functions on R”, i.e. the space of
all C* functions u such that sup,cgs |[*DPu(z)| < oo for all multiindices «
and . We define the Fourier transform of a function u € S by

u(€) = (2#)_”/2/ u(z)e @) dx,
where £ = (&1,...,&,) and (2,€) = 1& + ... + T,&.
The Sobolev norms || ||s of order s on R™, s € R, are defined by

2 = [ 1 iy lae P

24
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where u € §. The Sobolev space Hy = H4(R") is the completion of S under
the norm || [|s.

For u € §, a straightforward computation shows that
Dou(e) = ilea(e).
It follows that if k is a positive integer, we have

lullf ~ Y [ID%u|)f for all w € S.

0<a|<k

Here we write a < b (resp. b 2 a), if there exists an absolute constant
C' > 0 such that a < C-b (resp. b > C - a). a ~ b signifies a < b and a 2 b.

From this remark it follows that © € Hj admits weak distribution deriva-
tives Du € L*(R") for |a| < k. Although Sobolev spaces make the mani-
pulation of distribution derivatives very easy, they would be of limited use-
fulness if we could not relate derivatives in the L? sense to classical pointwise
derivatives. Fortunately, the Sobolev lemma provides a simple and beautiful
connection between the two.

If u is a function of class C¥ on R™ whose derivatives up to order k are
bounded, we define |ul; to be the supremum over z € R™ and |a| < k of
| Du(x)].

Proposition 2.1.1 (Sobolev lemma)
H, CCFand | | S| ||s if and only if s > k + 2.

It is also possible to define Sobolev spaces on bounded domains. Namely,
let 2 C R" be a bounded open set in R™ and m a nonnegative integer.
Consider the space of all those C* functions f : {2 — C such that

||f||an = Z /Q|Do‘f|2da: < +00.

|a|<m

The completion of the above space relative to the norm || ||, is called the
Sobolev space H,,(€2). The completion of the space D(2) of C* functions
with compact support in € relative to || ||,.q is denoted by H,,,(€2). Roughly,

o

H,, () is the set of elements of H,, which are supported in Q. Indeed, un-
der mild regularity assumptions on € (e.g. €2 with Lipschitz boundary suf-
fices, see [Gri85]), then if f is of class C¥ on R™ and supported in €, then
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fe ]?]k(Q) On the other hand, if f € ]—OIS(Q) and s > k + 5, then it follows
from the Sobolev lemma that f is of class C¥ on R” and supported in 2.

2.2 A regularity theorem for elliptic opera-
tors

In this section, we will study the regularity of the equation Lu = f, where L
is an elliptic operator on a bounded open set in R”, whose principal symbol
can be controlled by some power of the boundary distance.

More precisely, let 2 be an open set in R”, and let

L= Z ao(z)D* + Z bs(x) D"

laj=m |8l <m

be a differential operator of order m with smooth coefficients a,, bg € C*(Q2)
on 2. Let A : Q — R* be a smooth function on 2.

We say that L is an elliptic operator of polynomial growth with respect to
A on § if there exist k,l € N such that

[ D aa(@)€?] 2 AF(x) [¢™ for every £ € R” (2.1)
lal=m
and
|Dag(2)| S AP (@), | D7bs(a)| S AP () (2.2)

for all multiindices «, 3, 7.

We define C"(R"™, Q) := {f € C"(R") | suppf C Q}.

Theorem 2.2.1
Let L be a differential operator of order m with smooth coefficients on an
open set ) CC R™, which s of polynomial growth with respect to a smooth
function A € C*(,RT) .
Then we have the following a priori estimate

lul2q S 1A Lull}_pa + 1A uliq (2.3)

S,Q ~J
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for some t, T € N and s > 1, u € C>®(Q).

Moreover, let Q) have Lipschitz boundary and assume that A has essentially
the same features as the boundary distance function d of Q, i.e. A ~
d and |D*A| < dlel for every multiinder . Let u € C®(Q) satisfy
Jo [u(@)PA™N(z)dA\(z) < 400 and Lu € CN(R",Q) N C>®(Q). Then u €
C*M(R”, Q) N C>(R), where s(N) ~ /N for all N > 1.

Proof: We will first show that it suffices to prove the a priori esti-
mate (2.3). Let u € C™(Q) satisfy [, [u(z)?A™N(z)d\(z) < +oo and
Lu € CN(R™, Q) NC>®(Q2). We want to show that u € C*™)(R™ Q) N C*®(Q)
with s(N) ~ v/N for all N > 1. As noted in the preceeding section, it

suffices by the Sobolev lemma to show that u € I(-)[S(N)(Q).

Since €2 has Lipschitz boundary, it follows from a general result of Gris-
vard that

CHR Q) € {f € C*(Q) | / |F[2d-2*dA < +oo)
U

(see [Gri85, theorem 1.4.4.4] or Theorem A.2.2). Hence the a priori esti-
mate (2.3) together with the assumptions on u yields u € Hyn)(£2) with

s(N) ~+/N.
Next, we define the open sets ; C ) as follows:
1
Qj = {Z e Q) ’ d(Z) > jj} CcC Qj+1.

For every j € N, it is then possible to construct x; € C*°(R") with compact
support in €21 such that x; = 1 in a neighborhood of €2, and moreover, for

every multiindex «,

sup | Dy ()] < Njy g2 (2.4)
TzeR™

(Njq| does not depend on j!). The existence of such functions y; is proved
in the appendix (cf Lemma A.3.1); note that dist(9€;,0Q,41) > j 2

We can also find functions n; € COO(R"_) satisfying 0 <n; <1, supp 7; C
Q412 \ -1, n; = 1 in a neighborhood of Q2,4 \ ©; and
sup | D7 ()| < Mjoys*

z€R™

for every multiindex «, where M, does not depend on j. Thus |n;? < j%.
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Let us now estimate |lu — x;jull?. Using the a priori estimate (2.3) and
(2.4), we obtain

—ts ~T's?
lu =xulia S 1ALl =Xl me + 1A (u = x;u) 50
—ts —Ts?
S AT (Lu = X Lu) [T o + 1A (u = x50) 50
+5% Ingulli-1.0

for some large ¢ € N.

We also have
Il v ~ / (1+ 1€[2)* (@) Pde
/ (1+ €2 |yu@) de
{1+|¢2>j(@+e)s+1Y

+f (1+ Iyl
{1+[g<jrerstt}

P _ Al o2
G Il o 4 5 Injullf o
"2

S
< 5P e+ AT g
<

/1 o2

F T NullZa + 1A ullg o)

for some large ¢/, ¢ € N; note that j <A™ on Q\ Q.

Combining this with the above inequalities, we obtain
_ 2
lu—xsulia < AT (Lu— x;Lu)lli_ o + 1A (u = x5u)[5q

/1 o2

1 —C' S
Jr;(ll%llf,gfrllA ull0)

We have already shown that for some s ~ V/N, [jul|?q < 4oc. By hy-

pothesis on u, we also have HA‘CHSZuHaQ < 400 for some s ~ /N, thus
the last term in the above inequality tends to zero as j — +o00. Moreover,
the assumptions on u imply that also the first two terms tend to zero as
j — +oo for some s ~ /N (use Grisvard’s result, see Theorem A.2.2). We
have therefore proved the last assertion of the theorem.

Now, let us finally turn to the proof of the a priori estimate (2.3). We
prove this estimate by simply expliciting the dependence on A of all the
constants involved in the classical proof of the hypoellipticity of uniformly
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elliptic operators (see [Fol76]).

Let us fix 2o € Q and let Bs(xg) be the ball of radius § < 1 centered at
xo. Let u be a smooth function with support in Bs(xo).

First, we assume that bz = 0 for every multiindex 3. Then we have

(L) (€) =™ Y aalo) € a(€)

la|=m
where L,, = L(zo) is the differential operator with frozen coefficients at z.
This implies

(L+ 1) [a@)* < 2m(L+ [§*)*=™ (L + [§*™) [a(©)[* -
S (L4 [EP) ™™ (@) + A (wo) (1+ €)™ [(Layu) ()]

by (2.1). Integrating both sides and using the inequality ||u||s—m.a < ||u]ls-1.0,
one obtains
lull?q < A7 (20) [|Laulli_m.0 + lulli_iq-

S,Q ~

Hence there exists Cy > 0 such that

lullZg < Co A7 (0) (| Lagull2_m o + llulli_1 0)- (2.5)

We now wish to estimate
| Latt = Lagul? o = 1D (aa(2) = aa(z0)) Dul?_, o
The estimates (2.2) yield

|aa(x) — aa(z0)] < Cr AT (z0) |70 —

for some C; > 0 and all o, z, .

Set § = (8C,C2n™A~2=21-2(2,1)~2 and fix ¢ € D(Ba;(0)) with 0 < ¢ <
1 and ¢ =1 on Bs(0). Suppose u is a smooth function supported in Bgs(xg).
Then

(aa(z) = aa(z0)) Du(z) = ¢(x0 — 7) (Aa(z) — aa(zo)) D u(z)
and

sup [¢(zo — ) (aa(x) aa(w0))[* < ACTAT7(2)0% = (2n™ CoA™ (o)) ™.
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Hence by (2.2)
I(aa(z) = aa(z0)) D ulli 0 < (20"CoA™(20)™" [lulliq
+ Co AT (o) 3y
for some Cy > 0, sg,s1 € N.
Thus, since there are at most n™ multiindices o with |a| = m, we have
Lot = Logull3 0 < (2C0A™ (20)) ™" Jullf 0 +n™CoA™ 7 (o) [|ull?y
Combining this with (2.5), we then obtain
_ 1
lulfe < CoA™ (o) (I Lullima + [ul3-10) + 5 lullie;

hence

lu

o S AT (@) [ Lulli o + AT (z0) [[ull- 1 o

S,Q ~

for some myg, kg € N.

Next, we consider the case bg # 0. Replacing my, ko by larger inte-
gers if necessary, we can absorb the additional terms of Lu in the term
A5k () ||ul|2_, ¢, and still have the estimate

[[u

e S AT (wo) [ Lulli_y o + AT (o) [[ull_y o

S,Q ~Y

We emphasize that all the constants involved are independent of xy € 2.

Next, one can cover Q by balls By, (x;) of the above type, i € N, such
that there exists a partition of unity (6;);en with respect to this covering
satisfying ., <, |D26;|? < 0;]P,(6;?)| where P, is a polynomial of degree s
in one variable (see Lemma A.4.1). One has

105ull3.0 S A7 (@) [ LO:ull3_ g + AT 7R (@) [0iul[3- 10

for every smooth function u on §2.

Replacing mg, ko by larger integers if necessary, we get
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[6:ull?g < C {AT™ ()]0 Lull2_,, o + A0 () [|full 2 o
+A”“*%@0/ﬁmﬁd&
< MATO R () {0 /0|D" Lu)|?dX

|a|<s—m

0l 0+ [ BluPdr) 26)
Q
for some C, M > 0; note that §; % ~ A™2=2=2(g,).

Moreover,

MAT™057R (1) [|0;ul|2_

n

—MAm““<>/(LHﬂf1WMN%A

= MA’”OS’“O(:EZ-)/ (14 1€17)Biu(€) PN

{1+[¢[2>2M A0~ Fo (z;)}

CATA-To ) / (1+ [€P)* " |6ru(€) PdA

{1+[¢[2<2M A0 Fo (2;)}

1
< Sl + €A e Rt ) g

\)

for some C” > 0. Thus, by (2.6),

16:u]]? /eA 215 Do Luy)| d)\+/0A 2Ty 24

|a|<s—m

SQN

for some ¢t,7 € N and s > 1. So

)
lull20 = 1> biull?q < Z 10:ull20 S NAT Lul3_, 0 + AT w3 o
)

which completes the proof. Il



Chapter 3

The pseudoconvex case

In this chapter, we consider a domain €2, which is relatively compact in an
n-dimensional Kéhler manifold X and has Lipschitz boundary. We moreover
assume that € satisfies some pseudoconvexity condition, which we call “log 9-
pseudoconvexity”. Roughly speaking, this means that there exists a metric
on X such that — log(boundary distance) admits a strictly plurisubharmonic
extension to . We then show that the 0-equation with exact support in €
admits a solution in bidegrees (p,q), 0 < p < n, 1 < ¢ < n — 1. Moreover,
the range of J acting on smooth (p, n — 1)-forms with support in € is closed.
This result can be applied to solve the d-equation with regularity up to
the boundary in the domain X \ © as well as the d-equation for currents
on (), wich are the restriction of a currents defined on X. This in turn
gives the vanishing of the Clech-cohomology groups of the sheaf of germs of
holomorphic functions on 2 admitting a distribution boundary value.

3.1 Pseudoconvex domains in Kahler mani-

folds

In order to prove a solvability result for the d-problem with exact support in
pseudoconvex domains, we have to make a global assumption on the ambient
complex manifold as well as an additional assumption on the domain itself.

We will denote by (X, w) an n-dimensional Kéhler manifold. Let Q@ CcC X
be an open set. Let d(z) be the distance from z € €2 to the boundary of
with respect to the metric w.

Definition.
We say that € is log §-pseudoconvex, if there exists a smooth bounded func-

32
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tion A on €2 such that
i00(—log$ + h) > Cw in Q. (3.1)

for some C' > 0.
In particular, every log d-pseudoconvex domain €2 admits a strictly plurisub-
harmonic exhaustion function, therefore {2 is a Stein manifold.

Example 1.

Let X be a Stein manifold and let {2 CC X be a domain which is locally
Stein, i.e. for every x € 0f), there exists a neighborhood U, of z in X such
that QN U, is Stein. It was shown in [Ele75] that there exists a Kéhler metric
w on X such that € is log d-pseudoconvex.

The same remains true if X is only assumed to admit a strictly plurisubhar-
monic function (see [Ele75]).

In particular, every bounded weakly pseudoconvex domain with smooth
boundary in C” is log d-pseudoconvex.

Example 2.

Let (X,w) be a Kahler manifold with positive holomorphic bisectional cur-
vature, that is TH°X is positive in the sense of Griffiths. Then every domain
) CC X, which is locally Stein, is log d-pseudoconvex (see [Tak64] for the
case X =P [Ele75], [Suz76]).

In particular, the complex projective space P" is a Kédhler manifold with
positive holomorphic bisectional curvature. Indeed, let wrg be the natural
Kéahler metric on P”, called the Fubini-Study metric, which is defined by

Pwps = %8510g(|§0|2 G+ + G

where (y,...,(, are coordinates of C"*! and where p : C**' — P" is the
projection. Let z = ((1/Co, - --,Cn/Co) be non homogeneous coordinates on
C" = {{y # 0} C P". Then, since 991og|(y|* = 0 on {{; # 0}, we see that

(1+12%)0i; — Ziz;
(14 [2]2)?

= 9y 0
wps—iﬁalog(l+|z| )—5 Z

1<i,j<n

de' A de y

thus
0 8 5ij Ez‘ Zj

hii(z2) =(=—(2), =—(2))wprs = — .
J(Z) <821(2) aZJ(Z)> FS 1+ |Z|2 (1+ |Z|2)2
To calculate the curvature of T1P" at a point zy, we may without loss of

generality suppose zy = 0. A Taylor expansion around z = 0 shows that

hkl(z) = (1 — ‘Z|2)5kl — Ekzl + O(|Z’3)
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Formula (1.1) then shows that the curvature coefficients are as follows:

82Ek
0%

Hence
Cuu(O) = 2, Ciijj(o) =1if 3 7é j, Cijji<0) =1if 3 7& j, Cijkl(o) = 0 otherwise.
Thus
(TP @v,E@v) = 2) &GPl + D161+ &€ vim
i=1 i#j i#j
=[PP + [{&0) P > [P > 0
if 0 # &= 6z TP and 0 # v = Y7 v;5%= € T'OP", which

shows that P" has positive holomorphic bisectional curvature.

By [SY80] we moreover know that a compact Kéhler manifold with po-
sitive holomorphic bisectional curvature is biholomorphic to P".

In general, ¢ is not a smooth function in 2. However, in [Ste70, p.171],
the existence of a regularized distance having essentially the same profile as
0 is proved:

There exists a function A € C*(£2,R) satisfying
c10(x) < A(z) < c0(x) and

aa

|3:1:O‘

where x = (z1,...,xe,) are local coordinates on X. By, ¢ and co are inde-
pendent of €.

A(z)] < Ba(d(x))' ™

3.2 The L? estimates

Let (E,h) be a hermitian holomorphic vector bundle on X, and let N € Z.
We denote by L2 (Q, E, N) the Hilbert space of (p, ¢)-forms u with values in
E which satisfy
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Jully = [ a2, ANV, < oo,

Here dV,, is the canonical volume element associated to the metric w, and
| |w.n is the norm of (p, ¢)-forms induced by w and h.

Proposition 3.2.1
Let Q be a relatively compact domain in a Kdihler manifold (X,w). We
assume that 0 is logd-pseudoconvex. Let (E,h) be a hermitian holomor-
phic vector bundle on X and let N > 1 and 1 < q < n. Suppose f €
L% (9, E,N)NKerd. Then there existsu € L2 _,(Q, E, N) such that Ou = f
and |lullx < | fllx-

Proof. This follows immediately from Theorem 1.4.4. Indeed, since A
has essentially the same features as 6 exp(—h)(cf (3.1)), it suffices to prove
the statement with A replaced by 0 exp(—h) in the definition of the spaces
L2 (Q, E,N). But for N sufficiently large, we clearly have

iO(E) + Nidd(—logd + h) @ Idg > w ® Idg

by (3.1), thus Theorem 1.4.4 yields the desired vanishing result; note that
—logd + h = —log(d exp(—h))). O

Proposition 3.2.2

Let Q) be a relatively compact domain in an n-dimensional Kahler manifold
(X,w). We assume that Q2 is log 0-pseudoconvex. Let (E,h) be a hermitian
vector bundle on X and let N > 1. Suppose f € L(Q)’q(Q,E,—N) N Ker0,
1 <q<n—1. Then there exists u € L3 ,_,(Q, E,—N +2) such that du = f
and |Jull_y12 < || fll-n-

Proof. Suppose 1 <g<n-—1andlet f € Laq(Q,E, —N)NKerd, N > 1.
We define the linear operator

Ly: 0L, (Q,E"N—-2) — C
dp +— /fAso
Q
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Note that the integral on the right hand side is finite, since

| / FAgl < / FRANAL) - ( / GPANAVL) < [1F12 09l s

Let us first show that L; is well defined.

B Indeed, let @1, @, € L7, ,(Q,E*, N — 2) such that O0p1 = Opy. Then

d(p1 — ¢2) = 0, and by Proposition 3.2.1, since n — ¢ > 1, there exists
ael? (Q, E*, N — 2) such that da = ¢1 — ¢o. But then

g1
LAfAGﬁ—wﬂ ZQAfAEa

= lim(—1)? A«
e—0 9.

= —lim f A da
e—0 Q\QE

= —lim f/\(gOl—(,OQ)
e—0 Q\Qs
with (£2.)es0 an exhaustion of € by smoothly bounded domains such that
Q. D {z€ Q| A(2) > e}. Here we have used Stoke’s theorem several times.
The third equality is obtained as follows: Fix ¢ < 0 and choose for each large
> g a C* function x; such that xy; =1 on Q2, x; =0o0n 01,0 < x; <1,
J J

|Dyx;| < Cj, and set a; = x o € D™~ 771(Q). Then we have

f/\%j:/ i f A Oa + fAIX; Aa
o\, O\Q- O\Q.
and
| fAdx;ANal? < C’/ |f|iA_Nde-/ Pla2ANdV,
Q\Qe AN

Q\Qe 2
J

< CIfIZyllali—e.
Hence the dominated convergence theorem gives
/ fAOa = lim f AOda; = (—1)"lim A(f A ay)
O\ 7 Jona. 7 Jo\Qe

= —(—=1)?lim fAa; =—(-1)1 fAa.
7 Joq. 0
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Moreover,

| fA(pr =) < (/Q\Q flEAT)2 (/ 1 — @l AN) 2

Q\Q. Q\Q.

7e—0 0

(note that (fo, o le1 — PaZAN)2 < e(fona, lo1 — w2 AN-2)1/2 <
ellpr — pa||nv_2 — 0 as e — 0 since 1,0 € L2, (Q, E*, N — 2)).

n7n_q

Thus L¢(p1) = Ls(p2).

Now let
¢ € Dom(d : L2, (QLE*N—-2) — L2, . .,(Q E" N —2)). Applying
Proposition 3.2.1, there exists € L2, (9, B*, N — 2) satisfying 0p = 0y

n7n_q

and ||@||x—2 < [|0¢||n—2. This yields
|Ls(9p)| = |L(92)] = I/QfWI < [[fll-wllllv

<N l-wlI@ln-2 < [ Fll-w 0@l v -2

Thus Ly is a continuous linear operator of norm < || f||_ and therefore, using
the Hahn-Banach theorem, Ly extends to a continuous linear operator with
norm < || f||_x on the Hilbert space L , (€, E*, N —2). By the theorem
of Riesz, there exists u € L§,_1(, E, —N + 2) with [lul|_ny42 < || f]|-n such

that for every ¢ € L2 (Q, E*, N — 2) we have

n,n—q

(17 [ unde=1y00) = [ Fre,

ie. Ou=f. 0

3.3 The O-problem with exact support

In this section, we will show some vanishing and separation theorems for the
0-cohomology groups with values in a vector bundle F supported in §2:
HP(X,QE) = {fe€C2(X,E)|suppf C Q} NKerd/
o{fec (X,E)|suppf C Q).

p,g—1
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This is done by solving the 0-equation in the L?sense as in the last
section and then applying the results of Chapter 2 to the operator L_y =
%:\, + 5*_]\,5 for N > 0. Here 5*_]\, is the Von Neumann adjoint of O :
L2, (QE -N+2) — L2 (2 FE —N). An easy computation shows that
9 yu = AN29 (A~Nu), where 8., is the Von Neumann adjoint of & with
respect to the metric w on X.

Theorem 3.3.1 B
Assume that Q has Lipschitz boundary. Let u € L2 (Q, E,—N) satisfy Ou =

fand 9" yu =0 with f € CN (X, Q,E)NCe(QE).
Then u € Cz,(qN)(X, O, E)NCX(Q, E) where s(N) is a function proportional
to VN, N> 1.

Proof: The above theorem is a consequence of the results of Chapter 2.
Indeed, since 0 yu = AN=29 (A~Nu), where 9., is the adjoint of & with
respect to the metric w on X it is clear that [J_y is an elliptic operator of
polynomial growth with respect to A on §2. Since - =0, and Ou = f, we
have O_yu =0 ~f. From general results on domains with Lipschitz bound-
aries (see [Gri85]), we deduce that 8 f € Cé\fq__’“f (X, Q. E)nCx (9, E) for
some kg not depending on N. The result then follows from Theorem 2.2.1,
using a finite partition of unity.

More precisely, fix z € 902 and let U be a coordinate neighborhood of z.
We assume that AP97T*X @ E is trivial over U. On U NQ, v = (uy, ..., u,)
can then be regarded as a mapping U N Q) — C’, r = rank(APIT*X ® E).
Moreover, O_yu is of the form (Luy, ..., Lu,)+ lower order terms, where
the lower order terms involve only derivatives of order at most 1 of v and
multiplication by functions whose derivatives can be bounded by some power
of A; L is an elliptic operator of order 2 on U N (), which is of polynomial
growth with respect to A.

Choose a function y € D(U) which equals one in a neighborhood of z.
Multiplying all functions by y, we may assume that we are in C" and may
define Sobolev norms for mappings componentwise; hence we get from the a
priori estimate (2.3)

_ _ 2
||XU||§,UmQ SA tsD—N(XU)Hi—Q,UQQ + AT XU||(2),UmQ

_ _ a2
SNAT X0 wull2_s png + 1A xul2_; yrag + 1A xull§ yna
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(note that it follows from the proof of Theorem 2.2.1 that the lower order
terms have no essential importance). By carefully looking at the proof of
Theorem 2.2.1, we see that the term ||A*'fsxu||§_17UmQ can be absorbed by
the term ||A*T“52 XU”(Q),Uva replacing ¢ and 1" by larger integers if necessary.
Putting this together with the above inequality, we have

—T's?

||XU||5 UnQ ~ S AT tsXD NUHS 2.UnQ T 1A XUHO UnQs

i.e. xu verifies the a priori estimate (2.3). Since (2 is relatively compact in
X, we may even assume that ¢t and 1" are independent of z € 9€). Note that
in the proof of Theorem 2.2.1, we have seen that it suffices to show the a
priori estimate in order to prove the vanishing to some finite order at the
boundary. Hence the theorem is proved. O

We are now ready to prove the main theorem of this section.

Theorem 3.3.2
Let Q be a relatively compact domain with Lipschitz boundary in an n-
dimensional Kdhler manifold (X,w). We assume that € is log §-pseudoconver.
Let E be a holomorphic vector bundle on X. Then we have
HP(X,QE)=0 for1<qg<n-1
and
HP™(X,Q, E) is separated for the usual C>® — topology.
Moreover,
8(0;‘; (X, F)) =
({feCr(X.QE) |/f/\h—0‘v’h€Ln 0(Q E*,N) N Kerd}.

NeN

Proof: Replacing the vector bundle E by AP(T'°X)* @ E, it is no loss of
generality to assume p = 0.

We will begin by proving the following claim:
Let f €Ch L X QE)NCE(Q, E)NKerd, 1 < g<n-—1, k> 1. Then there
exists u € Cé f)l(X,ﬁ, E)NC§e,_(Q, E) such that du = f with j(k) ~ Vk.

Proof of the claim: B
Let f e Ci (X, Q,E)NCE(Q E)NKerd, 1 <g<n-—1, k> 1. General
results on Lipschitz domains (see e.g. [Gri85, Theorem 1.4.4.4] or Theorem
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A.2.2) show that f € L§ (Q, E,—2k). Proposition 3.2.2 implies that there
exists u € L§, 1(Q, B, =2k + 2) such that Ou = f in Q. Moreover, choosing
the minimal solution, we may assume 8i2ku = 0. Applying Theorem 3.3.1,
we then have u € CJ0” | (X, 0, B) N €3, (2, E) with j(k) ~ VE.

Let us now prove the theorem.

H(X,Q, E) = 0 follows immediately from the above claim and the hy-
poellipticity of 0 in bidegree (0, 1).

Now assume 1 < ¢ < n —1 and let f € Cé’f’q(X,ﬁ,E) N Kerd. By
induction, we will construct wu, € C§,_1(X,Q, E) N C5o_1(Q, E) such that
Ouy = f and |upyy — gl jr—1 < 27%. Tt is then clear that (uy)ren converges
to u € Cg5,_1 (X, €2, E) such that Ju = f.

Suppose that we have constructed ug, ..., u;. By the above claim, since
[ € C5 (X, Q, E), there exists apyy € Cé”;il(X, Q, E)NCg 1 (2, E) such that
f = 0ay1. We have ayyq —uy, € C§ (X, Q, E)NCGS_1 (2, E) NKerd. Once
again by the above claim, there exists g € Céfo(X, Q,E)N Coo2(Q, E) sat-
isfying a1 — ux = 0g.

Since C§%_,(X,Q, E) is dense in Cgffg(X, Q, F), there exists g1 € C§5_o(X,Q, E)
such that [g — g1l < 275

Define w1 = g1 — Ogepr € Chil(X,Q,E) N C_1(Q,E). Then

Oy = [ and Juppr — upljm—1 = 109 — Ogrs1limy—1 < 19 — grraliony < 275
Thus ug,1 has the desired properties.

It remains to show that

5(68,071—1 (X7 ﬁa E)) =

ﬂ {f €C(X,QE) | /ﬂf ANh=0Vhe L2(Q,E",N)NKerd}.

NeN

This clearly implies that Ho"(X, Q, E) is separated.

First of all, suppose f = OJa with a € Cgf’n_l(X,ﬁ, E) and let h €
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L% ,(€, E*,N) N Kerd. Then we have

/f/\h = Oa A h
Q

with Q. D {z € Q| A(z) > ¢} and

[ oran < </ ANz </ B AN+2)Y2
Q\Qe

N\ 2\0.
< ellfl-n—2llbllx —c=0 0

N

which shows the inclusion C (note that f € Cg5, (X, Q, E) implies f €
L%vn(Q,E, —N —1) for all N € N, c¢f Theorem A.2.2, and see the proof of
Theorem 3.2.2 for the justification of some of the equalities).

Now, let us take f € Nyen{f € CL(X,LE) | [, f Ah =0Vh €
L%,(9, E*,N) N Kerd}.

We first show that for each NV € N, N > 1, there exists
By € L§,, (9, E,—N) satisfying 00y = f.

To see this, we define the linear operator
Li: Im(d: L2 o(Q, E*,N) — L2, (Q,E*,N)) — C

Oy — /f/\go.
Q

First of all, notice that L is well-defined because of the moment condi-
tions imposed on f.

By Proposition 3.2.1, Im(9 : L2 ,(2, E*,N) — L2 (Q, E*, N)) is a closed
subspace of L%I(Q, E*,N). Applying Banach’s open mapping theorem, we
know that Ly is a continuous linear operator and therefore extends to a
continuous linear operator on the Hilbert space L7 | (2, E*, N) by the Hahn-
Banach theorem. By the theorem of Riesz, there exists Gy € Lan_l(Q, E,—N)
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such that for every ¢ € L2 ((Q, E*, N) we have
(-1 [ By nTe=Ls(e) = [ 1ne
Q Q

i.e. gﬁN = f

Now tl&e proof follows the same lines as abgve, and we construct (Ug)ken €
Ch,n1(X,Q, E) converging to u € Cg5, (X, €, E) such that du = f, which
concludes the proof. O

Corollary 3.3.3 (see [HI0O0])

Let Q C X be a C*®-smooth domain in a compact Kihler manifold (X,w)
of complex dimension n. We assume that € is logd-pseudoconvex. Let E
be a holomorphic vector bundle on X. Assume that H»(X, E) = 0 and put
D=X\Q.

Then for every O-closed form f € Cgﬁl(ﬁ, E), which is smooth up to the
boundary, there exists u € C°_ (D, E) such that ou = f, 1 < g <n — 2.

P,q—1 -
For ¢ = n — 1, the same holds true if there exists f € C.5,_1(X, E) such

that f@ = f, Of vanishes t_o infinite order on OS2 and fQ Af Ah =0 for all
helLl? (Q,E* N)NnKerd, for all N € N.

n—p,0

Proof: Choose f € C>5 (X, E) such that f@ — f. Then Jf vanishes to
infinite order on 9. Applying Theorem 3.3.2, there exists h € 35 (X, O, F)

such that Oh = df. F := f — h is ‘then a O-closed C™ extension of f to X.
As HP(X, E) = 0, we have I = du for some u € Cp_,(X, E). Then ugp
has the desired properties. 0

3.4 The O-equation for extensible currents

The results of the previous section will allow us to solve the d-equation for
extensible currents by duality.

Let €2 C X be an open set in an n-dimensional complex manifold X. A
current 1" defined on 2 is said to be extensible, if T is the restriction to €2 of
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a current defined on X.

It was shown in [Mar66] that if () satisfies Q = Q (which is always sat-
isfied in our case), the vector space D'g?(X) of extensible currents on €2 of
bidegree (p, q) is the topological dual of C2° (X, Q)NDrPrr9(X).

n—p,n—q

Theorem 3.4.1

Let € be a relatively compact domain with Lipschitz boundary in a Kdahler
manifold (X,w). We assume that € is log §-pseudoconver.

Let T € D'%Y(X) be an extensible current on Q0 of bidegree (p,q), q > 1 such
that 0T = 0 in Q. Then there exists S € D59 (X) satisfying 0S = T in Q.

Proof: Since § is relatively compact in X, we have C3* . (X, Q)N

Drrn=1(X) = C (X,9). Let T € D'BX) be an extensible current

n—p,n—q

on € of bidegree (p,q), ¢ > 1, such that 97 = 0 in Q.

Consider the operator
Lr:  0CY,, (X,Q — C

5@ — <T, o>

We first notice that Ly is well-defined. Indeed, let ¢ € C2° (X, Q) be
such that dp = 0.
If ¢ = n, the analytic continuation principle for holomorphic functions yields
p=0,50 <T,p>=0.
If1 <qg<n-1,onehas ¢ = do with a € C,, . 1(X,Q) by The-
orem 3.3.2. As D" P 71(Q) is dense in C°,, . 1(X,Q), there exists

(o) jen € D"P=971(Q) such that da; — Oda in C° (X,9).

]—>+OO n—p,n—q

Hence < T, ¢ >=< T,0a >= lim; 4 <7, 50@ >=0, because 0T = 0.

By Theorem 3.3.2, C5°, ,_,(X,€) is a closed subspace of
Colpny (X, Q), thus a Fréchet space. Using Banach’s open mapping the-
orem, L is in fact continuous, so by the Hahn-Banach theorem, we can
extend Ly to a continuous linear operator Ly : C;2,,, ,.1(X, ) — C, ie.

Ly is an extensible current on  satisfying

< OLp,p >= (—1)PY1 < Ly, 0p >= (=1)P"1 < T, >
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for every ¢ € C;° (X, Q). Therefore T = (—1)P*90 L. O

n—p,n—q

For the notion of differential forms admitting distribution boundary va-
lues, which is used in the following corollary, we refer the reader to [LT78].

Corollary 3.4.2

Let Q) CC X be a C*-smooth relatively compact domain in a Kdahler manifold
(X,w). We assume that § is log 0-pseudoconvex. Let f be a smooth O-closed
(0,1)-form on Q admitting a distribution boundary value on OS).

Then there exists a smooth function g on Q) admitting a distribution boundary

value on O such that Og = f on €.

Proof: As f admits a distribution boundary value, we may view f as
an extensible d-closed current on € (see [LT78]). Applying Theorem 3.4.1,
there exists an extensible current S of bidegree (0,0) on 2 such that S = T.

The hypoellipticity of d in bidegree (0,1) yields that S is in fact a C>-
smooth function on 2. But a C*°-smooth function S, extensible as a current,
such that 05 admits a distribution boundary value, admits itself a distribu-
tion boundary value (see [Sam99, Lemme 4.3]). O

Corollary 3.4.3
Let Q CcC X be a C®-smooth domain in a Kdihler manifold (X,w). We
assume that ) 1s log §-pseudoconvex. Then we have

H1(Q,0q) =0
for every ¢ > 1, where O is the sheaf of germs on S of holomorphic functions
admitting a distribution boundary value.

Proof: We will show that

0— Oq — DUX) 2. L Po(X) — 0

is an exact sequence of sheaves on Q. Then the de Rham-Weil theorem yields

5,0, 9 5/0,g+1
HY(Q, @Q) i~ Ker(?,ﬂq()ﬁ —;lezq (X))
Im(D'" ™ (X) — D'I(X)
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and by Theorem 3.4.1, the right hand side of the above isomorphism is 0 for
q=>1

First of all, Ker(D'g’(X) 2, D'ENX)) = O was proved in [LT78].

Now fix zp € Q and let B(z) be a small ball around 2, such that either
B(z9) N 09 = 0 or B(zp) intersects 0f) transversally. Set V' = QN B(z).
Applying Theorem 3.4.1, we conclude that for every T' € D’ ?,’q(X ) satisfying
T = 0 in V, there exists S € D' '(X) such that S = T in V, ¢ > 1.
This proves the exactness of the rest of the above sequence. O



Chapter 4

The weakly g-convex case

In this chapter, we consider the following situation:

Let €2 be a smooth bounded completely strictly pseudoconvex domain in
a complex n-dimensional manifold X and M a real hypersurface of class C*>
intersecting 0f) transversally, such that 2\ M has exactly two connected
components. We suppose that M = {o = 0} where p is a C* function
whose Levi form has exactly p* positive, p° zero and p~ negative eigenval-
ues on THOM for each x € M, p~+p’+pT =n—1. Weput D = QN {p < 0}.

We show that the d-equation with exact support in D admits a solution
in bidegrees (p,q), 0 < p <mn, 1 <q<pt+p° Moreover, the range of 0
acting on smooth (p, p™ + p°)-forms with support in D is closed.

4.1 Basic properties of weakly ¢-convex do-
mains

Let X be an n-dimensional complex manifold. Let 1) be a real-valued C3-
function on X and z € X. Then we define the hermitian form L£(,z) on
THX -the Levi form of - as follows:

Choose holomorphic coordinates (z1,. .., z,) in a neighborhood of x and set
el = 3 g2
TS = 8,2] 8zk

if € =370 &pe (2) € THOX.

46
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By py,(x) (resp. pj(z), resp. p,(z)) we denote the number of positive
(resp. zero, resp. negative) eigenvalues of £(v, x).

We say that 1 is a g-convex function if L£(1),x) has at least ¢ positive
eigenvalues for each = € X, i.e. pj;(x) > q for all z € X.

Let M be a smooth hypersurface in X. We denote by T1°M the holo-
morphic tangent space of M at x.

Such a hypersurface can be represented locally in the form
MNU={zeU|o(z) =0},

where o is a real valued C* function in an open subset U of X. In this
representation, we have

- 0 "0
THOM = Gr e THX | 2 (2)g = 0},
=1 8Zj = 8zj

where (21, .., z,) are local holomorphic coordinates in a neighborhood of z.

Now let Q CC X be a domain with C? boundary:
QNU={z€U|o(z) <0}

where U is an open neighborhood of 92 and o is a function of class C? on U
satisfying dp # 0 on 0Q = {z € U | p(2) = 0}.

Let z € 002. By pig(2) (resp. phqo(2), resp. pyq(z)) we denote the num-
ber of positive (resp. zero, resp. negative) eigenvalues of L(p, z)|TZ1,o oq- This
number is independent of the defining function p for 2. We say that €2 is
weakly g-convex if pyo(2) <n—¢—1 for all z € 9.

It is well known that an open set with C? boundary, whose Levi form
is semi-positive at each boundary point, admits a strictly plurisubharmonic
exhaustion function. The following two lemmas generalize this property to
domains whose Levi form also has some negative eigenvalues. They have
been proved in [Mic93].

Lemma 4.1.1
Let Q C C™ be an open set with C? boundary. Let rq be the function defined
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by ra(z) = —dist(z,09Q) if z € Q, rq(z) = dist(z,00) if z ¢ 2.

Let ¢ € 092 and assume that pyo(z) < s for every z € 052 close to (. Then
there exists an open neighborhood U of ¢ such that L(—log|rql,z) has at
most s negative eigenvalues for each z € QN U.

Proof: Define ¢ = —log|rq|. Let V' be a neighborhood of ¢ such that
rq is of class C? on V and such that on V N9Q, py, < s. Let U C V be a
sufficiently small open neighborhood of { such that the orthogonal projection
on 02, m, is defined on U and satisfies 7(U) C V N OS.

Let 2 € U N and define k = p_(2). Then there exists a k-dimensional
subspace I of C" such that L(¢p, 2)|p is negative definite.

Let w = (wy,...,w,) € E'\ {0}. We consider the function f, defined in
an open neighborhood of 0 in C" by

f(1) =p(z+1w) = —log|ra(z + Tw)]|.

f is of class C? in a neighborhood of 0 and Taylor’s formula implies

—f(7) = —p(2) + Re(AT + B7?) +c|t|* + o(|7|?), T —0 (4.1)
. n n 2
with A = —20p(z)(w) = -2 Zj:l a%%(z)wjﬁ B = _Zj,kzl %jf;%k(z)ijk

and ¢ = —L(p, z)w > 0.

Let P=m(z) € VNOQ. Set a = P — z and

2(7) = 2z + Tw + ae?THET
If 7 is suffiently small, (4.1) yields
dist(z(7),0Q) > dist(z + 7w, Q) — |ae BT > |a|(eT/2 = 1)|eATHET.

The function
g: 7+ —rqa(2(7))

has therefore a minimum at the point 7 = 0. We must therefore have
dg(0) = 0 and (—88:%;Z)|T:0 > 0. Hence 2/'(0) = w — 20¢(2)(w)a € TH00

and L(rq, P)z'(0) < 0. We observe that L(rq, P)z'(0) < 0 implies in partic-
ular that 2/(0) # {0}.

Let L be the endomorphism of C" defined by L(u) = u — 20¢(z)(u)a; in
fact, L is the orthogonal projection of C" onto T}D’O@Q. We set F' = L(FE).
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Then the preceeding computations show that F' C T}D’OaQ, dimF = k and
L(rq, P)|r is negative definite. But by hypothesis, py,(P) < s. Hence k < s,
which proves the lemma. O

Lemma 4.1.2

Let Q CcC C™ be an open set with C* boundary, k > 2. We assume that
Poa(C) < s for all ¢ € 0. Then, for all A > 0, there exists a defining func-
tionr € C*(Q,R) for Q such that L(—log|r|, z) has n—s positive eigenvalues,
greater than or equal to A, for each z € Q.

Proof: We set g = —log|rq| (see Lemma 4.1.1). Let V' be a small open
neighborhood of 9 where rq is of class C*. By Lemma 4.1.1, £L(pq, s) has
n — s nonnegative eigenvalues for all z € V N Q if V is small enough. We set

¢ = xopa+ Alz|?

where x is a convex increasing C*> function on R such that
L.
x(z) = ct g if z €] — o0, ¢,

xX(x)=zif v €c+1,400]

with ¢ such that Q\ V C {pq < c}. Since x is a convex increasing function,
we have

L, )€ = X'(pa) L(pa, )e+X" (pa)|00a()P+AI2]* > X' (¢a)L(pa, )E+Alz[.

If 2 € {pq < c}, L(p, 2)€ = A|€]?, thus all the eigenvalues of L(y, z) are > A.
If z € Q\{pa < ¢}, z € QNV and L(p, z) has n— s positive eigenvalues > A.

Let r be the function defined by
r(z) = e A Prg(2) if 2 ¢ Q,

r(z) = —e @ if z € Q.

By definition, r = exp(—A|z|?)rq on the set {|rq| < exp(—c — 1)} and r is
thus a defining function of class C* of Q. As p = —log|r| in Q, r has the
desired properties. O

If one replaces C" in Lemma 4.1.2 by an arbitrary Stein manifold X,
one obtains a similar result, which is, however, more difficult to prove (see
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[Mat96, Proposition 7.2] and its proof):

Theorem 4.1.3

Let X be an n-dimensional Stein manifold, w a complete Kahler metric on
X and Q be a weakly q-convex domain with C* boundary. Then there exists
a positive function daq of class C* on §, which coincides with the boundary
distance function of Q0 with respect to w near 0S), having the following prop-
erty:

There exists ¢ > 0 and a smooth bounded plurisubharmonic function h on ()
such that L(—logdsq + h,-) has at least (g + 1) positive eigenvalues which
are > ¢ with respect to w.

Let 2 CC X be a nonempty domain. We say that €2 is completely strictly
pseudoconvex if there exists a function g of class C? in a neighborhood Ug
of  such that Q = {z € Ug | o(z) < 0} and such that L(g,z) is positive
definite for all z € Ug.

The remainder of this chapter is dedicated to the study of the d-equation
with exact support in a certain domain which is a transversal intersection
of a completely strictly pseudoconvex domain with smooth boundary and
a weakly g-convex domain with smooth boundary. In particular, it follows
from Theorem 4.1.3 that such a domain is piecewise smooth and is a g-convex
manifold, i.e. it admits a (¢ + 1)-convex exhaustion function.

4.2 Construction of a family of metrics

Let 2 be a smooth bounded completely strictly pseudoconvex domain in a
complex n-dimensional manifold X and M a real hypersurface of class C*>
intersecting 02 transversally, such that Q \ M has exactly two connected
components. We suppose that M = {0 = 0} where p is a C*™ function
whose Levi form has exactly p* positive, p° zero and p~ negative eigenval-
ues on THOM for each x € M, p~+p’+pT =n—1. We put D = QN {p < 0}.

As €1 is completely strictly pseudoconvex, there exists a neighborhood Ug
of Q in X and a strictly pseudoconvex smooth function ¢ on Ug such that
Q = {z € Us | ¥(2) < 0}. We define w, = i00y. w, is then a hermitian
metric on Ug.
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We can find a weakly (0 + p+)-convex domain € CC X with smooth
boundary such that M NQ C 99. Then by Theorem 4.1.3, there exists ¢ > 0
and a smooth defining function d,; for M, defined on a neighborhood V' of
M N Q such that for every z € V N {o < 0}, £(—1log by, x) has p~ nega-

—C

tive eigenvalues less than or equal to S (e’ p° positive eigenvalues greater or

equal to ¢ and p* + 1 positive eigenvalues greater than or equal to v‘j(c) with

respect to w,. For later convenience, we set V'~ =V N {p < 0}.

The proof of the following lemma basically follows from the proof of
Proposition 2.3 in [Mic93]. However, since we have made some adjustments
and precisions, we include the complete proof.

Lemma 4.2.1

Fiz xy € MNQ. Then there exists a neighborhood U of xo in X and a smooth
orthonormal basis (C1(z),. .., Cu(x)) of (TFOX)* with respect to w, on U such
that on U N D we have

L(z) := —i0dlog b ()

= Y 0, @)@ A @)+ Y al, (2)Cu(x) A, ()
=1 wv=p~+1

Y an(@)G(@) AC (@) + an(@)Gu(@) AL, (2)
my=p~+p°+1

=L (2)DLY2) D LT (z) ® L™()

such that L~ (x) has p~ eigenvalues smaller than the p° eigenvalues of L°(x),
which in turn are smaller than the p* eigenvalues of LT (x), and a,(z) is the
biggest eigenvalue of L(x).

Moreover, if (L1(z), ..., L,(x)) is the dual basis of ((1(x), ..., (x)), we

can arrange that

(1) [La, Lgl(xz) € Span(L,-11(x),..., Ly-4p(z)) for x € M and o, €
{p+1,....p+p"%

(11) [La, Lgl(x) € Span(Ly(x), ..., Ly—1(x)) for o, € {1,...,n — 1} and
reM

(iii) [La, Lgl(z) € Span(Ly,-1(x), ..., Ly-1p0(), Ly~ 11(x), ..., Ly p0(2))
forz e M and o, € {p~ +1,....,p~ +p°}
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(i) [La, Lg)(x) € Span(Ly (), ..., Ly_1(x), Li(x), ..., Ly_1(x)) for a €
{1,....n—=1},8€{p+1,...,p  +p°} andz € M

Proof: The Levi form of M at the point x is the bilinear map L, :
{THM & To "M} x {TM & T:° M} — {T,M @ C}/{T}°M & T ° M}
defined by £,(X,,Y,) = %m (X, Y.]z, where 7, is the projection
{T,M ® C} — {T,M @ C}/{T°M @ T *M}. Since, by hypothesis on M,
the Levi form of M has exactly p” zero eigenvalues everywhere, N*°M =
Upers NIOM | where

NyM ={L, € T?°M | Lo(L,,Y,) =0V Y, € TAOM}

is the Levi null set at z, forms a subbundle of T°M of rank p°. Moreover,

it is easy to see (use the Jacobi identity, cf [Fre76]) that N'OM ¢ NM s
involutive.

Now fix xg € M. We may then choose a subbundle N = U, N, of rank
p° of TH°X on a neighborhood V of zy in X such that N, = N}OM for
x € M NV. Moreover, we may assume that N is itself a subbundle of
T = Kerddy NTYX. Note that T is a subbundle of 71X of rank (n — 1)
on V such that T, = T}°M forx € M NV.

Let \Y < ... < A2_, be the eigenvalues of M(z) := i000y (2)r,. It
is well known that the functions = +— A? are continuous on V. Using the
assumptions on M, we have

A< 0= A =

J— xr
p—+1 = - p—+p0 <A

p~+p0+1
for every x € M NV. For a small € > 0, we therefore get a neighborhood W
of zg in X such that for z € W

x xT
Ap- < =€, Ap- 04 > 6,

Mo (—ge)fori=p +1,....p" +p"

Moreover, we can find R > 0 such that all the A are of absolute value smaller
than R for each x € W.

Intersecting the cercle of radius R centered at 0 with the lines [—¢ + iR]
and [e+iR], we obtain three closed paths '™, I'® and I'* such that for z € W,
none of the eigenvalues of M(x) lies on T~, T? or T'*.
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We may assume that W is small enough such that there exists a smooth
orthonormal basis X, ..., X,_; of T"on W such that X,-;,..., X,~ 0 isa
smooth basis of N on W.

We denote by M (x) the matrix of M(x) in the basis Xi,...,X,_1 and
by (e1,...,en_1) the standard basis of C""!. We then have KerM(z) =
Span(ey- 41, . - ., €p—4p0) for every x € M NW.

For x € W, we may set

M(z) — i [ (@) = 210)d
°(x) = % FO(M(:zc)—zld)_ldz,
M) — i [ (@) = 10)

Then I1-, TI° and IIT are C> mappings in a neighborhood of z( (e.g. TI~
is the composition of the C*° map x — M (x) and the holomorphic mapping
from the space of hermitian (n — 1) X (n — 1) matrices to itself given by
A 5= [ (A= zId)"!dz). Tt is easy to see that II7(z), II°(z) and II™(x)
are the orthogonal projections of C*~! onto

E-(z) = Y Ker(M(x)- XId),

— 0

p~+p
E%z) = Z Ker(M (z) — AJ1d) and
v=p—+1
n—1
Ef(x) = > Ker(M(z)— \Id)
v=p~+p°+1

For every x € M N'W we have E°(x) = Span(e,—;1,...,€,-1,0). There-
fore, if W is small enough, the vectors

Ep-+1(2) == T10(2) (ep11); -, Epypo 1= T10(2) (1 p0)

form a basis for E°(x). After a permutation of some indices, we can also
achieve that

ér(x) =1I"(x)(e1),..., - (x) =TI (x)(ep-)
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span E~(z) and that

g1 (1) = T (@) (€ go)s B (@) 2= T (2) (00

span Et(z). Due to the Gram-Schmidt orthonormalization procedure and
the fact that eigenvectors associated to different eigenvalues are orthogonal,
we may assume that (é;(x),...,€,_1(x)) is an orthonormal basis for the stan-
dard scalar product on C*~!.

We define [;;(z) by é;(z) = Z?;ll lij(z)e; and set
Li(z) = Z?:—ll lij(x)X;(z). Then (Ly(z),..., Ly—1(x)) is an orthonormal ba-
sis of T on W. Moreover, we have N2°M = span(L,-41(x), ..., Ly~ p0(2))
forz e W N M.

Now we apply the same procedure as above to the hermitian form
62,(x)L(x) = —i0p(2)008n + 100y A Oy on TH0X. We observe that this
hermitian form has (n — 1) eigenvalues which vanish on M as well as 1 eigen-
value which is positive on M. After possibly shrinking W, we then obtain
a unitary vector L, € T*°X on W, depending smoothly on z, which is an
eigenvector of £(z) and which is orthogonal to Li(z),..., L,—1(x) with re-
spect to wy.

Let (¢i(z),...,¢u (7)) € (TP X)* be the dual basis of (Li(z), ..., L,(7))
on W. This basis then gives the desired decomposition of £(z) on W. The

assertion (ii) follows because T"YM is stable under [ , ]. Moreover, since
NYM @ NYOM is involutive, we get (i) and (iii). Finally, (iv) follows by
definition of N0M. O

Let dp,4 be the boundary distance function of D with respect to wy. dp 4
will not be smooth since D is only a Lipschitz domain. However, like in
Chapter 3, Theorem A.1.2 (see also [Ste70]) provides us with a regularized
distance having essentially the same profile as dp 4:

There exists a function A € C*(D,R) satisfying
c10p4() < A(z) < c2dp4(x) and

° .
5 A@)] < Baldo (@)™,

where x = (21, ...,%e,) are local coordinates on X. By, c; and co are inde-
pendent of D.
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We also need to define a regularized maximum function. For each § > 0,
let x5 be a fixed non negative real C*°-function on R such that, for all
7 € R, xolw) = xs(=2), [2] < xa(@) < Jo| + 8, \s(@)] < 1, () = 0
and xs(z) = |z| if |x| > g We moreover assume that xj(x) > 0 if z > 0 and
Xj(x) < 0if 2 < 0. We set maxg(t,s) = &= + xs(52) for t, s € R.

We omit the proof of the following simple lemma:

Lemma 4.2.2
Let @, be two real-valued C?-functions on some real C* manifold X. Then,
for all 3 >0, and x € X, the following assertions hold:

(i) max(p(z),¥(x)) < maxg(p(r), Y(2)) < max(p(z), () + 0
(ii) maxg(p(x),¥(z)) = max(p(z), ¥(z)) if |p(x) —(x)] = 5
(111) There is a number A\, (p,¥) with 0 < A.(p, ) < 1, namely

1 , x) —Y(x
M(ow) = 5+ (P,
such that
Llmax(o,0). ) = Ao 0)L(8,2) + (1= Ml V), 2)
0 (ES D000 —v) A Bl — ()

Finally, we write a < b (resp. b 2 a) if there exists an absolute constant
C > 0 such that a < C'-b (resp. b > C-a). We writea ~ bifa S band a 2 b.

For some § > 0, we define ¢ = maxg(—logdy, —log(—v)) € C>®(D).
Then ¢ is an exhaustion function for D and (i) of Lemma 4.2.2 implies

max(—log dar, —log(—1)) < ¢ < max(—logdy, —log(—=v)) + 5,

thus
e P min(dys, =) < e7? < min(dyy, —1).

Hence e™% ~ A.

We set D; = {2z € D | e #® > %}
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The following technical lemma is the key point of this chapter. It permits
to obtain L2-vanishing theorems on D with powers of the boundary distance
as weight functions.

Lemma 4.2.3

There exists a hermitian metric wy on D and a family (w;)jen of complete
hermitian metrics on D with the following properties:

(i) wj = wyr on a neighborhood of Dj, w; > wyr on D.

(i) Lety1 < ... <, be the eigenvalues of i00¢ with respect to wy;. There
exists o > 0 such that y; + ...+, > o forr >n—p* —p°.

(iit) There are constants a,b > 0 such that a wy, < wy < b (5;42wg for all
jEN.

(iv) There is a constant C' > 0 such that |Owpslw,, < C.

(v) Let wy = i), whidz, Ndz, on UN D, where U is a neighborhood
of v € M and (z1,...,2,) are local holomorphic coordinates on U.
Then, for every multiindexr o, there exists a constant C, such that
sup,, | Dwhy (2)| < Cq 5;42_‘a|(z) for every z € UN D.

Proof: Let Ay € C*°(EndTQ2) be the hermitian endomorphism associated
to the hermitian form —iddlog dps with respect to w, and let 7 < ... <~A¥
be the eigenvalues of A,.

We have —i00 log 6y = _;M 000y + i01log 6pr A Olog dyr. Thus there is a
constant ¢ > 0 such that

g % g ¢
Y (z) < BFTPEEEEE V- (@) < o
’7274_1(1') Z Cyovvy §7+p0($) Z ¢,

g ¢ g ¢
pr—+p0+1 (‘T) Z E? ct ’yn—l(x) Z E’ and

() = c |0log duly ()
for every x € V7, after possibly shrinking V.

Moreover, we claim that there exists a constant ¢ > 0 such that

’yz*_t,_l(l’) S C/a R §7+p0 ('I) S C/
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This can be seen as follows:
Fix g € M. As in the proof of Lemma 4.2.1, there exists a neighborhood
U of zy in X and a smooth extension T of T*°M on U, such that for every
xelU
M(x) = 2655]\4@ =M (2) ® M°(x) @ M ()

in a smooth orthonormal basis with respect to w, on U, such that the eigen-
values of M~ (x) are the p~ smallest eigenvalues of M(x) and those of M™(x)
are the p* biggest. Since M has exactly p® zero eigenvalues everywhere, this
implies that for x € M NU, M°(z) = 0. Therefore the eigenvalues of M°(x)
are of absolute value smaller than ¢/§,,(x) for some ¢, which proves the claim.

Choose a strictly positive function § € C*°(R,R) such that

—nt fort < —c
O(t) =< ¢ for0<t<¢
t fort>c +1

We use the following notation:
Let ¢ € C*(R,R). If A is a hermitian n X n matrix with eigenvalues
A1 < ... <\, and corresponding eigenvectors vy, ..., v,, we define ¢[A] as
the hermitian matrix with eigenvalues ¢();) and eigenvectors v;, 1 < j < n.

We let wy; be the hermitian metric defined by the hermitian endomor-
phism A(z) = 0[Ay(x)]. wy is then a smooth metric (cf [Dem]). By con-
struction, the eigenvalues of A(x) are o,(x) = 0(79(x)) and we have

oi(@) =n |1 (@),..., op-() = n |y (2)],
Op-11(x) =c¢,..., op—1p0(x) =,
Op=4p041(2) = V- o1 (T), - on(z) = 7 (2)

for every x € V'~ after possibly shrinking V.

The eigenvalues of —i0dlogdy; with respect to wy are oy (x) = Zi]g;
Thus we have for every € V™ ay(x) = —2 and a,_p+_p0(2) > 1, hence

forr >n—pt—p° (4.2

SRS

1
a+... ta>1—=(n—p"—p’'—1)>
n

Let us now estimate |Owps|w,, -
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Fix o € M N Q. Using Lemma 4.2.1, there exists a neighborhood U of
xo in X such that we have on U N €2

p- p~+p°
—i0dlog () = Y an@G@) AL@+ S al@)G(@) AL, (@)
wr=1 w,r=p—+1
n—1

+ Y ab @)@ A () + an(@)Ga() A (@)

pv=p~+p°+1

where ((i(2), ..., ¢ (x)) is an orthonormal basis of T°X with respect to wy
on U.

By construction of wy;, we have
P~ 3 p~+p° 3
wyr = > b (@) Q@) Al (@) e D Gla) A ()
pv=1 v=p~+1

n—1

Y () Gla) AG(@) + an(x) Gul@) A G, (@)

pr=p~+p°+1

+ +
where (buv)uy = 0[(au)uy]. In order to get more condensed formulae, we

+
extend by, to all pairs (u,v) € {1,...,n} x {1,...,n} by setting it equal to
zero whenever it is not defined for such a pair.

Let (Ly(x),...,Ln(x)) be the dual basis of ((i(z),...,(.(x)). The well
known Cartan formula for d implies that

aCM(LCU LB) = La(gu(Lﬂ)) - LB(Cu(La» - Cu([Laa LB]) = _Cu([LavLﬂ])a
8¢, (La, Lg) = La(C,(L3)) = Ls(¢,(La)) = C,([Las L)) = —C, ([La, La))-
Thus
O = Z ngga N G,
a,f

9C, == disCa N s,
a,B

where the ¢} ; and di 5 are determined by the conditions

Lo, Lgl(x) = — Z ! 3(x) Ly (x) mod(Ly(x), ..., Ly(x))

Lo, Lol(x) = Y d%s(x)Ly(x) mod(Ly (), ..., Ly(x))
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(i)-(iv) of Lemma 4.2.1 therefore yield
CZ,B ~ (SM, d/ciﬁ ~ (SM (43)

for (e, 3, ) such that pu ¢ {p~+1,...,p+p"}, o, B € {p~+1,...,p"+p"}
and

o ap ~ Ou (4.4)
for (a, 8) such that a € {1,....n—1}, B {p~+1,...,p~ +1°}.

n
CnBN(SM, d ]

Moreover, by definition of ¢j; and d’;ﬁ, we have

0o =38 Y Lalti)@) o n G AT, (45)

a=1 pr=1ee{— +}

+Z Z >, ) CaACsAC, (4.6)

a,B=1prv=1ec{—,+}

+ Z Z Z b dlc/uﬁ Cp, A ch A Cﬁ (47)

o,B=1 p,rv=1ec{—,+}

n p~+p°
+e > D @) AL, (4.8)
a,B=1v=p—+1
n  p +p°
+c Z Z d Cl/ A Ca A CB (49)
aﬂ ly=p—+1
+ZL an) (@) Ca NG AN, (4.10)
+ Y an(@)cis(z) Ca NG NG, (4.11)
a,B=1
+ Y an(@)d2s(@) Gu Ala ALy (4.12)
a,B=1

As A, is the hermitian endomorphism associated to —idd log dy; = L855 M+

+
idlog 6 A Olog 6y, it is easy to see that we have bW == bw,, Where b is
defined and positive definite on U. Moreover, we see that ap = 52 Gy, Where
M
ay, is also defined and positive on U. From this we conclude that

|§V|3M ~doyforve{l,....p7p +p"+1,...,n—1}, (4.13)
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G2, ~1forve{p +1,....,p” +p°} and |G]2,, ~ 67/ (4.14)

By construction of wy;, we clearly have wy; > dlog 8y A 0log 0,50

0log 6ul2,, S 1. (4.15)
We have
D La(bl,) (@) Calx) = (96,)(x) = (W%B,iy))(x)

— b, ()9 ogdur(a) + 5= 3 Lallf)e) Gala),

1, -
Y Lalan)(@)Calw) = —2a,(2)d1og u () + 7 Y La(@n)(@)Cal),
a=1 M q=1

therefore (4.5) and (4.10) are bounded with respect to wys by (4.15), (4.13)
and (4.14).

(4.8) and (4.9) are bounded with respect to wys by (4.13) and (4.14). Fi-
nally, (4.3), (4.4), (4.13) and (4.14) imply that (4.6), (4.7), (4.11) and (4.12)

are bounded with respect to wy,.
It is also clear that (iii) and (v) of Lemma 4.2.3 are satisfied.

Let us now prove (ii). We assume p~ > 1 (the weakly pseudoconvex case
p~ = 0 was settled in Chapter 3). We then have r > 2.

From Lemma 4.2.2, we get
i00p > —Xiddlog 6y — (1 — A)iddlog ¥

where \ = % + %X%(W). On the set where A > %, the assertion
(i) is clear by (4.2). On the other hand, on {A < 1}, we have —¢) < dy

(see the definition of ), and thus by construction of wy we get wy S

iwg < _%pwg < —i001og(—v) on Kerddy, N THOX, which is a subbundle
of rank (n — 1) of TYWX. If 0 < 3 < ... < 3, are the eigenvalues of
—i0dlog(—v) with respect to wy, we thus have 8, > 20 on {A < 1} for
some o > 0. Since a3 + ...+, > 0 for r > n — pt — p® > 2, we then have

Vit ..o+ =3B +...+6,) >0 on{\ <3} This establishes (ii).
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We define w; = wir+i0;0p NI where 0; € C*(D) vanishes on a neighbor-
hood of D; and equals one on D\ D;; ;. Then |0yp|,, is bounded (j is fixed!),
thus, by Lemma 1.2.3, w; is complete and has all the desired properties. [

4.3 The L? estimates

From now on, D will be equipped with the metric w,; given by Lemma
4.2.3. Properties (ii) and (iv) will be used to obtain L*-solutions of some
O-equation. Property (v) will yield regularity results for these solutions.

Let (E, h) be a hermitian vector bundle on X, and let N € Z. We denote
by Lf,’q(D, E, N) the Hilbert space of (p,q)-forms u on D with values in F
which satisfy

||u||?v ::/D|u|2 ANdeM < +o00.

wprsh

Here dV,,,, is the canonical volume element associated to the metric wyy,
and | |,,, » is the norm of (p, ¢)-forms induced by wy; and h.

Proposition 4.3.1 B
Let N> 1. Suppose f € L} (D, E,N)NKerd, r > n—p* —p°. Then there
ezists u € L2, (D, E,N) such that Ou = f and ||ul|xy < | fll~-

n,r—1

Proof: We have already seen that A ~ e™%. Also AN ~ e V¢ for N € N.
Thus it suffices to prove the statement with AN replaced by e V¢ in the
definition of the spaces L2 (D, E, N).

For j € N, let us denote by Liq(D, E, N, j) the Hilbert space of (p,q)-
forms u on D with values in £ which satisfy

Julfey = [ ful e M0V, < oo,
J

where x; € C*(R,R) with x;(t) =t if t <logj, x;(t) >t for all t € R.

Let 5*N7j be the Hilbert adjoint of d with respect to the canonical scalar
product ((, )n,; of (p,q)-forms with values in E induced by || ||n,;-
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Nakano’s inequality (1.2) yields

3 = —x ,
3 (lOully ;#1100 jull% ;) = ([iO(Eny), AjJu, u) v
(4.16)
=5 (Imsullae + 7 ellneg + IF50la, + IT5uly,)
where O(Ey ;) is the curvature of the bundle Ey; = (F,e N@h) A, is
the adjoint of multiplication by w; and 7; = [A;, Ow,|. w; is the metric given
by Lemma 4.2.3.

As iO(Ey;) = iNOIx;(p) ® Idg + iO(E), a standard calculation (cf
[Dem86]) yields

[1O(EN,;), Aj] = N[i00x;(p) @ 1dg, Aj] + [iO(E), Aj]
> Nxi(@) (vl + ...+ 7)) @ Idg + [ic(E), Aj]

when this curvature tensor acts on (n,r)-forms. Here 7{ are the eigenvalues
of 100y with respect to wj.

For r > n —p*t —p° we have 1 + ...+, > o on D;. Since [Owis|,,,
is bounded on D by (iv) of Lemma 4.2.3 and w; = wy, on D, the pointwise
norms |7t |Tjulw,, |75 ulw, and [Tjul,, are uniformly bounded with respect
to j by some constant times |ul,,, on D;. Thus, choosing N big enough and
x; sufficiently rapidly increasing on {¢ > log j}, the right hand side of (4.16)
can be made > 3||ul|3 ;.

Let f € L2 (D, E,N)NKerd, r > n—p*"—p°. Since f is of bidegree (n,r)
and x;(¢) > ¢, a standard calculation (see [Dem82]) yields ||f|ln; < ||fll~-
By standard L?-theory (cf Chapter 1 or [Dem82], [Dem], [Ohs87]), we then
get u; € L2, (D, E,N,j) satisfying du; = f and [Ju;lln; < [|[fllvy; <
| flly. Therefore the solutions w; are uniformly bounded in L? norm on
every compact subset of D. Since the unit ball of a Hilbert space is weakly
compact, we can extract a subsequence uy, — u € L7, converging weakly
in L? on any compact subset K C D, for some {; — +oco. By the weak
continuity of differentiation, we get again in the limit dJu = f. Also, since

X;(¢) = ¢ on D;, we have

/D ’uliMeiNgodeM S hm 1nf/; |uzj‘igj,heiNXj(¢)dezj S Hf”?\fa
J J

= +oo

hence [|ullf < [|fI%- D
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Proposition 4.3.2

Let N > 1. Suppose f € L%J(D, E,—N)NKerd, r < p* +p°. Then there
ezists u € L, (D, E,—N + 2) such that Ou = f and |[u| 42 < || fl|l-~-
Moreover, Im(0 : Lap++p0 (D,E,—N +2) — Lg’p++p0+1(D, E,—N)) is closed

in L2 vy 0 (D,E,—N).

Proof. The line of the proof follows exactly the proof of Proposition 3.2.2.
Suppose r < pt +p° and let f € Lar(D, E,—N)NKerd, N > 1. We define
the linear operator

Ly: oL, (D,E*,N—-2) — C
g — /ng
D

Note that the integral on the right hand side is finite, since

| / Fagl<( / R ANV, - / 92 ANAVL,) < IFIP gl .
D D D
Let us first show that L f is well defined.

Indeed, let g1, go € L2, ,(D,E* N — 2) such that dg; = 9g,. Then

nn—r

(g1 — g2) = 0 and by Proposition 4.3.1, since n — r > n — p™ — p°, there

exists « € L2, _,_,(D, E*, N — 2) such that da = g; — g». But then
/f/\(gl_QQ) = | fAda
D D
= lim(—1)" A«
e—0 oD,
= —lim f Ao«
e—0 D\DE
= —lim f A (g1 - 92)
e—0 D\Dg

with (D.). an exhaustion of D by smooth open sets such that D. D {z €
D | A(z) > e}. Here we have used Stoke’s theorem several times. The third
equality is obtained as in the proof of Theorem 3.2.2.

Moreover,

| f/\(gl—gz)lé(/

D\D, D\D.

R AN / g1 — gl AN

D\D.
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—e—0 0.

(note that (fp\p 91 = 9212, A")"2 S € [p\p 191 = 6a2,, AT <
ellg1 — 2|l -n—2 — 0 as e — O since gy, 90 € L2, (D, E*, N —2)).

n,n—r

Thus Ly(g1) = Ly(g2)-

Now let
g € Dom(d : L, .(D,E*N—2) — L, .. (D E*N —2)). Applying
Proposition 4.3.1, there exists g € L2, (D, E*, N — 2) satisfying 99 = Jg

n,n—r

and ||g]|x_2 < ||0g]|x_2. This yields
1L;(39)| = |L;(@3) = | /D £ AT < I w3l

< NAl-wllgllv—2 < 1 Fll-~l19gl n—2-

Thus Ly is a continuous linear operator of norm < || |- and therefore, using
the Hahn-Banach theorem, L extends to a continuous linear operator with
norm < || f||_n on the Hilbert space L} ,,_,,,(D, E*, N —2). By the theorem
of Riesz, there exists u € L, (D, E,—N +2) with [lu[|_y42 < || f||-n such
that for every g € L2, (D, E*, N — 2) we have

(—1)’"/ uAdg = Lg(g) =/ fng
D D
ie. Ou=f.

To prove the last assertion, we show that

Im(9: L iy o(D,E,—~N +2) — Lj .+, 0,1(D,E,—N)) =

{g € Lg,p0+p++1(D, E,—N) | /Dg ANh=0VYh e L?L,n_po_p+_1(D, E* N —2)}.

Suppose f € Im(0 : Lg’pﬂrpo(D, E,—N+2) — Lé,p*ip“%—l(D’ E,—N)).
Then there exists o € L ., o(D, E, =N + 2) such that do = f. Thus we
get for every h € wa_po_p+_1(D, E* N —2)
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/Df/\h = /Déa/\h

= lim aANh
e—0 aD.

= —lim daAh
e—0 D\DE

= —lim FAR

e—0 D\DE

with (D.). an exhaustion of D by smooth open sets such that
D.>{ze€D|A(z) > e} and

[ san < </ |f|iMA-N>1/2</ B2, A2
D\D.

D\D. D\D.
S €||f||—N||h||N—2 —7e—0 07

which shows the inclusion C (see the proof of Theorem 3.2.2 for the justifi-
cation of some of the equalities).

Conversely, we show that for every f €
{geL? (D,E,—N)| [pgNh=0VYhe L? (D,E*,N —2)},

0,p0+pt+1 n,n—pd—pt—1

there exists u € L2 p++p0(D, E,—N + 2) satisfying Ou = f. Again, we define

the linear operator

Ly: 0L, 4 o (D,E*,N-2) — C
g — / fAg
D
Here we write 5Li n_p+_p0_1(D, E*,N —2) for
m(d: L, o o (D,E*N=2) = L2 . (D E"N=2)). Lgis well

defined because of the moment conditions imposed on f. We then show the
existence of the desired u as in the first part of the proof. O

Let U C X be an open set and E a holomorphic vector bundle on X. For
k € NU {400}, we define

Cr (XU E)={feCl (X E)|supp f CU}
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As in Chapter 3, we get a regularlty theorem for [J_ .
Here O_y = 00y 4+ 0.0 where . is the Von Neumann adjoint of 8 :

L2 (D,E,~N +2) — L2,.(D,E,~N).

Theorem 4.3.3 B _

Ifu e L2 (D, E,—N) satisfies Ou = f and & yu = 0 with f € CY.(X,D,E)N
C2 (D, E), then u € Coy (X, D, E) N C(D, E) where s(N) ~ /N for al
N> 1.

Proof: We will show that [1_ is an elliptic operator of polynomial growth
with respect to A on D. Then all the assertions follow in the same way from
Theorem 2.2.1 as Theorem 3.3.1 if we keep in mind property (iii) of Lemma
4.2.3.

In order to avoid too many sums over too many indices, we will assume
that E is the trivial bundle and restrict our attention to (0, 1)-forms. The
general case is handled analogously.

An easy computation yields that & yu = AN-29 L, (A™Nu) where EZM
is the Von Neumann adjoint of @ for the metric wy;. Hence

O_yu=A"?0,,,u+ lower order terms

where [, = %Z,M + ang and the lower order terms are sums and pro-
ducts of terms like A*, 9(AFy ) and 0_ (A*u) for some integers k € Z. It

therefore suffices to calculate awM and O, .

wM(

Let zop € 9D and let (z,...,z,) be local holomorphic coordinates of X
in a neighborhood U of z.

We have wy =i 7, whydz, Adz, on UN D, where the coeffients wj,
satisfy (v) of Lemma 4.2.3.

Let Ly, ..., L, be an orthonormal basis of T 0X|UmD with respect to wyy,
le. L= Zj<k lﬂfa where the [;; have to be determined by the condition

Zlgk ZiSJ lplijwhy = 61, Tt is therefore clear that all derivatives of lj, can
be bounded by some power of d,;.
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Let €;,...,¢; € (TX){;p be the dual basis of Ly, ..., L.

n —
For uw= )7, u;€; we then have

Ou=> Li(uj)ex N& — > clyuer AT

ak gkl

where ¢, can be determined by the condition [L;, L] = >, ¢ jkLz, because

we have d¢(Ly, L;) = —el([Lk, L;]) by the Cartan formula for . Therefore
also all derivatives of the ¢, can be bounded by some power of ;.

Now let v = Zj,k vyj€; N €j be a smooth (0, 2)-form with compact support
in U N D. Then we have

(Ou, ), = 2" /D O Tilu o — D chywudpg)det(wi))dA

i kg kgl

Ou,
— /lek lvk] ckjuwk])det(wM)d)\

D; k,j,l
= / Z{uj 8 llkvkjdet( )) + ck]ulvkjdet(wM )}d)\
Dj i g5l
Thus
— Ol 0 aBy—1 1 \=
8va = Z(Lk(vk]) + Vkj—F— a + Ukjllka l(det(wag))det(wM ) + Ukjckj>€j

k..l

Hence the coefficients of EZM satisfy the condition (2.2) and

Oy v = Z Ly, Ly, (u;)€; + lower order terms

g,k

wpm

0%u,
= Z T — ej + lower order terms
1,5,k,l 0z la

where the lower order terms involve only derivatives of order < 1 of u and

multiplication by functions whose derivatives can be bounded by some power
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4.4 The J-equation with exact support

Let € be a smooth bounded completely strictly pseudoconvex domain in a
complex n-dimensional manifold X and M a real hypersurface of class C*>
intersecting 02 transversally, such that Q \ M has exactly two connected
components. We suppose that M = {9 = 0} where p is a C*™ function
whose Levi form has exactly p* positive, p® zero and p~ negative eigenval-
ues on THOM for each z € M, p~+p’+pT =n—1. We put D = QN {p < 0}.

In this section, we will show some vanishing and separation theorems
for the 0-cohomology groups with values in a holomorphic vector bundle E
supported in D:

H?(X,D,E)=CX(X,D,E)NKerd/d(Cy (X, D, E))

Theorem 4.4.1
Let E be a holomorphic vector bundle on X. Then we have
HP(X,D,E) =0 for1 <qg<p’+pt
and
Hp’p0+p++1(X, D, E) is separated for the usual C*-topology.

Proof: The proof is exactly the same as the proof of Theorem 3.3.2. Re-
placing the vector bundle E by AP(T'°X)* ® E, it is no loss of generality to
assume p = 0.

We will begin by proving the following claim:
Let f € C§ (X, D, E)NCsS (D, E)NKerd, 1 < q < p°+p*, k> 1. Then there
exists u € CSF;L(X,E, E)NCgs,_1(D, E) such that Ou = f with s(k) ~ Vk.

Proof of the claim: Let f € Céiq(X,E, E)nKerd, 1 < q<p’+p*, k> 1.
General results on Lipschitz domains (see e.g. [Gri85, Theorem 1.4.4.4] or
Theorem A.2.2) show that f € L§ (D, E,—2k) if we keep in mind prop-
erty (iii) of Lemma 4.2.3. Proposition 4.3.2 implies that there exists u €
L%, (D, E, =2k +2) such that du = f in D and [Jul| —op42 < || f]|-2k. More-
over, choosing the minimal solution, we may assume g*_%u = 0. From The-
orem 4.3.3 we get that u € Co' ' (X, D, E) with s(k) ~ V.

Let us now prove the theorem.

H"Y(X, D, E) = 0 follows immediately from the above claim and the hy-
poellipticity of 0 in bidegree (0,1) if 1 < p® + p*.
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Now assume 1 < ¢ < p° + p* and let f € C(?Z(X,ﬁ, E) N Kerd. By
induction, we will construct uy, € C§,_,(X,D,E) N C_4(D, E) such that

Ouy, = f and |upy — Uk |s(k)—1 < 27%. Tt is then clear that (u)ren converges
to u € C3°_1(X, D, E) such that du = f.

Suppose that we have constructed uq, ..., u;. By the above claim, there
exists a1 € Cg:;il(X,b, E) N C55, (D, E) such that f = Oagpr. We
have aj1 —u, € Cf, (X, D, E) N C_y(D,E) N Kerd. Once again by
the above claim, there exists g € CSSQQ(X,E, E) N CS,_o(D, E) satisfying
i1 — Uy, = 0.

Since Egizﬂ(Xan E) is dense in CS,(;;ZQ(X, D, E), there exists gpy, €
Coo_2(X, D, E) such that |g — grs1 s < 27",

Define wer1 = aps1 — Ogiyr € Ciiy(X, D, E) N CS_ (D, E). Then

5Uk+1 = fand |ugyr — uk|s(k)—1 = |59 - 59k+1|s(k)—1 <l|g— gk—i-lls(k;) <27k,
Thus us1 has the desired properties.

The last assertion is proved similarly, using the ”"moreover”’statement in
Proposition 4.3.2 and the fact that the C* topology is stronger that the L?
topologies. 0

As in Chapter 3, the results of this section will allow us to solve the O-
equation for extensible currents by duality.

We recall the notations. A current 7" defined on D is said to be extensible,
if T' is the restriction to D of a current defined on X.

] It was shown in [Mar66] that, since D satisfies D, the vector space
D'H(X) of extensible currents on D of bidegree (p, ¢) is the topological dual
of C® (X, D).

n—p,n—q

Theorem 4.4.2

Let T' € D'3(X) be an extensible current on D of bidegree (p,q), ¢ > n —
p° —p* such that 9T = 0 in D. Then there exists S € DN (X)) satisfying
0S=T1inD.

Proof: Let T € D%Y(X) be an extensible current on D of bidegree
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(p,q), ¢ >n—p°—p*, such that 97 = 0 in D.

Consider the operator
Lr: 9C7,, (X,D) — C
0y — < T o>

We first notice that Ly is well-defined. Indeed, let p € C2° . (X, D) be
such that 5@ =0.
If ¢ = n, the analytic continuation principle for holomorphic functions yields
p=0,50 <T,p>=0.

Ifn—1>¢>n—p°—p", one has p = da with a € Cg"_p’n_q_l(X,E) by
Theorem 4.4.1. As D" P"~471(D) is dense in C;’Lipﬂ_q_l(X,E), there exists

(o) jen € D"P"=971(D) such that da; — da in C° (X, D).

oo n—p,n—q

Hence < T, >=<T,0a >= limj; 0 < T, 50@ >=0, because 0T = 0.

By Theorem 4.4.1, Ecgip,n_q
Col g1 (X, D), thus a Fréchet space. Using Banach’s open mapping the-
orem, Ly is in fact continuous, so by the Hahn-Banach theorem, we can

extend Ly to a continuous linear operator Ly : €32 1(X, D) — C, i.e.

(X, D) is a closed subspace of

Ly is an extensible current on D satisfying
< OLp, o >= (=1)P*" < Ly, dp >= (=1)PH1 < T, p >

for every ¢ € C32 (X, D). Therefore T = (—=1)PT99 L. O

Remark. Analogous results have been obtained in [Sam99] for completely
strictly g-convex domains with smooth boundary. These are domains of the
form Q = {z € Uy | ¥(z) < 0} where ¢ is a smooth function defined on an
open neighborhood Ug of Q whose Levi form has at least ¢+ 1 positive eigen-
values everywhere. Sambou shows that for such a domain the d-equation is
solvable for extensible currents of bidegree (p,r), r > n —q. In [Sam01], also
the strictly g-concave case is discussed.



Chapter 5

Applications to ('R manifolds

In this chapter, we apply the results of Chapter 3 and Chapter 4 to the
study of the tangential Cauchy-Riemann complexes on C'R manifolds. We
first define the tangential Cauchy-Riemann complexes for smooth forms and
currents on generic C'R submanifolds. Then we show that the tangential
Cauchy-Riemann cohomology groups for both smooth forms and currents
vanish for all intermediate bidegrees on boundaries of weakly pseudocon-
vex domains in Stein manifolds. We also prove that the tangential Cauchy-
Riemann equations for currents can be solved on Levi flat C'R submanifolds
of arbitrary codimension. Finally, we give some results on the solvability of
the tangential Cauchy-Riemann equations for currents and for smooth forms
with compact support on hypersurfaces with constant signature. We also
prove a new version of the Hartogs phenomenon in weakly 2-convex-concave
hypersurfaces in Stein manifolds.

5.1 The tangential Cauchy-Riemann complexes

Let X be a complex manifold of complex dimension n. Let M be a C*>-
smooth real submanifold of real codimension k£ in X. Such a manifold M
can be represented locally by

M={:eQ|m(z)=...= p(z) = 0}, (5.1)

where the p,’s, 1 < v < k, are real C* functions on an open set ) of
X. M is called a generic CR manifold of real codimension k if and only if
Op1 A ... NOpr # 0 on M. In particular, every smooth real hypersurface in
X is a generic C'R manifold of real codimension 1.

71
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In this situation, the holomorphic tangent spaces to M form a subbundle
THOM of T"°X 5. In the local representation (5.1) we have

n 8/),,

TM = cr
: et 252

(Z)Cj:O, 1/21,...,]{}

Jj=1

and dim¢ T}°M = n — k for z € M N, where (z1,...,2,) are local holo-
morphic coordinates of X in a neighborhood of z.

For p € M, let
T {T,M ® C} — {T,M @ C}/{T}°M & T,° M}
be the natural projection map. The Levi form at a point p € M is the map
L, THM — {T,M @ C}/{T}°M & T,° M}
defined by £,(X,) = 5-mp{[X, X],} for X, € T)°M, where X is any vector
field in 7"°M that equals X, at p. The Levi form of M takes values in a
k-dimensional complex vector space.

We say that M is Levi flat if and only if £, = 0 for every p € M.

Now consider the case where M is a real hypersurface in X. Then the
Levi form of M takes values in a 1-dimensional complex vector space, and
there is a different way of defining it by means of the Levi form of a local
defining function: Let ¢ be a smooth local defining function for M in a neigh-
borhood of p with do(p) # 0. The Levi form of M at p can then be identified
with the hermitian form £(p, p)m},o 1~ If 01is another defining function for M
with dg # 0 on M, then E(@,p)|TI},oM is a nonzero multiple of E(g,p)m},oM.
We say that M has signature (p~,p°,p™) at p € M if there exists a smooth
local defining function for M in a neighborhood of p with do(p) # 0 such
that £(p, p)|Tp1,o o has p~ negative, p® zero and p™ positive eigenvalues at p.

In order to define the tangential Cauchy-Riemann complexes on a generic
C'R manifold M of real codimension k, we consider the sheaf 7y, of germs of
C®® functions on X which vanish on M.

On X, we have the Dolbeault complexes for sheaves of germs of smooth
forms: B B B
g0 ert Logrt 2,0 Zogrn g,
where PV is the sheaf of germs of complex valued C*® forms of bidegree
(p,7) on X, 0 < p,j < n. We denote by Z,; the sheaf of £y -modules
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which is locally generated by Jy and 8y We set Zh = Ty N EXY. Since
OT%) C I+ we have subcomplexes
0 - Lot L Lo,

for each 0 < p < n, of the complex EP* and hence quotient complexes [EP*],
defined by the exact sequence of fine sheaf complexes

0 — I — EP" — [EPF] — 0.

The induced differentials are denoted by 0. M being generic, we have
[EP1] =0 for ¢ > n — k 4+ 1. We write the quotient complex as

[EP*] 0 — [EPVO] % [gpvl] % % [(c/‘p,n—k:] 0.

It is called the tangential Cauchy-Riemann complex of C*°-smooth forms. If
) is an open subset of X, the cohomology groups of [EP*] on M N Q) are
denoted by H?¢(M N Q).

Let Fjs denote the ideal sheaf of germs of smooth complex valued differ-
ential forms on X that are flat on M, i.e. whose coefficients as well as all its
derivatives vanish on M. We set F¥7 = Fp; NEPI. Note that OFL C Foi+t
therefore F77* is a subcomplex of EP* and the short exact sequence of fine
sheaf complexes

0— FF — EPF — W — 0
defines the complex
Wﬂ*:OHWﬁoiWﬂliu-iWﬂneO
of Whitney germs on M.

From the formal Cauchy-Kowalewski Theorem for generic CR subma-
nifolds of a complex manifold (cf. [AFN81]), we get the following

Theorem 5.1.1

If M is a generic CR submanifold of real codimension k in X, then for all
(p,q), 0 < p<n,0<q<n-—k, and every open subset Q0 of X with
M NQ #0, the maps

HY(MNQ,Wr") — HPY(M NQ),

induced by the natural map WY — [EP*], are isomorphisms.
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In order to define the current 9,,-cohomology groups on M N €, we first
consider the spaces [DPJ](M N) of sections of [EP/] having compact support
in M N with their usual inductive limit topology.

We define [D'P7](M N Q) as the topological dual of [D"~P"=*=1](M N Q).
In this way we obtain, for each 0 < p < n, a complex of sheaves

(D] 0 — [DP0) 2, (prea Du, L O ipypn1)

whose cohomology groups on M N € will be denoted by HZZ(M N Q).

Let D’ be the sheaf of currents on X, we denote by D), the subsheaf of
D’ of currents with support contained in M. Dualizing the formal Cauchy-
Kowalewski theorem (cf. [HN95], [NV8T7]), we get the following

Theorem 5.1.2

If M is a generic CR submanifold of real codimension k in X, then for all
(p,q), 0 < p<mn, 0<q<n-—Ek, and every open subset Q0 of X with
M N Q #0, there are natural isomorphisms

HP(M N Q) — HPIF(D),(Q)).

cur

5.2 Boundaries of weakly pseudoconvex do-
mains

Theorem 5.2.1

Let Q) be a relatively compact domain in an n-dimensional Kahler manifold
(X,w) with smooth boundary M. We assume that Q) is log d-pseudoconvex.
Let f € [EP9) N Kerdy satisfy the tangential Cauchy-Riemann equations on
M,0<p<n, ¢g<n-—2.

Then there exists F € C% () such that Flyy = f and OF =0 in Q.

Proof: There exists f € C;f’n_l(ﬁ) such that f| v = f and 9f vanishes to
infinite order on M. Applying Theorem 3.3.2, one can find a solution u to
the equation Ou = 0 f in such a way that u is of class C* on Q and vanishes
on M. F = f — u is then the desired extension of f to Q. O
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Theorem 5.2.2

Let X be an n-dimensional Stein manifold and @ CC X a domain with
smooth boundary M. We assume that €2 is weakly pseudoconver. Then
HP9(M) = HPI(M) = 0 for 0 < p < n, 1 < g < n—2Moreover,

cur

HPO(M), HPO (M), HP"~Y (M) and H?" (M) are infinite dimensional and,

cur cur

if n > 3, separated.

Proof. 1t was proved in [HN92] that HP*(M) and HP" (M) are infi-
nite dimensional. HZY (M) is infinite dimensional since H?°(M) is infinite
dimensional. Moreover, it was proved in [HN92] that there exists a point
xo € M such that M is strictly pseudoconvex in a neighborhood of xj. It
follows from the failure of the Poincaré Lemma for 0y, (see [AFN81] and its
refined version [HNO1]) that there exists a smooth dy-closed (p,n — 1) form
defined on a neighborhood U of x4 in M such that the equation 9,8 = f
admits no solution in the distribution sense on any neighborhood of zy in
M. Since all (p,n — 1) forms on M are dj-closed, we may assume that f
is defined on all of M. Thus we have H?2"}(M) # 0. But then the Laufer

alternative proved in [BHNO1] permits to conclude that H?"~!(M) is infinite
dimensional.

Now let f € [EP9] satisfy the tangential Cauchy-Riemann equations,
1 < g <n—2 It follows from Theorem 5.2.1 that there exists F' € C;%(2)
satisfying Fjy; = f. Using Kohn’s result on the solvability of the O-equation

with regularity up to the boundary in weakly pseudoconvex domains [Koh73],
[Koh77], there exists U € C3%_ () satisfying OU = F' in Q. Then u = U}y

I P,q—1
satisfies Opyu = f. Hence HP4(M) =0for 1 <q¢<n—2.

Moreover, we know from abstract duality arguments (see [Serb5], also
[LTL99]) that H?(M) is separated if and only if H"~P"~9(M) is separated.

cur
Furthermore, if any one of these equivalent conditions is satisfied, we have

HP2 (M) ~ (H"Pn=a=1(M)).

cur

Therefore we have H24(M) = 0 for 2 < ¢ < n — 2 and H?"Y(M) is

cur cur
separated for n > 3; to complete the proof of the theorem, it remains to

show that HZL(M) =0ifn >3,0<p<n.

cur
To prove this, we note that we have a direct splitting

HEZ (M) ~ HP(D(X)) @ HP(D'y (X)),

cur
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q > 1. Here H?9(D}(X)) (resp. Hp’q(@;{\ﬁ(X))) denote the d-cohomology
groups for currents on Q (resp. on X \ Q) which are extendable to X (see
Chapter 3, Section 4 for the definitions). Indeed, it is a well known fact that

we have the following long exact sequence (cf. [HN95], [NV87])

.= HPY(X) — HP(D, (X)) — HPTH(D), (X)) — HPHH(X) — .,

where Hp’q(f?’X\ (X)) are the d-cohomology groups of currents on X \ M,
which are extendable across M. Since X is Stein, it follows that HP9(X) = 0
for ¢ > 1. Together with Theorem 5.1.2, this yields

HEA (M) o= HP(Dly (X)) = H™(Do(X)) & HP(D'y (X)),

cur

g > 1. Theorem 3.4.1 implies H?(Dy(X)) = 0 for ¢ > 1. HZL(M) = 0 for

cur
n > 3 is now an immediate consequence of the following lemma. O

Lemma 5.2.3
Let X be an n-dimensional Stein manifold and Q@ CC X a domain with
smooth boundary M. We assume that €2 is weakly pseudoconver. Then
H”’q(D’X\ﬁ(X)) =0 for1<qg<n-2.

Proof. We first prove the following claim:

Let Qq, Qs be two weakly pseudoconvex domains with_smooth boundary
such that Q3 CC Q9 CC X. Then we have HP(X, Q9 \ Q) = 0 for
2<qg<n-—1and H""(X,Q \ Q1) is separated, 0 < p < n.

Indeed, let f € C;Z(X,ﬁg \ Q) NKerd, 2 < ¢ < n —1. Then, since

), satisfies the assumptions of Theorem 3.3.2, there exists u € 35, (X, Q)

satisfying Ou = f in X. This implies that Ou = 0 in ;. Hence, since
g —1 > 1, there exists h € C2°_(Q;) satisfying Oh = u in € (see [Koh73]
and [Koh77]). Let h be a smooth extension of k to X with compact support
in O, and set g = u— 0h. Then g satisfies dg = f and supp g C O\ Q. The
separation statement is proved similarly, using the separation statement of

Theorem 3.3.2.

With the same proof as the proof of Theorem 3.4.1, it follows from the

above claim that Hp’q(f)'gz\ﬁl (X))=0for0<p<n,1<qg<n-—2.
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Now let ¢ € C*(X) be a strictly plurisubharmonic exhaustion function
such that ¢ < 0 on 2 and set ; = {z € X | ¥(2) < j}, where we may
suppose that 0€2; is of class C*.

Let T € D”;’XQ( ) be O-closed in X\ Q, 1 < ¢ <n—2. As shown before,

there exists S; € D’g’(‘igl(X) satisfying 9S; = T in ; \ Q. We then have

5(Sj+1 — S]) =01in Q \ Q

First assume g > 2. Then there exists H € D'?&QQ(X ) such that OH =

Sj+1 — S, in Q; \ Q. Setting S;1; = Sj41 — OH, we have 05,1 = T in
Qi1 \ Q and Sj4; = S in Q;\ Q. We can thus find a sequence (G} )jen,

G € D’g(‘in(X), satlsfymg 8G =Tin Q;\Qand G, = G in Q; \ Q.

Then (G;); converges to G € D’i‘iﬁl (X) such that 0G =T in X \ Q.
Now assume ¢ = 1. Then S;;; — S is a holomorphic p-form on
Q; \ Q. From the Hartogs phenomenon on Stein manifolds, Sjt1—95; extends
to a holomorphic p-form on €2; (see [HL88]). Moreover, we may approximate
holomorphic p-forms on €2; uniformly on ﬁj,l by holomorphic p-forms on
Q4o (cf [HL8S]), hence there exists a holomorphic p-form H on €, satisty-
ing [(H — (Sj41—5;), )| < 27| for every ¢ € C2°, (X, ;-1\ Q). Let x €
C>(X \ Q) satisfy x = 1 on 4y, supp x C €, 4s. Setting S;1q = Sj 41 — X H,

we have S;, € T)’])’;‘{_ﬁl( ), 8541 =T on Q;4; \ Q and

(Sje1 — Sj, @) < 277 for every ¢ € C° o (X, Q521 \ Q). Thus there
exists a sequence (G;)jen, G; € DPI2(X), such that 0G; = T in Q; \ Q

xX\0 -
and [(Gj11 — Gy, )| < 277¢] for every ¢ € 2 (X, 9,21\ Q). Tt fol-
lows that (G ) jen is a Cauchy sequence for the weak topology. In fact, let

€ 2, (X, X\ Q) ND"P*(X). Then there exists N € N such that
suppy C Qn \ Q and for all j > N, p >0

1 1

hence (Gj4p — Gj, ) — 400 0. Thus (G;) en converges weakly to G. We
claim that G is an extensible current on X \ Q. G is obviously linear. Indeed,
let p, v € C° (X, X\ Q)ND"P"(X). Then there exists N € N such that

n— pn(
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supp C Qn \ Q, suppy C Qn \ ©Q and supp (¢ + 1) C Qn \ Q. Hence
(Goty) = lmiGjo+9)
= (G, ) + im{G;, )
= (G, ) +(G, ).

Let (¢u)ven be a sequence of elements of C2° (X, X \ Q) N D" P"(X) con-

p,n
verging to 0 in C3° (X, X'\ Q) ND"P"(X). Then there exists N € N such
that supp ¢, C Qn \ Q for all v € N. Hence
(Gl = [ (G )]
j—1 1
< ) ok ool + (Gn+1, 00)-
k=N+1

Since G 41 is an extensible current, we have (Gyi1,¢,) —v—100 0 and by
hypothesis ¢, —, 1 0, 1.6. || — 0. Hence (G,f,,} oo 0 and G is
therefore an extensible current on X \ € satisfying 0G =T in X \ Q. O

5.3 Applications to Levi flat C'R manifolds

Here we want to solve the tangential Cauchy-Riemann equation for currents
on certain domains in Levi flat submanifolds of a Stein manifold. The sub-
manifolds will be of any codimension where the problem makes sense. More
precisely, we consider the following set-up.

Let M C X be a smooth generic C'R manifold of real codimension £ in
an n-dimensional Stein manifold X. We moreover assume that M is globally

defined by
M={z€X|p(=) =...= p(z) = O},

where the p,’s, 1 < v < k are real C* functions in X satisfying dp; A ... A
dpr # 0 on M. Our most important assumption is that M should be Levi
flat, i.e.

L(py,2) =0
forv=1,....k, z € M and every ¢ € C" satisfying Z;‘:l %(z)é"j = 0 for
p=1... k.
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For each v =1,... k, we set ¢, = pl,+w2§:1p? and g = —Z?lej—i—
Y Zle pjz, where 1) is a positive stricly plurisubharmonic function of class C*
on X. Then for every ordered collection of k integers 0 < i1 < ... <1 <k
we have dp;, A ... AN 0Op;, # 0 on M. For an adequate choice of 9, we can
arrange that if we set Q, = {2z € X | ¢,(2) <0}, v =0,...,k, then each Q,
is weakly pseudoconvex and

k k k k
M=% X\M=]J, X=[]JO, and (]Q, =0.
v=0 v=0 v=0 v=0

Let Q be a piecewise C* bounded weakly pseudoconvex domain such that
Q) intersects each €2, transversally.

Theorem 5.3.1
Let M and ) be as above and 0 < p<n,2<q<n-—k.
Then HPA(M N ) = 0.
Moreover, let Q' be any open set which is relatively compact in Q. Then the
restriction mapping
HPL (M N Q) — HPL(M N QY

cur cur

is the zero mapping. In other words, let T € [D'"'|(MNQ) such that OuT =0
in MNQ). Then there exists S € [D'PP](MNSY) satisfying 0y S = T in MNY.

Proof: 1t is a well known fact that we have the following exact sequence
(cf. [HNO5], [NV8&T7])
L= HEL(Q) — HP(Dg () — HPH (D) (Q) — HEITHQ) — .

Here H?9(Q) denote the d-cohomology groups for currents on 2 and

Hp’q(lv)’Q\M(Q)) = f)’g’gM(Q) N Keré/éf)’g‘\lﬁ(g) denote the J-cohomology
groups for currents on €2\ M which are extendable to €2 (see Chapter 3,
Section 4 for the relevant definitions).

We denote by H?(D},(R)) the 0-cohomology groups of currents on € with

support in M.

Since () is weakly pseudoconvex and X is Stein, it follows that €2 is a
Stein manifold (see [Ele75]), thus we have H2:4(Q2) = 0 for all ¢ > 1.

cur

Moreover, by Theorem 5.1.2 there are natural isomorphisms

HP(M N Q) — HPIF(D),(Q)).

cur
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We then get )
HEL(M N Q) = HP1(Dg, ,(2))

cur

for ¢ > 1. Without loss of generality, we may assume that € is also weakly
pseudoconvex. Then the above isomorphisms also holds with €2 replaced by
Y. The theorem is then an immediate consequence of the following lemma.
For the case ¢ = 1, note that all diagrams induced by the restriction mapping
are commutative. 0

Lemma 5.3.2

For0<p<mn andq>k+1 we have Hp’q(bgz\M(Q)) =0.

Moreover, let ' be any open set which is relatively compact in Q. Then the
restriction mapping

HP* (D 01 (Q)) — H?* (D5, ()
1S the zero mapping.

Proof: The proof follows an induction argument of [NV87]. By induction
on ¢, we show the following claim:

Let Q, Dy, ..., D, be piecewise smooth domains in X which are locally
Stein and which intersect pairwise transversally. Set D = QN Uﬁ:o D; and
let Q' be any relatively compact open set of Q.

If T € D) satisfies T = 0 in DN, ¢ > £+ 1, then there exists
S € DN (Q) satisfying S =T in DN Y.

First assume ¢ = 0 and let 7" € T)”Bzm,(ﬂ) satisfy 9T = 0 in Dy N Y,
g > 1. Without loss of generality, we may assume that {2’ is a piecewise
smooth domain which is locally Stein and which intersects D, transversally.
Then Q' N Dy has Lipschitz boundary and is relatively compact in §2. More-
over, since X is a Stein manifold and since Q' N Dy is locally Stein, it follows
from [Ele75] that €' N Dy is log é-pseudoconvex for some Kéhler metric on
X. We apply Theorem 3.4.1 and conclude that there exists S € T)’%gggl)(ﬁ)

satisfying S = T in ' N Dy. This proves the claim for £ = 0.

Now assume the claim is true for £ — 1 and let us prove it for £ > 1. Set
U, = QﬂUﬁ;(l) Dj and Uy = QND,. Let T € D'BY(Q) satisfy 9T = 0 in DY,
g > (+ 1. Then, by the induction hypothesis, there exist Sy, Sy € D% 1(Q)
such that 9S; = Tin U; N Y and 9Sy = T in Uy N Y. Then we have
0(S; — Sy) = 0in Uy N U N Y. Again, since ¢ — 1 > 1, we may apply
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Theorem 3.4.1 to the domain U; NU; NY; note that U; NU; N Y is relatively
compact in €2 and locally Stein with Lipschitz boundary. We conclude that
there exists H € 15’%‘1_2(9) satisfying 0H = S;— S, in U1NU,NEY. We define
the current S of bidegree (p,q —1) on D by S = S; in U; and S = S, + 0H
in Uy. Then S is well defined and 9S = T in Q' N U?:o D;. Moreover, S is
extendable to a current on 2. This proves the claim.

Let us now prove that for every relatively compact subset Q' of Q) and
every T € D’g"\JM(Q) satisfying 0T = 0 in Q \ M, ¢ > k, there exists
S € D31 (Q) such that S =T in '\ M.

We recall that we have Q \ M = [J'_ (2, N Q) and N*_, Q, = 0.

Let T € T)’g"\JM(Q) satisfy T = 0 in Q \ M, ¢ > k. From the above

claim, there exist Sp,5; € Zv)’gg];[l(Q) such that 05, = T in Uf:é(Q,, N

and 0S5, = T in Q;, N . This settles the case k = 1, since in this situation,
Qo N and Oy N QY are disjoint sets.

Now we assume k > 2. Then 9(S; — S;) = 0 in Ul]f;(l) QNN =
USZ2(, NN Q) U (1 NN Q). We set Wy = 22 (€, NN YY) and
Wy = Qi1 NN, Then, since mﬁzo Q, =0, W, and W, are disjoint sets.
Thus, in order to solve the d-equation for extensible currents on Wi U W, it
suffices to solve the d-equation for extensible currents separately on W; and
Wy. Since ¢ — 1 > k — 1, it then follows from the above claim that there

exists G € f)’g‘\lﬁ(Q) satisfying 0G = S; — Sy in (W UW,) N QY. It follows

that the current S defined by S = S; in U];;(l)(QV ﬂ_Q’), = S, + 0G in
Q. N Q' is well defined, extendable to © and satisfies 0S =T in Q' \ M.

We have thus proved the last assertion of the lemma.

Now suppose ¢ > k + 1 and let T' € TD”;Z"\]M(Q) satisfy 9T = 0 in Q\ M.

Let (€2)ien be an exhaustion of 2 by smooth pseudoconvex domains. We
j_ust proved that for every i € N, there exists S; € D’g@}(ﬂ) satisfying
0S; =T in Q,\ M. Then 9(S;+1 — ;) = 0in Q;\ M. Thus, since ¢ — 1 > k,

tinere exists H; € ﬁ’gg&Q(QLsatisfying Siy1 — SZ-NZ OH; in Q) \ M. We set
‘Si—&-l = Si-i-l — 8Hl Then Si—i—l € D,gt\l&l(Q), GSZ-H =T in Q',H-l \ M and

Siz1 = 5; in Q) \ M. Thus it is possible to construct a sequence (5;);en,

S; € ZVD/SSE(Q) satisfying 95; = T in @\ M and S;;1 = S; in )\ M. Then
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(S;)jen converges to S € D’gng(Q) satisfying 05 = T in Q\ M. O

5.4 Applications to hypersurfaces with con-
stant signature

If M is a CR manifold, then we denote by H?9(M) the dy;-cohomology
groups for smooth forms with compact support in M. We have the following
result:

Theorem 5.4.1

Let X be a Stein manifold of complexr dimension n > 2 and M a smooth,
closed, connected hypersurface in X . Suppose that M has signature (p~, p°, p™)
at each point. Then HP4(M) =0 for0 <p<mn,0 < ¢ <min(p~,p")+p°—1.

Proof: Let f € [EP9] N Kerdy, such that supp f C K, where K is a
compact subset of M. Since X is Stein, there exists a smooth bounded com-
pletely strictly pseudoconvex domain 2 such that K C Q, Q\ M has exactly
two connected components DT and D~, and M intersects 0f) transversally.

Next, we can find f € C;5 (X) such that f|M = f,suppf cC Qand df
vanishes to infinite order on M.

Applying Theorem 4.4.1, we conclude that HP4T (X D )=0forg+1 <
p° 4+ min(p~,p"). Therefore there exists a solution u € Cos (X to the equa-
tion du = Jf in such a way that u vanishes on M U (X\ Q). F=f—uis
then O-closed in X and we have Fiyr = f, supp F' C Q.

If ¢ = 0, the analytic continuation principle yields F = 0, thus f = 0,
proving HPO(M) = 0.

Now let ¢ > 1. 2 being completely strictly pseudoconvex, there exists
an open set © O Q which is also completely strictly pseudoconvex. Then
the -cohomology groups with compact support in €, HP1 (Q), vanish for
q > 1 (cf [HL88]). Thus we can find U € C;5,_(X), supp U CC Q satisfying

OU = F. We then have 0),(Upys) = f, which proves the theorem. O

It is well known that if X is a Stein manifold of complex dimension n > 2
and K a compact subset of X with X \ K connected, then every holomorphic
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function on X \ K extends holomorphically to X. In fact it is sufficient that
X satisfies H>'(X) = 0, which holds for example under the assumption that
X is completely 1-convex in the sense of definition 5.1 of [HL88]. This ex-
tension property of holomorphic functions is called the Hartogs phenomenon.

The Hartogs phenomenon has also been studied in so-called g-convex-
concave hypersurfaces. These are hypersurfaces, whose Levi form has at
least ¢ positive and ¢ negative eigenvalues at each point.

Indeed, it is known that the Hartogs phenomenon holds if M is a 2-
convex-concave hypersurface in a Stein manifold or if M is 1-convex-concave

and K sufficiently small (see [Hen84] and [LT91]).

On the other hand, the following example given in [HN96] shows that
the Hartogs phenomenon fails to hold globally for 1-convex-concave hyper-
surfaces:

Set M ={2€C?||z1]*+]|2|*— |2/ =1} and K = {z € M | z3 = 0}. Then
M is 1-convex-concave and the C'R function f(z) = % defined on M \ K has
no C'R extension to M.

Here we will prove the following result on the Hartogs phenomenon in
hypersurfaces:

Theorem 5.4.2

Let X be a Stein manifold and M a smooth, closed, connected hypersurface
in X. Suppose that the signature of M 1is the same at each point and that
M is weakly 2-convezr-concave. Let K be a compact subset of M such that
M\ K is connected and globally minimal. Then every smooth CR function
on M\ K extends to a smooth CR function on M.

M being weakly 2-convex-concave signifies that the Levi form of M has
at least 2 nonnegative and 2 nonpositive eigenvalues at each point. In par-
ticular, this class of hypersurfaces contains all Levi flat hypersurfaces of real
dimension at least 5. Another interesting case is the one of signature (1, 1,1).

M \ K is globally minimal if any two points p,q € M \ K can be joined
by a piecewise smooth curve v =y U... U, 7 : [0,1] — M \ K, such
that v;(t) € T,y M N JT,,»M for all t € (0,1); here J denotes the complex
structure on X. This assumption of global minimality is needed in order to
assure that the weak analytic continuation principle holds for C'R functions.
However, this assumption is always satisfied as long as the Levi form is not
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identically zero (or if M is of finite bracket type).

Proof of Theorem 5.4.2: If M is weakly 2-convex-concave, we have
min(p~,p") + p® — 1 > 1, thus Theorem 5.4.1 implies that H> (M) = 0.
Keeping in mind that the weak analytic continuation principle holds for CR
functions on minimal C'R manifolds, we have thus proved Theorem 5.4.2.
Indeed, let K be a compact subset of M such that M \ K is connected,
and let f € C®(M \ K) satisfy 0y/f = 0. Choose a smooth function x
with compact support in M such that y = 1 in a neighborhood of K. Set
fo=1(1—=x)f, defined as 0 in K. Then f, € C*°(M). Define

B —fEMX in M\ K
97 0 in K

g is then a dy-closed (0, 1)-form with compact support in M. As HO' (M) =
0, there exists a smooth function u with compact support in M satisfying
Oyu = g. Define F = f,—u. Clearly 0y F = 0in M. Moreover, there exists
an open set in M \ K where u = 0 and f, = f, thus F' = f. Since the weak
analytic continuation principle for C'R functions holds on globally minimal
C'R manifolds, we therefore get F'= f in M \ K.

Similar to the results of the previous section, we can also prove a result on
the solvability of the 0);-equation for currents on hypersurfaces with constant
signature.

Theorem 5.4.3
Let X be a complex manifold of dimension n and M a smooth, closed, con-
nected hypersurface in X. Suppose that M has signature (p~,p°, p™) at each
point. Let 0 CC X be a smooth bounded completely strictly pseudoconvex
domain in X such that Q\ M has ezxactly two connected components and
M intersects O transversally. Then HPA(M N Q) = 0 for 0 < p < n,
¢ >n—min(p~,p*) —p’ +1
Moreover, let Q' be any open set which is relatively compact in Q. Then for
g=n—min(p~,p") — p°, the restriction mapping

HPI(M N Q) — HPL(M N

cur cur

15 the zero mapping.

Proof: We denote by DT and D~ the connected components of Q\ M.



CHAPTER 5. APPLICATIONS TO CR MANIFOLDS 85

Let HP(D),. () (resp. H9(D',_())) the d-cohomology groups of cur-
rents on DT (resp. D~) which are extendable to 2. Moreover, we consider

the d-cohomology groups H?4(M N, D},) of currents on 2 with support on
MnNQ.

We then have the following long exact sequence (cf [HN95], [NV87])

.. — HP9(Q) — HPY(D)y (Q)) @ HP(D)y- () — HPH M N Q, Dyyng)

cur

— Hp’q+1(Q) — ...

cur

Since  is completely strictly pseudoconvex, we have H24(Q2) = 0 for all
q > 1 (see [HL88]). Moreover, it follows from Theorem 5.1.2 that we
have a natural isomorphism HZ2(M N Q) — HPIY (M N Q,D),nq)- Hence

cur

HPA(M N Q) ~ HP(D),, () & HP(D), (Q)). The theorem is now a con-
sequence of the following lemma (for the case ¢ = n —min(p~, p*) — p°, note

that all diagrams induced by the restriction mapping are commutative). [

Lemma 5.4.4

For0<p<mnandq>n—min(p~,p") — p° + 1 we have Hp’q(@bJr(Q)) =
H29(D)(©)) = 0,

Moreover, let € be any relatively compact domain in Q. Then for ¢ = n —
min(p~, pT) — p°, the restriction mappings

HP(Dpp () — HP(Dpyerg(Y)),

HP(Dl () — HP(Dp- /()

are the zero mappings.

Proof. Let (€2;);en be an exhaustion of €2 by smooth bounded strictly
pseudoconvex domains such that M intersects 0€2; transversally.

Let T € b’%ﬂmQ(Q) satisfy 0T = 0in DT NQ, ¢ > n— min(p~, p™) — p°.
It follows from Theorem 4.4.2 that there exists S; € D’IBTI(Q) satisfying

9S; = T in DY N Q;. The same holds true of course with D* replaced by

D~. This proves the assertion of the lemma for ¢ = n — min(p—, p™) — p'.

Now let ¢ > n — min(p~,p*) — p° + 1. We have 9(S;y; — S;) = 0 in
Dt N Q;. Hence, again by Theorem 4.4.2, there exists H € 15’1]3’372(9) sat-
isfying OH = S;,1 — S; in D¥ N ;. Setting §j+1 = Sj41 — OH, we have
5§j+1 =T in DT N Q4 and §j+1 = S; in Dt NQ;. Thus we can find
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a sequence (G)jen, G € DPI1(Q) satisfying 9G; = T in D¥ N Q; and
Gjw1 = Gjin D* N Q;. Hence (G;) converges to G € f?’%‘fl(Q) satisfying
OG =T in D™ N Q. Since the same holds true also for D™, we have proved
the lemma. O

We remark that Theorem 5.4.3 gives a Poincaré lemma for currents on
a certain type of hypersurfaces. Combining this with the results of [NV&7],
[AHT2], [Mic93] and [HNO1], we obtain the following corollary:

Corollary 5.4.5

Let X be a smooth hypersurface in C" and suppose that M has signature
(p=,p° p™) at each point in a neighborhood of xy € M. Then the Poincaré
lemma holds for smooth forms and for currents of bidegree (p,q) at the point
o if 1 < q#p,pt, i.e. each smooth form (resp. current) of bidegree (p,q),
1 <q#p,p*, which is 0-closed on some open neighborhood of x is 0-exact
on some open neighborhood of .

The Poincaré lemma fails to hold at xy for smooth forms and currents of

bidegree (p,p~) and (p,p™).

Proof. Let M be defined by {0 = 0} in a neighborhood of z, where ¢ is a
C*> function whose Levi form has exactly p* positive, p° zero and p~ negative
eigenvalues on TH0M for each z € M. Let Q be a small ball around z such
that M intersects 0f) transversally and 2\ M has exactly two connected
components. Set QT =QN{p <0} and Q™ =QnN{p> 0}

It follows from [NV87] that there exists a neighborhood € of zy in C"
such that the restriction mappings

HP" (D (Q)) — HP (D o (),

HP (Diy- () — P (D ()

are the zero mappings for 1 < g7 < p™ and 1 < ¢- < p~. In virtue of
Theorem 4.4.2, the same holds true for ¢t >n —p~ —p%, ¢= > n —p* — p°.
Since we may assume that  and €)' are Stein, this proves the Poincaré
lemma for currents of bidegree (p,q), 1 < ¢ # p~,p"; remember that we
have a direct splitting

HEL(M N Q) ~ HP(Dy () @ H™ (Dy- ()

cur

(cf the proof of Theorem 5.4.3).
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Moreover, it follows from [AH72] and [Mic93] that after possibly shrinking
(), the restriction mappings

HP4(QF) — HP(QF AGY),
HP(Q7) — HP(Q A Q)

are the zero mappings for 1 < g # p~, p'; here — denotes the closure in Q
(resp. in ') and the cohomology groups are the cohomology groups of the
d-operator acting on smooth forms with regularity up to the boundary.

In virtue of Theorem 5.1.1, we also have direct splittings
HP(QF) @ HP(Q~) ~ HP(M N Q)

induced by (f*,f7) = fi, — f, (cf [AH72]). This proves the Poincaré
lemma for smooth forms on M in bidegree (p,q), 1 < ¢ #p~,p*.

The failure of the Poincaré lemma in bidegree (p,p~) and (p,p™) was
proved in [HNO1]. O

5.5 Examples

1. Let py1,...,p, be positive integers. Then
Q={zeC"|) |z <1}
j=1

is a smooth bounded weakly pseudoconvex domain in C".

2. Let M be a smooth hypersurface in C" with signature (p~,0,p") at
each point. Then M = M x CP" has signature (p~,p°% p") at each
point.

3. Any real-analytic hypersurface in C" has constant signature outside a
proper real-analytic subvariety (in particular, on a dense open subset).

4. The tube in C" defined by
oz) =ai+. .. Fal—al, —...—x =0,

x; = Re z;, has signature (n—¢—1,1,¢—1) at every nonsingular point,
i.e. at every point where it is a real submanifold of C".
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Indeed, it is clear that L(g,z)10,, has at least ¢ — 1 positive and
n — q — 1 negative eigenvalues for every z € M \ {0}. Moreover, if we
define ¢ € C" by

§=mx5, 1<j<mn,
then & € THOM for every z € M\ {0} and L(g,2)(&,n) = 0 for every
neTHM.

In particular, the tube in C™ over the light cone in R", i.e. the variety
M defined by
o) =22 +... +22  —22=0

has signature (0,1,n — 2) at every nonsingular point.

5. The following example is taken from [HNOO]. Consider the unit sphere
S5 in C?, where we look at C? as one of the standard holomorphic co-
ordinate patches in P3. Let M denote the smooth subma-nifold of the
Grassmannian G(2,4) of all PVs in P, consisting of those P'’s which
are tangent to S° at some point. Then M is a compact 7-dimensional
hypersurface in G(2,4) with signature (1,1, 1) at each point.

Indeed, we can represent S° C P? in homogeneous coordinates by
55 = {2023 + 2320 + 2121 + 2920 = O}

This is a homogeneous manifold for the action of SU(1, 3), i.e. SU(1, 3)
is a group of C'R-automorphisms acting transitively on M. Here we
identify SU(1,3) with the group of 4 x 4 complex matrices A, with
determinant 1, which satisfy A*KA = K for

0

and the action on P? is the quotient of the standard action on C*. With
this identification, the line ¢ = {25 = 0, 23 = 0} is a point of M. We can
choose complex coordinates wy, wsy, w3, wy near ¢ in the Grassmannian
of the projective lines of P2, (w1, ws, w3, wy) representing the projective
line corresponding to the plane V of C* generated by the vectors

1 0
0 1
U1 = wy ; Vg = ws

w2 Wy
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Then V € M if and only if V N (KV)* # {0}, i.e.
det((v;, Kv;)) = 0.
Hence the local equation for M in these coordinates is given by
det ( wzi‘ Wo +1_01@1 wyrws +_U)4 ) —0,
Wy + W1W3 1 + wzws
ie.
Wy + Wo + W1 W) — WyWy — Ww3Wy — WiW3wy + (Wo + Wa)wzwWws = 0.

By the homogeneity, it suffices to compute the Levi form at w; = ws =
w3 = wy = 0, where wy, w3, wy can be taken as tangential holomorphic
coordinates: it is proportional to the hermitian matrix

0
0
-1

o O =
o O O

and hence M has signature (1,1,1) at every point.



Appendix A

Some results of real analysis

A.1 A regularized distance function

In this section, we recall some results from [Ste70, Chapter VI].

In what follows, F' will denote an arbitrary non-empty closed set in R™, §2
its complement. By a cube we mean a closed cube in R", with sides parallel
to the axes, and two such cubes will be said to be disjoint if their interiors are
disjoint. For such a cube @, diam(@)) denotes its diameter, and dist(Q), F') its
distance from F'. Let now () be any cube with center z. For any e, 0 < € < }1,
which is arbitrary but will be kept fixed in what follows, denote by Q* the
cube which has the same center as ) but is expanded by the factor 1 + ¢;
that is, Q* = (1 +¢)[Q — z] + .

Theorem A.1.1
Let F be given. Then there ezists a collection of cubes F, F = {Q1,Q2, ...}
such that

(1) Up Qr = Q= (°F),
(ii) The Qi are mutually disjoint,
(111) diam(Qy) < dist(Qx, F) < 4diam(Qg),

(iv) Each point of Q is contained in a small neighborhood intersecting at
most N = (12)" of the cubes Q5.

Proof. Consider the lattice of points in R™ whose coordinates are integral.
This lattice determines a mesh M, which is a collection of cubes; namely

90
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all cubes of unit length, whose vertices are points of the above lattice. The
mesh M, leads to a two-way infinite chain of such meshes {M;}*%, with
M, = 27¥ MP. Thus each cube in the mesh M, gives rise to 2" cubes in the
mesh My, by bisecting the sides. The cubes in the mesh M each have

sides of length 27* and are thus of diameter /n27*.

We also consider the layers €2 defined by
Qe = {z | 2v/n27F < dist(x, F) < 2y/n 2771},

Obviously Q = [J;2° __ Q.
We now make an initial choice of cubes and consider the resulting collec-
tion Fo:
Fo = J{Qr € My | QO # 0}
k

We then have |,z @ = 2 and diam(Q) < dist(Q, F') < 4diam(Q) for all
Q) € Fo. Hence the collection Fy has the required properties (i) and (iii).
However, the cubes in it are not necessarily disjoint. We now refine our
choice leading to Fy, eliminating those cubes which are really unnecessary.

Start with any cube Q € Fy and consider the mazimal cube in Fy which
contains it. Observe that any cube Q' € Fy which contains Q) € Fy satisfies
diam(Q’) < 4diam(Q). Moreover, any two cubes @' and Q" which contain
@ have obviously a non-trivial intersection. Thus each cube ) € Fy has
a unique maximal cube in Fy which contains it. By the same token these
maximal cubes are also disjoint. We let F denote the collection of maximal
cubes of F. Then F satisfies (i), (ii) and (iii).

It remains to show that F also satisfies (iv).

Let us say that two distinct cubes of F, @)1 and )2, touch if their bound-
aries have a common point. Suppose ()7 and ()3 touch. Then diam(Q;) <
dist(Qq, F) < dist(Qq, F) 4+ diam(Q2) < 5diam(Q2). However diam(Q2) =
2Fdiam(Q;) for some k € Z, thus diam(Q;) < 4diam(Q,). Together with
the symmetrical implication, this proves

%diam(QQ) < diam(Q1) < 4diam(Q2),

provided @, Q2 € F touch.
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Now let @ € F. We claim that there are at most N = (12)" cubes in F
which touch Q. Indeed, if the cube @) belongs to the mesh My, then there are
3™ cubes which belong to the mesh Mj and touch ). Next, each cube in the
mesh M, can contain at most 4" cubes of F of diameter > tdiam(Q). Since
we have already seen that if a cube of F touches () it must be of diameter
> 1diam(Q), this shows that there are at most (12)" cubes in F which touch

0.

Now let x € 2. We choose a cube () € F such that z € ). Consider
the union of Q) with all the cubes in F which touch Q). Since the diame-
ters of these cubes are all > idiam(@k), it is clear that this union contains
Q5. (we have choosen ¢ < i) Therefore Q) intersects ()} only if Q) touches
Qr. As we have already seen, there are at most N cubes of F which touch
(). Thus there are at most N cubes @)} which intersect (). This proves (iv).OI

Again, let F' be an arbitrary closed set in R™, and let §(z) denote the
distance of x from F. While this function is smooth on F' (it vanishes there),
it is in general not more differentiable on 2 = “F’ than the obvious Lipschitz-
condition-inequality |6(x) — d(y)| < |xr — y| would indicate. For applications,
it is desirable to replace §(z) by a regularized distance which is smooth for
x € Q. In addition, this regularized distance is to have essentially the same
profile as d(x). Its existence is guaranteed by the following theorem.

Theorem A.1.2
There exists a function A € C*(Q) such that

(a) c16(x) < Ax) < cd(x),
(b) |D*A(z)| < By (6(z)) 10l for every multiindex a.
B, c1 and ¢y are independent of F.

Proof. We keep the notations of Theorem A.1.1. Let @)y denote the cube
of unit length centered at the origin. Fix a smooth function ¢ satisfying
0<e<l,px)=1lifzxe@and p(z) =0if 2 ¢ Q5 = (1 +2)Qp. Let py
denote the function ¢ adjusted to the cube @)y, that is

I'—(L’k

where z* is the center of Q) and ¢ is the common length of its sides. Notice
that therefore i (z) = 1if x € Qf and pi(x) =0 if x ¢ Q;. We also observe
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that
| D% ()| < Aa(diam(Qk))_M. (A.1)

We set A(x) =), diam(Qx)pr(z).

Observe that if € Qy, then §(z) = dist(x, F)) < dist(Qg, F)+diam(Qy) <
5diam(Qy) by (iii) of Theorem A.1.1. However, if x € Q, then ¢x(z) = 1,
so A(z) > diam(Qy) > 16(x).

Also, if z € Q, then §(z) > dist(Qy, F) — 1diam(Qx) > 3diam(Qy) by
(iii) of Theorem A.1.1. On the other hand, any given x lies in at most N of
the @ by (iv) of Theorem A.1.1, thus A(x) < erQ;; diam(Qx) < 3N (x).

We have therefore proved the conclusion (a) with ¢; = % and ¢y = %N .

To prove conclusion (b), we argue similarly but invoke inequality (A.1)
and the observation that if z € Qf, then 0(z) < dist(Qg, F') + diam(Qy) +
%diam(@k) < 6diam(Qy). This gives the desired result with B, = A,N6/*~1,
U

A.2 Imbeddings of Sobolev spaces on Lips-
chitz domains

Definition A.2.1

Let Q C R™ be an open set. We say that its boundary I is Lipschitz if for
every x € I' there exists a neighborhood V' of x in R™ and local coordinates
(Y1, .-, Yn) such that

(a) V is a cube in the new coordinates:
V={(y,...,un) | —1<y; <1, 1<j<n}

(b) there exists a Lipschitz function ¢, defined in
V/:{<y17---7yn—1) | -1 <y; < 1, 1§j§n—1}
such that
QNV={y="wm) €V ]y <o)}

NV ={y=("y) €V ly=10(y)}

In other words, in a neighborhood of z, € is below the graph of a Lip-
schitz function ¢, and I' is the graph of .
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The following theorem is taken from [Gri85].

Theorem A.2.2
Let Q) be a bounded open subset of R™ with Lipschitz boundary I' and let k € N.

Then for all u € Hy(Q) we have 6 *u € L*(Q), where §(x) is the distance
from a point x to T'. Moreover, we have an estimate ||6 *ullo.o < |Jullr.q-

Proof. Let us first consider the case when 2 = R* is the nonnegative real
axis. Then, for u € D(RT) we have

) = [ )y

and consequently

ORI . e
< - dy.
o S o Tin ), 1

Hardy’s inequality implies that

lz ™ ullo < 1™ lo.

(k—1)!
By density of D(R™), this implies the desired result for H;(R™).

We conclude by extending this result to a general 2. Let us use the
same notation as in Definition A.2.1 and consider a function u whose sup-
port is contained in V. Omne can always reduce the general case to this
particular case, using a partition of unity. Now for ¢y’ € V' let us set
uy(t) = u(y,¢(y’) —t). For almost all ' € V', we have u, € Hy(RT)
and consequently t~*u, € L*(RT) with ||t Fuy ||2 5 < K| uy|? 5+, where K
does not depend on /. ’ 7

Integrating this inequality in y" leads to

1(e(y) = yn)Mulld o < Kllulli q-

Since ¢ is a Lipschitz function, the weight ¢(y') — v, is equivalent to J(y),
the distance from y to I', throughout V. Il
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A.3 A cut-off function

The following lemma is taken from [Duf79].

Lemma A.3.1

Let Fy, Fy be two closed subsets of R™ with d(Fy, Fy) > €. Then there exists
X € C®(R"™) such that x = 1 in a neighborhood of Fy, x = 0 in a neighborhood
of Fy and for every multiindex o, x satisfies

|a|

sup | D*x(x)| < 2
reR”™ €

(where Njo| does not depend on Fy, F).

Proof: Let ¢ € C*°(R™) have support in the unit ball of R™ and satisfy
Jgn dX = 1. We set 9. (x) = (g)nw(g?m)

Let ¢ be the function defined on R" by ¢(z) = 1 if d(Fy, F;) < § and
o(x) = 0 otherwise.

We set x = ¢ *x .. Then it is immediate that x = 1 in a neighborhood
of F1 and xy = 0 in a neighborhood of F;. Moreover, we have

Dx@)| < [ D@y < (2! sup [D0(0)

yeR™

and it suffices to take

Nio = 3 max (sup |Dy(x)|).
[BI=lel zern

A.4 A partition of unity

Lemma A.4.1

Let Q be an open set of R™ and denote by d(x) the distance of x € € to
the complement of Q2. Let € be an arbitrary small positive number < % and
¢ € N. Then there exists a locally finite open covering of 2 by balls B(x',r;),
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with center x* and radius r; = £0(x%)*, and a partition of unity (0;)ien with
respect to this covering satisfying

DD < 0P (r;7?),

| <s
where Py is a polynomial of degree s in one variable.

Proof. We may choose a locally finite open covering of 2 by balls B(z*, r;),
r; = ed(z")", such that also the balls B(a", 3r;) cover Q.

Let g : R — [0, 1] be a smooth function satisfying

1, < 3
g(t) = exp(—1), 7 <l <1
0, It > 1

|z—a’|

We set ¢; = g(=.—). We obviously have p;(z) = 1 if z € B(z', ir;) and

supp ¢; C B(x%,r;). Moreover, a straightforward computation yields

> ID%ail” < @il Pu(r ),

laf<s

where P; is a polynomial of degree s in one variable.

We set .
0, Pi

_Zkﬁok.

The family (6;);en then defines a partition of unity with respect to the
covering (B(z*,7;)ien-

Moreover, since (B(z%, 31;)); covers €2, we clearly have Y, ¢p > 1 in Q.
Without loss of generality, we may also assume that e§(2?)*~! < % for all
i € N. Then, if B(z*,ry) N B(x',r;) # 0, we must have §(z*) > 16(z"), i.e.
r. b < 4%;'. But this implies

D D6 < 6P (r7?)]

laf<s

for some polynomial P; of degree s. OJ
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