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Abstract. In this paper we present stability and sensitivity analysis of a stochastic optimization
problem with stochastic second order dominance constraints. We consider perturbation of the
underlying probability measure in the space of regular measures equipped with pseudometric
discrepancy distance ( [30]). By exploiting a result on error bound in semi-infinite programming
due to Gugat [13], we show under the Slater constraint qualification that the optimal value
function is Lipschitz continuous and the optimal solution set mapping is upper semicontinuous
with respect to the perturbation of the probability measure. In particular, we consider the case
when the probability measure is approximated by empirical probability measure and show the
exponential rate of convergence of optimal solution obtained from solving the approximation
problem. The analysis is extended to the stationary points when the objective function is
nonconvex.
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1 Introduction

Stochastic dominance is a fundamental concept in decision theory and economics [22]. For two
random variables ξ1(ω) and ξ2(ω) with finite expected values, ξ1(ω) is said to dominate ξ2(ω)
in the second order, denoted by ξ1(ω) º2 ξ2(ω), if

∫ η

−∞
Prob{ξ1(ω) ≤ η}dη ≤

∫ η

−∞
Prob{ξ2(ω) ≤ η}dη, ∀η ∈ IR. (1)

By changing the order of integration in (1), the second order dominance can be mathematically
reformulated as:

EP [(t− ξ1(ω))+] ≤ EP [(t− ξ2(ω))+], ∀t ∈ IR. (2)

Here and later on (·)+ denotes the plus function, that is, (x)+ = max{x, 0}.
In this paper, we consider the following stochastic programs with stochastic second order
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dominance (SSD) constraints:

min
x

EP [f(x, ξ(ω))]

s.t G(x, ξ(ω)) º2 Y (ξ(ω)),
x ∈ X,

(3)

where X is a nonempty compact subset of IRn, ξ : Ω → Ξ is a vector of random variables defined
on probability (Ω,F , P ) with support set Ξ ⊂ IRm, f, G : IRn×Ξ → IR are Lipschitz continuous
functions and for every ξ ∈ Ξ, G(·, ξ) : IRn → IR is concave; Y (ξ(ω)) is a random variable, and
EP [·] denotes the expected value with respect to the probability (P ) distribution of ξ. For the
simplicity of discussion, we make a blanket assumption that f and G are P -integrable.

Using the equivalent formulation of the second order dominance constraint (2), problem (3)
can be written as a stochastic semi-infinite programming (SSIP) problem:

min
x

EP [f(x, ξ(ω))]

s.t EP [(t−G(x, ξ(ω)))+] ≤ EP [(t− Y (ξ(ω)))+], ∀t ∈ IR,

x ∈ X.

(4)

Stochastic optimization models with SSD constraints were introduced by Dentcheva and Ruszczyński
[8,9]. Over the past few years, there has been increasing discussions on the subject ranging from
optimization theory, numerical methods and practical applications, see [7–12, 17, 20] and refer-
ences therein.

It is well-known that the SSIP problem above does not satisfy the well-known Slater’s con-
straint qualification, a condition that a stable numerical method may rely on. Subsequently, a
so-called relaxed form of the SSIP is proposed:

min
x

EP [f(x, ξ(ω))]

s.t. EP [H(x, t, ξ(ω))] ≤ 0, ∀t ∈ T,

x ∈ X,

(5)

where
H(x, t, ξ(ω)) := (t−G(x, ξ(ω)))+ − (t− Y (ξ(ω)))+

and T is a compact subset of IR. In the literature [8–10], T is a closed interval or the union of
a finite number of closed intervals in IR.

Our focus in this paper is on the stability analysis of problem (5). Specifically, we are
concerned with the impact of the changes of probability measure P in the problem on optimal
values and optimal solutions. The analysis is inspired by a recent work [7] on the stability and
sensitivity analysis of optimization problems with first order stochastic dominance constraints
and is in line with the traditional stability analysis in the literature of deterministic nonlinear
programming and stochastic programming [14,15,18,19,25–27,30,31].

From practical viewpoint, this kind of stability analysis is motivated by the fact that the
underlying probability distribution P is often incompletely known in applied models, and the
stability behavior of problem (5) when changing P is important, see [25]. A particularly inter-
esting case is when the probability measure is approximated by empirical probability measure.
In such a case, expected value of the underlying functions are approximated through sample
averaging. As far as we are concerned, the contribution of this work can be summarized as
follows.
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• We carry out stability analysis for problem (5). Specifically, we consider the case when the
underlying probability measure P is approximated by a set of probability measures under
pseudometric. By exploiting an error bound in semi-infinite programming due to Gugat
[13], we show under the Slater condition that the feasible solution set mapping is Lipschitz
continuous and further that the optimal solution set-mapping is upper semicontinuous,
and the optimal value function is Lipschitz-like (calm). Moreover, when the objective
function satisfies certain growth condition, we show the quantitative upper semi-continuity
property of the optimal set-valued mapping. This complements the existing research [7]
which focuses on the stability analysis of optimization problems with first order dominance
constraints.

• We consider a special case when the probability measure P is approximated by empirical
probability measure (which is also known as sample average approximation (SAA)) and
present a detailed analysis on the convergence of optimal solution and stationary point
obtained from solving the sample average approximate optimization problems as sample
size increases. Specifically, we show the exponential rate of convergence of optimal solution
and almost sure convergence of stationary point as sample size increases. SAA is a popular
method in stochastic programming, but there seems to be few discussions on SAA for
stochastic programs with SSD constraints. The only exception is a recent work by Homem-
de-Mello [17] which discusses the cutting plane method for sample average approximated
optimization problems with SSD constraints.

• Our convergence analysis is carried out through exact penalization of (5) (see (11)). The
penalty formulation may provide a potential numerical framework for solving (5).

The rest of the paper are organized as follows. In section 2, we investigate the stability and
sensitivity of the set of optimal solutions and optimal value as probability measure changes. In
section 3, we consider a special case when the original probability measure is approximated by
a sequence of empirical probability measures.

Throughout this paper, we use the following notation. For vectors a, b ∈ IRn, aT b denotes
the scalar product, ‖ · ‖ denotes the Euclidean norm of a vector, ‖ · ‖∞ denotes the maximum
norm of continuous functions defined over set T . d(x,D) := infx′∈D ‖x−x′‖ denotes the distance
from a point x to a set D. For two compact sets C and D,

D(C,D) := sup
x∈C

d(x,D)

denotes the deviation of C from D and H(C,D) := max (D(C,D),D(C,D)) denotes the Hausdorff
distance between C and D. Moreover, C + D denotes the Minkowski addition of the two sets,
that is, {C + D : C ∈ C, D ∈ D}, B(x, γ) denotes the closed ball with center x and radius γ, B
denotes the closed unit ball in the respective space.

2 Sensitivity analysis

Let P(Ω) denote the set of all Borel probability measures. For Q ∈ P(Ω), let EQ[ξ] =∫
Ω ξ(ω)dQ(ω) denote the expected values of random variable ξ with respect to the distribu-

tion of Q. Assuming Q is close to P under some metric to be defined shortly, we investigate in
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this section the following optimization problem:

min
x

EQ[f(x, ξ(ω))]

s.t. EQ[H(x, t, ξ(ω))] ≤ 0, ∀t ∈ T,

x ∈ X.

(6)

which is regarded as a perturbation of (5). Specifically, we study the relationship between the
perturbed problem (6) and true problem (5) in terms of optimal values and optimal solutions
when Q is close to P .

Let us start by introducing a distance function for the set P(Ω), which is appropriate for
our problem. Define the set of functions:

G := {g(·) = H(x, ·, t) : x ∈ X, t ∈ T} ∪ {g(·) = f(x, ·) : x ∈ X}.
The distance function for the elements in set P(Ω) is defined as:

D(P, Q) := sup
g∈G

∣∣EP [g]− EQ[g]
∣∣.

This type of distance was introduced by Römisch [30, Section 2.2] for the stability analysis of
stochastic programming and was called pseudometric. It is well-known that D is nonnegative,
symmetric and satisfies the triangle inequality, see [30, Section 2.1]. Throughout this section,
we use the following notation:

F(Q) :=
{
x ∈ X : EQ[H(x, t, ξ)] ≤ 0, ∀t ∈ T

}
,

ϑ(Q) := inf
{
EQ[f(x, ξ)] : x ∈ F(Q)

}
,

Sopt(Q) :=
{
x ∈ F(Q) : ϑ(Q) = EQ[f(x, ξ)]

}
,

PG (Ω) :=
{

Q ∈ P(Ω) : −∞ < inf
g(ξ)∈G

EQ[g(ξ)] and inf
g(ξ)∈G

EQ[g(ξ)] < ∞
}

.

It is easy to observe that for P, Q ∈ PG (Ω), D(P, Q) < ∞. Throughout this section, the
perturbation probability measure Q in problem (6) is taken from PG (Ω).

In what follows, we discuss the quantitative continuity properties of optimal solution mapping
and optimal value function of problem (6). We do so by applying Klatte’s earlier result on
stability of a parametric nonlinear programming [18, 19], an approach adopted by Dentcheva,
Henrion and Ruszczyński for the stability analysis of optimization problems with first order
dominance constraints [7]. A key condition in Klatte’s stability result is the pseudo-Lipschitz
property of the feasible set and we verify it by employing an important result on error bound in
semi-infinite programming established by Gugat in [13]. To this end, we need to introduce some
definitions and technical results most of which are translated from deterministic semi-definite
programming in [13] to our setting.

Definition 2.1 Problem (5) is said to satisfy weak Slater condition, if there exist positive num-
bers α and M such that for any x ∈ X with max

t∈T
(EP [H(x, t, ξ)])+ ∈ (0,M) there exists a point

x∗ with EP [H(x∗, t, ξ)] < max
t∈T

(EP [H(x, t, ξ)])+ for all t ∈ T and

‖x− x∗‖ ≤ α

[
max(EP [H(x, t, ξ)])+ −max

t∈T
EP [H(x∗, t, ξ)]

]
.
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Definition 2.2 Problem (5) is said to satisfy strong Slater condition, if there exists a positive
number γ such that for any feasible point x satisfying EP [H(x, t, ξ)] = 0 for some t ∈ T there
exists a point z(x) with EP [H(z(x), t, ξ)] < 0 for all t ∈ T and

‖z − z(x)‖ ≤ γ min
t∈T

(−EP [H(z(x), t, ξ)]) .

Definition 2.3 Problem (5) is said to satisfy Slater condition if there exist a positive number
δ and a point x̄ ∈ X such that

max
t∈T

EP [H(x̄, t, ξ)] ≤ −δ̄.

Note that the strong Slater condition implies that the weak Slater condition holds for any
M > 0 and α = γ, where M is given in Definition 2.1. Moreover, if X is a compact, then the
Slater condition implies the strong Slater condition and the positive number γ in Definition 2.2
can be estimated by

γ =: sup
x∈X

‖x− x̄‖
mint∈T −EP [H(x̄, t, ξ)]

. (7)

See [13, Propositions 1 and 2] for more details about the relationships.

Proposition 2.4 Assume problem (5) satisfies the Slater condition and X is a compact set.
Then there exists a positive number ε (ε ≥ δ̄/2) such that for any Q ∈ B(P, ε)

max
t∈T

EQ[H(x̄, t, ξ)] ≤ −δ̄/2,

where x̄ is given as in Definition 2.3, that is, problem (6) satisfies the Slater condition.

Proof. By the definition of pseudometric distance D ,

sup
t∈T

|EP [H(x, t, ξ)]− EQ[H(x, t, ξ)]| ≤ D(Q,P ), ∀x ∈ X.

Let Q ∈ B(P, δ̄/2). Then

sup
t∈T

EQ[H(x̄, t, ξ)] ≤ sup
t∈T

EP [H(x̄, t, ξ)] + sup
t∈T

|EP [H(x̄, t, ξ)]− EQ[H(x̄, t, ξ)]|

≤ −δ̄ + δ̄/2

= −δ̄/2.

The proof is complete.

By [13, Lemmas 3 and 6] and Proposition 2.4, we can obtain the following uniform error
bound, for the feasible set mapping F(Q) of problem (6).

Lemma 2.5 Let the conditions of Proposition 2.4 hold. Then there exist positive numbers ε

and β such that for any Q ∈ B(P, ε), the following error bound holds:

d(x,F(Q)) ≤ β
∥∥(EQ[H(x, t, ξ)])+

∥∥
∞, ∀x ∈ X,

where F(Q) is the feasible set of problem (6).
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Proof. Let ε be given as in Proposition 2.4. For any fixed Q ∈ B(P, ε), we have by [13, Lemmas
3 and 6] that

d(x,F(Q)) ≤ γ(Q)
∥∥(EP [H(x, t, ξ)])+

∥∥
∞,

where
γ(Q) =: sup

x∈X

‖x− x̄‖
mint∈T −EQ[H(x̄, t, ξ)]

,

and x̄ is given in Definition 2.3. By Proposition 2.4, for Q ∈ B(P, ε), EQ[H(x̄, t, ξ)] ≤ −δ̄/2,

where δ̄ is given in Definition 2.3. This gives

γ(Q) ≤ maxx′,x′′∈X ‖x′ − x′′‖
δ̄/2

.

The conclusion follows by setting β :=
maxx′,x′′∈X ‖x′−x′′‖

δ̄/2
and the boundedness of X.

Proposition 2.6 Assume the conditions of Proposition 2.4. The following assertions hold:

(i) the solution set Sopt(P ) is nonempty and compact;

(ii) the graph of the feasible set mapping F(·) is closed;

(iii) there exists a positive number ε such that the feasible set mapping F(Q) is Lipschitz con-
tinuous on B(P, ε), that is

H (F(Q1),F(Q2)) ≤ βD(Q1, Q2), ∀Q1, Q2 ∈ B(P, ε).

Proof. Part (i) follows from the Slater condition and compactness of X.

Part (ii). Let t ∈ T be fixed. It follows by virtue of [30, Propositions 3 and 4] that
EQ[H(x, t, ξ)] : X × (G , D) → IR is lower semicontinuous. Let QN → Q, xN ∈ F(QN ) and
xN → x∗. Then

EQ[H(x∗, t, ξ)] ≤ lim inf
N→∞

EQN
[H(xN , t, ξ)] ≤ 0, ∀t ∈ T,

which implies that x∗ ∈ F(Q).

Part (iii). Let ε be given by Lemma 2.5 and Q1, Q2 ∈ B(P, ε). Observe that for any
x ∈ F(Q1), (EQ1 [H(x, t, ξ)])+ = 0, for all t ∈ T . By Lemma 2.5, there exists a positive constant
β such that for any x ∈ F(Q1)

d(x,F(Q2)) ≤ β
∥∥∥(EQ2 [H(x, t, ξ)])+

∥∥∥
∞

= β

(
max
t∈T

(EQ2 [H(x, t, ξ)])+ −max
t∈T

(EQ1 [H(x, t, ξ)])+

)

≤ β max
t∈T

(
(EQ2 [H(x, t, ξ)])+ − (EQ1 [H(x, t, ξ)])+

)

≤ β max
t∈T

∣∣EQ2 [H(x, t, ξ)]− EQ1 [H(x, t, ξ)]
∣∣

≤ β max
(x,t)∈X×T

∣∣EQ2 [H(x, t, ξ)]− EQ1 [H(x, t, ξ)]
∣∣

= βD(Q1, Q2),
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which implies D(F(Q1),F(Q2)) ≤ βD(Q1, Q2). In the same manner, we can show that for any
x ∈ F(Q2),

d(x,F(Q1)) ≤ β

(
max
t∈T

(EQ1 [H(x, t, ξ)])+ −max
t∈T

(EQ2 [H(x, t, ξ)])+

)
≤ βD(Q2, Q1),

which yields D(F(Q2),F(Q1)) ≤ βD(Q1, Q2). Summarizing the discussions above, we have

H
(F(Q1),F(Q2)

)
= max

{
D

(F(Q1),F(Q2)
)
,D

(F(Q2),F(Q1)
)} ≤ βD(Q1, Q2).

The proof is complete.

Recall that a set-valued mapping Γ : IRm ⇒ IRn is said to be upper semi-continuous at y in
the sense of Berge if for any ε > 0, there exists a number δ > 0 such that

Γ(y′) ⊆ Γ(y) + εB, ∀y′ ∈ y + δB,

where B denotes the closed unit ball in the respective space. It is said to be Lipschitz continuous
if there exists a constant L such that

H(Γ(y′),Γ(y′′)) ≤ L‖y′ − y′′‖,

see [29, page 368]. Proposition 2.6 (iii) shows that the feasible set mapping of problem (6) is
Lipschitz continuous with respect to probability measure over B(P, ε). Using this property, we
are ready to establish our main stability results.

Theorem 2.7 Assume the conditions of Proposition 2.4. Assume also that the Lipschitz modu-
lus of f(x, ξ) w.r.t. x is bounded by an integrable function κ(ξ) > 0. Then the following stability
properties hold true:

(i) there exists ε′ > 0 such that the optimal solution set of problem (6), denoted by Sopt(Q),
is not empty for ∀Q ∈ B(P, ε′);

(ii) Sopt(·) is upper semi-continuous at point P in the sense of Berge;

(iii) there exist positive numbers ε∗ and L∗ such that the optimal value function of problem
(6), denoted by ϑ(Q), is continuous at point P and satisfies the following Lipschitz-like2

estimation:
|ϑ(Q)− ϑ(P )| ≤ L∗D(Q, P ), ∀Q ∈ B(P, ε∗).

Proof. Under the Slater condition, it follows from Proposition 2.6 that there exists positive
number ε such that the feasible set mapping F(·) is Lipschitz continuous on B(P, ε). The
rest follows straightforwardly from [19, Thoerem 1] ( [25, Theorem 2.3] or [7, Thoerem 2.1] in
stochastic programming). The proof is complete.

Theorem 2.7 asserts that the optimal solution set mapping Sopt(·) is nonempty near P and
upper semi-continuous at P . In order to quantify this upper semi-continuity property, we need a
growth condition on the objective function in a neighborhood of the optimal solution set Sopt(P )

2The property is also known as calmness of ϑ at P , see Section F in Chapter 8 [29] for general discussions on

calmness.
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to problem (5). Instead of imposing a specific growth condition, here we consider the growth
function (see [25,29]):

Ψ(ν) := min{EP [f(x, ξ)]− s∗ : d(x, Sopt(P )) ≥ ν, x ∈ X} (8)

of problem (5), where s∗ denotes the optimal value of problem (5), and the associated function,

Ψ̃(v) := v + Ψ−1(2v), κ ≥ 0.

We have the following result.

Corollary 2.8 Let the assumptions of Theorem 2.7 hold. Then there exist positive constants L

and ε such that
∅ 6= Sopt(Q) ⊆ Sopt(P ) + Ψ̃ (LD(Q, P ))B,

for any Q ∈ B(P, ε), where B denotes the closed unit ball.

Corollary 2.8 provides a quantitative upper semi-continuity of the set of optimal solutions,
see [25, Theorem 2.4] for a detailed proof and [29, Theorem 7.64] for earlier discussions about
functions Ψ(·) and Ψ̃(·). Discussions on a particular when the growth is of second order can be
found in [3, 34].

3 Empirical probability measure

In this section, we consider a special case when the probability measure P is approximated by
a sequence of empirical measures PN defined as

PN :=
1
N

N∑

k=1

1ξk(ω),

where ξ1, · · · , ξN is an independent and identically distributed sampling of ξ and

1ξk(ω) :=

{
1, if ξ(ω) = ξk,

0, if ξ(ω) 6= ξk.

In this case

EPN
[f(x, ξ)] =

1
N

N∑

k=1

f(x, ξk)

and

EPN
[H(x, t, ξ)] =

1
N

N∑

k=1

H(x, t, ξk).

It follows from the classical law of large numbers in statistics, EPN
[f(x, ξ)] and EPN

[H(x, t, ξ)]
converge to EP [f(x, ξ)] and EP [H(x, t, ξ)] respectively as N increases. This kind of approxi-
mation is well-known in stochastic programming under various names such as sample average
approximation, Monte Carlo method, sample path optimization, stochastic counterpart etc,
see [16,28,35,38] and the references therein.
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We use fN (x) and HN (x, t) to denote EPN
[f(x, ξ)] and EPN

[H(x, t, ξ)] for the simplicity
of notation as well as the fact that the latter two quantities have little to do with measures.
Consequently we may consider the following approximation of problem (5):

min
x

fN (x) := 1
N

∑N
k=1 f(x, ξk)

s.t. HN (x, t) := 1
N

∑N
k=1 H(x, t, ξk) ≤ 0, ∀t ∈ T,

x ∈ X.

(9)

We call (9) the SAA problem and (5) the true problem.

Assuming that we can obtain an optimal solution, denoted by xN , by solving the SAA
problem, we analyze the convergence of xN as the sample size increases. The analysis would be
very complicated if it was carried out on (9) directly in that the constraints of the SAA problem
depend on sampling. To get around the difficulty as well as the infinite number of constraints, we
consider a reformulation of both the true and the SAA problem through the exact penalization
so that the feasible set of the reformulated problems are deterministic and our analysis focuses
on the approximation of the objective functions.

For the simplicity of notation, let

h(x, t) := max
{
EP [H(x, t, ξ)], 0

}
, θ(x) := max

t∈T
h(x, t). (10)

Consider the exact penalization:

min
x

ψ(x, ρ) := EP [f(x, ξ)] + ρθ(x)

s.t x ∈ X,
(11)

where ρ is a penalty parameter. This kind of penalization is well documented in the literature,
see for instance [24, 36]. In what follows, we establish the equivalence between (5) and (11) in
the sense of optimal solutions. We do so by exploiting the error bound established in Lemma 2.5
and a well-known result by Clarke [5, Proposition 2.4.3]. We need the following assumptions.

Assumption 3.1 f(x, ξ) and G(x, ξ) are locally Lipschitz continuous w.r.t. x and their Lips-
chitz modulus are bounded by an integrable function κ(ξ) > 0.

Theorem 3.2 Assume that the true problem (5) satisfies the Slater condition and X is a com-
pact set. Under Assumption 3.1, there exists a positive number ρ̄ such that for any ρ > ρ̄,
the sets of optimal solutions of problems (5) and (11), denoted by Sopt and Xopt respectively,
coincide.

Proof. Under the Slater condition, it follows by Lemma 2.5 that there exists a constant β > 0
such that

d(x,F) ≤ β
∥∥(EP [H(x, t, ξ)])+

∥∥
∞, ∀x ∈ X.

Let C denote the Lipschitz modulus of function EP [f(x, ξ)]. By [5, Proposition 2.4.3], for any
ρ > βC, the two optimal solution sets, Sopt and Xopt, coincide. Note that under Assumption 3.1,
we can set an C = EP [κ(ξ)]. This shows the existence of a positive constant ρ̄ := βC. The proof
is complete.
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We now move on to discuss the exact penalization of the SAA problem (9). Let

hN (x, t) := max
{
HN (x, t), 0

}
, θN (x) := max

t∈T
hN (x, t). (12)

Consider the SAA penalty problem

min
x

ψN (x, ρN ) := fN (x) + ρNθN (x)

s.t x ∈ X,
(13)

where ρN is the penalty parameter.

Under Assumption 3.1, we have by [32, Section 6, Proposition 7] that HN (x, t) converges to
EP [H(x, t, ξ)] uniformly over compact set X×T with probability one (w.p.1). Since true problem
(5) satisfies Slater condition, there exists a sufficiently large N∗ such that for any N ≥ N∗

HN (x̄, t) ≤ −δ̄/2, ∀t ∈ T, w.p.1,

where x̄ and δ̄ are given in Definition 2.3. Subsequently, by Lemma 2.5 that, for any N ≥ N∗,

d(x,FN ) ≤ β
∥∥(HN (x, t))+

∥∥
∞, ∀x ∈ X, (14)

w.p.1, where FN denotes the feasible set of problem (9).

Proposition 3.3 Let the assumptions in Theorem 3.2 hold. Then there exist positive numbers
ρ∗ and N∗ such that for any ρ > ρ∗ and N ≥ N∗, the sets of optimal solutions of problems (9)
and (13), denoted by SN

opt and XN
opt respectively, coincide w.p.1.

Proof. Note that there exist a positive constant β and a sufficiently large positive integer N1

such that for any N ≥ N1, (14) holds. Let CN denote the Lipschitz modulus of function fN (x).
By [5, Proposition 2.4.3], for any ρ > βCN , the two optimal solution sets, SN

opt and XN
opt, coincide.

Moreover, under Assumption 3.1, CN converges to the Lipschitz modulus of E[f(x, ξ)], denoted
by C. This implies that there exists a positive integer N2 ≥ N1 such that when N ≥ N2, we
have CN < 2C. The conclusion follows by taking ρ∗ = 2βC and N∗ = max{N1, N2}.

3.1 Optimal solution

Assuming for every fixed sampling, we can obtain an optimal solution, denoted by xN , from
solving the SAA problem (9), we analyze the convergence of xN as the sample size N increases.
We do so by establishing the uniform convergence (both almost sure and exponential) of the
objective function of SAA penalty problem (13) to its true counterpart (11). Over the past few
decades, there have been a lot of discussions this kind of analysis in stochastic programming.
However, as far as we are concerned, our analysis seems to be the first for the SAA applied to
(5) and it is carried out through exact penalization.

Proposition 3.4 Let X be a compact set and ρN tend to ρ as N → ∞. Let Assumption 3.1
hold. Then

(i) ψ(x, ρ) and ψN (x, ρN ), N = 1, 2, · · · , are Lipschitz continuous;
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(ii) ψN (x, ρN ) converges to ψ(x, ρ) uniformly over X.

Proof. Part (i). Note that EP [H(x, t, ξ)] and HN (x, t) are Lipschitz continuous with respect to
(x, t) and T is a compact set. By [23, Theorem 3.1], θ(x) and θN (x) are Lipschitz continuous.
Together with the Lipschitz continuity of EP [f(x, ξ)] and fN (x), we conclude that ψ(x, ρ) and
ψN (x, ρN ) are Lipschitz continuous.

Part (ii). By Assumption 3.1 and the compactness of X, it is not difficult to show that f(x, ξ)
and H(x, t, ξ) are dominated by an integrable function. The uniform convergence of fN (x) to
EP [f(x, ξ)] and HN (x, t) to EP [H(x, t, ξ)] follows from classical uniform law of large numbers
for random functions, see e.g. [32, Section 6, Proposition 7]. Since ρN → ρ, it suffices to show
the uniformly convergence of θN (x) to θ(x). By definition,

max
x∈X

|θN (x)− θ(x)| = max
x∈X

∣∣∣∣max
t∈T

(max{HN (x, t), 0})−max
t∈T

(max{EP [H(x, t, ξ)], 0})
∣∣∣∣

≤ max
(x,t)∈X×T

∣∣ max{HN (x, t), 0} −max{EP [H(x, t, ξ)], 0}∣∣

≤ max
(x,t)∈X×T

∣∣HN (x, t)− EP [H(x, t, ξ)]
∣∣. (15)

This along with the uniform convergence of HN (x, t) to EP [H(x, t, ξ)] over X × T gives rise to
the assertion. The proof is complete.

Assumption 3.5 Let f(x, ξ) and H(x, t, ξ) be defined as in (5). The following hold.

(a) for every x ∈ X, the moment generating function

Mx(τ) := EP

[
eτ(f(x,ξ)−EP [f(x,ξ)])

]

of random variable f(x, ξ)−EP [f(x, ξ)] is finite valued for all τ in a neighborhood of zero;

(b) for every (x, t) ∈ X × T , the moment generating function

M(x,t)(τ) := EP

[
eτ(H(x,t,ξ)−EP [H(x,t,ξ)])

]

of random variable H(x, t, ξ)−EP [H(x, t, ξ)] is finite valued for all τ in a neighborhood of
zero;

(c) let κ(ξ) be given as in Assumption 3.1. The moment generating function Mκ(τ) of κ(ξ) is
finite valued for all τ in a neighborhood of zero.

Assumption 3.5 (a) means that the random variables f(x, ξ) − EP [f(x, ξ)] and H(x, t, ξ) −
EP [H(x, t, ξ)] do not have a heavy tail distribution. In particular, it holds if the random variable
ξ has a bounded support set. Assumption 3.5 (c) is satisfied if EP [κ(ξ)] is finite. Note that under
Assumption 3.1, the Lipschitz modulus of H(x, t, ξ) is bounded by 1+κ(ξ). Assumption 3.5 (c)
implies that the moment generating function of 1 + κ(ξ) is finite valued for τ close to zero.
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Proposition 3.6 Let Assumptions 3.1 and 3.5 hold. Assume that X is a compact set and
ρN → ρ. Then ψN (x, ρN ) converges to ψ(x, ρ) with probability one at an exponential rate, that
is, for any α > 0, there exist positive constants C(α), K(α) and independent of N , such that

Prob
{

sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ α

}
≤ C(α)e−NK(α)

for N sufficiently large.

Proof. By definition

Prob
{

sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ α

}

= Prob
{

sup
x∈X

|fN (x) + ρNθN (x)− (EP [f(x, ξ)] + ρθ(x))| ≥ α

}

≤ Prob
{

sup
x∈X

|fN (x)− EP [f(x, ξ)]| ≥ α/2
}

+ Prob
{

sup
x∈X

|ρNθN (x)− ρθ(x)| ≥ α/2
}

.

Under Assumption 3.5, it follows from [35, Theorem 5.1] that the first term at the right hand
of the inequality above converges to zero at an exponential rate. In the same manner, we can
obtain uniform exponential convergence of HN (x, t) to EP [H(x, t, ξ)] and hence θN (x) to θ(x)
taking into account that ρN → ρ. The proof is complete.

Remark 3.7 Similar to the discussions in [35], we may estimate the sample size. To this end,
let us strengthen the conditions in Assumption 3.5 (a) and (b) to the following:

• There exists a constant % > 0 such that for every x ∈ X,

EP

[
eτ(f(x,ξ)−EP [f(x,ξ)])

]
≤ e%2τ2/2,∀τ ∈ IR (16)

and for every (x, t) ∈ X × T ,

EP

[
eτ(H(x,t,ξ)−EP [H(x,t,ξ)])

]
≤ e%2τ2/2, ∀τ ∈ IR. (17)

Note that equality in (16) and (17) holds if random variables f(x, ξ)−EP [f(x, ξ)] and H(x, t, ξ)−
EP [H(x, t, ξ)] satisfy normal distribution with variance %2, see a discussion in [35, page 410].
Let α1 be a small positive number and β1 ∈ (0, 1). It follows from (5.14) and (5.15) in [35] that
for

N ≥ N1(α1, β1) :=
O(1)%2

α2
1

[
n log

(
O(1)D1EP [κ1(ξ)]

α1

)
+ log

(
1
β1

)]
, (18)

we have that

Prob
{

sup
x∈X

|fN (x)− EP [f(x, ξ)]| ≥ α1

}
≤ β1, (19)

where κ1(ξ) is the global Lipschitz modulus of f(·, ξ) over X, D1 := supx′,x′′∈X ‖x′ − x′′‖.
Likewise, for given positive numbers α2 and β2 ∈ (0, 1), when

N ≥ N2(α2, β2) :=
O(1)%2

α2
2

[
n log

(
O(1)D2EP [κ2(ξ)]

α2

)
+ log

(
1
β2

)]
, (20)
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we have

Prob
{

max
(x,t)∈X×T

∣∣HN (x, t)− EP [H(x, t, ξ)]
∣∣ ≥ α2

}
≤ β2. (21)

where κ2(ξ) is the global Lipschitz modulus of H(·, ·, ξ) over X × T ,

D2 := sup
w′,w∈X×T

‖w′ − w‖ ≤ D1 + sup
t′,t′′∈T

‖t′ − t′′‖.

Let α > 0 be a positive number and β ∈ (0, 1). Observe that

Prob
{

max
x∈X

∣∣ψN (x, ρN )− ψ(x, ρ)
∣∣ ≥ α

}
≤ Prob

{
sup
x∈X

|fN (x)− EP [f(x, ξ)]| ≥ α/2
}

+Prob
{

sup
x∈X

|ρNθN (x)− ρθ(x)| ≥ α/2
}

. (22)

Let N3 be sufficiently large such that ρN ≤ 2ρ and

(ρN − ρ) sup
x∈X

|θ(x)| ≤ α

4
.

Then it is easy to verify that for N ≥ N3

Prob
{

sup
x∈X

|ρNθN (x)− ρθ(x)| ≥ α/2
}

≤ Prob
{

sup
x∈X

|θN (x)− θ(x)| ≥ α

8ρ

}

≤ Prob
{

max
(x,t)∈X×T

∣∣HN (x, t)− EP [H(x, t, ξ)]
∣∣ ≥ α

8ρ

}
. (23)

The last inequality is due to (15). Let

N(α, β) := max
{

N1

(α

2
, β1

)
, N2

(
α

8ρ
, β2

)
, N3

}
, (24)

where β1, β2 ∈ (0, 1) and β1 + β2 = β. Combining (19), (21), (22) and (23), we have for
N ≥ N(α, β)

Prob
{

max
x∈X

∣∣ψN (x, ρN )− ψ(x, ρ)
∣∣ ≥ α

}
≤ Prob

{
sup
x∈X

|fN (x)− EP [f(x, ξ)]| ≥ α/2
}

+Prob
{

max
(x,t)∈X×T

∣∣HN (x, t)− EP [H(x, t, ξ)]
∣∣ ≥ α

8ρ

}

≤ β1 + β2

= β.

The discussion above shows that for given α and β, we can obtain sample size N(α, β) such that
when N ≥ N(α, β)

Prob
{

max
x∈X

∣∣ψN (x, ρN )− ψ(x, ρ)
∣∣ ≥ α

}
≤ β.

In what follows, we translate the uniform exponential convergence established in Proposi-
tion 3.6 into that of optimal solutions. We need the following intermediate sensitivity result.
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Lemma 3.8 Consider a general constrained minimization problem

min φ(x)
s.t. x ∈ X,

(25)

where φ : IRm → IR is continuous and X ⊆ IRm is closed, and a perturbed program

min ϕ(x)
s.t. x ∈ X,

(26)

where ϕ : IRm → IR is continuous. Let X∗
φ denote the set of optimal solutions to (25) and X∗

ϕ

the set of optimal solutions to (26). Then

(i) for any ε > 0, there exists a δ > 0 (depending on ε) such that

D(X∗
ϕ, X∗

φ) ≤ ε, (27)

when
sup
x∈X

|ϕ(x)− φ(x)| ≤ δ;

(ii) if, in addition,
φ(x) ≥ min

x∈X
φ(x) + ςd(x,X∗

φ)2, ∀x ∈ X, (28)

then

D(X∗
ψ, X∗

φ) ≤
√

3
ς

sup
x∈X

|ϕ(x)− φ(x)|. (29)

Proof. The results are minor extension of [6, Lemma 3.2] which deals with the case when X∗
φ is

a singleton and are also similar to [29, Theorem 7.64]. Here we provide a proof for completeness.

Part (i). Let ε be a fixed small positive number and φ∗ the optimal value of (25). Define

R(ε) := inf
{x∈X,d(x,X∗

φ)≥ε}
φ(x)− φ∗. (30)

Then R(ε) > 0. Let δ := R(ε)/3 and ϕ be such that supx∈X |ϕ(x) − φ(x)| ≤ δ. Then for any
x ∈ X with d(x,X∗

φ) ≥ ε and any fixed x∗ ∈ X∗
φ,

ϕ(x)− ϕ(x∗) ≥ φ(x)− φ(x∗)− 2δ ≥ R(ε)/3 > 0,

which implies that x is not an optimal solution to (26). This is equivalent to d(x,X∗
φ) < ε for

all x ∈ X∗
ϕ, that is, D(X∗

ϕ, X∗
φ) ≤ ε.

Part (ii). Under condition (28), it is easy to derive that R(ε) = ςε2. Let

ε :=

√
3
ς

sup
x∈X

|ϕ(x)− φ(x)|.

From Part (i), we immediately arrive at (29). The proof is complete.

Remark 3.9 We have a few comments on Lemma 3.8.
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(i) Condition (28) is known as second order growth condition. Using this condition, Shapiro
[33] developed a variational principal which gives a bound for d(x, X∗

φ) in terms of the
maximum Lipschitz constant of ϕ − φ over X, see [33, Lemma 4.1] and [34, Proposition
2.1]. Both the second order growth condition and the variational principal have been widely
used for the stability and asymptotic analysis in stochastic programming, see [3, 33, 34].
Our claim in Lemma 3.8 (ii) strengthens the variational principal in that our bound for

d(x,X∗
φ) is

√
3
ς supx∈X |ϕ(x)− φ(x)| which tends to zero when the maximum Lipschitz

constant of ϕ(x)− φ(x) over X goes to zero and ϕ(x0)− φ(x0) = 0 at some point x0 ∈ X

but conversely this is not necessarily true.

(ii) Lemma 3.8 (ii) may be extended to a general case when R(ε) is monotonically increasing
on IR+. In such a case, we may set

ε := R−1(3 sup
x∈X

|ϕ(x)− φ(x)|)

and obtain from Lemma 3.8 (i) that

D(X∗
ϕ, X∗

φ) ≤ R−1(3 sup
x∈X

|ϕ(x)− φ(x)|).

Theorem 3.10 Assume that problem (5) satisfies the Slater condition and X is a compact set.
Let {ρN} be a sequence of positive numbers such that ρN → ρ, where ρ is given in Theorem 3.2.
Then

(i) w.p.1

lim
N→∞

D
(
XN

opt, Xopt

)
= 0, (31)

where Xopt and XN
opt are the sets of optimal solutions of problem (11) and (13) respectively.

Moreover, if Assumption 3.5 holds, the convergence rate is exponential, that is, for any
α > 0, there exist positive constants C1(α), K1(α) and independent of N , such that

Prob
{
D

(
XN

opt, Xopt

) ≥ α
} ≤ C1(α)e−NK1(α)

for N sufficiently large.

(ii) If the objective function of the true penalty problem (11) satisfies the second order growth
condition:

ψ(x, ρ) ≥ min
x∈X

ψ(x, ρ) + ςd(x,Xopt)2, ∀x ∈ X, (32)

then the C1(α) = C
(

1
3 ςα2

)
and K1(α) = K

(
1
3ςα2

)
where C(α) and K(α) are given in

Proposition 3.6.

(iii) Let N(α, β) be defined as in (24). For N ≥ N
(

1
3 ςα2, β

)
, we have

Prob
{
D

(
XN

opt, Xopt

) ≥ α
} ≤ β,

where β ∈ (0, 1).
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Proof. The almost assure convergence follows straightforwardly from Proposition 3.4 that
ψN (x, ρN ) converges to ψ(x, ρ) uniformly over X and Lemma 3.8. In the next, we show the
exponential convergence. By Lemma 3.8, for any α > 0, there exists ε(α) such that if

sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≤ ε(α),

then D
(
XN

opt, Xopt

) ≤ α. Subsequently,

Prob
{
D

(
XN

opt, Xopt

) ≥ α
} ≤ Prob

{
sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ ε(α)
}

.

By Proposition 3.6 and the formula above there exist positive constants C1(α) and K1(α),
independent of N such that

Prob
{
D

(
XN

opt, Xopt

) ≥ α
} ≤ C1(α)e−NK1(α),

for N sufficiently large.

Part (ii). Under the second growth condition, it is easy to derive that R(ε) = ςε2, where
R(ε) is given in Lemma 3.8. By (29) in Lemma 3.8 (ii),

Prob
{
D

(
XN

opt, Xopt

) ≥ α
} ≤

{√
3
ς

sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ α

}

=
{

sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ 1
3
ςα2

}
.

The rest follows from Part (i).

Part (iii) follows from (24) and Part (ii). The proof is complete.

Let us make some comments on the second order growth condition (32). Since G(·, ξ) is
assumed to be concave, it is easy to verify that θ(x) is a convex function. If f(·, ξ) is convex
for almost every ξ, then ψ(·, ρ) is convex. The second order growth condition is fulfilled if the
latter happens to be strongly convex.

3.2 Stationary point

We now move on to investigate the case when we only obtain a stationary point rather than
an optimal solution from solving the sample average approximate penalty problem (13). This
is motivated to address the case when f(x, ξ) is not convex in x. Convergence analysis of SAA
stationary sequence has been well documented, see [38] and the references therein. Our analysis
here differs from those in the literature on twofold: (a) We analyze the convergence of SAA
stationary point to its true counterpart rather than so-called weak stationary point of the true
problem [38], the analysis is based on the uniform convergence of the subdifferential of the
sample average random functions, Lemma 4.1, which is established recently in [21] rather than
sample average of the subdifferential of random functions as opposed to the weak case, and also
the convergence result is stronger. Note that this kind of subdifferential approximation can be
traced back to the earlier work by Birge and Qi [2] and Artstein and Wets [1]. (b) We provide
an effective approach to tackle the specific challenges and complications arising from the second
order dominance constraints.
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We start by defining the stationary points of (11) and (13). Let h(x, t) = (EP [H(x, t, ξ)])+
be defined as in (10). For any fixed x ∈ X, let T ∗(x) denote the set of t̄ ∈ T such that
h(x, t̄) = maxt∈T h(x, t). Since G(·, ξ) is concave, then EP [H(x, t, ξ)] is convex in x and hence it
is Clarke regular (see [5, Proposition 2.3.6]). By [5, Proposition 2.3.12]

∂xh(x, t) =





0, EP [H(x, t, ξ)] < 0,

conv{0, ∂xEP [H(x, t, ξ)]}, EP [H(x, t, ξ)] = 0,

∂xEP [H(x, t, ξ)], EP [H(x, t, ξ)] > 0.

(33)

Here and later on “conv” denotes the convex hull of a set. By Levin-Valadier Theorem (see [32,
Section 2, Theorem 51]),

∂θ(x) = conv
{ ⋃

t∈T ∗(x)

∂xh(x, t)
}

. (34)

A point x ∈ X is said to be a stationary point of the penalty problem (11) if

0 ∈ ∂xψ(x, ρ) +NX(x),

where
∂xψ(x, ρ) := ∂EP [f(x, ξ)] + ρ∂θ(x)

and NX(x) denotes the Clarke normal cone to X at x, that is, for x ∈ X,

NX(x) =
{
ζ ∈ IRn : ζT η ≤ 0,∀η ∈ TX(x)

}
,

where
TX(x) = lim inf

t→0, X3x′→x

1
t
(X − x′)

and NX(x) = ∅ when x 6∈ X.

Likewise, for any fixed x ∈ X, let TN (x) denote the set of t̄ ∈ T such that hN (x, t̄) =
maxt∈T hN (x, t). Then

∂xhN (x, t) =





0, HN (x, t) < 0,

conv{0, ∂xHN (x, t)}, HN (x, t) = 0,
∂xHN (x, t), HN (x, t) > 0

(35)

and

∂θN (x) = conv
{ ⋃

t∈T N (x)

∂xhN (x, t)
}

. (36)

A point x ∈ X is said to be a stationary point of the penalized SAA problem (13) if

0 ∈ ∂xψN (x, ρN ) +NX(x),

where
∂xψN (x, ρN ) := ∂fN (x) + ρN∂θN (x).

In order to analyze the convergence of stationary points, we need the following condition.
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Assumption 3.11 Let f(x, ξ) and G(x, ξ) are locally Lipschitz continuous w.r.t. x, and their
Lipschitz modulus are bounded by a positive constant C.

It is easy to observe that Assumption 3.11 is stronger than Assumption 3.1. Over the past few
years, there has been extensive discussions on the convergence of SAA stationary points to the
so-called weak stationary points of the true problem which is defined through the expected value
of the subdifferential of the underlying functions of the true problem in the first order optimality
condition, see [38] for the recent discussion. A stationary point is a weak stationary point but
not vice versa. Analysis of the convergence of SAA stationary point to a weak stationary point
of the true problem can be achieved under Assumption 3.1 but convergence to a stationary point
of the true problem requires Assumption 3.11.

Proposition 3.12 Let θ(x) and θN (x) be defined as in (10) and (12) respectively. Let {xN} ⊂
X be a sequence which converges to x∗. Under Assumption 3.11

lim
N→∞

D(∂θN (xN ), ∂θ(x∗)) = 0 (37)

w.p.1.

Proof. Since for any ξ ∈ Ξ, G(·, ξ) is concave function, then H(x, t, ξ) is a convex function
with respect to (x, t) over X × T and so are hN (x, t) and h(x, t). Using the calculus of the
subdifferentials of θ(x) and θN (x) obtained in (34) and (36), it suffices to show that

lim
N→∞

D


conv





⋃

t∈T N (xN )

∂xhN (xN , t)



 , conv





⋃

t∈T ∗(x∗)

∂xh(x∗, t)






 = 0,

which is implied by

lim
N→∞

D


 ⋃

t∈T N (xN )

∂xhN (xN , t),
⋃

t∈T ∗(x∗)

∂xh(x∗, t)


 = 0.

By the calculus of ∂h(x) and ∂hN (x) in (33) and (35), this is further implied by the following:

lim
N→∞

D


 ⋃

t∈T N (xN )

∂xHN (xN , t),
⋃

t∈T ∗(x∗)

∂xEP [H(x∗, t, ξ)]


 = 0, w.p.1. (38)

Since H and HN are convex function and Lipschitz continuous with respect to (x, t), we have
by [5, Propositions 2.3.15 and 2.3.16]

∂xEP [H(x, t, ξ)] = πx∂EP [H(x, t, ξ)], ∂xHN (x, t) = πx∂HN (x, t), (39)

where πx denotes the projection of set-valued mapping on x-axis.

Let ηN ∈ ⋃
t∈T N (xN ) ∂xHN (xN , t). Then there exists tN ∈ TN (xN ) such that ηN ∈ ∂xHN (xN , tN ).

By taking a subsequence if necessarily, we assume for the simplicity of notation that

lim
N→∞

ηN = η∗, lim
N→∞

(xN , tN ) = (x∗, t∗).
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By Lemma 4.1 in the appendix, ∂HN (x, t) converges to ∂EP [H(x, t, ξ)] uniformly over compact
set X × T , which implies

lim
N→∞

D
(
∂HN (xN , tN ), ∂EP [H(x∗, t∗, ξ)]

)
= 0, w.p.1. (40)

On the other hand, by [32, Section 6, Proposition 7] HN (x, t, ξ) converges to EP [H(x, t, ξ)]
uniformly over X × T . Then for any fixed x ∈ X, hN (x, t) converges to h(x, t) uniformly over
compact set T . By Lemma 3.8,

lim
N→∞

D
(
TN (xN ), T ∗(x∗)

)
= 0.

This along with (39) and (40) yield η∗ ∈
{⋃

t∈T ∗(x∗) ∂xEP [H(x∗, t, ξ)]
}

. Since ηN is taken

arbitrarily from
{⋃

t∈T N (xN ) ∂xHN (xN , t)
}

, the discussion above shows (38) as desired. The
proof is complete.

Theorem 3.13 Let {xN} be a sequence of KKT points of problem (13) and x∗ be an accumu-
lation point. Suppose Assumption 3.11 holds. If ρN → ρ, then w.p.1 x∗ is an stationary point
of the true penalty problem (11).

Proof. By taking a subsequence if necessarily we assume for the simplicity of notation that xN

converges to x∗. Observe first that for any compact sets A,B, C, D ⊆ IRm,

D(A + C, B + D) ≤ D(A + C, B + C) + D(B + C,B + D) ≤ D(A,B) + D(C, D), (41)

where the first inequality follows from the triangle inequality and the second inequality follows
from the definition of D. Using the inequality (41), we have

D
(
∂xψN (xN , ρN ), ∂xψ(x∗, ρ)

)
= D

(
∂fN (xN ) + ρN∂θ(xN ), ∂EP [f(x∗, ξ)] + ρN∂θ(x∗)

)

≤ D
(
∂fN (xN ), ∂EP [f(x∗, ξ)]

)
+ D

(
ρN∂θN (xN ), ρ∂θ(x∗)

)
.

The first term at the right hand of the inequality of the formula above tends to zero with prob-
ability one by the fact that ∂fN (x) converges to ∂EP [f(x, ξ)] uniformly over X, see Lemma 4.1
for the details of the of uniformly convergence; the second term tends to zero with probability
one by (37) and ρN → ρ. Together with the upper semi-continuity of the Clarke normal cone,
we have w.p.1

0 ∈ ∂xψ(x∗, ρ) +NX(x∗),

that is, x∗ is a stationary point of the true penalty problem (11). The proof is complete.

It might be interesting to ask whether a stationary point of (11) is a stationary point of (5).
To answer this question, we need to introduce first order optimality condition for the latter. Let
us assume that problem (5) satisfies the Slater condition, X is a compact set and the Lipschitz
modulus of f(x, ξ) w.r.t. x is bounded by an integrable function κ(ξ) > 0. We consider the
following first order optimality conditions:





0 ∈ ∂EP [f(x, ξ)] + λ∂θ(x),
λ > 0,

EP [H(x, t, ξ)] ≤ 0, ∀t ∈ T,

x ∈ X.

(42)
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We say a point x∗ is a stationary point of (5) if there exists λ∗ > 0 such that (x∗, λ∗) satisfies
(42). To justify this definition, we show that every local optimal solution to (5) satisfies (42)
(along with some positive number λ). In the case when EP [f(x, ξ)] is convex, a point satisfying
(42) is a global optimal solution to (5). In what follows, we verify these. Let x̂ be a local
minimizer of (5). Let

γ(P ) =: sup
x∈X

‖x− x̄‖
mint∈T −EP [H(x̄, t, ξ)]

,

where x̄ is given in Definition 2.3. Then for ρ > γ(P )EP [κ(ξ)], x∗ is a local optimal solution of
(11). Consequently (x∗, ρ) satisfies (42). Conversely if x∗ is a stationary point which means there
exists positive number λ∗ such that (x∗, λ∗) satisfies (42). If EP [f(x, ξ)] is a convex function,
then it is easy to see that x∗ is a global optimal solution of (11) with ρ = λ∗. Since x∗ is a
feasible point of (5), it is not difficult to verify that x∗ is a global optimal solution of (5).

Note that Dentcheva and Ruszczyński [12] introduced some first order optimality conditions
for a class of semi-infinite programming problems which stem from optimization problems with
stochastic second order constraints. Let M (T ) denote the set of regular countably additive
measures on T and M+(T ) its subset of positive measures. Consider the the following Lagrange
function of (5):

L (x, µ) = EP [f(x, ξ)] +
∫

T
EP [H(x, t, ξ)]µ(dt),

where µ ∈ M+(T ). Under the so-called differential constraint qualifications, Dentcheva and
Ruszczyński showed that if a point x∗ is a local optimal solution (5), then there exists µ∗ ∈
M+(T ) such that





0 ∈ ∂xL (x, µ) = ∂EP [f(x∗, ξ)] +
∫
T ∂xEP [H(x∗, t, ξ)]µ∗(dt) +NX(x∗),

EP [H(x∗, t, ξ)] ≤ 0, ∀t ∈ T,∫
T EP [H(x∗, t, ξ)]µ∗(dt) = 0,

x ∈ X,

(43)

see [12, Theorem 4] for details and [12, Definition 2] for the differential constraint qualification.
Note that optimality conditions (43) can also be alternatively characterized by some convex
functions defined over IR. This is achieved by representing the integral with respective to measure
µ with some convex functions through Riesz representation theorem, see [8,9] for details. It is an
open question as to whether there is some relationship between (42) and (43) or the equivalent
conditions of (43) in [8, 9], and this will be the focus of our future work.
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4 Appendix

Lemma 4.1 ( [21], Theorem 5.1) Let F (x, ξ) : IRn × Ξ → IRm be a continuous function,
{Pν} be a sequence of probability measures and X be a compact subset. Assume: (a) F (x, ξ)
is locally Lipschitz continuous with respect to x for almost every ξ with modulus L(x, ξ) which
is bounded by a positive constant C; (b) {Pν} converges to P in distribution. Then for every
fixed x, ∂EPν [F (x, ξ)] and ∂EP [F (x, ξ)] are well-defined and

lim
ν→∞ sup

x∈X
H(∂EPν [F (x, ξ)], ∂EP [F (x, ξ)]) = 0. (44)

Proof. For the simplicity of notation, let fPν (x) = EPν [F (x, ξ)] and fP (x) = EP [F (x, ξ)]. Un-
der condition (a), both fPν (x) and fP (x) are globally Lipschitz continuous, therefore Clarke’s
generalized derivatives of fPν (x) and fP (x), denoted by fo

Pν
(x; h) and fo

P (x; h) respectively,
are well-defined for any fixed nonzero vector h ∈ IRn, where

fo
Pν

(x; h) = lim sup
x′→x,τ↓0

1
τ
(fPν (x′ + τh)− fPν (x′))

and
fo

P (x;h) = lim sup
x′→x,τ↓0

1
τ
(fP (x′ + τh)− fP (x′)).

Our idea is to study the Hausdorff distance H(∂fPν (x), ∂fP (x)) through certain “distance”
of the Clarke generalized derivatives fo

Pν
(x; h) and fo

P (x; h). Let D1, D2 be two convex and
compact subsets of IRm. Let σ(D1, u) and σ(D2, u) denote the support functions of D1 and
D2 respectively. Then

D(D1, D2) = max
‖u‖≤1

(σ(D1, u)− σ(D2, u))

and
H(D1, D2) = max

‖u‖≤1
|σ(D1, u)− σ(D2, u)|.

The above relationships are known as Hömander’s formulae, see [4, Theorem II-18]. Applying
the second formula to our setting, we have

H(∂fPν (x), ∂fP (x)) = sup
‖h‖≤1

∣∣σ(∂fPν (x), h)− σ(∂fPν (x), h)
∣∣.

Using the relationship between Clarke’s subdifferential and Clarke’s generalized derivative,
we have that fo

Pν
(x;h) = σ(∂fPν (x), h) and fo

P (x; h) = σ(∂fP (x), h). Consequently,

H(∂fPν (x), ∂fP (x)) = sup
‖h‖≤1

∣∣fo
P (x; h)− fo

Pν
(x; h)

∣∣

= sup
‖h‖≤1

∣∣∣∣ lim sup
x′→x,τ↓0

1
τ
(fP (x′ + τh)− fP (x′))− lim sup

x′→x,τ↓0
1
τ
(fPν (x′ + τh)− fPν (x′))

∣∣∣∣.
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Note that for any bounded sequence {ak} and {bk}, we have

| lim sup
k→∞

ak − lim sup
k→∞

bk| ≤ lim sup
k→∞

|ak − bk|.

Using the inequality above, we have

H(∂fPν (x), ∂fP (x)) ≤ sup
‖h‖≤1

lim sup
x′→x,τ↓0

∣∣∣∣
1
τ
(fP (x′ + τh)− fP (x′))− 1

τ
(fPν (x′ + τh)− fPν (x′))

∣∣∣∣

= sup
‖h‖≤1

lim sup
x′→x,τ↓0

∣∣∣∣
∫

Ξ

1
τ
(F (x′ + τh, ξ)− F (x′, ξ))d(P − Pν)(ξ)

∣∣∣∣.

Since Pν converges to P in distribution, and the integrand 1
τ (F (x′ + τh, ξ) − F (x′, ξ)) is

continuous w.r.t ξ and it is bounded by L, then

lim
ν→∞ sup

x∈X
sup
‖h‖≤1

lim sup
x′→x,τ↓0

∣∣∣∣
∫

Ξ

1
τ
(F (x′ + τh, ξ)− F (x′, ξ))d(P − Pν)(ξ)

∣∣∣∣ = 0.


