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Abstract We consider a convex approximation for integer recourse models. In particular, we show
that the claim of Van der Vlerk (2004) that this approximation yields the convex hull of totally
unimodular (TU) integer recourse models is incorrect. We discuss counterexamples, indicate which
step of its proof does not hold in general, and identify a class of random variables for which the
claim in Van der Vlerk (2004) is not true. At the same time, we derive additional assumptions under
which the claim does hold. In particular, if the random variables in the model are independently and
uniformly distributed, then these assumptions are satisfied.
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1 Introduction

Integer recourse models from the field of stochastic programming deal with discrete decision making
under uncertainty (see, e.g., Birge and Louveaux (1997), Shapiro et al. (2009) and the Stochastic
Programming Community Home Page). These models have a wide range of possible applications
because they combine the modeling power of integer variables with possible uncertainty in the data,
making them highly relevant for practice, but at the same time very difficult to solve. Examples of
applications range from energy optimization problems (see, e.g., Gollmer et al. (2000) and Zhang
et al. (2010)) to scheduling problems (see, e.g., Alonso-Ayuso et al. (2007)). More examples can be
found e.g. in the extensive bibliography on stochastic programming Van der Vlerk (1996-2007).

We consider the two-stage integer recourse problem

min
x
{cx+Q(z) : Ax ≥ b, Tx = z, x ∈ Rn1

+ }, (1)

where Q is a function of the tender variables z,

Q(z) := Eω[v(ω − z)], z ∈ Rm, (2)

and

v(s) := min
y
{qy : Wy ≥ s, y ∈ Zn2

+ }, s ∈ Rm.

The functions Q and v are called the recourse or expected value function and the second-stage value
function, respectively. They model the recourse actions y and the corresponding expected recourse
costs for satisfying the underlying random goal constraints Tx ≥ ω. The right-hand side vector ω is
a random vector with known cumulative distribution function (cdf) Fω.

Throughout this paper we use the following assumptions.
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(i) W is a complete recourse matrix, i.e., for every s ∈ Rm there exists y ∈ Zn2
+ such that Wy ≥ s,

(ii) the recourse structure is sufficiently expensive, i.e., v(s) > −∞ for all s ∈ Rm, and
(iii) Eω[|ω|] is finite.

As a result we have that Q(z) is finite for all z ∈ Rm.
Various algorithms for solving pure and mixed-integer recourse problems are available, see, e.g.,

Laporte and Louveaux (1993), Schultz et al. (1998), Carøe and Schultz (1999), Takriti and Birge
(2000), Ahmed et al. (2004), Sherali and Zhu (2006), Escudero et al. (2009), and Guan et al. (2009),
and the survey papers Klein Haneveld and Van der Vlerk (1999), Louveaux and Schultz (2003), and
Sen (2005). Typically, these algorithms combine solution techniques developed for either stochastic
continuous or deterministic integer programs. In general, these exact methods have difficulties dealing
with large problem instances, though substantial progress has been made for special cases (see, e.g.,
Sen and Higle (2005) and subsequent papers).

The main difficulty in solving integer recourse problems is that the integer recourse function Q
is generally non-convex (Rinnooy Kan and Stougie (1988)). A possible approach to deal with this
difficulty is to approximate Q by a convex function Q̂. In this way, we do not obtain the exact
solution of the integer recourse problem, but as long as Q̂ is a close approximation of Q, we expect
to find near-optimal first-stage solutions. The advantage is that efficient algorithms exist for solving
convex optimization problems, so that the approximation model can be solved much easier than the
original integer recourse model.

Van der Vlerk (2004) obtains such a convex approximation by perturbing the distribution of the
right-hand side random vector ω. Indeed, Van der Vlerk (2004) claims that this approximation yields
the convex hull of Q if the recourse matrix W is totally unimodular (TU), which would justify to
expect to find near-optimal first-stage solutions using this approximation. However, we will show
that this claim does not hold in general. We discuss counterexamples of this claim, indicate which
step of its proof does not hold in general, and identify a class of random variables for which the
claim in Van der Vlerk (2004) is not true. At the same time, we derive additional assumptions under
which the claim does hold. In particular, if the random variables in the model are independently and
uniformly distributed, then these assumptions are satisfied.

Preliminary results on this topic and more (extensive) examples can be found in the Master’s
thesis Romeijnders (2011).

2 The convex approximation of Van der Vlerk (2004)

The convex approximation of Van der Vlerk (2004) can be applied to general complete integer
recourse models. However, the earliest version of this approximation was developed for so-called
one-sided simple integer recourse (SIR) models (when W = Im). In this simple case the recourse
function Q(z) is separable in the components of z and can be written as

Q(z) = Eω
[

min
y

{
qy : y ≥ ω − z, y ∈ Zm+

}]
=

m∑
i=1

qiQi(zi), z ∈ Rm,

with Qi(zi) := Eωi [dωi − zie
+], zi ∈ R, i = 1, . . . ,m, and dse+ := max{0, dse}, s ∈ R. The generic

one-dimensional recourse function

Q(z) := Eω[dω − ze+], z ∈ R, (3)

has been studied extensively in the literature (see Louveaux and Van der Vlerk (1993)). Obviously,
if the random variable ω is discretely distributed, then Q is non-convex because of the round-up
function involved. Klein Haneveld et al. (1995, 1996) develop efficient algorithms to construct the
convex hull of Q in this case. If ω is continuously distributed, then Q is generally non-convex as
well, but exceptions do exist. Klein Haneveld et al. (2006) give a complete description of the class
of probability density functions (pdf) for which Q is convex.
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Theorem 1 (see Corollary 1 in Klein Haneveld et al. (2006)) Consider the SIR function Q
as defined in (3) and let ω ∈ R be a continuously distributed random variable with pdf fω. Then Q
is convex if and only if fω(x) = G(x + 1) − G(x), x ∈ R, for some cdf G with finite mean. We say
that fω is generated by G.

A natural approach to construct a convex approximation of Q is to approximate the original
random variable ω by a random variable ω̂ which has a pdf fω̂ that is generated by some cdf G.
Obviously, we want fω̂ to be a close approximation of fω. The so-called α-approximation developed
by Klein Haneveld et al. (2006) is a good candidate. Here, fω̂ is generated by a cdf G corresponding
to a discrete distribution with support in α+ Z for some α ∈ [0, 1). Following Van der Vlerk (2004)
we define this approximation for m-dimensional distributions.

Definition 1 Let ω ∈ Rm be a random vector with arbitrary continuous or discrete distribution,
and choose α = (α1, . . . , αm) ∈ [0, 1)m. Define the α-approximation ωα as the random vector with
joint pdf fωα that is constant on every hypercube

Clα :=
m∏
i=1

(αi + li − 1, αi + li], l ∈ Zm,

such that

P
{
ωα ∈ Clα

}
= P

{
ω ∈ Clα

}
, l ∈ Zm.

From this definition it follows that for every ω ∈ R and α ∈ [0, 1), the cdf Fωα of ωα is piecewise
linear with knots contained in α+ Z and Fωα(x) = Fω(x) for x ∈ α+ Z.

The α-approximation Qα of Q is defined for every α ∈ [0, 1) as

Qα(z) := Eωα [dωα − ze+], z ∈ R. (4)

Interestingly, it can be shown (see Klein Haneveld et al. (2006)) that

Qα(z) = Eφα [(φα − z)+], z ∈ R,

with φα := dω − αe + α a discrete random variable with support in α + Z. That is, the recourse
function Qα of an integer recourse model with continuous random variable can be expressed as
the recourse function of a continuous recourse model with a discrete random variable. Continuous
simple recourse models can be solved very efficiently by special purpose algorithms (see e.g. Wets
(1983)), and thus the approximation model can be solved much more easily than the original model.
Similarly, for continuous recourse models in general there are efficient algorithms available, most of
them based on the L-shaped algorithm of Van Slyke and Wets (1969). This implies that if we replace
an integer recourse model by a continuous recourse approximation (with discrete right-hand side),
then the approximation model is computationally much more tractable than the original integer
recourse version.

Klein Haneveld et al. (2006) derive an error bound for the α-approximation Qα of the SIR
function Q. They show that if ω is continuously distributed with pdf fω of bounded variation, then
for all α ∈ [0, 1),

sup
z∈R
|Q(z)−Qα(z)| ≤ min

{
1,
|∆|fω

4

}
,

where |∆|fω denotes the total variation of fω. This error bound shows that Qα is a good approx-
imation of Q when the total variation of fω is low. For example, for unimodal densities this is the
case if the variance is large.

Van der Vlerk (2004) generalizes the concept of α-approximations to m-dimensional recourse
functions Q as defined in (2). As in the simple integer case, we simultaneously relax the integrality
constraints and replace the random vector ω by a discrete random vector φα := dω − αe+α for some
α ∈ [0, 1)m.
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Definition 2 For every α ∈ [0, 1)m the α-approximation Qα of the recourse function Q is given by

Qα(z) = Eφα
[

min
y

{
qy : Wy ≥ φα − z, y ∈ Rn2

+

}]
, z ∈ Rm,

where φα := dω − αe+ α.

From now on we assume that ω follows a continuous distribution, as in Van der Vlerk (2004).

3 Rectification of a false claim on the convex hull

In general, the α-approximation Qα is neither a lower nor an upper bound of Q. However, Van der
Vlerk (2004) claims that there exists some α∗ ∈ [0, 1)m such that the α∗-approximation Qα∗ does
provide a lower bound. This α∗ = (α∗1, . . . , α

∗
m) is defined for each component α∗i as

α∗i ∈ argmin
x∈[0,1)

Eωi
[
dωi − xe+ x

]
, i = 1, . . . ,m. (5)

In fact, for TU integer recourse models, Van der Vlerk (2004) claims that this α∗-approximation
Qα∗ yields the convex hull of Q. We repeat this claim here because we discuss it in detail in the
remainder of this paper.

Proposition 1 Consider the integer recourse function Q, defined as

Q(z) = Eω
[
min
y
qy : Wy ≥ ω − z, y ∈ Zn2

+

]
, z ∈ Rm.

Under the assumptions (i)-(iii) of Section 1, and in addition that W is totally unimodular, the convex
hull of Q is the continuous recourse function Qα∗ , defined as

Qα∗(z) = Eφα∗

[
min
y
qy : Wy ≥ φα∗ − z, y ∈ Rn2

+

]
, z ∈ Rm,

where α∗ is defined in (5), and φα∗ := dω − α∗e + α∗ is a discrete random vector with support in
α∗ + Zm, and

P
{
φα∗ = α∗ + l

}
= P

{
ω ∈ Clα∗

}
, l ∈ Zm.

The proof of Proposition 1 in Van der Vlerk (2004) is based on the following line of reasoning. First
observe that Qα∗ is a convex polyhedral function with vertices contained in α∗ + Zm. Moreover,
Qα∗(z) = Q(z) for all z ∈ α∗ + Zm. If, in addition, Qα∗ is a lower bound of Q, then the polyhedral
function Qα∗ is equal to the convex hull of Q. Van der Vlerk (2004) argues that this is indeed the
case. However, in the next section we give counterexamples where Qα∗ is not a lower bound of Q,
and we show that the convex hull of Q is not necessarily a polyhedral function. In these examples
we analyze the SIR function Q defined in (3), which is a special case of the TU integer recourse
functions considered in Proposition 1.

3.1 Counterexamples for Proposition 1

Example 1 Consider the generic one-dimensional SIR function Q defined in (3), and let ω be a
continuous random variable with pdf fω defined as

fω(x) =


3
2 , 0 ≤ x < 1

2 ,
1
2 ,

1
2 ≤ x ≤ 1,

0, otherwise.
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Using (5) we obtain by straightforward calculation that α∗ = 1/2. Moreover, we have P{φα∗ = 1/2} =
3/4 and P{φα∗ = 3/2} = 1/4, so that

Qα∗(z) = 1
4

(
3
2 − z

)+
+ 3

4

(
1
2 − z

)+
, z ∈ R.

We observe that Qα∗(1) = 1/8 > Q(1) = 0 and conclude that Qα∗ is not a lower bound for Q, and
thus Qα∗ is not the convex hull of Q, see Figure 1. That is, Proposition 1 as stated is false.
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Fig. 1 The recourse function Q (dashed) and its α∗-approximation Qα∗ (solid) from Example 1, showing that
Qα∗ is not a lower bound and hence not the convex hull of Q.

Example 2 Again consider the SIR functionQ defined in (3), and let ω be a random variable following
a triangular distribution on [0, 1] with mode 1/2. Thus, the pdf of ω is given by

fω(x) =


4x, 0 ≤ x ≤ 1

2 ,

4(1− x), 1
2 ≤ x ≤ 1,

0, otherwise.

By straightforward calculation it follows that the convex hull of Q, denoted Q∗∗, is given by

Q∗∗(z) =


7
8 − z, z ≤ 3

4 ,

2(1− z)2, 3
4 ≤ z ≤ 1,

0, 1 ≤ z.

Both functions Q and Q∗∗ are depicted in Figure 2. We see that Q∗∗ is convex quadratic on the
interval (3/4,1), implying that it cannot be obtained as an α-approximation which is polyhedral for
every α ∈ [0, 1).

3.2 Error in the proof of Proposition 1

The counterexamples in the previous subsection clearly show that Proposition 1 does not hold in
general and needs additional assumptions. We will point out which step of the proof, repeated here
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Fig. 2 The SIR function Q (dashed) and its convex hull Q∗∗ (solid) from Example 2, showing that the convex hull
of Q is not necessarily a polyhedral function.

for convenience, is invalid in general, so that we can derive these additional assumptions. First, as
in Van der Vlerk (2004), we rewrite the second-stage value function under the assumptions (i) and
(ii) and that the recourse matrix W is TU. We have for every s ∈ Rm,

v(s) := min
y
{qy : Wy ≥ s, y ∈ Zn2

+ }

= min
y
{qy : Wy ≥ dse , y ∈ Rn2

+ } (6)

= max
λ
{λ dse : λW ≤ q, λ ∈ Rm+ }, (7)

where (6) holds because W is TU, and (7) because of strong LP duality. Since the recourse is
complete and sufficiently expensive it follows that the dual feasible region Λ := {λ ∈ Rm+ : λW ≤ q}
is nonempty and bounded. Moreover, since Λ is a polytope, it has finitely many extreme points which
we denote by λk, k = 1, . . . ,K. It follows immediately that we can rewrite v as

v(s) = max
k=1,...,K

λk dse , s ∈ Rm.

Consequently,

Q(z) = Eω
[

max
k=1,...,K

λk dω − ze
]
, z ∈ Rm,

and analogously

Qα∗(z) = Eφα∗

[
max

k=1,...,K
λk(φα∗ − z)

]
, z ∈ Rm.

Van der Vlerk (2004) proceeds as follows. By conditioning on the events {ω ∈ Clα∗} we have for all
z ∈ Rm,

Q(z) = Eω
[

max
k=1,...,K

λk dω − ze
]

=
∑
l∈Zm

P
{
ω ∈ Clα∗

}
Eω
[

max
k=1,...,K

λk dω − ze
∣∣∣ω ∈ Clα∗

]
,
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and by interchanging expectation and maximization,

Q(z) ≥
∑
l∈Zm

P
{
ω ∈ Clα∗

}
max

k=1,...,K
λk Eω

[
dω − ze

∣∣∣ω ∈ Clα∗

]
.

Van der Vlerk (2004) argues that due to the choice of α∗,

λk Eω
[
dω − ze

∣∣∣ω ∈ Clα∗

]
≥ λk Eωα∗

[
dωα∗ − ze

∣∣∣ωα∗ ∈ Clα∗

]
, for (z, l) ∈ Rm× Zm, (8)

for every k = 1, . . . ,K. As a consequence,

Q(z) ≥
∑
l∈Zm

P
{
ωα∗ ∈ Clα∗

}
max

k=1,...,K
λk Eωα∗

[
dωα∗ − ze

∣∣∣ωα∗ ∈ Clα∗

]
(9)

=
∑
l∈Zm

P
{
ωα∗ ∈ Clα∗

}
max

k=1,...,K
λk(α∗ + l − z) (10)

=
∑
l∈Zm

P
{
φα∗ = α∗ + l

}
max

k=1,...,K
λk(α∗ + l − z)

=Eφα∗

[
max

k=1,...,K
λk(φα∗ − z)

]
=Qα∗(z),

where (10) holds because fωα∗ is constant on Clα∗ for every l ∈ Zm.
This proof does not hold in general because (8) is incorrect and thus (9) does not hold. It is

true that λk Eω[dω − ze] ≥ λk Eωα∗ [dωα∗ − ze] for every z ∈ Rm, due to the choice of α∗. However,
restricted to individual subsets Clα∗ as required in (8), the inequality does not hold as detailed below.

In the next section we derive a sufficient condition for the inequalities in (8) to be true, which
can be used to identify classes of random vectors for which Proposition 1 does hold.

4 Additional assumptions for Proposition 1

Before we derive sufficient conditions for (8) we show that in the one-dimensional setting the in-
equalities in (8) are equivalent to ωα∗ being stochastically dominated by ω.

Lemma 1 Let ω be a random variable with cdf Fω. Then

Eω
[
dω − ze

∣∣∣ω ∈ Clα∗

]
≥ Eωα∗

[
dωα∗ − ze

∣∣∣ωα∗ ∈ Clα∗

]
for all (z, l) ∈ R × Z,

if and only if ωα∗ is (weakly) first-order stochastically dominated by ω. That is, if and only if

Fω(x) ≤ Fωα∗ (x), for all x ∈ R.

Proof Using that dx− (z + k)e = dx− ze − k, k ∈ Z, it suffices to prove the claim for l ∈ Z and
z ∈ Clα∗ only, so that dx− ze ∈ {0, 1} for x ∈ Clα∗ .

Choose arbitrary l ∈ Z and z ∈ Clα∗ . Disregarding the trivial case, assume that P{ω ∈ Clα∗} > 0.
Then,

Eω
[
dω − ze

∣∣∣ω ∈ Clα∗

]
= P

{
ω > z

∣∣∣ω ∈ Clα∗

}
=

P{z < ω ≤ α∗ + l}
P{ω ∈ Clα∗}

=
Fω(α∗ + l)− Fω(z)

P{ω ∈ Clα∗}
.

Similarly, we have that

Eωα∗

[
dωα∗ − ze

∣∣∣ωα∗ ∈ Clα∗

]
=
Fωα∗ (α∗ + l)− Fωα∗ (z)

P{ωα∗ ∈ Clα∗}
.

Observing that P{ω ∈ Clα∗} = P{ωα∗ ∈ Clα∗} and Fω(α∗ + l) = Fωα∗ (α∗ + l) by definition of ωα∗

completes the proof.
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Corollary 1 Consider the TU integer recourse function

Q(z) = Eω[min
y
{qy : Wy ≥ ω − z, y ∈ Zn2

+ }], z ∈ Rm,

and its α∗-approximation

Qα∗(z) = Eφα∗ [min
y
{qy : Wy ≥ φα∗ − z, y ∈ Rn2

+ }], z ∈ Rm.

If ωi stochastically dominates ωα∗
i

for every i = 1, . . . ,m, then Qα∗ is the convex hull of Q.

Proof If ωi stochastically dominates ωα∗
i

for every i = 1, . . . ,m, then it follows by Lemma 1 that for
every i = 1, . . . ,m,

Eωi
[
dωi − zie

∣∣∣ωi ∈ Cliα∗
i

]
≥ Eωα∗

i

[ ⌈
ωα∗

i
− zi

⌉ ∣∣∣ωα∗
i
∈ Cliα∗

i

]
for all (zi, li) ∈ R × Z.

Since λk ≥ 0 for every k = 1, . . . ,K, it follows immediately that (8) holds, so that the proof of Van
der Vlerk (2004) is valid, and thus Proposition 1 holds.

In Van der Vlerk (2004) an example involving independent uniform distributions is presented.
Next we show that this special case indeed satisfies the additional assumptions of Corollary 1.

Corollary 2 Consider the setting of Corollary 1. If ω ∈ Rm is independently and uniformly dis-
tributed, then Qα∗ is the convex hull of Q.

Proof We will show that each component ωi stochastically dominates ωα∗
i

so that the assumptions
of Corollary 1 are satisfied. For ease of notation we drop the index i and we let ω denote a random
variable that is uniformly distributed on the interval (a, b) with a < b. For the moment we assume
that α∗ = 〈b〉 := b− bbc.

If b− a is integer, then fω(x) = fωα∗ (x) for all x ∈ R so that

Fω(x) = Fωα∗ (x), x ∈ R,

and thus ω (weakly) dominates ωα∗ .
If b − a is not integer, then choose l = da− α∗e ∈ Z such that a ∈ Clα∗ , that is, α∗ + l − 1 <

a < α∗ + l. It is easy to observe that fω(x) = fωα∗ (x) for all x ∈ R\Clα∗ , see Figure 3. However, for
x ∈ Clα∗ ,

fω(x) =

{
0, x ≤ a,

1
b−a , x > a,

and

fωα∗ (x) =
α∗ + l − a
b− a .

Hence, Fω(x) = Fωα∗ (x) for all x ∈ R\Clα∗ , but for x ∈ Clα∗ ,

Fω(x) =

{
0, x ≤ a,
x−a
b−a , x ≥ a,

whereas

Fωα∗ (x) =
x− α∗ − l + 1

b− a .

Since a > α∗ + l − 1, we conclude that

Fω(x) ≤ Fωα∗ (x), x ∈ R, .

that is, ω stochastically dominates ωα∗ .
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It remains to be shown that α∗ = 〈b〉. If b− a is integer, then Eω[dω − xe+x] is constant so that
α∗ = 〈b〉 is a valid choice by (5). Moreover, Van der Vlerk (2004) shows that a necessary condition
for α∗ is that

−1 ∈

[
−

∞∑
k=−∞

f−ω (α∗ + k),−
∞∑

k=−∞

f+
ω (α∗ + k)

]
,

where f−ω and f+
ω represent the left-continuous and right-continuous version of fω, respectively. If

b− a is not integer, then it can be shown by straightforward computation that this condition is only
satisfied for α∗ = 〈b〉.
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Fig. 3 The cdf (left) and pdf (right) of a uniform distribution on [0,3.5] (solid) and its α∗-approximation (dashed).

5 Density functions with a strictly decreasing right tail

Although the stochastic dominance conditions of Corollary 1 are easy to verify, they will be satisfied
only in exceptional cases. Indeed, since Fωα∗ = Fω on α∗ + Z and is linear on every set Clα∗ , l ∈ Z,
the conditions are violated if the cdf Fω is strictly concave on some Clα∗ , l ∈ Z. For example, this is
the case for many unimodal distributions, since they have a pdf fω which is strictly decreasing on
(ν,∞), where ν is the mode, so that the cdf Fω is strictly concave on (ν,∞), see Figure 4.

Lemma 2 Let ω be a random variable with pdf fω and cdf Fω. If fω is strictly decreasing on Clα∗

for some l ∈ Z, then Fω(x) > Fωα∗ (x) for all x ∈ intClα∗ , so that ωα∗ is not first-order stochastically
dominated by ω.

As we will show next, Lemma 2 not only invalidates the proof of Proposition 1, but it also implies
that the claim itself is incorrect for a large class of distributions. Consider once more the SIR function
Q defined in (3).

Louveaux and Van der Vlerk (1993) show that

Q(z) = Eω[dω − ze+] =
∞∑
k=0

{1− F (z + k)} , z ∈ R. (11)

This implies that for sufficiently large values of z, the right tail of the distribution of ω determines
the value of Q(z). For this reason we consider density functions with a strictly decreasing right tail.
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Fig. 4 The cdf (solid) of a standard normal distribution and the cdf of its α-approximation (dashed) with α = 0,
showing that the stochastic dominance constraints are satisfied in exceptional cases only.

Definition 3 A pdf fω has a strictly decreasing right tail, if there exists M ∈ R such that for every
x, y ∈ R with x > y > M , fω(x) < fω(y).

Remark 1 Note that density functions with a strictly decreasing right tail necessarily have unbounded
support. However, the result below also hold for density functions with bounded support, provided
that there exists M ∈ R such that fω is strictly decreasing on [M,M + 2] and non-increasing on
(M + 2,∞).

Lemma 3 Consider the SIR function Q as defined in (3), and let ω be a random variable whose pdf
fω has a strictly decreasing right tail. Then the α∗-approximation Qα∗ as defined in (4), with α∗ as
defined in (5), is not a lower bound for Q and thus not the convex hull of Q.

Proof Let l̄ ∈ Z be given such that fω is strictly decreasing on Clα∗ for all l ≥ l̄. Choose z ∈ intC l̄α∗ .
Then by Lemma 2 it follows that for every k ∈ Z+,

Fω(z + k) > Fωα∗ (z + k),

so that (11) implies

Qα∗(z)−Q(z) =
∞∑
k=0

{
Fω(z + k)− Fωα∗ (z + k)

}
> 0.

6 Discussion and future research directions

We have shown that the α∗-approximation Qα∗ equals the convex hull of the TU integer recourse
function Q only in exceptional cases (e.g. if ω is independently uniformly distributed). If so, provided
that the first-stage constraints are non-binding and that the matrix T is of full row rank, the first-
stage solutions obtained using this approximation will be optimal. In all other cases, either the
α∗-approximation does not necessarily yield the convex hull of Q and/or the obtained solutions may
not be optimal.

However, this does not imply that Qα∗ is not a good approximation of Q. Indeed, Qα∗ always
coincides with Q on α∗+Z, and for SIR models – a special case – a uniform error bound is available
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showing that the error is small if the total variation of the pdf fω is low. Obtaining such an error
bound for the general TU case is an interesting direction for future research. Alternatively, other
ways of obtaining the convex hull of Q may be investigated.
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two-stage stochastic mixed 0-1 first-stage problems. Computers and Operations Research 36,
2590–2600.

Gollmer, R., M.P. Nowak, W. Römisch, and R. Schultz (2000). Unit commitment in power generation
– a basic model and some extensions. Annals of Operations Research 96, 167–189.

Guan, Y., S. Ahmed, and G.L. Nemhauser (2009). Cutting planes for multistage stochastic integer
programs. Operations Research 57, 287–298.

Klein Haneveld, W.K., L. Stougie, and M.H. van der Vlerk (1995). On the convex hull of the simple
integer recourse objective function. Annals of Operations Research 56, 209–224.

Klein Haneveld, W.K., L. Stougie, and M.H. van der Vlerk (1996). An algorithm for the construction
of convex hulls in simple integer recourse programming. Annals of Operations Research 64, 67–81.

Klein Haneveld, W.K., L. Stougie, and M.H. van der Vlerk (2006). Simple integer recourse models:
convexity and convex approximations. Mathematical Programming, Series B 108, 435–473.

Klein Haneveld, W.K. and M.H. van der Vlerk (1999). Stochastic integer programming: general
models and algorithms. Annals of Operations Research 85, 39–57.

Laporte, G. and F.V. Louveaux (1993). The integer L-shaped method for stochastic integer programs
with complete recourse. Operations Research Letters 13, 133–142.

Louveaux, F.V. and R. Schultz (2003). Stochastic integer programming. In A. Ruszczyński and
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