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Zusammenfassung

Sensorische Nervenzellen arbeiten als ein erster Filter für die Wahrnehmung eines Or-
ganismus. Sie bilden die unterste Stufe in einer Verarbeitungskette, die relevante Informa-
tionen aus dem Lebensraum extrahiert, aufbereitet und an zentrale Schalteinheiten der
Nervensysteme weiterleitet. Aus evolutionärer Sicht werden Nervenzellen unter anderem
an Hand dieser Filtereigenschaften selektiert, denn sie bestimmen ob überlebensrelevante
Information in der Nervenaktivität kodiert wird. Robuste Kodierung und die Filtereigen-
schaften sind wichtige funktionelle Aspekte des Phänotyps. Sie hängen in komplizierter
Art und Weise vom Genotyp und im Speziellen den in der Zellmembran der Nerven ex-
primierten Ionenkanälen sowie deren Regulation ab. Die Ionenkanäle der Zellmembran
sind spezielle Porenproteine, die eine Potenialdifferenz über die Membran erzeugen, und
auf Grund ihrer Spannungsabhängigkeit in einer Rückkoplungsschleife Nervenimpulse
nach dem Alles-oder-nichts-Prinzip generieren.
Um den Zusammenhang zwischen der zu Grunde liegenden molekularen Maschiner-

ie der Nervenzellmembran und der Funktion eines Neuron zu verstehen benötigt man
mathematische Methoden, die diese Betrachtungsebenen verbinden. Dazu möchte die
vorliegenden Arbeit beitragen. Hierfür wird eine Brücke zwischen biophysikalisch de-
taillierter Beschreibung auf der einen Seite und einer makroskopischen Sicht auf das
System auf der andern Seite geschlagen. Auf der makroskopischen Ebene stehen die für
die Kodierung relevanten Spikezeiten im Vordergrund.
Die Informationsweiterleitung und -verarbeitung in Nervensystemen wird durch Ner-

venimpulse, den sogenannten Aktionspotentialen oder Spikes getragen. Hierbei ist die
genaue Form der Impulse weniger von Bedeutung als ihr zeitliches Muster und ihre Fre-
quenz. Zwei wichtige Aspekte die zum Verständnis der neuronalen Kodierung beitragen
sind a) der degradierende Effekt zelleigenen Rauschens auf die Präzision der Nervenim-
pulse und b) die Filtereigenschaften der Nervenzellen. Diese werden in den zwei Teilen
dieser Arbeit beleuchtet.
Die zentrale Methode, die sich diese Arbeit zu Nutze macht ist die Phasenreduktion.

Dabei wird das komplette biophysikalische System in Variablen übersetzt, die es direkt
ermöglichen das zeitliche Muster der Nervenimpulse vorauszusagen. Diese Phasenvari-
ablen entsprechen im autonomen Neuron ohne den Einfluss von externen Stimuli oder
internen Rauschens einfach der Zeit. Wird das System hingegen gestört, so verschiebt
sich die Phasenvariable im Vergleich zur normalen Zeit. Ein hierzu wichtiges Konzept
ist das der Isochronen. Dies sind Untermengen im Raum der physikalischen Variablen
die der gleichen Phase zugeordnet werden. Die Phasenreduktion setzt voraus, dass wir
zwischen der deterministischen autonomen Dynamik des Neuron und den Perturbationen
unterscheiden können.
Wird einer sensorischen Nervenzelle mehrfach der gleiche Stimulus präsentiert, so zeigt

sich in der neuronalen Antwort Variabilität. Die Ursachen dieser Variabilität sind, wenn
Netzwerkeffekte ausgeschlossen werden können, zellintrinsische mikroskopische Prozesse.
Diese Rauschquellen werden in Kapitel 3 näher beleuchtet. Im Besonderen wird auf
Kanalrauschen eingegangen, welches vor allem in der sensorischen Peripherie eine Rolle
spielt. Der dem Rauschen zugrunde liegende Prozess ist das statistische Öffnungs- und
Schließverhalten einzelner Ionenkanäle. Diese Membranproteine haben disjunkte Konfor-
mationen, von denen ein Teil einen Ionenflux durch die Membran erlaubt, andere Kon-
formationen dies verhindern. Die klassische Beschreibung der Konformationsübergänge
erfolgt mittels eines Markovschen Sprungprozesses. Der Nachteil dieser Beschreibung
ist, dass sich nicht zwischen deterministischer Dynamik und Rauschen unterscheiden
lässt, da die gesamte Evolution des Systems durch kleine statistische Sprünge bestimmt
wird. Diese Beschreibung ist nicht mit der angestrebten Phasenreduktion kompatibel.
Daher wird zuerst der Sprungprozess durch eine stochastische Differenzialgleichung ap-
proximiert. Diese Approximation eignet sich für Abschnitte der Zellmembran in de-
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nen sich zwar endlich viele aber doch eine große Anzahl an Ionenkanälen befinden. In
der stochastischen Differenzialgleichung können die Perturbationen des deterministischen
Systems eindeutig bestimmt werden und in Kapitel 4 in eine Störung der Phasengleichung
übersetzt werden.
Die Phasenreduktion wird üblicherweise als eine Störungstheorie erster Ordnung be-

trieben. Die resultierenden Phasengleichungen haben zum Verständnis vieler Phänomene
in Nervensystemen beigetragen. Beispielsweise kann das Synchronisationsverhalten in
einer Population von Nervenzellen durch einen gemeinsamen Stimulus so beschrieben
werden [67]. In der vorliegenden Arbeit wird die Phasenreduktion zur zweiten Ordnung
getrieben. Dies ermöglicht statistische Eigenschaften wie die Varianz der Wartezeiten
zwischen Aktionspotentialen zu berechnen.
In Kapitel 5 wird der Zusammenhang zwischen einem bekannten Phänomen, der

rauschinduzierten Frequenzverschiebung, und der Radialdynamik in einer Phasengle-
ichung zweiter Ordnung hergestellt. Die Radialdynamik wird durch Koeffizienten in
einem rotierenden Koordinatensystem dargestellt, welches als der Tangentialraum der
Isochronen gewählt ist. Isochronen sind hier Untermannigfaltigkeiten des Zustandsraums
mit gleicher aymptotischer Phase. Bei der Analyse stellt man fest, dass die Krümmung
der Isochronen eine Auswirkung auf diese Frequenzverschiebung hat, ein Zusammen-
hang, der so noch nicht herausgestellt wurde. Verdeutlichen lässt sich dieser Effekt an
Hand der Normalformgleichung der Hopf-Bifurkation. Dieser Oszillator mit dem Einheit-
skreis als Grenzzyklus hat logarithmische Spiralen, die so genannte Spira mirabilis als
Isochronen. Das Modell zeigt je nach Krümmung der Isochronen positive oder negative
Frequenzverschiebungen.
Auch die zeitliche Präzision der Aktionspotentiale kann unter zu Zuhilfenahme der

Phasenreduktion analysiert werden. Es ist bekannt, dass beispielsweise die Natrium-
leitfähigkeit einen Einfluss auf die Spannungsfluktuationen hat. Die in dieser Arbeit
vorgeschlagene Methode erlaubt es einen Schritt weiter zugehen und die detaillierten
mikroskopischen Fluktuationen, in quantitativer Art und Weise, direkt mit den Variatio-
nen in den Aktionspotentialzeiten in Verbindung zu setzen. Von besonderer Bedeutung
ist, dass unsere Analyse ergibt, dass eine Veränderung der Kanaldichte sowohl die Größe
der Fluktuationen auf der einen Seite aber auch die Sensibilität des deterministischen
Systems gegenüber diesen Fluktuationen auf der anderen Seite beeinflusst. Nur eine Be-
trachtung beider Einflüsse erklärt das Gesamtverhalten des Systems. Interessanterweise
ergibt sich so, dass eine Veränderung der Natriumkanaldichte einen größeren Einfluss auf
den Beitrag des kaliuminduzierten Phasenrauschens haben kann als auf das von Natrium
selbst verursachte.
Der Zweite Teil der Arbeit beschäftigt sich mit den Filtereigenschaften von Neuro-

nen, die von einem externen Stimulus über ihre Schwelle getrieben werden, dann einen
zeitmodulierten Stimulus erfahren, und daraufhin eine tonische Antwort, in Form eines
irregulären Spikeprozesses, zeigen. Wir berechnen in diesem Regime den Filter, der die
Eingangssignale in eine zeitabhängige Feuerwahrscheinlichkeit übersetzt, das heißt, man
kann für beliebige Eingaben vorhersagen mit welcher Wahrscheinlichkeit ein Neuron zu
einem gegebenen Zeitpunkt feuert. Die Stärke der zellintrinsischen Fluktuationen wird
im 2. Teil zu einem globalen Systemparameter zusammengefasst, der in die Transfer-
funktion des Filters eingeht. Die globale Rauschstärke ist somit eine weitere Größe, die
die Filtereigenschaften der Nervezelle beeinflusst.
Nahe der Feuerschwelle einer Nervenzelle lässt sich die Membranpotentialdynamik mit-

tels kanonischer Gleichungen beschreiben, die vom Bifurkationstyp des Neurons abhän-
gen, also der Art undWeise, wie die Schwelle überschritten wird. Diese generischen Eigen-
schaften spiegeln sich auch in den mit den Neuronen assoziierten Filtern wieder, die in
Kapitel 6 hergeleitet werden. Das Filterspektrum der Andronov-Hopf-Bifurkationen hat
keine Energie im niederfrequenten Bereich, so dass die langsamen Komponenten der Sig-
nale ausgefiltert werden. Beginnt ein Neuron durch eine Sattelknoten-Bifurkation auf dem
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Grenzzyklus zu feuern, ist es der Nervenzelle auch möglich Signale im niederfrequenten
Bereich weiterzuleiten. Andere Nervenzelltypen mit homoklinischen Bifurkationen kön-
nen wie Bandstoppfilter wirken und spezielle Frequenzbänder im Signal unterdrücken.
Die Filtereigenschaften der Nervenzellen geben Aufschluss über die neuronale Sig-

nalverarbeitung. Um eine globale Größe zur Quantifikation der Informationsweiterleitung
zu bekommen, zieht man den Shannonschen Informationsbegriff aus der Nachrichten-
technik heran. Für zeitkontinuierliche Systeme wie Nervenzellen stellt sich die Schätzung
der Informationübertragungsrate als schwierig heraus, da die zugrunde liegenden His-
togramme hochdimensional sind. Wie in Kapitel 7 dargelegt, besteht eine alternative
Möglichkeit aus der Berechnung einer unteren Schranke für die Übertragungsrate, welche
auf der spektralen Kohärenz zwischen Signal und neuronaler Antwort beruht. Die in
Kapitel 6 berechneten Filter bilden die Grundlage zur Herleitung der spektralen Ko-
härenz. Weitere Komponenten sind das Spektrum des Punktprozess der Aktionspoten-
tiale und das Signalspektrum. Ersteres lässt sich mittels einiger Annahmen über die
statistischen Eigenschaften der Nervenzellen approximieren. Das Signalspektrum wählt
der Experimentator oder es wird von der Umwelt bestimmt.
Zusammenfassend erlaubt es die hier vorgestellten Methoden beliebige biophysikalis-

che Parameter der Neuronenmodelle zu verändern und ihre Auswirkung auf die Fil-
tereigenschaften und die Varianz der Spikezeiten direkt zu verfolgen. Die verwendeten
numerischen Methoden machen eine rechenaufwändige Simulation des Systems unnötig.
Durch die vorgeschlagenen numerisch effizienten Methoden können in zukünftigen Stu-
dien das statistische Antwortverhalten von Nervenzellen in einem weitläufigen Parame-
terraum analysiert werden.
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1 Introduction

Nervous systems are inherently complex, underlying the flexible, adaptive behaviour of an-
imals, allowing them to reliably and efficiently manoeuvre through their environments. At
the same time, the neural architecture is modular in its construction, and one can discern a
set of rules that govern the layout and its electrical activity. For example, the mammalian
cortex is divided into specialised areas and a homologous organisation has independently
evolved in the birds’ hyperstriatum. Much of the electrical activity in nervous systems relies
on specific membrane ion channels. It turns out, that these basic molecular units of the
otherwise radically different nervous systems of hydra, housefly and human are remarkably
conserved.
That such complex structure can arise out of simple elements and rules has intrinsic aesthetic
appeal. Moreover, the ability to precisely define the rules affords us the opportunity to test
predictive theories. In particular, the „effective coding hypothesis” [10] has been postulated
as a guide for the evolution of the dynamical properties of sensory neurons. The exact
nature of „efficiency” has been debated and a multitude of suggestions has emerged over the
years, ranging from the maximisation of mutual information between stimulus and the neural
response [108], the reduction of redundancy, energy efficient representations [109], robustness
to noise and the reduction of free energy [52]. Some of these ideas are interrelated, and most
involve looking at the neuron form the functional point of what they are doing, i.e., transmit
information.
To understand how the functional level is affected by the underlying molecular machinery,
this thesis focuses on developing the link between biophysics and neural coding. The goal is
to simplify the relation, based on mathematical principles, which then allows to test theories
of optimality.

§1.1 Noise and codes in nervous systems

In his 1880 speech before the Academy of Sciences in Berlin, the physiologist Emil du Bois-
Reymond spoke on the limits of our understanding of natural phenomena. On this occasion
he named seven „world riddles”. The last three of his seven unsolved riddles where neuro-
science related. He offered little encouragement, however, exclaiming that „Ignoramus et
ignorabimus” when it came to problem number 5, „the origin of sensation”. On earlier occa-
sions he had already emphasised his firm conviction that no relation can ever be established
between microscopic motion of molecules inside the brain and sensory impressions1.
While such humbleness might be endearing, 130 years of scientific progress have proved
the scepticism to have been excessive. We have, in fact, begun to understand how even
single odorant molecules cause a moth to respond [97], and what effects the microscopic

1e.g.: „Welche denkbare Verbindung besteht zwischen bestimmten Bewegungen bestimmter Atome in
meinem Gehirn einerseits, andererseits den für mich ursprünglichen, nicht weiter definierbaren, nicht
wegzuleugnenden Tatsachen ’Ich fühle Schmerz, fühle Lust; ich schmecke Süßes, rieche Rosenduft, höre
Orgelton, sehe Roth ...” [33] and again he concluded with his „Wahrspruch” Ignorabimus.
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1 Introduction

movement of channel proteins within our nervous system have on the electric signalling of
nerve networks controlling movement and behaviour [73]. It is not surprising, that books
written nowadays on open questions in neuroscience are characterised by far less blanket
scepticism, see Ref. [80]. This thesis attempts to add a small contribution to the larger
project of relating the microscopic biophysics underlying the dynamics of nerve activity to
more macroscopic properties of how stimuli are encoded in nervous systems, without directly
taking on the challenge of linking neuronal dynamics to behaviour.
Du Bois-Reymond’s question on the causes of sensation, has recently been rephrased into:
„What causes a neuron to spike?” [6], which is a somewhat simpler question, perhaps, but
also one more amenable to theory and simulation.
The standard equations to describe the electric activity of nerves suggest that neurons are
driven excitable systems or oscillators. These nonlinear oscillations take on the form of pulses,
known as action potentials (AP), that are suitable for the transmission of information over
long distances. Given that neurons are oscillators, it is natural to assume that sensation or
motor commands are encoded in the frequency of oscillations, provided that the drive (e.g.,
synaptic input or currents from sensory transduction) changes slowly. Indeed, frequency
coding takes place in many neural systems [2]. More interestingly, however, it has been
shown that neurons can also encode quickly varying fluctuations. Firstly, by showing that
the pulses can lock to fast time structured stimuli [57], and secondly, by deducing the average
stimulus before a spike from the dynamics [37].
This is the first step in determining what causes a neuron to spike. Establishing a tight
theoretical link between the biophysical implementation and the statistical and information
theoretical properties of neuronal responses is a field with a long history. Certainly, since
modern computing techniques have become available, it is now feasible to simulate the
biophysical equations and neuronal responses. This process generates input and output
ensembles, which can be statistically analysed. The in silico system can thus be experimented
on in the same way as a biological neuron, e.g., within the frame work of white-noise analysis,
which is introduced later in the text. But due to the complexity of the models it is insightful
to approximate them with simpler models in order to allow analytic calculations. One of
the oldest and simplest models is Lapicque’s integrate-and-fire (IF) neuron [107]. Based on
this one-dimensional model the input-output relation could be analysed in detail [172], and
one can ascertain „what causes the spike” [145, 154]. This is done by calculating the average
stimulus preceding an AP, also called the spike-triggered average (STA). In the IF class
models some details of the biophysical reality are lost and it is difficult to address Du Bois-
Reymond’s point about the influence of particular molecules or ion channels on information
coding.
The approach taken in this thesis uses a different type of simplified model, the phase oscilla-
tor. One of its benefits is that it can be systematically reduced from a complex biophysical
model. It should be noted that also IF models have been successfully augmented to incor-
porate biophysical detail in order to answer particular questions on the relation between
biophysical properties and coding, while retaining the possibility for analytic treatment, like
investigations on the influence of adaptation currents on spike statistics in Ref. [168]. The
difference with the phase oscillator framework is that the general structure of the equation
remains unchanged, just the key ingredient, the system’s phase response curve (PRC), has
to be adapted to account for the different biophysical systems. The PRC is a function that
maps perturbations that affect the neuron at different times to shifts in the occurrence of
the next nerve impulse.
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§1.1 Noise and codes in nervous systems

One important step to understand how neurons code efficiently is to investigate the impli-
cations of microscopic noise sources within the nerve cells. To what extend is noise harmful
to the workings of a nervous system? Or can fluctuations be exploited to even enhance the
acuteness of a sensory system (see Ref. [91] for a review)? Also, in the living, breathing,
moving animal neuroscientists are often restricted to recordings from nerve cells extracel-
lularly. Indeed, identifying and correctly assigning spike times to individual neurons is a
statistical challenge in multi-electrode recordings. Then conversely, might even observing
the list of spike times and their jitter alone allow us to infer the number of ion channels at
the microscopic level [168]?
The behaviour of a nonlinear system such as a neuron is hard to grasp in full completeness,
yet it can be understood by investigating the properties of local objects in phase space,
the attractors, such as equilibria (the resting potentials) or periodic orbits (tonic spikes).
Indeed, several of the computational characteristics of a neuron can be understood just
by studying these attractors, their stability and the type of bifurcations that occur [92].
Different bifurcations lead to different forms of neuronal excitability and different filtering
properties, as we will develop in greater detail later. However, the presence of fluctuations,
intrinsic or induced by stimuli, implies that a global picture of the dynamics requires an
understanding of how transitions between these attractors occur and how the system behaves
in the their surroundings. Stochastic effects can drive the dynamics away from the various
stable attractors that would normally determine the dynamics. Yet, for weak noise the
system will spend most of its time close to one of the attractors. This supports the idea that
one may be able to predict relevant aspects of the global dynamics by modifying the time
scales of deterministic motion and combining them with noise induced escape times present in
stochastic systems. A well known example is a phenomenon called noise induced frequency
shift, in which firing rates in the presents of noise differ from what is expected from the
deterministic equations in the continuum limit [177, 76]. There are also further properties
of the statistics of spike times that may change, like multimodality in the distribution of
inter-spike time intervals (ISI), see [76].
It is therefore beneficial to be able to trace some of these statistics at least approximately,
while performing a bifurcation analysis, i.e., sweeping the parameter space of a neuron,
tracking its spike orbit or resting potential. This means one needs to calculate ISI mean and
variances and other quantities from the information available from a bifurcation analysis.
This is attempted in Cpt. 5.

Limitations

While this thesis will study neuronal dynamics, the effects of subcellular compartments will
not be taken into account. Instead, we focus on an isopotential membrane patch, repre-
sentative of the spike-triggering zone, which one would record from with an sharp electrode
that just penetrates the membrane. These „point neurons” do not incorporate any spatially
extended protuberances that neurons actually possess. We therefore do not discuss intra-
neuronal computations that can also be addressed within the phase oscillator frame work
[150]. Also we focus on tonically spiking neurons above threshold. This excludes subthresh-
old dynamics and escape processes from the resting potential, as these seem to violate the
idea of introducing a phase variable. However, recent publications show that the two worlds
may be reconciled through the introduction of a proto phase [167].
A further restriction that is inherent to the phase reduction, is that it is only valid for weak
fluctuations. Our calculations are of a perturbative nature and therefore, we require that
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1 Introduction

the perturbation be small. In other words, we always consider large membrane patches
with many channels, so that single-channel fluctuations are averaged to some degree. In
practice, we can observe that the filters derived for biophysical neurons can accurately predict
significant changes in firing rate, so that the small input assumption seems not too restrictive.

§1.2 Structure of the text
The structure of the text is such that chapters are generally build on previous chapters. How-
ever, these back-references are made explicit, allowing the inclined reader to skip chapters.
Cpt. 2 takes the reader quickly through most of the topics touched upon in this document, re-
viewing the foundations from the literature that are required in later chapters. Particularly,
Cpt. 3, 4 and 5 form a continuous narrative.
Cpt. 3 reviews the biophysical properties of single neurons with particular emphasis on
microscopic biophysics of individual voltage-dependent ion channels opening and closing
stochastically. Such stochastic gating is a primary source of noise in early sensory systems
with negligible network effects. The chapter describes in detail how to coarse-grain the
chemical master equations that describe channel opening and closing as a Markovian jump
process. This coarse-graining yields an equation that agrees with the classic deterministic
formalism in the limit of large channel numbers, but inhabits a larger states space.
The Cpt. 4 introduces the method of phase reduction as a tool to bridge microscopic bio-
physics and the level of spike time point processes. In addition to the first order phase
reduction a conversion into a phase-amplitude coordinate system is discussed. This will al-
low us to understand how noise shifts the mean firing rate of neurons, which is described in
the following chapter.
Cpt. 5, thus, takes the microscopic description of channel noise in neurons and relates it to
the induced jitter in spike times, that can be observed in „macroscopic” measurements with
sharp or even extracellular electrodes.
In Cpt. 6, we turn from the intrinsic sources of fluctuation to extrinsic stimuli and derive the
average stimulus causing a spike from a neuron’s PRC. The chapter shows how a filter can
be obtained that maps time structured input currents into the instantaneous probability of
spike firing. It is also highlighted how the filtering properties are related to the biophysical
neurons. The benefit of our approach as compared to previous work is that it explicitly
distinguishes stimulus and intrinsic noise. This shows that noise has a frequency-dependent
dampening effect on the STA that is stronger for higher frequencies.
The following Cpt. 7 uses the previously derived filter in order to quantify information
transmission in single neurons. The lower bound to information transmission rate is rederived
and all relevant spectral quantities are calculated from the phase model.
Some of the details on numerics or rederivations of known results that are included to meet
the criterion of a self-contained exposure, are packed into appendices.
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2 From single neuron biophysics to
sensory coding

This chapter sets the conceptual prerequisites for subsequent chapters. It summarises parts
of the existing literature on neural coding and dynamical systems relevant to our exposition.
And also provides motivation by laying out the general targets for the following chapters.

§2.1 Neural codes

A great many primary or secondary sensory neurons emit patterns of stereotypical pulses in
response to stimulation [141], that much became clear ever since the work of Lord Adrian
on the toad’s optic nerve in 19281. He also observed that it is these spikes that carry the
information concerning the environment. How exactly this information is conveyed depends
on the specific region of the nervous system one is concerned with. This document will
discuss a particular strategy by which sensory pathways can represent information from the
outside world: a spike timing code, using the time-resolved firing probability. Specifically,
a code word in the spike-timing code’s alphabet is a string of spike times {τ sp

k }Nk=1. If only
one of the spikes occurred at a different time it could mean something else. Suppose that
the input percept rearranges spike times, yet keeps the mean firing rate (i.e., the number of
spikes in a fixed time interval) unaltered. Then the time averaged quantity of the firing rate
does not carry the information, but the spike train does.
Reflections about the nature of the neural code — the way information is represented in nerve
cell activity — is central to theoretical neurobiology. At the sensory stage, when external
information enters the organism, coding strategies are typically adapted to the physical con-
straints of the transduction mechanism [141], and the statistics of the natural type of stimuli
received in the organism’s ecological niche [108, 90, 34, 16]. The codes for the different
sensory systems are versatile, yet some share common properties such as Weber’s log in-
tensity law found in various olfactory and auditory systems. Along the afferent pathways
the representation may change several times to facilitate different computations. For exam-
ple, comparisons between ipsi- and contra-lateral percept or intensity invariant recognition
may favour rates codes with adaptation, while sensory grouping and multi-modal integration
could exploit codes based on the synchronisation of neurons [71, 74, 87, 17], and yet at a
different stage decisions about appropriate motor responses may benefit from threshold-like
on/off-neuron. In efferent nerves the activity reflects also the particular behavioural response
and may include phasic or tonic (like CPGs) innervations, depending on how the muscles’
kinematic is controlled. Contingently, in the central nervous system there may be the need
for a unique, unified and abstract code to allow different areas of the nervous system to
communicate and integrate multiple modalities [119]. But at the sensory level one might

1Of course, there are also systems like the fly’s photo receptors that encode with graded potentials not
spikes, and so do passive dendrites [104].
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2 From single neuron biophysics to sensory coding

expect a-priori multifarious codes, just as rich as the sensory inputs and the anatomical
diversity of sense organs themselves.

§2.2 Signals

A classical, ecological theory of sensory organs aims to predict the structural organisation of
the peripheral sensory architecture [34, 16], and the coding scheme used to represent infor-
mation early in the pathway [112], based on the properties of the adequate stimuli occurring
in the natural habitat. A related approach is inspired by the engineering task of system
identification, in which blackbox (technical) systems are probed to obtain a response which
helps uncovering the exact transformation executed by them. In contrast to behavioural ex-
periments that utilise abstractions of the actual stimuli perceived by the animal [125, Cpt. 3],
systems identification often relies on unnatural stimuli that, however, possess beneficial sta-
tistical properties to facilitate the reverse-engineering scheme. Information theory can be
applied within both paradigms as long as there is sufficient data. Examples of such artificial
stimuli are a short transient pulse, mathematically idealised by Dirac’s δ-function (Green’s
function method) or „white” unstructured noise (Wiener’s kernel method). Both signals
have a flat, uniform spectrum that contains all frequencies in an unbiased manner and thus
the system’s response will not lack structures simply because of missing input complexity.
In reality, a uniform spectrum of a physical stimulus can not extend its frequency range
to infinity as this would require infinite power. Instead, there will be a reasonable upper
bound to the frequency content, fc = sup{f : P (f) > 0}. In addition, artificial stimuli are
at times chosen from a Gaussian process, for reasons including the invocation of a central
limit theorem, arguments based on maximum entropy, or easement of analytical treatments.

§2.2.1 Bandlimited signal

In contrast to white noise, a band limited signal, with no power above fc, has only a limited
number of 2fc degrees of freedom per second [23]. In accordance with Whittacker-Shannon
sampling it can be represented as a finite set of random numbers per unit time. The phys-
ical signals that announce themselves on sensory organs can have their power distributed
over many octaves. However, signals emitted by other animals, either voluntarily like the
communication songs of grasshoppers or involuntary as moth falling prey to a bat, are often
constrained to a frequency range that is related to the body size of the sound producing
animal (see the next paragraph for three examples of relevant natural stimuli). In such
occasions one can identify an upper frequency, fc, above which no relevant information is
expected. Additionally, all primary transduction processes have a time constant restricting
the signal frequencies they can follow. This is sufficient reason to consider the stimulus x(t)
to fall into the class of bandlimited signals (also called baseband signals).
More precisely according to the sampling theorem a band limit signal with cutoff frequency
fc requires at least a sampling rate of 2fc. With the help of the Whittaker-Shannon inter-
polation formula the signal can be written as [23]

x(t) =
∑
n
xn sinc (2tfc − n) (2.1)

For an observation interval [0, T ) one needs a minimum of NT = d2Tfce samples to specify
the continuous bandlimited process completely.
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§2.2 Signals

Fig. 2.1: A bandlimited and binomially distributed (k = 14, pBn = 1
2 ) signal as an approximation

to a Gaussian process (µ = kpBn, σ2 = kpBn(1 − pBn)). The cutoff frequency was 100 Hz,
implying that the entire stimulus over 250 ms is exactly defined by 50 regularly spaced
samples, as according to the Nyquist theorem one needs at least two samples per period
to define an oscillation. To check if the binomial amplitude distribution is an adequate
approximation to a Gaussian, the Shapiro-Wilk test for normality is used. The Samples
are accepted as Gaussian with an α-level of 0.4 (very small α-leves would mean rejection of
normality).

In order to compare information theoretic bounds on the information transmitted through
continuous channels (physical systems) to histogram based methods for the estimation of
mutual information the Whittaker-Shannon sampling has to be augmented by discretisation
of the (Gaussian) random variables xn. The simplest strategy is to start with a discrete set of
binomially distributed random variables, xn ∼ Bn(k, pBn) with pBn = 1

2 , and use the fact that
for large k the statistics will be approximately Gaussian. With this there is a correspondence
between a time-continuous process on an interval [0, T ) and a discrete binomial vector, so
that the histogram frequency p([x1

1, . . . , x
k
1, . . . , x

1
n, . . . , x

k
n]) can be estimated. For example

the blue time continuous process in Fig. 2.1 between 50 and 100 ms with fc = 100 Hz is
described by the 11 samples marked as green circles. The continuous process is statistically
similar to a Gaussian process.

§2.2.2 Natural signals

Let us proceed by giving several examples of natural stimuli that can be qualitatively de-
scribed by baseband signals. The external signals from the natural world relevant to animals
can often be categorised into the three broad classes: (i) signals relevant to basic body kine-
matics and movement; (ii) signals for predator or prey detection; and (iii) communication
signals form other (often conspecific) animals. We may pick one example from each category.

Example 1 (Hiving hoverflies). The dipteran haltere organ [136] is a biological gyroscope
that enables hoverflies to excel in aeronautics. The organ evolved from the second pair of
wings. According to behavioural studies halteres measure Coriolis forces during flight.
The white noise analysis of crane fly halteres under direct mechanical stimulation in Ref. [47,
Fig. 3] shows that the system is sensitive to stimuli movements on time scales around 10 ms,
while very fast stimulus changes are ignored.

Example 2 (Praying paddlefish). The primary afferents in the american paddlefish Polyodon
spathula’s electrosensory organ show a tonic response to fluctuating stimuli. In their muddy
habitat the electrosensory system is used to detect their planctonic prey, like members of
the crustacean genus Daphnia. The frequency spectrum of the bioelectric profile emitted
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2 From single neuron biophysics to sensory coding

by single moving Daphnia shows that most power resides in a baseband below 8 Hz [140,
Fig. 4a]. For whole swarms the power is distributed over a larger interval, but still drops
at high frequencies. In addition to naturalistic stimuli, the electrosensory system has been
investigated with white noise analysis in order to determine the transfer function of the
sensory affarents [140]. This has confirmed that information transmission is focused on a
passband between 0.5–20 Hz with a steep roll-off.

Example 3 (Greeting grasshoppers). Many gomphocerin grasshoppers like Chorthippus
biguttulus use acoustic signalling to arrange mating behaviour. The detected signals are
amplitude modulations of broad band carrier waves. The important information about the
song structure resides in frequency band below 100 Hz, see Refs. [123, Fig. 1b,c] and [163,
Fig.1b].

We wish to stress that there often is a separation of time scales between stimulus induced
perturbations and those fluctuations that originate from internal biophysical noise in receptor
neurons, see Cpt. 3. The three examples clearly fall into this category where the stimulation
cutoff renders the stimuli orders of magnitude slower than the intrinsic noise.

§2.3 Information transmission versus -filtering

The reception of information about the outside world is the raison d’être of sensory sys-
tems and thus quantifying how well they perform by calculating their transmission rate (in
bits/sec) is key to understanding their evolutionary nascence. But, inspecting bit rates may
be less enlightening in the parts of a sensory pathways which are processing information
rather than just transmitting it to the next level [85, Cpt. 13.2]. This criticism has also
been voiced in Refs. [171, 94, 159]. The precise function of such a neuronal construct is to
throw some part of the sensory information away, keeping only relevant bits in preparation
for decisions and actions of the animalcules. The throwing-away part or filtering-out of ir-
relevant input „noise” is a crucial task. Instead of the overall bit rate the filtering properties
of the pathway or individual neurons are then informative. To this end the filter that maps
a time structured, perturbative stimulus into the instantaneous firing rate is derived in §6.2
of Cpt. 6.

§2.4 Trains of spike times

The evolutionary origin of membrane voltage spikes goes back to single celled lifeforms such
as members of the genus Paramecium [72]. Action potenials (APs) are also found in plants
and might have emerged multiple times independently during the cause of evolution. Its
hallmark is that by means of an active regenerative process the amplitude of the signal is
kept from degrading as it travels along somas and axons or through an active dendrite. The
advantage of this active signalling over graded passive potentials is its reliability in terms
of signal-to-noise ration (SNR) particularly over long transmission distances, which became
more important when animal bodies grew in size. It also implies that the amplitude as
such does not code information and instead the spike times (arrival time of AP peaks) is
considered important (termed all-or-nothing principle).
In order to focus in on the statistical and information theoretic properties of a timing code
one abstracts the voltage trace into a set of spike times {τ sp

k }
Nsp
k=1. If we observe the neuron
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§2.4 Trains of spike times

Fig. 2.2: Simulation of the neuron model with Na+ and K+ channels. For details on the simulated
stochastic differential system see Cpt. 3. The upper panel shows 16 simulations in which
the neuron was driven with exactly the same stimulus shown on the lowest panel. Each
spike time is depicted as a small black square. The middle panel shows histograms counting
spikes through trials over small time bins. This yields the instantaneous probability of spike
emittance. One can observe that the increased firing probability is temporally locked to
prominent excursions in the stimulus.

continuously for ever we set Nsp →∞. The all or nothing principle is stated as an idiosyn-
cratic AP wave form VAP(t), that is shifted and superimposed to compose the AP train2

Vrest +
∑
k
VAP(t− tk) = Vrest + (VAP ∗ y)(t). (2.2)

Here, it is found useful to define the delta spike train, deconvolved from the actual AP
waveform, as

y(t) =
Nsp∑
k=1

δ(t− tk). (2.3)

The spike train y(t) is idealised and nonphysical3, but while the exact wave form VAP in an
experimental setup depends in on the placement of electrodes and chosen equipment, the
spike times are more robust. So one can conceive y(t) as the underlying platonic ideal of the
spike train.
Suppose that the spike train is nearly periodic, say with period Tp, but that deviations from
perfect periodicity are induced by the input stimulus. Then let us define φ(t) ∈ R as a
variable that is almost like time but speeds up and slows down depending on perturbations,
e.g., from a stimulus x(t). One can formally write φt[x] indicating that the departure of the
phase variable form a linearly increasing time may depend on the stimulus history. With
this in mind the spike train can be expressed as

y(t) =
Nsp∑
k=1

δ(t− tk) =
Nsp∑
k=1
|φ̇(t)|δ(φ(t)− kTp). (2.4)

2Naturally, the principle is violated somewhere in the nervous system of some species. Graded potential in
the visual system of flies as well as the two different AP shapes in an axon of the jellyfish A. digitale are
counter examples. Indeed, the two wave forms encode two different behavioural responses of the jellyfish,
hence amplitude matters in that case.

3This will cause some quantities such as the spectral density of y to have slightly unintuitive properties
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2 From single neuron biophysics to sensory coding

Fig. 2.3: Experimental definition of the phase response curve. Perturbations (�) at two different
phases φ1 and φ2 respectively cause phase delay and phase advance. The grey line shows
the voltage response with no stimulation, while the overlaid dashed lines show the same
neuron with perturbations present. By comparison, the perturbation placed at φ1 causes a
delay and the perturbation at φ2 causes and advance in the next spike time. The model is
the standard squid axon model (parameters can be found in B).

φ(t) should be differentiable. The factor |φ̇(t)| guarantees that time integrals over y(t) (such
as spike counts) are not tampered with. For weak stimuli the prefactor is positive and the
absolute value can be dropped. The evolution equation for φ̇ will be detailed in Cpt. 4.

§2.5 Phase response curves

Under the assumption that spike times are important, one needs methods to investigate
how the timing of spikes changes, conditioned on input perturbation of the neuron. A
classical paradigm that is applicable if the neuron is a self-sustained oscillator is the phase
response curve (PRC)4, which was first employed to chronobiological oscillators (cf. Ref. [187]
for a historical review) and later to spiking neurons in Refs. [39, 36]. See also the recent
books [40, 166] for applications in neurobiology. It characterises the phase shifts (or shifts in
timing) of a particular event within the limit cycle subject to inputs at particular times within
the cycle. To describe a high dimensional nonlinear system such as a biophysical neuron or
in chronobiology the whole suprachiasmatic nucleus by just a single one dimensional phase
(or time shift) variable amounts to a quite formidable contraction of the biophysical state
space.
The PRC can be defined in the following way: It tabulates the persistent change in the inter
spike period of a neuron induced by a transient perturbation as a function of the phase at
which the perturbation is received, cf. Fig. 2.3. Mathematically it is a function from phase
(or time) to phase shift (or time shift), Z : φ→ ∆φ, where φ ∈ [0, 2π). In fact, the domain
may be scaled to an arbitrary interval, e.g., [0, 1) or [0, Tp) are common choices. We will
change between different notations at times. Naturally, Z(φ) is periodic, but the exact graph
of the function is intricately linked to the properties of the dynamical system it describes,
see §2.5.2. The definition of the PRC immediately suggests a naive experimental approach
with which it can be determined. First, observe the period of the unperturbed system, Tp.
Let us use the definition φ ∈ [0, 1) for the moment. Then, perturb the system with a short,
time-localised pulse of amplitude A, i.e., Aδ(φ − φ1), at a particular time instance φ1Tp in
the inter spike interval and measure the length of the period T1 as in Fig. 2.3. The phase

4In the literature one also finds the terms phase resetting curve, phase sensitivity or phase susceptibility.
We can use them interchangeably.
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§2.5 Phase response curves

Fig. 2.4: The slope of the f -I curve is related to the average PRC. Two model, the Hodgkin-Huxley
(HH) and Traub-Miles (TM), are contrasted. (a) Shows the voltage PRCs the of HH and
TM models for different injected DC currents in (b). In (c) the log-slope of the f -I curve is
compared with the mean of the PRC (black dots) as predicted from Eq. (2.8).

shift for the phase normalised to [0, 1) is then

∆φ(φ1;A) = Tp − T1
Tp

. (2.5)

Repeat this for a sufficiently dense grid of φi ∈ [0, 1). To first order the strength of the
phase shift is linear in the magnitude of the perturbation given, |∆φ(φ;A)| ∼ A. It is thus
reasonable to normalise the PRC accordingly.

Z(φ) = lim
A→0

∆(φ;A)
A

. (2.6)

This is called the infinitesimal PRC and has units of [stimulus]−1 or [rad/stimulus], if we
include scaling with 2π. Using the phase φ ∈ [0, 2π), the unperturbed neuron satisfies
φ = ω t. In the presence of phase perturbations at different times tk

φ(t) = φ(0) + ω t+
∑
k

t∫
0

dt̃ Z(φ(t̃))Aδ(t̃− tk). (2.7)

The great utility of PRCs is merited to the fact that it is both an experimental procedure
and a well defined mathematical quantity. As will be shown by formal arguments in §4.3,
the PRC is a periodic solution to the adjoint of the first variational equation of a limit cycle
system. As a consequence, for every system with a stable limit cycle5 there exists a PRC.
It is important to note that, the above introduced experimental procedure to determine the
PRC of the neuron assumes stationary conditions, i.e., the phase sensitivities at various
perturbation points do not change while tabulated. A consequence of the PRC being the
adjoint to the first variation of the limit cycle (as shall be seen when introducing the PRC
mathematically in §4.3), the shape of the PRC is affected by any parameter that affects the
flow-field around the limit-cycle or its period. In that sense, the PRC is a local property
in the system’s parameter space and changes for example with parameters such as the DC
input current to a neuron. It is common to characterise tonically spiking neurons, by their

5Also termed, Jordan curve, closed or periodic orbit and invariant cycle in various sections of the literature.
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2 From single neuron biophysics to sensory coding

Fig. 2.5: Examples of experimentally measured phase response curves in sensory systems. Left: PRC
of a mitral cell in the olfactory bulb from Ref. [60]; Middle: PRC of the auditory receptor
in Locusts from Ref. [12]. The median of the measured phase shifts is plotted and for
comparison the theoretical PRC of canonical SN on LC bifurcation see §2.5.2. Right: As in
the TM model in Fig. 2.4 there is an increase in the PRC mean with the DC stimulus.

f -I curve, which graphs the DC input current versus the mean firing rate, see Fig. 2.4b.
Some neurons start with a finite firing rate, while others others can spike at arbitrary low
frequencies. Two examples of such neurons are the classical Hodgkin-Huxley (HH) equations
of the squid axon and the Traub-Miles (TM) equations for the membrane dynamics of a
hippocampal pyramidal neuron. The general structure of those biophysical neuron models
is introduced in §3.1, with the particular parameters given in App. B.
The intimate connection between the PRC and the f -I tuning curve of a neuron can be
seen in Fig. 2.4. In a deterministic neuron a simple calculation using the equivalent phase
oscillator (which will be introduced in Cpt. 4) shows that the slope of the f -I curve is related
to the mean of the PRC by

d ln f(I)
dI = 1

Tp

Tp∫
0

dφ Z(φ; I), (2.8)

illustrated in Fig. 2.4b.
This highlights the fact that the PRC and the f -I curve give complementary information
about the neuron. The f -I curve characterises the average spike rate to a non-fluctuating
constant current over a whole range of DC values, while the PRC describes the changing in
individual spikes for fluctuating inputs around one fixed DC value.

§2.5.1 PRCs in experimental systems

The earliest experimentally measured PRCs of biological oscillators are from the circadian
system [187]. In a neurobiological context, PRCs have been measured in the Locust’s central
pattern generators involved in flight [157], and neurons in the central nervous system such as
cortical pyramidal neurons [173]. More relevant to our topic, PRC have been measured for
some nerve cells of the sensory periphery, like a mitral cell [59]) and the Locust’s auditory
receptor [12]. Examples are portrayed in Fig. 2.5.
PRC are also used to study the response properties of whole networks. Experimentally,
the PRC of carbachol-induced network oscillations in the rat hippocampal CA3 region were
determined and modelled with the Wilson-Cowan equations [3].
As can be seen from Fig. 2.5 the data of phase shifts collected may be very noisy, so refined
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§2.6 Instantaneous firing rate

Fig. 2.6: The first three panels show versions of the PRC of normal form models close to The mag-
nitude of the PRC is scaled arbitrarily. The actual scaling depends on how close to the
bifurcation the model is. The last two panels are PRC of one dimensional integrate-and-fire
models.

estimation techniques only recently developed could improve the situation [59, 38]. This
will hopefully lead to estimates of PRC in other sensory systems that use tonically spiking
neurons to encode information.

§2.5.2 Canonical PRCs

The PRC of the HH and TM model depicted in Fig. 2.4a show distinct features. While the
HH PRC takes positive and negative values, the TM PRC is strictly positive. This matches
with the features of their f -I curves. The positive and negative regions in the HH PRC
reduces its mean, which according to Eq. (2.8) agrees with the smaller slope of the HH f -I
curve. Also the extent of the ISI interval in which perturbations have any effect differs,
as the HH models shows longer period of relative phase insensitivity (called dead zone in
chronobiology) at the beginning of the ISI. Also the experimentally determined PRC from
two exemplary systems show such distinct differences, cf. Fig. 2.5.
Mathematical analysis of the normal forms of conductance based models near the onset bi-
furcations from rest to spiking has revealed that the PRC may be grouped by the bifurcation
type [24, 36]. A comprehensive summary of PRCs for many normal forms and one dimen-
sional models is found in Ref. [18] and reprinted in Fig. 2.6. If the neuron enters spiking
because the stable resting equilibrium is annihilated by a second unstable equilibrium on a
limit cycle (LC), which is called saddle-node (SN) on LC, then the PRC is strictly positive.
The normal form of the subcritical Hopf bifurcation is known as the Stuart-Landau (SL)
equations. The super- and subcritical Andronov-Hopf bifurcations yield sinusoidal PRCs.
The definition for the SL model is included in App. A.3, because we shall use its analytic
tractability to exemplify certain noise induced effects in §5.6. The saddle-node on homoclinic
orbit bifurcation produces an exponentially decreasing PRC. Note that this canonical PRC
is not periodic. In a real biophysical neuron close to a SN on homoclinic orbit bifurcation
one would find a steep drop at the spike rendering it periodic.

§2.6 Instantaneous firing rate

In the raster plot of Fig. 2.2 spike trains emitted by a model neuron in response to the time
continuous signal x(t) (bottom time series) are shown as small black rectangles. One trial
is mathematically represented as the sum of delta functions, y(t), from Eq. (2.3). On closer
inspection one notices that repetitive presentation of the same stimulus yields different sets
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2 From single neuron biophysics to sensory coding

Fig. 2.7: Instantaneous firing rate as the flux of the phase at 2π. The density plot shows the prob-
ability distribution over φ evolving in time. Initialised with a uniform distribution it stays
that way until the stimulus (lower time series) is activated. The time dependent forcing then
causes barrelling in the phase distribution, which is reflected in the non-uniform flux.

of {τ sp
k }

Nsp
k=1. Still locked to strong positive excursions in the stimulus, the different trials

are not entirely unrelated to each other, but the individual spike times are distorted. The
sources of this jitter are discussed in §3.3 and §3.4.
A reasonable description of the whole ensemble of trial responses is the instantaneous prob-
ability of AP triggering, also called instantaneous firing rate, r(t). Experimentally it is
estimated via histograms from a finite set of trials (cf. histogram beneath the raster plot in
Fig. 2.2). Here, a digital represtentation of the δ-functions is used, with discretisation step
∆t and a finite impulse hight of ∆−1

t . Mathematically the idealised firing rate is defined as
the continuum limit to infinitely many trials, Ntrials →∞

r(t) = 〈y(t)〉y|x. (2.9)

Again the firing rate can also be connected to the variable φ(t) from the previous paragraph.
In the same way as the spike times in Fig. 2.2 vary among trials the evolution of the associated
phase variable φ(t) depends on the noise realisation within each trial. Thus, each trial
produces a different path of the phase variable, so that at each time instance produces a
histogram of phases, which in the limit of infinite trials produces the phase density p(φ, t).
One can formally introduce the phase density or time dependent histogram of the phase as

p(φ, t) = 〈δ(φ− φ(t))〉φ|x, (2.10)

where the average 〈·〉φ|x indicates trial averaging. One way of interpreting the density p(φ, t)
is to think of it as the number of neurons of an unconnected population being in phase
φ divided by the population size. More detail on the differential operator, the Fokker-
Planck operator, that describes the propagation of this density through time are given in
the following chapters and A.2. Postponing the mathematical details Fig. 2.7 shows such
a propagation of a phase density for a particular stimulus shown at the bottom. When
the stimulus is constant the phase distribution tends to the uniform distribution. But as
soon as time dependent forcing begins it creates departure from uniformity in the phase
density. Since the phase increases with some average frequency, the peaks in the phase
density move in the direction of φ = 2π and pass through the boundary to be reinjected at
φ = 0. The directed flux of the probability current through that boundary measures how
many oscillators where just about to spike at time t and just had spiked at time t + dt.
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§2.7 Inter-spike interval statistics

Fig. 2.8: Comparison between the firing rate defined as the flux of the phase density (black line) and
by trial averaging (grey) for the two-dimensional Stuart-Landau oscillator (model definition
see A.3 with parameter a = 1, b = 2, c = −1, d = −1). The model is driven by a Gaussian
signal with flat spectrum up to a cutoff frequency 3ω0/2π Hz and standard deviation of 0.15
that is applied to one dimension and intrinsic noise with standard deviation of 0.3 that is
applied to the other. Number of simulated trials: 30000.

In the example in Fig. 2.7 the time dependent probability flux is depicted on top of the
2π-barrier. This corresponds exactly to the definition of the instantaneous firing rate. That
the probability flux is in good agreement with the trial averaged firing rate can be seen
in the numerical example that used the Stuart-Landau equations, the canonical model for
Andronov-Hopf bifurcations in Fig. 2.8.

§2.7 Inter-spike interval statistics

Before turning to the encoding of time continuous stimuli, we consider the statistics of spike
trains under constant input, that is, when the equations of motion are homogeneous. In par-
ticular, the statistics of the waiting time between consecutive spikes—the interspike interval
(ISI) is of interest6. Calculation of the waiting time density is possible for simplified neuron
models. For example, it is long established that the ISI distribution of perfect integrate-and-
fire model (IF) driven by uncorrelated Gaussian noise is the inverse Gaussian [183]. More
recently, the ISI distribution of the perfect IF model driven by coloured noise was calcu-
lated using a weak noise assumption [116, 130]. These expressions are also in approximate
agreement with the ISI densities of more complex neurons showing spike-frequency adapta-
tion [168]. The reason is that adaptation processes filter the uncorrelated noise source so
the noise in the spike generation process is effectively coloured and the existing theory of
Refs. [116, 130] can be applied.
Phase oscillators are similar to IF models, yet instead of the explicit reset they operate on
a periodic domain φ ∈ S([0, 2π)). Specifically, in the differential form of Eq. (2.7) the phase
model reads

φ̇ = ω + Z(φ)x(t), (2.11)

where we have replaced the delta stimulus by a noise process x(t).
The spike is defined as a crossing of the periodic boundary, say at φ = 2π with φ = 2π 7→
φ = 0. However, some caution is necessary with the spike definition, in particular when the
system is driven by white noise. To elaborate this, let us denote with Ncross the number of
level crossings at φ = 2π in the positive direction per unit time. If the noise process is a
stationary Gaussian process with covariance C(τ) and the dynamics resides at the boundary,

6Also referred to as first passage time, mean sojourn time or occupancy depending on the context.
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2 From single neuron biophysics to sensory coding

then, according to Rice’s formula the expected number of crossings is [152, 153]

〈Ncross〉 =

√
− d2

dτ2C(τ)

∣∣∣∣∣∣
τ=0

. (2.12)

For coloured noise this yields a finte number of crossings per unit time. Analysing the white
noise, which has C(τ) = δ(τ), as the (κ → 0)-limit of process with correlation C(τ) =
e−τ

2/κ2
/
√
πκ2, results in an infinite number of zero crossings

lim
κ→0
〈Ncross〉 = lim

κ→0

√
2√
π

(1
κ

) 3
4

=∞.

This in neurobiological terms non-physiological behaviour is due to counting each crossing
of the phase in positive direction irrespective of whether the phase crossed in the negative
direction just the infinitesimal time instance before, an event which can happen infinitely
often with white noise. While this makes sense in many applications [113], for a neuron, a
small jitter at the tip of a spike which causes the phase to jitter around the 2π boundary
would not be considered an additional spike. To obtain a complete spike the phase needs
to actually traverse all the way trough the up and down stroke of the action potential. In
numerical simulations of realistic neuron models, one can ensure that a threshold crossing
is counted only once by adding an artificial absolute refractory period during which further
threshold crossings are discarded. In phase models, the free running phase may be used and
after each crossing the boundary increased by 2π. This is related to the use of reflecting and
absorbing boundaries at 0 and 2π, when calculating waiting time distributions, see Cpt. 5;
or using periodic boundaries and define an instantaneous spike rate as the net probability
flux, not just the unidirectional flux, see Cpt. 6.
In the following we rederive equations for the moments of waiting times as in Ref. [61]. Let
y(t) be the process in question, denoting a voltage or a phase variable. The process starts
at a particular y0 that is the initial distribution is p(y, t0) = δ(y − y0) and one is interested
in the distribution of times for the process to reach y = y1.
If the process is governed by a differential equation that involves stochastic terms (a stochastic
differential equation, SDE), then one can show that the associated density p(y, t) defined in
Eq. (2.10) is propagated by a specific evolution operator

ṗ(y, t) = F(y)p(y, t). (2.13)

This equation is called the Fokker-Planck equation (FPE). An example of its solution was
given in Fig. 2.7. The mathematical structure of the Fokker-Planck operator, F , is derived in
A.2. We denote the solution of a homogeneous FPE with starting distribution concentrated
at one value y0 by p(y, t; y0, t0) such that p(y, t0; y0, t0) = δ(y − y0) and write its formal
solution as

p(y, t; y0, t0) = e(t−t0)F(y)δ(y − y0). (2.14)

Our goal is to find a relation between the ISI distribution of the neuron model and the FP
operator, which can be determined from stochastic equations such as Eq. (2.11). For that
let us assume that the process lives in an interval (y1, y2), where y2 could denote the spike
threshold and y1 the resting potential to which an IF neuron resets, or the two boundaries
encapsulating the periodic domain of the phase oscillator interval, y1 = 0 and y2 = 2π. At

16



§2.7 Inter-spike interval statistics

time t0, the system is supposed to start inside the interval, y1 6 y0 6 y2. The probability at
time t > t0 of still being inside the interval (y1, y2), and thus no spike occurring, is [61]

G(y0, t) = Pr(y16y(t)6y2) =
y2∫
y1

dỹ p(ỹ, t; y0, t0),

with additional condition G(y0, t0) = 1 because we started with y0 ∈ (y1, y2). The time
derivative of G(y0, t), i.e., the change in the probability of remaining within (y1, y2), at any
given t measures the exit probability. This is called the first-passage time density, which we
denote by

q(t, y0) = ∂G(y0, t)
∂t

. (2.15)

With the help of the formal solution in Eq. (2.14) it can be shown that the inner product of
h(y, t) = G(y,−t) and p(y, t; y0, t0) is constant

〈h, p〉 =
∫

dỹ h(ỹ, t)p(ỹ, t; y0, t0) =
∫∫

dydỹ p(y,−t; ỹ, t0)p(ỹ, t; y0, t0)∫∫
dydỹ e−tF(y)δ(y − ỹ)etF(ỹ)δ(y0 − ỹ) =

∫
dỹ δ(y0 − ỹ) = 1.

Note that the operator etF commutes with the identity operator δ(y − ỹ). Taking the time
derivative and using ṗ = Fp one obtains

∂t〈h, p〉 = 〈ḣ, p〉+ 〈h, ṗ〉 = 〈ḣ, p〉+ 〈F†h, p〉 = 0.

Because p may change according to its initial conditions, the last expression implies that
ḣ = −F†h, or that G(y, t) is a solution to the adjoint Fokker-Planck equation [61]

Ġ(y, t) = F†G(y, t), s.t. G(y, T0) = 1[y1,y2](y). (2.16)

The adjoint operator F† is also called the infinitesimal generator of the stochastic process. In
addition to the boundary condition above, trivially stating that if we start in the boundary
the initial probability of inside is one, one may include reflecting boundary conditions at the
lower end ∂yG(y, t)|y=y1 = 0 and absorbing boundary conditions at the upper end G(y2, t) =
0. This would correspond to an IF model which resets at y2.

In some cases it is possible to solve for G and obtain expressions for the ISI density q(t, y0)
[183].

Since one of the main objectives in this document is to establish links between the microscopic
noise sources such as channel noise and the macroscopic spike jitter one may immediate pose
the question: How much information about the underlying diffusion process can we extract
from first passage time densities like the ISI distribution? Might there be a unique diffusion
process generating it? A sobering answer to the second question was given in Ref. [11]:
No—the solution is not unique, there are several possible diffusion processes that may lead
to one and the same passage time density.

Yet, not all is lost. If one takes into account constrains from membrane biophysics, then
diffusion process derived is not completely arbitrary. In fact, if the model is derived from
first principles, then the free parameters in the model can be related to the ISI statistics.
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2 From single neuron biophysics to sensory coding

§2.7.1 Moments of the ISI distribution

Instead of attempting to obtain the complete ISI distribution by solving the adjoint Fokker-
Planck equation, Eq. (2.16), one may content oneself with the first two moments or the
coefficient of variation, which one uses to quantify spike jitter in experiments.
Let us set t0 = 0 and Denote the nth moment of the ISI distribution as [61]

Tn(y) =
∞∫
0

dτ τnq(τ, y) = −
∞∫
0

dτ τn−1G(y, τ), (2.17)

where the fact was used that for the finite interval (y1, y2) exit is guaranteed, i.e., G(y0,∞) =
0. one may multiply both side of Eq. (2.16) with tn and integrate to obtain a recursive
ordinary differential equation for the moments

nTn−1 + F†Tn = 0, s.t. T ′n(y1) = Tn(y2) = 0 and T0 = 1. (2.18)

Here we have imposed reflecting boundary conditions on the lower limit y1 and absorbing
boundary conditions on the upper limit y2. These conditions are in agreement with an
IF model, which once reaching the spike threshold is reset an unable to move inversely
through the spike. As we discussed in the beginning of §2.7 they can also be applied as an
approximation to the phase oscillator if the noise is weak.
In Cpt. 5 the Eq. (2.18) will be used to calculate ISI moments of conductance based neurons
using a phase reduction. Suppose we have an FP operator F(φ) for the equivalent phase
variable that is accurate to order εk in the noise. Then all moment, Tk, up to order the kth

can be obtained accurately. For example if one is interested in ISI variance, the method will
require finding a suitable SDEs for the phase variable φ(t) that gives the FP operator to
second order.

Renewal equation

In a renewal process, all inter-spike intervals are independent, as though each is separately
drawn form the ISI distribution. But slow kinetic processes in the neuronal dynamics or
long-term correlations in the external stimulus could make the spike train have negative or
positive correlations. A point process with such properties would be called a non-renewal.
The ISI distribution alone does not tell us about the correlation between consecutive inter-
spike intervals. Are they independent, negatively or positively correlated? Several types of
adaptation currents have time scales spanning orders of magnitude above the spiking period
and indeed there contribution to ISI correlations have been analysed [44, 168]. But, for the
sake of simplicity, we will ignore the effects on longer times scales and consider a spike train
as arising form a renewal process.
In the following we treat the neuron as a threshold device such as an integrate-and-fire neuron
or a phase model neuron. We compile here a few known results on renewal processes that
we will need in later chapters (e.g., §7.2).
The transition probability p(θ, t; y0, t0) describes probability a spike occurring at time t = t0,
when the neuron was in state y0, is followed by a spike at time t, when the neuron crosses
threshold θ. For a stationary renewal process, at any given time after a spike the transition
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§2.7 Inter-spike interval statistics

probability p(θ, t) in the renewal case can be decomposed into

p(y, t; y0, 0) =
∞∫
0

dτ p(y, t; θ, τ)qθ(τ) =
∞∫
0

dτ qθ(τ)p(y, t− τ ; θ, 0). (2.19)

Here qθ(τ) is shorthand for the interspike interval distribution from y0 at t0 = 0 to threshold
θ, corresponding to the transition probability p(θ, τ ;x0, 0). The second equality is due to
stationarity, which implies a convolution. The spike autocorrelation C(τ) is the probability
that given a spike at t there is an other spike at t + τ . This is equivalent to the transition
probability C(τ) = p(θ, τ ; θ, 0) of being back at the spike threshold after τ times has elapsed.
By recursively splitting the transition probability in Eq. (2.19) into all consecutive possible
spiking events one ends with

C(τ) = p(θ, τ ; θ, 0) =
∞∑
k=0

qθ(τ) ∗ · · · ∗ qθ(τ)︸ ︷︷ ︸
k times

. (2.20)

The typical approach to isolate the ISI density from Eq. (2.19) is by means of Laplace’s
transform f̃(s) =

∫∞
0 dt e−stf(t), with s ∈ C, then

q̃θ(s) = p(x, s;x0, 0)
p(x, s; θ, 0) (2.21)

In some cases the result may be transformed back into time domain, if the Mellin-Bromwich
integral

qθ(t) = 1
2πi

c+i∞∫
c−i∞

ds estq̃θ(s), (2.22)

exists, that is. The constant c is to be chosen to the right of the real parts of all the
integrand’s singularities. In cases where this integral can not be evaluated explicitly one
is stuck with an expression in the Laplace domain, which is not all that bad, as at least
individual moments of the time domain distribution as well as the spike power spectrum
may be evaluated. Moments are given by

〈τn〉 = (−1)n dnqθ(s)
dsn

∣∣∣∣
s=0

. (2.23)

The power spectrum of a stationary renewal spike train is the Fourier transform of the spike
train autocorrelation Eq. (2.20). First, we can identify C(τ) again in the infinite series and
write

C(τ) = qθ(τ) +
∞∫
0

dt qθ(t)C(τ − t). (2.24)

Then, the Lapace transform can be applied to this linear Volterra integral equation to solve
for the spiketrain spectrum [174, 51]

P (ω) = r

{
1 + q̃θ(s)

1− q̃θ(s)

∣∣∣∣
s→iω

+ q̃θ(s)
1− q̃θ(s)

∣∣∣∣
s→−iω

}
(2.25)
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2 From single neuron biophysics to sensory coding

§2.8 Stimulus representation in single neurons
In Cpt. 3 we will summarise the biophysical details of the action potential voltage dynamics
in membrane patches, highlighting its key features: (i) the nonlinear feedback, provided by
voltage gated channels; and (ii) the inherent stochasticity. These two combined make for a
complex system that shirks being amenable to a complete analytical treatment. Deducing
the functional properties of a particular biophysical neuron, for example the answer to the
question „Which frequencies in a stimulus is it sensitive to?”, can be a challenge without
resorting to numerical simulations.
A particular useful strategy has been to derive approximate filters7 from model equations
that are easier to analyse [172]. These models must omit many biophysical details to remain
analytically tractable.
One line of research starts with simplified integrate-and-fire (IF) neurons that do not contain
the kinetics of a full complement of ion channels as are present in biological neurons, but
just retain the feature of a spiking threshold device. Then, for example in Refs. [145, 154]
the linear filter that approximates the IF neuron is derived, which helps to understand
which stimulus aspects this neuron model encodes. More generally, the idea is to find a
simplified model that is input/output (I/O) equivalent to a full biophysical system and that
is analytically tractable. This idea has been followed in Refs. [110, 111]. One particular,
approximately I/O equivalent system for tonically spiking neurons is the phase oscillator
with an appropriately chosen PRC [100]. Its benefit is that the equivalent phase oscillator
(i.e. the PRC) can be systematically identified from any conductance based model with the
help of a numerical procedure that is described in App. C. The key assumption is that once
the I/O equivalent phase oscillator is in place one may calculate the spike-triggered average
from it and at least for weak stimuli it is similar to the STA of the original neuron. This idea
was introduced in Ref. [37], taken up by Ref. [162], and will be explored further in Cpt. 6. It
should be noted that the integrate-and-fire class of neuronal models has been diversified and
can reproduce a variety of neuronal dynamics including adaptation and resonance. Their
response is not restricted to the tonic firing regime but can also be phasic. Within the phase
oscillators framework this would require the definition of a proto-phase [167].

§2.8.1 Spike-triggered ensemble

A classic approach to investigate which stimulus characteristics are represented in the activity
of sensory neurons is to estimate their receptive field or spike-triggered average [27]. The
analysis characterises the components of a complex stimulus that are relevant to elicit a
spike response or increased firing rate and could ultimately cause behavioural reactions. It
is, therefore, related to the antedating concept of sign stimuli [125, 16]. The method has
been applied to recordings from the visual [89] and auditory [35] system.
One can also turn the paradigm around by applying a simple stimulus such as a delta pulse
and characterising the nature of the response, which is then called transfer functions or
point spread function in the visual system. The term transfer function stems form signal
processing and stresses the fact that the neuron is viewed as a linear filter. It is surprising
how complete a description of a neuron linear response filter can give, despite the fact that
neurons contain so many nonlinear elements. In a sense it parallels the success of linear
response theory in complex physical problems [128]. Of course, there is no one linear filter

7In fact, the biological literature commonly resorts to engineering vocabulary in order to describe the be-
haviour of nerve cells.
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§2.8 Stimulus representation in single neurons

that describes the whole range of dynamical features of the neuron. But different aspects may
be characterised by different filter. In particular, we will linearise around the suprathreshold
periodic solution to derive a firing rate filter in §6.2. Linearising the voltage response around
the resting potential yields quite a different filter that describes the subthreshold response.
So essentially it depends on which output variable one analyses.

Returning to the converse approach, the spike-triggered stimulus, the general guiding ques-
tion is, how does observing the neuronal spike response affect the conditional statistics of
the stimulus? After observing the spike train some external stimuli should have been more
likely their cause than others. An immediate idea is to look at the first moments of the
conditional ensemble. For example, the mean stimulus before a spike in one trial is

1
Nsp

Nsp∑
k=1

x(tk − τ) = 1
Nsp

∞∫
−∞

dt y(t)x(t− τ), (2.26)

where we used the platonic spike train from Eq. (2.3). To improve the signal to noise ratio,
an experimenter might repeat the same stimulus, so that a trial average might smooth out
the effect of intrinsic noise. Then, if the number of spikes, Nsp, per trial is large and almost
constant (modest Fano factor) it may be approximated by〈

1
Nsp

∫
dt y(t)x(t− τ)

〉
y|x
≈ 1
〈Nsp〉

∫
dt r(t)x(t− τ) = 1

r0
Rrx(−τ), (2.27)

where r0 is the mean firing rate. This gives rise to the term reverse-correlation method, see
Ref. [25, Cpt. 1.3] and Ref. [27].

A similar view point is taken in the system identification literature. We know the spike
train y(t) (or the firing rate r(t)) to be a functional of past stimulus realisations x(t). The
notation y(t) = yt[x] highlights this dependence. We have a functional, yt[x], for any time
parameter t that, in a causal system, depends on prior stimulus values x(t′),∀t′ 6 t. The
idea of the Wiener kernels gi(τ1, τ2, ...) generalises the structure of the reverse correlation
formula in Eq. (2.27) to higher order correlations by [155]

g0 = 〈y(t)〉 (2.28a)
g1(τ) = 〈y(t)x(t− τ)〉 (2.28b)

g2(τ1, τ2) = 〈y(t)x(t− τ1)x(t− τ2)〉 (2.28c)
· · ·

We assume that the stimulus statistics are wide sense stationary, i.e., shift invariant in time.
Hence, the correlations do not depend on t. Often, we will additionally assume that the
system is ergodic, the brackets 〈·〉 denote trial and ensemble averages. In ergodic systems
one is able to replace the ensemble average with the time average 〈·〉 = limT→∞ T

−1 ∫ T/2
−T/2 dt.

Eqs. (2.28) are the moments of the spike-triggered ensemble p[x(t)|{τ sp
k }], that is the prob-

ability over all possible paths x(t) that lead up to a spike in the spike train {τ sp
k }. We use

brackets because it is a distribution over continuous paths not numbers or vectors. But, if the
stochastic process that describes the stimulus admits the Karhunen-Loève decomposition,
x(t) =

∑∞
k=1 xkHk(t) within a complete set of basis functions Hk(t), then the path integral
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2 From single neuron biophysics to sensory coding

that defines the spike-triggered average can be written as

g1(t) =
∞∑
k=1

∫∫
· · · dx1dx2 · · · p(x1, x2, . . . |{tk})xiHi(t). (2.29)

Since the spike train was already expressed in terms of the phase variable φ in Eq. (2.4), we
can relate the gi’s to a simple phase model based on the PRC, introduced in §2.5. Assume
that the phase variable in absence of stimulation is proportional to time and the weak
stimulus modulates the rate of phase change through the phase response curve.

φ̇ = 1 + Z(φ)x(t).

The phase model spikes whenever φ crosses multiples of the deterministic period, kTp.

Assuming the stimulus is Gaussian with correlation furnction C(t1, t2), an application of the
Novikov-Furutsu-Donsker (NFD) formula (cf. A.1) yields

g1(τ) = 〈y(t)x(t− τ)〉 =
∫

dt̃ C(t− τ − t̃)
〈
δyt[x]
δx(t̃)

〉
. (2.30)

In order to evaluate the average in the above formula the idea is to use the definition of
the spike train from Eq. (2.4) and calculate only the lowest order term in the stimulus x.
Inserting the spike train definition yields〈

δyt[x]
δx(t̃)

〉
=
∑
k

〈
δ

δxt̃
φ̇tδ(φt − kTp)

〉
=
∑
k

〈
δ

δxt̃
(1 + Z(φt)x(t)) δ(φt − kTp)

〉
≈
∑
k

〈(
δ′(φt − kTp)Z(φt̃) + δ(t̃− t)Z(φt)δ(φt − kTp)

)〉
.

(2.31)

In the second line we have dropped the terms∑
k

〈
x(t)

[
Z(φt)Z(φt̃)δ′(φt − kTp) + Z ′(φt̃)Z(φt̃)δ(φt − kTp)

]〉
,

because they are of higher order in the stimulus. To further simplify Eq. (2.31) we replace
the ensemble average by time averaging and replace all φt with t to lowest order. Then,
using the fact that Z(t) is periodic with period Tp and integrating the first term by parts
results in 〈

δyt[x]
δx(t̃)

〉
≈ −r0Z

′(t̃− t) + r0Z(0)δ(t̃).

Here we denoted mean firing rate as r0. This may be plugged back into Eq. (2.30) and in
addition without loss of generality one can set t = 0 to obtain

g1(τ) = −r0
∫

dt̃ C(−τ − t̃)(Z(t̃)− δ(t̃)Z(0)).

This is consistent with the result in Ref. [37]. In this article the additional assumption of
Z(0) = 0, which is true for many neural systems was made so that in the the special case of
delta-correlated stimuli one obtains g1(τ) = −Z ′(−τ).
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§2.9 Summary

If the neuron is not deterministic one can follow Ref. [13] and include the trial average

g1(τ) = 〈〈y(t)x(t− τ)〉y|x〉x = 〈r(t)x(t− τ)〉x =
∞∫
−∞

dt̃ C(t− τ − t̃)
〈
δr(t)
δx(t̃)

〉
, (2.32)

where the NFD formula was applied again. Tor an uncorrelated stimulus this would simplifty
to

g1(τ) =
〈

δr(t)
δx(t− τ)

〉
x

. (2.33)

This formulas are going to be used in Cpt. 6, where the instantaneous firing rate is considered
as a functional of the stimulus rt[x]. The equations above show us that spike-triggered
average is infact related to the linear response function mapping stimulus to instantaneous
firing rate.
One may proceed to the second order kernel,

g2(τ1, τ2) = 〈〈y(t)x(t− τ1)x(t− τ2)〉y|x〉x = 〈r(t)x(t− τ1)x(t− τ2)〉x (2.34)

where one needs to apply the NFD formula twice [13].
Frist, to obtain

〈r(t)x(t− τ1)x(t− τ2)〉x =
∫

dt̃ C(t− τ2 − t̃)
〈
δr(t)x(t− τ1)

δx(t̃)

〉
=
∫

dt̃ C(t− τ2 − t̃)
[
〈r(t)〉δ(t− τ1 − t̃) +

〈
δr(t)
δx(t̃)

x(t− τ1)
〉]

= r0C(τ1 − τ2) +
∫

dt̃ C(t− τ2 − t̃)
〈
δr(t)
δx(t̃)

x(t− τ1)
〉
.

To the average in the second term the NFD formulas may be applied again and the final
result is expressed as

g2(τ1, τ2) = r0C(τ1 − τ2) + ∆C(τ1, τ2), (2.35a)

where
∆C(τ1, τ2) =

∫∫
dt̃dť C(t− τ2 − t̃)

〈
δ2r(t)

δx(t̃)δx(ť)

〉
C(t− τ1 − ť). (2.35b)

With Eqs. (2.35b) and (2.32) one can relate the linear and quadratic transfer functions of a
time dependent firing rate model to the first two moments of the spike-triggered ensemble.

§2.9 Summary

In this chapter we summarised some of the basic formulae on point processes, e.g., their power
spectra and passage time statistics that are use in the following text. We also introduced
the phase response curve as an important quantity in this thesis. The PRC is contrasted
to the f -I curve of a neuron. While the f -I curve characterises the response of the mean
firing rate over an interval of DC currents, the PRC characterises the response of individual
spike times for one particular DC current. The mean of the PRC is related to the slope of
the f -I curve. Later, in §6.2, we will also show that the DC component of the filter into the
instantaneous firing rate depends on the mean of the PRC.
The relation between the spike-triggered average and the PRC of a phase oscillator was
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2 From single neuron biophysics to sensory coding

also established in the absence of noise. This is a known result in the literature [37], yet
the derivation presented here uses the NFD formula circumventing a secular perturbation
of the spike times. In addition the STA and STC of neurons with intrinsic noise have been
connected to the linear response kernel and the second quadratic Volterra kernel of the
instantaneous firing rate respectively. This result will be used in Cpt. 6.
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3 Biophysical principles of a neuron’s
membrane

This chapter introduces the biophysical foundations that underlie the dynamics of action
potential generation in the neuronal cell membrane. The two aspects that give rise to the
richness of neural dynamics are nonlinearity and stochasticity. The biophysical sources of
both these elements are detailed in §3.2 and §3.3. During the exposition no particular neuron
is assumed, but instead either a generic simple membrane patch with only a subset of the
physiological ingredients or some of the classical models are used in simulations. We try to
stick to the essential principles, however keeping in mind that single neuron models can —
and often have to — be made more detailed [28].
Early on, after Hodgekin & Huxley’s description of membrane voltage dynamics with de-
terministic rate-based kinetic equations [84], real measurements showed greater fluctuations
than mere thermal noise ontop of the classic view would suggest [29]. The effects of this
noise is two fold. On the one hand, the indeterminacy corrupts the neuron as a reliable
communication channel [164, 30, 127], and on the other hand the new phenomena enriches
the deterministic dynamics, introduces additional time scales (like escape rates) and selec-
tivity in the signal-to-noise ratio (stochastic resonance [129, 146]), which may be exploited
by the nervous system to encode and process information. Progress has been made both,
in simulating neurons with microscopic channel noise sources in detailed biophysical models
[50, 66] as well as in analytic derivation of the statistical properties from simplified neuron
models [116, 117, 56].
The statistics of inter-spike intervals of an autonomous neuron, i.e., in the absence of an
external time-varying stimulus, is influenced by the nature and strength of intrinsic noise
in conjunction with the geometric arrangement and type of attractors in state space. For
example, the presence of subthreshold oscillations or bistability may introduce new time
scales and induce multimodal interspike interval distributions when noise fluctuations are
present. Many of these properties will also affect neurons with time-varying input.
In the following sections, the basics of membrane biophysics are reviewed with the goal of
separating nonlinear dynamics and stochasticity such that the latter can be interpreted as
a stochastic perturbation of a deterministic model. This allows a description in terms of
a second order phase-amplitude model in the next chapter from which the spike statistics
will be derived in Cpt. 5. More detailed on the subject can be found in textbooks such as
Refs. [104, 98, 95, 29].

§3.1 Conductance based models

Classically, the voltage dynamics of an active patch of nerve cell membrane is described
by a balance equation for the currents as well as deterministic, macroscopic reaction rate
equations for the time and voltage dependent change in conductance of the relevant ion
channels [84]. In accordance with Kirchoff’s law, capacitive, injected and all ionic currents
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3 Biophysical principles of a neuron’s membrane

sum to zero. Thus, membrane potential changes in proportion to

Cm V̇ = Iinj − Iions(V,u) (3.1a)
u̇ = g(V,u) (3.1b)

Cm denotes the membrane capacitance per membrane area, often around 1 µF/cm2. The
injected current, Iinj, is provided by an experimental electrode. It may be composed of,
Iinj = IDC +x(t), where IDC is a constant, DC input current that could elicit periodic spiking
in the neuron, as well as a time dependent component, x(t), selected by the experimenter
to probe the properties of the system. The fundamental period of the deterministic system
is set by IDC. The ionic current, Iions, is a sum of the individual currents carried through
various different membrane channels [83]. The symbol u(t) summarises a vector of gating
variables that follow first order kinetic equations and are described below.
A plethora of different channels, each with permeability to specific ions, diverse time con-
stants and voltage dependencies1, has evolved since the establishment of the major channel
families during the Cambrian explosion [83]. Hodgkin and Huxley discovered that the gen-
eration of a voltage spike can be achieved with only two types of channels, in the case of the
squid giant axon, an inactivating Na+ channel and a delayed rectifying K+ channel. The
succession of sodium channels opening with Na+-influx, membrane depolarisation, delayed
opening of the potassium channels with K+-efflux and repolarisation to the resting state,
followed by refractory time may be traversed periodically time and again, if the ionic bat-
teries that keep the dissipative process alive remain charged. This is maintained by the
electrogentic Na+/K+-ATPase, pumping ions against the electrochemical potential at the
cost of ATP.

§3.2 Nonlinearity in a membrane patch

Inspection of the current-voltage plots for biological membranes shows that there is no lin-
ear relation between membrane current I and holding voltage V as expected from Ohm’s
law. Instead the slope is voltage dependent2 g(V ). This more complicated nonlinear rela-
tion has been explained with the Goldman-Hodgkin-Katz constant field model and Eyring’s
energy-barrier model [95]. What these models do not describe is the time dependence of the
conductance g(V, t), which in turn adds to the complexity of the complete dynamical system.
The ionic current of a particular channel flows as a consequence of its conductivity to ions,
modelled by the time dependent gating kinetics, and the driving force arising from the
difference between membrane voltage and its Nernst’s reversal potential, Eion, which in
turn depends on the ionic concentrations inside and outside of the cell. So, Hodgkin and
Huxley parametrised this by separating out the potential energy that forces ions through the
membrane: V − Eion. So for the sodium channel the specific ionic conductance is

gNa+(V, t) = INa+(t)
V (t)− ENa

[mS/cm2]. (3.2)

1Many adventitiously equipped with different regulatory controls such as sensitivity to neuromodulators and
metabotrophic second messenger cascades.

2Actually, as the conductance is related to changes between the conformational states of membrane channel
proteins it is affected by temperature, pH, voltage, ion concentration, phosphorylation, or ligand binding.
Yet, it is common to assume all parameters save the voltage are constant on the time scale in question
(milli seconds to seconds).
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§3.3 Stochasticity in a membrane patch

Furthermore, the Hodgkin-Huxley (HH) model introduces gating particles as part of the
transmembrane pore that themselves follow an energy barrier model (like the transmembrane
ions in Eyring’s model) and determine the conductance state of the model—conducting or
non-conducting in the simplest cases. The time dependence of the conductance in then
described by first order kinetic equations for the gating particles.
For the case of the giant squid motor axon the HH model formulates

Iions(V, [m,h, n]) = ḡNam
3h(V − ENa) + ḡKn

4(V − EK) + ḡL(V − EL), (3.3)

for sodium, potassium and an unspecific leak current carried primarily by Cl− ions. The
conductances are composed of the maximal conductance ḡ per cm2 and time varying gating
particles describing the percentage of channels in a conducting state.
To summarise, the major source of nonlinearity in active nerve membranes is the fact that
transmembrane proteins alter their conductance for ions in response to a voltage signal and
this alteration is supposed to be governed by first order kinetics.

§3.3 Stochasticity in a membrane patch

The presence of non-deterministic components in the membrane voltage dynamic was clear
from early on recordings of end-plate potentials in the neuromuscular junction [29], even
though the AP was and is commonly described by deterministic rate equations. This spike
jitter was also quantified by investigations into the waiting time between spikes [183]. In prin-
ciple, the noise source can be intrinsic to the neuron or inherited from an already stochastic
synaptic input activity, possibly generated by a vast network of presynaptic neurons. Noise
causes the timing of spikes to jitter, which is often quantified by the distribution of waiting
times between spikes. Which biophysical noise sources contribute most significantly to spike
time jitter has been subject to debate. While in the central nervous system network noise
does play a mayor role, in the sensory periphery the dominant sources are intrinsic to the
receptors and primary sensory neurons [43].
The white noise present in all electrical conductors, also in the cell membrane, is called
Johnson-Nyquist noise. It is due to the thermal agitation of the charge carrying ions and
depends on temperature. It can not be removed, only reduced by narrowing the band width
(changing the membrane time constant). Yet, one may often neglect it, as it is of a small
magnitude compared to the other noise sources present in neural systems [126, Table 2].
A more prominent source of noise is the stochastic activity of the finite amount membrane
channels.
Aside this quantitative arguments about the relative magnitude of the noise sources a further
reason to focus on channel noise is because as opposed to thermal noise it can be controlled
by cells. The channel densities are under the regulatory control of the cell and, in fact, vary
in different membrane areas. It is known that on the order of minutes neurons can actually
change their channel densities and researchers have devised current-clamp stimuli to track
the number of expressed channels in a cell [42].

§3.4 Channel noise

Channels open and close stochastically. The closed-state and open-state conformation are
known individually for several channels [124]. An all-atom molecular dynamics simulation of
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3 Biophysical principles of a neuron’s membrane

the delayed rectifier K+ channel, has recently provided more insight into the conformational
changes between states [93]. Still, most of the evidence for the functioning of ion channels
and their detailed kinetics is drawn form indirect experimental settings such as voltage clamp
and patch clamp techniques [139, 138]. Direct and indirect insights into channel structure
motivate the idea that channels reside in distinct discrete conformations, which are associated
with conducting or non-conducting states.
Despite the lack of direct observation of state changes in all channels, mathematical mod-
els can help explain measured current noise. In particular, the spectral density of differ-
ent Markov models with various state configurations (Lorentzian in the two state model,
cf. [184, Cpt. 8]) can be compared to experimental data, facilitating the deduction of the
most appropriate model structure. It turns out that many of the statistical properties of the
measurements can be met with Markov channel models [139].
The transitions between these states are statistical in nature and for a finite number of
channels the effect of these jumps will be perceivable on a macroscopic level. The simplest
assumption one can make is that state transitions are Markov. The Markov assumptions
states that once a channel resides in a particular state it is of no consequence through which
path it was reached, only the transition rates leaving the state probabilistically dictate what
happens next. Even if these assumptions were violated, say that both the path mattered
and the transitions show multi-exponential behaviour, equivalent Markov schemes could be
found by increasing the state space.
The non-stationary noise variance associated with the channel activity has been derived
several times from different perspectives, e.g., by analysing the Bernoulli distribution of
individual two-state channels [29] or by simplifying the master equation of a more compli-
cated multi-state Markov channel [50]. Intuitively, one can argue that in regions where the
derivative of the steady state activation curve is large one expects the noise to be strong.
We present now the basics of Markov models for ion channels, following roughly the content
of Refs. [50, 68]. A comparison between some of the different approaches to model channel
noise can be found in Refs. [69, 131].
Both gene sequencing and X-ray crystallography have revealed that many transmembrane
channels are constructed of repetition of identical subunits [83, Cpt. 13]. As an example
consider the delayed rectifying K+ channel, which consists of four subunits. The channel
is conducting, if all subunits are in the open state3. Denote the number of channels with i
open subunits as Ni ∈ N. The number of channels in the actual conducting state is N4. The
Markov chain describing an individual K+ channel is

N0
4αn


βn

N1
3αn


2βn

N2
2αn


3βn

N3
αn


4βn

N4 (3.4)

All opening and closing rates depend on the actual membrane voltage, V , and thus the
steady state distribution over the states as well as the first passage probability to the open
state depend on V , too.
The assumption underlying these one step schemes is that the probability of two or more
subunits changing their conformation simultaneously, i.e., within one small time interval, is
negligible. As a consequence, state transition such as the one from N2 to N4 directly are
excluded, only permitting the route via the intermediate state N3.
The diagrammatic description in Eq. (3.4), translates to a balance equation, called the master

3The view that of channels are composed of interacting subunits that can changing between discrete and
finite set of conformational states is classic [95].
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§3.4 Channel noise

equation4, that describes the dynamics of the transitions between states

Ṅ = Q(V )N , where N = [N0, . . . , N4]T. (3.5)

The matrix Q is the 5 × 5 transition matrix. The number of channels in the 5 different
states are lumped into the vector N , with the coefficients summing up to the total number
of K+ channels in the membrane patch. The one step property translates into a tridiagonal
transition matrix for the K+ channel from Eq. (3.4), where the terms on the diagonal are
the rates at which the current state is left

QK =


−4αn βn 0 0 0
4αn −(3αn + βn) 2βn 0 0

0 3αn −2(αn + βn) 3βn 0
0 0 2αn −(αn + 3βn) 4βn
0 0 0 αn −4βn

 (3.6)

In fact, one only requires a 4 × 4 submatrix of Eq. (3.6), because the 5th state, say N0, is
uniquely defined by the conservation of the total number of channels

∑
kNk = NK+ . The

entries of the submatrix can be written as

Qjk = (1− kβ − (4− k)α)δj,k + kβδj,k−1 + (4− k)αδj,k+1. (3.7)

Similarly, the transition matrix for the Na+ channel can be extracted from Eq. (3.9). It can
be found in Ref. [68, Appendix B]. Due to

∑1
j=0

∑3
k=0Mjk = NNa+ it requires 7 states, so

that all together the dimension of the state space of the HH model with detailed channel
kinetics is 12.
Defining the relative number of channel in state i as qi = Ni/NK+ and considering the
tridiagonal structure of Q, the state transition dynamics of Eq. (3.5) may be written as

q̇k =
4∑
j=1

[Qkjqj −Qjkqk] = Qk,k+1qk+1 +Qk,k−1qk−1 − (Qk+1,k +Qk−1,k)qk. (3.8)

The sodium channel has an additional inactivation gate compared to the K+ channel. The
state diagram reads

M00
3αm


βm

M01
2αm



2βm
M02

αm



3βm
M03

βh��αh βh��αh βh��αh βh��αh

M10
3αm


βm

M11
2αm



2βm
M12

αm



3βm
M13

(3.9)

How do we get from the microscopic description with thousands of channels to a macroscopic
model? If the number of channels NNa+ , NK+ → ∞ or the membrane patch size A → ∞,
a deterministic conductance based model should emerge. With a large but finite number
of channels one may employ different expansions to change from the master equation to an
approximate Langevin equation, then called the chemical Langevin equation, or equivalently
a Fokker-Planck equation (see also Ref. [61, Cpt. 7]).
The history of approximating Chapman-Kolmogorov (CK) equations with diffusion equations

4It is the differential version of the Chapman-Kolmogorov equation.
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3 Biophysical principles of a neuron’s membrane

like the Fokker-Planck equation goes back to 1905 and Einstein’s coarse graining argument.
The main focus in later years was on truncation of Kramers-Moyal expansion and van Kam-
pen’s system size expansion [186, Cpt. 9]. Although the former seems more ad hoc, this
chemical Langevin equation has the benefit of being applicable to systems with multiple
stable states [65].
For further discussions on detailed channel models see Refs. [95, Cpt. 10], [104, Cpt. 8] and
[78].

§3.5 Large membrane patches

Approximating a channel Markov scheme by stochastic differential equations speeds up sim-
ulations and simplifies the implementation of membrane dynamics [115]. Our motivation,
however, is to open the door for a different set of analysis methods, in particular, pertur-
bation methods and phase reductions, which rely on a deterministic limit cycle oscillator to
be identified. So the reason here, for approximately convert the nonlinear master equation
describing the channel dynamics into a Langevin equation is that the latter squares with the
phase reduction mechanism.
In a master equation, see Eq. (3.5) or (3.8), there is no distinction between deterministic
and stochastic parts of the dynamics. The whole system advances by small jumps occurring
statistically according to an exponentially distributed waiting time. The representation in
terms of a SDE, however, differentiates the fluctuations from the deterministic dynamics —
separated into drift and diffusion terms, which is exactly what we need to proceed with the
phase reduction in Cpt. 4. Although the presumption of what in the dynamics is noise and
what is deterministic is arguably arbitrary, van Kampen’s system size expansion introduces a
formal way to separate out noise and at the same time have a macroscopic deterministic law
emerge. Interestingly, there are many examples, the HH equations being one of them, where
the macroscopic laws where historically discovered first and the microscopic underpinning in
terms of jump processes was given later [83]. The system size expansion [186, Cpt. 9] could
also be applied to conductance based models separating deterministic and stochastic dynam-
ics. However, concern has been voiced that in the case of systems with multistability this
strict divorce of deterministic and stochastic dynamics can produce artefactual results, i.e.,
the deterministic dynamics converging to one fixed point while in the original system there
would be a hopping between the different attractors [65]. As, particularly the HH model of
the squid is known to show multistability at onset [76] as well as several other neuron models,
one should opt for an approach that waives the segregation of the determinstic dynamics
in part. More specifically, in van Kampen’s approach drift and diffusion coefficients depend
on realisations of a deterministic equation. Once the deterministic equation is converged to
a fixpoint it remains there and the stochastic system, though fluctuating, is trapped in the
vicinity, while more faithful results for multistable systems are obtained if drift and diffusion
depend on the random state variables themselves.
Mathematically, a jump Markov process is approximated as a continuous Markov process
[64, 65]. The biophysical interpretation is that the numbers of channels in particular con-
formational states are converted in to concentrations of channel-states, and at the same
time the discrete transition between conformations is approximated by drift and diffusion
between the channel-state concentrations. For completeness we replicate these classical meth-
ods [48, 186, 64] that has been applied to channel kinetics in Ref. [50]. There are in fact two
important steps taking place, (i) the discrete variable is converted into a continuous, and
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§3.5 Large membrane patches

(ii) the non-linear master equation is approximated by a diffusion process.

We take the K+ channel as an example. The vectorN , as defined in Eq. (3.5), summarises the
number of channels in the states Ni with i gating particles open. According to the Diag. (3.4)
the state vectorN can change through 8 different reaction channels (the redundant state N0
is not explicitly included). Each reaction j is accompanied by a stoichiometric state-change
vector νj , which for one reaction step increments and decrements the appropriate elements
of the state vector N . In our case of simple „monomolecular reactions” they simply are

ν1 =


1
0
0
0

 , ν2 =


−1
1
0
0

 , ν3 =


0
−1
1
0

 , ν4 =


0
0
−1
1

 ,
and νj+4 = −νj for j = 1, . . . , 4. Based on the law of total probability and the fact that
reaction events are disjunct and exhaustive [81], the evolution of the probability density of
states is described by the following balance equation (called the chemical master equation
[186, 63])

ṗ(N) =
8∑
i=1

Wi(N − νi)p(N − νi)−
∑
i
Wi(N)p(N) (3.10)

Aside from the state-change vector each reaction i is associated with a propensity functions
Wi(N) that give the probability Wi(N(t))dt that the reaction occurs in the small time
interval [t, t+ dt). They are related to the entries of transition matrix in Eq. (3.6) by

W1(N + ν1) = (N0 + 1)Q10 W5(N + ν5) = (N1 + 1)Q01

W2(N + ν2) = (N1 + 1)Q21 W6(N + ν6) = (N2 + 1)Q12
...

...

(3.11)

and Wi(N) = Ni−1Qi,i−1 for i = 1, . . . , 4 and Wi(N) = NiQi−1,i, for i = 5, . . . , 8. With this
definitions one can flesh out the general master equation with the transition probabilities of
the K+ channel

q̇(N) =
4∑

k=1

[
(Nk+1 + 1)Wk,k+1q(N + νk) + (Nk−1 + 1)Wk,k−1q(N − νk)

− (Nk−1Wk,k−1 +NkWk−1,k)q(N)
]
.

(3.12)

Turning back to the general form of the master equation, one notices that the effect of
the state-change vector in Eq. (3.10) can be couched in terms of the shift operator on
a finite dimensional space vector space, Ff(N) = f(N + ei). The infinite dimensional
counterpart of the shift operator is made use of in the derivation of the NFD formula in
A.1 and Refs. [101, 102]. For continuous variables, the shift operator is defined in terms of
differential operators. Strictly, this would not apply toN ∈ N4, yet we will now approximate
the jump Markov process with a continuous Markov process. Observing that the Ni’s are
extensive variables scaling with the membrane area under consideration, one defines the
intensive variable ni, which is the two dimensional analogue of a chemical concentration, as
Ni = Ani. In the limit ni = limA→∞Ni/A it will approach a continuous variable ni ∈ R
(become dense in R) and the concentration n will follow a deterministic rate equation. But
even in large but finite membrane patches ni can be well approximated as continuous, with
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3 Biophysical principles of a neuron’s membrane

better agreement the larger A. From the definitions of the propensity functions in Eq. (3.11)
one concludes that the change to extensive variables yields Wi(N) = AW̃i(n). Rewriting
the master equation in „concentration form” and utilising the shift operator leads to the
Kramers-Moyal expansion

ṗ(n) = A
8∑

k=1

[
exp(−A−1νk · ∇)− 1

]
W̃k (n) p (n) , (3.13)

where the change of variables to intensive ones was also applied to the probability den-
sity, A−4p(n) = q(N). The lowest terms in this expansion are of order A0 followed by
A−1, A−2, . . ..
The membrane area A is the expansion parameter and by assumption A−1 is small so that
one may truncate the Kramers Moyal expansion at second order ignoring all O(A−2) terms
(this is the linear noise approximation) one arrives at

ṗ(n) = −
8∑

k=1
νk · ∇W̃k (n) p (n) + A−1

2
8∑

k=1
(νk · ∇)2W̃k (n) p (n) . (3.14)

The first term will be connected to the drift and the second to the diffusion part of the FPE.
Writing out the terms of the drift part of the equation yields

8∑
k=1

νk · ∇W̃k(n) = ∂n1Q10n0 + (−∂n1 + ∂n2)Q21n1 + (−∂n2 + ∂n3)Q32n2 + . . .

− ∂n1Q01n1 + (∂n1 − ∂n2)Q12n2 + (∂n2 − ∂n3)Q23n3 + . . . .

From this one can identify all the rows of the matrix product ∂ni(Qi,i−1ni−1 − (Qi+1,i +
Qi−1,i)ni +Qi,i+1ni+i showing that the drift can actually be written as

8∑
k=1

νk · ∇W̃k(n)p(n) = ∇ · (QKn)p(n).

Now, one can rearrange the terms of the diffusion part to obtain a representation in terms
of diffusion matrix DK

8∑
k=1

(νk · ∇)2W̃k(n) =
∑
i,j

= ∂ni∂njD
K
ij . (3.15)

The entries of the matrixDK orDNa can be found in Ref. [68] and are reproduced in App. B.
The corresponding system of Itō SDEs is, as stated in [49, 68, 69]

CV̇ = I + gL(EL − V ) + gNam13(ENa − V ) + gKn4(EK − V )

ṅ = QKn+
√
DK ξK

t

ṁ = QNam+
√
DNa ξNa

t

(3.16)

The matrix square root operation is denoted by
√
D. The gating SDEs are similar to

the multidimensional Ornstein-Uhlenbeck process, with the drift being linear in n and m,
however, the diffusion matrix is state dependent, too. If the continuum limit A→∞ is taken
the gating states follow a linear ODE system which collapses to the original HH equations,
[26, Cpt. 5]. This is due to the particular property of the transition rates in the state
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§3.5 Large membrane patches

Fig. 3.1: Voltage path of the channel SDE for the squid giant axon. The membrane patch is of size
A = 20µm2 with %K+ = 3 × 108/cm2 and %Na+ = 3 × 109/cm2. This leads to an ISI
distribution with CVISI = 0.313. The phase portrait on the right is a slice view into V -n4
plane and shows the excursion around the deterministic limit cycle (grey).

diagrams (3.4) and (3.9), where the transition rates are just multiples of the same basic rate
functions α and β. Of course, one could envisage more complicated channels in which all
transitions rate functions are unrelated to each other and the deterministic ODEs would not
simplify so drastically.
In the following and particularly for the phase reduction the Stratonovic’s stochastic calculus
is more appropriate than Itō’s. The conversion induces an additional noise related term to
each component i of the drift [61]

−
∑
jk

[√
DK

]
jk

(
∂

∂nj

[√
DK

]
ik

)
. (3.17)

As this term is proportional to (A%K+)−1 and thus small by assumption it has been suggested
in Ref. [49] that one may drop it without significant loss of accuracy. We will follow this
suggestion. As the term really vanishes in the A → ∞ limit this amounts to saying that
the deterministic system for which we calculate PRCs in later chapters is defined as the
continuum limit system not the actual deterministic part of the Stratonovic’s channel SDE.
A simulated realisation of the stochastic process for the voltage variable in the HH system is
depicted in Fig. 3.1. The noise is visible in the irregularity of the voltage trace, manifests as
departure around the deterministic limit cycle of the (A→∞)-system and induces a waiting
time distribution of between spike times with a CVISI = 0.313. The voltage trace in the
A → ∞ case is equivalent to the one produced by Hodgkin and Huxley’s rate based ODEs
[26, Cpt. 5].
To conclude the paragraph, the objective of converting the Markov scheme to an approxi-
mated SDE, separating the deterministic limit cycle from its noisy perturbations, has been
reviewed. The procedure exemplified with the rectifying K+ channel can be applied to ar-
bitrary complicated Markov schemes in the format of Eqs. (3.4) and (3.9) and always leads
to an approximating SDE.
If the whole set of SDEs in Eqs. (3.16) is represented formally as

v̇ = f(v) +
√
Dc(v) ξt, (3.18)

then the structure of the diffusion matrix Dc is in fact block diagonal with no correlations
between different channels, but with indeed correlations within the different states of one
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channel type

Dc =
(
DK 0
0 DNa

)
. (3.19)

This will lead to the fact that to very first order the phase noise has additive contribution
from the individual channel types.
Also note that the matrix square root,

√
Dc, is block diagonal. This follows from the more

general fact that for matrix valued functions f that operate on the spectrum of a matrix
one has f(A) = diag[f(A1), f(A2), . . .] for all block diagonal matrices A = diag[A1,A2, . . .]
with Aj ∈ Ckj×kj .

Two state channels and gating noise simplification

In Ref. [50] further simplifications were proposed in order to shrink the state space dimension
of the resulting SDE back to the dimensionality of the original HH equations. It was shown
in subsequent articles that it these approximations alter some of the statistical behaviour,
when compared to the full Markov channel models [131, 115, 68]. However, we may note
that if the channel is described by a two state Markov model the approximation in Ref. [50]
is valid. This corresponds to the case where the deterministic equations do not raise the
gating variables to powers. Such a model is for example the Na+/K+ model in Ref. [92] the
SDE describing the channel noise is then

CV̇ = I − ḡNam∞(V )(V − ENa) + ḡKn(V − EK) + ḡL(V − EL),
ṅ = (n∞(V )− n)/τn(V ) + σn(V ) ξt,

(3.20)

where m∞ = am/(am + bm), n∞ = an/(an + bn), τn = 1/(an + bn) and the noise variance is
given by

σ2(V ) = anbn
A%K(an + bn) .

Here A is the size of the membrane patch and %K the channel density for potassium.
We will use the deterministic limit of this simplified model to exemplify isochrons in 2d,
cf. §4.1, and as a model for the noise induced frequency shift, whenever the hight dimensional
HH and TM models are not feasible.

Unitary conductances

The magnitude of channel noise is related to the membrane area that contributes to spike
generation, e.g., the extent of the axon hillock, and the channel density in that area. In
general, the channel density can vary greatly, from about one voltage-gated sodium channel
per square micrometre in some dendrites, to hundreds of them in the axon hillock and initial
segment, or even 1000 sodium channels per square micrometre in the nodes of Ranvier. The
densities are closely regulated through mechanisms involving the cytoskeleton.
The conductance of a single ion channel depends on its molecular structure and will dictate
how many channels are required to obtain a certain maximal conductance measure by voltage
clamps. The unitary conductance of different potassium channels varies from femto siemens
to hundreds of piko siemens [151]. Common unitary conductances for the squid axon are
γK = 12 pS for K+ and γNa = 4 pS for Na+ channels [83], and we will use them throughout
this document.
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§3.6 Summary

The parameters of a conductance based model are not independent of each other, some can
only be varied in conjunction with others. The unitary conductance is partly related to the
channel width, which when changed will also have an effect on open and closing kinetics. One
would also guess that the selectivity of the channel to a specific ion type is reduced when pore
size, and thus unitary conductance, is varied. A parameter that can be altered precisely by
the cell without changing kinetic parameter of the individual channel is the channel density
in the membrane area. The assumption of course being that channels are independent units,
which is challenged by studies of ion channel cooperativity [189]. A further parameter that
varies naturally or in experiments is the overall temperature of the system.

§3.6 Summary
For the most part the derivations in this chapter followed the literature on approximating
master equations of jump processes with stochastic differential equations. We focused on
the fact that separating out the fluctuations from the deterministic flow field paves the way
for the formal phase reduction in the next chapter. Although the method reviewed in this
chapter was exemplified with the K+ channel it can be applied to a vast class of channel
Markov model, with even more complicated state transition diagrams, than the one for the
Na+ channel in Diag. (3.9).
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4 Phase reduction of conductance based
limit cycle oscillators

Models for neuron, even single-compartment models, can be complex and depend on many
variables. In this chapter, we describe a change of variables that can be applied to any
regularly firing neuron, so that the oscillatory dynamics is described by a phase and possibly
several radial variables. The structure of the resulting equations are universal and do not
depend on the particularities of the original conductance based model. This change of rep-
resentation has the added benefit that defining the threshold for the spikes and determining
the spike times is straightforward and uncomplicated. Hence, simple phase equations are
commonly used in neuroscience [188, 176, 166, 88].
As it was stressed in §2.7, the ISI variance is a second order quantity, and so in principal
requires a second order phase equation, not to miss any second order effects from the original
conductance based model. Higher order phase reductions where formalised by Kuramoto in
Ref. [105, Cpt. 4]. In this approach one considers the fluctuation in the SDE Eq. (3.16)
as perturbations to the deterministic LC oscillator. We pick up the general form from last
chapter, Eq. (3.18), and rewrite it as

v̇ = f(v) + η(v, t), with for η = 0 the stable LC solution v0 : v̇0 = f(v0). (4.1)

In general, the perturbations to the deterministic conductance based equations can be the
result of internal (channel) noise, D(v)ξ(t), or time dependent external current stimulation,
x(t), affecting the voltage dimension. The structure of the perturbation is then

η(v, t) e.g.= Dc(v)ξ(t) +

x(t)
0
...

 , (4.2)

where Dc follows from the biophysical considerations in Sec. §3.5. In the following η is of
small magnitude.

§4.1 Isochrons
Before starting on the principled phase reduction it is worth pondering a differential geomet-
ric interpretation of the phase variable advocated in Ref. [187], for it also allows a geometric
interpretation of the phase response curve, introduced in §2.5.
Isochrons are (n − 1)-dimensional level sets or fibres of the asymptotic phase that foliate
the basin of attraction of a stable limit cycle. The basin of attraction is the n-dimensional
stable manifold of the LC, which is a normally hyperbolic invariant manifold. The isochrons
can be thought as the starting points, nTp time ago, of a fibre bundle [144] that terminates
at a particular phase on the limit cycle, v0(φ1), cf. Fig. 4.1a. Each point in the basin of
attraction of a limit cycle can be addressed by the phase that it asymptotically reaches if it
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§4.2 Floquet representation

had converged back to the limit cycle

φ(x) = argmin
φ

{
lim
t→∞
‖x(t)− v0(t+ φ)‖

}
. (4.3)

In a deterministic system, the final difference for the optimal phase will actually be zero.
An orbit that allows for such a phase definition is called assymptotically orbitally stable with
asymptotic phase.
the n − 1 dimensional isochron submanifolds are the level sets of the asymptotic phase
function

I(ψ) = {x : φ(x) = ψ}. (4.4)

Adding a parametrisation of the isochrons, one finds a new phase/radial-coordinate system
that the state variables that are elements of the LC’s stable manifold can be uniquely mapped
into. State changes along the isochrons do not affect the phase, or formally for x,v0 ∈ I(φ) :
φ(x)−φ(v0) = 0. In subsequent chapters this asymptotic phase of the deterministic system
is also used to analyse weakly stochastic systems in a perturbative manner.
The isochron coordinate system is an analytical tool that is difficult to define in an experi-
mental system, in particular if they are noisy. Then, even the measurement of the asymptotic
phases would be confounded. However, as we have already seen in §2.5 in spiking systems the
particular properties of the flow field, around the spike allows one to observe the phase more
directly. We will seen in the subsequent paragraphs that a linearisation of the coordinate
system provided by the isochrons is related to the experimentally accessible PRC from §2.5.
The relation between the PRC and the asymptotic phase is seen from

φ̇ = ∇xφ(x)ẋ = ω +Z(φ)η(x, t),

where we used the equation of the simple phase oscillator Eq. (2.11). If one now requires
〈f(x),∇xφ(x)〉 = ω one can identify the PRC as the gradient of the asymptotic phase
Z(φ) = ∇xφ.
In addition, the curvature of the isochrons at their intersection with the limit cycle, which
may vary with system parameters (see Fig. 4.1c,d), is shown to be related to noise induced
shifts in the average inter-spike period or mean firing rate in §5.2.
For realistic neuron models the curvature of the transecting isochron changes constantly
along limit cycle. In the canonical Stuart-Landau equations (detailed in A.3), a simplified
models of limit cycle oscillations and the normal form of the supercritical Hopf bifurcation,
the isochrons are the Spira mirabilis (or log-spiral) shown in Fig. 4.1c,d, see also A.3.1. Due
to the symmetry of the model the isochron curvature is constant along the limit cycle.

§4.2 Floquet representation

Material for the definition of the asymptotic phase is the stability of the unperturbed stable
limit cycle in Eq. (4.1). For periodic dynamical systems stability is analysed using Floquet
theory. We provide a short introduction here, and refer the interested reader to Ref. [22].
In the deterministic system, where intrinsic noise is switched off (consider large membrane
patches with many channels), the linearised system on the LC, known as the first variational
equation, reads

Ẇ = J(t)W (t), (4.5)
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4 Phase reduction of conductance based limit cycle oscillators

Fig. 4.2: Top: Bifurcation diagram of the 12 dimensional Hodgkin-Huxley and Traub-Miles models
(black: fixpoints, solid grey: stable limit cycles, dashed grey: unstable limit cycles). Bottom:
6th lowest magnitude Floquet multipliers indicating limit cycle stability.

with Jacobian J = ∇vf(v)|v=v0(t), and periodicity J(t) = J(t + Tp). A trivial solution,
called the Goldstone mode, is W (t) = v̇ = f(v), as can be verified by insertion. Eq. (4.5)
can also be interpreted as a matrix ODE, with W ∈ Rn×n. The solution to the initial
condition W (0) = I is then termed the fundamental matrix solution to Eq. (4.5). The
Floquet normal form representation decomposes this into a periodic R(t) = R(t + Tp) and
an exponential part [106]

W (t) = R(t) etΛ. (4.6)

The matrix Λ is a constant, generally nonsymmetric matrix. The condition for which this
representation is admissible apply to many physical situations and are detailed as the Floquet
theorem [22]. If the original system is a stable limit cycle, one eigenvalue of Λ is zero, while
the others are negative. In systems of dimension n > 2 they may be complex, depending on
whether the system rotates while converging back to the LC, but doubling the basic period
renders them real. In general, the left and right eigenvalue problems are

Λwk = λkwk, and zkΛ = λkzk. (4.7)

One may order the eigenvalues in a decreasing manner, so that 0 = λ0 > λ1 > · · · , and
normalise the eigenvectors to zjwk = δjk. An example of the Floquet spectra of the HH and
the TM model are shown in Fig. 4.2. These models are the d = 12 dimensional extension
of the original equations, including the dimensions for the channel noise, see §3.4 and §3.5.
There are d Floquet exponents, with a „trivial” one being zero, λ0 = 0. Some of these can be
very negative and are not even shown in Fig. 4.2, as their evaluation is subject to numerical
inaccuracies. These numerical inaccuracies poses no problem, however, as for such negative
Floquet exponents, the attraction along the Floquet vectors is extremely fast, and therefore
we can treat the dynamics as „slaved” along these directions and ignore them.
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§4.3 Formal definition of the PRC

For further use we define the rotated eigenvectors as

Zk(t) = zkR
−1(t) (4.8a)

W k(t) = R(t)wk. (4.8b)

If rotated with R, the zero right-eigenvector, w0 points tangential to the limit cycle along
the flow-field

W 0(t) = R(t)w0 = dv0(t)
dt , (4.9)

which is just the Goldstone mode from above. An other useful identity can be obtained by
inserting the Floquet Ansatz of Eq. (4.6) into Eq. (4.5)

dR(t)
dt +R(t)Λ = J(t)R(t), and dR−1(t)

dt +R−1(t)J(t) = ΛR−1(t). (4.10)

Respective right and left multiplication with the eigenvectors yields

dW k(t)
dt + λkW k(t) = J(t)W k(t), and dZk(t)

dt +Zk(t)J(t) = λkZk(t). (4.11)

Remember that for the stable limit cycle of a HH neuron there is one λ0 = 0 and all others
are negative cf. Fig. 4.2. It turns out that the solution Z0(t), corresponding to λ0 = 0, is
exactly the classical phase response curve that was introduced in §2.5.
We will show this more clearly in the next section, in which we formalise the definition of
the PRC.
For k > 1, we may term Zk(t) the amplitude sensitivity (or susceptibility) as projecting
onto it maps perturbations of the state variables to the amplitude coordinates. Perturbation
along the amplitude directions are not neutrally stable, as they will decay with time. The
second order effects of the amplitude sensitivities on the phase will be detailed in §4.4.
Numerically, evaluations of the Zk and Wk from Eqs. (4.11) is challenging for all but k = 0,
as only then the equations are stable in either forward or backward time. For all λk < 0 the
equations have both a stable and an unstable manifold and can not be evaluated with time
integration, but require a Newton-iteration based based approach, see App. C.

§4.3 Formal definition of the PRC

Phase response curves describe how perturbations cause phase shifts in nonlinear oscillators.
They are experimentally accessible and easy to interpret (see §2.5), yet at the same time
they are mathematically well defined quantities [18, 40]. The idea is simply to replicate the
experimental definition of the PRC in mathematical terms. The derivation requires a simple
postulate that parallels the experimental definition: Assume that after a perturbation there
remains a fixed time-independent phase shift. One may take this as an observational fact,
but in fact it is a consequence of the existence of a neutral dimension with Floquet exponent
λ0 = 0. If such a time independent phase shift exists one may term it Z in general it may
be a function of the timing and nature of the perturbation. For infinitesimal perturbations,
concentrated at a single time instance it is only the time/phase dependence that remains,
i.e., Z(φ).
Again, neuronal spiking is described by Eq. (4.1). The oscillator is experimentally perturbed
by some external small amplitude stimulus η (e.g., the current from a stimulating sharp
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4 Phase reduction of conductance based limit cycle oscillators

electrode or an induced post synaptic potential with a short time constant). As mentioned,
at any given time perturbations in the W k(t) direction will over the course of one period
decay with eλkt, except for the neutral direction, i.e. perturbations along the Goldstone
mode (tangential to the LC). It is these perturbations along the zero modes that will survive
and are measurable. As the perturbation η is small one can assume that the new solution can
be written as a small perturbation of the original LC v(t) = v0(t) + u(t), where again u(t)
is small. With a first order Taylor expansion of the nonlinearities on the r.h.s. of Eq. (4.1)

v̇ = v̇0 + u̇ = f(v0) + J(v0)u(t) + η(t).

It is necessary to agree on how to geometrically measure phase shifts: Introduce a new time
variable φ(t) = t+ ∆(t) and then monitor the shift ∆ in the evolution of v

v̇ = v′0(φ)φ̇+ u̇ = f(v0) + J(v0)u(φ) + η(t)

or
v′0(φ)∆̇ = J(φ)u(φ)− u̇+ η(t)

We write J(φ), because the LC solution v0 can be one-to-one indexed by φ. With the
intention of establishing properties of Z(φ) and with the goal of isolating ∆̇, one left-projects
the above equation onto Z.

〈Z(φ),v′0(φ)︸ ︷︷ ︸
def.= 1

∆̇(t) = 〈Z(φ),J(φ)u(φ)− u̇〉 (4.12)

The term η(t) was dropped by the assumption that the perturbation is delta pulse like, and
will not further contribute to the evolution of the phase shift. As required ∆̇ = 0, from which
it follows as indicated that if 〈Z(φ),v′0(φ)〉 = 〈Z,f(v0)〉 = 1 or equals any other nonzero
constant, the r.h.s. of Eq. 4.12 must equate to zero for any nonzero u given by the dynamics
of v 〈(

J†(φ) + d
dφ

)
Z(φ)︸ ︷︷ ︸

def.= 0

,u(φ)
〉

= 0.

Unless u(φ) = 0, then it follows that

J†Z + Ż = 0. (4.13)

Hence, Z = Z0, or the PRC is the solution to the second equation in Eq (4.11) for λ0 = 0,
and thus it is the adjoint to the Goldstone mode. Eq. (4.13) is the adjoint to the first
variation of the limit cycle ODE. It can be evaluated numerically through the continuation
of boundary value problems, see App. C.

It was mentioned in §2.5 that parameters of the conductance based model that affect the
shape of the limit cycle will also alter the phase sensitivity. The normalisation requirement,
〈Z(φ),u′(φ)〉 = 1, we read from Eq. (4.12), illustrates this fact. If the limit cycle is altered,
and so its derivative, the Goldstone mode, then the PRC needs to also change to enforce the
normalisation.
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§4.4 Second order phase reduction

§4.4 Second order phase reduction

In this paragraph we transform the d-dimensional set of biophysical variables in periodic
motion to a set of variables that lends itself naturally to the definition of spike times. These
are a circular phase variable φ ∈ S, which is chosen such that it crosses 0 at a spike, and
d− 1 radial variables αk. Kuramoto [105] made the general Ansatz for the phase evolution

φ̇ = 1 + Ω(φ, t) (4.14)

With this the dynamical system in Eq. (4.1) can be written as

(1 + Ω(φ, t))∂v
∂φ

+ ∂v

∂t
= f(v) + η(v, t) (4.15)

We know that if ‖η‖ = 0 the system has the periodic LC solution, v0(t). Denote the
difference of the perturbed solution to the homogeneous limit cycle solution as u. Note that
u is the variable containing the information on the stimulus and other fluctuations. On the
limit cycle the phase uniquely addresses the state variables. Hence, the dynamics may be
decomposed as

v(φ, t) = v0(φ) + u(φ, t). (4.16)

Using this Ansatz, Taylor expanding the vector field to second order, and canceling out the
LC dynamics, yields the equation

dv0
dφ

Ω + (1 + Ω)∂u
∂φ

+ ∂u

∂t
= J(φ)u+H(φ)uu+ η(v0 + u, t) (4.17)

Again, the Jacobian of the vector field evaluated on the limit cycles has been denoted as
J(φ) = ∇vf(v)|v=v0(φ) and the Hessian as H(φ) = 1

2∇v∇vf(v)|v=v0(φ) respectively (for
brevity the tensor H has the factor 1

2 included).

As a next step, the deviations to the limit cycle are represented in the phase dependent,
rotating coordinate system as in Fig. 4.1c. Representing R−1u in coordinates of the right
eigenvectors of Λ (cf. Eq. (4.7)) amounts to

u(φ, t) =
∑
k 6=0

αk(t)W k(φ). (4.18)

Conversely the coefficients can be obtained by projecting u onto the radial susceptibilities
αk = Zk(φ)u. Recall that u(φ, t) is chosen in such a way that it has no contribution from
the w0 direction, which renders the coefficient in that direction zero, α0 = Z0(φ)u = 0. The
coefficients αk(t) represent the radial deviations in this coordinates and depends on time.
The geometric interpretation of the vector is depicted in Fig. 4.1 using the Stuart-Landau
equations, for which all modes Zk and W k can be calculated analytically, cf. App. A.3.

With this representation and Eq. (4.11) we get the identity

Zk
∂u

∂φ
= −

(
∂Zk

∂φ

)
u = (ZkJ − λkZk)u (4.19)

Left-multiplying Eq. (4.17) on both sides with Zk(φ) = zkR
−1 and using Eqs. (4.9) and
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4 Phase reduction of conductance based limit cycle oscillators

(4.19) yields

δk0Ω + Ω (ZkJ − λkZk)u+ dαk
dt

= λkαk +Zk[H(φ)uu+ η(v0 + u, t)] (4.20)

From this equation one can obtain an expression for Ω (and hence for φ via Eq. (4.14)) by
choosing k = 0 and an equation for the radial dynamics by setting k > 0.
To obtain a solvable set of equations we systematically expand the phase Eq. (4.14) as in
Ref. [105] in orders of ‖η‖

φ̇ = 1 +
∑
j>0

Ω(j)(φ, t), (4.21)

and accordingly also the quantitiesΩ
αk
u

 =
∑
j>0

Ω(j)

α
(j)
k

u(j)

 . (4.22)

Expressions for Ω to first and second order are obtained with k = 0 in Eq. (4.20) and writing
η(φ, t) = η(v0(φ), t)

Ω(1) = Z0(φ)η(φ, t) (4.23a)

Ω(2) =
∑
j,`
hj` α

(1)
j α

(1)
` − Ω(1)∑

j
gj(φ) α(1)

j +Z0∇η u(1), (4.23b)

with the abbreviations hj`(φ) = Z0HW jW ` and gj(φ) = JDW j − (Z0JW j)
√
D). JD is

the Jacobian tensor of the diffusion matrix
√
D. To evaluate these phase contributions we

need the first order amplitude dynamics which is obtained with k 6= 0 in Eq. (4.20). Together
the complete second oder stochastic differential system for phase and amplitude reads

φ̇ = ω +
∑
j,`
h(φ)j`α

(1)
j α

(1)
` +Z0(φ)

(√
D + α

(1)
j gj

)
ξ(t) (4.24a)

α̇
(1)
k = λkα

(1)
k +Zk(φ)N(φ)ξ(t). (4.24b)

In the following we will drop the explicit mentioning of α being a first order quantity, but
keep it in mind!
In Fig. 4.3 we get a first impression of the qualitative improvement in predicting the spike
timing of the Na+/K+ model, when the phase amplitude model, φ(2), is used instead of the
one dimensional phase equation, φ(1).

§4.5 Summary

This chapter described a transformation of an n dimensional biophysical system into a time-
like phase variable and possibly n − 1 radial variables Eq. (3.16). Fig. 4.1 shows that a
diffeormorphism connects the original dynamics and the phase/amplitude description. As
long as one can compute the isochrons the new coordinates can completely replicate the orig-
inal dynamics in side the domain of attraction of the limit cycle. But for higher dimensions
the isochrons are difficult to deduce and the computational load of computing them numer-
ically is large. Hence, the perturbation analysis involving PRCs and the radial sensitivities

44



§4.5 Summary

Fig. 4.3: Qualitative improvement of second order phase models in predicting spike times. The dif-
ference becomes apparent near the grey arrow. This is quantified statistically in the next
chapter. Simulations show the Na+/K+ model with parameter from [92]. All three model
use the same frozen noise path.

is the natural option as it can applied for high dimensional models.
The transformation discussed in the chapter is related to the more general Hale’s trans-
formation. In Ref. [77, Cpt. VI] a general transformation is described that is applicable
to limit cycle oscillators. It is a conformal mapping that changes the state variables to
phase-amplitude variables.

φ̇ = 1 + h1(φ,%) (4.25)
%̇ = A(φ)%+ h2(φ,%), (4.26)

where A is related to the stability of the limit cycle and h1 and h2 can in principle be
identified from the original system. Our approach is related in the sense that an additional
transformation can diagonalise A so that we can recover Eq. (4.24).
It is important to realise that, naturally, the perturbative phase reduction does have its
limitations in applicability and will not be able to capture all the phenomena of the original
models [114]. In particular, the phase as defined in the following is attributed to each
point in the basin of attraction of a limit cycle, which is why LC stability is reviewed in
§4.2. If the dynamics shows multistability, in terms of other attractors nearby in state space,
separated by a separatrix such as an unstable limit cycle in the HH equations, then the phase
description will lose its validity beyond the domain of attraction of the LC. The separatrix
forms a phase-less set as discussed in Ref. [187]. In the chapters to follow it can be seen
that useful coding properties of neurons can at least be captured by the phase reduction for
medium and small stimulus amplitudes [162].
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5 Spike statistics

Whilst §3.4 and §3.5 in chapter 3 provided a mesoscopic diffusion approximation to the
microscopic intrinsic noise sources in a neuron, this chapter takes the next step and connects
the noise in the derived Langevin equations to „macroscopic” quantities that are accessible
via recorded spike times such as moments of the inter-spike interval distribution or firing
rates. The means to this end are the phase reduction methods introduced in Cpt. 4.
Spike times can be determined from intracellular recordings with sharp electrodes or spike
sorted extra-cellular recordings, where both techniques are applicable in in-vivo experiments.
Intrinsic noise resulting from channel stochasticity can cause shifts in the frequency-current
relation resulting in a gain modulating effect.
In particular, the number of ion channels influences the neuron’s sensitivity to noise like-
perturbations [165]. We will further investigate this, by highlighting that if the noise source
is intrinsic channel stochasticity, the phase noise that accumulates within one inter-spike
interval to cause the spike jitter is captured by a projection of the high dimensional diffusion
matrix of the channel SDEs onto the gating PRCs. If peak conductances are altered they
will change the deterministic part of the neuron and thus the PRCs, as well as the channel
numbers that scale the diffusion matrix. Both effects conjointly determine the spike jitter.
In the following the spike jitter is quantified by calculating the first passage times statistics
[149, 70].

§5.1 First order spike jitter from Markov channels

A hierarchy of differential equations for the moments of the waiting time distribution of a
one dimensional threshold crossing model were given in Eq. (2.18), provided the Fokker-
Planck operator for the system is known. The equations for phase and radial coefficients
from §4.4 do not comply with this technique for one dimensional problems. But if, as a first
step, the phase reduction in Cpt. 4 is sought only to first order the result is, as required,
a one-dimensional equation that approximately describe the spike times of the biophysical
neuron model. We will postpone the inclusion of second order radial terms until §5.2, and
first deal with

φ̇ = 1 +Z(φ) ·
√
D(φ) ξt. (5.1)

The associated FPE operator (cf. A.2 or [61]) reads

F = 1
2∂

2
φσ

2(φ)− ∂φ(1− 1
2σ(φ)σ′(φ)), (5.2)

where the phase-dependent variance of the phase is given by a quadratic form of the PRCs

σ2(φ) = Z(φ) ·D(φ)Z(φ). (5.3)

The phase dependent variance will accumulate through one inter-spike interval to determine
the overall spike jitter.
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5 Spike statistics

Fig. 5.1: PRCs of in the 12 dimensional HH model, from cf. §3.5. The peak of the AP is at 0 (1).
I = 8 µA so that the neuron fires at 62.12 Hz. The left column depicts the PRCs of the K+

channel; top graph in the middle column is the known PRC for current stimulations; and
the remaining PRC are from the Na+ channel states.

Fokker-Planck equation, ∂tp = Fp, with operators similar to Eq. (5.2) arise in many synchro-
nisation related problems. For example, the case where the phase-dependent noise strength
is a simple trigonometric function, σ(φ) =

√
2 sin 2πφ, has been studied [67].

Spikes in the one dimensional phase SDE in Eq. (5.1) occur at crossings of φ = k for k ∈ Z.
In principle, this induces periodic boundary conditions for the FPE, ∂tp = Fp, if we take
the domain modulo 1 so that φ ∈ [0, 1). As the noise is bidirectional, a crossing of the spike
in the direction of increasing phase could be followed by a crossing in the opposite direction,
see discussion revolving around Eq. (2.12) and Ref. [174, Cpt. 1, Sec. 2]. Spikes in very
quick succession (a ”burst”) could occur, as the dynamical system recrosses the threshold
in the positive direction. Chapter 1 of Ref. [174] also offers a strategy on how to calculate
the time between such bursts, relating it back to the classical waiting time distribution.
The probability of such burst events can also be diminished by the appropriate choice of
threshold, i.e., by placing it in a region where the intrinsic dynamics are fast, and the phase
response curve and phase noise sensitivities are close to zero. A consequence of the small
noise assumption is that changing the boundary conditions from periodic to reflecting at the
lower, φ = 0, and absorbing at the upper end, φ = 1, gives comparable results and avoids the
burst effect. In fact, in Ref. [174] Stratonovich has arrived at a formula for the inter-burst
waiting time, which is the inter-spike time if we do not wish to define each crossing in a
burst as a separate spike, that is similar to the normal first passage time with absorbing and
reflecting boundaries.

Therefore, one may approximately use Eq. (2.18) with F† as the adjoint of Eq. (5.2). The
equation for the moments, Tn, of the ISI distribution, Eq. (2.18), can be cast into a set of
coupled first order ODEs. With the auxiliary variables Sn = dTn/dφ the ODE system for
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§5.1 First order spike jitter from Markov channels

Fig. 5.2: (a) and (b) show the two terms, σ2
Na+ and σ2

K+ of the phase-dependent phase noise variance,
σ2(φ), cf. Eq. (5.5), that are associated with the Na+ (b) and the K+ (a) part of the channel
diffusion matrix. The differently coloured lines depict different Na+ channel densities. The
membrane area was fixed at A = 20µm2, DC current is I = 8µA, unitary conductance Na+

channel: 4 nS, K+ channel: 12 nS. Pannel (c) the mean and standard deviation of the CV
of simulated spike trains. The green solid line is the CV as predicted by solving the system
of equations in Eq. (5.4) plus the equations for the limit cycle and PRCs using continuation
software, see appendix C.

the first and second moment are

d
dφT1 = S1 (5.4a)

d
dφS1 = −2

1 +
[
1 + 1

2σ
′(φ)σ(φ)

]
S1

σ2(φ) (5.4b)

d
dφT2 = S2 (5.4c)

d
dφS2 = −2

2T1 +
[
1 + 1

2σ
′(φ)σ(φ)

]
S2

σ2(φ) (5.4d)

Treating the phase as reflecting at the lower boundary and absorbing at the upper boundary
translates to the following set of boundary conditions

T1(Tp) = 0 S1(0) = 0 T2(Tp) = 0 S2(0) = 0

This ODE system requires a solution of Z and thus also the limit cycle. The complete
system for limit cycle, adjoint equation and the moment equations can be implemented as
an autonomous system within the framework of numerical continuation, see App. C.2.
Due to the bock diagonal structure of D(φ), see Eq. (3.19), the first order phase noise splits
additively into two separate channels

σ2(φ) = σ2
Na(φ) + σ2

K(φ). (5.5)

Note, however, that this does not mean that these terms can be independently altered in a
physiological system. Even if a biophysical parameters of the conductance model affect only
one block in the diffusion matrix it also alters phase sensitivity vector Z. This leads to the
surprising phenomenon investigated in the next section.
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5 Spike statistics

§5.1.1 Changing Channel densities

In a conductance based model one has parameters of very different flavour, ranging from
kinetic parameters of the channels to reversal potentials. Some of these parameters such as
the kinetic properties are encoded genetically, but can be changed by interaction with G-
proteins or phosphorylation. Also reversal potentials can change on the time scales of seconds
depending on pump activity. The generally high turnover rate of membrane pores subjects
channel densities to a tight regulatory control of the cell’s translational and transcriptional
machinery. These changes occur on a slower time scale than the membrane dynamics, but
it is worth pondering about how changes in channel densities affect spike statistics.
Changes in channel densities will modify both the phase susceptibility to noise-like pertur-
bation of the macroscopic equations (cf. §2.5 and §4.3) and the strength of the perturbations
itself. The susceptibility of the channel states to noise is described by their PRCs, which for
the HH equations are depicted in Fig. 5.1. It can be noted that the PRCs of the K+ states
are mostly negative, meaning that a positive perturbation (increase in channel numbers of
all states) delays the timing of the next spike. As the sequence n1 → n2 → n3 → n4 is
traversed, the peak of the corresponding PRC shifts. In part the peak is located at the
position in the ISI where the proportion of open K+ channels is low, which is before the AP.
Yet, these are entirely properties of the deterministic macroscopic equations.
Surprisingly, in this model, changing the Na+ channel density has a stronger effect on σ2

K
than on σ2

Na itself, as exemplified in Fig. 5.2a,b. The coefficient of variation of the ISI dis-
tribution decreases as channel fluctuations are reduced with increasing Na+ channel density,
cf. Fig. 5.2c.

§5.2 Radial dynamics and noise induced rate shift

The ISI variance, 〈(τ sp − 〈τ sp〉)2〉, being a second order quantity requires inclusion of sec-
ond order terms in the phase evolution as discussed in §4.4. Relying only on the system’s
PRC would only strictly be valid when the radial attraction to the limit cycle is almost
instantaneous, λi → −∞.
When this assumption is violated, deviations from the predicted ISI moments result. A
change in mean or average firing rate are referred to as a noise induced frequency shift and
has been studied in idealised neuronal oscillators.
For one dimensional threshold systems such as integrate-and-fire models, which are but
Brownian motion in a potential, the shift in mean rate depend of the shape of the potential
[7]. In a single-variable phase model, on the other hand, the lowest order frequency shift
is zero if the noise is Gaussian white noise. In Ref. [58] Fernández-Galán showed that
coloured noise (instead of white) can cause a frequency shift [58]. More generally, in multi-
dimensional nonlinear systems, noise effects are subtly related to the interplay of correlation
time of the noise and the return time to the limit cycle (λ−1

i ) [177]. If the return time is
finite, then white noise, too, can cause frequency shifts [177, 188]. Actually, as the return
time is finite, white noise is effectively filtered into a coloured noise process. Particularly, if
the radial dynamics is considered along the Floquet modes, see Eq. (4.24b), the equation for
the amplitude coefficient is an Ornstein-Uhlenbeck process with diagonal drift matrix and a
state-dependent variance

α̇ = λα+Z(φ)
√
D(φ) ξt.

The application of the iterative equations for the waiting time statistics between spikes,
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§5.3 Time evolution of phase and radial density

Eq. (2.18), require a one dimensional equation of motion, e.g., only the phase. Using the full
phase amplitude equations as such would require solving a high dimensional exit problem
[149], which is more complicated. While this is in principle possible, the boundary in that case
is a hyper plane crossing the phase dimension at the defined spike phase and perpendicular to
all radial dimensions, one may opt for a simpler approach in which the phase amplitude model
is reduced to a single equation that retains the important ramifications of the amplitude
dynamics. To this end, the next two sections describes a formal reduction method that
explicitly exploits the time separation between return time and spike period.

§5.3 Time evolution of phase and radial density

The evolution of the density of state variables in the phase-radial model in SDE (4.24) is
described by a multivariate Fokker-Planck equation (see Refs. [156, 61] and App. A.2)

∂tp(φ,α) = F p(φ,α). (5.6a)

There are several ways of deriving it, each emphasising different aspects (Kramer-Moyal
expansion, kinetic view). The derivation of the one dimensional case has been reproduced
in appendix A.2, based on the NFD formula, see appendix A.1 and Refs. [185, 102].
An important simplification results from the fact that in the perturbation analysis the NFD
formula increases the order of the diffusion term in the FPE and thus the second order terms
in SDE (4.24) that involve the noise process ξi can be dropped. This involves all terms
involving products of αi and ξj , and consequently the lowest order diffusion term in the FPE
depends only on the phase, not on the radial coefficients.
The Fokker-Planck operator to second order reads

F = 1
2
∑
jk

[
〈Žj , Žk〉∂2

αjαk
− αjαk∂φhjk(φ)

]
− ∂φ(1 + 1

2〈Ž0, Ž
′
0〉) (5.6b)

+ 1
2∂

2
φ‖Ž0‖+

∑
j

[
∂φ〈Ž0, Žj〉∂αj − ∂αj (λjαj + 1

2〈Ž0, Ž
′
j〉)
]
,

in which we used the redefined sensitivities Ž(φ), which are weighted with the standard
deviation of the respective noise, channel or input related

Žj(φ) = Zj(φ)
√
D(φ).

As Eq. (5.6) neither fulfils the potential conditions nor is in detailed balance, finding solutions
is complicated and requires further approximations [61]. If the attraction time scales to
the limit cycle, λ−1

i , and period are well separated the following section provides a useful
simplification.

§5.4 Quasistatic elimination of the radial dynamics

In a deterministic limit cycle oscillator, the assumption that radial attraction is very strong
— so strong, in fact, that perturbations away are instantaneously repositioned back onto
the cycle — leads to a complete reduction to a one dimensional phase model [106, Cpt. 3].
A parallel procedure exists for stochastic systems, yet some more care must be taken. The
correlation times of the noise and the attraction time scale to the limit cycle play subtle roles
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5 Spike statistics

that need to be considered, see Ref. [177]. It is thus convenient to first transform to φ, αi-
coordinates, keeping the attraction time finite, and in a second step perform a quasistatic
(adiabatic) elimination of the fast radial dynamics. The formal procedure is also referred
to as Chapman-Enskog elimination scheme. The complete set of radial coefficients, αi, can
be vanquished, if the relevant time scale of observation is larger than 1/|λi|, where λi is the
Floquet exponent with the smallest magnitude. The time scale of interest here is about one
inter-spike interval which is in the order of Tp, hence one requires that all Tp|λi| � 1. Our
example of the Na+/K+ model fulfils this requirement over a vast interval of bias currents,
cf. Fig. 5.3.

The goal of the formal elimination procedure is to find a one dimensional ”phase only” FPE,
valid on the appropriate time scale τ

∂tp̄(φ) = F̄ p̄(φ), suitable for τ λi � 1. (5.7)

It is known from the literature that even in this limit there remains a noise induced frequency
shift even if the driving noise is uncorrelated. But so far this has only been studied in detail
for the Stuart-Landau equation [176], and there is no general numerical method to evaluate
the relevant terms in a conductance based model.

What we expect from the operator F̄ is a modification to the one-dimensional first order
phase equation, defined by the operator in Eq. (5.2), that depends on the characteristic
exponents of the radial variables, and that will cause a shift in frequency.

The basic idea is to split the Fokker-Planck operator from Eq. (5.6b) into a quickly relaxing
(large magnitude) part and the slower dynamics (small magnitude)

F = F (φ)︸ ︷︷ ︸
small

+F (α)︸ ︷︷ ︸
large

, (5.8a)

and then apply Bloch’s classical operator perturbation theory [20] to calculate the F (φ)-
perturbed eigensystem of F (α) to gain an approximate understanding of the operation of the
complete operator, F . To be more precise, one may quantify the size of the two operator
parts in terms of their spectral norm, e.g.,

‖F (α)‖ = sup
‖v‖=1

{
‖F (α)v‖

}
.

Yet, if the noise is weak this is approximately given by the Floquet exponent with largest
amplitude, ‖F (α)‖ ≈ supj{λj} and the ‖F (φ)‖ ≈ Tp

−1. This leads back to our ad hoc
assumption that the radial attraction should be faster than one period.

One must note that there is a certain arbitrariness in the decision on how to group some of
the small magnitude terms of F , e.g., the term ∂φ〈Ž0, Žj〉∂αj may be shoved between F (φ)

and F (α). This is due to the fact that adding or substsracting some small terms to a large
operator will not blemish the facts that it is large. In our scheme the term ∂φ〈Ž0, Žj〉∂αj is
formally assigned to F (α) but can be ommited as motivated below.

The strategy is to split the operator in a manner that renders the stationary radial distribu-
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§5.4 Quasistatic elimination of the radial dynamics

tion for fixed φ a multivariate Ornstein-Uhlenbeck (OU) process [178, 132]

F (φ) = 1
2∂

2
φ‖Ž0‖2 −

∑
jk
∂φ
[
1 + 1

2(αjαkhjk(φ) + 〈Ž0, Ž
′
0〉)
]

(5.8b)

F (α) = 1
2
∑
jk〈Žj , Žk〉∂2

αjαk
−
∑
j ∂αj [λjαj + 1

2〈Ž0, Ž
′
j〉]. (5.8c)

For |λi|Tp � 1 on the time scale of one period, F (α) yields fast and F (φ) slow dynamics.
Due to this assumed difference in time scales a stationary distribution of αi will equilibrate
for every φ to p0(α). This means that φ is treated as a fixed parameter so that the FPE,

ṗ(α, t) = F (α)p(α, t), (5.9)

is just the analytically well understood multivariate Ornstein-Uhlenbeck process, which is
extensively analysed in Ref. [156, Cpt. 6.5]. Now it is also apparent that for fixed φ the term
∂φ〈Ž0, Žj〉∂αj vanishes.
As the Onsager conditions [61, Cpt. 5.3.6c], which establish the existence of a stationary
solution for the general multivariate OU processes, are in our case fulfilled due to the diagonal
drift, the equilibrium density for Eq. (5.9), defined by F (α)peq(α) = 0, is just the multivariate
Gaussian

p0(α) = (2π)−(d−1)|C(α)|−
1
2 exp

(
−1

2

〈
(α− µ(α)), (C(α))−1(α− µ(α))

〉)
, (5.10)

where mean and covariance are expressions of the scaled sensitivities and the Floquet expo-
nents [178]

µ
(α)
i = 〈Ž0, Ž

′
i〉

2λi
, C

(α)
ij = 〈Ži, Žj〉

λi + λj
. (5.11)

The equilibrium density can be interpreted as the right-eigenfunction of F (α) corresponding
to the zero eigenvalue (the ground state). The left-eigenfunction of the ground state is
q0(α) = 1. The complete biorthogonal set of left/right-eigenfunctions and corresponding
eigenvalues can be expressed in the basis of Hermitian polynomials, but only the lowest
order is retained here. Due to a correspondence between the Chapman-Enskog elimination
scheme and Bloch’s classical perturbation theory of operators as highlighted in Ref. [179], the
perturbation of the ground state energy also yields the „phase only” Fokker-Planck operator,
i.e.,

F̄(φ) =
∫

dd−1α q0(α)F (φ)(φ,α)p0(α). (5.12)

The higher order adiabatic elimination process follows Bloch’s scheme too and involves the
complete set of eigenfunction qk, pk, but these terms are not used in this document. Since
q0(α) = 1, the lowest nonzero order of F̄ , Eq. (5.12), just requires averaging the operator
F (φ) over the stationary distribution of the radial variables at every φ to obtain

F̄ = 1
2∂

2
φ‖Ž0(φ)‖2 − ∂φ

[
1 + 1

2〈Ž0(φ), Ž ′0(φ)〉

+ 1
2
∑
ij
hij(φ)

〈Ži, Žj〉
λi + λj

+
〈Ž0, Ž

′
i〉〈Ž0, Ž

′
j〉

4λiλj

]. (5.13)

One may observe that phase dependent variance is the same as for the first order phase
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5 Spike statistics

Fig. 5.3: Ratio of characteristic time scale of limit cycle attraction, λ−1, and period of the determin-
istic system, Tp, for the Na+/K+ neuron. One can observe that the attraction to the limit
cycle for this model is significantly fast than one period. Such models are suitable for the
quasi-static elimination of radial variables.

equation in Eq. (5.3), so the general structure of the phase Fokker-Planck operator with
quasistatic eliminated radial dynamics is

F̄ = 1
2∂

2
φσ

2(φ)− ∂φ[1 + h̄(φ)] (5.14)

From the corresponding „phase only” FPE with operator as in Eq. (5.13) one writes the
associated Stratonovic SDE as

φ̇ = 1 + 1
2
∑
ij hij(φ)

(
〈Ži,Žj〉
λi+λj + 〈Ž0,Ž

′
i〉〈Ž0,Ž

′
j〉

4λiλj

)
+ ‖Ž0(φ)‖ ηt. (5.15)

Note that while whenever the Langevin Eq. (4.24) is driven with the same white noise
realisation as the original biophysical model the obtained spike times will actually be similar
(cf. Fig. 4.3), yet this is not true for Eq. (5.15). Here, the equivalence is only true on the
level ISI statistics. This is because the phase susceptibilities, cf. Fig. 5.1, change sign so do
the original standard deviations Z ·

√
D, and this information is lost when taking the square

to obtain variances in the FPE description. We can not expect particular spike train for
Eq. (5.15) to correspond to the full system even if one uses the same noise realisation.

§5.5 Stationary phase density

For periodic boundary conditions the equilibrium solution, F̄(φ)p0(φ) = 0, to the above
equation must have a time independent flux

J =
(
1 + h̄(φ)− 1

2∂φσ
2(φ)

)
p0(φ), with J(0) = J(Tp), (5.16)

as opposed to the natural boundary case, where the flux at the boundary vanishes. This
flux is the firing rate as motivated in §2.6. For one dimensional problems it is convenient to
express solutions in terms of the generalised potential

Φ(φ) = 2
φ∫
0

1 + h̄(ψ)
σ2(ψ) dψ. (5.17)

Now, we nilly-willy wrote down the potential without ensuring that the integral actually
exists. The main concern is the existence of a finite number of isolated poles, whenever
the phase dependent variance σ2(φ) = 0 (e.g. the PRC changes sign) at some special φ′.
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§5.6 Period change in the Stuart-Landau model with isotropic noise

This causes both analytic and numerical challenges. Analytically, chopping the integral in
to segments between poles and applying variable transformations that move them to infinity
can provide solutions. The case for σ2(φ) =

√
2 sin 2πφ has been studied [67]. Numerically,

chopping in combination with special integration methods can lead to success. Other robust
numerical technique is the use of homotopy parameters in a numerical solution using AUTO’s
collocation method [31].
Real poles are likely to appear whenever noise is present only in a single dimension (degen-
erated diffusion), because the PRC of that dimension may cross zero. In such a case the
integrability depends on how the PRC approaches zero and one may need to resort to resid-
ual integration of the complex augmented integrand. If however several or all dimensions of
the biophysical model contribute to the phase noise, which is likely in a neuron where typi-
cally several channels species with different kinetics are at work as well as Johnson-Nykquist
noise (cf. §3.3), then it is unlikely that the PRCs of all dimensions cross zero at the same
phase. In fact, if the flow field of the r.h.s. of the conductance based model, which also is the
Goldstone mode, is well behaved (differentiable and bounded), then the norm of the PRC
can not be zero and thus not all components of the PRC can be zero an the same time. More
precisely, if there is a real finite positive number M such that the norm of the flow field is
bounded ‖v̇(φ)‖ 6 M < ∞, ∀φ, then form our chosen normalisation, ω = 〈Z, v̇〉 and the
Cauchy-Schwarz inequality it follows 0 < ω

M 6 ‖Z‖.
If the potential exists, then aside from a normalisation, the stationary density can be ex-
pressed as [156]

p0(φ) ∝
φ∫
0

dθ eΦ(φ)−Φ(θ)−Φ(Tp) +
Tp∫
φ

dθ eΦ(φ)−Φ(θ)−Φ(0). (5.18)

Also one may check by insertion that

p0(φ) ∝
(
c− 2J

φ∫
0

dϕ e−U(ϕ)
)
eU(φ)/σ2(φ), (5.19)

satisfies Eq. (5.16). The constant can be fixed to c = p0(0)B(0) by evaluating the equation
above at φ = 0, where p0(0) itself has to be chosen to meet with the normalisation condition∫

dφ p0(φ) = 1. But prior to that let the flux J be brought to agree with the periodic BC,
p0(0) = p0(Tp), which results in [61, 156]

J = p0(0)B(0) 1− e−U(Tp)

2
∫ Tp

0 dϕ e−U(ϕ)
(5.20)

All relevant quantities are integrals over one period of the limit cycle oscillator and can be
determined numerically within the continuation of BVPs frame work, cf. App. C. This allows
us to easily determine both the firing rate J as well as the stationary phase density p0(φ).

§5.6 Period change in the Stuart-Landau model with
isotropic noise

To illustrate the relation between the noise induced second order frequency or mean period
shift and the curvature of the isochrons one may consult a simple pair of equations, which
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Fig. 5.4: Simulation of the Stuart-Landau model with isotropic noise in the Cartesian coordinates.
The model with linear radial isochrons shows no shifts in the mean ISI for increasing noise
(◦,[a, b, c, d] = [1, 1.01,−1,−0.01]). Positive curvature of the isochron in the W1, Z0 coordi-
nates leads to an increase in spike period with noise strength (4,[a, b, c, d] = [1, 3,−1,−2]),
while negative curvature reduces the spike period (5,[a, b, c, d] = [1,−1,−1, 2]).

exhibit a limit cycle oscillation, yet allow analytic treatment. These are the Stuart-Landau
equations, the normal form of a supercritical Andronov-Hopf bifurcation [92]. Augmented
with intrinsic noise the two dimensional mode reads

d
dt

(
x

y

)
=
(
ax− by + (cx− dy) (x2 + y2)
ay + bx+ (cy + dx) (x2 + y2)

)
+D

(
ξ1(t)
ξ2(t)

)
, (5.21)

whereD is a 2×2 diffusion matrix. A more detailed analysis can be found in many textbooks
on nonlinear dynamics and is summarised for reference in App. A.3. The supercritical Hopf
bifurcation is typical for the excitation block that terminates repetitive spiking in neurons.
The onset bifurcation for spiking if a Hopf bifurcation is usually subcritical yielding an
unstable LC, tailed by a fold of limit cycles which results in a stable spiking orbit.

Assuming the noise has a constant, isotropic variance in the Euclidean coordinates,D = ς2I,
one only requires the following quantities to calculate the stationary phase density, firing rate
and ISI statistics. Phase noise, Floquet exponent and curvature related term are

σ2(φ) = 〈Z0|D|Z0〉 = −ς2 c(c2 + d2)
a(bc− ad)2 , λ = −2a, h = 4d(c2 + d2)

c(bc− ad) .

The norm and dot products between Floquet modes are

‖Z1‖2 = ς2, 〈Z0,Z
′
0〉 = 0, 〈Z0,Z

′
1〉 = ς2

√
− c
a
,

which renders the quasistatic phase FPE to have a constant drift and diffusion

ṗ = −c
2 + d2

ac
∂2
φp−

[
1− 2

c
(c2 + d2)

(
d

2ac + d(bc− ad)2

4a3c2

)]
∂φp. (5.22)
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Fig. 5.5: Noise induced frequency shift in the Na+/K+ neuron. The figure shows the difference
between the f -I curve of the simulated stochastic model and the deterministic neuron,
where f = Nspikes/Tsim and Eq. (5.27).

The generalised potential is linear

Φ(ψ) =
(

2d
c

+ d(bc− ad)2

(ac)2

)
ψ

and the period can be calculated as Tp = 2π
(b−ad/c) .

As a consequence the stationary phase density is uniform, p0(φ) = 1/Tp. The firing rate,
Eq. (5.16), simplifies to

r0 = J = 1 + h̃

Tp
, (5.23)

which tells us that the shift is actually given by the sign and magnitude of the term

h̄ = 1
2h

(
ς2

2λ + ς4A2

4λ2

)
,

where A =
√
−a/c is the amplitude of the LC.

Anisotropic noise leads to a sinusoidal modulation of the noise variance in the phase dynamics
as well as a nonuniform phase density.

§5.7 Noise induced frequency shifts and f-I curves

Ref. [177] calculated the phase shift in a limit cycle oscillator induced by stochasticity. The
actual calculation of the term was however restricted to the Stuart-Landau equations. This
section expresses this term through the Floquet-models which can be obtained numerically
via an efficient procedure (cf. App. C).
The average frequency of a noisy oscillator can be defined by the following ensemble average
over different realisation paths [9, Cpt. 7.7]

r0 = 〈φ̇(t)〉 = 1
Tp

lim
τ→∞

1
τ

τ∫
0

dt φ̇ = 1
Tp

Tp∫
0

dφ φ̇ p0(φ) (5.24)
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In principle, we have an expression for the steady state phase density in Eq. (5.18), but a
more intelligible expression firing rate shift can be found if we content ourselves with a lowest
order approximation following Ref. [177]. One can take a power series Ansatz in orders of
the noise variance σ2, p = p

(0)
0 + p

(2)
0 + · · · . Insertion into F̄p = 0 leads to

O(σ0) : p
(0)
0 (φ) = c0

O(σ2) : p
(2)
0 (φ) = c0

2

(
∂φ‖Ž0‖2 − 〈Ž0, Ž

′
0〉 − hij

〈Ži, Žj〉
(λi + λj)

)
+ c2.

The integration constants can be determined by the normalisation condition, enforced at
each cumulative order. We denote the phase density up to order O(σ2) as p(σ2)

0 = p
(0)
0 +p

(2)
0 ,

it then reads

p
(σ2)
eq (φ) = 1

Tp

(
1 + 1

2〈Ž0, Ž
′
0〉 − 1

2
∑
ij hij(φ)

(
〈Ži,Žj〉
(λi+λj)

)
+ Ω2

)
, (5.25)

where the normalisation integral is

Ω2 = 1
Tp

Tp∫
0

dφ
∑
ij
hij(φ)

(
〈Ži, Žj〉
(λi + λj)

)
. (5.26)

Using this and p0 = p
(σ2)
0 , from Eq. (5.25), the lowest order noise effect is captured by [177]

r̄(σ2) = 1
Tp

+ Ω2, (5.27)

where the noise induced frequency shift is given by Eq. (5.26).
The effect of the noise on the Na+/K+ model neuron can be inspected in Fig. 5.5. At
the onset of spiking theory and simulation predict a decrease in firing rate. Yet, near the
excitation block at high DC input currents there is a region where noise increases the firing
rate.

§5.7.1 ISI moments for stiff limit cycles

In biophysical models of neurons and certainly when operating away from the regime where
normal form reductions are valid, the second order term term h̄ and the noise variance
will be phase dependent and not have simple sinusoidal form, which also leads to nonlinear
potentials in Eq. (5.17). In many of these cases the ingredients for the above ISI statics have
to be determined numerically. Because this is cumbersome for a high dimensional system
such as the 12 dimensional HH equations the simplified Na+/K+ model chosen as exemplary
neuron.
In Fig. 5.6 a comparison between the spike times of the original Na+/K+-model, the first
order phase model and the second order model with quasi-stationary elimination of the
radial dynamics is displayed. The quasi-static elimination procedure relies on the fact that
the characteristic time scale of attraction to the limit cycle is smaller than the period or
(λTp)−1 � 1, which can be verified over a broad range of DC inputs in Fig. 5.3. The
numerical recipes for the evaluation of Floquet modes are described in App. C.
The mean ISI shift in Fig. 5.6c compared to the deterministic period is strong at the onset of
spiking (66% reduction in mean due to noise). Comparing the CV of the noisy phase mode
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Fig. 5.6: Comparison of spike statistics for the Na+/K+ model. (a) Coefficient of variation of the
ISI distribution. Floquet exponent and modes were calculated numerically using AUTO.
Theoretical predictions were obtained by using the FP operator Eq. (5.13), including the
radial term in the iterative equations for the moments Eq. (2.18). The dashed line shows
the prediction without radial term. (b) Standard deviation of the inter-spike interval and
theoretical prediction including shift induced by radial dynamics. (c) Mean ISI as predicted
by the moment equations including radial term. Dashed line shows the same prediction
without radial term. (errorbars: standard error).

with and without radial term in Fig. 5.6b shows that the radial term helps explaining the
increase in CV at low firing rates (approximately 80% increase in CV, see Fig. 5.6a).

§5.8 Summary
This chapter started by showing that the first order phase reduction is applicable to a high
dimensional channel SDE, which captures detailed channel kinetics. The different channels
contribute additively to the phase-dependent phase noise, which integrated over one interval
predicts the ISI variance of the spike train. In order to study the effects of radial dynamics
for stiff limit cycles a quasi-static approximation was used to collapse the phase/amplitude
equations to a single phase equation. For the Na+/K+ model this procedure is able to predict
the noise induced frequency shift. The effect was further investigated in the Stuart-Landau
equation where one can control the analytically known isochrons by changing the system
parameters. It can be seen that the curvature of the isochron is important to determine the
frequency shift.
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Linear and nonlinear system identification are commonly applied to neuronal input-output
mappings. One of the techniques is the calculation of spike-triggered ensembles [155], that
can be related to kernels in the Wiener series, see §2.8.1. This chapter illustrates how these
can be calculated from the phase response curves of an underlying neuronal oscillator. In
other words we assume that the black box is filled with a concrete biophysical model and
identify an equivalent transfer function1 mapping input to output.
Experimentally there are different paradigms concerning the choice of input stimuli. One
emphasises naturalistic stimuli, possibly recorded in the natural habitat and corrupted with
realistic environment noise, another works with stimuli designed to represent an idealised
”sign stimulus”, while a third strategy uses artificial white-noise stimuli, which provide an
unbiased estimation of the system’s transfer function. The latter does assume that the
system’s transfer characteristics is as such independent of the stimulation itself. Since it is
possible to select statistically simple stimuli, it is often the method of choice for approaches
involving analytical treatments.
In this chapter we will investigate the mapping of a time structured stimulus x(t) into the
instantaneous firing rate r(t). Note again, that this rate r(t) is an idealised quantity used by
an experimental observer. It is defined as the trial average, r(t) = 〈y(t)〉y|x, over a ”frozen
path” of a stimulus (illustrated in Fig. 2.2 and discussed in §2.8). In the nervous system
such stop-and-rewind experiments do not occur. Yet, the trial average may be implemented
as an ensemble average over a large (but finite) population of noisy realisations of otherwise
identical neurons. Using these parallel channels seems a possible way for real-time nervous
systems to achieve the noise reduction that experimentalists reach by trial averaging. Yet,
even for large population sizes the population averaged instantaneous firing rate is a time
resolved histogram, not a deterministic differentiable function as we have defined it through
the probability flux in a FPE in §2.6. Second order statistics around the instantaneous firing
rate [181] is not available in this FPE based approach. Though, they could possibly be
included by some self-consistent argument adding noise to the FPE drift as in [19].

§6.1 Averaging intrinsic noise strength

In the following we include the external stimulus x(t) and assume it perturbs the voltage
dimension of the conductance based model like in Eq. (4.2). This would represent the
condition, where a stimulating current is injected into a neuron with a sharp electrode.
More complex stimulation via synapses or transduction processes may be better modelled as
perturbations to special conductances. In this chapter the analysis uses a phase model with
an averaged, phase independent noise strength, σ̄, summarising the channel noise effects of

1Also termed susceptibility in the physics literature [5].
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6 Temporal filters from phase response curves

Fig. 6.1: Left: The pole-zero diagram shows the location of poles νk (×) and zeros (◦) in the complex
plane, as given in the text; Right: Associated power spectral density resulting from the
location and properties of the poles.

all contributing membrane pores, averaged over one inter-spike interval

φ̇ = ω + Z(φ)x(t) + σ̄ ξ(t). (6.1)

This simplification glosses over the phase dependence of the noise highlighted in Cpts. 3 and
4. On the other hand, there are now two sources the system in Eq. (6.1): the stimulus,
x(t), and intrinsic (e.g., channel related) noise, ξ(t), and we are interested in computing
the stimulus’s influence on the neuron’s firing rate, so the influence of the intrinsic noise is
simplified. There are additional arguments for this choice, which are postponed until the
discussion in §8.2.
The input x(t) is band-limited and Gaussian, as motivated in §2.2.1. The external signal is
assumed to vary on a longer time scale than the intrinsic fluctuations; hence the upper cutoff
frequency of x(t) is limited. In some cases, this assumption is warranted. The examples in
§2.2.2 show that the behaviourally relevant time scales of natural signals are at least several
milliseconds long, much longer than the microsecond scale of conformational changes in ion
channels.
Once again, the analysis assumes the signal is small enough so that the ISI’s can be treated
as a perturbation of the basic period Tp. Both the signal and the inter-spike time scale must
be longer than the correlation time of the intrinsic noise, Tp and τx � τξ.
In experiments, one will often repeat the same time-varying stimulus x(t) many times. Such a
stimulus can be called ”frozen noise”. Intrinsic noise, on the other hand, will not repeat from
trial to trial: on each trial, the internal channel fluctuations will be different. This implies
that the stimulus only affects the deterministic drift part of the FPE or SDE describing the
neuron. Including the first order stimulus perturbation in to the Fokker-Planck operator
derived in Eq. (5.14) yields

F̄(φ) = ∂2
φσ

2(φ)− ∂φ[ω + h̄(φ) + x(t)Z(φ)]

To formalise the argument above we note x(t) is fixed deterministic function and will only
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later be interpreted as originating from a stochastic process. This allows us to transform
into a stimulus dependent reference frame [135, 162]

ψ = φ− θ, where θ̇ = ω + Z(θ)x(t). (6.2)

This change of variables [156, Cpt. 3] results in the Fokker-Planck operator for q(ψ)

F(ψ) = ∂2
ψσ

2(ψ + θ)− ∂ψ[h̄(ψ + θ)]

If the intrinsic noise is weak we find ourselves again in the situation where the deviation ψ
evolves on a slower time scale than θ and we may average θ over one period. Both σ and h̄
are periodic functions such that the average is independent of ψ

∆ = Tp
−1

Tp∫
0

dθ h̄(θ), σ̄2 = Tp
−1

Tp∫
0

dθ σ2(θ).

The constant ∆ changes the frequency to ω̄ = ω + ∆. Inverting the transformation in
Eq. (6.2), one obtains the homogenised FP operator

F(φ, t) = 1
2 σ̄

2∂2
φ − ∂φ[ω̄ + x(t)Z(φ)] (6.3)

This transformation effectively changed the problem from one of multiplicative noise to
additive noise and is known to be a great simplification.

§6.2 Phase resetting and the transfer characteristic

The calculation of response filters for neuronal models is a long standing exercise in theoret-
ical biology, see Ref. [172] for an early reference. An overview of the literature on this topic
was given in §2.8.1. We expand the FP operator, flux and the probability density function
in orders of the stimulus. Fp

J

 =
∑
i

F (i)

p(i)

J (i)


The zero order corresponds to the stimulus switched off. In this case diffusion in the neutral
phase direction is uncompensated and leads to a uniform steady state distribution p(0) = 1

2π .
The first order FPE in the magnitude of the external stimulus is

∂p(1)

∂t
= F (0)p(1) + F (1)p(0) =

( σ̄2

2 ∂
2
φ − ω̄∂φ

)
p(1) − x(t)

2π ∂φZ(φ).

After Fourier- and Laplace transforming in φ 7→ χ and t 7→ s respectively the equation reads

sp̃(1)(χ, s) +
(

(χσ̄)2

2 + iω̄χ
)
p̃(1)(χ, s) + iχX(s)

Tp
Z̃(χ) = 0, (6.4)

where we assumed the system starts in a uniform phase density at t = −∞. The Fourier
transform of the periodic PRC, Z(φ) = ω̄

∑∞
k=−∞ cke

ikφ, has a discrete spectrum expressed
as a weighted Dirac’s comb

Z̃(χ) = ω̄
∞∑

k=−∞
ckδ(χ− k),
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6 Temporal filters from phase response curves

the factor ω̄ is included for convenience and could be absorbed into the coefficients of the
Fourier series ck. Inserting this into Eq. (6.4) one can solve for p̃(1)(χ, s). Denoting the poles
of the expression as ν(χ) = −1

2(χσ̄)2 − iω̄χ one finds

p̃(1)(χ, s) = − 1
2π

iχZ̃(χ)
s− ν(χ)X(s). (6.5)

The Fourier and Laplace transformed flux can be rearranged as

J̃ (1)(χ, s) =
(
ω̄ − iχσ

2

2

)
p̃(1) + 1

2π Z̃(χ)X(s)

= 1
2π

(
1 + ν(χ)

s− ν(χ)

)
Z̃(χ)X(s) = 1

2π

(
sZ̃(χ)
s− ν(χ)

)
X(s).

The inverse Fourier operator
∫∞
−∞ dχeiχφ transforms χ 7→ φ followed by evaluation at φ = 0

yields the Laplace transformed instantaneous firing rate, r 7→ R, in accordance with §2.6

R(s) = J̃ (1)(φ, s)|φ=0 = 1
2π

∞∫
−∞

dχ
(

sZ̃(χ)
s− ν(χ)

)
X(s).

From the last expression one may identify the system’s linear transfer function induced by
its PRC as

G(s) = 1
2π

∞∫
−∞

sZ̃(χ)
s− ν(χ) dχ = 1

Tp

∞∑
k=−∞

sck
s− ν(k) . (6.6)

This is also called the complex susceptibility of the system. In this last equation one can
observe how the discrete spectrum of the periodic PRC is changed into a continuous spectrum
of the linear response filter. The filter’s poles are located in the left half plane at νk =
−1

2(kσ̄)2 − iω̄k, implying stability for 0 < σ̄ ∈ R, this can be spotted in the pole-zero
diagram in Fig. 6.1. The location of the poles of G(u + iv) in the complex u-v plane is
determined by the parameters ω̄ and σ̄2. While the location of the poles along the imaginary
axis, does not change with the frequency content of the PRC, their number and the exact
behaviour of the meromorphic function G near the poles does. The distance of the poles to
the imaginary axis drops quadratically in multiples of the fundamental frequency.

The complex valued susceptibility G(iω) can be split in to the frequency gain |G(i2πf)| and
the phase shift Ψ(f) = argG(i2πf). Note that the gain is given by the magnitude of the
transfer function along the imaginary axis, and characterises the frequency mask the filter
applies to its input signals. Examples for the HH and TM model are shown in Fig. 6.2 for
frequencies up to 250 Hz, because natural stimuli are typically restricted to the lower Hz
rage, see §2.2.2. The peaks of the spectrum are at multiples of the fundamental frequency,
ω̄. The number of peaks depends on how many higher order harmonics are present in the
PRC. But even for a PRC with high frequency content, as the poles move away from the
imaginary line, the peaks in the spectrum get smeared out, which is visible in HH example
of Fig. 6.2.

One may proceed by investigating several limiting cases. In the limit of low frequencies
near the DC component all but the a0 term vanish, while the high frequency behaviour is
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§6.2 Phase resetting and the transfer characteristic

Fig. 6.2: Comparison between the filter properties obtained from LRT and trial averaged simulations
of the original conductance based models. Shown are the power spectral densities of the
transfer function from current to instantaneous firing rate for the type II Hodgkin-Huxley
(HH) and the type I Traub-Miles (TM) models (solid blue line is LRT, dotted line are
simulations). The corresponding PRCs from which the filter were obtained are shown as
insets. In both cases the perturbing stimulus was band limited white noise with a variance
of 0.4 µA/cm2 and a cutoff of fc = 400 Hz. For both models, the level of intrinsic channel
noise, simulated with the approximate method from [50], was adjusted to meet a phase noise
level of σ̄ = 0.2. For the other model parameters of HH and TM model see appendix B.

determined the sum of all cosine terms

lim
ω→0

G(iω) = ω̄c0
2π = 1

2π
2π∫
0

dφZ(φ) = Z(φ). (6.7)

The DC component of the susceptibility is the DC or average of the PRC. Recall that the
mean of the RPC is also connected to the slope of the FI curve, cf. Eq. (2.8). Equation (6.7)
immediately implies that the transfer function of the sinφ-PRC of the Hopf bifurcation will
have zero gain at DC component, while the canonical (1 − cosφ)-PRC of the SN on LC
bifurcation includes DC component. In a sense, this complements the picture of integrator
and resonator properties of neurons that are derived from their sub-threshold dynamics.
Filtering properties in subthreshold dynamics are analysed by the linear response of the
resting state. It is interesting to note that the filtering property is carried through the
bifurcation to the subthreshold regime. It can also be noted that the DC susceptibility is
not affected by the intrinsic noise strength σ̄.
Although the relevant information of sensory stimuly rarely resides at extremely high fre-
quencies this limit can be be studied in models. The high frequency limit is also related to
the PRC by

lim
ω→∞

G(iω) = ω̄

2π
∞∑
k=0

ak = Z(0)
2π , (6.8)

where ak is the real part of ck = ak + ibk. Thus, the high frequency susceptibility to signals
in Eq. (6.1) is given by the PRC at the spike point, Z(0). In typical neurons the PRC
of the voltage dimension is very small at φ = 0 = 2π, which is the peak of the action
potential. This is because in spiking neurons the voltage dimension in particular has very
fast dynamics during the spike, causing the phase at that moment to be less susceptible to
any perturbations as can be seen in Fig. 5.1. Consequently, the filter gain of typical spiking
neurons, perturbed in the voltage dimension, will drop to zero at very high frequencies. The
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6 Temporal filters from phase response curves

Fig. 6.3: Asymptotic behaviour of the transfer function from Eq. (6.6), for the canonical type I phase
oscillator (top row) and canonical type II phase oscillator (bottom row). The green dotted
line in the middle column shows a f−1 decay for comparison.

intuitive explanation is that if there is a ”dead zone” of no phase sensitivity near the spike,
then high frequency stimuli, with time scales on the order of the dead zone are not able to
uniquely modify the spike time of the system. Of course, high frequency stimuli can affect
the spike time during other parts of the ISI. Yet, for zero mean high frequency stimuli this
will average out, with only the perturbations near the spike time being effectively translated
into the spikes. As a consequence the gain for f →∞ decays to zero.
The asymptotics of the decay in magnitude gain can be seen in Fig. 6.3, middle column,
shows a f−1-behaviour. This is consistent with the numerical findings for conductance based
models from which the phase equations are derived. In Ref. [46, Figure 12], the Wang-Buzaki
model were simulated and the estimated filters showed the same f−1 decay. The asymptotic
limit of the phase spectrum is 90◦ irrespective of the excitation type as seen in the last
column of Fig. 6.3. This too concurs with the simulation results from [46, Figure 5B]. The
asymptotic behaviour of the type I phase oscillator also agrees with the one of the quadratic
integrate-and-fire (IF) model, the canonical model for type I neurons, which was analysed
in Ref. [137]. The difference between two excitability classes is that type I systems jump
to an even larger phase delay of 180◦ around the cutoff frequency and then approach the
limit from below, while the type II neurons jumped directly to 90◦. The Wang-Buzaki model
studied in Ref. [46] being a type I neuron shows the undershoot to a more pronounced phase
delay as well. The cutoff frequency after which the asymptotic decay starts is determined by
the highest significant Fourier coefficient of the model’s PRC as can be seen by comparing
Fig. 6.2 and Fig. 6.3.
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§6.2 Phase resetting and the transfer characteristic

Fig. 6.4: Comparison of trial estimated instantaneous firing rate (grey) and theoretical prediction
(black). The trial averaged histogram (grey) was obtained from simulating the stochastic
HH equations for 100000 trials with the same parameters as in Fig. 6.2 and a single stimulus
path. The theoretical prediction is obtained by convolving the input signal with the linear
response filter obtained from the PRC of the model by Eq. (6.9) (black-circled line). Also
plotted is the numerical solution of the flux from the simulated phase FPE (black-boxed
line).

§6.2.1 Impulse response

The impulse response in the time domain is the inverse Laplace transformation of Eq. (6.6)
(defined by the Mellin-Bromwich integral in Eq. (2.22)). It can be evaluated term by term

∀t > 0 : g(t) = ω̄

2π
∑
k
ck
(
νk e

νk t + δ(t)
)
. (6.9)

Convolving this kernel with a realisation of the stimulus gives a prediction of the instanta-
neous firing rate, which is illustrated in Fig. 6.4 for the HH equations.
Here, we can also investigate the limit σ̄ → 0, which

lim
σ̄→0

g(t) = − 1
2π [Z ′(−t)− Z(0)δ(t)] (6.10)

This system would be critically stable and is equivalent to the result in Ref. [37].

§6.2.2 Spike-triggered average

As introduced in §2.8, a common strategy in experimental sensory physiology is to sample
the spike triggered stimulus ensemble and characterise it by its statistical moments. If the
stimulation was executed with white noise, the result would be proportional to the filter in
Eq. (6.9).
Otherwise, when correlations in the stimulus are present as in the Ornstein-Uhlenbeck SDE
approximation to balanced inhibitory and excitatory synaptic input (Stein’s model, cf. [183]),
then according to Eq. (2.32) the STA is the convolution of stimulus covariance function and
linear response filter STA(t) = (Cx ∗ g)(−t). We stick with the example of a bandlimited
signal with sharp cut-off frequency ωc, as they provide unbiased estimates of the STA. Then
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6 Temporal filters from phase response curves

Fig. 6.5: Spike-triggered averages from the PRC of the Stuart-Landau equations as obtained when
stimulating with a band-limited stimulus (dashed line). The theoretical results used
Eq. (6.11).

the convolution with the filter kernel from Eq. (6.9) can be obtained in terms of elementary
functions

STA(t) =
∑
k
ck

[
sinc(ωct)−

νk
2ωc

[
Γ0((νk + iωc)t)− Γ0((νk − iωc)t) + i2π

]]
, (6.11)

where Γ0 is the Gamma function. In Fig. 6.5 this is compared with the STA from simulations
of the Stuart-Landau model. Also shown is the instantaneous firing rate and its prediction
from the LRT kernel.

§6.3 Filter design

Analogue filters are often designed by placing the poles into the Laplace domain and choosing
their properties such that the desired spectral mask results and the stability criteria are
met. The location of the poles of the neuronal firing rate filter along the imaginary axis
is determined by the neuron mean firing rate. On the one hand, the mean rate may be
controlled by the neuron through changes in threshold, spike frequency adaptation, or by
additional network inputs. On the other hand, it may be set by the mean input signal. The
location on the real axis is related to the intrinsic noise level of the neuron. This in turn can
be controlled by the neuron through the incorporation of more or less of channels into the
membrane patch.
Asides the position of a pole, µk, the exact shape of the spectral peak is related to the
characteristics of the meromorphic function G(s) around the pole, which is determined by
the particular Fourier coefficients of the PRC, ck. The PRC, again, depends in subtle ways
on biophysical parameter of the neuron. To make progress in this complicated parameter
dependence, it is useful to investigate neurons near their firing onset bifurcations, where
dynamical properties pigeon-hole into canonical forms (the dynamics in the centre manifold
see [75]). Near the onset, the PRCs from neurons with the same dynamical type share
features and so do their input to rate filter. The canonical PRCs as derived in Ref. [18] were
reviewed in §2.5.2. Here, in Fig. 6.6 we can see the gain of the associated transfer functions.
Particularly in primary sensory neurons which receive input of distinctly relevant frequency
content the type of dynamical system best suited for its transmission may be chosen from
the list of canonical models. The two integrate-and-fire models were added because they
are discussed in Ref. [18]. Note, however, that these are not real limit-cycle oscillator in
the sense we defined in Cpt. 4. A phase equation, even in the small perturbation limit and
with the same PRC as an IF model, is not equivalent to it, due to differences in boundary
conditions. In particular, with a constant PRC only the DC component, which does not
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Fig. 6.6: Filters mapping time dependent input currents to instantaneous firing rate for various canon-
ical neuron models. They can be categorised into different classes of filters. The category
names where chosen to highlight their dominant feature. The filter power of the high-pass
filter of the Hopf bifurcation does actually drop to zero for high frequencies, but the filter is
suited to transmit information above the mean firing rate of the neuron.

depend on noise variance, remains in Eq. (6.6). Therefore the spectrum does not decay even
for f → ∞ and is the same in the noiseless perfect IF model [172]. The leaky IF model
analysed in Ref. [118] does not share the f−1 gain asymptotics of conductance based models
but decays with f−1/2.

§6.4 Stimulus perturbation of the second-order phase model

For simplicity we just consider a two dimensional phase-amplitude model, the generalisation
to higher dimensions is possible

φ̇ = ω + h(φ)α2 + Z0(φ)(xt + ξt) (6.12a)
α̇ = λα+ Z1(φ)(xt + ξt) (6.12b)

Formally, we can split the radial dynamics into deviations due to stimulus and noise related
perturbations

α(t) = β(t) + η(t) =
t∫
−∞

dτZ1(φτ )x(τ)eλ(t−τ) +
t∫
−∞

dτZ1(φτ )ξ(τ)eλ(t−τ),

where λ is the Floquet exponent. The corresponding Fokker-Planck operator may be split
into

F (φ) = ∂2
φ‖Z0‖2 − ∂φ[ω + h(φ)(β + η)2 + Z0(φ)x(t) + 〈Z0, Z

′
0〉]

F (η) = ∂2
η‖Z1‖ − ∂η[λη + 〈Z0, Z

′
1〉]

According to §5.4 and the citations therein, mean and variance of the stationary solution of
F (η)p(η|φ) = 0 at a fixed φ are

µ = 〈Z0, Z
′
1〉

2λ , c11 = ‖Z1‖2

4λ .
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which is used to average the operator F (φ) to obtain an operator only for the phase. The
part of the drift that is affected by the averaging procedure is

∫
dη p(η|φ)(β + η)2 = β2 + β λ−1〈Z0, Z

′
1〉+ ‖Z1‖2

4λ + |〈Z0, Z
′
1〉|2

4λ2 (6.13)

An additional averaging step absorbs all terms that do not depend on the stimulus into a
shifted mean firing rate ω̄ and noise variance σ̄2. The result is the following phase only FPE,
that still depends on the integrated stimulus past

F̄ (φ) = σ̄2/2∂2
φ‖Z0‖2 − ∂φ[ω̄+

h(φ)
(
β2 + β λ−1〈Z0, Z

′
1〉+ ‖Z1‖2

4λ

)
+ Z0(φ)x(t) + 〈Z0, Z

′
0〉], (6.14)

where we have already omitted the term |〈Z0,Z′1〉|
2

4λ2 which is of fourth order in the stimulus
strength.

§6.5 Volterra expansion

The purpose of the following calculation is to obtain an expansion of the firing rate r(t) =
J(0, t) in orders of the signal strength. The firing rate at any time has a functional relation
to the stimulus time series, rt[x], which can expanded as Volterra integral series

r(t) = r0 +
∞∫
−∞

g1(τ)x(t− τ) dτ +
∞∫∫
−∞

g2(τ1, τ2)x(t− τ1)x(t− τ2) dτ1dτ2 + . . . . (6.15)

Remember that this is essentially a polynomial expansion in orders of the stimulus. Its
usefulness as an approximation depends on the type of nonlinearity involved in the mapping
into firing rate and the smallness of the stimulus magnitude2. As in many cases this is
a saturating nonlinearity, polynomial approximations covering the saturation require many
terms to provide accuracy. Nonetheless, each additional term can provide new insight into
the nonlinear problem [148].

To apply a principled perturbation analysis we rewrite the FPE in Eq. (6.14) in operator
form and isolate the terms of a certain order in the stimulus

∂tρ(φ, t) =
(
F̄ (0) +

∞∑
j=1
F (j)

)
ρ(φ, t). (6.16)

The expanded operator F is also called the forward operator [143], and is the adjoint of the

2Note that if the stimulus ensemble is a Gaussian process, then even for a low variance there is no guaranty
that x(t) is small at all time instances.
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generator associated with the stationary stochastic process. The first three terms are

F̄ (0)(φ) = −ω̄ ∂

∂φ
+ σ̄2

2
∂2

∂φ2 , (6.17a)

F̄ (1)(φ, t) = −x(t) ∂
∂φ
Z(φ), (6.17b)

F̄ (2)(φ, t) = − ∂

∂φ
h(φ)β2(t). (6.17c)

The higher order operators F (n) describe perturbations to the homogeneous equation caused
by the time dependent stimulus, F (n)(φ, t).
The time dependent solution of the FPE may be expanded accordingly in orders of the
stimulus strength

ρ(φ, t) = ρ(0)(φ) +
∞∑
j=1

ρ(j)(φ, t) (6.18)

The normalisation condition for probability densities, requires that ∀t :
∫

dφρj(φ, t) = δj0.
With the expansion we can write a set of equations as the solution to Eq. (6.16), one for
each stimulus order

O(n) : (∂t − F̄ (0))ρn =
∑
j=1
F (j)ρn−j (6.19)

These can be iteratively solved for the phase density at any order starting with the sta-
tionary solution to the homogeneous equation without stimulus, ρ(0) = 1

2π . Assuming that
ρ(n)(φ,−∞) = 0, ∀n > 1 the formal solution to this equation is (we basically switched on
the stimulus at some point in the distant past t = −∞)

ρ(n)(φ, t) =
n∑
j=1

t∫
−∞

e(t−t1)F̄(0)F (j)(φ, r)ρ(n−j)(φ, r) dt1. (6.20)

The operator exponential can be evaluated if we choose to represent the F (j)ρ(n−j) in terms
of the eigenfunctions of the homogeneous operator F̄ (0). With periodic boundary conditions
the spectrum, µk, of the non-Hermitian operator F̄ (0) is complex and discrete and has the
Fourier basis as eigenfunctions

qk(φ) = eikφ, with µk = −1
2(kσ̄)2 − ikω̄. (6.21)

Thus, the operator exponential can be evaluated as e(t−t′)L̄(0) =
∑
k e

ikφeµk(t−t′)e−ikφ. The
expansion of the probability density consequently leads to an expansion of the flux

J (n)(φ, t) = −
n∑
j=0

φ∫
0

dψ F (j)(ψ, t)ρ(n−j)(ψ, t) (6.22)

In order to compute the first and second Volterra kernel we need to compute J (n) and thus
ρ(n) up to n = 2 by solving first Eq. (6.20) and then (6.22).

§6.5.1 First order Volterra kernel

The solution for the first order density (n = 1 in Eq. (6.20)) requires the expression of
L(1)ρ0 = −x(t)Z ′(φ)/2π in terms of its eigenfunctions qk(φ). Hence, we denote with ck the
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6 Temporal filters from phase response curves

coefficients of Z(φ) expressed in the eigenbasis of L̄(0)

Z(φ) =
∑
k
ckqk(φ). (6.23)

Then, the solution for the first order density reads

ρ(1)(φ, t) = − i
2π
∑
k
kck e

ikφ
t∫
−∞

eµk(t−t′)x(t′) dt′. (6.24)

The equation for the flux, Eq. (6.22), has two contributing terms

J (1) = (ω̄ + σ̄2/2∂φ)ρ(1) + x(t)Z(φ)ρ(0).

In Fourier representation one has (ω − σ2/2∂φ)→ (ω − ikσ2/2). This gives us the flux as

J (1) = 1
2π
∑
k
ck e

ikφ
t∫
−∞

(
µk e

µk(t−t′) + δ(t− t′)
)
x(t′) dt′,

where the definition of the eigenvalues, µk, from Eq. (6.21) was applied. We recall that the
flux at the periodic boundary measures the instantaneous firing rate

r1(t) = J (1)(φ, t)|φ=0 =
∫

dτ g1(t− τ)x(τ).

Here from, we can immediately identify the first order causal Volterra kernel

g1(t) = 1
2π
∑
k
ck
(
µk e

µk t + δ(t)
)

Θ(t). (6.25)

Heaviside’s step function is denoted as Θ(t). This is in agreement with the already derived
result in Eq. (6.9) obtained via Laplace transformation. But now we can belabour the next
term in the hierarchy.

§6.5.2 Second order Volterra kernel

What is now calculated is the quadratic term of a nonlinear response theory, describing how
second order interactions in the stimulus influence the system’s output. We will split J (2)

into terms that only involve first order phase dynamics related to the PRC and those terms
that originate from the second order phase dynamics and involving radial dynamics, i.e.,
J (2) = J

(2)
p + J

(2)
a . In the limit of strong attraction to the limit cycle the latter are less

important. To sort these terms one also needs to split the second order contribution to the
phase density, ρ(2) = ρ

(2)
p + ρ

(2)
a .

Starting with the part without radial dynamics

J (2)
p =

φ∫
dψ
[
F (1)(ψ, t)ρ(1)(ψ, t) + F (0)(ψ)ρ(2)

p

]
, (6.26)
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§6.5 Volterra expansion

one calculates the part of the phase density as

ρ(2)
p =

t∫
−∞

e(t−t1)F̄(0)F (1)(φ, t1)ρ(1)(φ, t1) dt1

= −
m∑

k=−m

k+m∑
`=k−m

k`c`−kck
2π ei`φ

t∫
dτ2

τ2∫
dτ1x(τ2)x(τ1)eµ`(t−τ2)+µk(τ2−τ1).

To obtain the expression one writes

∂φ
m∑

j=−m
cje

ijφ m∑
k=−m

ikckeikφ = −
m∑

j=−m

m∑
k=−m

cjck(jk + k2)ei(k+j)φ

= −
m∑

k=−m

k+m∑
`=k−m

c`−kckckk`e
i`φ.

Hence, the second term in Eq. (6.26) is

−
m∑

k=−m

k+m∑
`=k−m

ikµ`c`−kck
2π ei`φ

t∫
dτ2

τ2∫
dτ1x(τ2)x(τ1)eµ`(t−τ2)+µk(τ2−τ1),

while the first is

−
m∑

k=−m

k+m∑
`=k−m

ikµ`c`−kck
2π ei`φx(t)

t∫
dτ1x(τ1)eµ`(t−τ1).

Combining these together one finds the expression for the flux contribution

J (2)
p = −

m∑
k=−m

k+m∑
`=k−m

ikc`−kck
2π ei`φ

t∫
−∞

dt1
(
µ`e

µ`(t−t1) + δ(t−t1)
) t′∫
−∞

dt1eµk(t1−t2)x(t2).

Not otherwise than with the first order filter, the flux at φ = 0 yields the instantaneous firing
rate and one can identify the part of the second order kernel that neglects radial dynamics

g(2)
p (t1, t2) = Θ(t1)Θ(t2−t1)

i2π
m∑

k=−m

k+m∑
`=k−m

kc`−kck
(
µ`e

µ`t1 +δ(t1)
)
eµ(t2−t1). (6.27)

The first two Volterra kernel can be inserted into to Eqs. (2.32) and (2.35b) yielding the
STA and ∆C. The spike triggered covariance ∆C has one term that is proportional to

∆Cp(t1, t2) =
∫∫

dτ1dτ2 C(t1, τ1)[g(2)
p (τ1, τ2) + g(2)

p (τ2, τ1)]C(τ2, τ1). (6.28)

This is a sufficient description if the attraction to the limit cycle is strong enough to justify
a first order phase model.
For comparison we choose again the Stuart-Landau equations,see App. A.3, because we
can control the Floquet exponent directly. By comparing this to the STC estimated from
simulations one may observe that the main features are captured, cf. Fig. 6.7. Yet if the
attraction to the limit cycle is weaker, e.g. λ = −1 in Fig. 6.7, some structure seen in
the difference is unaccounted for, particularly close to the spike, ∆C(0, 0). In Fig. 6.8 the
difference between the Estimated ∆C and the prediction obtained from the first oder phase
equation, Eq. (6.28), is shown. One can see that for a model with the strong attraction to
the limit cycle (a stiff LC), the error is small as compared to the overall order in Fig. 6.7. If
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6 Temporal filters from phase response curves

Fig. 6.7: Comparison of the STC, estimated from simulations of the Stuart-Landau model with the
predictions not involving radial contributions. Left column shows the estimates from simu-
lations. The right column shows predictions from Eq. (6.28). In the bottom row the system
has a strong attraction to the limit cycle (λ = −10). In such a case, the first order phase
equation is a valid approximation. The top row shows a system with a slower return time
to the limit cycle (λ = −1). The spike occurs at ∆C(0, 0) (lower right corner). Here the
deviation between theory and simulation are most evident.

the attraction to the limit cycle is weaker (Fig. 6.8, top row), the error gets more significant
and has more structure. It contains a twice as high frequency than the main structure of the
∆C in Fig. 6.7. One can account for that higher frequency structure by including the radial
terms from F̄ (2) in Eq. (6.17c). The calculations are separated into App. A.4, for they are
more bulky.

§6.6 Relation to subthreshold dynamics

Both from the dynamical system perspective and physiologically, one distinguishes between
neurons in two dynamical regimes, (i) in the subthreshold or excitable regime APs are
brought about by special temporal waveforms in the stimulus, while the neuron is otherwise
close to its resting state, or (ii) in the suprathreshold regime the cell is tonically firing, e.g.,
due to mean activation and the stimulus waveforms only delay and advance spiking. In both
cases STAs are used to analyse encoding. In the first case the overall spike statistics tends
to be closer to an inhomogeneous Poisson process, while in the second the neuron is closer
to periodic spiking. It is interesting to note that while this chapter treated case (ii), also for
case (i) the STA has been calculated from a linearisation around the fixed point in Ref. [120].

74



§6.7 Summary

Fig. 6.8: The difference in the STC between first-order theory (Eq. (6.28)) and numerical simulations
of the Stuart-Landau model, compared to a second-order correction. Note that the radial
dynamics introduce a second harmonic in the STC. The left column subtracts the numerical
estimate from the covariance predicted from the first order phase equation Eq. (6.28). The
colour scale is the same as indicated in the colour bar in Fig. 6.7.

§6.7 Summary
In this section we discussed the linear and nonlinear response of a system that transforms
a stimulus into the instantaneous firing rate. It was shown that applying linear response
theory to the first order phase reduced system yields a filter that adequately describes the
response of nonlinear conductance based neuron, see Fig. 6.2. With the help of this filter
one can predict the instantaneous firing rate of the system. It was highlighted that neurons
with different bifurcation types yield filter with distinct properties. Within the frame work
of perturbation theory one can also compute that first nonlinear response kernel of the phase
oscillator. It was shown that in the case where radial attraction to the limit cycle is not
sufficiently strong the radial terms in the phase reduction have to be considered.
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7 Information transmission

Information theory has long been used to quantify the performance of sensory processing
[8]. This led Joseph Atick, Horace Barlow and others to postulate to use this theory to
study how nervous systems adapt to the environment. The goal is to make quantitative
predictions about what the connectivity in the nervous system and the structure of receptive
fields should look like, for instance. In this sense, information theory becomes the basis for
an ecological theory of adaptation to environmental statistics [8, 10].
We seek to do the same here for phase dynamics and ask what PRC would maximise the
information. But first, one needs to develop how the PRC predicts a lower bound on the
mutual information rate. We begin with a short review of the basic tenets of information
theory. Within information theory, a neural pathway is treated as a noisy communication
channel in which inputs are transformed to neuronal responses and sent on:

input signal x(t)→ neural pathway → response y(t)

The mutual information rate measures the amount of information a neural pathway transmits
about an input signal x(t) is the mutual information rate,

M[x, y] = H[y]− H[y|x]︸ ︷︷ ︸
encoding

= H[x]− H[x|y]︸ ︷︷ ︸
decoding

, (7.1)

between the stochastic process, x(t), and the stochastic response process, y(t). The entropy
rate H measures the number of discriminable input or output states, either by themselves,
or conditioned on other variables. The mutual information rates, which is the difference
between unconditional and conditional entropy rates, characterises the number of input
states that can be distinguished upon observing the output. The response entropy rates
H[y], for instance, quantifies the number of typical responses per unit time, while H[x|y] is a
measure of the decoding noise in the model. If this noise is zero, then the mutual information
rate is simply H[x], provided that this is finite.
The conditional entropy rates H[y|x] and H[x|y], characterising the noise in the encoding
and decoding model respectively, are each greater than zero. In information theory, these
quantities are also called equivocation. Hence, both the stimulus and response entropy rates,
H[x] and H[y], are upper bounds for the transmitted information. The mutual information is
a „global” quantity, as it compares two entire statistical distributions — an input ensemble
p(x, t) with an output ensemble p(y, t). In contrast, Fisher’s information, J(θ), specifies a
particular parameter, θ, and is „local” in the sense that it reveals how discriminable nearby
θ’s are. Information theory is a general tool and can be applied whenever there is a statistical
model of the communication channel.
The nature of the ensembles p(x, t) and p(y, t) can be quite varied. The input might be
discrete quanta with a particular statistics or it might be a continuous variable that changes
continuously in time. Likewise, the output may be discrete, e.g., the number of spikes in a
fixed time window, or continuous as the instantaneous firing rate or a phase shift relative to
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7 Information transmission

a continuous oscillation [87, 17, 133].

§7.1 Linear stimulus reconstruction and a lower bound on
the information

In many cases, the mutual information cannot be calculated directly. At least two strategies
to estimate it exist, though: Either, create a statistical ensemble of inputs and outputs by
stimulation, followed by (histogram based) estimation techniques for the mutual information;
or, find bounds on the information that can be evaluated more easily. In general, the
estimation of mutual information from empirical data is difficult, as the sample size should
be much larger than the size of the alphabet. Indeed, each element of the alphabet should
be sampled multiple times so that the underlying statistical distribution can, in principle,
be accurately estimated. But this prerequisite is often violated, so many techniques of
estimating the information from data directly rely on extrapolation [175]. The problem
becomes particularly hairy when the alphabet is continuous or a temporal processes had to
be discretised, resulting in large alphabets.
Another approach, which will allow us to perform a theoretical analysis of phase dynamics,
relies on a comparison of the neuronal ”channel” to the continuous Gaussian channel [85,
Cpt. 13], which has been extensively studied and is analytically solvable [23]. Richard Stein,
Andrew French and Arun Holden used this approach to estimate the information transmission
of neuronal models [172] and recorded data from the spider’s stretch receptor [96]. More
recent applications include the electric sense of weakly electric fish [21] and paddle fish [140],
as well as the posterior canal afferents in the turtle [158]. Rob de Ruyter van Steveninck
and William Bialek proved in Ref. [14] that this method leads to a guaranteed lower bound
of the actual information transmitted. These results will be recapitulated in the remainder
of this section.
As we often have experimental control of the stimulus ensemble we can choose this to be
a Gaussian process with a flat spectrum up to a cutoff. The mutual information between
stimulus x(t) and response y(t) can be bound from below as

M[x, y] = H[x]−H[x|y] > H[x]−Hgauss[x|y], (7.2)

by using the decoding perspective and invoking the property that a Gaussian process has the
maximum entropy of all processes with a given variance. Here, Hgauss[x|y] is the equivocation
of a process with the same mean and covariance structure as the original decoding noise,
but with Gaussian statistics. In the Gaussian case all higher order moments are completely
determined by the first two moments. The conditional entropy of the stimulus given the
response is also called reconstruction noise entropy. It reflects the uncertainty remaining
about the stimulus when particular responses have been observed.
In general, the entropy rate of an ergodic process can also be defined as the the entropy of
the process at a given time conditioned on its past realisations in the limit of large time

lim
t→∞
H[xt|xτ : τ < t].

If the process is Gaussian, then the conditional distribution is a univariate Gaussian with
variance σ2

∞. Hence, the entropy rate of a wide-sense stationary Gaussian process is σ2
∞ =

e2Hgauss[x], see Ref. [23, Cpt 12.5]. This also holds if the process is conditioned on side
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information y. Thus
σ2
∞ = e2Hgauss[x|y].

The conditional variance σ2
∞ provides a lower bound on any estimator, x̂(t) that uses infor-

mation about the infinite past of the process to predict the present value. Only an optimal
estimator would achieve σ2

∞. Therefore

〈(x(t)− x̂(t))2〉x|y > inf
x̂
〈(x(t)− x̂(t))2〉x|y

= 〈(x(t)− 〈x(t)〉x|y)2〉x|y = σ2
∞ = e2Hgauss[x|y].

The second line uses the fact that in this case the optimal estimator is given by the conditional
mean. We have the following bound on the equivocation

H[x|y] 6 Hgauss[x|y] 6 1
2 ln〈(x(t)− x̂(t))2〉. (7.3)

In order to obtain a tight bound the estimator x̂(t) should be as close to optimal as possible.
For the case of additional information given by the response of the neural system y(t) to the
process x(t), the estimator should make use of it, x̂t[y]. The process x̂(t) is an appropriate
repatriation of the response y(t) back to stimulus space. For simplicity one can assume it
is carried out by a filtering operation, x̂(t) = (f ∗ y)(t) specified later [56]. The deviation
between stimulus and its estimate, n(t) = x(t) − x̂(t), is treated as the noise process. Like
the whole system the noise process is stationary, and its power spectral density, Pnn(ω), is
well defined. Then, an additional usage of Jensen’s inequality yields the same result as in
Ref. [54]

Hgauss[x|y] 6 1
2 ln〈n2(t)〉 = 1

2 ln
∞∫
−∞

dω
2π Pnn(ω) 6 1

2

∞∫
−∞

dω
2π lnPnn(ω). (7.4)

Recall that the input ensemble is a Gaussian process, so that according to Kolmogorov’s
famous result, H[x] = 1

2
∫ dω

2π lnPxx(ω). Inserting Eq. (7.4) into Eq. (7.2), one notes that the
last expression is the difference between the entropies of two Gaussian processes, which is

M[x, y] > 1
2
∞∫
−∞

dω
2π ln

(
Pxx(ω)
Pnn(ω)

)
(7.5)

So as to render the inequality in Eq. (7.3) as tight a bound as possible one should use the
optimal reconstruction filter from y to x̂. In other words, it is necessary to extract as much
information about x from the spike train y as possible.
The next step should be to find an expression for the noise spectrum, Pnn(ω), based on the
idea of ideal reconstruction of the stimulus. As opposed to the forward filter, the reconstruc-
tion filter depends on the stimulus statistics (even without effects such as adaptation). We
seek the filter h that minimises the variance of the mean square error

〈n2(t)〉 = 〈(x(t)− x̂(t))2〉, with x̂(t) =
∫

dτ h(τ)y(t− τ). (7.6)

Taking the variational derivative [101] of the error w.r.t. the filter (coefficients) h(τ) and
equating this to zero one obtains the orthogonality condition for the optimal Wiener filter
[79]

〈n(t)y(t− τ)〉 = 0, ∀τ. (7.7)
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Inserting the definition of the error, n(t) = x(t)− x̂(t), into Eq. (7.7) yields

〈x(t)y(t− τ)〉 −
∫

dτ1 h(l)〈r(t− τ1)r(t− τ)〉 = Rxy(τ)− (h ∗Ryy)(τ) = 0

In order to obtain h we need to deconvolve the equation, which amounts to a division in the
Fourier domain

Pxy(ω) = H(ω)Pyy(ω) =⇒ Hopt(ω) = Pxy(ω)
Pyy(ω) . (7.8)

To compute the mutual information rate, we now calculate the full auto-correlation of the
noise when the filter is given by Eq. (7.8). For an arbitrary filter h(t), we have

Rnn(τ) = 〈n(t)n(t+ τ)〉 = 〈n(t)x(t+ τ)〉 −
∫

dτ1 h(τ1)〈n(t)y(t+ τ − τ1)〉.

When the orthogonality condition of Eq. (7.7) holds, the right-most term vanishes. Proceed-
ing by expanding the first term algebraically leads to an expression for the noise correlations

Rnn(τ) = 〈n(t)x(t+ τ)〉 = Rxx(τ)−
∫

dτ1 h(τ1)Rxy(τ − τ1).

This expression can be Fourier transformed in order to obtain the required noise spectrum

Pnn(ω) = Pxx(ω)−H(ω)Pxy(ω) = Pxx(ω)− |Pxy(ω)|2

Pyy(ω) , (7.9)

where the definition of the optimal filter, Eq. (7.8), was utilised. This result can then be
inserted into Eq. (7.5) to obtain the following well known bound on the information rate
[15, 117, 85, 172]

M[x, y] > −1
2

ωc∫
−ωc

dω
2π ln

(
1− |Pxy(ω)|2

Pxx(ω)Pyy(ω)

)
. (7.10)

This information bound involves only spectra and cross-spectra of the communication chan-
nel’s input and output processes which are experimentally measurable in macroscopic record-
ings [96, 21, 140, 158]. The channel, in this case the neuron, can remain a black box. But
since we can bridge the divide between microscopic, biophysical models and their filtering
properties, we will, in the following section, derive the mutual information rates.
The following expression in Eq. (7.10) is termed the squared signal response coherence

coh2(ω) = |Pxy(ω)|2

Pxx(ω)Pyy(ω) . (7.11)

It quantifies the linearity of the relation between x and y in a way that it equals 1 if there is
no noise and a linear filter transforms input to output. Both nonlinearities and noise reduce
the coherence.
The stimulus spectral density is given by the environment or controlled by the experimental
setup, while cross- and output spectra need to be measured or calculated from the model in
question. In what follows we characterise cross-spectral and spike train spectral densities by
describing the neuron as a phase oscillator, defined by its PRC, cf. Cpt. 4. This means we
do not treat the channel as a blackbox but assume a particular model.
The cross-spectrum can be obtained by averaging the Fourier transformed quantities over
trials (i.e., intrinsic noise 〈·〉y|x) as well as the input statistics (〈·〉x), cf. [117]. It is related
to the transfer function of the encoding filter, G(s), which we determined through linear
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§7.2 Spike train spectra

Fig. 7.1: Spike spectrum of the noisy Na+/K+ model without external stimulus, compared to the
spectrum obtained from the inverse Gaussian first passage time density in Eq. (7.16).

response theory in Eq. (6.6) from §6.2, by

Pyx(ω) = 〈〈ỹ(ω)x̃∗(ω)〉y|x〉x = 〈〈ỹ(ω)〉y|xx̃∗(ω)〉x = G(iω)Pxx(ω). (7.12)

This shows us that although we are computing the cross-spectrum of stimulus and spike
train the response filter G(iω) for the instantaneous firing rate suffices. This simple relation
reminds us of the fact that the cross-spectrum is not really a second order quantity, but can be
exactly determined by linear response theory. The spike train spectrum Pyy(ω), on the other
hand, is truly a second order quantity, viz., the Fourier transform of the auto covariance,
and can not be related to the linear response filter without further approximations.

§7.2 Spike train spectra

Spike train spectra are used to characterise neuronal background noise (cf. Refs [55, Cpt. 18]
and [62, Cpt. 5]). A simple approximation is the use of the spectral addition rule, using the
term coined in Ref. [182]

Pyy(ω) = Py0y0(ω) + |G(iω)|2Pxx(ω). (7.13)

The rule is trivially legitimate if the system behaves linearly, Y (ω) = G(ω)(N(ω) +X(ω)) =
Y0(ω)+G(ω)X(ω), and the noise N is independent of the stimulus. But for nonlinear systems
its applicability is less clear. The rule has be established for more complicated systems such,
as certain metabolic system in molecular biology [182, 170] and genetic networks [147, 82]. In
Ref. [56] it is argued that in neural systems the rule may hold if spike correlations are domi-
nantly induced by correlations in the stimulus, which is perfectly true for the inhomogeneous
Poisson spiker.
An important counter example has been put forward by Benjamin Lindner in Ref. [117].
Through the analysis of IF neurons with random threshold, it was shown that the spike
spectrum under stimulation is not the result of straightforward addition to Py0y0 . Instead
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Fig. 7.2: (a) shows the response filter of Na+/K+ model estimated from simulations (◦) and obtained
from linear response theory (solid line). Both stimulus and noise where additive currents to
the voltage dimension with amplitudes 80 nA/cm2 and 30 nA/cm2 respectively. (b) shows
the spike spectrum in the presence of stimuli. In panel (c) one can see the stimulus response
coherence (Eq. (7.11)). The peaks in the theoretical prediction are due to the fact that the
spectral addition rule is violated. The information lower bound is 0.795 bits/spike at a rate
of 82.5 Hz. The phase spectrum (d) does not influence the coherence based information
bound.

a convolution formula was derived to account for the structure of the spectrum obtained in
simulations.

For the sake of simplicity we will still follow the spectral addition rule, but note that ad-
ditional research into the spike spectrum of driven phase oscillators is necessary. The first
task is to calculate the noise spectrum of a regularly and tonically firing neuron that is kept
at a certain mean firing rate by a constant bias current, but has no additional time varying
inputs.

Assuming a renewal neuron, the power spectrum of emitted spike trains can be calculated
with the help of Eq. (2.25). The condition is certainly violated if the neuron is driven with
a time correlated input process, but without input it might just hold, because of the strong
time separation between intrinsic noise and the ISI time scale on which we observe the process
(so that δ-correlation in time is the appropriate description, cf. [102, Cpt. 7.1]). The basic
ingredient is the Laplace transformed ISI density. The phase reduction of limit cyle oscillators
allows one to calculate the ISI distribution of the phase equation as an approximation to
the biophysical model. Using the averaged phase equation with a constant noise term and
switching off the input yields a simple Brownian motion with drift

φ̇ = 1 + σ̄ ξ(t)
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It is well established [183] that in this case the ISI distribution is the inverse Gaussian

p(τ) = Tp e
− (τ−Tp)2

2σ̄2τ

σ̄
√

2πτ3
. (7.14)

The inverse Gaussian distribution is the inverse Laplace transform of

p(s) = exp
{
Tp
σ̄2

(
1−

√
1 + 2σ2s

)}
. (7.15)

Eq. (2.25) requires to take s → ±iω, so that the principal root in the exponent for ω > 0
evaluates to

√
1± 2σ2iω = (1

2(
√

1− 4(σ2ω)2 + 1)1/2 ± i(1
2(
√

1− 4(σ2ω)2 − 1)1/2. With the
notation

α(ω) = Tp
σ̄2

(
1−

√
γ(ω) + 1

2

)
, β(ω) = −Tp

σ̄2

√
γ(ω)− 1

2 , γ(ω) =
√

(ωσ̄2)2 + 1
4 ,

one may split the exponent in Eq. (7.15) into its real and complex part p(±iω) = exp(α ±
β),∀ω > 0 and identify hyperbolic trigonometric functions

Py0y0(ω) = sinh(α(ω))
cos(β(ω))− cosh(α(ω)) (7.16)

A comparison between the estimated noise spectra and Eq. (7.16) is seen in Fig. 7.1. The
pronounced peaks at the mean firing rate and its higher order harmonics are visible. In
addition one recognises the saturation of the spectrum to a nonfinite value at high frequencies,
that is a feature of the Fourier transformation of Dirac delta spike trains. This noise spectrum
does not incorporate phenomena such as missing spikes, where the dynamics of the system
leaves the attraction of the limit cycle oscillator.

Finally, inserting both the cross-spectrum, Eq. (7.12), and the spectral addition rule from
Eq. (7.13), into the coherence based expression for the mutual information rate, Eq. (7.10),
yields

M = −
wc∫
−wc

dω
2π ln

(
1− |G(iω)|2P 2

xx(ω)
Pxx(ω)(Py0y0(ω) + |G(iω)|2Pxx(ω))

)

=
wc∫
−wc

dω
2π ln

(
1 + |G(iω)|2 Pxx(ω)

Py0y0(ω)

)
,

(7.17)

where |G(iω)|2Pxx(ω)/Py0y0(ω) plays the role of a signal to noise ratio. The squared sig-
nal response coherence is |G(iω)|2Pxx(ω)/(Py0y0(ω) + |G(iω)|2Pxx(ω)). In Fig. 7.2 the esti-
mated signal response coherence is compared to the theoretical predictions. The simplicity
of Eq. (7.17) which is largely due to the spectral addition rule also allows us to define the
optimal input spectrum given fixed power constraint by taking the variational derivative
of M + λ

∫ dω
2π Pxx(ω) w.r.t. Pxx. The optimal stimulus spectrum, yielding the highest

information rate, is
P opt
xx (ω) = 1 + λ

Py0y0(ω)
|G(iω)|2 ,

where λ is chosen to meet the power constraint.
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7 Information transmission

Fig. 7.3: Lower bound to the information transmission rate depending on the systems PRC. Here
the information is calculated per spike, i.e., normalised by the firing rate RLB = M/r0.
Left: Shows the information rate as a function of the transition parameter of the PRC and
the stimulus cutoff frequency. The Black line indicates the highest information rates. When
changing ωc the total variance of the stimulus was keep constant. Right: Cross section of the
density plot on the left for at different cutoff frequencies. The PRC’s parameter θ interpolates
between the canonical PRCs of the Hopf bifurcation, θ = 0 (type II excitability) and the
saddle-node node on limit cycle bifurcation (type I excitability), θ = π. Other parameters
were ω̄ = 1, σ̄ = 0.04 and the standard deviation of the stimulus was 0.15.

§7.3 Information optimal PRCs

How information efficient a dynamical system is depends on the stimulus it has to encode.
For example one may vary the upper cutoff frequency of the stimulus and this will affect
what type of neuron will be better suited encode it. In order to investigate the information
optimality we chose a simplified parametric PRC used in Ref. [1]

Zθ(φ) = ω̄(sin θ − sin(φ+ θ))√
π + 2π sin2 θ

. (7.18)

By letting θ vary from 0 to π one can transition from the PRC of a Hopf bifurcation (type
II) to the PRC of a saddle-node on limit cycle bifurcation (type I), while keeping the PRC
norm constant. The resulting information rates as a function of θ and the ratio of cutoff
frequency vs. intrinsic firing rate are shown in Fig. 7.3. If the cutoff frequencies is below
the mean firing rate, the PRC of the saddle-node on LC bifurcation is optimal. For higher
cutoff frequencies, the optimum is shifted towards biphasic PRCs characteristic of Hopf bi-
furcations. These observations parallel the canonical filtering properties observed in Fig. 6.6:
near a Hopf bifurcation, frequency components below the mean firing rate are suppressed,
while neurons with type I PRCs, and hence significant DC components in the PRC, transmit
low frequencies.
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§7.4 Summary
In this chapter, we calculate the information carried by the spike train about a time-varying
stimulus from the phase response curves. To be more precise, we compute a lower bound
on the mutual information rate based on linear reconstruction. For this purpose, we needed
to estimate spike train spectra in the presence and absence of a stimulus. We therefore
showed in this chapter how to use the renewal theory of point processes to calculate the
spike spectrum in the absence of stimulation. In the phase only equation, there will be no
serial correlation such that the theory gives accurate results. If amplitude dynamics plays a
strong role or long time adaptation currents are present in the neuron, this approximation
can fail. For the simple phase oscillator, the spike-spectrum in the absence of stimulation
was calculated from the inverse-Gaussian ISI distribution, see Eq. (7.14). This is valid if
the original dynamics stays within the attraction of the limit cycle. Some neurons exhibit
regimes with bistability, e.g., the Hodgkin-Huxley model near spike onset has an additional
unstable limit cycle separating the spiking state from an equilibrium. For particular noise
strength such systems show stochastic bursting and have multimodal ISI distributions that
are not inverse Gaussian [76].
We show that if the spectral addition rule is valid, the linear reconstruction bound can be
calculated from the filter spectrum |G(iω)|2 which depends on the PRC and average phase
noise σ̄, alone. Our approach relies on the linear response filter obtained from the Fokker-
Planck equation of the phase in the previous chapter.
Conversely, as the information rate is a functional of the linear response filter and thus the
PRC, one can ask what kind of PRCs are information optimal for a particular stimulus. The
optimal PRC transitions from type I to type II with increasing ration of stimulus cutoff to
intrinsic firing rate.
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8 Discussion

The goal of the thesis was to establish analytical relations between the biophysical properties
of nerve membranes and the neuronal computations they perform in the presence of noise.
To this end, we followed two major lines of investigation. On the one hand, we related micro-
scopic noise caused by the stochastic opening and closing of ion channels to the macroscopic
spike jitter that affects neural coding. On the other hand, we derived the suprathreshold
filtering properties of neurons based on the phase response curves (PRCs) by perturbing the
associated Fokker-Planck equations.
PRCs are based on systematic reductions of the full biophysics, but can also be measured
directly in experiments. At special points, known as bifurcations, the shape of the PRC
can be predicted analytically. Beyond these points, analytical formulae are not generally
available. But, in this thesis, we showed how the framework of numerical continuation can
be used to study the relationship between biophysical parameters, such as the number of
channels in the membrane, and the phase response curve. Indeed, we can begin to ask what
single neuron dynamics would be optimal for neuronal computation.
If the translation of microscopic channel noise to spike jitter is based on the first order phase
equation, simple expressions for the phase dependent noise (Eq. (5.3)) can be evaluated, even
for high-dimensional models involving multiple channel states described by Markov dynamics.
As long as the noise is not too strong, the amount of spike jitter can be accurately captured.
Numerical evaluation of the PRC requires only an additional linear system to be solved,
cf. App. C. This method is suitable to evaluate the magnitude of spike jitter if the noise is
not too strong.
Noise can also lead to a change in a neuron’s average firing frequency. For this purpose, we
showed how to include the radial dynamics along the Floquet modes. To fully identify the
second order phase-amplitude model all Floquet modes need to be evaluated. In principal a
d-dimensional system would require d2 additional linear equations. This becomes challenging
for high dimensional models. Therefore, the SL model and the low dimensional Na+/K+

neuron, were used as examples in Cpt. 5.
Using a secular perturbation approach, Ermentrout et al. had related the PRC to the spike-
triggered average in systems without intrinsic noise [37]. In §6.2 of this thesis, we extended
this result beyond just time-varying stimuli to include intrinsic noise. The usefulness of the
approach in §6.2 comes from the fact that it results in a stable filter, which shows the decay
in the time domain that is observed in experiments and numerical studies with intrinsic
noise (cf. the damping of spectral peaks at higher frequencies in Fig. 6.2). The filter can be
convolved with the stimulus to obtain firing rate estimates, as in Fig. 6.4.
The relevant measures can all be estimated from experiments. Many methods exist to
estimate the PRC [59, 134, 86, 180]. Presenting a constant stimulus would already be
sufficient to estimate the overall phase noise from the ISI distribution, e.g., by fitting an
inverse Gaussian to the histograms. Hence the first order phase oscillator can be completely
identified. Is our theoretical linear response filter in such biological system able to predict
the results of a white noise analysis in experiments? This awaits further investigation and
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would require to independently estimate the PRC and perform white noise stimulation on a
neuron.
The affects of amplitude dynamics on the spike-triggered covariance has been demonstrated
in §6.5, but was only numerically evaluated for the Stuart-Landau model. It remains to be
clarified if these effects are of real consequence in a more complicated biophysical model.
One approach would be to analyse how the eigenfunctions of the STC are changed. To find
an analytic expression for the eigenfunctions of our ∆C as a function of the PRC is still an
open question.

§8.1 Assumptions
The main assumption used was that of small noise or stimulus, so that perturbation theory
could be applied to analyse the nonlinear equations of neuronal dynamics. In fact, in order
to establish the link between channel noise and spike jitter or rate filter the small noise
assumption was invoked on several levels. Firstly, in order to approximate the Markov
channel scheme with the stochastic differential equation in §3.5, the membrane patch was
assumed to be sufficiently large to contain many channels and reduce the amplitude of the
fluctuations. Secondly, the principled phase reduction in §4.4 requires the perturbation,
which we identified with the fluctuation terms in the SDE, to be small. Thirdly, in order to
obtain the filtering properties we averaged the intrinsic noise sources. This averaging process
again assumed that noise is weak, cf. §6.1. Note that all these weakness assumptions are
consistent with one another.
By applying the phase reduction one treats neurons as perturbed oscillators. This confines
us to the suprathreshold regime of tonically spiking neurons. The statistics of the resulting
spike trains can be thought of as the other extreme of the Poisson limit, as one typically has
low CVs and the spiking is fairly regular.
In calculating the linear response filter in §6.2 and assuming it is valid for a broad range of
stimuli, one assumes that the system does not adapt its intrinsic properties to the stimulus.
In reality, the filter itself could be a function of some aspect of the stimulus. This would be
comparable to a Kalman filter, where the filter’s behaviour adapts to changes in the stimulus
statistics.
The gating variables, which describe the fraction of open channels, are restricted to the unit
interval 1 > n(t) > 0. As the noise in the biophysical equations is Gaussian we implicitly
allowed this restriction to be violated. Again, in our small noise regime this rarely happens.
Including the appropriate reflecting boundaries at 0 and 1 would have rendered the analysis
difficult.

§8.2 Phase-dependent phase noise
The stochastic opening and closing of voltage-dependent channels in the membrane results in
noise that is phase-dependent (§5.1). However, in §6.1 we averaged over the state dependent
noise to obtain a constant intrinsic noise strength σ̄. For the calculation of the kernels, or the
STA and STC, one deals with two distinct sources of perturbations, intrinsic and stimulus
related. As the goal is to understand the susceptibility to the stimulus, the intrinsic noise was
only treated as a simple parameter, i.e., the overall intrinsic noise strength. This was done in
order to obtain a simple expression for the response filter, mapping time varying stimuli into
instantaneous firing rate. While not necessary for numerical calculations of the ISI variance,
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given that AUTO can solve the equations for the moments with phase dependent variance,
the averaging step brings with it several advantages.
First, the eigenfunctions of the zeroth order operator F (0) from the Fokker-Planck system
are the trigonometric eigenbase which yields a simple representation of the Volterra kernels.
Second, a global noise strength eases the identification of the relevant parameters from
experimental data. In many experiments where white noise analysis is applied, a detailed
description of the collection of membrane channels is lacking, and thus σ(φ) is not known.
Yet, the average noise strength can be estimated from the ISI variance in response to constant
stimulation or by using the minimum mean squared to adapt σ̄ to fit the experimental spike-
triggered average.
It would require a more refined experimental setup to estimate the phase dependent function
σ(φ). In fact, it is not possible to deduce σ(φ) only from knowledge of the ISI distribution.
This is due to a theorem found in Ref. [11, Thm 2.1], stating that the same ISI distribution,
e.g., an inverse Gaussian, can be generated from various homogeneous diffusion processes
with different state-dependent noise variance, σ2(φ), i.e., multiplicative noise. Therefore,
identifying the phase dependence of the noise strength is not possible only from the spike
times; further information is needed.

§8.3 Correlation structure of the noise

In the course of reducing from Markov models of ion channels to stochastic differential
equations, one realises that the noise across channels states is correlated. The resulting noise
in the gating variable is no longer white, as highlighted in Ref. [115].
In the phase/amplitude coordinates the correlation time scales are given by the Floquet ex-
ponents; therefore, by analysing the Floquet spectrum of the complete system, one can assess
whether all radial dimensions can be adiabatically eliminated or some radial dimensions have
to be retained. In this thesis, we have analysed the first case in detail. A full analysis of the
second case awaits further investigation.
Some effects are not captured the stochastic differential equations. For example, it was
shown that populations of ion channels in an axon can retain a memory of previous activity
[41]. In recent years, researchers have renewed the claim that ion channel opening is cooper-
ative and the functional implications were analysed [189]. In the linear noise approximation
ion channels are treated as statistically independent. Further analysis is necessary to link
cooperativity at the microscopic level to cooperativity models that operate at a macroscopic
level.

§8.4 Future directions

§8.4.1 Population heterogeneity

Throughout this document we have analysed the response properties of single neurons. The
instantaneous firing rate in Cpt. 6 was interpreted as a trial averaged quantity. The alterna-
tive interpretation is that it is the population activity of an ensemble of identical cells. Then
the phase density p(φ, t) describes the phases of the population of neurons. It is known,
however, that neural populations are not homogeneous. For instance, even in small popu-
lations of neurons, such as the 80 or so primary auditory receptors of grasshoppers, have
varying thresholds. Mitral cells in the olfactory system are rather heterogeneous in their
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expression of rebound depolarization (sag) at hyperpolarised potentials. These are mediated
by ZD7288-sensitive currents with properties typical of hyperpolarisation-activated cyclic
nucleotide gated (HCN) channels [4]. In our simplified phase oscillator model this induces a
heterogeneity in the PRCs of the oscillators and will affect the phase distribution of the pop-
ulation. This awaits further studies. An approach to this would be to split the PRC in the
population into an average population PRC, Z̄(φ) and a random perturbation, η(φ), model-
ing the heterogeneity in the dynamics of the individual neurons, so that Z(φ) = Z̄(φ)+η(φ).
Here η(φ) is a periodic stochastic process, i.e., with a periodic correlation function.

§8.4.2 Optimal control for channels

Ref. [160] proposes a stochastic control paradigm on the basis of Fokker-Planck operators.
Therein, the Fokker-Planck operator, for example of the phase evolution F(φ, t;αi), depends
on additional control inputs αi, which should be chosen to optimise a certain objective.
The objective could be formulated as an expectation over the phase distribution C(αi, t) =∫ 2π

0 dφ c(φ)p(φ, t). Objectives could be a measure of the concentration of the distribution
of phases quantifying synchronisation, e.g., c(φ) = eiφ; or if the adjoint operator F† is
used, the control the moments of the ISI distribution to achieve an optimal level of spike
jitter, C(αi) =

∫ 2π
0 dφ δ(φ)Tn(φ). If the Fokker-Planck operator is a weighted superposition,

F(φ, t) =
∑
i αiFi(φ, t) methods of linear control can be applied to dynamically choose the

αi’s. From Eq. (5.5) we know that phase variance splits additively in the channels. Therefore,
a system parameter yields a linear combination of the individual phase noise contributions
if it scales the diffusion matrices DNa and DK but does not affect the systems PRCs. Such
a parameter would be the unitary conductance, γNa and γK, of the channels, given that
the maximal conductance, gmax

Na , are kept fixed. Then, the sodium channel diffusion matrix
scales with γNa

Agmax
Na

.
Indeed, on a molecular level unitary conductances are influenced by subunits of the ion
channels, e.g., the β4 subunit in calcium channels [161]. On a functional level, unitary
conductances change with synaptic activity [122] during learning. Perhaps in the future this
frame work can shed light on cellular regulatory control mechanism.

§8.4.3 Inter-spike interval correlations

Many of the spike trains emitted by nerve cells show serial correlations between consecutive
inter-spike intervals [45]. It has been shown that serial correlations can play an important
role in optimising information transmission in a spike encoder [117]. This behaviour can be
studied in models. For example, it is well known that integrate-and-fire models driven with
correlated noise exhibit inter-spike interval correlations [130, 116]. A biophysical source of
serial correlations are slow, noisy adaptation currents [168]. The interpretation is that the
adaptation process filters the noise and induces longer correlations, which then cause the
inter spike intervals to be correlated. It is less clear if noise in the fast spike generating
process alone can lead to significant serial correlations. One way of addressing this issue is
in the framework of phase amplitude models. The amplitude dynamics in Eqs. (4.24b) is like
an Ornstein-Uhlenbeck process with a periodically modulated noise amplitude. This process
has low-pass characteristics inducing temporal correlations. Yet, due to the typical Floquet
spectra of non-adapting neurons these temporal correlations are weak. Note, however that
the feedback effect of all the amplitude dimension in Eqs. (4.24a) is additive. One can
speculate that the effect of a larger state space (neuron with many different fast channels)
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§8.4 Future directions

may be such that the sum of all correlation times will cause a significant memory to induce
relevant serial correlations. This clearly awaits further study.

§8.4.4 Network dynamics

In this thesis we have used the PRC to deduce single neuron coding properties. Classically,
PRC are used to study network phenomena such as synchronisation in the globally coupled
Kuramoto model [106, Cpt. 5]. The network interactions are modelled with an coupling
function depending only on the phase of the interacting oscillators. The coupling function is
given by a convolution of the PRC and a synaptic kernel. Being embedded into an interacting
network changes the response properties of the individual neurons. For example, coupling
a noisy oscillator to a population of even noisier oscillators regularises its dynamics [121].
Also the linear response filter of the neuron will change through coupling. One approach
to calculate this change in response filter is to use formula Eq. (6.6) with the network-PRC
derived in Ref. [103]. If in this scenario the resulting linear response filter yields the correct
system response still needs to be corroborated.

§8.4.5 Neurons sensitive to multiple features

In §6.5.2 we discussed how the spike-triggered covariance can be obtained from the PRC and
possibly additional Floquet modes. An eigenvalue decomposition of the difference of spike-
triggered covariance and the a priori stimulus covariance function, ∆C, yields additional
features to which the neuron is sensitive, cf. [6, 169, 148]. We have not yet managed to find
a closed expression of these eigenfunction in terms of the PRC and the Floquet exponents.
Nonetheless, if the attraction to the limit cycle is not too strong, the higher frequency pattern
that emerges on the diagonal of the matrix ∆C (cf. Fig. 6.8) will almost surely affect the
eigenmodes as can be shown by numerical analysis. We have decided not to present these
results here. But as the radial components of the dynamics shape the eigenmodes, these will
contribute to the different stimulus features that can cause the neuron to spike. A future
study will be devoted to investigating this effects in the STC of a conductance-based model.
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A Mathematical appendix
To render the exposure more self-contained, the following paragraphs rederive some known results
from the literature, that are used, hinted at or implemented in the main part of the document.

A.1 Novikov-Furutsu-Donsker formula
A relation between Gaussian noise sources and functions of the state variables in stochastic systems
is given by the Novikov-Furutsu-Donsker (NFD) formula. It examines the correlation of a stochastic
process ξt at a fixed instance in time, t, and a function f of x(t), which is an stochastic process
that depends on ξt [53, 32, 142]. One of the advantages of the NFD formula is that it is applicable
to systems with multiplicative noise, as they arise in several applications involving phase response
curves. The result is the following

〈f [ξ]ξ(t)〉 = 1
2

∞∫
−∞
〈ξtξt1〉

〈
δf [η + ξ]

δηt1

∣∣∣∣
η=0

〉
dt1 (A.1)

As it is used several times in this document we give a formal and very compact derivation [101].
In many physical examples only the values in the past t1 6 t, influence the functional f and the
integration range can be adjusted accordingly.
One may, therefore, treat the function f as a functional of the path ξt1 : ∀t1 6 t. The first step is to
write this functional as a Taylor series around the deterministic function ηt = 0 (omitting the integral
domain take it to be understood from −∞ to t)

f [η + ξ] = f [η]|η=0 +
∞∑
k=1

1
k!
∫
· · ·
∫

dt1 · · · dtk ξt1 · · · ξtk
(

δkf [η]
δηt1 · · · δηtk

) ∣∣∣
η=0

=
(

exp
∫

dt′ ξt′
δ

δηt′

)
f [η]

∣∣
η=0.

The second line is just a formal, compressed way of writing it using the definition of the exponential
displacement operator. As f [η] is deterministic it can be yanked from any averaging over the noise
ensemble, e.g.,

〈f [η + ξ]〉 =
〈(

exp
∫

dt′ ξt′
δ

δηt′

)〉
f [η]

∣∣
η=0.

Hence, we can formally write

〈ξtf [ξ]〉 =
〈
ξt exp

∫
dt′ ξt′

δ

δηt′

〉
f [η]

∣∣
η=0 =

〈
ξt exp

∫
dt′ ξt′ δ

δηt′

〉
〈

exp
∫

dt′ ξt′ δ
δηt′

〉 〈f [η + ξ]〉
∣∣
η=0. (A.2)

Next, one may introduce the infinite dimensional Fourier transform of a stochastic process called the
characteristic functional

Φ[λ] =
〈
exp

(
i
∫

dt′ λt′ξt′
)〉
.

For the, by assumption, Gaussian process ξt it is known to be the exponential of a quadratic form

Φ[λ] = exp
(
−1

2
∫

dt1dt2 λ(t1)C(t1, t2)λ(t2)
)
,
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which must be real, Φ[λ] ∈ R, because the density is symmetric around ηt = 0.
With the help of the following ind entity

〈ξt exp i
∫

dt′ξt′λt′〉
〈exp i

∫
dt′ξt′λt′〉

= δ

iδλ ln
〈
exp i

∫
dt′ξt′λt′

〉
= δ

iδλ ln Φ[λ],

and a formal substitution δ/δηt → iλ(t) we may simplify Eq. (A.2) to

〈ξtf [ξ]〉 = δ

iδλ ln Φ[λ]〈f [η + ξ]〉
∣∣
η=0 = i

2
∫

dt1C(t, t1)λ(t1)〈f [η + ξ]〉
∣∣
η=0.

Back substituting iλ(t)→ δ/δηt we obtain Eq. (A.1).

A.2 Fokker-Planck equation
There are two common views on Markov processes, one emphasises individual realisations or paths
of the process (Langevin equation), the other the evolution of densities, e.g., by a Fokker-Planck
equation (FPE). There several ways to arrive at the FPE, but since the NFD formula was already
introduced in the preceding paragraph A.1, one can use it to establish an evolution equation for the
density starting from the following Langevin equation

ẋ = F (x, t) = a(x, t) + b(x, t)ξt. (A.3)

Here a(x) is the deterministic drift part and b(x)ξt is the diffusion part. The Gaussian random noise
is uncorrelated C(τ) = 〈ξtξt+τ 〉 = δ(τ). Nonetheless, for the first steps in the derivation we assume
that the noise is „frozen”, i.e., a fixed part of the r.h.s. of Eq. (A.3). One can formally introduce the
time dependent indicator function or state density of the stochastic process x(t) as

%(x, t) = δ(x(t)− x).

The inclined reader needs to be careful here, due to a near clash of symbols: The difference between
variational derivative and Dirac’s delta is only made by the subtle difference of italic vs. upright
delta.
By the chain rule one finds

∂t%(x, t) = (∂xδ(x(t)− x))F (x(t)).

Solving this equation requires integration and under this operation the indicator function carries the
adjoint of its derivative to F (x, t) [102]. We can, therefore, write

(∂t + ∂xF ) %(x, t) = 0, (A.4)

which is Liouville’s formula for the evolution of the state space density.
This holds for any particular „frozen” path ξt involved in F . In the next step we can average over the
ensemble of such paths to convert the phase space density to a probability density p(x, t) = 〈%(x, t)〉 =
〈δ(x(t)− x)〉. Averaging Eq. (A.4) the evolution equation becomes

ṗ(x, t) = ∂t〈%(x, t)〉 = −∂x (a(x, t)〈%(x, t)〉+ b(x, t)〈ξt%(x, t)〉) . (A.5)

The last term involves the correlation between noise and the phase space density. This can be
evaluated with the help of the NFD formula from Eq. (A.1) and the assumption that ξ is uncorrelated

〈ξt%(x, t)〉 = 1
2

〈
δ%(x, t)
δξt

〉
= − 1

2∂x b(x, t)〈%(x, t)〉

where the second inequality follows from Liouville’s equation. Inserting this identity back into
Eq. (A.5), one obtains a partial differential equation for p(x, t) known as the Fokker-Planck equation
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ṗ(x, t) = 1
2∂xb(x, t)∂xb(x, t)p(x, t)− ∂xa(x, t)p(x, t). (A.6)

This derivation leads to the FPE for an SDE in Stratonovich’s interpretation, which is the one
typically used in this document as it is compatible with the phase reduction mechanism. As the NFD
formula has a multidimensional counter part one can also find FPE for multidimensional SDEs.

A.3 Floquet modes of the Stuart-Landau equations
An analytically tractable set of equations showing a limit-cycle oscillator is the Stuart-Landau model
[106].
This model introduces a specific parameter η, explicitly controlling the attractiveness of the limit
cycle. This parameterisation of the SL model is from (Brown et al., 2004). In this model one may
control the Floquet exponent and hence the attractiveness of the limit cycle explicitly. It can be
written in complex, Cartesian or polar coordinates

ż = (a+ i b)z + (c+ i d)|z|2z (A.7)
ẋ =

(
ax− by + (cx− dy) (x2 + y2)

)
, (A.8)

ẏ =
(
ay + bx+ (cy + dx) (x2 + y2)

)
, (A.9)

or Ṙ = (a+ cR2)R, (A.10)
θ̇ = b+ dR2. (A.11)

The limit cycle has amplitude A =
√
−a/c, angular frequency ω = b + dA2 = b − ad/c, and PRCs

Zx(φ) = (d cosφ+c sinφ)/
√
|ac|, Zy(φ) = (d sinφ−c cosφ)/

√
|ac|. Denote the r.h.s of the amplitude

dynamics as f(R) = (a+ cR2)R. Then as we should have f(A) = 0, f ′(A) = a− 3a = −2a, gives the
linear amplitude relaxation is

R(t) =
√
−a/c+ e−2a t.

The Floquet exponent is λ = −2a. It is not affected by a change in frequency - the monodromy
matrix and characteristic multipliers however are.
The solution for the dynamics in polar coordinates on the whole plane for initial conditions given by
(R(0), φ(0)) = (R0, φ0) is

R(t) =
√√√√ −a

c−
(
a
R2

0
+ c
)
e−2at

(A.12)

θ(t) = φ0 + bt− d

2c ln
(

1 + cR2
0
a

(1− e2at)
)

(A.13)

The phase variable is obtained by letting the angular variable θ evolve for a long time

lim
t→∞

θ(t) = (b− ad/c)t− d

2c ln
(
−cR

2
0
a

)
.

The first term is the monotonically increasing frequency times time term like the relaxed system on
the limit cycle would have. The second term compensates for amplitude excursions. In accordance
with these two term we can calculate this instantaneous phase on the whole plane as

φ(t) = arctan 2(y, x)− d

2c ln
(
−c(x

2 + y2)
a

)
.

Note that the second term is equal to zero if the amplitude ratio of instantaneous amplitude to relaxed
amplitude is one, or x2(t) + y2(t) = A2.
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With c = −1, a = 1, b = 2 and d = −1 we obtain our previous model.
There are several ways of changing the Floquet exponent. The naive way would be to speed up time
t′ 7→ t/η. In polar coordinates we would have

Ṙ = η(a+ cR2)R, θ̇ = η(b+ dR2) (A.14)

The radial dynamics linearised around the limit cycle radius 1 is ≈
√
−a/c+δR e−2ηt. So the Floquet

exponent is −2η. I was previously stating that because the period is also affected by η the Floquet
multiplier would not change. That is completely wrong (it is true for the characteristic multiplier
of the monodromy matrix I suppose). Obviously this does not change the isochron shape θ − b lnR
and hence also the PRC will be the same, but scaled. The period on the limit cycle R = 1 is scaled
ω = η(b− dc/a).
An other possibility to change the Floquet exponents is to change isochron and PRC, e.g., with

ẋ =
(
ηx− by − (ηx+ dy)(x2 + y2)

)
(A.15)

ẏ =
(
ηy + bx− (ηy − dx)(x2 + y2)

)
(A.16)

With R =
√
x2 + y2 and θ = arctan(y/x) one easily retrieves the polar coordinate form

Ṙ = (xẋ+ yẏ)√
x2 + y2

= η

(
x2 + y2 − (x2 + y2)2√

x2 + y2

)
= η(R−R3) (A.17)

θ̇ = xẏ − yẋ
x2 + y2 = ax2 + ay2 − (bx2 + by2)(x2 + y2)

x2 + y2 = a− bR2. (A.18)

The limit cycle is the unit cycle, the Floquet exponent is again −2η, the period is unharmed ω =
b − dη/η = b − d. The amplitude is still 1. But now the PRCs are changing (not only scaling) as
c = −η.
The third option is to let the Amplitude of the limit cycle change (A = √η) keeping frequency ω and
PRC shape fixed. Their will be a scaling of the PRC though (∼ 1/√η), which could be compensated
by changing σ and ε accordingly. This can be obtained e.g. by a = η, b = (ω + η), c = −1, d = −1

ẋ =
(
ηx− (ω + η)y − (x− y) (x2 + y2)

)
(A.19)

ẏ =
(
ηy + (ω + η)x− (y + x) (x2 + y2)

)
(A.20)

The Floquet exponent is again −2η. The phase is obtained by

φ(t) = arctan 2 (y(t), x(t))− 1
2 ln

(
x2(t) + y2(t)

η

)
.

This might be the nicest parametrisation for a comparison. However we have to again change σ, ε ∝√
η in order to obtain the same phase noise!

A.3.1 Isochrons
The isochrons I(φ) of the SL model are given by the log spiral. The parametric curve for −∞ < t <∞
in R2 is

I(φ) = −a
c
e

c
d t

(
cos(t+ φ)
sin(t+ φ)

)
. (A.21)

A.3.2 Floquet modes
First we repeat the Floquet analysis, which we saw long time back. We shall be switching between
complex and real representation of the SL model for brevity. It is also best to stick with the most gen-
eral parametrisation, as we may want to leave us the possibility to control radius, Floquet multiplier
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A.3 Floquet modes of the Stuart-Landau equations

and frequency.
ż = (a+ i b)z + (c+ i d)|z|2z

The limit cycle solution is
z0(t) = x0(t) + i y0(t) = A0 e

iω0 t

with ω0 = b− ad/c and A0 =
√
−a/c The Jacobian is

J(x, y) =
(

2x(cx− dy) + c(x2 + y2) 2y(cx− dy)− d(x2 + y2)
b+ 2x(dx+ cy) + d(x2 + y2) a+ 2y(dx+ cy) + c(x2 + y2)

)
And on the limit cycle

J0 =
(
a− 2a cos2 ω0t+ ad

c cosω0t sinω0t− a −2a cosω0t sinω0t+ ad
c sin2 ω0t+ ad

c − b
b− 2adc cos2 ω0t− a cosω0t sinω0t− ad

c −2adc cosω0t sinω0t− a sin2 ω0t

)
=
(
−2a cos2 ω0t+ ad

c cosω0t sinω0t −2a cosω0t sinω0t+ ad
c sin2 ω0t− ω0

−2adc cos2 ω0t− a cosω0t sinω0t+ ω0 −2adc cosω0t sinω0t− a sin2 ω0t

)

Though slightly more general this SL model is still radially symmetric and the following coordinate
change should do the trick.

S(t) =
(

cos(ω0t) − sin(ω0t)
sin(ω0t) cos(ω0t)

)
Say (

p

q

)
= S−1

(
x

y

)
Then (

ẋ

ẏ

)
= Ṡ

(
p

q

)
+ S

(
ṗ

q̇

)
= J0S

(
p

q

)
or (

ṗ

q̇

)
= S−1(J0S − Ṡ)

(
p

q

)
Floquet theory wants

S−1(J0S − Ṡ) = Λ

to be a constant matrix so that the system of (p, q) is easily solved by a matrix exponential.

First of all the time derivative of the transformation matrix is

Ṡ = −ω0

(
sinω0t cosω0t
− cosω0t sinω0t

)
which is still a rotation matrix shifted by π/4. Then premultiplying with a rotation in the other
direction leaves

S−1Ṡ =
(

0 −ω0
ω0 0

)
and with some trigonometric identities

S−1J0S =
(

−2a −ω0
ω0 − 2ad/c 0

)
From which we get the constant matrix

Λ = −2
(

a 0
−ad/c 0

)
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A Mathematical appendix

We read the eigenvalues to be −2a and 0. The right eigenvectors Λuk = λkuk are

u0 =
(

0
1

)
, u1 =

(√
c
d√
d
c

)

The left eigenvectors vkΛ = λkvk are

v0 =
(
−dc
1

)
, v1 =

(√d
c

0

)
All were normalised as vj · uk = δjk.
We may check the PRCs again, which we obtain as

V 0(φ) = 1
A0
v0S

−1 = 1√
−ac

(
d cosφ+ c sinφ
d sinφ− c cosφ

)
The scaling factor 1/A0 was included to fulfil V 0(0) · F (0) = ω0.
The radial PRCs which we need are

V 1(φ) = v1S
−1 =

√
c

d

(
cosφ
sinφ

)
and the conjugate

U1(φ) = Su1 = 1√
cd

(
c cosφ− d sinφ
c sinφ+ d cosφ

)

A.4 Radial contribution to the second Volterra kernel
For simplicity consider just one radial dimension. Then

t∫
dt′et−t

′)F(0)
F (2)ρ(0)

= 1
2π
∫∫∫

dt′drdsΘ(t− t′)Θ(r)Θ(s)et−t
′)F(0)

∂φh(φ)Z2
1 (φ)eλ(t−r)x(r)eλ(t−r)x(s)

Substituting x(t′ − r̃) =
∫
δ(t′ − q)x(q − r̃)dq we obtain

= 1
2π

∞∫∫∫∫
−∞

Θ(p)Θ(r − v)Θ(s− p)epF
(0)
eλ(r−v)∂φh(φ)Z2

1 (φ)

eλ(s−p)δ(v − p)x(t− r)x(t− s) drdsdvdp.

From this one can read the kernel as

1
2π

∞∫∫
−∞

Θ(p)Θ(r − v)Θ(s− p)epF
(0)
∂φh(φ)Z2

1 (φ)eλ(r−v)eλ(s−p)δ(v − p) dvdp

= 1
2π

∞∫
−∞

Θ(p)Θ(r − p)Θ(s− p)epF
(0)
∂φh(φ)Z2

1 (φ)eλ(r−p)eλ(s−p) dp

In order to obtain the radial contribution to the second order kernel for a particular neuron model one
needs to evaluate ∂φh(φ)Z2

1 (φ) numerically and fit to it a Fourier series, which are the eigenfunctions
of etF(0) .
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B Model definitions

These are the parameters for the original equations describing the squid giant axon, established in a
series of articles in the early 1950’s by Hodgkin and Huxley and the Traub and Miles model.

HH TM
gL 0.3 0.1 mS/cm2

ENa 115 48 mV
EK -12 -82 mV
EL 10.6 - 67 mV
%Na 30 · 108 250 · 108 cm−2

%K 3 · 108 167 · 108 cm−2

γNa 4 · 10−9 4 · 10−9 mS
γK 12 · 10−9 12 · 10−9 mS

The reaction rates for the HH model are

am(V ) = 0.1(25.0− V )/(exp((25.0− V )/10.0)− 1)
bm(V ) = 4.0 exp(−V/18.0)
ah(V ) = 0.07 exp(−V/20.0)
bh(V ) = 1.0/(exp((30.0− V )/10.0) + 1)
an(V ) = 0.01(10.0− V )/(exp((10.0− V )/10.0)− 1)
bn(V ) = 0.125 exp(−V/80.0)

The reaction rates for the TM model are

am(V ) = 0.32(V + 54)/(1− exp(−(V + 54)/4))
bm(V ) = 0.28(V + 27)/(exp((V + 27)/5)− 1)
ah(V ) = 0.128 exp(−(V + 50)/18)
bh(V ) = 4/(1 + exp(−(V + 27)/5))
an(V ) = 0.032(V + 52)/(1− exp(−(V + 52)/5))
bn(V ) = 0.5 exp(−(V + 57)/40)

DK = 1
%KA

 d1 −(3ann1 + 2bnn2) 0 0
−(3ann1 + 2bnn2) d2 −(2ann2 + 3bnn3) 0

0 −(2ann2 + 3bnn3) d3 −(ann3 + 4bnn4)
0 0 −(ann3 + 4bnn4) d4


with diagonal terms

d1 = 4ann0 + (3bn + bn)n1 + 2bnn2,

d2 = 3ann1 + 2(an + bn)n2 + 3bnn3,

d3 = 2ann2 + (an + 3bn)n3 + 4bnn4,

d4 = ann3 + 4bnn4.
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B Model definitions

The diffusion matrix for the Na+ channel reads[ d1 −2am m10 − bm m20 0 0 −ah m10 − bh m11 0 0
−2(am m10 + bm m20 ) d2 −am m20 − 3bm m30 0 0 −ah m20 − bh m21 0

0 −(am m20 + 3bm m30 ) d3 0 0 0 −ah m30 − bn m31
0 0 0 d4 −(3am m01 + bm y11 ) 0 0

−ah m10 − bh m41 0 0 −3am m01 − bm m11 d5 −2(am m11 + bm m21 ) 0
0 −(ah m20 + bh m21 0 0 −2(am m11 + bm m21 ) d6 −(am m21 + 3bm m31 )
0 0 −ah m30 − bh m31 0 0 −am m21 − 3bm m31 d7

]
with the prefactor 1

%NaA
.
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C The numerical framework of
continuation

The goal of this document is to relate quantities that describe the coding properties of neurons to their
biophysics via the reduction to phase equations and PRCs. As for all but some canonical models near
bifurcations and other low dimensional neural models the PRCs need to be evaluated numerically one
requires an efficient numerical recipe. In this thesis we use the well developed framework of numerical
continuation of boundary value problems (BVPs) [99]. In the following we will give a brief overview
of concepts. The topic of continuation is however a very broad field in numerical analysis.

C.1 Continuation of boundary value problems
In §4.3 it was shown that the PRC is the solution of Eq. (4.13), the adjoint of the first variational
equation of the limit cycle ODE. In order to study the encoding properties of for changing parameters,
such as different input bias currents, channel densities or temperatures, one requires an efficient
method to solve the adjoint equation for a whole range of system parameters. Time integration for
each parameter in the set is an option, but it is also possible to predict solution based on known
solution for small changes in the parameters of the underlying ODE. This has the strong benefit that
solutions can be obtained also for unstable equations. The reason is that there is no time necessary.
This is important because the equations for the Floquet modes Eq. (4.11) are unstable in forward and
backward time for all λ 6= 0. The reason is that they have non-empty stable and unstable manifolds,
so t 7→ −t just exchanges stable and unstable manifold. The adjoint equation for the PRC (λ = 0)
itself is unstable in forward time, but time reversal allows stable integration.
Solving for the Floquet modes equires a solution of the limit cycle. So one has a problem with periodic
boundary conditions of the following structure

ẋ = f(x, θ), x(t) = x(t+ Tp).

Here θ denotes a generic system parameter. It is convenient to map the problem onto the unit interval
with t 7→ tTp, where the period is treated as an other system parameter

ẋ = Tp f(x, θ), x(t) = x(t+ 1).

The general idea of continuation is as follows. Solutions of the BVP are implicitly defined by

g(x(θ), θ) = ẋ− Tpf(x, θ) = 0. (C.1)

Solutions are guaranteed under the conditions of the implicit function theorem. The idea is to start
at a given solution x(t, θ) at a specific parameter θ and then using first order Taylor expansion

x(t, θ + ∆θ) ≈ x(t, θ) + ∆θ ∂θx(t, θ). (C.2)

In order to update the solution in the direction of parameter change one requires ∂θx(t, θ). This can
be calculated in the following way. The total derivative w.r.t. the system parameter θ is

∇xg · ∂θx+ ∂θg = 0.

As long as the Jacobian, J = ∇xg, can be inverted this linear matrix equation can be solved for
∂θx(t, θ). Eq. (C.2) is of course only an approximate solution to the implicit function g(x, θ+∆θ) = 0
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C The numerical framework of continuation

in Eq. (C.1). But it suffices as an initial guess which can be improved by Newton iterations

xk+1 = xk − (∇xg(xk, θ + ∆θ))−1g(xk, θ + ∆θ). (C.3)

This type of algorithm is called predictor (Eq. (C.2)) - corrector (Eq. (C.3)) method. In practice,
the equations above including time derivatives have to be represented as discretised vectors. In the
software package AUTO, which was used for this thesis, the discretisation is controlled and adapted
by the orthogonal collocation method [31].

C.2 The extended nonlinear-linear system
In addition to the limit cycle solution one may include in g(x, θ) the linear equations form the Floquet
modes, Eqs. (4.11), or the equations for the ISI moments, Eqs. (5.4). The extended system reads

dx
dt − Tpf(x) = 0(

d
dt

+ TpJ
†
)
Zk − λkZk = 0(

d
dt
− TpJ

)
W k − λ̃kW k = 0

Ṫ1 − S1 = 0

Ṡ1 + 2
1 +

[
1 + h̄(t) + 1

2σ
′(t)σ(t)

]
S1

σ2(φ) = 0

Ṫ2 − S2 = 0

Ṡ2 + 2
2T1 +

[
1 + h̄(t) + 1

2σ
′(t)σ(t)

]
S2

σ2(φ) = 0



(C.4)

with periodic boundary conditions for x(0) = x(1), Zk(0) = Zk(1),W k(0) = W k(1) and S1(0) = 0,
S2(0) = 0, T1(1) = 0, T2(1) = 0. The term h̄(t) and σ(t) themselves dependt on x(t), Zk(t) and
W k(t).

C.3 Computation of isochrons as BVP
Ref. [144] has cast the computation of isochrons into a BVP, where the initial condition is a free
parameter that determines points on the isochron. The method is most straightforwardly implemented
for planar systems. By varying the end point of the solution isochron is sampled as the starting points
of solution bundles that end on a linear approximation of the isochron.

C.4 Homotopy parameter for potentials with poles
As mentioned above the continuation method requires an initial guess for the solution. Often time
integration can be used to compute the first solution as a specific parameter. However, as some of
the equations are impervious to time integration a different approach is called for. One way is to
use homotopy parameters to switch of some part of the nonlinear equation so that the solution is
possible. For example by introducing the parameters o1 and o2 the equation

Ṡ = −2 1 + o1h(φ)
(1− o2) + o2σ2(φ) ,

can be converted to Ṡ = −2 if we set o1 = o2 = 0. From the simple solution one can then continue
in the parameters oi one by one until they reach 1.
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