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Zusammenfassung 

In großen Teilen der Welt verursachen Parasiten der Spezies Leishmania schwerwiegende 

Infektionen beim Menschen. Nach ihrer Übertragung auf einen Wirbeltierwirt durch Sandmü-

cken dringen die extrazellulären Einzeller in Phagozyten ein und legen damit den Grundstein 

für eine lang andauernde Infektion. Spezielle auf der Oberfläche exponierte Phospholipide 

stehen unter Verdacht, die Fresszellen zur Aufnahme der Parasiten zu stimulieren. Bisher sind 

Mechanismen, welche die Phospholipidverteilung in der Plasmamembran dieser Parasiten 

kontrollieren, kaum erforscht. 

In der vorliegenden Arbeit wurde ein lipidtransportierender Proteinkomplex identifiziert, der 

einen wesentlichen Beitrag zur asymmetrischen Verteilung der Lipide in der Plasmamembran 

von Leishmania donovani leistet. Die Zerstörung des Komplexes führte zum Verlust des ein-

wärts gerichteten Lipidtransports und zur Anreicherung von Phosphatidylethanolamin (PE) 

auf der Zelloberfläche des Parasiten. Diese veränderte Lipidasymmetrie hatte jedoch keinen 

Einfluss auf die Phagozytose durch Makrophagen. Darüber hinaus brachte die Untersuchung 

des Insektenstadiums (Promastigote) verschiedener Leishmania Spezies zu Tage, dass die 

Menge an Phosphatidylserin (PS) unterhalb des Detektionslimits modernster Nachweisverfah-

ren liegt, sie jedoch nach wie vor phagozytiert werden.  

Des Weiteren konnte gezeigt werden, dass der Parasit über einen Scramblase-Mechanismus 

verfügt, der durch intrazelluläres Kalzium stimulierbar ist. Die Scramblase-Aktivität ist, im 

Gegensatz zu dem zuvor beschriebenen einwärts gerichteten Lipidtransport, energieunabhän-

gig und ermöglicht die bidirektionale Translokation von fluoreszenzmarkiertem 

Phosphatidylcholin (PC), PE, PS und Sphingomyelin (SM). Dementsprechend konnte nach 

Kalziumstimulierung endogenes PE auch in der äußeren Lipidschicht der Plasmamembran 

detektiert werden, wobei deren Barrierefunktion nicht beeinträchtigt wurde. 

Diese Ergebnisse geben neue Einblicke in die dynamische Regulation der Lipidverteilung 

über die Plasmamembran des Parasiten und verdeutlichen, dass die Exposition von PS und PE 

nicht essentiell für das Eindringen der Leishmanien in die Wirtszellen ist. 

 

Schlagworte: Leishmania, Lipidasymmetrie, Typ 4 P-Typ ATPase, Scrambling, Phos-

phatidylserin
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Abstract 

The protozoan parasite Leishmania causes severe infections in humans throughout the world. 

Following the transmission via sand flies to its mammalian host the extracellular parasite has 

to gain entry into phagocytic cells to initiate a successful infection. Specific surface exposed 

phospholipids have been implicated in Leishmania macrophage-interaction, but the mecha-

nisms controlling and regulating the plasma membrane lipid distribution remains to be eluci-

dated. 

In the present work a lipid transporting protein complex was identified in Leishmania dono-

vani which plays an essential role in maintaining an asymmetric lipid distribution across the 

plasma membrane. Loss of the protein complex abolishes the inward-directed lipid transport 

and thus e.g. to an increased cell surface exposure of phosphatidylethanolamine (PE). In spite 

of this altered lipid asymmetry the uptake by macrophages is unaffected. Moreover, Leishma-

nia promastigotes of different species lack detectable amounts of phosphatidylserine (PS) 

although being infective.  

Furthermore, a scramblase activity following a cytosolic calcium signal was demonstrated. 

This scramblase mechanism facilitated, in contrast to the previous described inward directed 

lipid transport, the bidirectional movement of fluorescent lipid analogues of PC, PE, PS and 

SM in an energy-independent manner. In accordance with these findings endogenous PE was 

exposed to the outer plasma membrane leaflet following the Ca
2+

-signal, while the plasma 

membrane itself remained intact. 

These results provide novel insight into the dynamic regulation of the transbilayer lipid distri-

bution across the parasite plasma membrane and reveal that exposure of PS and PE is not cru-

cial for invasion of the host cell by Leishmania donovani promastigotes. 

 

Keywords: Leishmania, lipid asymmetry, type 4 P-type-ATPase, scrambling, phosphati-

dylserine
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2 List of abbreviations 

Abbreviation Meaning 

9-AA 9-aminoacridine 

ABC-transporter ATP binding cassette transporter 

ADP adenosine-5´-diphosphate 

ATP adenosine-5´-triphosphate  

BSA bovine serum albumin 

CCCP carbonyl cyanide m-chlorophenylhydrazone  

CFP cyan fluorescent protein  

CID collision induced dissociation 

CL cardiolipin 

CR1 / CR3 complement receptors 1 or 3  

CRP C-reactive protein 

DDM n-dodecyl-β-D-maltopyranoside  

DHB 2,5-dihydroxybenzoic acid  

DIC differential interference contrast  

EC50 effective concentration 

ER endoplasmic reticulum 

ESI-MS electron spray ionisation mass spectrometry  

FA fatty acid 

FcγR Fcγ receptor  

FITC fluorescein isothiocyanate 

FRET Förster Resonance Energy Transfer  

GFP green fluorescent protein  

gp63 glycoprotein 63 

GPI glycosylphosphatidylinositol  

GPILs glycoinositol phospholipids  

HPLC high performance liquid chromatography  
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iC3b inactivated complement 3b 

IgG immunoglobulin gamma  

IL interleukin 

IP immunoprecipitation 

IPC inositol phosphorylceramide  

LdMT Leishmania donovani Miltefosine transporter 

LPG lipophosphoglycan 

MALDI-TOF 
matrix assisted laser desorption ion time of 

flight mass spectrometry  

Miltefosine hexadecylphosphocholine 

MTT 
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-

2H-tetrazolium bromide  

NBD 7-nitro-2-1,3-benzoxadiazol-4-yl 

P4-ATPase type 4 P-type ATPase 

PA phosphatidic acid  

PAGE polyacrylamide gel electrophoresis  

PC phosphatidylcholine 

PCD programmed cell death  

PCR polymerase chain reaction 

PE phosphatidylethanolamine 

PG phosphatidylglycerol 

PI phosphatidylinositol 

p-PE plasmalogen PE 

ProI propidium iodide 

PS phosphatidylserine 

PSD post source decay 

SDS sodium dodecyl sulfate 

SERCA sarcoplasmatic reticulum calcium transporter  

SIM selected ion monitoring 
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SM sphingomyelin 

SMP serum mannan binding protein  

TGF-β transforming growth factor beta 

Th 2 T helper cell type 2 

TLC thin layer chromatography 

TMD transmembrane domains  

wt wild-type 

YFP yellow fluorescent protein  
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3 Introduction 

3.1 Leishmaniasis 

Leishmaniasis is a disease caused by protozoan parasites of the Leishmania species, which 

belong to the order of Trypanosomatidae. Like all trypanosomatids they depend on their insect 

vector to run through the whole life cycle (Figure 1). Consequently, the parasites geographi-

cal distribution reflects the habitat of its insect vector. In case of Leishmania these insect vec-

tors are sand flies of the genus Phlebotomus and Lutzomyia in the Old and New World, re-

spectively, which can be found in the temperate or tropical regions. The infected female 

sandfly transmits the parasite to vertebrate hosts (hyraxes, canids, rodents and humans) during 

its blood meal. The disease occurs at least in four major forms in man caused by the distinct 

Leishmania species (Figure 2). Firstly, the cutaneous leishmaniasis, caused by species of the 

L. mexicana complex and the L. major complex, is characterised by frequently self-healing 

skin lesions around the bite. Nevertheless, multiple and disfiguring scars remain. Secondly, 

the diffuse cutaneous leishmaniasis occurs in individuals with defective cell-mediated im-

mune response. In these patients the lesions disseminate, never heal spontaneously and often 

reoccur after treatment. Thirdly, the mucocutaneous leishmaniasis causes extensive destruc-

tion of the oral-nasal and pharyngeal cavities with disfiguring lesions, mutilation of the face 

and great suffering for life. This form is predominantly caused by Leishmania species of the 

Viannia subgenus in the New World but was also reported for L. donovani and L. major in the 

Old World. Fourthly, the most severe and nearly always fatal form of leishmaniasis is the vis-

ceral leishmaniasis or ‘kala azar’ caused by L. donovani and L. infantum. It is characterised by 

undulating fever, loss of weight, splenomegaly, hepatomegaly and/or lymphadenopathies and 

anemia [1,2]. Currently around 12 million people are infected and two million new cases are 

reported annually. About 350 million people live under risk of becoming infected [3].  

3.2 Life Cycle 

The Leishmania life cycle is divided by the two different hosts (Figure 1). Parasites taken up 

by the sandfly during blood meal differentiate to motile flagellated promastigotes, which at-

tach to the midgut epithelium of the sandfly to prevent excretion and to initiate proliferation. 

These fast replicating procyclic promastigotes show only low virulence. Upon transformation 

to metacyclic promastigotes (low proliferation but high virulence) the parasites detach from 

midgut epithelium and migrate anterior to the cuticle-lined foregut. There some attach by 
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forming hemidesmosomes while others remain mobile being susceptible for bite-induced 

transmission to a mammalian host [4]. The sandfly inoculates about 100 - 3000 metacyclic 

promastigotes into the skin of the mammalian host [5]. 

 

Figure 1: Life Cycle of Leishmania species.  

Adapted from Mariana Ruiz Villarreal. 

In the vertebrate host these metacyclic promastigotes switch from extracellular to intracellular 

parasites by invasion of their preferred phagocytic host cells e.g. neutrophile granulocytes, 

macrophages and dendritic cells [6]. These immune cells are attracted to the site of infection 

by the sandfly saliva and a Leishmania chemotactic factor. The phagocytes take up the para-

sites by receptor-mediated phagocytosis. Inside the endosomal system the promastigote dif-

ferentiates to the amastigote form of Leishmania. Upon formation of the parasitophorous 

vacuole by endosom-lysosom fusion the amastigotes start to proliferate. Migration of infected 

immune cells to the lymph nodes, the liver and the spleen facilitate the dissemination of the 

parasite to other organs [7].  

While the whole Leishmania genus has the life cycle described above in common, differences 

among the distinct Leishmania species are known. The differences between the Leishmania 

species include the infectivity for distinct hosts, distinct organs and thus the clinical signs 

caused in the infected mammalian host. 
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Figure 2: Patients with clinical signs of leishmaniasis.  

From left to right: cutaneous, mucocutaneous and visceral leishmaniasis [2] [3]. 

In general two epidemiological entities can be distinguished, firstly, zoonoses that include 

animal reservoir hosts and secondly, anthroponoses where man is the sole source of infection 

for the vector. Among the different Leishmania species 20 are known to be pathogenic for 

humans (Table 1) [1]. 

Differences in the clinical signs of leishmaniasis arise from distinct virulence factors modulat-

ing the host immune response and thus the organs affected. One of these virulence factors is 

the A2 protein expressed in L. donovani amastigotes which is required for survival in visceral 

organs. In L. major (cutaneous leishmaniasis) the corresponding gene is absent, but introduc-

tion of this gene into this species leads to a visceralisation in susceptible mice [8]. Although 

only a few virulence factors are known by now, more insight was gained in the modulations of 

the innate and adapted cellular immunity induced by different Leishmania species. The best 

studied examples in this respect are the Old World subspecies L. major, for cutaneous 

leishmaniasis and L. donovani for visceral leishmaniasis as well as species of the New World 

L. mexicana complex (cutaneous leishmaniasis). While the protective host response is gener-

ally T helper cell type 1-mediated, factors resulting in the non-healing disease vary among 

distinct species. In Old and New World species causing cutaneous leishmaniasis a T helper 

cell type 2 response accompanied by interleukin (IL)-4 and IL-13 production plays a crucial 

role during the chronic infection, whereas IL-10 and transforming growth factor (TGF)-β 

govern the manifestation of non-curing visceral leishmaniasis. Moreover, B-cells assist L. 

donovani and L. mexicana to establish a persistent infection, whereas their role is less pro-

nounced in L. major. Besides the differences in cytokine and immune cell stimulation, a simi-
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lar variety of chemokine and chemokine receptor modulation was found for the different 

Leishmania species. (Without claiming completeness) this listing shows differences between 

the Leishmania species, which result from diverged development within the last 40-80 million 

years between the Old and New World species as well as from specialisation for different or-

gans [7,9]. 

 

Table 1: Leishmania species which are pathogenic to humans.  

The subgenus is given in parentheses. LCL, localised cutaneous leishmaniasis; DCL, diffuse cutaneous leishma-

niasis. Southeast Asia includes the Indian subcontinent and China. [10] 

3.3 Cell Biology 

Like all eukaryotes Leishmania parasites show a complex intracellular compartmentalisation 

(Figure 3). In addition to common cell organelles such as nucleus, endoplasmic reticulum 

(ER) and Golgi apparatus, they exhibit characteristic organelle structures including the kine-

toplast [11], a large mitochondrion with mitochondrial DNA in close proximity to the flagellar 



Introduction 

5 

 

pocket, the multivesicular tubule, an elongated lysosome as well as the flagellum at the ante-

rior side of the promastigote. The invagination of the plasma membrane next to the flagellum, 

the so-called flagellar pocket, serves as the main spot for endocytosis. 

 

Figure 3: Schematic draw of a Leishmania promastigote and its characteristic organellar structure. 

Adapted from various authors. 

Leishmania parasites are perfectly adapted to each environmental niche they encounter during 

their life cycle. This is reflected by stage-specific protein expression, lipid modification and 

alterations in metabolic pathways [12].  

In the sandfly Leishmania species satisfy their energy needs by glycolysis of sugar probably 

provided by nectar or sap feeding of the insect vector, whereas the intracellular stage of the 

parasite metabolises fatty acids and amino acids acquired from the host [13]. While most in-

tracellular parasites avoid the proteolytic environment of the lysosomal compartment it serves 

as a place for proliferation of Leishmania amastigotes. There the continuous fusion with en-

dosomes, phagosomes and autophagosomes containing macromolecular biomolecules guaran-

tees the sufficient supply with nutrients. At the same time the parasite takes advantage of the 

hydrolytic environment of the lysosomal compartment that rapidly degrades these macromo-

lecular nutrients into low molecular weight compounds. The latter typically serve as sub-

strates for membrane transporters. The parasite exploits the strong proton gradient across the 

plasma membrane for co-transport of nutrients such as amino acids. To maintain the near neu-
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tral cytosolic pH the amastigote expresses both, the constitutively expressed proton extrusion 

pump LDH1A and the proton pump LDH1B [14]. Functioning in concert both plasma mem-

brane H
+
 ATPases enable the parasite to survive at pH 4 [15]. 

Stage-specific binding of different lectins to distinct forms of the parasite during its cell cycle 

demonstrates molecular changes in the glycocalyx [16]. Changes in the major component of 

the promastigote glycocalyx, e.g. in the glycosylphosphatidylinositol (GPI)-anchored 

phosphoglycan (LPG), are important in the defence against lytic activities of the mammalian 

host. While LPG protects the procyclic promastigote against hydrolases in the midgut of the 

insect vector [17], it is not capable of blocking complement-mediated lysis. Increased infec-

tivity of the metacyclic promastigote is mediated by elongated LPG, which has an increased 

number of phosphorylated disaccharide repeat units [18,19].  

Besides the adaptation to its environment the parasite also modulates its hostile environment 

according to its needs. Following receptor-mediated endocytosis the decreased pH in the early 

endosome stimulates the promastigotes to differentiate into ovoid non-flagellated amastigotes. 

Here again LPG plays an important role in delaying the endosome-lysosome fusion allowing 

the promastigote to differentiate to an amastigote before the endosomal compartment is fur-

ther acidified by phagosome-derived H
+
 ATPases [20,21]. Furthermore, LPG is under cloud to 

scavenge oxygen radicals generated during the respiratory burst [22], to inhibit protein kinase 

C activity [23], to suppress macrophage NOS2, and NO production [24]. 

3.4 Receptor-mediated phagocytosis 

To initiate a successful infection Leishmania parasites have to gain entry into phagocytes. The 

invasion depends on receptor-mediated phagocytosis. Therefore surface antigens like LPG, 

which is recognised by serum mannan-binding protein and C-reactive protein (CRP), play a 

crucial role. In turn, the binding of CRP and serum-mannan binding protein results in com-

plement-mediated lysis of procyclic, but not metacyclic promastigotes of Leishmania dono-

vani and Leishmania major. In the latter case the GPI-anchored metalloprotease gp63 protects 

the parasite from degradative activities in the vertebrate host. It cleaves complement C3b into 

the inactive iC3b form and thus blocks complement-mediated lysis. Nevertheless, iC3b can 

opsonise the parasite via complement receptors 3 and 1 (CR3 and CR1) thereby targeting the 

parasite for uptake by macrophages. By preferentially accessing the macrophage via CR3 and 

CR1, the promastigote does not trigger a respiratory burst [25]. Nevertheless, differentiation 

to amastigotes goes along with a downregulation of the biosynthesis of LPG and gp63. 
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Figure 4: Leishmania antigens and phagocyte receptors important for the invasion. 

Leishmania surface components Lipophosphoglycan (LPG) and glycoprotein 63 (gp63) are shown in red. Solu-

ble components of the innate and adapted immune system like the C-reactive protein (CRP), serum mannan-

binding protein (SMP),  inactivated complement (iC3b) and immunoglobulin gamma (IgG) are shown in cyan. 

Phagocyte complement-receptors 1 and 3 (CR1/CR3) as well as the Fcγ receptor (FcγR) are marked green.  

With progression of the infection antibody-mediated phagocytosis of amastigote forms via 

Fcγ receptors gain importance for parasite internalisation. 

Moreover, it was suggested, that the surface exposure of the apoptotic lipid marker phosphati-

dylserine (PS) leads to recognition via the PS-receptor. Besides receptor-mediated phagocyto-

sis this lipid is under cloud to stimulate the non-inflammatory response by macrophages to the 

parasite as known from apoptotic cells. 

3.5 Leishmania Lipids 

Lipids are a diverse class of biomolecules that play a major role not only as membrane com-

ponents, but also as cellular signalling molecules. Chemically, lipids can be classified on basis 

of their headgroup (choline, ethanolamine, inositol and serine), their backbone (glycerol or 

sphingosine) or on basis of their lipid anchors (acyl, alkyl, alkenyl). In Leishmania species the 

choline, ethanolamine and inositol head groups dominate. The lipids in Leishmania are pre-

dominantly phospholipids (70% of total lipids) [26,27] and among them the glycerophosphol-

ipids constitute more than 50%. For example the glycerophospholipid phosphatidylcholine 

(PC) holds 30-40% of the total phospholipids (Figure 5).  

Glycerophospholipids are based on a glycerol backbone, usually with two fatty acids bound 

via an ester or ether bond to the sn1 and sn2 position. Bound to the sn3 position of these dia-

cylglycerols are hydrophilic moieties like choline, ethanolamine, serine or sugars. Synthesis 
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of diacyl ester and ether lipids follows different routes in Leishmania. Interestingly, inhibition 

of the ether lipid synthesis pathway by deletion of the required acyltransferase leads to a loss 

in virulence, whereas inhibition of the ester lipid metabolism does not show important altera-

tions in virulence [28,29]. In contrast to other mammalian cells Leishmania contain high lev-

els of ether lipids. For example most of the Leishmania phosphatidylethanolamines (PE) carry 

an ether acyl chain in the sn2 position (80-90% plasmalogens) [30,31].  

 

 

Figure 5: Lipid composition of L. major.  

Lipids were classified either according to their backbone and head group (left) or according to their lipid anchors 

(right) [32]. Phospholipids (PLs); neutral lipids (NLs); sphingolipids (SLs); phosphatidylcholine (PE); phos-

phatidylethanolamine (PE); phosphatidylinositol (PI) 

Among the ether lipids plasmalogens, lipids with an α-β-unsaturated ether at the sn1 position 

(Figure 6), might play an important role in protecting Leishmania from oxidative stress by 

scavenging oxidants and thus preventing polyunsaturated fatty acids from oxidation [33,34]. 

A prominent plasmalogen member is LPG mentioned above. It is an unusual complex glycol-

ipid that contains a lyso-alkyl-PI lipid anchor linked to a hexasaccharide, followed by 15–30 

repeats of the disaccharide mannose–galactose-phosphate, and ends with a small oligosaccha-

ride [35]. Likewise, glycoinositol phospholipids (GPILs) and GPI-anchored proteins are teth-

ered to the membrane by an ether lipid-based 1-alkyl-2-acyl-phosphatidylinositol anchor. Be-

sides their function as anchor for certain surface components GIPLs constitute a dense 

glycocalyx directly adjacent to the promastigote surface. LPG and gp63 project through this 

glycocalyx [36]. GIPLs inhibit the protein kinase C activity [37] and thus probably the oxida-

tive burst. Furthermore, they are under cloud to strongly inhibit NOS2 expression [38]. 
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Cardiolipins are diphosphatidylglycerols synthesised at the luminal side of the inner mito-

chondrial membrane and the major lipid component of this organelle. They are supposed to 

fulfil manifold functions. Although not essential for viability they support fitness and are sug-

gested to interact with most mitochondrial proteins, to form lateral domains, to help bending 

the membrane due to their small head group area in comparison to the big fatty acid tail re-

gion, and to function as a proton trap for oxidative phosphorylation (for review see [39]). 

.  

Figure 6: Chemical structures of important Leishmania phospholipids and ergosterol.  

The glycerol backbone of glycerophospholipids is marked green, whereas the sphingosine backbone of sphingol-

ipids is marked blue. The acyl bond in the sn1 position of phosphatidylcholine (PC) and the vinyl ether bond 

characteristic for plasmalogens in the sn1 position of glycosylphosphatidylinositol (GPI) are marked by boxes.  

Another important group of Leishmania lipids are sphingolipids with sphingosine serving as 

the backbone moiety. While in host mammals sphingomyelin (SM) is the major member of 

this lipid class, SM is absent in Leishmania. Instead the protozoan parasite predominantly 

synthesises inositol phosphorylceramide (IPC, Figure 6). The deletion of enzymes important 

for sphingolipid synthesis leads to viable procyclics which fail to differentiate into meta-

cyclics [30].  

Sterols such as cholesterol and ergosterol are important amphipaths regulating the order, vis-

cosity, and thus the permeability of lipid membranes. Synthesis of sterols takes place mainly 

in the ER. While mammalian cells synthesise cholesterol, synthesis of phyto- and ergosterols 
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dominates in plants and fungi, respectively. Isolated lipids of Leishmania parasites contain 

both, cholesterols and ergosterol. However, only the latter one is synthesised by the parasite 

itself. Cholesterol seems to be acquired from cell culture medium or the host cell itself. 

As mentioned in the previous chapter the glycerophospholipid PS plays a vital role in signal-

ling apoptosis to phagocytic cells like macrophages when exposed to the cells surface. The 

recognition of this moiety results in phagocytosis and production of non-inflammatory cyto-

kines. Although genes homologous to a PS-synthase and a PS-decarboxylase are encoded by 

the Leishmania genome, contradictory results regarding the existence of PS in lipid extracts 

derived from parasites were published [31,40,41,42]. 

3.6 Lipid asymmetry (establishment and maintenance) 

Phospholipid biosynthesis takes place only on one side of the membrane, e.g. PC and PE are 

formed in the cytosolic leaflet of the ER. This asymmetric lipid synthesis would lead to an 

imbalanced growth of the membrane. Hence, Bretscher et al. suggested the existence of a 

flippase
1
 protein that facilitates the transversal motion of lipids in these biogenic membranes 

[43]. Indeed, later on it was demonstrated that phospholipids can flip in a fast bidirectional 

manner across the membrane of intact ER vesicles [44]. Moreover, it was shown that this mo-

tion requires proteins, but is ATP-independent. Although many attempts were made to identify 

this protein class, no candidates were found yet [45]. Anyway, during vesicle transport via the 

Golgi apparatus to the plasma membrane this random distribution of phospholipids disappears 

in favour of an asymmetric distribution. Since long it has been assumed that members of the 

type 4 P-Type (P4) ATPase family and ABC-transporters play a fundamental role in establish-

ing and maintaining this phospholipid asymmetry [46,47]. 

                                                 

1
 Nowadays the term flippase is almost exclusively used for lipid transporting P4-ATPases. 
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Figure 7: Scheme of the asymmetric lipid distribution at the plasma membrane of eukaryotic cells.  

PS (green) and PE (red) are enriched in the cytoplasmic leaflet while PC (black) and SM (blue) reside in the 

exoplasmic leaflet. The ATP-dependent transporters, flippase and floppase, required for lipid flip-flop to estab-

lish and maintain phospholipid asymmetry at the plasma membrane of eukaryotic cells are depicted. Moreover, 

the ATP-independent scramblase was suggested to abrogate this gradient by facilitating the bidirectional flip-flop 

of phospholipids during apoptosis or activation by increased intracellular Ca
2+

 levels. The scramblase activity 

leading to an exposure of PS at the plasma membrane is crucial during apoptosis, since exposed PS serves as an 

apoptotic marker.  Arrows indicate the direction of the respective transport activity. The scheme was adapted 

from Pomorski  [46] 

The members of either protein class transport their substrates across membranes in an energy-

dependent manner. For this adenosine-5´-triphosphate (ATP) becomes hydrolysed to adeno-

sine diphosphate (ADP) and orthophosphate on the cytosolic side of the membrane. While the 

ATP binding cassette (ABC)-class of lipid transporters moves their substrates from the cyto-

plasmic to the extracellular leaflet of the membrane, P4-ATPases direct lipids the opposite 

way. Besides their distinct transport directions both protein families differ in their overall 

structure and mode of action.  

3.6.1 The type 4 subclass of P-type-ATPases (flippases) 

P-type-ATPases are a conserved family of ion transporters. While three of the five known 

subclasses transport indeed ions, P1 (K
+
, Cu

2+
 and Cd

2+
), P2 (Ca

2+
, Na

+
/K

+
 and H

+
/K

+
) and P3 

(H
+
 and Mg

2+
), the P4-ATPases were proven to transport lipids [48,49]. To date there is no 

substrate known for the P5-ATPases [50]. Structurally, they consist of a membrane domain 
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with eight to ten membrane-spanning helices, a so-called actuator domain, a nucleotide bind-

ing domain, and most notably the name-giving phosphorylation domain containing the re-

versibly phosphorylated aspartate residue (Figure 8). The best studied P4-ATPase is the yeast 

Drs2p. This transporter is located in the trans-Golgi network and transports PE and PS to-

wards the cytosolic leaflet [47]. Screening the L. infantum genome for homologues of the 

yeast Drs2p results in five members of the P4-ATPase subfamily. In Figure 9 the typical p-

type ATPase motifs of yeast Drs2p and the deduced amino acid sequence in Leishmania are 

shown. To date no crystal structure of a P4-ATPase is available. 

 

Figure 8: Topology model of P-type ATPases.  

The membrane domain with the characteristic ten transmembrane helices (grey) and the conserved cytoplasmic 

domains are depicted. The actuator domain (A) with the amino-terminal end and the first cytoplasmic loop con-

taining the motif 1 are highlighted in green. The phosphorylation domain (P) with the characteristic motive 2 

containing the aspartic acid residue necessary for phosphorylation and motif 4 are marked with blue. And the 

nucleotide binding domain (N) containing motif 3 is framed in orange. The model was adapted from Lenoir  

[51]. 

Thus, most structure function relations for the P4-ATPase family were obtained by analogy 

models derived from the sarcoplasmic reticulum calcium ATPase (SERCA) and the sodium-

potassium ATPase [52,53]. The modified Post-Albers cycle for the P4-ATPases is depicted in 

Figure 10. In the left sketch the catalytic cycle of the P2A-ATPase SERCA is depicted. Here 

Ca
2+

 binds to a site with high affinity to this ligand, which is accessible from cytosol in the E1 

conformation of the transporter. Next, the aspartate residue in the above mentioned 

DKTGTLT motif of the phosphorylation domain is amenable to phosphorylation by γ-

phosphate of ATP in the presence of Mg
2+

. In this high energy conformation, called E1P, the 

ligand is occluded in the transmembrane domain. The downhill transition towards the low-

energy phosphorylated intermediate E2P starts with the release of ADP from the nucleotide 
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binding domain. This liberates the ligand into the exoplasmic space. Now, the transporter has 

high affinity for counter-ions, e.g. protons in the case of the Ca
2+

-ATPase. In the following, 

hydrolysis of the phosphorylated aspartate mediated by the DGET motif in the actuator do-

main results in the E2 conformation. Transition from E2 to E1 is characterised by release of 

phosphate and Mg
2+

 and attended by dissociation of the counter-ions into the cytoplasm. 

 

Figure 9: Conserved motifs of P-type-ATPases in yeast Drs2p and the five Leishmania homologues.  

Leishmania protein sequences were derived from L. infantum genome and aligned using ClustalW2 tool at the 

website of the European Bioinformatics Institute. The complete comparison is shown in Figure 34 in the appen-

dix. The names AP1 to AP5 are given according to the similarity to the Drs2 while AP4 represents LdMT. 

Based on structural homology, biochemical and biophysical analysis Lenoir suggested a simi-

lar function of P4-ATPases [52]. With respect to Ca
2+

 transported by SERCA the motion of 

lipids mediated by P4-ATPases is antipodal (Figure 10). 

In yeast mutants lacking the plasma membrane-resident or the trans-Golgi network-resident 

flippases are characterised by a defect in endo- and exocytosis, respectively. Besides creating 

and maintaining the phospholipid asymmetry of the Golgi and the plasma membrane, the 

phospholipid translocases support vesicle formation. The unidirectional translocation of phos-

pholipids towards the cytosolic leaflet of a membrane was suggested to create a mass imbal-

ance and hence surface tension, which results in bending of the bilayer towards the cytosol. 

Thus, flippases in concert with coat proteins were thought to be required for vesicle formation 

of relatively rigid membranes, such as trans-Golgi network and plasma membrane [54,55]. 
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In L. donovani, a member of the P4-ATPase family was found in a screening for drug resis-

tance against miltefosine, a hexadecylphosphocholine with leishmanicidal effect [56]. With 

respect of this function, it was named Leishmania donovani miltefosine transporter (LdMT). 

In the same screening another mutant lacking LdRos3, a CDC50 homologue, with similar 

phenotype was found [57]. 

The function of most P4-ATPases reported so far was found to be sensitive to the expression 

of members of the CDC50 protein family. The first member described, Cdc50p, was found in 

a screening for cold-sensitive yeast mutants deficient in cell division [58]. Later, another 

member, Lem3p/Ros3p, was found to be crucial for insensitivity to the PE binding antibiotic 

Ro09-0198 and for sensitivity to the toxic PC analogues miltefosine and edelfosine [59,60]. 

Members of this protein family share a common topology with two membrane-spanning heli-

ces and a large exoplasmic loop, which is N-glycosylated and stabilised by disulfide bonds. 

Three members each were found in yeast [61], man [62] and Leishmania [57], whereas five 

members were found in Arabidopsis [63]. In yeast four of the five P4-ATPases form a com-

plex with a CDC50 member [52,61]. 

 

Figure 10: The modified Post-Albers cycle of P-type ATPases for the sarcoplasmic reticulum calcium AT-

Pase (SERCA, left) and for P4-ATPases (right) [52].  

The mechanism is described in detail in the text.  

Since CDC50 proteins were found to be required for the ER export of P4-ATPases, Seito et al. 

suggested that these proteins function like chaperones for the transporter [61,64,65]. In addi-

tion, the yeast Cdc50p and the human CDC50A are crucial to render the P4-ATPase in a phos-

phorylation competent state. Moreover, the strength of the physical interaction between yeast 

Cdc50p and Drs2p fluctuates throughout the catalytic cycle, being strongest in the ligand-

bound phosphorylated E2-P conformation. These findings suggest that CDC50 proteins are 

vital components of the translocation machinery [52]. The molecular mechanism of CDC50-

dependent activity of the flippase machinery is not known yet. A model described by Lenoir et 
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al. proposes that the two transmembrane domains of the CDC50 proteins provide additional 

cavity space crucial for binding of the bulky phospholipid substrate. In addition, the ectodo-

main of the CDC50 binding partner might promote the occlusion of the phospholipid sub-

strate at the E2P state. The tight binding between both interaction-partners found in the E2P 

state is potentially lost by conformational changes occurring in the P4-ATPase upon dephos-

phorylation. This allows the substrate to be released from the catalytic complex into the cyto-

plasmic leaflet of the lipid bilayer (Figure 11). 

  

Figure 11: Model for the functional interaction of a CDC50 protein (dark grey) with a P4-ATPase (light 

grey) during the catalytic cycle of the transporter [52].  

E1 and E2P correspond to conformations of the P-type-ATPase described in the Post-Albers cycle. The nucleo-

tide binding domain (N), the phosphorylation site (P), the actuator (A), and the membrane domain (M) are 

marked. A phospholipid in the exoplasmic leaflet (PLexo) binds to the high-affinity binding site available in the 

E2P conformation of the P4-ATPase/CDC50 protein complex (E2P∙PLexo). The ectodomain of the CDC50 bind-

ing partner facilitates occlusion of the bulky phospholipid substrate and hence, conversion of the P4-ATPase to 

the E2 form. Upon acquiring the E1 state, the P4-ATPase loses its tight interaction with the CDC50 protein al-

lowing the phospholipid substrate to be released into the cytoplasmic leaflet of the membrane (PLcyto). 

3.6.2 ABC Transporters (floppases) 

The ATP binding cassette (ABC)-transporter class is a highly conserved family of membrane 

proteins that translocate a broad spectrum of substrates across membranes. Substrates such as 

amino acids, sugars, inorganic ions, peptides, proteins, lipids, and various organic and inor-

ganic compounds are transported with high affinity even against strong concentration gradi-

ents (up to 10 000 fold). Transporters of this family are composed of transmembrane domains 

(TMDs), usually with six membrane-spanning α-helixes, and nucleotide binding domains 

(NBDs) for the binding and hydrolysis of ATP. In eukaryotes often two TMDs and two NBDs 

form a functional transporter. The different domains can be organised as separate proteins or 

as a full-size protein [66]. 
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During the transport cycle one substrate molecule binds to a cavity at the cytosolic side, sub-

sequently two molecules of ATP bind to the NBDs. Following, the two distant NBDs close up 

to form a tight dimer. This conformational change is transmitted to the TMDs causing them to 

tilt. Thereby the cytosolic cavity with the bound substrate closes and opens towards the 

exoplasmic side, followed by substrate release. Hydrolysis of ATP to ADP and Pi might cause 

detachment of the NBDs and return to the starting conformation [67]. 

 

Figure 12: Simplified model for the translocation of substrates across the bilayer by ABC-transporters.  

Following substrate binding to a cytosolic cavity two molecules of ATP bind to the Walker A and B motifs. Next, 

the two NBDs form a dimer and thereby tilt the α-helices in the membrane domain. This conformational change 

presents the substrate to the exoplasmic side and triggers substrate release. Upon ATP hydrolysis both NBDs 

detach from each other rendering the transporter competent for ATP and substrate binding. Adapted from Procko  

[67]. 

In Leishmania, several transporters of the ABC class were found to transport NBD-lipid ana-

logues. Overexpression of both, LtrABCA2 and LtrABC1.1 in Leishmania tropica show less 

accumulation of fluorescently labelled lipid analogues of PC, PE, and to a lesser extent of PS 

compared to wild-type parasites [68,69]. LtrABCA2 localises to the flagellar pocket and to 

intracellular membranes, whereas LtrABC1.1 is located at the plasma membrane and the flag-

ellar pocket. Both ABCG homologues, LiABCG6 and LiABCG4 from Leishmania infantum 

localise to the plasma membrane, but differ in substrate specificity. While LiABCG6 trans-

ports fluorescent NBD-PC, -PE, and to a lesser extend NBD-PS, LiABCG4 transports only 

PC analogues [70,71]. 
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3.6.3 Scramblases 

The lipid asymmetry established and maintained by flippases and floppases as described 

above is a feature of living eukaryotic cells. This phospholipid distribution was found to be 

abrogated in activated platelets, in macrophages during phagocytosis, in B-lymphocytes and 

many other cell types. Importantly, PS exposed due to loss of the lipid asymmetry at the 

plasma membrane of apoptotic cells serves as a crucial eat me signal for phagocytes [72].  

The ability to undergo a regulated decay during cell death is a feature of metazoan as well as a 

small number of unicellular eukaryotes. For multicellular organism, apoptosis is important for 

proper development during embryogenesis, tissue homeostasis and protection from bacterial, 

viral and parasitic infections as well as cancer development [73,74,75,76,77,78,79]. An early 

event during apoptosis is the loss of the plasma membrane lipid asymmetry. This was shown 

to occur following caspase activation and disruption of the mitochondrial outer membrane 

[80]. Like other eukaryotes, Leishmania is capable to undergo apoptosis which is character-

ised by loss of the mitochondrial membrane potential, release of cytochrome c, activation of 

caspases, nicked DNA in the nucleus as well as high molecular weight DNA fragmentation 

and morphologically by loss of motility, rounding and shrinkage of the cell and blebbing of 

the plasma membrane [81,82,83]. Finally, the impermeability of the plasma membrane is 

compromised, which can be visualised by DNA binding dyes, like propidium iodide that in 

turn is excluded from cells with intact plasma membrane. 

Independent from apoptosis elevation of cytosolic calcium levels in erythrocytes, platelets, T-

cells, and many other cell types leads to facilitated flip-flop and thus to a loss in lipid asym-

metry [84,85,86,87]. Although elevated intracellular calcium levels were described during cell 

death, this seems not to be a prerequisite for scrambling during apoptosis as demonstrated in 

lymphocytes derived from patients with Scott syndrome. In lymphoid cells from patients with 

this congenital bleeding disorder scrambling cannot be activated by Ca
2+

, but is induced nor-

mally during apoptosis [88]. To this end, it is unclear whether apoptosis and elevated intracel-

lular Ca
2+

 level trigger the same mechanism, but the latter was shown to be inhibited by pro-

tein modifying agents. Thus a protein, termed scramblase, was made responsible for calcium-

induced bidirectional lipid movement across the plasma membrane of erythrocytes [89]. 

Henceforward, several protein candidates were suggested to transfer lipids energy-

independently and bidirectionally across the plasma membrane of eukaryotic cells. Members 

of the PLSCR-family, the ABC transporter ABCA1 as well as the P4-ATPase homologue Tat-1 
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from C. elegans were made responsible for calcium-induced scrambling and PS externalisa-

tion during apoptosis, respectively [90,91,92]. Contradictory results on ABCA1 and PLSCR1 

questioned their role in lipid scrambling [93,94]. Another mechanism was suggested by 

Mirnikjoo et al. who found that elevation of intracellular calcium levels leads to fusion of 

lysosomes with the plasma membrane resulting in exposure of PS to the extracellular leaflet 

of the plasma membrane [95]. Moreover, Contreras et al. proposed another mechanism result-

ing in lipid scrambling during apoptosis. Sphingomyelinase activity catalysing the formation 

ceramide was suggested to facilitate the bidirectional flip-flop of phospholipids, too [96]. 

Whatever the identity of the scramblase or the mechanism mediating scrambling might be, it 

was found that the substrate specificity of the scramblase in erythrocytes depends on the head 

group size as well as on the lipid back bone, but is independent of the stereochemistry 

[97,98]. In general, scramblases seem to have broader substrate specificity than single P4-

ATPases or lipid transporting ABC-transporters. Thus, if scrambling is mediated by flippases 

or floppases, it would require the interplay of more than one member to cover all substrates. 

In Leishmania no scramblase activity was reported so far, although staining with annexin V, a 

protein recognising charged lipids like PS, is used to assay the viability of parasites in labora-

tory. On the contrary increased intracellular Ca
2+

 levels were observed during apoptosis 

stimulated by miltefosine and H2O2, during the engulfment by macrophages as well as during 

temperature shift as required for differentiation [81,99,100,101,102]. 
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4 Aim of the work 

Despite the obvious importance of lipid surface components to gain entry into the host cell 

and to adapt to the different environmental niches the parasite faces during its life cycle, little 

is known about the composition and dynamics of membrane lipids in Leishmania. Likewise, 

the proteins involved in the regulation of the plasma membrane lipid distribution remain to be 

identified. Such knowledge may among others be important for the development of new drugs 

and strategies against the leishmaniasis. 

In this work mechanisms regulating the lipid asymmetry have been investigated in detail. 

Firstly, a protein complex suggested to have a role in regulating the plasma membrane asym-

metry was studied. Secondly, the presence of a calcium activated scramblase mechanism was 

investigated and thirdly, the phospholipid spectrum of the parasite was analysed by focussing 

on PS, since this lipid was suggested to be important for invasion of the mammalian host 

cells. 
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5  Material and Methods 

5.1 Chemicals 

If not stated otherwise, all substances were obtained by Sigma-Aldrich. 

5.2 Equipment 

Agarose gel electrophoresis System Bio-Rad 

Gel electrophoresis “Mini-Protean System” Bio-Rad 

PCR System “MyCycler” Bio-Rad 

pH meter 761 Calimatic Knick 

Phosphorimager “Image Analyser FLA3000” Fujifilm 

BASReader Software Fujifilm 

Photometer UV1 Thermo Scientific 

Plate reader “FLUOstar Optima” BMG Labtechnologies 

Incubator Shaker Classic Series C25KC New Brunswick Scientific 

Thermoshaker Gerhardt 

Table top centrifuge Biofuge Fresco Heraeus 

Table top centrifuge Biofuge Stratos Heraeus 

Ultra centrifuge Avanti J-20 XP Beckman Coulter 

Ultra centrifuge XL-70 Beckman 

Western-blot Semi-Dry Bio-Rad  

Cell Counter CASY 

Flow Cytometer “FACSCalibur” Becton Dickinson 

FACS Software “FACSDiva” Becton Dickinson 

FACS analysis software “Cyflogic” Cyflogic 

Microscope “FluoView FV1000” Olympus 

Axiovert  Zeiss 

Multiporator Eppendorf 

Silica gel 60 DC TLC-plates  Merck 
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5.3 Biological material 

5.3.1 Leishmania cell lines 

All Leishmania cell lines were kindly provided by Santiago Castanys and Francisco Gamarro-

Conde from the Institute of Parasitology and Biomedicine “Lopez Neyra”, Spain. 

Name description 

Leishmania donovani (MHOM/ET/67/HU3) 

Leishmania donovani (MHOM/ET/67/HU3) ΔLdMT 

Leishmania donovani (MHOM/ET/67/HU3) ΔLdRos3 

Leishmania infantum  (MHOM/ES/1993/BCN-99)  

Leishmania tropica  LRC-L39 (LEM 2563, Montpellier, France)  

 

5.3.2 Human cell lines 

The THP-1 cell line was kindly provided by Juan Patron from the Max Planck Institute for 

Infection Biology, Germany. 

Name description  

THP-1 CD14
+
, CD15

+
, derived from a patient with acute monocytic leukaemia  

5.3.3 Yeast cell lines 

Except for BS915, all Saccharomyces cerevisiae cell lines were created by Prof. Thomas Gün-

ther-Pomorski. BS915 was kindly provided by Birgit Singer-Krüger. 

Name description 

SEY6210 MATa leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 suc2-Δ9 lys2-801; 

GAL 

TPY248 6210-dnf1-HIS-dnf2-HIS-Ros3-HIS 

TPY249 6210-dnf1-HIS-dnf2-HIS-Ros3-HIS 

BS915 MATa his4 ura3 leu2 lys2 neo1::kan
r
 bar1-1 + pRS315-neo1-37 
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5.3.4 Bacteria strains 

Name description 

DH5α F
-
endA1 hsdR17(rK

-
, mK+) glnV44 thi1 recA1 gyrA96 relA1 

Δ(lacIZYA-argF) U169 M15 Φ80Δ 

5.3.5 Plasmids 

Name marker produced by 

pXG-neo-GFP-LdMT G-418 F. Javier Pérez-Victoria 

pXG-neo-CFP-LdMT G-418 Maria Sánchez-Cañete 

pXG-neo-CFP-AP2 G-418 Maria Sánchez-Cañete 

pXG-neo-GFP-LdRos3 G-418  Maria Sánchez-Cañete 

pXG-hyg-YFP-LdRos1 HYG  Maria Sánchez-Cañete 

pXG-hyg-YFP-LdRos2 HYG  Maria Sánchez-Cañete 

pXG-hyg-YFP-LdRos3 HYG  Maria Sánchez-Cañete 

pXG-neo-FLAG-LdMT G-418 Adrien Weingärtner 

pESC-HIS-CFP-LdMT HIS Adrien Weingärtner 

pESC-URA-YFP-LdRos3 URA Adrien Weingärtner 

5.3.6 Primers 

Name description 

Forward MCS for pXG P-CCGGG TCTAGA GCGGCCGC GGTACC 

TTAATTAA C 

Reverse MCS for pXG P-CCGGG TTAATTAA GGTACC GCGGCCGC 

TCTAGA C   

Forward LdMT KpnI CCC GGT ACC ATG CCC AAC CAA CCG CCG TGT 

TGG 

Reverse CFP PacI AA ATT AAT TAA TTA CTT GTA CAG CTC GTC CAT 

GCC GAG AGT GA 

Forward LdRos3 KpnI CCC GGT ACC ATG GCG CCT CTA CCC CCT AAG 

CC 

Forward AP4 cfr9I CCC GGG ATG CCC AAC CAA CCG CCG TGT TGG 

Reverse AP4 FLAG cfr9I CCC GGG TCA TTT ATC ATC ATC ATC TTT ATA ATC 

CAG CTT TCC ACC GTT TTG AAC AGC GTA C 
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5.3.7 Antibodies 

Name description produced by 

rabbit-α-LdMT 1:500, overnight, 4°C Maria Sánchez-Cañete 

rabbit-α-LdRos3  1:500, overnight, 4°C  Maria Sánchez-Cañete 

mouse-α-gp63 1:10, overnight, 4°C Robert Mc Master 

goat-α-rabbit-horseradish 1:5000, 1h, 25°C Thermo Scientific Pierce 

peroxidise-conjugate  # 32260 

goat-α-mouse-horseradish 1:5000, 1h, 25°C Thermo Scientific Pierce 

peroxidase-conjugate  # 32230 

5.3.8 Growth media 

Escherichia coli medium 

LB-medium   LB-agar  

1.0% (w/v) Bacto
TM

 Trypton  LB-medium supplemented  

0.5% (w/v) Bacto
TM

 yeast extract  with 1.5% 

(w/v) 

Agar 

0.5% (w/v) NaCl    

1 ml/l 1M NaOH    

50µg/l Ampicillin    

 

Saccharomyces cerevisiae media 

SD-Medium   YPD-Medium 

0.17%  (w/v) Yeast nitrogen base  2.0% (w/v) Bacto
TM

 Pepton 

0.5% (w/v) (NH4)2SO4  1.0% (w/v) Bacto
TM

 yeast ex-

tract Selective marker  2%  (w/v) L-Glucose 

0.0055%  (w/v) Adenine    

0.0055%  (w/v) L-Tyrosine  YPD-Agar 

0.0055%  (w/v) Uracil  YPD-medium supplemented  

pH 7.4   with 2%  (w/v) Agar 

2.0% L-Glucose    

1.0% Amino acid stock   SD-Agar  

   SD-medium sup-

plemented  

 

   with 2%  (w/v) Agar 
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Leishmania medium 

M199+     

M-199 medium supplemented with    

40mM HEPES    

100µM Adenosine    

0.5µg Hemin    

10µM 6-Biopterin    

10% heat-inactivated 

FCS 

   

selective marker 

 

   

50µg to 500µg/ml Hygromycin 

(PAA) 

   

50µg to 500µg/ml G-418 (PAA)    

 

THP-1 medium 

RPMI-1640+    

RPMI-1640 supplemented with    

2 mM L-Glucose    

50 µM β-mercaptoethanol    

1 mM Na-Pyruvate    

10%  FCS    

 

5.3.9 Buffer 

HPMI  Electroporation buffer 

 
132 mM NaCl  25 mM KCl 

20 mM HEPES  0.3 mM KH2PO4 

3.5 mM KCl 

 

 0.85 mM K2HPO4 

0.5 mM MgCl2  90 mOsmol/kg Myo-inositol 

2 mM CaCl2  7.2 pH 

5mM L-Glucose  3.5 mS/cm 

1mM Na-Pyruvate    
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5.4 Methods 

5.4.1 Cell culture  

Promastigotes of wild-type Leishmania donovani (MHOM/ET/67/HU3) and its derivative cell 

lines LdMT knockout (ΔLdMT) and LdRos3 knockout (ΔLdRos3) as well as wild-type L. 

infantum (MHOM/ES/1993/BCN-99) and wild-type L. tropica LRC-L39 (LEM 2563, Mont-

pellier, France) were propagated under mild shaking with 40 rounds per minute (rpm) in 

M199+ at 26°C. The identity of the knockout strains was tested routinely by PCR and by 

miltefosine sensitivity assays. Cell lines overexpressing LdMT-green fluorescent protein 

(GFP), LdRos3-GFP or LdMT-cyan fluorescent protein (CFP) were cultured in M199+ sup-

plemented with G-418, and cell lines overexpressing LdRos3-yellow fluorescent protein 

(YFP) were cultured in M199+ supplemented with hygromycin. 

The human monocytic cell line THP-1 was cultured in RPMI-1640+ with 5% CO2 at 37°C. 

The differentiation to macrophages was stimulated by adding 100ng/ml Phorbol 12-Myristate 

13-Acetate (Biomol) to THP-1 cells (0.2 x 10
6
 cells/ml) for 12h. Then adherent cells were 

washed three times with PBS and cultured for three days as described above. 

The Saccharomyces cerevisiae wild-type (SEY6210) and knockout strains Δdnf1, Δdnf2, and 

Δros3 (TPY248 and TPY249) as well as the derivative neo1 knockout (BS915) were main-

tained at 30°C, on YPD-agar or in YPD-medium under constant shaking with 180 rounds per 

minute. For heterologous co-expression of LdMT-CFP and LdRos3-YFP, TPY248 or TPY249 

cells were cultured on selective SD-agar or in selective SD-medium lacking histidine (HIS) 

and/or Uracil (URA). 

5.4.2 CASY Cell-Counter 

To determine the cell density in Leishmania cultures a 10µl sample of cell parasites suspen-

sion was mixed with 5ml of Casy-Flow
TM

. Following, 200µl were soaked three times through 

the 60µm capillary of the Casy-Counter
TM

, and the mean cell density was determined by us-

ing the 0-30µm settings with a cut off below 2µm and above 10µm. 

5.4.3 Drug sensitivity and MTT assay 

To determine parasite sensitivity to miltefosine (Zentaris), amphotericin B, papuamide B 

(Flintbox, Lynsey Huxham), and duramycin, 2.5 x 10
4
 parasites were incubated in 96well 
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plates (100 µl) for three days at different drug concentrations before determining cell prolif-

eration by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) col-

orimetric assay. For this, 50µl of a MTT solution (3.3 mg/ml) were added to each well. Then 

plates were incubated for 4h at 26°C under mild shaking to enable the mitochondrial reduc-

tase to convert MTT to the purple formazan. Subsequently, cells were lysed and formazan 

crystals dissolved by adding 100µl of a stop solution (50% isopropanol, 10% SDS) and fur-

ther incubation for 30 minutes. Finally, the optical density was determined by measuring the 

absorbance at 570nm, using a FLUOstar Optima plate reader (BMG Labtechnologies). For all 

drugs and all cell lines used, the MTT assay correlated linear to cell numbers determined by 

cell counter (CASY).  

The 50% effective concentration (EC50) was defined as the drug concentration required for 

half-maximal inhibition of the cellular growth rate. The EC50 for each line was calculated by 

nonlinear regression analysis using SigmaPlot 2000 for Windows (SPSS Inc.). 

5.4.4 Phagocytosis of Leishmania donovani lines by macrophages 

Macrophages were derived from the monocytic THP-1 cell line as described under cell cul-

ture. Three days post-differentiation macrophages (10
6
/flask) were labelled for 40 minutes in 

3 ml RPMI-1640 medium containing 0.5 µM CellTracker
TM 

Dil (Invitrogen). Non-

accumulated dye was removed by washing the cells 5 times with RPMI-1640
+
 medium. Pro-

mastigotes (10
7
) from early log phase were labelled for 40 minutes in 2.5 ml M-199 medium 

containing 0.5 µM CellTracker
TM

 Green (Invitrogen). Then, parasites were washed five times 

with M-199
+
 and finally suspended in RPMI-1640

+
. For macrophage infection at a ratio of 

1:10 (macrophages:parasites), about 10
7
 CellTracker

TM
-labelled parasites were added to 10

6
 

CellTracker
TM

 Dil-labelled adherent macrophages. Sixteen hours after infection, unbound 

parasites were washed away with PBS and infected macrophages analysed by fluorescence 

microscopy or by flow cytometry. For flow cytometry, macrophages were trypsinised for 20 

minutes at 37°C and finally suspended in supplemented RPMI-1640
+
. 

5.4.5 Annexin V and Bio-Ro Assay 

To visualise endogenous PE at the cell surface, 5 x 10
6
 promastigotes in logarithmic phase of 

growth were incubated in 20 µl HPMI containing 38 µM Bio-Ro (provided by Kazuma Ta-

naka). After 1h at 4°C, cells were washed with HPMI containing 0.5% (w/v) bovine serum 

albumin and then fixed with HPMI containing 5% (v/v) formaldehyde for 1 h at 30 °C. Pro-
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mastigotes were washed in HPMI, suspended in 250 µl HPMI containing 5µg/ml Strepta-

vidin-fluorescein isothiocyanate (FITC) and incubated for 30 minutes at 25°C prior to micros-

copy analysis. To measure exposure of endogenous PS on the cell surface, about 5 x 10
5
 para-

sites were incubated on ice for 10 minutes in the dark with 125 ng annexin V-FITC and 1 µg 

PI in 0.5 ml of binding buffer (10 mM HEPES pH 7.4, 140 mM NaCl, 2.5 mM CaCl2). Cells 

were washed, suspended in 0.5 ml of binding buffer and subjected to microscopy. 

5.4.6 Fluorescence Microscopy 

Epifluorescence microscopy and image acquisition were carried out using an inverse Axiovert 

100 standard fluorescence microscope (Carl Zeiss, Oberkochen, Germany), equipped with a 

cooled CCD camera (Coolsnap, visitron systems, Puchheim, Germany) driven by Metamorph 

software (Universal Imaging, Downingtown, USA). NBD (7-nitro-2-1,3-benzoxadiazol-4-yl) 

fluorescence was observed using a Plan-APO 100x/1.3 NA oil objective with the following 

filter set: band pass 450–490 nm, beam splitter 510, and band pass 512–542 nm.  

Confocal laser scanning microscopy was performed using an inverted Fluoview 1000 micro-

scope (Olympus, Tokio, Japan) and a 60x (N.A. 1.35) oil-immersion objective. Fluorescence 

of NBD, FITC and CellTracker Green was excited with a 488 nm argon laser and recorded 

between 500 and 530 nm. Fluorescence of PI and CellTracker CM-Dil was excited with a 559 

nm argon laser and recorded between 570 and 600 nm. Images with a frame size of 256 x 256 

pixels were acquired  

To measure Förster Resonance Energy Transfer (FRET) between cyan fluorescent protein 

(CFP) and yellow fluorescent protein (YFP) filter settings were optimised using cells express-

ing either CFP or YFP to prevent bleed through. Thus, excitation of CFP was achieved with a 

440nm laser diode and emission detected between 460 nm and 490 nm, while YFP was ex-

cited using a 515 nm Argon laser and emission detected between 535 and 575nm. Next, cells 

co-expressing CFP and YFP were imaged first in sequential mode and then FRET was meas-

ured by excitation with the 440 nm laser and read out for YFP fluorescence. To verify the 

FRET signal detected, the acceptor was photo bleached applying the 515nm laser. Finally, the 

fluorescence of CFP and YFP as well as the FRET signal were measured once again. 

5.4.7 Flow Cytometry Analysis 

Flow cytometry analysis was performed on a Becton Dickinson FACS (San Jose, CA) 

equipped with an argon laser (488 nm) using the following fluorescence channels (log scale): 
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FL1 (530/30 nm, NBD, CellTrackerTM Green, Fluo-4, FITC), FL2 (585/42 nm, PI, Cell-

TrackerTM Dil). Live cells were selected based on forward/side-scatter gating and propidium 

iodide exclusion. For this 5µl propidium iodide (1mg/ml) were added to 1ml cell suspension 

with 10
6
 cells in HPMI at least ten minutes prior analysis. Next, aliquots of 100µl were trans-

ferred to a FACS tube and 4000 gated events were analysed. Further analysis was performed 

using Cyflogic software. Geometric mean values of the fluorescence in FL1 were calculated 

for at least three independent experiments. 

5.4.8 NBD-lipid uptake in Leishmania donovani lines 

Fluorescent lipid analogues 1-palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexa-

noyl}-sn-glycero-3-phosphatidylserine (NBD-PS), -phosphatidylethanolamine (NBD-PE), -

phosphatidylcholine (NBD-PC), and N-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexa-

noyl]-sphingosine-1-phosphocholine (NBD-sphingomyelin; NBD-SM) were obtained from 

Avanti Polar Lipids (Birmingham, AL). Appropriate amounts of analogues (5 nmol of NBD-

lipids for 10
7
 cells) in chloroform/methanol (1:1) were transferred to a glass tube, dried under 

nitrogen and dissolved in 5 µl absolute ethanol. 

To study the lipid uptake mediated by the LdMT-LdRos3 complex, Leishmania promastigotes 

in logarithmic growth phase were harvested by centrifugation (1000 x g, 10 minutes, 26°C) 

and washed twice with HPMI. To block the catabolism of NBD-lipids, the cell suspension 

(10
7
 parasites/ml) was pre-incubated with 5 µM 3-(4-octadecyl)-benzoylacrylic acid 

(BIOMOL) and 1 mM phenylmethanesulphonylfluoride (PMSF) for 30 minutes at 26°C. 

Then, the parasite suspension was cooled down to 2°C and 5 µM NBD-lipids from ethanol 

stock were added. After 30 minutes, cells were washed twice in HPMI containing 4% (w/v) 

fatty acid free bovine serum albumin (FA-free BSA) to extract NBD lipids from the cell sur-

face. Subsequently, parasites were analysed by flow cytometry. 

The lipid uptake and extrusion mediated by a scramblase-like mechanism was studied by pre-

treatment with the calcium ionophore ionomycin. For calcium depletion, 10
7
 parasites were 

incubated in M199 supplemented with 50 µM BAPTA-AM (Invitrogen) for 30 minutes at 

26°C, washed twice and suspended in HPMI without calcium but supplemented with 2 mM 

EGTA. Parasites were then incubated with or without calcium in the absence or presence of 

20 µM ionomycin for 30 minutes at 26°C. In parallel, 20 mM NaN3, 5 mM 2-deoxyglycose 

and 50 µM carbonyl cyanide m-chlorophenylhydrazone (CCCP) were added to deplete cells 

of ATP. Next, parasite suspensions (1 ml) were shifted to 4°C, labelled with NBD-lipids (final 
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5 µM) and incubated for 30 minutes to allow uptake of the lipid analogues. Subsequently, 1.5 

ml of ice-cold FA-free BSA (0.3% w/v in HPMI) was added to 100 µl labelled parasite sus-

pension, and incubation was continued to analyse the backward transport of NBD-lipids to the 

cell surface. At indicated time points, samples were subjected to flow cytometry. To facilitate 

the comparison of ionomycin-treated parasites with non-treated parasites, each data set was 

normalised to the maximum of the ionomycin-treated sample. 

 

Figure 13: Schematic presentation of the BSA-back exchange assay.  

Lipids with a fluorescent NBD-group attached to the C6-atom of the fatty acid chain in sn-2 position (NBD-

lipids) form micelles in aqueous solutions and incorporate spontaneously into the outer leaflet of a bilayer (A). In 

the micelle the fluorescent groups are in close proximity, which leads to self-quenching of the fluorescent signal. 

Due to the increased distance between the NBD-groups upon incorporation into the membrane, an increase in the 

fluorescent signal can be detected. NBD-lipid analogues are translocated to the inner bilayer leaflet, when recog-

nised as flippase substrates (B). Addition of albumin (BSA) extracts the fluorescent short chain lipid analogues 

from the outer membrane leaflet. Bound to BSA the quantum yield of the NBD-group is much lower than incor-

porated into the membrane. 

5.4.9 Measurement of cytosolic Ca
2+

 

Promastigotes (10
7
 cells/ml) in supplemented M-199 medium without FCS were loaded for 40 

minutes with 5 µM Fluo-4/AM (from a 10 mM DMSO stock; Invitrogen) at 26°C to allow 

cytosolic esterases to cleave the acetomethyl (AM) ester group. After washing in supple-

mented M-199 medium, parasites were suspended in HPMI to a concentration of 10
7
 cells/ml 

and stimulated with 20 µM ionomycin or left untreated at room temperature. At indicated time 

points, samples were analyzed by flow cytometry and fluorescence microscopy. 
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5.4.10 Genomics 

Homology analyses were performed by using either the ClustalW2 tool provided by the Euro-

pean Bioinformatic Institute (EBI) website or the omniblast tool from Sanger Institute. Fur-

ther editing of alignment files was performed using the BioEdit Sequence Alignment Editor 

published by Tom Hall [103]. 

Vectorial expression of GFP tagged Leishmania proteins was performed by using the pXG-

GFP vector system kindly provided by Steven M. Beverly [104]. The GFP DNA-sequence 

was replaced by Maria Sanchez Cañete for the sequence of CFP or YFP to express cyan or 

yellow fluorescent tag proteins for the FRET screening. 

Leishmania DNA was extracted by harvesting about 10
7
 parasites, suspending in 1 ml DNA-

zol (Invitrogen) and addition of 0.5 ml ethanol. Following centrifugation the supernatant was 

withdrawn, the precipitated DNA washed five times in ethanol (75%) and finally suspended in 

100 µl NaOH (8 mM). To amplify Leishmania genes, wild-type genomic DNA was 500 times 

diluted and 1 µl was mixed with 1 µl of each primer (20 pmol/µl), one µl nucleotides 

(10mM), 46 µl buffer and 0.5 µl Phusion High-Fidelity DNA polymerase (Finzymes) accord-

ing to the manufacturer’s instructions manual. The polymerase chain reaction (PCR) was per-

formed at 72°C in a MyCycler (Bio-Rad) according to the manufacturer’s recommendation. 

PCR products were separated by electrophoresis in agarose gels (1%), exercised and purified 

with a gel purification Kit (Quiagen Gel Extraction Kid). Following, PCR products were ei-

ther directly ligated into a Topo-vector (pGEM-T) or digested with restriction enzymes or 

according to the manufactuer's protocol. Ligation of digested PCR fragments with digested 

and dephosphorylated vectors was performed at room temperature for 2h. The ligation mix 

was used directly for transformation of chemo-competent E. coli (DH5α). Subsequently, the 

bacteria were plated on SD-agar plates and incubated over night at 37°C. Then, single colo-

nies were tested by colony PCR. Right clones were cultured in liquid medium and Plasmids 

prepared with a purification Kit (Quiagen MiniPrep Kit). Vectors were tested again with re-

striction enzymes and/or sequencing.  

For transformation of L. donovani, early log phase promastigotes were harvested, washed and 

suspended in electroporation buffer (10
8
 parasites/ml). Next, 400 µl parasites suspension was 

placed into sterile electroporation cuvette, stored on ice for five minutes, supplemented by 40 

µl purified vector, further cooled, and then electroporated in an Eppendorf Multiporator by 

using the prokaryotes program applying a pulse of 1200 V for 5 µs [105]. 
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5.4.11 Protein analysis and immunoprecipitation 

For preparation of membrane proteins, parasites were harvested, resuspended in ice-cold 

hypo-osmotic buffer (5 mM Tris-HCl pH 7.4) containing 1 mM PMSF, and lysed by vortexing 

with glass beads. The cell lysate was clarified by centrifugation at 500 x g (10 minutes, 4°C). 

Subcellular membranes were collected by centrifugation at 100,000 x g (1 h, 4°C) and sus-

pended in sample buffer (750 mM 6-aminocarproic acid, 50 mM Bistris pH 7.0, 20% glyc-

erol) to a protein concentration of 5 mg/ml. Protein concentration was measured using the 

bicinchoninic acid protein assay kit (BCA, Pierce Chemical Co.). Membranes were solubi-

lised by adding 20 µl of n-dodecyl-β-D-maltopyranoside (DDM, 10%) to 100 µl of suspended 

membranes corresponding to a DDM/protein ratio of 4 (g/g). After incubation for 60 minutes 

on ice, insoluble material was removed by centrifugation (100,000 x g, 1 h, 4°C). 

For Clear Native-PAGE, solubilised membrane proteins (1 mg) were loaded directly onto a 

6%-15% gradient gel (6%-15% acrylamid / bisacrylamid in 50 mM Bis-Tris-HCl pH 7.0, 500 

mM 6-aminocarproic acid). Electrophoresis was carried out at 4°C and 500 V for 16 h (elec-

trophoresis buffer; 50 mM Tricine, 15 mM Bis-Tris-HCl pH 7.0, 0.05% Na-taurodeoxycholat, 

pH 7.0), and bovine serum albumin (monomer, 66 kDa; dimer, 132 kDa; trimer, 198 kDa; 

tetramer, 264 kDa) was used as molecular weight marker. Gels were scanned for GFP fluores-

cence using a Fuji FLA3000 phosphorimager equipped with a 473 nm argon laser and a 510 

nm long-pass filter. Fluorescent bands were excised from the native gel and subjected to 

SDS–PAGE followed by western blot analysis.  

GFP-co-immunoprecipitation assays were performed using anti-GFP microBeads (Miltenyi 

Biotec, Bergisch Gladbach, Germany). Per immuno-isolation, a 1ml reaction was prepared in 

lysis buffer containing 150 µl of anti-GFP microBeads slurry and 250 µl of detergent-

solubilised protein. The suspensions were rotated gently for 30 minutes at 4°C. Beads were 

separated from the supernatants by means of µColumns with a µMACS separator (Miltenyi 

Biotec) and washed three times with lysis buffer containing 0.05% DDM. Membrane protein 

extracts and immuno-isolated membrane proteins were subjected to Western blot analysis. 

Immunoblots were probed with polyclonal antibodies raised against LdMT, LdRos3 [57], and 

gp63 (kindly provided by Robert McMaster). Horseradish peroxidase-conjugated secondary 

antibodies were obtained from Bio-Rad (Hercules, CA). Blots were developed using enhanced 

chemiluminescence (ECL plus Kit, GE-Healthcare). Protein mass spectrometry of the im-

munoprecipitates was performed as described elsewhere [106].  
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5.4.12 Metabolic labelling of lipids 

Parasites (5 x 10
7
) were inoculated in 100 ml of supplemented M-199 containing 100 µCi 

[
32

P]H3PO4 (1mCi, Hartmann-Analytic GmbH) and grown for 48 h at 26°C. Cells were har-

vested by centrifugation, washed twice with PBS. Total cellular lipids were extracted by the 

method of Bligh and Dyer [107] and separated by two-dimensional thin layer chromatography 

(TLC) (I: chloroform/methanol/25% aqueous ammonium hydroxide, 90:54:7; II: chloro-

form/acetone/methanol/acetic acid/water, 50:20:10:10:5) using silica gel 60 coated glass 

plates (Merck). The 
32

P-containing radiolabelled spots were imaged on a 
32

P-sensitive screen 

and quantified on a Fuji Imaging System imager (FLA3000, Raytest, Straubenhardt, Ger-

many). Lipids were also visualised with common lipid-locating agents such as iodine or nin-

hydrin.  

5.4.13 Lipid analysis by ESI-MS 

For lipid determination by electron spray ionisation mass spectrometry (ESI-MS) lipids were 

first fractionated by high performance liquid chromatography (HPLC, Agilent 1200 series) 

equipped with a BioBasic-4 column (C4, particle size 5 µm, 150mm x 1mm) coupled to a 

Finnigan LTQ Fourier transform ion cyclotron resonance mass spectrometer (Thermo Fischer 

Scientific). Lipid species were assigned according to their accurate masses in negative ionisa-

tion mode and their corresponding fragmentation spectra. The mass spectrometer was cali-

brated according to manufacturer’s recommendations, and transfer optics were tuned with a 

lipid standard mixture containing PS (16:0/18:1), phosphatidylglycerol (PG; 16:0/18:1), 

phosphatidic acid (PA; 16:0/18:1), PE (16:0/18:1), PC (16:0/18:1) and cardiolipin (CL; 

4x18:1) (Avanti Polar Lipids). Total lipid extracts were dried, or lipid spots from iodine 

stained 2D-TCL were scraped off, extracted as described above and dried. Before use, the 

HPLC column was rinsed with 70% Buffer B (70% acetonitril, 25% 2-propanol, 5 % H2O, 10 

mM triethylammonium acetate, 1 mM acetic acid) and 30% Buffer A (95% H2O, 5% acetoni-

tril; 10 mM triethylammonium acetate, 1 mM acetic acid). Dried lipids (about 0.5 mg) were 

dissolved in 200 µl of acetonitrile/methanol (1:1, v/v) and 4 µl were loaded to the column. 

The concentration of Buffer A was increased stepwise to 100%. The gradient elution used was 

as follows: 0-2 minutes 70% B, 2-48 minutes 70%-80% B, 48-50 minutes 80% -100 % B, 50-

73 minutes 100% B, 73 - 75 minutes 100% - 70% B, 75 – 90 minutes 70% B at a flow rate of 

50 µl/minutes and 40°C column temperature. Eluted fractions were directly injected to the 

ESI-MS and analysed in negative ion mode. The employed HPLC-MS method was adopted 
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from Hein et al. [108]. All solvents used were of HPLC grade (Mallinckrodt Baker, Deventer, 

Netherlands). 
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Figure 14: Example of the lipid determination by ESI-MS.  

In the first diagram a panoramic spectrum of ionised lipids from L. donovani eluted from a 2D-TLC spot is de-

picted with a selected ion monitoring (SIM) inset for PC (36:2) with acetone bound (m/z: 844.6 u = 784.6 u + 

60.0 u). The second diagram (MS
2
 spectrum) shows the fragmentation following the first collision-induced dis-

sociation (CID) detected in the MS
2
. Here, acetone and carbene dissociated resulting in a diacyl-PC fragment of 

770.4 u. The third diagram depicts the fragments detected following the second CID. The lyso-PC (m/z: 508.3 u) 

results from dissociation of the fatty acids (FA) in the sn2 position from the previous fragment. The inset shows a 

magnification of the three different FAs detected. Their masses correspond to FAs of 18 carbon atoms with none, 

one or two unsaturated bonds. Since the signal intensity for the double unsaturated FA is highest it belongs to the 

sn2 position. In conclusion, two PCs with the same mass were identified as PC (18:0,18:2) and PC (18:1,18:1), 

in which the first species clearly dominates, since its FA fragment is most intense and thus more abundant. 

Data analysis was performed using the GP-merger, -analyser and –viewer software by Ber-

tram Boedecker. For lipid identification, ions within the spectrum were selected (selected ion 

monitoring, SIM) and fragmented twice by collision-induced dissociation (CID). Absolute 

masses detected in the SIM and its corresponding CID spectra (MS
2
 and MS

3
) were analysed 

to identify certain lipids and their fatty acids (FA). Following the first CID lipids fragment 

according to their headgroup, whereas following the second CID the lipid backbone dissoci-

ates with high probability into a lyso-lipid and the fatty acid from the sn2 position. In Figure 

14 an example is given for the analysis of PC from L. donovani. 
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5.4.14 Lipid analysis by MALDI-TOF 

For matrix-assisted laser desorption ion time of flight mass spectrometry (MALDI-TOF MS), 

dried lipid extracts were dissolved in isopropanol/acetonitrile (60/40, v/v) and mixed with a 

0.5 M 2,5-dihydroxybenzoic acid (DHB) solution in methanol [109] or 10 mg/ml 9-

aminoacridine solution (in isopropanol/acetonitrile (60/40, v/v)) prior to deposition onto the 

MALDI target. 

All MALDI-TOF mass spectra were acquired on a Bruker Autoflex mass spectrometer 

(Bruker Daltonics, Bremen, Germany). The system utilises a pulsed nitrogen laser, emitting at 

337 nm. The extraction voltage was 20 kV and gated matrix suppression was applied to pre-

vent the saturation of the detector by matrix ions [110]. For each mass spectrum 128 single 

laser shots were averaged. The laser fluence was kept about 10% above threshold to obtain 

optimum signal-to-noise ratios. In order to enhance the spectral resolution all spectra were 

acquired in the reflector mode on delayed extraction conditions.  

In the PSD (post source decay) experiments, the precursor ions of interest were isolated by 

means of a timed ion selector. The laser intensities for PSD spectra were maintained the same 

as in the reflector mode. The fragment ions were refocused onto the detector by stepping the 

voltage applied to the reflectron in appropriate increments. This can be done automatically by 

using the “FAST” (fragment analysis and structural TOF) subroutine of the Flex Control Pro-

gram delivered by Bruker Daltonics. Further details are available in [111]. 
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6 Results 

6.1 The flipping machinery 

Accumulating evidence indicate that P4-ATPases catalyse phospholipid transfer from the 

exoplasmic to the cytosolic leaflet of cellular membranes. This flippase activity enables eu-

karyotic cells to create and maintain a non-random lipid distribution between the two leaflets. 

Hence, the aminophospholipids PS and PE are largely confined to the cytosolic leaflet in 

compartments along the endocytic and late secretory pathway, whereas sphingolipids like SM 

and glycosphingolipids are enriched in the exoplasmic leaflet of these organelles [112,113]. 

Studies aimed at identifying the molecular mechanism of miltefosine (hexadecylphosphocho-

line) resistance in Leishmania led to the identification of two membrane proteins, LdMT, a P4-

ATPase and LdRos3, a potential non-catalytic subunit of LdMT related to the Cdc50 family 

[56,57]. Both proteins are primarily localised to the plasma membrane and are required for 

intracellular uptake of alkylphosphocholine drugs and fluorescent 7-nirobenz-2-oxa-1,3-

diazol-4-yl (NBD)-labelled phospholipids, suggesting a role for these proteins in controlling 

lipid asymmetry in the parasites plasma membrane. In this work, it is shown that LdMT forms 

a complex with LdRos3 which is necessary for headgroup specific transport of PE and PC 

across the plasma membrane. Moreover, it is demonstrated that loss of this flippase complex 

alters the asymmetric distribution of endogenous PE across the plasma membrane. 

6.1.1 Leishmania LdMT and LdRos3 form a stable complex 

To investigate the ability of the P4-ATPase LdMT and the Cdc50p homologue LdRos3 to form 

a stable complex like their homologues e.g. in yeast, a C-terminally green fluorescent protein 

(GFP)-tagged version of LdRos3 was expressed in parasites lacking either LdRos3 or LdMT. 

The GFP-fused version of LdRos3 was functional, since it could suppress resistance of 

ΔLdRos3 parasites to the alkyl-phospholipid derivate miltefosine [57]. Total membrane prepa-

rations from LdRos3-GFP expressing parasites were subjected to solubilisation in the pres-

ence of mild detergent. Subsequently, the proteins were analysed by non-denaturing poly-

acrylamide gel electrophoresis (native-PAGE), in which complex formation between two 

proteins gives a new band with mobility different from that of either protein alone. Fluorimag-

ing of the native gels identified one prominent fluorescent band of low molecular size for pro-

tein preparations obtained from ΔLdMT parasites expressing LdRos3-GFP (Figure 15 A). In 

protein samples obtained from ΔLdRos3 parasites expressing LdRos3-GFP, additional fluo-
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rescent bands of reduce mobility were detected (Figure 15 B, bands II–III). To test for the 

presence of LdMT in the GFP-labelled complexes, the fluorescent bands were excised from 

the native gel and subjected to SDS–PAGE followed by Western blot analysis. Immunoblot-

ting with antibodies to LdMT and LdRos3 showed that the fluorescent band of low molecular 

size (band I) only contained LdRos3-GFP while the more slowly migrating bands (band II-III) 

corresponded to a complex of LdMT and Ros3-GFP. 

To corroborate that LdMT and LdRos3 form a stable complex, a C-terminally GFP-tagged 

version of LdMT was introduced into the ΔLdMT Leishmania line, and co-

immunoprecipitation experiments were performed using anti-GFP-MicroBeads. Non-

transfected wild-type parasites served as a control. As shown in Figure 15 C, the GFP anti-

bodies efficiently precipitated GFP–LdMT and LdRos3 from detergent-solubilised membrane 

preparations, obtained from parasites expressing GFP–LdMT. In contrast, an unrelated inte-

gral plasma membrane protein (metalloprotease gp63) was not present in the immunoprecipi-

tate. As a control, a parallel immunoprecipitation from an extract obtained from a wild-type 

strain lacking the GFP–LdMT fusion did neither precipitate LdMT nor LdRos3, indicating 

that the co-immunoprecipitation was specific. 

Analysis of the GFP–LdMT immunoprecipitates by mass spectrometry revealed that the 

preparations did not contain other Cdc50 members than LdRos3 (data not shown). Taken to-

gether, these results provide direct evidence that LdMT and LdRos3 reside in a stable com-

plex in the membrane. Since in the native PAGE no fluorescent bands corresponding to larger 

complexes of LdMT and LdRos3 appeared the stoichiometry of both proteins in the complex 

must be one. 
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Figure 15: LdMT and LdRos3 form a stable complex in the Leishmania membrane.  

(A, B) Native- and SDS-PAGE analysis of LdMT and LdRos3-GFP. LdRos3-GFP was expressed in ΔLdMT 

parasites (A) and in ΔLdRos3 parasites (B). Solubilised membrane proteins were separated by native PAGE and 

analyzed for GFP fluorescence. The membrane extract obtained from ΔLdRos3 parasites contained a prominent 

fast-migrating fluorescent band (band I). In addition to band I, the membrane protein extract derived from 

ΔLdMT parasites also contains slow-migrating fluorescent protein bands (band II and III). Regions of the gel 

corresponding to the fluorescent bands were excised and loaded onto SDS-PAGE gels, subsequently analysed by 

immunoblotting using polyclonal antibodies against LdRos3 (α-LdRos3) and LdMT (α-LdMT). Size markers 

indicate relative mobility of proteins in kDa. (C) Immunoblots from co-immunoprecipitation assays. LdMT-GFP 

was immunoprecipitated from a detergent-solubilised membrane fraction (load) obtained from ΔLdMT parasites 

expressing LdMT-GFP as well as non-transfected wild-type parasites (wt) using anti-GFP-MicroBeads. Im-

munoprecipitates (IP) were subjected to immunoblot analysis using antibodies recognising LdMT (α-LdMT), 

LdRos3 (α-LdRos3) and metalloprotease gp63 (α-gp63). 
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6.1.2 In vivo FRET analysis of the LdMT/LdRos3 complex formation  

In order to investigate the interaction of all Leishmania P4-ATPase family members with their 

potential CDC50 protein binding partners in vivo, a vector-based Förster Resonance Energy 

Transfer (FRET) screening system was establish in collaboration with the laboratory of Fran-

cisco Gamaro Conde. CFP and YFP fusion proteins of all proteins of interest were cloned into 

Leishmania expression vectors (Maria Sánches Cañete, Institute of Parsitology and Biomedi-

cine ‘Lopez Neyra’, Spain). Our previous in vitro studies described in chapter 6.1.1 revealed 

that the C-terminally fused GFP-tag did not interfere with P4-ATPase/Cdc50 protein complex 

formation. Hence, we decided to create C-terminally tagged CFP and YFP fusion proteins for 

the FRET analysis as well.  

Initial attempts to detect FRET signals in a Leishmania donovani wild-type strain expressing 

P4-ATPase-CFP and CDC50 protein-YFP variants, failed. While LdRos3-YFP co-expressed 

with LdMT-CFP stained intracellular membranes, the fluorescence derived from the CFP-

tagged P4-ATPase appeared diffuse (Figure 17 A). Similar results were obtained for the CFP-

marked Leishmania P4-ATPase AP2 when co-expressed with any of the three YFP-tagged 

Leishmania CDC50 homologues, LdRos1, LdRos2 and LdRos3 (Figure 18). Since a double 

knockout line of Leishmania lacking both, LdMT and LdRos3, was unavailable, preferred 

complex formation between fusion proteins and endogenous P4-ATPases or CDC50 proteins 

might have occurred in the wild-type parasites preventing a FRET signal. To exclude binding 

to endogenous interaction partners, fusion proteins were expressed in a yeast cell line lacking 

all plasma membrane flippases (Dnf1p, Dnf2p) and the CDC50 homologue Ros3p. Here, 

LdRos3-YFP stained membranes in close proximity to the yeast plasma membrane, while 

LdMT-CFP stained ER and perinuclear membranes (Figure 17 B). The weak signal detected 

in the YFP channel while exciting CFP did not vanish after acceptor bleaching, which in addi-

tion was not accompanied by an increase in the signal intensity for the FRET donor (CFP, 

Figure 17 C). Concluding that double tagging of Leishmania P4-ATPases and their possible 

partners from the CDC50 protein family with rather bulky fluorescent proteins at the C-

terminus hinders their interaction. Due to the immense expenditure of time for cloning differ-

ent constructs to visualise the interaction of LdMT with LdRos3 as well as other members of 

either family in vivo this approach was stopped at this stage. 
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Figure 16: Scheme of the CFP and YFP tagged P4-ATPase and Cdc50 protein, respectively. 

 

Figure 17: FRET analysis of the LdMT/LdRos3 complex.  

Microscopic images of L. donovani (A) and S. cerevisiae (B and C) co-expressing LdMT-CFP and LdRos3-YFP 

are depicted. From left to right fluorescence images of CFP and YFP, the overlay of both, Förster resonance 

energy transfer (FRET) and the differential interference contrast (DIC) pictures are shown. (C) The same sector 

as displayed in B is depicted following photo bleaching of YFP. Bar, 10µm.  
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Figure 18: Co-expression of AP2-CFP with LdRos1-YFP (left), LdRos2-YFP (middle) or LdRos3-YFP 

(right) in L. donovani wild-type.  

In each set, the CFP- (upper left) and the YFP-fluorescence (upper right) as well as, the overlay of both fluores-

cence pictures (lower right) and the dichroic interference contrast picture (lower left) is depicted. Bar, 10µm. 

6.1.3 LdMT and LdRos3 are required for the ATP-dependent inward trans-

location of NBD-PC and -PE 

To characterise the lipid transport activity of the LdMT/LdRos3 complex in the plasma mem-

brane the uptake of NBD-lipids was examined in wild-type, ΔLdMT and ΔLdRos3 parasites 

by flow cytometry and by fluorescence microscopy. Experiments were performed at 2°C to 

suppress endocytosis, lipid flop mediated by ABC-transporters and degradation of the NBD-

lipids (consistently <10%, Figure 29). Under these conditions wild-type parasites efficiently 

internalised NBD-PC and NBD-PE, while NBD-PS and NBD-sphingomyelin (NBD-SM) 

were hardly taken up at all. The efficient uptake of NBD-PC and NBD-PE was significantly 

inhibited in ATP-depleted parasites pre-treated with sodium azide and 2-deoxyglucose or the 

protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) dissipating the proton 

electrochemical gradient (Figure 19 A). Consistent with these results, fluorescence micros-

copy of wild-type parasites labelled with NBD-lipids and washed with BSA-containing buffer 

revealed an intensive labelling of intracellular membranes with NBD-PC and -PE but not with 

NBD-PS and -SM (Figure 19 D). In contrast to wild-type parasites, ΔLdMT and ΔLdRos3 

parasites were found defective in NBD-PC and NBD-PE uptake at low temperature (Figure 

19 B). These defects were solely due to the loss of LdMT and LdRos3, as lipid uptake was 

restored by re-expression of LdMT-GFP and LdRos3-GFP in ΔLdMT and ΔLdRos3 mutants, 

respectively (Figure 19 C). In summary, the LdMT-LdRos3 complex is essential to sustain an 

energy-dependent influx of NBD-PC and -PE across the parasite plasma membrane.  
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Figure 19: Inward translocation of NBD-PC and NBD-PE across the plasma membrane of Leishmania 

requires LdMT and LdRos3.  

Promastigotes of wild-type (wt), ΔLdMT and ΔLdRos3 lines were labelled with NBD-lipids for 30 minutes at 

2°C and than washed with BSA and analysed by flow cytometry (A-C) or visualised by fluorescence microscopy 

(D). ATP depletion was achieved by preincubation with 5 mM 2-deoxyglucose and 20 mM sodium azide. To 

abolish the proton electrochemical gradient, promastigotes were treated with 50 µM of the protonophore CCCP. 

As a control LdMT-GFP and LdRos3-GFP on episomal Leishmania expression vectors were reintroduced in 

ΔLdMT and ΔLdRos3 mutants, respectively; control, non-labelled cells showing the intrinsic fluorescence of the 

GFP fusion proteins. Data are normalised to NBD-PC internalisation of wild-type parasites; 100% corresponds 

to 468 ± 96 a.u. NBD-PC. Data represent the means ± SE of at least three independent experiments. For statisti-

cal analysis Welch´s test was performed. Significant differences in the lipid uptake of the mutants compared to 

the wild-type are denoted by asterisks (** p=0.05; * p=0.01). 
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6.1.4 LdMT and LdRos3 sustain plasma membrane PE asymmetry in 

Leishmania donovani 

To test whether the LdMT/LdRos3 complex is required for maintenance of the tight asymmet-

ric distribution of aminophospholipids at the plasma membrane, promastigote stages of 

Leishmania wild-type, ΔLdMT and ΔLdRos3 lines were incubated with different concentra-

tions of duramycin and papuamide B. These cytolytic peptides require binding to cell surface-

exposed PE (duramycin) and PS (papuamide B), respectively, to exert their cytotoxicity [114]. 

As shown in Figure 20 A, both cell lines, ΔLdMT and ΔLdRos3 were more sensitive to 

duramycin-induced cytolysis as compared to the wild-type line with an EC50 for duramycin 

which was approximately 1.8-fold lower than that for wild-type cells. Restoration of LdMT 

and LdRos3 expression returned the duramycin sensitivity profile back to the wild-type pat-

tern (Figure 3A). To visualise more directly that deletion of LdMT or LdRos3 affects the lipid 

asymmetry in the plasma membrane, the exposure of PE was analysed by labelling with bioti-

nylated Ro09-0198, a peptide that specifically binds to PE [115,116]. As shown in Figure 20 

B, both, the ΔLdMT and the ΔLdRos3 Leishmania lines, bound more PE-sensing biotinylated 

Ro09-0198 peptide visualised by streptavidin-FITC than the wild-type cell line. For a quanti-

tative assessment of Ro09-0198 peptide binding, the FITC fluorescence associated with mu-

tant and wild-type cells was measured by flow cytometry. As shown in Figure 20 B, deletion 

of LdMT or LdRos3 caused a 10-fold increase in Ro09-0198 peptide/streptavidin-FITC bind-

ing compared to wild-type parasites. With respect to the sensitivity to papuamide B (Figure 

20 A) and to the binding of annexin V-FITC (Figure 20 B) no significant difference between 

viable parasites of ΔLdMT and ΔLdRos3 Leishmania lines as compared to wild-type cells was 

observed. This result is in line with NBD-PS uptake studies described above what indicates 

that NBD-PS represents a minor substrate of the LdMT/LdRos3 complex. Moreover, wild-

type and mutant parasites were screened for sensitivity to amphotericin B, a polyene mac-

rolide antibiotic that binds to membrane ergosterol and induces cellular leakage [117]. Again, 

no difference between the mutant and the wild-type L. donovani cell lines could be observed, 

indicating that the deletion of LdMT or LdRos3 does not affect plasma membrane ergosterol 

levels. 
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Figure 20: LdMT and LdRos3 are required to sustain plasma membrane PE asymmetry in Leishmania.  

(A) Sensitivity of wild-type (wt), ΔLdMT and ΔLdRos3 L. donovani parasites to the PE-binding peptide dura-

mycin, the PS-binding peptide papuamide B, and the sterol-binding amphotericin B. Parasites were diluted to 

0.25 x 10
6
 cells/ml in medium containing duramycin, papuamide B or amphotericin B at the indicated concentra-

tions.  After 72 h viability was analysed as described in the ‘Material and Methods’. As a control LdMT-GFP and 

LdRos3-GFP on episomal Leishmania expression vectors were reintroduced in ΔLdMT and ΔLdRos3 mutants, 

respectively. Means ± S.E. of at least three independent experiments are shown as percentage of untreated con-

trol parasites. (B) Endogenous PS and PE at the exoplasmic leaflet of the plasma membrane of these strains was 

visualised by annexin V-FITC and Biotin-Ro/Streptavidin-FITC binding, respectively. Cells were analyzed by 

phase contrast (DIC) and fluorescence microscopy for propidium iodide (ProI) and FITC. Bar, 10 µm. Fluores-

cence intensity histograms were obtained by flow cytometry as described under “Materials and Methods.” 

WILD-TYPE cells incubated in with biotinylated Ro09-0198 peptide and Steptavidin-FITC served as controls 

(dashed line). 

To rule out the possibility that the observed differences in PE exposure resulted from substan-

tial increase in the PE level of endogenous lipid in the ΔLdMT and the ΔLdRos3 lines as 
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compared to wild-type parasites, the total phospholipid composition of Leishmania parasites 

labelled to steady state with 
32

P-phosphate was analysed. Four major phospholipids could be  

 

Figure 21: Total phospholipid composition of wild-type, ΔLdMT and ΔLdRos3 L. donovani parasites.  

Promastigote stages of wild-type (wt), ΔLdMT and ΔLdRos3 lines were labelled for 48 h with 32P-phosphate. 

Lipids were extracted, separated by two-dimensional thin layer chromatography, and then visualised by phos-

phorimager scanning (A) or ninhydrin staining (B). Representative two-dimensional TLC plates are shown. The 

location of individual species was verified by ESI-MS. Unidentified lipids are not marked. In (C) the quantifica-

tion of phospholipids in wild-type, ΔLdMT and ΔLdRos3 parasites is shown. Data are expressed as the percent-

age of total phospholipids and represent the means ± S.E. of three independent experiments. PC, phosphatidyl-

choline; PE, phosphatidylethanolamine; PI, phosphatidylinositol; IPC, inositol phosphorylceramide. 

identified, showing comparable levels in all strains tested: PC (44%-49%), PE (27%-29%), 

phosphatidylinositol (PI, 9%) and Inositolphosphorylceramide (IPC, 4-5%), see Figure 21 A. 

Thus, the possibility that increased cell surface exposure of PE (Figure 21 B) was caused by 
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increased PE synthesis can be ruled out. Notably, no significant levels of PS could be detected 

by this method. Likewise, lipid analysis by HPLC-coupled ESI-MS did not reveal the pres-

ence of PS, suggesting that L. donovani does, if at all, synthesise very low amounts of this 

phospholipid (Figure 21 C). The presence of only very low amounts of PS explains the equal 

sensitivity of the parasite lines to papuamide B and the lack of annexin V-FITC binding on 

intact parasites (Figure 20 A). 

6.1.5 Phagocytosis of ΔLdMT and ΔLdRos3 Leishmania lines by THP-1-

derived macrophages is unaltered 

Judged by annexin V-binding, PS exposure on the exoplasmic leaflet of the Leishmania 

plasma membrane has been shown to be important for entry of the parasite into host cells 

[118,119,120]. The availability of two Leishmania lines displaying an altered plasma mem-

brane lipid asymmetry and the apparent lack of PS provided an opportunity to test whether 

other phospholipids are relevant for the recognition of Leishmania parasites by macrophages 

using the human monocytic cell line THP-1. THP-1 cells share many characteristics with hu-

man monocytes including morphology, surface-membrane receptor presentation as well as the 

capacity to undergo maturational changes when induced with phorbol esters [121,122]. Para-

sites and THP-1-derived macrophages were pre-labelled with CellTrackerTM Green and 

CellTrackerTM Dil, respectively, and co-incubated at a ratio of 1:10 (cells : parasites). Sixteen 

hours after the infection, 30 to 70% of the THP-1-derived macrophages were found to be in-

fected. At this moment the number of intracellular parasites per infected macrophage ranged 

from 1 to 19 (Figure 22 A). The mean numbers of intracellular parasites per infected cell 

were similar: 2.6 for wild-type, 2.5 for ΔLdMT and 2.7 for ΔLdRos3 parasites. The total 

numbers of THP-1-derived macrophages infected by ΔLdMT and ΔLdRos3 parasites were not 

markedly different from that of wild-type parasites (Figure 22 B) indicating that at least in 

this infection model system changes in the plasma membrane PE arrangement of Leishmania 

parasites do not affect specific recognition and removal of the parasites by macrophages. 
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Figure 22: Phagocytosis of ΔLdMT and ΔLdRos3 parasites by THP-1-derived macrophages is unchanged.  

CellTrackerTM Green-labelled parasites were added (10:1) to THP-1-derived macrophages pre-labelled with 

CellTrackerTM Dil (red) and co-incubated for 16 h at 37°C. (A) Micrograph of double-fluorescence labelling of 

THP-1-derived macrophages phagocytosing Leishmania parasites. Bar, 10 µm. (B) Percentage of phagocytosing 

THP-1-derived macrophages was determined by flow cytometry. Values are means ± SD of three independent 

experiments expressed as percentage of control (number of phagocytosed wild-type parasites by TPH-1-derived 

macrophages). The population of phagocytosing THP-1-derived macrophages ranged from 30 to 70% in control 

cultures. 
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6.2 Scramblase activity 

Under physiological conditions eukaryotic cells lose their plasma membrane lipid asymmetry 

during apoptosis. This process, called scrambling, is characterised by energy-independent 

lipid flip-flop, while the barrier function of the plasma membrane is unaffected. Similarly, the 

loss of plasma membrane lipid asymmetry can be provoked by increased intracellular calcium 

levels. Although stimulated through different routes the same scrambling mechanism seems to 

be activated [87]. In the following, activation of lipid scrambling by increased cytosolic cal-

cium concentration induced by the calcium selective ionophore ionomycin was studied. 

6.2.1  Ionomycin elicits intracellular Ca
2+

 in Leishmania donovani 

Ionomycin treatment of mammalian cells was shown to rapidly elicit intracellular calcium 

levels, followed by lipid scrambling in the mammalian plasma membrane [98,123,124,125]. 

To confirm that under our experimental conditions treatment with ionomycin also triggers 

elevation of intracellular Ca
2+

 levels in Leishmania, promastigotes were loaded with the cyto-

solic Ca
2+

 probe, Fluo-4/AM, and alterations in Ca
2+

 levels were assessed by confocal micros-

copy and flow cytometry. Addition of 20 µM ionomycin provoked a rapid and sustained in-

crease in Fluo-4/AM signals, which was induced simultaneously in all parasites under 

investigation (Figure 23 A). Flow cytometric analysis revealed that the Fluo-4/AM signals in 

ionomycin-stimulated parasites were 20 to 50-fold higher as compared with untreated control 

cells (Figure 23 B). Furthermore, the majority of cells did not show significantly increased 

propidium iodide fluorescence indicating that the cell membrane integrity was not affected by 

the addition of ionomycin. Notably, ionomycin-induced elevation of intracellular Ca
2+

 levels 

was biphasic consisting of a rapid initial elevation within 5 minutes after ionomycin treatment 

followed by a sustained elevation. Upon removal of external Ca
2+

 by 3 mM EGTA, the fast 

initial increase in Fluo-4/AM fluorescence in response to ionomycin addition could not be 

observed. However, the slower sustained elevation in cytosolic Ca
2+

 remained suggesting that 

the normal response consists both of Ca
2+

 influx and of Ca
2+

 release from intracellular com-

partments. 
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Figure 23: Cytosolic Ca
2+

 elevation in Leishmania promastigotes upon ionomycin treatment.  

(A) Parasites were loaded with Fluo-4/AM, left untreated (control) or treated with 20 µM ionomycin at 25°C for 

30 minutes and subsequently analyzed by confocal fluorescence microscopy or flow cytometry. Bar, 10 µm. (B) 
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Fluo-4/AM geo-mean fluorescence intensity was monitored at different time intervals by flow cytometry with 

and without addition of ionomycin. Removal of external Ca
2+

 using 3 mM EGTA reduced the increase in Fluo-

4/AM signals in response to ionomycin. Results of three independent experiments are shown as mean ± SEM. 

Cells with impaired membrane integrity were excluded by propidium iodide (ProI) staining. 

6.2.2 Stimulation of PE exposure by ionomycin 

Next it was tested whether stimulation of parasites with ionomycin in the presence of calcium 

ions triggers lipid redistribution and loss of lipid asymmetry at the plasma membrane. PE in 

the outer leaflet of the plasma membrane can be probed in living cells with biotinylated Ro09-

0198, a peptide that specifically binds to PE [126]. When parasites stimulated with ionomycin 

in the presence of calcium were incubated with biotinylated Ro09-0198 and stained with 

Streptavidin-FITC, their plasma membranes and flagellar pockets became highly fluorescent 

(Figure 24). The staining with Streptavidin-FITC was dependent on incubation with bioti-

nylated Ro09-0198 (Figure 24, control). In contrast to the intense fluorescence of ionomycin-

treated parasites, untreated promastigotes did not display any FITC labelling and thus binding 

of biotinylated Ro09-0198 peptide (Figure 20). These results indicate that PE usually resides 

in the inner leaflet of the plasma membrane and becomes exposed on the parasite surface 

upon ionomycin treatment. 

 

Figure 24: Surface-exposed PE in L. donovani promastigotes upon ionomycin treatment.  
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In the presence of 2mM Ca
2+

, parasites were stimulated with (ionomycin) or without (control) ionomycin and 

incubated with (Bio-Ro) or without biotinylated Ro-peptide. Binding of Bio-Ro was visualised by Streptavidin-

FITC.  

Exposure of PS on the outer plasma membrane leaflet was tested by measuring the binding of 

annexin V to the cell surface. Annexin V is a lipid binding protein which preferentially inter-

acts with membranes containing negatively charged lipids like PS in the presence of calcium 

[127]. Specific recognition of PS depends on the calcium concentration, which should not 

exceed 3 mM. Higher Ca
2+

 levels lead to unspecific binding e.g. to PC [128]. In this work 

binding of annexin V-FITC in the presence of 2.5 mM Ca
2+

 to propidium iodide-negative 

Leishmania promastigotes could be detected neither for untreated nor for ionophore-

stimulated parasites. To probe the capability of ionomycin to induce PS-scrambling detectable 

with annexin V-FITC, the human monocyte cell line THP-1 was treated identically to the 

promastigotes (Figure 25).  

 

Figure 25: Viable Leishmania promastigotes do not bind annexin V-FITC following stimulation with ion-

omycin.  

L. donovani promastigotes and THP-1 cells were treated with ionomycin (ionomycin) or left untreated (control) 

and incubated with propidium iodide (ProI) and annexin V-FITC on ice fort ten minutes. Representative confocal 

images are shown. Bar, 10µm. 
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6.2.3 Ionomycin induces scrambling of fluorescent phospholipids 

To obtain further evidence for Ca
2+

-activated scramblase activity in Leishmania parasites, the 

translateral lipid dynamic in the plasma membrane upon ionomycin treatment was character-

ised. For this purpose, parasites were incubated for 30 minutes at 2°C with NBD-labelled lip-

ids and analysed by confocal microscopy. At this temperature endocytosis is blocked [68,129] 

and internalisation depends on the lipid flip to the inner leaflet of the plasma membrane. Once 

inside, NBD-lipids with a shortened acyl chain (6-carbon) at the sn-2 position spontaneously 

redistribute to intracellular membranes because of their partial water solubility and accumu-

late intracellularly. As described above internalisation of NBD-lipids by untreated wild-type 

parasites was strongly headgroup dependent: NBD-PE and NBD-PC were rapidly accumu-

lated intracellularly, while NBD-PS and -SM were only incorporated into the plasma mem-

brane (Figure 26). By contrast, internalisation of all NBD-lipids was observed after stimula-

tion of parasites with ionomycin (Figure 26). Analysing the uptake dynamics via flow 

cytometry revealed a biphasic kinetic with a fast increase during the first two minutes for all 

NBD-lipids, reflecting the incorporation of the lipid analogue into the external leaflet of the 

plasma membrane.   
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Figure 26: Ca
2+

-induced inward transbilayer movement of fluorescent phospholipids in Leishmania pro-

mastigotes.  

Untreated (Control) and ionomycin-stimulated (Ionomycin) wild-type promastigotes were incubated with NBD-

lipids at 2°C as described in Material and Methods. After 30 minutes, propidium iodide (ProI) was added and 

cells were examined by differential interference contrast (DIC) and confocal microscopy (NBD, ProI). Represen-

tative micrographs are shown. Bar, 10 µm. Analysis by flow cytometry was used to follow cell-associated NBD 

fluorescence of living cells over time. Data are expressed as a percentage of NBD fluorescence intensity associ-

ated with ionomycin-stimulated parasites after 30 minutes of labelling at 2°C in HPMI medium and represent the 

means ± SEM of five independent experiments. One hundred percent corresponds to 389 ± 23 arbitrary units 

(NBD-PC), 223 ± 18 arbitrary units (NBD-PE), 286 ± 26 arbitrary units (NBD-PS), and 739 ± 41 arbitrary units 

(NBD-SM). 

In untreated parasites this was followed by further increase for NBD-PC and –PE while for 

NBD-PS and –SM only a little increase was detected. Stimulation with ionomycin led to con-

tinuous increase for all lipid species. This inward directed flip induced by ionomycin treat-

ment of the parasites was not ATP dependent. Depletion of cellular ATP decreased the fluores-

cent signals for NBD-PC and –PE obtained after 30 minutes of labelling in control parasites, 

whereas ionomycin treated parasites were still highly fluorescent (Figure 27). Moreover, the 

lipid flip induced by Ionomycin is independent from the functional LdMT-LdRos3 complex 



Results 

54 

 

and requires calcium. To visualise these aspects in lipid scrambling ΔLdMT parasites were 

stimulated with ionomycin, and uptake of NBD-PC during 30 minutes at 2°C was analysed  

(Figure 28). Again ionomycin treatment induced intracellular staining with the NBD-PC 

whereas untreated ΔLdMT parasites showed only plasma membrane labelling. In the kinetics 

measured by flow cytometry this is reflected by increased NBD-PC uptake following stimula-

tion with ionomycin in comparison to unstimulated mutant parasites.  

 

Figure 27: Ca
2+

-induced flip of NBD-lipids is not ATP-dependent.  

To probe the ATP dependence of the scrambling process, wild-type parasites were ATP-depleted (-ATP) as de-

scribed under Material and Methods or left untreated (+ATP). Following, these untreated (control) or ionomycin-

stimulated (ionomycin) parasites were labelled with NBD-lipids for 30 minutes at 2°C. Subsequently, samples 

were analysed by flow cytometry. Data are expressed as a percentage of NBD fluorescence intensity associated 

with non-ATP-depleted control parasites and represent the means ± SEM of five independent experiments. 

 

Figure 28: Ionomycin-stimulated flip of NBD-lipids is independent of the Flippase but requires intracellu-

lar Ca
2+

.   

Before labelling with NBD-PC for 30 minutes at 2°C  ΔLdMT promastigotes were stimulated in presence of Ca
2+

 

with ionomycin (Ionomycin) or loaded with BAPTA-AM and stimulated with ionomycin in presence of EGTA 

(ionomycin EGTA BAPTA) or left untreated (control). After 30 minutes, propidium iodide (PI) was added and 

cells were examined by differential interference contrast (DIC) and confocal microscopy (NBD, ProI). Represen-
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tative micrographs are shown. Bar, 10 µm. Analysis by flow cytometry was used to follow cell-associated NBD-

fluorescence of living cells over time. Data are expressed as a percentage of NBD-fluorescence intensity associ-

ated with ionomycin-stimulated parasites after 30 minutes of labelling at 2°C in HPMI medium and represent the 

means ± SEM of three independent experiments. 

This increased uptake was similar to wild-type parasites stimulated with ionomycin. To make 

sure that ionomycin itself did not cause lipid flip-flop Leishmania parasites lacking LdMT 

were loaded with the calcium chelator BAPTA-AM and stimulated with ionomycin in the 

presence of 3mM EGTA. Under these conditions the increase in NBD-PC uptake was inhib-

ited completely. 

To make sure that these differences in lipid uptake following ionomycin stimulation of L. 

donovani do not reflect increased metabolism of NBD-lipids, lipid extracts were analysed. For 

this, control and ionomycin stimulated parasites were labelled with NDB-PC, -PE, -PS and –

SM on ice for 30 minutes, and lipids were extracted according to the method of Bligh and 

Dyer [107]. Following, NBD-lipid stocks and lipid extracts were separated by TLC under 

neutral conditions and plates scanned with a phosphorimager (FUJI FLA-3000).  

 

Figure 29: NBD-lipid metabolism in L. donovani quantified by TLC.  
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Lipid stocks (standard) and extracts from parasites following 30 minutes of lipid uptake on ice either stimulated 

by ionomycin (ionomycin) or not (control) were separated by thin layer chromatography (TLC) and NBD-

fluorescence was visualised by means of a FUJI phosphorimager (B) as described under material and methods. 

Lipid species were quantified by using the AIDA analysis software. The percentage for each NBD-lipid-species 

was calculated with respect to fluorescent spots within the lane (A). 

Quantification of NBD-fluorescence within each lane revealed no differences between NBD-

PC and –SM in control and ionomycin treated parasites, whereas for NBD-PS and -PE the 

main spot lost intensity in ionomycin treated parasites (Figure 29 B). However, metabolism 

of NBD-lipids was consistently below 10% compared to control cells within the time course 

of the experiment (Figure 29 A). 

To follow the back transport of NBD-lipids towards the cell surface, after 30 minutes of label-

ling incubation was continued in the presence of albumin. This acts as an extracellular sink 

for short-chain lipids by rapidly extracting NBD-lipids from the outer leaflet of the plasma 

membrane, thereby excluding analogues from inward transport. Under these conditions a fast 

decrease in cellular fluorescence was observed. In Figure 30 the flop of NBD-PC and NBD-

PE in control cells and following ionomycin stimulation is depicted exemplarily. While the 

fluorescence in control parasites initially decreased (until 10 minutes) similar to ionomycin 

stimulated parasites, indicating the removal of NBD-lipids from the outer leaflet, this decay 

was much slower for control cells in the following 20 minutes. Induced by ionomycin the 

extraction velocity of NBD-PC and -PE by albumin was altered what results in different fluo-

rescence values 30 minutes following addition of albumin. The fluorescence associated with 

control cells was 46% of NBD-PC and 40% of NBD-PE, whereas in ionomycin-stimulated 

parasites, more than 70% of both NBD-lipid species became accessible to albumin. 

 

Figure 30: Ca
2+

 induced flop of NBD-lipids exceed that in nonstimulated control parasites.  
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L. donovani promastigotes stimulated with ionomycin (ionomycin) or not (control) were labelled for 30 minutes 

with NBD-PC or –PE at 2°C. Following, albumin was added and the incubation at 2°C continued. At indicated 

time points aliquots were withdrawn and analysed by flow cytometry. Data are expressed as a percentage of 

NBD fluorescence intensity associated with ionomycin-stimulated parasites after 30 minutes of labelling at 2°C 

in HPMI medium and represent the means ± SEM of five independent experiments. 

The fast back transport of NBD-lipids towards the cell surface was not affected by ATP deple-

tion (Figure 35, appendix).  

Collectively, these results suggest that elevated Ca
2+

 levels in Leishmania parasites catalyse a 

rapid transbilayer lipid movement in the plasma membrane that is bidirectional, ATP-

independent, and not specific to the polar head group of the lipid.  
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6.3 Leishmania donovani promastigotes lack PS 

In the previous chapters it was already mentioned that PS could not be detected with the 

means applied in this work, neither in total lipid extracts separated by TLC and stained with 

the amino-reactive chemical ninhydrin nor by analysing the main spots with ESI-MS (Figure 

21 A and B) nor by annexin V-binding to the outer plasma membrane leaflet of intact promas-

tigotes (Figure 20 B and Figure 25). Since this lipid was reported to be exposed in certain 

developmental states of the parasite and suspected to silence the immune response [118,130], 

this aspect was studied more in detail. First of all, it was tested whether the extraction method 

used here to purify lipids from parasites is capable to extract this lipid species. For this, com-

mercially available POPS was added to a Leishmania suspension and lipids were extracted 

according to the method of Bligh and Dyer [107].   

 

Figure 31: Spectrum of a total lipid extract from L. donovani obtained by HPLC coupled to ESI-MS.  

Lipid extracts from L. donovani were separated by HPLC and eluted fractions directly injected in the ESI-MS. 

Analysis was performed in the negative ion mode. Numbers above the peaks indicate the elution time. Lipid 

species detected during the analysis are indicated above the spectrum with respect to their elution time. A de-

tailed list of lipids detected can be found in Table 2. The percentage of buffer B in the elution solvent is indi-

cated in blue. 
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Table 2: Lipid species identified by ESI-MS in Figure 31.  

Lipids are grouped within their subclass (lipid species) and presented in the order of their quantity (abundance) 

within each subclass as judged by the signal intensity. The lipids were eluted from the HPLC column at the time 

indicated (retention time) and identified by their absolute mass and their SIM spectrum obtained in the MS
2
 and 

MS
3
. Lipids not quantified were identified in different scans. The numbers in brackets indicate to the sum of 

carbon atoms and the number of unsaturated bonds in the fatty acid tails. If fatty acids are oxidised the number of 

hydroxyl groups is denoted following the bracket, e.g. IPC(34:1)-1 for Inositolphosphorylceramide with 34 car-

bon atoms one double bond and one hydroxyl group. PC (phosphatidylcholine) p-PC (plasmalogen PC), PE 

(phosphatidylethanolamine), PI (phosphatidylinositol), CA (cardiolipin). 

These lipid extracts were separated by TLC and stained with ninhydrin. In comparison to pure 

Leishmania lipids where only PE gives a purple spot here a second spot appeared at the same 
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position were pure POPS was localised (data not shown). Second, total lipid extracts from 

early log phase L. donovani promastigotes were analysed by Frederic Müller applying ESI-

MS and by Dr. Jürgen Schiller applying MALDI-TOF (Figure 31 and Figure 32). 

Both methods were able to detect PS in standard calibration lipid mixtures and in a mixture of 

E. coli lipids enriched with 0.1% POPS (w/w) as well as a multitude of lipid species in the 

lipid extracts (Table 2) obtained from Leishmania promastigotes but not even traces of PS 

could be detected in the latter one. To make sure that the lack of PS is not a unique phenotype 

of our laboratory L. donovani strain, lipid extracts prepared from L. infantum and L. tropica 

promastigotes were probed by TLC and ESI-MS for this lipid. In line with the previous results 

neither of the two parasite strains contained detectable amounts of PS (data not shown). Indi-

cating that in the promastigote state this lipid seems not to be present.  

 

Figure 32: MALDI-TOF analysis of lipid extracts from L. donovani.  

Lipid extracts were obtained as described under materials and methods and analysed using a 2,5-

dihydroxybenzoic acid (DHB) or a 9-aminoacridine (9-AA) as matrix for ionisation by a 337 nm nitrogen laser. 

Ionisation of phosphatidylcholine (PC) was best in positive Ion mode using the DHB matrix (+, DHB) and less 

efficient by applying the 9-AA matrix. Detection of phosphatidylethanolamine (PE), inositol phosphorylcera-

mide (IPC) and phosphatidylinositol (PI) was achieved by data acquisition in the negative ion mode using the 9-

AA matrix. The molecular masses are indicated above the peaks in unified atomic mass units as well as the lipids 

derived from these masses and the selective fragmentation by post source decay experiments. 
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Nevertheless apoptotic L. donovani, judged by propidium iodide staining, bind annexin V. To 

bring to light if this is due to PS synthesised during apoptosis, promastigotes were incubated 

overnight with 40µM Miltefosine resulting in PI and annexin V-FITC positive apoptotic cells 

(Figure 33). Lipid extracts obtained from these dead parasites were analysed by ESI-MS and 

TLC stained with ninhydrin (Figure 33). Again both methods failed to detect any PS. Never-

theless annexin V-FITC binds to these dead parasites as well as to parasites damaged by elec-

troporation (data not shown), indicating that the lipid recognised by annexin V is not neces-

sarily synthesised during apoptosis. 

 

Figure 33: The lipid composition of apoptotic L. donovani is not altered.  

Parasites were either cultured in absence (control) or presence of miltefosine (miltefosine). Following, an aliquot 

was withdrawn and parasites were stained with annexin V-FITC and propidium iodine (Microscopy, PI) and 

analysed by microscopy. Bar, 10µm. Moreover, lipids were extracted and separated by thin layer chromatogra-

phy (TLC) using first an alkaline and second an acidic solvent. Next, Lipids containing terminal amino groups 

were stained with Ninhydrin and phospholipids with iodine. Lipid spots as determined by ESI-MS are indicated 

in the TLC: phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylinositol (PI) and inositol-

phosphorylceramide (IPC). 

In summary, these data indicate that the apoptosis marker annexin V recognises a different 

lipid moiety than PS in apoptotic L. donovani. If PS is synthesised in promastigotes at all, its 
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concentration in the total lipid extract ought to be below 1% of the phospholipids as quanti-

fied by radiolabelled phospholipids and below 0.1% since this amount is still easily detectable 

with ESI-MS. 
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7 Discussion 

The surface of the Leishmania parasite is a major point of interaction with the host throughout 

the infectious cycle. A number of surface glycoconjugates such as lipophosphoglycans, GPI-

anchored proteins (e.g. the metalloprotease gp63), and a heterogeneous group of small glyco-

sylinositolphospholipids have been implicated in the ability of the parasite to infect and sur-

vive in host macrophages [131]. In addition, high levels of surface-exposed PS, judged on 

basis of annexin V-binding, have been associated with elevated parasite infectivity in meta-

cyclic and amastigote cultures [118,120,130]. 

In this work, mechanisms implicated in the regulation of the lipid composition in the extracel-

lular leaflet of the parasites plasma membrane were in focus of analysis. Firstly, a P4-ATPase 

necessary for maintaining the lipid asymmetry by an inward-directed lipid transport was stud-

ied and the impact of its loss on the invasion of host cells analysed. Part of the data shown 

were published in Plos one [129]. Secondly, a scramblase mechanism activated by alterations 

in cytosolic calcium levels was described. And thirdly, the lipid composition with focus on PS 

was examined with different detection methods, since this lipid was suspected to be the basis 

for annexin V-binding to the parasite and thus to enhanced infectivity. 

7.1 Functional LdMT/LdRos3 complex 

Previous studies revealed a critical role for two proteins, namely the miltefosine transporter 

(LdMT) and LdRos3 in the uptake of alkylphosphocholine type drugs and in phospholipid 

translocation at the plasma membrane of Leishmania parasites [56,57,132]. The present study 

provides direct evidence that both proteins form a stable complex that is essential for main-

taining the stady-state asymmetric lipid distribution of the parasite plasma membrane. Loss of 

plasma membrane PE asymmetry by disruption of the LdMT-LdRos3 complex did not alter 

the phagocytosis of the parasite by macrophages. Suggesting, that the loss of the asymmetric 

lipid distribution does not facilitate host cell invasion by L. donovani. 

The formation of a stable complex between P4-ATPases and Cdc50 family members seems to 

be indispensable for a proper targeting and functioning of P4-ATPases. In yeast, the Cdc50 

family members Cdc50p, Lem3p and Crf1p can be co-immunoprecipitated with Drs2p, 

Dnf1p/Dnf2p and Dnf3p, respectively. Formation of these complexes is required for proper 

expression and endoplasmic reticulum export of either partner [61,133]. The human P4-

ATPase ATP8B1 requires the Cdc50 family member CDC50A for ER exit and delivery to the 
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plasma membrane [134], and the Arabidopsis P4-ATPase ALA3 requires its Cdc50 binding 

partner ALIS1 to complement the lipid transport defect at the plasma membrane in 

drs2dnf1dnf2 yeast mutant [63]. These findings hold also true for LdRos3 and the P4-

ATPase LdMT. However, a closer analysis of the partially sequenced genome of L. infantum 

(http://www.genedb.org/genedb/linfantum/) revealed in total five genes encoding P4-ATPases 

(LinJ09_V3.0940, LinJ13_V3.1590, LinJ30_V3.2270, LinJ30_V3.2270, LinJ34_V3.2460, 

LinJ34_V3.3000) and three genes encoding Cdc50 family members (LinJ09_V3.1080, 

LinJ32_V3.0540, LinJ35_V3.3450). It remains to be established if all of these P4-ATPases 

require a Cdc50 binding partner for proper functioning and if they can interact with several 

Cdc50 proteins as shown for the Arabidopsis P4-ATPase ALA3 [63] and the human P4-

ATPases ATP8A1, ATP8B1, ATP8B2, and ATP8B4 [64,65]. Results presented in this study 

revealed that Leishmania LdMT does not associate with other Cdc50 members than LdRos3 

and that the stoichiometry of both proteins associated in the complex is one to one. 

Incubation of parasites with fluorescent phospholipid analogues, (such as NBD-PC, -PE, -PS 

and -SM) served as an approach to analyze lipid transport activity of the LdMT-LdRos3 com-

plex at the plasma membrane. We found that L. donovani parasites efficiently internalise 

NBD-PC and NBD-PE, while NBD-PS and NBD-SM are hardly taken up. Loss of either 

LdMT or LdRos3 completely blocked the ATP-dependent uptake of NBD-PC and NBD-PE, 

indicating that the LdMT-LdRos3 complex facilitates the energy-coupled transport of PE and 

PC from the outer to the inner leaflet of the parasites plasma membrane. In support of this 

notion, loss of either LdMT or LdRos3 led to an increased cell surface exposure of endoge-

nous PE, as evidenced by enhanced hypersensitivity to PE-binding peptide and labelling by 

biotinylated PE-binding peptide. These results are in line with a direct role of the LdMT-

LdRos3 complex in pumping endogenous PE to the cytosolic leaflet to generate an asymmet-

ric membrane as recently reported for P4-ATPases from other organisms [48,49]. The ability 

of wild-type parasites to take up NBD-PC suggests that PC is restricted to the inner leaflet of 

the parasites plasma membrane and that the outer leaflet is primarily composed of sphingolip-

ids, since NBD-sphingomyelin is not taken up. 

The substrate specificity of the inward translocation machinery appears to vary between 

Leishmania species. In contrast to L. donovani, L. infantum displays not only an ATP-

dependent internalisation of NBD-PC and NBD-PE, but also an active transport of NBD-PS 

across its plasma membrane [135]. Thus, this parasite might express one or more P4-ATPases 

of broader or different substrate specificity at the plasma membrane. The physiological rele-
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vance of these species-specific differences in substrate specificity remains to be established. 

Previous studies suggested that the LdMT-LdRos3 complex of L. donovani also recognises 

NBD-PS as a substrate [56,57]. However, significant uptake of NBD-PS in this species was 

only observed when higher label concentrations were used as compared to NBD-PC and 

NBD-PE. It is noteworthy that in agreement with former reports [31,41] we could not detect 

endogenous PS in total lipid extracts prepared from L. donovani promastigotes, suggesting 

that this parasite does not synthesise considerable amounts of PS. Consequently, an inward-

directed transport activity for PS at the plasma membrane might not be required in L. dono-

vani. However, all experiments carried out in the present work were performed on the pro-

mastigote stage. It would be interesting to determine whether L. donovani amastigotes synthe-

sise PS and regulate its distribution in the parasite plasma membrane. A stage-specific 

regulation of the plasma membrane asymmetry is conceivable, since amastigotes up-regulate 

the expression of two P4-ATPases (LmjF30.2260, LmjF34.3220) and a plasma membrane 

ABC-transporter associated with lipid export (LmjF11.1260) [136]. Leishmania amastigotes 

replicate within the mature phagolysosome compartment and have complex nutritional re-

quirements, which must be scavenged from the host cell [137]. It is therefore tempting to 

speculate that the LdMT-LdRos3 transporter complex or related P4-ATPases are involved in 

the acquisition of host phospholipids.  

The results on ΔLdMT and the ΔLdRos3 Leishmania mutant lines, which display an altered 

PE asymmetry, did not reveal major differences in terms of invasion efficiency into the human 

monocytic cell line THP-1. In line with these results, the ΔLdMT mutant remains infective 

and maintains virulence in cultures of primary isolated mouse peritoneal macrophages [138]. 

These results suggest that disruption of the LdMT-LdRos3 transporter complex and changes 

in the transbilayer distribution of PE, and probably PC, are not crucial for L. donovani pro-

mastigotes to invade host cell. Likewise, PS exposure is not mandatory for invasion of host 

cells. Future studies on other Leishmania species and mutants lacking the ability to synthe-

sised PS may help to define the lipid types exposed on the cells surface and involved in para-

site internalisation and phagocyte inactivation in more detail.  
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7.2 Scramblase activity 

Disruption of the lipid asymmetry during apoptosis is an important signal for macrophages to 

engulf dying cells in order to maintain tissue homeostasis by preventing release of cytotoxic-

ity substances. The mechanism resulting in loss of plasma membrane asymmetry due to facili-

tated flip-flop of lipids is called scrambling. Two different routes to trigger this mechanism 

are known. One is the apoptotic death and the other is an increase in cytosolic calcium. Here, 

evidence is provided that Leishmania parasites possess a Ca
2+

-induced lipid scrambling activ-

ity. 

As a first approach to explore the lipid distribution in the plasma membrane of the parasite 

and the impact of elevated intracellular Ca
2+

 levels on the lipid arrangement, we incubated 

parasites with lipid-binding proteins. We could demonstrate that under normal culturing con-

dition, parasites do not expose PE at their cell surface in agreement with a preferential loca-

tion of this phospholipid in the cytosolic plasma membrane leaflet. A rise in intracellular Ca
2+

 

achieved by ionomycin treatment caused exposure of PE at the surface as revealed by strong 

binding of the PE-specific Ro09-0198 peptide [139,140]. Attempts to monitor the redistribu-

tion of PS in the plasma membrane by annexin V-FITC failed due to the absence or very low 

level of this lipid in L. donovani promastigotes. See chapter 7.3. 

Further evidence for Ca
2+

-induced lipid scrambling and loss of lipid asymmetry in the plasma 

membrane of the Leishmania parasites was provided by using fluorescent NBD-lipids. These 

lipid probes have been used successfully before to characterise lipid scrambling in a variety of 

cell types [90,141,142]. Similar to the situation in mammalian cells the rise of intracellular 

Ca
2+

 level in Leishmania promastigotes triggered a rapid bidirectional movement of lipid ana-

logues across the plasma membrane. Lipid scrambling did not require cellular ATP and was 

nonspecific with respect to polar lipid head groups. This similarity in characteristics of the 

scrambling process in parasites and mammalian cells suggests that the same kind of scram-

blase activity is stimulated by an increase of intracellular Ca
2+

. 

The molecular identity of the scramblase activity has yet to be elucidated. In humans four 

putative phospholipid scramblase (hPLSCR) have been identified, named as hPLSCR1–

hPLSCR4 [143]. In in vitro reconstitution assays and cell culture-based assays hPLSCR1 was 

found to be capable of triggering Ca
2+

-dependent flip-flop [90]. However, the function of 

PLSCR1 as a phospholipid scramblase in vivo remains controversial [80]. The multiple, 

closely related phospholipid scramblases in mammals may act redundantly and prevent the 
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disclosure of gene function by single gene deletion analysis. Recently, the transmembrane 

protein 16F, a member of the TMEM16 family, has been identified as an essential component 

for the Ca
2+

-dependent exposure of PS on the cell surface of mammalian cells [144]. Interest-

ingly, we could not find any PLSCR homologue in the sequenced genome of L. infantum, L. 

braziliensis and L .major (www.tritryp.org), whereas TMEM 16F homologues exist in all 

three Leishmania species (LinJ13_V3.0630, LmjF13.0740, LbrM13_V2.0560 ). Future stud-

ies are required to uncover the function of this protein and its potential contribution to lipid 

scrambling. 

It has been demonstrated that Leishmania parasites exhibit a rapid increase in cytosolic Ca
2+

 

concentration from both, intracellular and extracellular pools during their differentiation [102] 

and during temperature shifts from 24°C to 34°C [101]. Furthermore, changes in intracellular 

Ca
2+

 have been shown during the interaction of the parasite with host cells [100]. Notably, 

suppressing the calcium signal by chelators or drugs blocking Ca
2+

 channels leads to a de-

creased infectivity due to reduced phagocytosis by macrophages. Elevated Ca
2+

 levels in-

duced by ionophores lead to increased infectivity [100,145]. These findings reveal the impor-

tance of intracellular Ca
2+

 in the process of parasite–host cell interaction. The exact 

mechanism linking Ca
2+

 signalling with infectivity is not understood. Conceivably, transient 

activation of a lipid scramblase activity leading to a change in the cell surface lipid composi-

tion might be an opportunity to connect the change of intracellular calcium level with the in-

teraction of Leishmania with host cells. Further analysis is warranted to fully uncover the 

physiological role of the lipid scramblase activity in Leishmania parasites. 
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7.3 Apoptotic mimicry 

As mentioned in the previous chapter, surface-exposed PS is an apoptosis marker of eu-

karyotic cells [146]. Recognition of this moiety by phagocytes via a still unknown PS-

receptor [147] or several PS opsonising proteins like annexins [148,149], lactadherin 

[150,151] or MFG-E8 and GAS6 [152] lead to the engulfment of apoptotic cells [153]. Thus, 

it is believed that presenting PS on the outer membrane leaflet might be a mechanism to guide 

pathogens into their host cells. Recently, this was shown for the vaccinia virus and for 

Leishmania amastigotes [118,154]. The entry of Leishmania into macrophages via this non-

inflammatory route stimulates the secretion of TGF- and the synthesis of IL-10 in vitro while 

NO production by the phagocytes was inhibited [118], similarly to the engulfment of apop-

totic cells [155]. This modulation of the immune response results in an increased susceptibil-

ity to intracellular Leishmania [118,156]. Furthermore, amastigotes derived from infected 

mice of the T helper cell type 2 mouse line BALB/c result in amastigotes with higher amounts 

of PS exposed to the parasites surface than amastigotes obtained from T helper cell type 1 

mouse line C57BL/6 [130]. Studies on promastigotes suggest that exposure of PS at this stage 

is a sign for apoptosis. During infection with mixed populations of living and apoptotic pro-

mastigotes, the vital parasites benefit from hiding in the apoptotic population, while either 

population alone is less or non-infectious [119,120]. 

So far, all articles mentioned in this chapter describing the detection of PS in Leishmania 

parasites judge the appearance of PS on basis of annexin V-binding. However, besides PS this 

lipid-binding protein recognises PE, PG, PI, Cardiolipin, PA, Sphingomyelin and phosphatidy-

linositol-4,5-bisphosphate in the presence of calcium ions [127,157]. Hence, annexin V pro-

vides a useful tool to detect apoptosis, but its binding selectivity is not sufficient to identify 

PS. Annexin V binds to charged lipids in a calcium-dependent manner with different affinities 

for the respective lipids. Ca
2+

 concentrations between 1 mM and 3 mM are recommended for 

the detection of PS, since higher concentrations promote unspecific binding of annexin V 

even to PC [128]. Interestingly, most of the studies mentioned above used annexin V in the 

presence of 5 mM Ca
2+

 to detect PS on the surface of Leishmania parasites. Similarly, the 

substrate specificity of a PS-antibody is somewhat broader as the name implies, since it binds 

to PS, PA and PI [157]. 

While studying the lipid asymmetry of the plasma membrane of L. donovani and the deriva-

tive line lacking the LdMT transporter, two contradictory results questioned the conclusion 
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that PS stimulates the phagocytosis and subsequently the non-inflammatory response of 

phagocytes.  

Firstly, the lack of the LdMT transporter leads to a block of inward-directed lipid transport at 

the plasma membrane. Hence, the lipid asymmetry in the mutant lacking LdMT is altered, and 

PE is exposed to the outer plasma membrane leaflet. This was demonstrated by increased drug 

sensitivity against duramycin and by binding of biotinylated Ro-peptide as visualised by 

streptavidin-FITC. Increased annexin V-binding was reported for yeast mutants lacking the 

P4-ATPase homologues localised in the plasma membrane [158]. Thus it was probed here as 

well. Surprisingly no annexin V-binding could be observed for life promastigotes in presence 

of 2.5 mM Ca
2+

, neither for the wild-type nor for the LdMT knock-out line. A drug sensitivity 

assay exploiting alternative PS-sensing protein, the antibiotic papuamide B that binds to PS- 

but not to PE-containing membranes [114], led to the same result. Both, wild-type and mutant 

parasite lines, showed identical IC50 values of 0.25 µM papuamide B which is in a similar 

range like wild-type yeast [114]. Interestingly, there are only slight differences between wild-

type yeast and yeast lacking the PS synthase in terms of sensibility to papuamide B [158]. On 

the one hand this underlines the efficiency of the yeast flippase, since the wild-type yeast ex-

poses almost no PS. On the other hand it is a hint that the plasma membrane of the wild-type 

Leishmania donovani line tested here and its derivative lines ΔLdMT and ΔLdRos3 do not 

contain PS. 

Secondly, to confirm the previous results, total lipid extracts derived from 
32

P-radiolabelled 

Leishmania donovani wild-type, LdMT and LdRos3 were separated by TLC. The aminoreac-

tive chemical Ninhydrin stained successfully Leishmania PE, while no PS could be detected. 

Spots separated by TLC as well as total lipid extracts were analysed by ESI-MS leading to the 

same outcome, namely that the concentration of PS in the total lipid extract is below the de-

tection limit of the method applied (Figure 21). To make sure that this is not a unique feature 

of our wild-type L. donovani line or based on the detection limit of the ESI-MS, total lipid 

extracts from promastigotes of L. infantum and L. tropica as well as mixtures of total lipid 

extracts from E. coli supplemented with 0.1% DOPS were tested. While there was no PS de-

tectable in lipid extracts obtained from Leishmania lines, the PS signal of the E. coli lipid-

mixture was prominent. 

Since it was described in the literature that PS synthesis in eukaryotic cells can be up-

regulated during apoptosis [159,160], lipid extracts from miltefosine-treated apoptotic para-
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sites were tested by ESI-MS and 2D-TLC. And indeed, upon miltefosine-treatment wild-type 

parasites could be stained with PI and annexin V-FITC (Figure 33). However, no PS could be 

detected by TLC, ESI-MS or MALDI-TOF. This is in accordance with comparable observa-

tion in L. major promastigotes where cellular levels of PS in ESI/MS/MS analysis were below 

the detection limit [31,41]. Nevertheless, Leishmania parasites contain a putative base-

exchange enzyme (also called PS synthase 2) and a putative PS decarboxylase implying the 

existence of a functional PS metabolism. Conceivably, biosynthesis of PS might be highly 

regulated in Leishmania and depend on the developmental stage of the parasite.  

Anyway, to this end it is unclear which lipid is recognised by annexin V in apoptotic 

Leishmania promastigotes, and it is questionable if the estimated amount of PS, which must 

be below 0.1% of total phospholipids is sufficient for recognition by macrophages. In erythro-

cytes from various mammals, the PS content was shown to vary between 10% and 20% of 

total phospholipids [161,162]. In a study investigating the PS bridging β2-Glycoprotein I 

[163] the authors demonstrated that PC/PS vesicles with PS concentrations below 20% are 

hardly taken up by macrophages and half-maximal vesicle uptake was achieved at concentra-

tions between 45% and 70% PS. Assuming a homogeneous lateral distribution of PS in 

PC/PS-vesicles, this poorly reflects the situation in the plasma membrane of living cells where 

even lower amounts of PS might be enriched in small domains as reported for activated CD8
+
 

T-cells or for PS and/or PE in yeast during fission [116,126,164,165,166].  

The lack of significant amounts of PS in L. donovani promastigotes implies that this species 

cannot take advantage of surface-exposed PS during the initial infection process. However, 

binding of fluorescent conjugates of annexin V to amastigotes and an apoptotic subpopulation 

of promastigotes was accompanied by higher infectivity. Thus, the moiety recognised by an-

nexin V in L. donovani parasites positive for propidium iodide staining might be the key to 

the mechanism termed apoptotic mimicry.  
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8 Outlook 

In this work mechanisms altering the plasma membrane lipid asymmetry in Leishmania dono-

vani promastigotes were studied. 

The tools developed to investigate the LdMT/LdRos3 complex, its flippase activity, its impact 

on the lipid asymmetry and its relevance for the host cell invasion can be used to study the 

remaining members of the Leishmania P4-ATPases family and their possible Cdc50 partners. 

Independently, the analysis of the expression and function of these proteins in the amastigotes 

stage is of great interest, since this is the infective stage in human. Differentiation of promas-

tigotes to amastigotes is triggered by the drop of pH in the endosomal compartment. Since 

protons are discussed to function as counterions for P4-ATPases, as known from other P-type 

ATPases, it might be of interest to investigate the pH dependency of the flip in this organism. 

Moreover, the altered plasma membrane asymmetry in mutants lacking LdMT or LdRos3 did 

not affect the uptake by macrophages. Nevertheless it was not investigated, if these mutants 

differ in stimulating cytokine production by the phagocyte. 

Additionally, a calcium inducible scramblase activity was demonstrated. Future work is war-

ranted to investigate its biological relevance and the molecular mechanism facilitating the 

lipid flip-flop.  

Moreover, the binding of annexin V to apoptotic Leishmania promastigotes was demonstrated 

to be independent of PS. Nevertheless, annexin V binding to metacyclic promastigotes and to 

amastigotes is associated with increased infectivity [118,119,120,130]. Thus, the moiety rec-

ognised by annexin V might play a key role during the infection and should be identified. 
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Figure 34: Sequence alignment of yeast Drs2p with putative P4-ATPases identified in the Leishmania in-

fantum genome.  

Leishmania protein sequences were derived from L. infantum genome and aligned using ClustalW2 tool at the 

website of the European Bioinformatics Institute. The names AP1 to AP5 are given according to the similarity to 

the Drs2 while AP4 is identical to LdMT. Conserved motifs for P4-ATPases as suggested by Lenoir at al. [51] are 

highlighted by red boxes. Transmembrane domains (1-10) as predicted with TMHMM tool developed by Krogh 

et al. [167] are indicated by barrels. 
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Figure 35: BSA extraction of NBD-lipids from L. donovani promastigotes untreated (control) or stimulated 

with ionomycin (ionomycin).  

For this cells were ATP-depleted (-ATP) or not (+ATP) and loaded for 30 minutes on ice with 5 µM NBD-PC, -

PE, -PS or –SM. Albumin was added to extract NBD-lipids which were not taken up. At indicated time points, 

aliquots were withdrawn and the fluorescence was measured by flow cytometry. Data are normalised for each 

lipid to ionomycin-treated samples and presented as mean ± SEM of five independent experiments. 
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