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Zusammenfassung 

 

 Das Humane Immundefizienz-Virus 1 (HIV-1) rekrutiert Wirtszellproteine und  

-Signalwege für seinen eigenen Lebenszyklus und beeinträchtigt viele Funktionen 

von Immunzellen, darunter die Phagozytose von Pathogenen durch Makrophagen. 

Diese Schwächung der Immunabwehr verursacht das acquired immunodeficiency 

syndrome (AIDS). 

Der Zusammenbau von HIV-1 geschieht sowohl an der Plasmamembran als auch in 

endosomalen Kompartimenten und wird durch das Struktur-Polyprotein Gag kon-

trolliert, das auch für die Freisetzung virusähnlicher Partikel (VLPs) aus der Wirts-

zelle sorgt. Vorangegangene Studie haben gezeigt, dass durch hohe induzierte Cal-

ciumkonzentrationen im Zytoplasma die Anzahl an VLPs in endolysosomalen 

Kompartimenten steigt und die VLP-freisetzung drastisch zunimmt [1,2]. Der ver-

antwortliche Mechanismus ist jedoch bisher unbekannt.  

Die vorliegende Arbeit zeigt zunächst, dass Calciumausschüttung aus Lysosomen 

die Fusion von Endosomen und Lysosomen - und damit die Exozytose der in Lyso-

somen enthaltenen VLPs - auslöst. Dieser Prozess wird durch Synaptotagmin VII 

reguliert und verhindert den Abbau eines Teils der in späten Endosomen und Lyso-

somen eingschlossenen VLPs. 

Der zweite Teil dieser Arbeit beschreibt die Entwicklung eines nanobiotechnologi-

schen Systems zur Eliminierung von Env/Gag-VLPs (HIV-VLPs) mit Hilfe von Makro-

phagen. Dieses basiert auf Immunoliposomen, die HIV-VLPs über anti-Env-

Antikörper binden und von Makrophagen dank membranständigem Phosphatidylse-

rin (PS), einem apoptotischen Signal, phagozytiert werden. Die Lipososmen imitie-

ren apoptotische Zellen und induzieren ihre Internalisierung und die lysosomale 

Aufnahme von HIV-VLPs. Das System nutzt einen effizienten Internalisierungsweg, 

der während der HIV-1-Infektion nicht beeinträchtigt ist. 

Diese Ergebnisse bieten neue Einblicke in die intrazellulären Prozesse der HIV-1 

Freisetzung und präsentieren PS-Immunoliposomen als neuen potentiellen nano-

medizinischen Ansatz zur Virusbeseitigung und HIV-Antigenpräsentation. 

 

Schlagwörter: HIV-1, virusähnliche Partikel, Immunoliposomen, Phagozytose 

 



 

 
 

II 

Abstract 

 

 Human immunodeficiency virus 1 (HIV-1) hijacks proteins and signaling path-

ways of the host cell for its own life cycle, thereby impairing many functions of im-

mune cells, including pathogen-phagocytosis by macrophages. The overall weaken-

ing of immune functions eventually results in the development of acquired 

immunodeficiency syndrome (AIDS). 

HIV-1 assembly takes place at the plasma membrane as well as in endosomal com-

partments and is governed by the structural polyprotein Gag, which is also suffi-

cient for the release of virus-like particles (VLPs) from the host cell. It was shown 

that an induced high cytoplasmic calcium concentration increases the amount of 

VLPs in endo-lysosomal compartments and results in a dramatic enhancement of 

VLP release [1,2]. However, the mechanism by which calcium can promote the re-

lease of VLPs remains to be determined.  

The first part of this work shows that release of calcium from lysosomes causes 

fusion between endosomes and lysosomes as well as exocytosis of lysosome-

entrapped VLPs. This mechanism is regulated by Synaptotagmin VII and prevents 

degradation of a part of the late endosome- and lysosome-entrapped VLPs.  

The second part focuses on the development of a nanobiotechnological system for 

the clearance of Env/Gag-VLPs (HIV-VLPs) by macrophages. This system is based 

on immunoliposomes that (1) bind HIV-VLPs via anti-Env antibodies and (2) are 

phagocytosed by macrophages due to the presence of phosphatidylserine (PS), an 

apoptotic signal. Essentially, the PS-liposomes mimic apoptotic cells thereby induc-

ing internalization and lysosomal delivery of bound HIV-VLPs. These immunolipo-

somes exploit an efficient internalization pathway not impaired upon HIV-1 infec-

tion.  

The results of this thesis provide new insights into the intracellular pathways con-

trolling HIV-1 release and demonstrate that PS-immunoliposomes can represent a 

novel nanomedical approach for viral clearance and HIV antigen presentation. 

 

Keywords: HIV-1, Virus-like particles, Immunoliposomes, Phagocytosis  
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The UNAIDS Global Report of AIDS epidemic 2013 declares that about 35 million 

people were living with human immunodeficiency virus (HIV) in 2012. This repre-

sents an increase from previous years and is owed to the fact that more people are 

receiving the life-saving antiretroviral therapy. In 2012 there were two million new 

HIV infections globally, showing a 33% decline in the number of new infections in 

2001. The number of AIDS deaths is also declining with 1.6 millions AIDS deaths in 

2012, down from 2.3 million in 2005. Despite the decrease of HIV infections and 

AIDS deaths in the last years, HIV/AIDS has remained on the top of the major 

causes of death during the past decade.  
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1 INTRODUCTION 

 

 

1.1 The biology of HIV-1 

 

HIV is a single-stranded, positive-sense, enveloped RNA virus, which belongs to 

the genus Lentivirus, family Retroviridae. This virus has probably originated 

through the evolution of a simian immunodeficiency virus (SIV) in non-human pri-

mates in West-central Africa and subsequently has been transferred to humans in 

the early 20th century [3]. Two types of the virus, HIV-1 and HIV-2, have been 

characterized. HIV-1 is the virus that was initially discovered (Figure 1): it is more 

virulent, more infective and is the cause of the majority of HIV infections globally. 

HIV-2, on the contrary, shows a lower infectivity, poor capacity to be transmitted 

and is mostly confined to West Africa regions. The transmission of HIV takes place 

mostly through sexual intercourse, contacts with infected blood and breast milk. 

 

 

Figure 1. One of the first electron microscopy images of HIV-1 budding in lymphocytes. Elec-

tron microscopy image of a thin section of virus producing cord lymphocytes. The inset shows various 

stages of particles budding at the cell surface. Adapted from [4]. 
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1.1.1 Structure and genome 

 

Mature viruses are composed by a viral envelope and a matrix [5]. In the inte-

rior part is enclosed a capsid, which itself encloses two copies of the single-stranded 

RNA genome and several enzymes (Figure 2). In the HIV-1 genome, starting from 

the 5’-end, are found the group-specific antigen (gag), the polymerase (pol), and 

the envelope glycoprotein (env) genes (Figure 3). The gag gene encodes a polypro-

tein precursor, which can be identified as Pr55, based on its molecular weight, or as 

“Gag”, the structure-protein. Subsequently to the release of the newly produced 

virus, the Gag protein undergoes a maturation process, during which it becomes 

cleaved by the viral protease (PR) to the mature matrix protein (also known as MA 

or p17), capsid (CA or p24), nucleocapsid (NC or p7), and p6 (Figure 2) [5]. Two 

spacer peptides, p2 and p1, are also generated upon Gag processing. The pol gene 

encodes for different enzymes that are initially synthesized as part of a large poly-

protein precursor, Pol (or Pr160, or “GagPol precursor”), whose synthesis results 

from a rare frame-shifting event during Gag translation. The pol-encoded enzymes, 

PR, reverse transcriptase (RT), and integrase (IN), are cleaved from Pr160 by the 

viral PR. The envelope glycoproteins are also synthesized as a polyprotein precursor 

(i.e. gp160). Gp160 is processed by a cellular protease during Env trafficking to the 

cell surface. The processing of gp160 results in the generation of the surface glyco-

protein gp120 and the transmembrane glycoprotein gp41. Gp120 is responsible for 

the interaction with the CD4 receptor and the co-receptor(s), while gp41 anchors 

the gp120/gp41 complex in the membrane and performs the membrane fusion re-

action between viral and host lipid bilayers, during the virus entry process. HIV-1 

also encodes a number of regulatory and accessory proteins: Tat, Rev, Vpu, Vif, Vpr 

and Nef. Tat is critical for transcription of the viral genome, Rev plays a major role 

in the transport of viral RNAs from the nucleus to the cytoplasm. Vpu, Vif, Vpr and 

Nef have been recognized to be not uniformly required for virus replication, and 

therefore have been termed “accessory proteins”. 
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Figure 2. Schematic representation of HIV-1. From the outer part to the inner it can be found the 

spike proteins (Env), the lipid bilayer and the MA. Inside the particle the PR enzymes and the inner core 

of the virus, made by the CA proteins, can be found. Inside the core, there are the RT and IN enzymes 

and the viral RNA genome associated to NC residues. Adapted from [6]. 

 

 

 

Figure 3. Schematic representation of the HIV-1 genome. The relative locations of the HIV-1 open 

reading frames gag, pol, env, vif, vpr, vpu, nef, tat, and rev are indicated. The 5' and 3' long terminal 

regions (LTRs) are shown. The  indicates the position of the RNA packaging signal. The major Gag 

domains (MA, CA, NC, p6) and the Gag spacer peptides (p2 and p1) are shown under the gag gene. The 

site of Gag N-terminal myristylation is denoted as “myr”. Under the pol gene are indicated the PR, RT 

and IN coding regions. Sequences of the gp120 and gp41 Env glycoproteins are shown. Adapted from 

[5]. 
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1.1.2 Replication cycle 

 

 Once it has entered the host, HIV-1 can penetrate into specific target cells of 

the immune system and initiate its replication cycle (Figure 4): subsequent to the 

entry into the target cell, the viral RNA genome is first converted into a double-

stranded DNA and subsequently integrated into the cellular genome. After integra-

tion into the host DNA, the virus may be either immediately activated, resulting in 

transcription of viral RNA, production of viral proteins and assembly and release of 

new viral particles, or become latent, avoiding the detection by the immune sys-

tem. 

 

Entry mechanism 

HIV-1, as an enveloped virus, must fuse with the phospholipid bilayer of the host 

cell. This process, mediated by the spike-glycoprotein Env, leads to the disassembly 

of the viral core and the delivery of the viral genome to the cytoplasm and finally to 

the nucleus [7]. Fusion of HIV-1 with the target phospholipid bilayer mostly takes 

place at the plasma membrane (PM) [7]: a successful fusion between HIV-1 and 

target cell requires, initially, a high-affinity binding between gp120 and the T-

lymphocyte receptor CD4. This association triggers conformational changes in Env 

that enable subsequent interactions with the so-called “co-receptor”, which is a 

member of the seven-transmembrane chemokine-receptor family, usually CCR5 or 

CXCR4. This interaction, in turn, elicits more drastic changes in Env, releasing the 

fusogenic potential of gp41. Recently, it was shown that HIV-1 can also enter target 

cells via endocytosis [8]: after recognition and binding between Env and CD4/co-

receptor (CXCR4 or CCR5), the virus can be endocytosed and then fuse with the 

endosomal membrane releasing its viral core into the cytoplasm. Besides these en-

try pathways, also described as “cell-free entry pathways” [9], in several physiolog-

ically relevant cells types (T-cells, macrophages, and dendritic cells), HIV-1 was 

shown to be able to enter target cells through points of cell-cell contact, the so-

called “virological synapses” by analogy with similar structures–immunological syn-

apses that form between antigen-presenting cells and T-cells. An HIV-1 virological 

synapse is characterized by polarization of the actin cytoskeleton and by accumula-

tion of CD4, co-receptors, adhesion molecules, and tetraspanins, in addition to Gag 

and Env glycoproteins [10]. In macrophages, viral particles appear to assemble 

within an internal but surface-connected compartment [11]; in dendritic cells 
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(DCs), virus is thought to bind to the outer cell surface and then be taken into a 

similar compartment [12]. Such pre-assembled particles can subsequently move to 

the cell-cell junction on the way of synapse formation, allowing for efficient cell-cell 

transfer.   

 

Assembly and budding 

Following the integration into the host chromosome, the transcription of the viral 

RNAs, that ultimately encode the full complement of structural, regulatory, and ac-

cessory proteins used to direct virus replication, may start. The basal transcriptional 

activity from the provirus is initially very low: immediately after integration, only 

the host factors are responsible for the transcription process (e.g. RNA polymerase 

II, transcription factor IID, NF-kB). RNA synthesis is then greatly increased (by 

more than two logs) only when the transcriptional trans-activator protein Tat is pre-

sent [5]. The produced viral RNAs can be then either: I) unspliced, which function 

as the mRNAs for the Gag and Pol polyprotein precursors, and are packaged into 

progeny viruses as genomic RNA, or II) partially spliced mRNA, which are around 5 

kb in size and encode the Env, Vif, Vpu, and Vpr proteins, and III) small (1.7 to 2.0 

kb), multiply spliced mRNAs, which are translated into Rev, Tat, and Nef. Following 

the synthesis of the full complement of viral proteins, the assembly process takes 

place. The major player in virus assembly is the precursor polyprotein Gag [13]. 

This protein contains determinants that target it to the PM [14], where it specifically 

binds to phosphatidylinositol(4,5)-bisphosphate (PIP2) (Figure 6). Gag can also 

promote Gag-Gag interactions, encapsidate the viral RNA genome, associate with 

the viral Env glycoproteins, and finally stimulate budding from the cell [15,16]. The 

site of viral assembly has been shown to vary in respect of the infected cell: in T-

cell Gag traffics as monomers or lower-order oligomers to the PM, where it under-

goes higher-order multimerization and initiates particle assembly [17], while in 

macrophages or DCs Gag has been found to assemble in the lumen of late endo-

somes (LEs) or multivesicular bodies (MVBs) [18] (see further detail in the para-

graph "trafficking to the assembly site"- section 1.1.3). Gag and Pol are synthesized 

by free ribosomes in the cytoplasm, while Env synthesis takes place in the endo-

plasmic reticulum (ER) [19]. Pol is produced as the result of a rare frame-shifting 

event during Gag translation. The enzymes encoded by pol are then packaged into 

virus via their Gag domain, largely using the same Gag-Gag interactions that drive 

Gag assembly. The Env precursor protein gp160 is co-translationally inserted into 

the ER membrane, exposing its ectodomain into the lumen of the ER, where it 
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forms intramolecular disulfide bonds and undergoes oligomerization [19]. Subse-

quently, during transport though the Golgi, the gp120 domain is heavily glycosylat-

ed. The Env glycoprotein complexes that reach the cell surface can be then either 

rapidly internalized, through recognition by host cell machinery of an endocytosis 

motif in the gp41 cytoplasmic tail, or are incorporated into virus particles [20]. The 

final step in the process of virus assembly involves the pinching off, or budding, of 

the virus particle from the host cell PM. As many other retroviruses and different 

enveloped viruses, HIV-1 encodes specific sequences that promote particle release. 

These sequences are collectively referred to as “late domains” or “L-domains” to 

reflect their role late in virus assembly [21]. The L-domains are usually encoded in 

the Gag sequence; in the case of HIV-1, the L-domain is present in the p6 domain. 

Deletion of p6, or mutations within the highly conserved Pro-Thr/Ser-Ala-Pro motif 

located near the N-terminus of p6, can strongly impair particle release [22]. The L-

domain interacts with different host factors that play a fundamental role promoting 

the budding of viral particles. Specifically, the L-domain recruits the cellular endo-

somal-sorting complex required for transport-machinery (ESCRT), which normally 

assists budding and release of vesicles into the lumen of late endosomes [23]. The 

ESCRT machinery is known to comprise more than 25 proteins, organized into four 

complexes (ESCRT-0, -I, -II, and -III) that function sequentially along with several 

additional associated factors [24]. ESCRT-III and Vps4 (a protein required for the 

stripping of other ESCRT components) must be recruited to the bud neck to execute 

the final bud scission event and to release the ESCRT factors from the assemblage, 

for recycling back to the cytosolic pool [25]. The immature Gag shell, in which Gag 

molecules are radially arranged with their N-terminus in contact with the membrane 

and their C-terminus oriented toward the center of the virus, disassembles concom-

itant with particle release when the viral PR cleaves the Gag and GagPol polypro-

teins into their constituent proteins. 
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Figure 4. Schematic representation of the HIV-1 entry and release. On the left side are shown 

two entry mechanism: 1) endocytosis and subsequent fusion with the endosomal membrane and 2) 

direct fusion with the PM. Both entry mechanisms are followed by uncoating and release of the viral 

content, reverse transcription and HIV-DNA integration into the host genome. On the right side of the 

figure two exit mechanisms 1) direct assembly at the PM and 2) assembly in LEs/MVBs are shown. 

Mechanism 1: Gag traffics to the inner (cytoplasmic) leaflet of the PM where it initiates virus assembly 

and budding (typically observed in T-cells). Mechanism 2: Gag assembles on the cytoplasmic face of 

intracellular vesicles such as LE/MVBs, and the ensuing virus particles bud into the intraluminal space. 

The virus-harboring vesicles then traffic to and fuse with the PM, thereby resulting in the extracellular 

release of the virions. Adapted from [6]. 
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1.1.3 The structure-protein Gag 

 

Gag (Figure 5) is the major structural protein and the building block of HIV-1 

and comprises about 50% of the mass of a viral particle [26]. This protein, interact-

ing with different host factors, is necessary and sufficient for orchestrating particle 

assembly, since its expression alone, in suitable eukaryotic cells, leads to the pro-

duction of virus-like particles (VLPs) [27].  

 

 

Figure 5. Schematic representation of the Gag polypeptide. (A) Tertiary structure of the myristoy-

lated Gag. The Gag polypeptide, with helices (numbered from 1 to 19 starting from the N-terminal) and 

loops, is shown in blue with the respective atoms space-filling rendering. The regions responsible for the 

interaction of Gag with other viral proteins, as well as itself to form higher ordered structures, are high-

lighted in red. The position of the myristic acid is indicated by an arrow. (B) Schematic representation of 

the four major domain of Gag: MA, CA, NC, p6 and the two spacer-peptides (p2 and p1). N-terminal 

(NTD) and C-terminal (CTD) domains of CA are indicated highlighting their relevance in forming Gag-Gag 

interaction-interfaces. The specific amino acids involved in interactions between viral proteins (e.g. Env 

uptake, Vpr incorporation) and forming the two zinc-fingers are also indicated (orange). Adapted from 

[28]. 

 

The MA domain is composed by 128 amino acids and comprises five alpha helices 

and a three strand mixed beta sheets [28]. The N-terminus Gly-2 is post-

translationally myristoylated by covalent attachment of myristic acid by N-

myristyltransferase within the consensus sequence MGXXX(S/T)XX (see position of 

myrtistic acid in the Gag polypeptide in Figure 5). Myristoylation is critical for PM 

targeting and viral assembly [29]: the MA domain binds specifically to PIP2 in the 

inner leaflet of PM. This binding induces a conformational change in MA that expos-

es the N-terminus myristate moiety, which becomes inserted into the inner leaflet, 
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thereby stabilizing Gag-PM association. A PIP2 recognition motif sequesters the un-

saturated fatty acid of PIP2 into the same hydrophobic pocket from which the 

myristic acid group is displaced allowing interaction of the myristic acid group with 

the PM and forming a bi-directional lipid anchor (Figure 6) [30]. The MA domain is 

also involved in interaction with the cytoplasmic tail of the Env gp41 protein to aid 

incorporation of Env into the viral particles [19]. Within the mature virus, the CA 

domains (231 amino acids) form the structural core, while CA–CA interactions are 

essential for the formation of the immature particles and any effector that can in-

terfere with this process has a severe effect on viral replication. The proline-rich 

loop between helix 9 and 10 is a target for an innate immune factor, the tripartite 

motif-containing motif 5-alpha (TRIM5 ) [31], which interferes with the early stag-

es of viral uncoating during replication by targeting incoming virions to the pro-

teasome. TRIM5  is a multimeric protein and forms hexameric lattices when stimu-

lated by the presence of a CA lattice. HIV-1 overcomes the binding of TRIM5  by 

binding a molecule of cyclophilin A, a prolyl-peptidyl isomerase, to the same target 

site [32]. The NC region of Gag is constituted by 55 amino acids that form two zinc 

fingers separated by a functionally important basic domain. This region has two 

distinct roles during the assembly and maturation of the virus particle: I) to fulfill a 

major structural role within Gag–Gag interactions by forming the immature viral 

particle; and II) to play a role in nucleic acid recognition and interaction during viral 

replication [28]. The ALG-2-interacting protein X (ALIX), an ESCRT-associated pro-

tein that promotes viral budding, binds to both NC as well as p6 [33]. At the C-

terminus of Gag the p6 domain is located, made up of a 52 amino acids forming 

two helices. Two functional regions have been mapped to the p6 domain: an N-

terminal PTAP motif, which represents the late-domain and a C-terminal LXXLF se-

quence, which participates in the incorporation of Vpr into particles [34]. PTAP 

binds to the cellular tumor susceptibility gene 101 (Tsg101 or ESCRT-I), a protein 

involved in vacuolar cell sorting, which plays a fundamental role in the release of 

VLPs [35].   
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Figure 6. HIV-Gag association with PIP2 at the plasma membrane. The N-terminal myristic acid 

moiety of MA is depicted in its sequestered conformation. PIP2 embedded in the inner leaflet of the 

plasma membrane lipid bilayer is shown with its 1’ (orange) and 2’ (yellow) acyl-chains in the lipid bi-

layer. The arrows indicate the binding between MA and PIP2, which leads to the flipping out of the 

myristate moiety into an exposed conformation and its subsequent insertion into the lipid bilayer. 

Adapted from [6]. 

 

Trafficking to the assembly site 

After its synthesis in the cytosol, Gag can traffic as monomer or lower-order oli-

gomers to membranes, where it undergoes higher-order multimerization and initi-

ates particle assembly. Interestingly, in vitro soluble Gag exists in monomer-dimer, 

monomer-trimer equilibrium, or can even assemble into a small sphere [36], sug-

gesting that Gag may possess an intrinsic capability to build up into particles with a 

spherical shape. Gag binding to cell membranes (mostly PM) has been observed to 

take place already within 5–10 min post-synthesis [37]. The observations that cho-

lesterol depletion diminishes PM binding of Gag, disrupts higher-order Gag multi-

merization and impairs virus production, together with other biochemical and mi-

croscopic data, implicate Gag association with lipid rafts [38]. Lipid rafts, also 

referred to as “membrane-rafts”, are highly dynamic membrane microdomains that 

are rich in cholesterol and sphingolipids, display lateral heterogeneous protein dis-

tribution, and compartmentalize cellular processes [39]. The Env glycoproteins 

were also shown to be raft-associated, at least in part due to their association with 

Gag, and specifically the gp41 cytoplasmic tail has been reported to contain the 

determinants for Env association with rafts [40]. However, for a successful viral 

assembly at the PM, it is also required that all viral components traverse the cyto-

plasmic space and precisely target to the PM. In fact, it has been shown that in cells 

physiologically relevant for HIV-1 infection, like macrophages and T-lymphocytes, 
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but also in epithelial cells, Gag and, in some cases, VLPs are localized into intracel-

lular compartments enriched in late endosomal and lysosomal markers [2,41]. A 

schematic representation of the suggested pathway for viral assembly is reported in 

Figure 7. 

 

 

Figure 7. Potential involvement of endosomal trafficking pathways in Gag targeting. Potential 

Gag trafficking routes. Gag may be either directly targeted to the PM (pathway 1) or transported to the 

PM through endosomal trafficking routes (pathway 2). Along the latter pathway, Gag may form virus 

particles inside the endosomal lumen and later get released by fusion of endosomes with the PM (path-

way 3). However, the interpretation of Gag localization data is complicated because virus particles accu-

mulated in endosomes may have been formed at the PM and internalized before being released to the 

extracellular space (pathway 4). Adapted from [30]. 

 

This suggests that nascent Gag may be at least in part targeted to endosomal 

membranes for assembly, and the resultant particles may bud into the lumen of 

late endosomes/multivesicular bodies from which they exit the cell by usurping cel-

lular processes such as the exosome release pathway [42]. Moreover, as also previ-

ously mentioned, it is well established that HIV-1 budding requires the activity of 

ESCRT proteins, which usually are designate to facilitate the budding of vesicles 

into the endosomal lumen [33]. Among the many intracellular factors known to 

facilitate the trafficking of Gag to the assembly site(s), intracellular calcium levels 

and activation of the phospholipase C (PLC) pathway have been hypothesized to 

modulate Gag trafficking [43]. In a study on HIV-1 particle production it was 

demonstrated that induction of a transient rise in the cytosolic calcium concentra-

tion results in a dramatic rise in viral particle release, suggesting that calcium might 

represent a limiting factor in late-stage replication [2,44]. In parallel in another 
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work, it was demonstrated that activation of PLC and modulation of inositol(1,4,5)-

triphosphate receptor (IP3R) function, i.e., recruitment of IP3R to the cell periphery 

and gating of intracellular calcium stores, influence Gag accumulation at the PM and 

virus release [1]. Even if the exact role of the activated IP3R and how elevated cal-

cium enhances Gag accumulation at the PM remains to be determined, a prelimi-

nary model of functions has been proposed: recruitment of IP3R machinery to the 

cell periphery and release of calcium may function to increase the portion of PM 

PIP2 available for interaction with Gag. Considering that PIP2 does not have a natu-

ral inclination for clustering, due to the energy barrier posed by repulsion of the 

large polar head groups when they are in proximity, calcium might reduce this bar-

rier and induce PIP2 clustering in lipid monolayers [45].  

 

Virus-like particles: formation and release 

VLPs are replication as well as infection incompetent, since they lack regulatory 

proteins as well as infectious genetic material. This property has allowed them to be 

used and studied in different contexts [46,47]. In the context of a mammalian ex-

pression vector, VLP formation requires (at least) the presence Gag and specifically 

of the N-terminal domain of CA (amino acids 133 to 277) for assembly, budding 

and release in human embryonic kidney 293T (HEK-293T) cells [22,48] (see VLPs 

formation pathway in Figure 8A-C). Co-expression of Gag and Env results in the 

formation and release of VLPs bearing also the spike glycoproteins (see VLPs for-

mation pathway in Figure 8F). Besides targeting of membrane binding and virus 

assembly, MA also influences Env glycoprotein incorporation in the nascent particle. 

An appealing model invokes, that entrapment of Env into virions is strictly regulated 

by an interaction between sequences within the long cytoplasmic tail of gp41 and 

holes present in the lattice-like matrix structure formed upon MA trimerisation [47]. 

VLPs destined for biochemical and immunological analysis can be easily purified by 

ultracentrifugation through sucrose gradients resulting in particles with a purity of 

greater than 80%. Obtained 100–120 nm VLPs include approximately 1500–1800 

Gag monomers and resemble morphologically and antigenically native virions [36]. 

The fact that these VLPs are quite stable and can be manufactured in sufficient 

quantities makes them an attractive candidate as subunits for a vaccine. Recently, 

Gag- based VLPs have been used with success as a tool for vaccination against hu-

man papillomavirus [49], and, concerning HIV-1, the Gag-based VLP model has 

been employed to deliver additional antigenic structures, such as specific individual 
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epitopes or whole proteins, with induction of the immune response [47,50]. 

 

 

Figure 8. Schematic representation of the HIV Gag polyprotein and particle formation. (A) The 

Gag polyprotein, consisting of the p17 matrix (MA), the p24 capsid (CA), the p7 nucleocapside (NC) and 

the p6 linker protein, includes all information to (B) be targeted to the inner leaflet of the membrane of 

the producer cell and (C) bud in form of enveloped virus-like particles (VLP). (D and E) Electron micro-

graphs of VLPs budding from insect cells after infection with Gag-recombinant baculoviruses. (F) The Env 

glycoprotein, which consists of the transmembrane domain gp41 and the spike domain gp120, is insert-

ed in the VLP membrane if co-expressed with Gag. Adapted from [47]. 
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1.2 HIV-1 immunopathogenesis 

 

1.2.1 Infection and immune response 

 

Transmission  

Most HIV-1 infections occur by sexual exposure through the genital tract or rec-

tal mucosa. It is still uncertain whether HIV-1 is transmitted as a free or a cell-

bound virus, but SIV can be transmitted in either form [9]. The exact mechanism 

by which HIV-1 passes through the genital mucosal epithelium is still not clear. Dif-

fusion of HIV-1 across the vaginal mucosa is slowed by genital mucus. It is pre-

sumable that virus crosses the mucosal epithelium barrier by transcytosis or by 

making direct contact with intraepithelial dendritic cells (DCs). Given that, multiple 

sexual exposures are usually needed for infection to occur. The crossing of the epi-

thelial cell barrier by the virus is probably a rare event, although it is more common 

if the genital mucosa is damaged by physical trauma or coexisting genital infections 

[9].  

 

Phases of infection 

A period of about 10 days, following transmission of the virus, is commonly 

known as the eclipse phase. It corresponds to the period of time before viral RNA 

becomes detectable in the plasma (Figure 9). It has been suggested that the estab-

lished infection probably arises from a single focus of infected mucosal CD4+ T-cells 

[51]. Infectious molecular clones derived from these primary founder viruses, the 

quasispecies1, could infect CD4+ T-cells with greater efficiency than they could infect 

macrophages. A second species (i.e. “unit”) of the virus may arise later in the infec-

tion, and can infect equally different immune cell types (e.g. monocytes, macro-

phages). At the end of the eclipse phase, virus and/or virus-infected cells reach the 

draining lymph node, where they meet activated CD4+ CCR5+ T-cells, which are 

targets for further infection [9]. The virus can then replicate rapidly and spreads 

throughout the body to other lymphoid tissues (e.g. gut-associated lymphoid tis-

sue), where a high number of activated CD4+ and CCR5+ memory T-cells are pre-

sent [52].  

                                          

1 A distribution of non-identical but closely related viral genomes. The entire distribution forms an orga-

nized cooperative structure, which acts like (quasi) a single unit (species). 
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Figure 9. Fundamental events in acute HIV-1 infection. Following HIV-1infection, the virus first 

replicates locally in the mucosa and is then transported to draining lymphnodes, where further amplifica-

tion occurs.  This initial phase of infection, until systemic viral dissemination starts, constitutes the 

eclipse phase. The time when virus is first detected in the blood is referred to as t0; after this there is an 

exponential increase in plasma viraemia to a peak 21–28 days after infection. By this time, significant 

depletion of mucosal CD4+ T-cells has already occurred. Around the time of peak viraemia, patients may 

become symptomatic and reservoirs of latent virus are established in cells that have a slower rate of 

decay than CD4+ T-cells. The ‘window of opportunity’ between transmission and peak viraemia, prior to 

massive CD4+ T-cell destruction and the establishment of viral reservoirs, is the narrow but crucial peri-

od in which an HIV-1 vaccine must control viral replication, prevent extensive CD4+ T-cell depletion and 

curb generalized immune activation. Adapted from [9]. 

 

At this time point, a large number (about 60%) of uninfected CD4+ T-cells become 

activated and die by apoptosis, resulting in the release of apoptotic particles that 

can suppress immune function [53]. Consequently, in the first three weeks of HIV-1 

infection about 80% of CD4+ T-cells, located in the gut-associated lymphoid tissues, 

can be depleted. During viral replication, the plasma viraemia2 increases exponen-

tially to reach a peak (more than a million RNA copies per ml of blood). This corre-

sponds to a strong decrease of the CD4+ T-cell number, which will subsequently 

return to near normal levels in the blood but not in the gut-associated lymphoid 

tissues [54]. After the peak viraemia, the viral load decreases over about 20 weeks 

to reach a more stable level, known as the viral set point (Figure 9). Interestingly, 

                                          

2 From the word "virus" together with the old-greek word for blood (haima), viraemia is the medical 

condition, which defines the entry of viruses in the bloodstream and their consequent access to the rest 

of the body. 
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during this initial phase, the peak viraemia, the amino acid sequence of the virus 

does not undergo relevant changes. Virus diversification occurs during the period of 

decrease in viral load [55,56]. Different HIV-1 infected cells can differently respond 

to infection in terms of half-life: for most infected memory T-cells, the half-life is 

less than a day [57], while for macrophages, that can maintain latent pools of HIV-

1 for months, the rate of decay is much slower [58].  

 

Immune cells activation  

Immune activation is associated with early and extensive apoptosis of B- and T- 

cells, leading to the release of apoptotic microparticles into the blood, and in-

creased expression of tumor necrosis factor (TNF)-related apoptosis-inducing lig-

ands, which kill bystander cells and are immunosuppressive [59]. The causes of 

HIV-1-associated immune activation established in early infection are not clearly 

defined [9]. Multiple related events probably contribute to such activation, including 

direct viral infection of immune cells, pro-inflammatory cytokine production by in-

nate cells (which drives both direct and bystander activation of other immune cells), 

translocation of microbial products into the blood through damaged intestinal epi-

thelium [60], loss of virally infected regulatory T-cells and chronic mycobacterial 

and viral co-infections. 

 

1.2.2 Infection of macrophages 

 

Macrophages are terminally differentiated, non-dividing cells, derived from cir-

culating monocytes [61]. They represent a distinct population of phagocytes that 

are found under different names in various tissues (e.g. microglia in the brain, al-

veolar macrophages in the lung, or Kupffer cells in the liver) and are involved in 

various functions (e.g. bone remodeling, muscle regeneration) acting in both innate 

and adaptive immunity (Figure 10). Macrophages phagocyte cellular debris and 

pathogens, therefore possess a very active endo-lysosomal system, and almost no 

intermediate compartments [11]. This suggests that internalized materials are very 

rapidly targeted to acidic compartments (i.e. LYs). Macrophages also act as profes-

sional antigen presenting cells (APC), triggering antibody responses by the presen-

tation of pathogen derived peptides via the major-histocompatibility complex II 

(MHCII) pathway to CD4+ T-cells and activating CD8+ cytotoxic T-cells (CTL) by 
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cross-presentation of HIV-1 antigens [11]. Nevertheless, even if macrophages are 

very resistant to the cytopathic effects of HIV-1 replication (compared to activated 

CD4+ T-cells) their ability to infiltrate almost all organs (including the brain), and 

their presence in many different tissues can critically contribute to the spread of 

HIV-1 within the infected body [62]. In fact, it has been shown that macrophages 

infection is responsible for many AIDS-associated neuronal disorders [63]. Fur-

thermore, macrophages has been implicated in mother-to child transmission due to 

breast feeding [62].   

 

 

Figure 10. Schematic representation of the macrophages lineage. Monocytes originate in the 

bone marrow from a common hematopoietic stem cell (HSC). They undergo differentiation steps during 

which they commit to the myeloid and then to a monocyte lineage. In response to macrophage colony-

stimulating factor, they divide and differentiate into monoblasts and then pro-monocytes before becom-

ing monocytes, which exit the bone marrow and enter the blood stream. Human monocytes can also be 

divided into inflammatory and resident populations. Monocytes migrate to different tissues, where they 

replenish tissue-specific macrophages. The following abbreviations are used: central nervous system 

(CNS); granulocyte/macrophage colony-forming unit (GM-CFU); macrophage colony-forming unit (M-

CFU); connective tissue (CT). Adapted from [61]. 

 

Potential active role of macrophages against HIV-1 infection 

Non-infected macrophages can fulfill a potential relevant role against HIV-1 

[64].  Macrophages can provide for an efficient and rapid phagocytosis of the virus 

with consequent presentation of viral-derived peptides via MHCII to CD4+ T-cells. A 

further cross presentation of antigens via MHCI complexes can optimize an anti-
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HIV-1 CTL response [11]. Furthermore, a variety of host-cell factors in macrophag-

es (but also in some other reservoir cells) able to counteract the HIV-1 life cycle at 

different steps have been described and are now collectively called HIV-1 restriction 

factors (RFs) [18]. These RFs are usually induced by interferon-  and exert potent 

antiviral activity in cell culture. However, it must be taken into account that coevo-

lution of virus and host had as a consequence the development of a repertoire of 

versatile viral accessory proteins able to counteract the activity of many RFs [63]. 

For example: one well known RF of macrophages is the SAM domain and HD do-

main-containing protein 1 (SAMHD1)3, which is a cellular enzyme that exhibits 

phosphohydrolase activity converting nucleotide triphosphates to a nucleoside and 

triphosphate. SAMHD1 can deplete the pool of nucleotides available to a reverse 

transcriptase for viral cDNA synthesis and thus prevents viral replication. Neverthe-

less, degradation of SAMHD1 induced by Vpx (a virion-associated protein expressed 

by HIV-2, similar in structure to Vpr) is sufficiently rapid to allow reverse transcrip-

tion of the viral RNA [65].  On the contrary, Tetherin, another well-known RF, which 

causes retention of fully formed virions on infected cell surfaces, is not antagonized 

by any viral protein in infected macrophages. Due to its high expression in macro-

phages, Tetherin can produce a strong inhibition of viral release in these cells com-

pared to the viral production efficiency in CD4+ T-cells, where the viral protein Vpu 

counteracts the inhibition activity of Tetherin allowing an efficient viral release from 

the PM [11].  

  

Impairment of macrophage immune functions upon HIV-1 infection: a 

focus on Fc -receptor-mediated phagocytosis 

HIV-1 infection of macrophages results in the impairment of a many of their 

immune functions (e.g. chemotaxis, phagocytosis, intracellular pathogens killing, 

cytokine production [66,67]). These defects contribute to the pathogenesis of AIDS 

by allowing reactivation and development of opportunistic infections [68]. The HIV-

1-encoded proteins Nef, Vif, Vpr, and Rev have been shown to affect a number of 

signaling pathways via interactions with cytoskeletal and cytoplasmic proteins [63]. 

Specifically, it was shown that the activity of some kinases (e.g. the Src and p21-

activated kinases) involved in antibody-mediated phagocytosis processes, such as 

the Fc  receptor (Fc R)-mediated phagocytosis, are strongly impaired upon HIV-1 

infection [68-70]. This kind of phagocytosis refers to the binding of the Fc R to a 

                                          

3 Sterile Alpha Motif (SAM) and Histidine Aspartic (HD) domain-containing protein 1. 
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part of an antibody known as the Fc4_region [71]. Fc receptors are the receptors for 

the constant region of IgG (Fc RI, Fc RII, and Fc RIII). They bind to antibodies 

that are attached to infected cells or invading pathogens. Their activity stimulates 

phagocytic or cytotoxic cells to destroy microbes, or infected cells by antibody-

mediated phagocytosis or antibody-dependent cell-mediated cytotoxicity (ADCC) 

[72]. Those that bind the class of antibody IgG are called Fc-gamma ( ) receptors. 

Peripheral blood monocytes express mainly the high-affinity Fc RI (CD64) and a 

low-affinity Fc RII, whereas macrophages also express Fc RIIIA (CD16A). Previous 

studies have shown that Syk activation in Fc R-mediated phagocytosis is an abso-

lute requirement [73]. Activation of Syk results in cytoskeletal rearrangements 

needed for phagocytosis of the opsonized particles (Figure 11). A previous study 

has shown that defective phagocytosis by HIV-1-infected macrophages is due, at 

least in part, to decreased expression of the Fc R-signaling subunit of the Fc R, 

which leads to specific signaling defects downstream of Fc Rs [68]. 

 

 

Figure 11. Signaling pathway triggered by activating Fc R. Crosslinking of activating Fc receptors 

for IgG (Fc Rs) by immune complexes induces the phosphorylation of receptor-associated -chains by 

the SRC kinase (not indicated). This generates docking sites for SYK, which in turn activates a number of 

other signal-transduction molecules such as phosphoinositide 3-kinase (PI3K). The generation of phos-

phatidylinositol-3,4,5-trisphosphate (InsP3) recruits phospholipase C  (PLC ), which leads to activation 

of downstream kinases and the release of calcium from the endoplasmic reticulum (ER). Adapted from 

[71]. 
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 Apoptotic cell phagocytosis by macrophages during HIV-1 infection 

 Phagocytes, and specifically macrophages, are required to continually sense 

the extracellular environment [61]. A set of distinct cell surface receptors is re-

quired for recognizing and responding to infectious and non-infectious injuries. The 

Fc R-mediated phagocytosis is only one of the internalization ways active in macro-

phages [74]. Phagocytic cells, and macrophages in first line, also have the task of 

sensing the presence of dead entities, binding to specific molecules expressed on 

the outer surface of apoptotic cells [75]. Phosphatidylserine (PS) (see chemical 

structure in the Appendix) represents one of the most important apoptotic signals 

for engulfment of apoptotic cells by macrophages [74,75]. Clearance of apoptotic 

cells is necessary for tissue development, homeostasis and resolution of inflamma-

tion [75,76]. The uptake of apoptotic cells is initiated by an ‘eat-me’ signal, such as 

PS, on the cell surface and phagocytes recognize this signal by using specific recep-

tors [76]. Several classes of receptors have been implicated in the recognition of 

apoptotic cells, by means of direct binding to the exposed PS, including brain-

specific angiogenesis inhibitor 1, T-cell immunoglobulin and mucin domains-

containing protein 4 and stabilin-2, or indirect binding through bridging molecules 

(milk fat globule-EGF factor 8 protein, growth arrest-specific 6 [77]). The engage-

ment of the PS receptors initiates signaling events within the phagocytes that lead 

to activation of specific intracellular signaling which ends to cytoskeletal reorganiza-

tion of the phagocyte membrane, to allow corpse internalization. PS is a glycer-

ophospholipid present in the membranes of all eukaryotic cells. Like the majority of 

glycerophospholipids, PS has a glycerol backbone esterified on the sn-1 and sn-2 

carbons of the glycerol moiety with 2 fatty acyl chains of variable length and satu-

ration, and a phosphate group on sn-3 (see chemical structure in the Appendix) 

[78]. The distinguishing feature of PS is the attachment of a serine to the phos-

phate; the resulting head-group provides PS a net negative charge. While PS is 

present in all cells, it is a comparatively minor constituent of their membranes, 

comprising 3–10% of the total lipids [78]. However, this low relative abundance of 

PS belies its importance within the cell. The best-studied roles of PS involve signal-

ing, not within the intracellular environment, but in an extracellular context such as 

during apoptosis and during blood clotting. Like most lipids, PS is not evenly dis-

tributed throughout all cellular membranes, nor is it always equally distributed be-

tween leaflets of a membrane bilayer [75]. In healthy cells PM PS is exclusively on 

the inner (cytoplasmic) leaflet due to the action of ATP-dependent aminophospho-
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lipid flippases [78]. When cells undergo apoptosis (the regulated cell death) PS ap-

pears on the outside leaflet, signaling phagocytic cells to engulf the dying cell 

(Figure 12). The CD91 receptor, also called low density lipoprotein receptor-related 

protein 1 (LRP1), binds to 2-glycoproteins, which in turn has been reported to di-

rectly interact with PS of apoptotic bodies [79]. The LRP1 was shown to be in-

creased on the surface of HIV-1 infected macrophages [80]. This suggests that, 

although most of immune functions of the macrophages are impaired due to HIV-1 

infection, some phagocytic ways, e.g. PS-mediated phagocytosis, might still be ac-

tive. 

 

 

Figure 12. Schematic representation of the re-distribution of PS in the lipid bilayer during 

apoptosis. PS (blue) is initially asymmetrically localized in the lipid bilayer. During apoptosis, PS re-

distributes symmetrically in the lipid bilayer, flipping to the outer leaflet of the PM. 

 

1.2.3 Therapeutic approach against HIV-1 

 

 Development of many antiretroviral drugs has made HIV-1 infection a treata-

ble chronic disease [81]. Antiretroviral therapy (ART) includes use of different drug 

classes, for instance: nucleoside (or non-nucleoside) reverse transcriptase inhibi-

tors; protease inhibitors; integrase inhibitors; fusion and entry inhibitors [82]. Cur-

rent recommendations for initial therapy for HIV-1 infection include the use of the 

so-called combined antiretroviral therapy (cART), which corresponds to a combina-

tion of three antiretrovirals from at least two drug classes. cART is effective in de-

creasing HIV-1 RNA level below the limit of detection (50 copies/mL) and has led to 

significant reductions in HIV-related morbidity and mortality and is a highly cost-

effective medical intervention [83]. In general, initiation of cART soon after infec-

tion offers near normal quality of life and lifespan: early cART is in fact associated 

with a reduced latent viral reservoir, reduced viral DNA, and normalization of some 

immune markers, leading to prevention of the various complications that define 

AIDS [83]. However, cART does not fully restore health, and lifelong treatment is 
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necessary to manage patient illness because cART neither eradicates infected cells 

from reservoirs nor reconstitutes HIV-1-specific immunity that could kill infected 

cells. Furthermore, findings from studies undertaken in high-income countries show 

that HIV-1-infected adults who have durable treatment-mediated suppression of 

HIV replication are at risk for developing several non-AIDS disorders, including car-

diovascular disease, cancer, kidney disease, liver disease, osteopenia or osteoporo-

sis, and neurocognitive disease [84]. Beside the compelling need of an HIV-1 vac-

cine, the request for new and alternative treatment approaches is still increasing 

[85]. Some suggestions to this end, might come from the research in nanotechnol-

ogy [86].  

 

Nanotechnology in the treatment of HIV-1 

Toward the cure of HIV-1, different nanomedicine classes have been developed 

with different disease-modifying properties [87]. Application of nanotechnology to 

the delivery of antiretroviral drugs might represent an important tool in the cure of 

HIV-1, for example modifying tissue-distribution of drugs that could be targeted to 

viral reservoirs and by increasing their half-lives. To this aim, copolymer micelles 

incorporating the non-nucleoside revers transcriptase inhibitor efavirenz into their 

core were developed [88]. Furthermore, nanomedicine formulation might help in 

the targeting of antiretroviral drugs to specific cell types (e.g. DCs, Langerhans 

cells) or organs (e.g. lymphoid organs). Lipid-nanoparticle loaded with the protein 

kinase C activator, bryostatin-2 [89] and pH-dependent nanoparticle containing the 

protease inhibitor indinavir [90] were produced to target antiretroviral drugs to DCs 

and Lymphoid organs, respectively. Some nanomedical formulations were also de-

signed as preventive therapy, as promising strategy to prevent vaginal and rectal 

HIV-1 transmission (e.g. the vaginal gel containing the nucleoside reverse tran-

scriptase inhibitor tenofovir [91]). Moreover, to increase the epithelial penetration 

of antiretroviral-based microbicides, specific mucoadhesive and non-mucoadhesive 

nanomedicine formulations were also investigated [92]. Nanotechnology research 

was also directed to the development of immunotherapeutic nanocomplexes, mul-

timodular vaccine candidates that may provide high therapeutic effects in compari-

son to all previous approaches [87]. Many biological phenomena, such as immune 

recognition and passage across biological barriers, are governed by size considera-

tions. The physical size of nanocomplexes is usually over 50 nm, which is the ap-

proximate threshold of immune recognition [86]. Soluble antigens, with a diameter 
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smaller than 50 nm, are generally not recognized by the immune system and are 

not immunogenic. In fact, since nature developed an effective and specific immune 

surveillance against viruses, which takes in consideration also the size of the anti-

gens, immunotherapeutic nanomedicines must correspond to the size range of vi-

ruses. Consequently, the body would consider nanomedicine as a harmful virus that 

needs to be eliminated. DermaVir is the first nanomedicine developed for the 

treatment of HIV-1 and AIDS that has demonstrated encouraging Phase II clinical 

safety, immunogenicity, and efficacy results [87]. DermaVir features three ele-

ments: the first is the active pharmaceutical ingredient, which is a pDNA that ex-

presses 15 HIV-1 proteins. These proteins self assemble to replication-, reverse 

transcription- and integration-defective complex VLPs. The creation of such VLPs 

supports the presentation of the highest number of HIV-1 epitopes and might in-

duce HIV-1 specific T-cell responses. The second is a mannosylated polyethyl-

enimine “envelope”, which contains and delivers pDNA to DCs and achieve effective 

protein expression the pDNA. The third is the formed nanoparticle of 70-300 nm in 

a buffered solution.  

 

Liposomes as therapeutic tool against HIV-1 

Liposomes are lipid vesicles with an aqueous core used to encapsulate hydro-

philic drugs whereas hydrophobic and amphiphilic drugs can be solubilized within 

the phospholipid bilayers. Liposomes and several other nanocarriers are readily op-

sonized by plasma proteins, phagocytosed by macrophages and localize to cells of 

the reticuloendothelial system (RES). It has been shown how hydrophilic drugs en-

capsulated in liposomes can localize in organs rich in macrophages, such as liver, 

spleen and lungs [93,94]. Specifically, in one study it was shown how liposomes 

could be used to deliver the nucleoside reverse transcriptase inhibitor azidothymi-

dine (AZT) preferentially to the RES, sparing the bone marrow from this drug and 

thereby reducing bone marrow toxicity [95]. Furthermore, the surface of liposomes 

may be modified to increase their targeting specificity: for instance, cells of the RES 

bear galactose and lectin receptors [96]. Liposomes bearing galactose and mannose 

residues on their outer surface can specifically target these receptors, and have 

been used to direct, for example, the nucleoside reverse transcriptase inhibitor 

stavudine to the RES [86]. Formulation of antibodies-decorated liposomes (i.e. im-

munoliposomes) have the targeting specificity of antibodies on their surface e.g., 

anti-HLA-DR monoclonal antibodies which can target follicular dendritic cells, B-cells 
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and macrophages. Liposomes may also be decorated with recombinant soluble CD4 

molecules [97], or antibodies able to target gp120 on HIV-1 infected cells [98]. 

 

1.3 Aim of the work 

 

Approximately three decades ago, HIV was found to be the cause of AIDS [99]. 

Since their discovery, HIV-1 and the less infective HIV-2 are responsible for more 

than 25 million deaths worldwide, making HIV one of the insurmountable problems 

of the 21st century [100]. Scientific research on HIV-1 still has to respond to various 

open questions about the biology of viral assembly and the lack of immune re-

sponse against the infection [101]. This work will raise both these issues: first 

(point 1), to study the role of intracellular calcium for the release of viral particles, 

and second (point 2) the development of a nanotechnological strategy able to elicit 

clearance of viral particles circumventing the lack of immune response during HIV-1 

infection. 

1) HIV-1 can follow more than one assembly pathway and partially adapt its 

own life cycle, exploiting different components of the cellular machinery in 

regard to the type of infected cell: in macrophages and DCs, HIV-1 assembly 

takes place mostly in LEs/MVBs where it can remain inactive for several 

months after infection [18], while in T-cells, HIV-1 buds predominantly from 

the PM [17].  

The use of different investigation methods and different cell lines as model 

systems for the study of the biology of HIV-1 assembly and replication has 

led to sometimes-contradictory observations. Several studies have shown 

the presence of VLPs in late endosomes and as well in lysosomal compart-

ments [2,23]. Nevertheless, the fate of such late endosomes/lysosomes 

(LEs/LYs) entrapped VLPs is still a matter of debate. However, increased in-

tracellular calcium concentrations were shown to enhance the release of 

VLPs [2,44]. This process has been proposed to be caused by fusion events 

between vesicles of the endo-lysosomal system containing VLPs [2]. This 

suggests a possible role of the LEs/LYs calcium-mediated fusion machinery 

and LYs exocytosis, which are common mechanism shared by all cell types 

[102], in the release of VLPs and their rescue from lysosomal degradation. 

The aim of the first part of this work was to investigate the role of intracellu-
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lar calcium and the LEs/LYs machinery in the release of VLPs.  

2) Although the advent of cART, antiretroviral therapy is associated with a high 

number of disadvantages (e.g. emergence of drug resistant viral strains, se-

rious adverse effects and inability to eradicate HIV-1 from reservoirs [82]). 

In this scenario, nanotechnology, which can bring together physicochemical 

and biological properties of different therapeutic approaches, has a vast po-

tential to advance the treatment of HIV/AIDS. In this work, immunolipo-

somes are presented that can bind Env/Gag virus-like particles (HIV-VLPs) 

while being specifically phagocytosed by macrophages, thus allowing the co-

internalization of HIV-VLPs. These liposomes are decorated with anti-Env an-

tibodies and contain PS. PS mediates liposome internalization by macro-

phages via a mechanism not impaired by HIV-1.   Hence, PS- liposomes 

mimic apoptotic cells and are internalized into the macrophages due to spe-

cific recognition, carrying the previously bound HIV-VLPs.
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2 MATERIALS AND METHODS 

 

 

2.1 Materials 

 

2.1.1 Biological material 

  

 Cell lines  

Name Species Origin Source 

HEK-293T Homo sapiens Kidney, epithelial ATCC® CRL-11268 

HeLa Homo sapiens Cervix, epithelial ATCC® CCL-2 

COS-7 Cercopithecus aethiops Kidney, fibroblast ATCC® CRL-1651 

J774A.1 Mus musculus Monocyte, macro-

phage 

Kindly provided by Prof. Dr. Thomas Meyer  

MDCK Canis familiaris Kidney, epithelial ATCC® CCL-34 

  

Plasmids and siRNA oligonucleotides  

Name Insert Source 

pEGFP Gag AIDS Reagents 

pEGFP Rab7 Kindly provided by Prof. Dr. Volker Hauke 

pcDNA3.1 p96ZM651gp160-CD5-opt AIDS Reagents 

pYFP Tau Kindly provided by Dr. Maik J. Lehmann 

pCFP Syt-VII Kindly provided by Prof. Dr. T. Südhof 

pBAD-His-B MediumFT/FastFT Kindly provided by Prof. Dr. V. Verkhusha 

Silencer Select 

SYT7 (ID:s17291) 

 Life Technology 
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The Gag-EGFP plasmid was restricted with BamHI and BsrGI in order to substi-

tute EGFP with the following constructs: CFP, mCherry, MediumFT and FastFT. 

 

2.1.2  Lipids and proteins  

 

Molecular structures of the lipids are reported in the Appendix. 

Name Source 

L- -phosphatidylcholine (Egg-PC) (Egg, Chicken) Avanti Polar Lipid 

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(cap-biotinyl)(Biotin-

cap-PE) 

Avanti Polar Lipid 

1-palmitoyl-2 (dipyrrometheneborondifluoride) undecanoyl-sn- glycero-3- 

phosphocholine (TopFluor PC) 

Avanti Polar Lipid 

1,2-Diacyl-sn-glycero-3- phospho-L-serine Sigma 

Streptavidin Sigma 

 

2.1.3 Media and solutions 

 

 Cell culture media and reagents 

Application Composition Source 

Cell growth 

(HeLa, HEK-293T, MDCK, COS-7) 

DMEM: 10% fetal calf serum, 200mM L-

glutamine,  1% Penicillin/Streptomycin 

GE Healthcare 

Cell growth 

(J774A.1) 

RPMI: 10% fetal calf serum, 200mM L-

glutamine, 1% Penicillin/Streptomycin 

GE Healthcare 

Cell passaging 

 

PBS: with/without 100 mg/ml Ca2+ and 

Mg2+PBS with 0.5 mg/ml Trypsin, 0.22 

mg/ml EDTA 

GE Healthcare 

Cell freezing medium 70 % DMEM 20 % fetal calf serum 10 % 

DMSO 

GE Healthcare 

Transfection Turbofect Fermentas 

Transfection/RNAi Lipofectamine 2000 Life Technologies 
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Buffers 

Buffer Composition 

PBS 137 mM NaCl  

2.7 mM KCl 

10 mM Na2HPO4 + 2 H2O, 1.76 mM KH2PO4 

TNE Buffer 20 mM Tris-HCl 

100 mM NaCl 

1 mM EDTA  

(pH=7.5) 

Stacking SDS-gel buffer 1 M Tris/HCl pH 6.8 

Separating SDS-gel buffer 1 M Tris/HCl pH 9.0 

SDS loading buffer 63 mM Tris/HCl, 10 % glycerol,�2 % SDS, 0.0025 % Bromophenol 

blue�100 mM -mercaptoethanol 

SDS running buffer 25 mM Tris/HCl, 192 mM glycine, 0.1 % SDS 

 

2.1.4 Reagents 

 

Standard chemicals were obtained from Merck, Sigma and Roth. 

 Chemicals and fluorescent markers 

Name Source 

U73122 TOCRIS Bioscience 

Mepyramine TOCRIS Bioscience 

Tert-butylhydroquinone TOCRIS Bioscience 

Thapsigargin ENZO Lifesciences 

Cytochalasin D TOCRIS Bioscience 

Dynasore Sigma Aldrich 

Dimethylsulfoxid Sigma Aldrich 

Propidium Iodide Sigma Aldrich 

Name Source 

Lysotracker Life Technologies 

Hoechst 33342 Life Technologies 

Mitotracker Life Technologies 

ER-Tracker Life Technologies 

DiI Life Technologies 

Fura2-AM Life Technologies 

Fluo5F-AM Life Technologies 
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Antibodies 

Name Source 

anti-p24 (mouse)  Millipore 

anti-gp120 biotin conjugated (goat) Abcam 

IRDye-680 anti-mouse LI-COR Bioscience 

IRDye-800 anti-goat LI-COR Bioscience 

2.1.5 Kits 

 

Name Source 

Pierce BCA Protein Assay Kit Thermo Scientific 

QIAprep Spin MiniPrep Kit Quiagen 

Plasmid MaxiPrep Kit Quiagen 

Celltiter Blue Cell Viability Assay Promega 

 

2.1.6 Consumables 

 

Material Source 

Cell culture flasks (T25, T75) Nunc 

Cell culture plates�12-well Nunc 

100 nm polycarbonate filters Avanti polar Lipid 

Cell scraper Sarstedt 

Cryo tubes (1.5 ml)� Sarstedt 

Glass bottom petri dishes MatTek 

Filtropur 0.45 m SARSTED 
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2.1.7 Equipment 

 

Name Configuration 

Olympus FV-1000 IX-81 microscope - 60x/1.2 Water UPlanSApo 

405, 560 nm diode lasers 458, 488, 515 nm Argon laser  

3 confocal PMTs; Climatization chamber 

Olympus FV-1000MPE IX-81 microscope�- 60x/1.2 Water UPlanSApo� 

405, 440, 560, 635 nm diode lasers (458), 488, 515 nm Argon 
laser� 

3 confocal PMTs;�Climatization chamber 

Olympus IX-81  

(Epifluorescence microscope) 

HBO lamb� 100x/1.35 Oil UPlanFL, DIC 

Oil Zeiss�Filter cube: U-MWU2: BP330-385 BA420 DM400 

(DAPI) 

BD FACSAria II 375, 488, 405, 633 nm laser line Filters: 515 - 545 nm, 564 - 

606 nm, 600 - 620 nm 

 

2.1.8 Software 

 

Name Supplier 

Olympus FV1000 3.1 Olympus 

FACS Diva Software Backton Dickinson 

FlowJo Tree Star, Inc. 

ImageJ US National Institute of Health (NIH) 

MetaMorph Molecular Devices 

Matlab The Mathworks 

Prism GraphPad Software, Inc. 

Keynote Macintosh 

Microsoft Office 2011 Microsoft 

Papers2 Macintosh 
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2.2 Methods 

 

Cell culture 

The cells were propagated in growth medium in 75 cm2 culture flasks at 37 °C 

and 5% CO2. The cells were passaged every 3 - 5 days before they had reached full 

confluence. To this end, the cells were washed twice with PBS and detached using 

trypsin-EDTA at 37 °C for 5 - 15 min. Trypsinization was stopped by addition of 

growth medium and approximately 1x106 cells were seeded in a new 75 cm2 culture 

flask. In the case of J774A.1 macrophages, the cells were scraped off in the pres-

ence of 2 ml PBS. For the different assays, cells were seeded into 6-, 12-well plates 

or petri dishes. For long term storage, the cells from one 75 cm2 culture flask were 

detached, pelleted for 5 min at 2000 g and re-suspended in freezing medium. The 

cells were kept at -80 °C for 24 hours and subsequently stored in liquid nitrogen. 

 

Transfection 

Cells were transfected with expression-plasmids using Turbofect according to 

the manufacturers manual. To this end, cells were seeded in 35 mm glass bottom 

petri dished and grown until they reached 70 - 90 % confluence. 6 l Turbofect and 

4 g DNA were diluted in 400 l serum-free medium and incubated for 20 min at 

room temperature. The cells were washed in PBS and the DNA/Turbofect mix was 

added with additional 1.5 ml serum-free medium. After 4 h the medium was 

changed to growth medium.  

 

RNA interference 

For siRNA experiments, cells were always co-transfected with Gag-EGFP and 

0.02 M SYT7-siRNA oligonucleotides (5 pmol in 250 l transfection volume) ac-

cording to the manufacturers manual. To this end, cells were seeded and grown 

until they reached 70 - 90 % confluence. 5 l Lipofectamine 2000 were diluted in 

250 l serum-free medium, and 4 g Gag-EGFP together with 0.02 M siRNA oligo-

nucleotides were diluted separately in 250 l serum-free medium. After 5 min, the 

two solutions were mixed together and incubated for 20 min at room temperature. 

The cells were subsequently washed in PBS and the co-transfection/Lipofectamine 
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mix was added with additional 1.5 ml serum-free medium. After 4 h the medium 

was changed to growth medium. 

 

Confocal microscopy live imaging on HeLa and COS-7 

The cells were plated in a 2 mm glass-bottom dish two day before analysis. 

One day after plating, the cells were transfected with the indicated plasmid(s) with 

the transfection reagent Turbofect, as described before. 24 hours after transfection, 

the cells were washed with PBS and either stained with intracellular markers (see 

detailed experiments in the Results section) or directly observed under the confocal 

microscope. Live-cell imaging of intracellular localization of Gag or co-localization 

with intracellular compartments or structures was performed always at 37°C, 5% 

CO2 with an Olympus FV-1000MPE laser-scanning confocal microscope (Olympus, 

Shinjuku, Tokyo, Japan). Fluorescence emissions of Lysotracker/mCherry/ER-

tracker/Mitotracker, EGFP/Fluo5F, CFP, Hoechst 33342, and YFP were measured at 

590 nm, 509 nm, 475 nm, 454 nm and 530 nm, respectively. If indicated, before 

microscopy, the cells were treated with specific reagents diluted in DMSO (e.g. 

U73122, Mepyramine, TBHQ) for the indicated time at 37°C, 5% CO2. The final 

concentration of DMSO in the cell medium was always equal or below 0,1% of the 

total volume. 

 

Total Internal Reflection Fluorescence Microscopy  

TIRFM was used to study the plasma membrane localization of the expressed 

protein. An inverted FluoView 1000MPE microscope was modified with a beam ex-

pander to allow illumination of the whole field of view using laser excitation sources 

and a highly sensitive, cooled Hamamatsu Orca ER CCD- camera for epifluores-

cence observation. The tilting of the angle of the incidenting light beam was 

achieved by a displacement of the beam, away from the center of the observation 

objective179 (60x UplanSApo oil objective with a numerical aperture 1.45 ). In a 

typical TIRFM experiment, the glass-attached parts of the cells under study were 

focused and imaged in the epifluorescence mode applying beam expander and 

CCD-camera. Then, the TIRFM angle was tilted until the out-of-focus light from in-

tracellular structures disappeared and plasma membrane structures dominated the 

image. As a rule of thumb, if the angle is right, changes of the focus should not 

change the structures displayed but only the sharpness of the plasma membrane 
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components. Since only an evanescent field of the excitation light was used to illu-

minate the fluorophores, high laser intensities of around 50% and image acquisition 

times of at about 1 second were used. 

 

Intracellular calcium staining with Fluo5F-AM 

The cells were plated in a 2 mm glass-bottom dish one or two (in the case of a 

transfection) day before analysis. The cells were stained with 3 M Fluo5F-AM for 

35 minutes at at 37°C, 5% CO2. The cells were then washed with PBS and complete 

culture medium (DMEM) was added. Fluo5F-AM was aliquoted in DMSO. The final 

concentration of DMSO in the cell medium was always equal or below 0,1% of the 

total volume. 

 

Confocal live-imaging of Fluorescent Timers  

The cells were plated in a 2 mm glass-bottom dish two days before microscopy. 

24 hours before microscopy the cells were transfected with either Gag-FastFT or 

Gag-MediumFT. Live-cell imaging of the transfected cells was performed at the 

Olympus FV-1000MPE microscope. The During the FT maturation, the fluorescence 

of the blue forms increased to its maximum value, and after that decreased to zero 

(Table 1).  

 

Fluorophore Ex Peak (nm) Em Peak (nm) Characteristic time at 37°C (hours) 

FastFT 
Blue form 403 466 0.25 

Red form 583 606 7.1 

MediumFT 
Blue form 401 464 1.2 

Red form 579 600 3.9 

Table 1. Properties of the blue and red forms of the FTs at 37°C. The indicated characteristic 

times correspond to fluorescence maxima for the blue forms, and to maturation half times for the red 

forms. 

 

The fluorescence of the red forms increased with time with some delay and then 

reached a plateau. At 37°C the maxima of the blue fluorescence intensities are ob-

served at 0.25 and 1.2 for the fastFT and the mediumFT, respectively. The half-
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maxima of the red fluorescence intensities were reached at 7.1 and 3.9, respective-

ly, which corresponds to the half-times of the maturation for the red FT forms. Fluo-

rescence emissions of the blue and the red form were measured at 454 nm and 590 

nm, respectively. 

 

Confocal microscopy live imaging on macrophages 

Macrophages were plated in a 2 mm glass-bottom dish one day before analysis. 

Acidic compartments were marked using Lysotracker as described in the product’s 

guidelines. The cells were then washed and treated with Env-PS-LUVs and HIV-

VLPs as described above. Live-cell imaging of intracellular co-localization of Env-

PS-LUVs and HIV-VLPs in acidic compartments was performed in an environmental 

chamber at 37°C, 5% CO2 with an Olympus FV-1000MPE laser-scanning confocal 

microscope (Olympus, Shinjuku, Tokio, Japan). Fluorescence emissions of 

Lysotracker, EGFP and DiI were measured at 590 nm, 509 nm and 564 nm, respec-

tively. Percentage of HIV-VLPs/ acidic compartments co-localization was obtained 

calculating the areas (i.e. number of pixels) of dots corresponding to the fluores-

cent signal of EGFP (HIV-VLPs) overlapping with pixels corresponding to the signal 

of Lysotracker (acidic compartments). The co-localization was calculated as a ratio 

of overlapping area and total pixel area occupied by HIV- VLPs, expressed as a per-

centage, and averaged over ten different confocal micrographs using CellProfiler 

(Broad Institute, Cambridge, MA). In order to identify the HIV-VLPs and distinguish 

them from the autofluorescence signal, a user-defined threshold was selected. 

 

Calcium-release in macrophages 

Macrophages were seeded into MatTek dishes a day before analysis. Subse-

quently, cells were stained with 3 einther incubated with 3 M Fura2-AM for 35 

minutes at at 37°C, 5% CO2. The cells were then washed with PBS and complete 

culture medium (RPMI) was added. Fluo5F-AM was aliquoted in DMSO. The final 

concentration of DMSO in the cell medium was always equal or below 0,1% of the 

total volume. After calcium staining, the cells were observed at the Olympus IX-81 

epifluorescence microscope. The release of intracellular calcium was measured live, 

upon addition of either Env-PS-LUVs or Env-LUVs. The emission was detected at 

420 nm. For preliminar ER-calcium depletion, the cells were treated with 10 M 

Thapsigargin for 1 hour at 37°C, 5% CO2 before adding the immunoliposomes. 
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Correlative Light and Electron Microscopy 

HeLa, COS-7 or J774A.1 macrophages were seeded into a 35-mm gridded 

MatTek dish. Subsequently, cells were either transfected with the indicated con-

struct or, one day after seeding, incubated for 1 hour with HIV-VLPs and Env-PS-

LUVs as described in the Results section and fixed for 20 minutes at room tempera-

ture with 2.5% (v/v) glutaraldehyde and 2% (w/v) paraformaldehyde in PBS. For 

fluorescence microscopy, the cells were imaged with an Olympus FV- 1000MPE la-

ser-scanning confocal microscope. For subsequent electron microscopy, cells were 

rinsed three times for 5 minutes with 100 mM cacodylate buffer (pH=7,4), post-

fixed for 1 hour in 1% (v/v) osmium tetroxide, rinsed three times with distilled wa-

ter, en bloc stained with 0.5% (w/v) uranyl acetate, dehydrated through a graded 

ethanol series and finally embedded using EMBed 812 (EMS). Cells within a region 

previously identified by confocal microscopy were cut en face and 70-90 nm sec-

tions were collected. Sections were counterstained with 4% (w/v) uranyl acetate 

followed by lead citrate. All samples were imaged on a Zeiss EM 900 transmission 

electron microscope equipped with a wide-angle CCD camera (TRS-System, 

Moorenweis, Germany). Correlation of fluorescence images and electron micro-

graphs was accomplished through alignment of cell surface structures. 

 

Preparation of liposomes 

The lipids were dissolved in chloroform to 5-10 mM stock concentration. To 

prepare 100 nm diameter LUVs, lipids were mixed and dried under nitrogen fol-

lowed by high vacuum for at least 30 minutes. The amounts of lipids in the mix-

tures were: 1) sample “LUVs”, 99.95mol% Egg-PC, 0.05 mol% TopFluorPC: 2) 

sample “PS-LUVs”, 30mol% PS, 69.95mol% Egg-PC, 0.05mol% TopFluorPC; 3) 

samples “ Env-PS-LUVs and Env-LUVs”: 30% (or 0 mol% for Env-LUVs) PS, 

68.95% (or 98.95% for Env-LUVs) Egg-PC, 1 mol% Biotin-cap-PE, 0.05 mol% DiI; 

4) “ Env-PS-LUVs and Env-LUVs” samples used in the toxicity tests: 30 mol% (or 

0 mol% for Env-LUVs) PS, 69 mol% (or 99 mol% for Env-LUVs) Egg-PC, 1 mol% 

Biotin-cap-PE. The lipid mixtures described above were then re-suspended in PBS 

without Ca2+ and Mg2+, vortexed and passed through 100 nm polycarbonate filters 

11 times using a Mini-Extruder (Avanti Polar Lipids) in order to obtain LUVs of uni-

form size. All LUV samples were extruded directly at 300 M and subsequently di-

luted to the desired concentration. To obtain antibody-decorated liposomes ( Env-

PS-LUVs and Env-LUVs), 2.5 L (1 mg/mL) of streptavidin and 4 L (50 g/mL) of 
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Env-Abs (polyclonal anti-HIV-1 gp120-biotin conjugated) were pre-mixed for 30 

minutes at 4°C, then added liposomes with or without PS (total volume 100 l, lipid 

concentration 300 M) and further incubated for 1 hour at room temperature. In 

the text, both Env-PS-LUVs and Env-LUVs are sometimes referred to as “immu-

noliposomes”. 

 

HIV-VLPs uptake by macrophages 

The mouse macrophage cell line J774A.1 was used to study the uptake of HIV-

VLPs in the presence of immunoliposomes. Cells were grown to 70% confluency in 

12 mL cell-flasks in the presence of RPMI, 10% FBS, 1% penicillin-streptomycin, 

and 2 mM L-glutamine. Then, cells were gently scraped off, plated in a 12-well plate 

and incubated at 37°C in 5% CO2 for 24 hours. 100 L (300 M) of Env-PS- LUVs 

(or Env-LUVs) and 20 L (from a 0.81 mg/mL stock solution) HIV-VLPs were 

mixed together for 1 hour at room temperature. The cells were washed with PBS 

and treated with the liposomes/HIV-VLPs mix for 1 hour in RPMI medium (up to 1 

mL total volume) at 37°C with 5% CO2. Then, the medium was removed, the cells 

were washed with PBS and gently scraped off in the presence of PBS for flow cy-

tometry measurements. 

 

Production and purification of HIV-VLPs 

HEK-293T cells were grown in the presence of DMEM, 10% FBS, 1% penicillin-

streptomycin, and 2 mM L-glutamine and plated in a 100x 20 mm tissue-culture 

dish. Once the cells reached 90% confluence (usually after 24 hours), they were 

co-transfected either with pGag-EGFP alone or together with p96ZM651gp160-CD5-

opt using the transfection reagent Turbofect. Transfection medium was replaced 3-4 

hours after transfection and collected 48 hours later for HIV-VLPs purification. HIV-

VLPs were purified as previously described [18]. Briefly, medium from transfected 

cells was filtered through a 0.45 m pore-size filter (Filtropur S 0.45). The filtrate 

was layered on top of a 20% sucrose cushion and centrifuged at 4°C for 2 hours at 

28000 rpm in a SW40Ti rotor. Finally, the HIV-VLPs pellet was re- suspended in 200 

l TNE buffer. Purified HIV- VLPs were analyzed by western blot. 
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Western blot and protein quantification in HIV-VLPs 

The presence of Gag-EGFP and/or Env in the HIV-VLPs was determined by 

western blot with mouse anti-p24 and goat anti-gp120-biotin conjugated antibod-

ies. HIV-VLPs were separated by electrophoresis through 10% SDS-polyacrylamide 

gels and electroblotted onto nitrocellulose membrane. Following incubation with 

appropriate primary and secondary antibodies, proteins were visualized using an 

infrared-based imaging system (Odyssey; LiCor Biosciences, Lincoln, NE, USA). To 

quantify the protein content of the purified HIV-VLPs containing solution, different 

amounts of HIV-VLPs were subjected to reducing SDS-PAGE (10%, pH=7.5). The 

same was done for concentration series of a BSA reference. The obtained coomass-

ie-stained polyacrylamide gel (not shown) was imaged using a LI-COR Odyssey 

Scanner and the band intensities were analyzed with the ImageJ Software. By com-

parison between the resulting band intensities from the HIV-VLPs samples with the 

concentration series of BSA standard, it was possible to estimate the protein con-

tent of purified HIV-VLPs stock solution. 

 

Flow cytometry measurements and fluorescence intensity quantifica-

tions 

Macrophages were analyzed in PBS using a BD FACS Aria II Flow Cytometer 

(BD Biosciences, San Jose, CA, USA) with a 100 m nozzle and 2.0 ND filter. A total 

of 10,000 events were counted and the fluorescence values of HIV-VLPs and Env-

PS-LUVs or PS-LUVs/LUVs alone were measured. The presence of internalized 

EGFP-tagged HIV-VLPs was quantified by exciting at 488 nm and detecting with a 

530/30 band-pass filter. The presence of internalized DiI-labeled liposomes was 

quantified by exciting at 561 nm and detecting with a 616/23 band-pass filter. The 

presence of internalized Top- Fluor-PC-labeled liposomes was quantified using the 

same settings for HIV-VLPs. Quantification of fluorescence intensities was per-

formed using the software FlowJo. 

 

Toxicity test 

Toxicity of the treatment with HIV-VLPs in the presence of immunoliposomes on 

the mouse macrophage cell line J774A.1 was tested. Cells were grown to 70% con-

fluency in 12 mL cell-flasks in the presence of RPMI, 10% FBS, 1% penicillin-

streptomycin, and 2 mM L-glutamine. Then, cells were gently scraped off, plated in 
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a 96-well plate and incubated at 37°C in 5% CO2 for 24 hours. Env-PS- LUVs HIV-

VLPs were mixed together for 1 hour at room temperature. The cells were washed 

with PBS and treated with the liposomes/HIV-VLPs or 10% DMSO, and incubated 

for 1, 48 or 72 hours at at 37°C with 5% CO2in RPMI medium (up to 200 l total 

volume per well). Subsequently, the cells were washed and the CellTiter-Blue test 

was performed according to the manufacturers manual. The fluorescence emission 

of the fluorescent dye was measured at a plate-reader. For the test with propidium 

iodide, the cells were re-suspended in PBS, stained with 1 l PI (from a 10 g/mL in 

PBS stock solution) and the fluorescence of PI was measured with FACS by exciting 

at 561 nm and detecting with a 616/23 band-pass filter. 

 

Statistical analysis 

In order to compare different datasets and verify whether they were signifi-

cantly different, we performed Student's t-tests.  

The associated probabilities were calculated using the Matlab function ttest2 

(Matlab, The Mathworks Inc., Natick MA). Two datasets were considered significant-

ly different if the calculated probability p was lower than 0. 
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3 RESULTS AND DISCUSSION 

 

 

3.1 Intracellular distribution and dynamics of HIV-1 Gag, 

and calcium-dependent release of virus-like particles  

 

The first aim of this work was to study the intracellular distribution and dynam-

ics of HIV-1 Gag and to unravel calcium-dependent mechanisms able to mediate 

the release of VLPs from the host cell. To these aims, experiments were conducted 

with a combination of confocal and total internal reflection fluorescence microscopy, 

and correlative-light and electron microscopy.  

The study of VLPs release in permissive (COS-7, HEK-293T) and non-permissive 

(HeLa) cell lines, and chemical modulation of intracellular pathways, allowed the 

identification of an alternative mechanism for VLPs release.  

 

3.1.1 Intracellular distribution of HIV-1 Gag 

 

Expression in appropriate mammalian cell lines (e.g. HeLa, COS-7, HEK-293T) 

of a fluorophore-tagged version of Gag (e.g. Gag-EGFP5, Gag-CFP6, Gag-mCherry) 

allows studying, e.g. by confocal fluorescence microscopy, the intracellular localiza-

tion of the Gag protein in a way that highly resembles the distribution of the wild-

type Gag in the context of a HIV-1 infection [2,103]. In Figure 13 a HeLa cell 24 

hours after transfection with a Gag-EGFP plasmid is shown. As it can seen in the 

merged panel with the DIC_ images and by the shape and the size of the nuclear 

staining, Figure 13A and 13B show the same cell in two different confocal planes: in 

the middle of the cell and at the bottom, respectively. In these images, Gag-EGFP 

can be found intracellularly in two different distribution patterns: I) associated to 

the PM and II) in a dot-like form in the perinuclear and cytosol area. Depending on 

the expression level and the timing after protein expression, Gag can also be ob-

                                          

5 (EGFP) Enhanced green fluorescent protein 
6 (CFP) Cyan fluorescent protein 
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served in a third distribution pattern, as shown in Figure 16 and 19: III) homoge-

neously distributed in the cytosol. Total internal reflection fluorescence microscopy 

(TIRFM) imaging is a technique for the identification of fluorescent molecules spe-

cifically localized at the basal PM - very near to the support (see Material and Meth-

od section for further details). Visualization of a Gag-EGFP transfected cell in 

TIRFM-modus (Figure 13C) allows therefore the visualization of the Gag distribution 

at the basal PM. 

 

 

Figure 13. Live cell confocal microscopy of Gag-EGFP transfected HeLa cells. The focal plane was 

positioned approximately at the middle of cell height (A) or at the bottom of the sample (B). Gag-EGFP 

(green channel) is localized in two distribution patterns: I) associated to the PM and II) in a dots-like 

form in the perinuclear and cytosol area. DNA staining (blue channel) indicates the location of the nucle-

us and helps to identify the position of the confocal plane. (C) TIRFM modus of the image shown in (B). 

Gag-EGFP is shown here in the white channel. Scale bar is 5 μm. Images were collected 24 hours after 

transfection at 37°C, 5% CO2. 
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3.1.2 Activation of both Gq-protein and receptor-protein tyrosine 

kinase - dependent phospholipase C is required for Gag 

transport to the PM 

 

Many host factors are believed to play an important role supporting different 

steps of HIV-1 assembly and release. A previous study has shown that activation of 

phospholipase C (PLC) in COS cells is required for efficient release of VLPs from 

host cell [1,43]. The reason why the PLC might play an important role regulating 

the release of VLPs remains to be understood. Nevertheless, inhibition of PLC in 

COS cells was shown to keep Gag in an aggregate conformation in the perinuclear 

area [1]. In this work, the use of TIRFM on HeLa cells transfected with Gag-EGFP 

enabled to confirm the previously obtained results and to further characterize the 

effects on PLC inhibition on Gag trafficking to the PM. Analysis of VLPs-release in 

HEK-293T upon modulation of the PLC pathway added new information on the role 

of the PLC signaling pathway. 

Figure 14 shows how upon inhibition of PLC (with 10 μM of the PLC inhibitor 

U73122), besides a decrease in Gag protein expression, a strong reduction of the 

presence of Gag at the PM, compared to untreated cells (Figure 13) and aggrega-

tion in the perinuclear area can be observed. The inhibitor U73122 is able to block 

the activation of both  and  isoforms of the PLC in many different cell types 

[104,105]. The enzymatic activity of these two isoforms of PLC is triggered by two 

different pathways: the  isoform is activated by the tyrosine-kinase receptor (TKR) 

and the  isoform by the G-protein coupled receptor (GPCR) [106]. Specific inhibi-

tion of the "q" isoform (Gq) of the G-protein with 10 μM of the Gq-protein inhibitor 

mepyramine [107], caused aggregation of Gag in the perinuclear area (Figure 15A) 

and resulted in a reduced release of VLPs (from HEK-293T cells) (Figure 15B). 
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Figure 14. Inhibition of PLC activity blocks Gag in aggregates and strongly decreases Gag 

localization at the PM. The focal plane was positioned approximately at the middle of cell height (A) or 

at the bottom of the sample (B). Gag-EGFP (green channel) is localized in aggregates in the perinuclear 

area. DNA staining (blue channel) indicates the location of the nucleus and helps to identify the position 

of the confocal plane. (C) TIRFM modus of the image shown in (B). Gag-EGFP is shown here in the white 

channel. Scale bar is 5 μm. Images were collected 24 hours after transfection at 37°C, 5% CO2 

 

 

 

Figure 15. Inhibition of Gq-protein activity blocks Gag in aggregates in the cytosol and reduc-

es VLPs release. (A) The focal plane was positioned approximately at the middle of cell height. Gag-

EGFP (green channel) is localized in aggregates in the perinuclear area. DNA staining (blue channel) 

indicates the location of the nucleus and helps to identify the position of the confocal plane. Scale bar is 

6 μm. Images were collected 24 hours after transfection at 37°C, 5% CO2. (B) Western blot of purified 

VLPs from untreated (control) and Mepyramine-treated (+Mepyramine) HEK-293T cells, visualized after 

staining with an anti-p24 antibody. 
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3.1.3 Gag, assembled in VLPs, is entrapped into vesicles of the 

endo-lysosomal system 

 

While the Gag population at the PM (previously mentioned as distribution-

pattern I) most probably corresponds to monomeric/polymeric PM-bound Gag or 

nascent VLPs, and the cytosolic spread state (distribution-pattern III) represents 

freely distributed Gag proteins into the cytosol [2], the nature of the observed in-

tracellular dots might need further characterization. The distribution pattern of Gag 

in a dot-like form, in the cytosol and the perinuclear area (previously mentioned 

distribution-pattern II), mostly resembles the distribution of vesicles of the endo-

lysosomal system [108]. Endosomal and lysosomal vesicles can be distinguished by 

different parameters (e.g. associated GTPases, specific membrane receptors, proton 

content) [102,108]. However, one characteristic is common to all of these vesicles: 

a high intralumenal calcium concentration [109]. Staining with the low-affinity cal-

cium fluorophore Fluo5F, which is known to localize in intracellular high-calcium 

containing compartments (e.g. ER in renal cells [110]), was applied. Interestingly, 

in HeLa cells Fluo5F detects the presence of calcium in an intracellular dot-like dis-

tribution pattern, which mostly co-localizes with the Gag-CFP dots (Figure 16).  

 

 

Figure 16. Gag-CFP intracellular dots co-localize with Fluo5F. The focal plane was positioned ap-

proximately at the middle of cell height. Intracellular dots of Gag-CFP (magenta channel) co-localize with 

Fluo5F dots (green channel) in the perinuclear area. Scale bar is 5 μm. Images were collected 24 hours 

after transfection at 37°C, 5% CO2. 

 

Furthermore, live-cell imaging of Gag-CFP transfected cells stained with Fluo5F 

showed that the Gag/Fluo5F co-stained vesicles move in the intracellular space fol-

lowing straight trajectories, moving from and to the PM (data not shown).  

In order to further characterize the intracellular co-localization of Gag-CFP and 

Fluo5F with high spatial resolution, a correlative fluorescence and electron micros-

copy imaging approach was used. Figure 17 shows that Gag-CFP/Fluo5F-positive 
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compartments are membrane-delimited vesicles containing Gag assembled in VLPs. 

Vesicles of the endo-lysosomal system are not the only calcium-containing com-

partments in mammalian cells. Co-localization with other calcium-containing com-

partments (e.g. mitochondria, ER, nucleus) must be investigated. To this aim, co-

staining with Fluo5F, a DNA-, a mitochondrial-, and an ER-marker was performed 

(Figure 17 and Figure 18). As shown by the images, Fluo5F stained vesicles do not 

co-localized either with the nucleus, the mitochondria or the ER. Subsequently, 

Gag-CFP transfected HeLa cells, stained with Fluo5F, were either co-stained with the 

lysosomal marker Lysotracker or co-transfected with a fluorophore-tagged version 

of the Rab7 protein (i.e. Rab7-GFP) as marker for LE. As shown in Figure 19, indi-

cated by the arrows, Fluo5F stains at least two different kind of vesicles of the en-

do-lysosomal system: LEs and LYs. Gag is contained in both compartments (Figure 

19A and B).  
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Figure 17. Co-localized Gag/Fluo5F dots correspond to VLPs-containing intracellular com-

partments. (B-C) Gag-CFP (red channel) and Fluo5F (green channel) were visualized by confocal laser 

scanning microscopy 24 hours after transfection, and correspond to endosome-like structures containing 

VLPs imaged by transmission electron microscopy (E-G). (A, E-G) electron micrographs, (B-C) correla-

tion of fluorescence images with electron micrograph by alignment of cellular surface structures. Indicat-

ed squares represent the area of magnification in the subsequent panel. Scale bars: 5 μm (A-B), 2 μm 

(C), 1 μm (E), 500 nm (F). 

 

 

Figure 18. Fluo5F does not co-localize with mitochondria or ER. The focal plane was positioned 

approximately at the middle of cell height. Intracellular dots of Fluo5F (green channel) do not co-localize 

with (A) mitochondria (red channel) or (B) ER (red channel). DNA staining (blue channel) indicates the 

location of the nucleus. Scale bar is 4 μm. Images were collected at 37°C, 5% CO2. 
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Figure 19. Intracellular Gag dots partially co-localize with Fluo5F and LY/LE. The focal plane 

was positioned approximately at the middle of cell height. Intracellular dots of Gag-CFP (magenta chan-

nel) co-localize with Fluo5F dots (green channel) in the perinuclear area. In the merged image in (A), 

shown by the arrows, Gag-CFP and Fluo5F co-localize with Lysosomes (red channel). In the merged 

image in (B), shown by the arrows, Gag-CFP and Fluo5F co-localize with Rab7-GFP (red channel) Scale 

bar is 2 μm. Images were collected 24 hours after transfection at 37°C, 5% CO2. (C) Schematic repre-

sentation of the maturation pathway of LEs to LYs and the possible fates of the two different compart-

ments. 

 

Clearly, Gag assembled in VLPs exists intracellularly in calcium-containing, mem-

brane-delimited intracellular vesicles that belong to the endo-lysosomal system. 

These compartments can be specifically identified as LEs and LYs. The fate of the 

entrapped VLPs is unclear and needs further investigations. Figure 19C shows a 

schematic representation of the maturation pathway of LEs to LYs and the possible 

fates of the two different compartments.  
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3.1.4 Lysosomal calcium leakage induces release of VLPs from 

HeLa cells 

 

Previous studies have shown that induction of a transient rise in cytoplasmic 

calcium increased the amounts of VLPs in LEs/MVBs/LYs, and resulted in a dramatic 

enhancement of VLPs release [2,44]. However, although cellular factors have been 

already proposed as mediators of calcium provision (e.g. ER [1]), how calcium can 

promote the release of VLPs remains to be determined. In order to further investi-

gate the role of intracellular calcium in VLPs release, it is intriguing to investigate 

whether the calcium of lysosomal origin might also play a role affecting the release 

of VLPs. In fact, calcium release from LYs is known to be specifically activated in the 

case of membrane injuries [111]. More in detail, the calcium released from LYs can 

then trigger fusion between lysosomal and late-endosomal vesicles, causing the 

formation of hybrid LY/LE organelles inducing therefore a intralumenal content mix-

ing [112,113] (for a schematic representation, see Figure 35). Furthermore, gener-

ally, elevation of cytosolic calcium triggers fusion of LYs with the PM and release of 

lysosomal content into the extracellular space [102]. More specifically, wounding 

the PM by scratching induces the surface exposure of the major lysosomal mem-

brane glycoprotein Lamp-1 at the wound site as a consequence of intracellular cal-

cium release [114]. This mechanism has been described as LY-mediated PM-repair 

[112]. VLPs contained in LYs and/or LEs might be not completely destined to degra-

dation, but rather indirectly “recycled” from such PM-repair mechanism, which in-

volves release of calcium from LYs and subsequently multiple fusion processes. 

Gag-CFP transfected HeLa cells, stained with Fluo5F, were treated for 3 hours with 

the SERCA73-ATPase inhibitor t-Butylhydroquinone (TBHQ), and then observed at 

the confocal microscope. TBHQ inhibits the re-captation of calcium into LYs, block-

ing the activity of the SERCA3-ATPase [115], and inducing therefore a leakage of 

calcium from lysosomal compartments that express the SERCA3-ATPase on their 

surface (see schematic representation in Figure 20B). Surprisingly, induced calci-

um-leakage from LY, instead of causing a loss of Fluo5F fluorescence from those 

compartments, resulted in a dramatic enlargement of Fluo5F-positive vesicles (i.e. 

endo-lysosomes), and their spread distribution among the cytosol (Figure 20A). 

Furthermore, treatment with TBHQ for 3 hours, 48 hours after transfection with 

                                          

7 (SERCA) Sarcoplasmic/endoplasmic reticulum calcium ATPase 
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Gag-CFP, resulted in release of a small amount of VLPs (Figure 20C). HeLa cells are 

known to be unable to allow the release of VLPs, because of the constitutively ex-

pression of Tetherin, whose inhibitory activity on VLPs release can be counteracted 

only by the presence of the HIV-1 protein Vpu [116,117]. Collection of VLPs from 

Gag-transfected HeLa cells, after treatment with TBHQ, suggests that there might 

be some other mechanism, correlated with the leakage of calcium from LYs, which 

might enable the release of VLPs from HeLa cells.  

 

 

Figure 20. Lysosomal calcium leakage induces enlargement of endo-lysosomal compartments 

and causes release of VLPs from HeLa cells. (A) Gag-CFP transfected cells, stained with 3 μM Fluo5F 

and treated for 3 hours with 1 μM TBHQ. The focal plane was positioned approximately at the middle of 

cell height. Intracellular dots of Gag-CFP (magenta channel) partially co-localize with enlarged Fluo5F 

dots (green channel). Scale bar is 5 μm. Images were collected 24 hours after transfection at 37°C, 5% 

CO2. (B) Schematic representation of the inhibitory activity of TBHQ on LE/LY. Calcium ions and calcium 

fluxes are colored in green; the SERCA3-ATPase is shown in purple, the V-ATPase in orange, and the 

calcium/proton channel in light blue. Protons and protons fluxes are also indicated. The inhibition activity 

of TBHQ is indicated with an interrupted arrow. (C) Western blot of purified VLPs from untreated (con-

trol) and TBHQ treated (+TBHQ) HeLa cells, visualized after staining with an anti-p24 antibody. 
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In order to confirm the results obtained in HeLa cells, specifically regarding the rel-

evance of lysosomal-calcium leakage in the release of VLPs, it is necessary to ex-

press Gag in a different cell-type, which is permissive for VLPs release in absence of 

Vpu protein expression (e.g. COS-7, HEK-293T). In the following paragraphs, the 

intracellular distribution and dynamics of Gag and the release of VLPs will be inves-

tigated in COS-7 cells. COS-7 are also larger than HeLa cells and posses a wide 

microtubule net. These conditions make them appropriate for the study of Gag in-

tracellular dynamics and for the further investigation of the reasons behind the re-

lease of VLPs upon TBHQ treatment. 
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3.1.5 Characterization of Gag intracellular distribution, dynamics 

and VLPs release in COS-7 cells 

 

Transfection of an appropriate cell line, which in contrast to HeLa cells does not 

express Tetherin (e.g. COS-7, HEK-293T cells), with only a Gag-EGFP plasmid, is 

sufficient for the production and the release of VLPs.  

 

 

Figure 21. Intracellular distribution of Gag-EGFP in COS-7 cells and release of VLPs. (A) COS-7 

transfected with Gag-EGFP (green channel). Image was collected 24 hours after transfection at 37°C, 

5% CO2. (B-C) Released VLPs and budding events in COS-7 cells 48 hours after transfection with Gag-

EGFP imaged by transmission electron microscopy. Indicated squares represent the area of magnifica-

tion. White arrows indicate the points of discontinuity in the Gag shell. Scale bars: 6 μm (A), 500 nm 

(B), 300 nm (C). 

 

Budding of VLPs from the PM of Gag-EGFP transfected COS-7 or HEK-293T cells 

results in the release of particles with a discontinuous Gag shell (Figure 21B and 

21C - zoomed sections), in contrast to the evenly distributed ring of Gag density 

A

B C
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that is normally observed beneath the membranes of immature HIV-1 virions and 

Gag VLPs [118]. However, the intracellular distribution of Gag-EGFP in COS-7 cells 

(Figure 21A) can be compared to the previously suggested distribution patterns, 

observed in HeLa cells (see Figure 13 and Figure 16). In order to identify whether 

the different populations of Gag form at specific time points after protein synthesis, 

the EGFP gene in C-terminal of Gag was substituted with two different genes of 

mCherry-derived monomeric variants, called fluorescent timers (FTs), that change 

their fluorescence from blue to red over time [119] (see Material and Method sec-

tion for the cloning procedures).  

 

 

Figure 22. Intracellular distribution of Gag-FastFT and Gag-MediumFT. (A) COS7-cells transfect-

ed with Gag-FastFT. Early fluorescent form of the FastFT (blue channel) and late fluorescent form of the 

FastFT (red channel) are shown. (B) COS7-cells transfected with Gag-MediumFT. Early fluorescent form 

of the MediumFT (blue channel) and late fluorescent form of the MediumFT (red channel) are shown. 

Overlays of the two channels are shown in magenta. Scale bar is 4 μm. Images were collected 24 hours 

after transfection at 37°C, 5% CO2. 

 

FTs can be used as molecular genetically encoded tools to study trafficking of dif-

ferent cellular proteins and to provide accurate insight into the timing of intracellu-

lar processes [119]. The two FTs used in this work are called FastFT and MediumFT, 

in regard to the timing of blue-to-red switch after protein synthesis. The fluores-
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cence switching times of the two FTs are indicated in Table 1 in the Material and 

Method section. Briefly, during the FT maturation the fluorescence of the blue forms 

increase to its maximum value, and after that decrease to zero. The fluorescence of 

the red forms increase with time with some delay and then reach a plateau. At 

37°C the maxima of the blue fluorescence intensities were observed at 0.25 and 

1.2 hours for the FastFT and the MediumFT, respectively. The half-maxima of the 

red fluorescence intensities were reached at 7.1 and 3.9 hours, respectively [119]. 

COS-7 cells transfected with Gag-FastFT (Figure 22A) showed a blue Gag popula-

tion mostly aggregated in dot-like form in the perinuclear area, while the red vari-

ant was found to be poorly concentrated in dots in the perinuclear region but rather 

both spread in the cytosol and near to- or associated to the PM. COS-7 cells trans-

fected with Gag-MediumFT (Figure 22B) mostly resembled the Gag-FastFT trans-

fected cells with the exception of the higher amount of red population of perinuclear 

dots. The convergence of dots in the perinuclear area, particularly notable in a later 

phase after Gag translation (see distribution of the blue and the red forms of Gag-

MediumFT in Figure 22B), together with the previous results obtained in HeLa cells 

(i.e. co-localization in endo-lysosomal compartments), suggest that Gag may move 

exploiting microtubular structures. LEs and LYs are transported on microtubules in a 

bidirectional manner, by the help of both kinesin and dynein motor proteins [120]. 

These motor proteins use ATP to move either from the point of convergence of the 

microtubules (microtubules organization center - abbreviated: MTOC) to the PM 

(kinesins), or vice versa, toward the perinuclear area (dyneins). Maturation of LEs 

to LYs corresponds to a vesicle movement toward the MTOC, where most of the LYs 

localize [108]. On the contrary, vesicles (e.g. LEs and/or LYs) that move from the 

MTOC to the PM are most probably destined to exocytosis or secretion from the PM. 

Live cell confocal microscopy of COS-7 co-transfected with Gag-mCherry and Tau-

YFP (a YFP-tagged version of the microtubule-stabilizing protein Tau) was per-

formed.  
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Figure 23. Distribution of Gag on the microtubular filaments. COS-7 cell co-transfected with Gag-

mCherry (red channel) and Tau-YFP (green channel). The arrows indicate the MTOC and Gag dots appar-

ently associated to microtubular filaments. Scale bar is 4 μm. Images were collected 24 hours after 

transfection at 37°C, 5% CO2. 

 

In Figure 23, microtubular ramifications and MTOC are clearly shown (see arrows in 

Figure 23). In Figure 23, the point of convergence of the perinuclear Gag dots, lo-

cated on the MTOC and the concomitant Gag association to the microtubular fila-

ments in different intracellular areas can be identified (see arrows in Figure 23). 
However, since the movement direction of the endo-lysosomal vesicles is one of the 

parameters that can identify the fate of a LE or LY, a time scanning imaging of a 

COS-7 cell co-transfected with Gag-mCherry and Tau-YFP was performed (Figure 

24). In the different time frames reported in this figure, it is possible to identify two 

Gag dots that, following a trajectory on the microtubular filaments, move away 

from the MTOC, suggesting that such vesicles might be associated to kinesin motor 

proteins. 
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Figure 24. Gag dots move on the microtubular filaments. COS-7 cell co-transfected with Gag-

mCherry (red channel) and Tau-YFP (green channel). The light blue arrows follow the movement of two 

Gag dots on the microtubular filaments. Frame times are indicated. Scale bar is 6 μm. Images were 

collected 24 hours after transfection at 37°C, 5% CO2. 

Gag- m Cherry
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3.1.6 TBHQ-induced lysosomal calcium leakage causes fusion be-

tween Fluo5F containing compartments and enhanced re-

lease of VLPs 

 

The previously observed enlargement in Fluo5F-positive compartments after 

induced calcium-leakage with TBHQ (Figure 20), which de facto in HeLa cells corre-

sponded to an increased fluorescence intensity of the Fluo5F-positive vesicles and 

therefore to an increased lumenal calcium concentration, seems to be contradictory. 

However, enlargement of endo-lyososmal compartments after calcium release from 

the lysosomal lumen is a well-known consequence of a mechanism that involves 

fusion between LEs and LYs [112]. This mechanism can be physiologically activated 

by the binding of Nicotinic acid adenine dinucleotide phosphate (NAADP) to the ly-

sosomal two-pore channel (TPC), which in turn allows release of calcium from the 

LYs [121,122]. The fusion process between LEs and LYs is a calcium-mediated pro-

cess and a highly regulated mechanism that requires the co-operation of proteins of 

the SNAREs8_complex machinery [102], and might take place in response to very 

specific intracellular stimuli [121,122]. This fusion process usually entails mixing of 

the LEs/LYs content, which in this case may be in part represented by completely of 

partially formed VLPs. Besides such fusion processes, enhanced calcium concentra-

tions can activate exocytosis of LYs, that can fuse with the PM in a Synaptotagmin 

VII (Syt-VII) mediated manner [102,123]. Syt-VII is a protein localized on the 

membrane of LYs, able to mediate lipid-bilayer fusion if activated upon binding by 

calcium ions. Figure 25 shows a COS-7 cell transfected with Gag-CFP, stained with 

Fluo5F and Lysotracker and treated for 3 hours with TBHQ. As already shown in 

HeLa cells, an enlargement of the endo-lysosomal compartments (i.e. Fluo5F and 

Lysotracker positive vesicles) takes place (Figure 25A merged image). Specifically, 

considered that Lysotracker staining is specific only for LYs and Fluo5F most proba-

bly unspecifically stains LEs and LYs, events that mostly resemble pre- and post-

fusions between endo-lysosomal vesicles can be observed (see zoomed sections 

and schematic representations in Figure 25B).  The presence of Gag into the fused 

vesicles can be deduced by the CFP signal overlapping with the signal of Lysotracker 

and Fluo5F (zoomed section “2” in Figure 25B). 

 

                                          

8 (SNARE) Soluble N-ethylmaleimide-sensitive factor- attachment protein receptor.  
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Figure 25. TBHQ treatment induces fusion between LE and LY. (A) COS-7 cell transfected with 

Gag-CFP (light blue channel) and stained with 3 μM Fluo5F (green channel) and Lysotracker (red chan-

nel).  24 hours after transfection the cells were treated with TBHQ for 3 hours. The squares in the 

merged image indicate regions reported enlarged in (B). (B) Enlargements of 5 different sections of the 

merged image in (A); schematic representations of the visualized vesicles are also shown: the color-

code used in the schematic representation is the same of the fluorescent channels. Scale bar is 5 μm. 

Images were collected 24 hours after transfection at 37°C, 5% CO2. 

 

Notably, by comparing untreated and TBHQ-treated cells (Figure 26) the intracellu-

lar distribution of the enlarged Fluo5F compartments is changed upon lysosomal 

calcium leakage. Fluo5F vesicles are, upon TBHQ treatment, not anymore concen-

trated only in the perinuclear area, but rather more spread in the cytosol and local-

ized in perimembrane areas. The re-distribution of LYs upon TBHQ-treatment can be 

observed in Figure 27, where COS-7 cells transfected with a CFP-tagged version of 

the lysosomal protein Syt-VII are shown. Increased cytosolic concentration partially 

re-localize Syt-VII-positive vesicles (i.e. LYs) from the perinuclear area to the prox-

imity of the PM.  
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identifying the lysosomal membrane (square sections in Figure 28). In the same 

image, the arrow indicates a group of LYs localized at the very proximity of the PM.  

   

 

Figure 28. Upon TBHQ treatment, LYs increase their size and migrate to the PM. COS-7 cell 

transfected with Syt-VII-CFP (light blue channel) and stained with 3 μM Fluo5F (green channel) and 

Lysotracker (red channel).  24 hours after transfection the cells were treated with TBHQ for 3 hours. The 

circle indicates the MTOC region where the LEs/LYs fusion events occur; the arrow indicates LYs docked 

at the PM; squares in the merged image visualize the typical ring-like structures of enlarged LYs. Scale 

bar is 5 μm. Images were collected at 37°C, 5% CO2. 

 

Furthermore, treatment of COS-7 with TBHQ for 3 hours, 48 hours after transfec-

tion with Gag-EGFP, resulted in an enhanced release of VLPs (Figure 29A), while 

knocking-down of the Syt-VII gene with siRNAs resulted in a decreased release 

(Figure 29C). 
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Figure 29. TBHQ treatment enhances release of VLPs, while Syt-VII siRNA diminishes it. (A) 

Quantification of VLPs release from COS-7 cells 48 hours after transfection with Gag-EGFP and treated or 

not for 3 hours with TBHQ. Error bars represent standard deviations of 3 independent replicates. (B) 

Western blot of purified VLPs from untreated (control) and TBHQ treated (+TBHQ) COS-7 cells, visual-

ized after staining with an anti-p24 antibody. 

 

3.1.7 Summary and conclusion  

 

This section described how Gag is distributed in the intracellular environment 

revealing a similar pattern in the two different cell types analyzed (i.e. HeLa and 

COS-7 cells).  Gag is found at the PM, in a dot-like form in the perinuclear area, 

and can be also observed in a diffuse distribution in the cytosol (Figure 13, Figure 

16 and Figure 21). It was shown that the intracellular dots are membrane-delimited 

compartments (i.e. vesicles) that belong to the endo-lysosomal system (Figure 19), 

enriched in intralumenal calcium and containing VLPs (Figure 17). Analysis of Gag’s 

intracellular localization in dependence of time in COS-7 cells (Figure 22) revealed 

that Gag can reach its endo-lysosomal localization in the perinuclear area very soon 

after its synthesis (considering the timing of blue-to-red switch of the FastFT, within 

the first 25 minutes), and the amount of Gag in this form as well its presence at the 

PM increase with time.  
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Figure 30. Schematic representation of the possible fates of the endo-lysosomal entrapped 

VLPs. Late endosomes (LEs) and lysosomes (LYs) that contain VLPs undergo different destinies (e.g. 

maturation and degradation, recycling). Upon release of calcium from LYs, LEs/LYs might fuse and LYs-

exocytosis occurs, allowing extracellular release of VLPs contained in such compartment. 

 

Calcium depletion from the lysosomal lumen resulted in an enhanced release of 

VLPs in COS-7 (Figure 29A) and in an unexpected release of VLPs in non-permissive 

HeLa cells (Figure 20), while Syt-VII knockdown resulted in a decreased release 

(Figure 29C). These observations can be converted into a model for the possible 

fates of the endo-lysosomal entrapped VLPs, reported in Figure 30: release of calci-

um from the lysosomal lumen, a process which physiologically takes place in re-

sponse to specific stimuli [121], induces fusion between LEs and LYs and, due to 

the increase of the cytosolic calcium level, exocytosis of LYs from the PM in a Syt-

VII mediated manner. Considering that VLPs are effectively contained in vesicles of  

the endo-lysosomal system, the model presented here suggests that LEs/LYs con-
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tent mixing and LYs fusion with the PM might represent a rescue mechanism of en-

do-lysosomal localized VLPs that were initially destined to degradation by the cellu-

lar machinery. In Table 2, the results and their respective interpretations presented 

in the sections 3.1.4 and 3.1.6, that allowed the identification of the suggested 

model (Figure 30), are summarized.  

 

 

Table 2. Summary of the results and conclusion from the sections 3.1.4 and 3.1.6. In green are 

highlighted the results concerning the characterization of the organelles involved in the suggested mech-

anism (see Figure 30). In blue and orange are highlighted the results related to TBHQ treatment and the 

Syt-VII knockdown, respectively. 
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3.1.8 DISCUSSION: intracellular routes of Gag and release of 

VLPs via calcium-mediated fusion between LEs/LYs and LYs 

exocytosis 

 

3.1.8.1 Gag’s intracellular routes to VLPs release: one mechanism for 

all cell-types? 

 

HIV-1 Gag, as other retroviral Gag proteins, is an N-myristylated membrane-

bound polyprotein, necessary and sufficient for production and release of VLPs. Af-

ter its synthesis in the free ribosomes in the cytosol, Gag traffics through the cell 

and reaches the site of particle production. Possible destinations of Gag have been 

suggested to include not only the PM, but also some membrane-limited intracellular 

compartments (e.g. LE/MVBs) [2,23]. However, the routes followed by Gag from its 

synthesis to the site of viral assembly still have to be completely characterized. 

Clearly, assembly at the PM may ensure efficient virus release and dissemination. 

On the other hand, the fact that the different viral components have to travel 

through the extremely compartmentalized cytoplasmic space to target the PM may 

represent an obstacle for a successful viral production. Free Gag and Gag assem-

bled as VLPs, or in form of immature virions, have been observed in intracellular 

compartments enriched in late-endosomal markers [2,23,30]. Furthermore, in pre-

vious study, Gag was shown first diffusely distributed in the cytosol, accumulates in 

perinuclear cluster, pass transiently through a MVB-like compartment, and then 

travel to the PM. Sequential passage of Gag through these temporal intermediates 

was confirmed by live cell imaging [2]. These observations suggested that Gag 

might be targeted also to endosomal membranes for assembly and budding into the 

lumen of LE/MVBs and subsequently exit the cell via an exosome release pathway. 

Furthermore, Gag’s use of proteins belonging to the ESCRT machinery, which facili-

tates budding of vesicles into the endosomal lumen, has been exhaustive demon-

strated [124,125].  

Nevertheless, perturbing LE/MVBs trafficking was shown to affect neither Gag asso-

ciation with the PM nor virus release. Moreover, in a study on HeLa cells, with the 

help of TIRFM to monitor the dynamics of single HIV-1 assembly events at the PM, 

it was shown that the Gag population that effectively participates on HIV-1 produc-

tion and budding is recruited directly from the cytosol and is of non-endosomal 
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origin, whereas those Gag assemblies that are not destined to be released as cell-

free virus are associated with LE markers and appeared to have been internalized 

via endocytosis [126]. Such controversial observations appear to further confuse 

the already unclear understanding of Gag’s trafficking and assembly processes. 

However, it has to be mentioned, that many of the studies that until now have fo-

cused on the understanding of Gag’s trafficking attempted to address this issue 

using non-authentic Gag derivatives, codon-optimized for higher expression in 

mammalian cells, and tagged with fluorescent proteins exhibiting slow maturation 

kinetics and non-physiological tissue culture cell lines (e.g. HeLa, COS, and HEK-

293T) [6]. Such experimental set-up (in particular concerning the use of the men-

tioned cell lines), on the other hand, allows easy transfection procedures and is 

particularly suitable for confocal microscopy. Not surprisingly, the use of different 

cell types (physiological and non-physiological) and different Gag expression sys-

tems in some cases led to contradictory results [6]. Nevertheless, many previous 

works on Gag trafficking and VLPs assembly conducted on HeLa, COS and HEK-

293T cells have demonstrated the validity and the relevance of such cell lines as 

models for the study of the cell-biology of Gag and other HIV-1 proteins 

[1,2,23,103,127]. Furthermore, the direct visualization of genetically unmodified 

HIV-1 proteins still remains elusive [103]. Only the recent development of fluores-

cent intracellular single domain nanobodies (i.e. chromobodies), the use of which 

was not applied in this study, offers a general approach for dynamic detection and 

visualization of virtually any natural and genetically unmodified factor in living cells 

[103,128].  

HIV-1 assembly site(s) in physiologically relevant cell types like macrophages and 

T-cells have also produced contradicting observations: although HIV-1 assembly 

and release in T-cells is now generally accepted as being PM-associated, in a recent 

study it was shown that LE/MVBs compartments in both T-cells and macrophages 

can support productive HIV-1 assembly; specifically, a MVB-targeted Gag mutant 

was released efficiently in these two cell types [23]. In macrophages it was shown 

that a significant proportion of HIV-1 assembly took place in intracellular compart-

ments with LE/MVBs markers [18], which in turn were shown to be present in the 

membranes of the released viruses. Interestingly, such intracellular compartments, 

marked with LE/MVBs proteins, are connected to the PM via micro-channels with a 

diameter of ca. 20 nm and therefore are actually deep invaginations of the macro-

phage PM [129]. It seems to be difficult to find a common mechanism for Gag’s 

trafficking in different cell types. Nevertheless, taking together the already men-
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tioned observations and considering the results from previous studies, Gag’s locali-

zation and release in physiologically relevant cell can be summarized as follows: 

Gag is primarily localized at the PM at steady state in T-cells [17]. In these cells, 

Gag is targeted to the PM with no prior interaction with MVBs. Subsequently, specif-

ic Gag’s interactions recruit the ESCRT machinery to the PM. On the contrary, in 

macrophages and DCs, multivesicular late endosome-derived compartments are the 

sites for Gag localization and particle production. In some cases, a regulated exocy-

tosis of the virus located in LE/MVBs takes place [6,62]. 

In conclusion, Gag's routes to VLPs assembly and release are different for different 

cell-types. Gag targeting to PM and VLPs assembly (upon transfection or viral infec-

tion) involve, in different cell-lines, trafficking through specific host-cell compart-

ment and the association to diverse host-cell structures.  

 

3.1.8.2 VLPs in intracellular compartments probably originate from the 

PM 

 

In this work, the distribution of Gag in the intracellular environment in two dif-

ferent cell types (e.g. HeLa and COS-7 cells) was studied. 24 hours after transfec-

tion, Gag was found in three different localization patterns: I) at the PM, II) in a 

dots-form in the perinuclear area, and III) in a diffuse state in the cytosol (Figure 

13, Figure 16 and Figure 21). Live cell confocal microscopy was applied to study the 

timing of intracellular Gag localization in COS-7 cells transfected with Gag tagged 

with FTs, that change their fluorescence from blue to red over time (Figure 22). 

These fluorophores allow identifying the intracellular localization of Gag populations 

that are present at different time points after Gag's synthesis. For example, the 

maximum fluorescence emission of the blue form of Gag-FastFT is reached 0.25 

hour (see Table 1 in Material and Methods section) after protein synthesis and sub-

sequently loses its fluorescence intensity, while the red form turns up. Therefore, 

the blue signal visualized by this fluorophore identifies Gag proteins that are at 

most 15 minutes "old". For the blue form of the MediumFT, the maximum fluores-

cence emission is reached after 1.2 hour. Both red forms of the two fluorophores 

are maintaining their fluorescence intensities for longer time, allowing the identifi-

cation of Gag populations that are present at least since 7.1 and 3.9 hours after 

synthesis, for the FastFT and the MediumFT, respectively.  
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COS-7 cells transfected with Gag-FastFT (Figure 22A) showed a blue Gag popula-

tion mostly enriched in dots in the perinuclear area and rarely localized at the PM, 

while the red form was found to be equally distributed in dots in the perinuclear 

region, homogeneously distributed in the cytosol and near to- or associated to the 

PM. Cells transfected with Gag-MediumFT (Figure 22B) mostly resembled the Gag-

FastFT transfected cells with the exception of the higher amount of red population 

of perinuclear dots. These results are summarized in Figure 31.  

 

 

Figure 31. Gag's presence at both the PM and in intracellular dots increases with time, reach-

ing equilibrium. Summary of the results shown in fig. 22. (A) Approximate amount of Gag at the PM or 

in the dots-form at different time points. The quantity of Gag at these sites is arbitrary indicated as "very 

low", "low", "high" and "very high". (B) On the basis of such classification, the amount of Gag at the PM 

(dark grey) and in intracellular dots (light grey) are depicted in function of the time after Gag's synthe-

sis. 

 

In particular, it can be noted that I) presence of Gag at the PM increases with time 

after protein synthesis and II) the earliest intracellular localization observed (blue 

form of Gag-FastFT) is the dot-like distribution in the perinuclear area, suggesting 

that Gag might be immediately targeted to intracellular compartments after synthe-

sis. However, Gag has been observed to bind membrane within 5–10 minutes post-

synthesis [37]. Specifically, it has been shown that Gag reaches the PM already 7 
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minutes after its synthesis, and can complete a budding within 20 minutes (see 

schematic representation in Figure 32).  

 

 

Figure 32. Schematic representation of the sequential steps in the assembly of HIV-1 at the 

PM. Gag assembly at the PM is shown divided in different assembly steps. In purple are indicated the 

times of the relative steps according to [37]. 

 

Hence, identification of virus assembly sites must account for the events that occur 

within this narrow window of time. Therefore, taking into account that the peak of 

maximum excitation for the blue form of the FasFT is reached 15 minutes after pro-

tein folding (0.25 hour), the blue dots of Gag-FastFT found in the perinuclear area 

can not be exclusively considered as the first localization site reached by Gag in 

COS-7 cells.  

In conclusion, most probably, also accordingly to previous observations [130], the 

population of Gag observed in such intracellular and perinuclear compartments is 

the result of a re-endocytosis of budding VLPs at the PM. The presence of complete-

ly or partially formed VLPs in intracellular compartments was confirmed by electron 

microscopy on HeLa cells (Figure 17) and on COS-7 (data not shown). 

 

3.1.8.3 Characterization of VLPs-containing intracellular compartments 

 

The intracellular distribution of Gag in perinuclear dots mostly resembles the 

localization of LEs and LYs. Specifically, with confocal and electron microscopy, it 

was shown that the intracellular dots are actually membrane-delimited compart-

ments that belong to the endo-lysosomal system (Figure 19). In addition, they co-

localized with either the lysosomal marker Lysotracker, or with the late endosomal 

protein Rab7 (i.e. Rab7-GFP), which was co-transfected together with Gag-CFP. Fur-

Exterior
PM

2 to 7 minutes 4 to 20 minutes   



RESULTS AND DISCUSSION 

 
 

70 

thermore, such Gag-containing intracellular vesicles move on the filaments of the 

microtubular system following trajectories advancing from the MTOC to the PM 

(Figure 23 and Figure 24). The host cell cytoskeleton, comprised of microtubules 

and actin filaments, has long been suggested of being involved in targeting viral 

proteins to particle assembly sites [131,132]. Microtubules mediate long-range car-

go transport and therefore are potentially suited for delivering viral proteins to as-

sembly sites like the PM, where actin filaments, which transport cargo across short 

distances, may play a role in virus budding and release. Recent findings suggest 

that inhibition of actin and tubulin remodeling in T-cells disrupts Gag and Env en-

richment at polarized raft-like membrane domains, Env incorporation into viruses, 

Gag release, viral infectivity, and cell-cell spread [6,133]. Conversely, Gag expres-

sion has been reported to remodel the actin cytoskeleton at the site of particle bud-

ding [17]. Two types of microtubule-based proteins with opposing motor activities 

exist; kinesins facilitate cargo transport toward the cell periphery, whereas dyneins 

promote cargo transport toward the perinuclear MTOC. Previous observations 

showed that the kinesin superfamily member KIF4 binds HIV-1 Gag [134], pro-

motes Gag trafficking to the PM, and perturbing KIF4 function reportedly diminishes 

virus production. 

In this work, the use of the low-affinity calcium fluorophore Fluo5F on Gag-

transfected cells resulted in the staining of intracellular compartments, which most-

ly co-localized with Gag-CFP (Figure 16). In fact, endosomal and lysosomal vesicles 

share the common characteristic to posses a high intralumenal calcium concentra-

tion, estimated to be between 500 and 600 μM [102,108,135]. LEs and LYs have 

also a high intralumenal concentration of other ions (e.g. chlorine and potassium) 

(see schematic representation in Figure 33) [136]. The presence of Fluo5F in other 

calcium-containing compartments (e.g. ER, mitochondria) could be excluded by 

confocal microscopy (Figure 18). Within the endo-lysosomal system, calcium is im-

portant for maintaining normal trafficking, recycling and vesicular fusion events 

[109]. Specifically concerning LYs, which are organelles primarily involved in degra-

dation and recycling processes, the remarkable presence of intralumenal calcium is 

related to the role of LYs in many cellular processes, not directly referred to the 

degradation processes of cellular components, but rather e.g. to calcium-mediated 

fusion between intracellular membranes and amplification of calcium signaling 

[109]. For instance, LYs are the target of one of the most potent intracellular calci-

um releasing second messengers: NAADP. This molecule directly interacts with ly-

sosomal TPC proteins and causes release of calcium from the lysosomal lumen, 
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contributing to the regulation of crucial cellular signaling processes important for 

diverse cellular functions (e.g. vesicles exocytosis, fertilization, cell death 

[115,121,137]). Endocytosis of calcium has been shown to contribute for only ca. 

50 μM to the total content of lysosomal calcium [138]. To reach higher intralumenal 

calcium concentrations, LYs use the activity of both a calcium transporter (i.e. a 

SERCA-ATPase), and a calcium/proton channel, which exploits the proton gradient 

across the LY membrane to import calcium ions into the lumen (Figure 20B).  

 

 

Figure 33. Schematic representation of the concentrations of ions inside the vesicles of the 

endo-lysosomal system during their maturation process. Concentrations of different intralumenal 

ions are reported in correspondence to the maturation state of the vesicles. Adapted from [136]. 

 

The passage of endocytosed material and membrane-bound proteins through the 

endocytic pathway of mammalian cells to LYs occurs via early endosomes (EEs) and 

LEs [102,138]. Direct fusion events between LEs and LYs represent de facto the 

main cargo-delivery mechanism to LYs. This content mixing can be a result of kiss-

and-run events [112] and/or direct fusion between the two organelles [113]. The 

luminal ionic composition of vesicles of the endocytic machinery is of considerable 

importance both in the trafficking of endocytosed ligands and in the membrane fu-

sion processes. In mammalian cells, the organelles of the late endosomal pathway 

have been shown to interact with each other and to be in dynamic equilibrium both 

in vivo and in vitro [102,108,139]. LYs are also involved in a secretory pathway 
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known as lysosomal exocytosis, which requires two sequential steps: I) recruitment 

of LY to the close proximity of the PM, II) fusion of the pool of pre-docked LYs with 

the PM in response to calcium elevation [113]. Lysosomal exocytosis plays a major 

role in several physiological processes such as cellular immune response, bone re-

sorption, and PM repair. Calcium-dependent lysosomal exocytosis was considered to 

be limited to specialized secretory cells; however, recent studies indicate that this 

process occurs many different cell types [102,113,137].  

HIV-1 VLPs (or HIV-1 virions) are found in LEs and LYs in almost all cell types and 

at different time points after infection or transfection with a Gag plasmid. Given the 

degradative nature of the LYs, the presence of VLPs in such compartments has been 

considered by previous studies not relevant for virus release, but rather connected 

to unproductive pathways, that more probably are destined to degradation [126]. 

Nevertheless, increased intracellular calcium concentration, similar to those reached 

during activation of calcium release upon specific physiological stimuli, was shown 

to enhance VLPs release in different cell types. It therefore was postulated that 

LE/MVBs-entrapped VLPs might be released due to a calcium-mediated vesi-

cles/vesicles and vesicles/PM fusion process.   

 

3.1.8.4 PLC  as host factor needed for efficient Gag targeting to PM 

 

The sources of intracellular calcium that are needed for the functionality of the 

various signaling pathways and for calcium-mediated mechanisms, as in the case of 

LYs-exocytosis, might be different (e.g. ER, mitochondria, LEs/LYs). Generally, vi-

ruses have evolved the capability to hijack the host cell machinery in order to 

achieve their own purposes. Calcium, in particular, was identified to play a role in 

almost every step in virus replication cycles [140]. Specifically in the case of HIV-1, 

the Tat protein has been shown to up-regulate viral gene expression and replication 

[141,142], allowing HIV-1 to replicate in inactivated T-cells [140]. Furthermore, 

Tat-induced disregulation of intracellular calcium levels leads to neurotoxicity and 

contributes to HIV-related dementia and further stimulates production of the pro-

inflammation cytokine TNF- , which plays a major role in progression to AIDS.  

One of the most relevant calcium stores in the cell is the ER. Activation of calcium 

release from this organelle usually is triggered by specific signals [109,143]. The 

signal cascade starts typically at a PM, upon activation of GPCR or TKR. The direct 
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release of VLPs. In this work, it was shown how an analog intracellular mislocaliza-

tion of Gag was obtained blocking the activity of only the Gq-protein-stimulated 

PLC , with the use of the Gq-protein inhibitor Mepyramine (see schematic represen-

tation in Figure 34). These data suggest that a proper function of PLC  signaling 

pathway is essential for Gag targeting to PM and VLPs release. The reasons for this 

still have to be determined.  

 

3.1.8.5 LY/LE-entrapped VLPs can be rescued from lysosomal degrada-

tion through release from the host cell via calcium-mediated fu-

sion between LYs and LEs and lysosomal exocytosis 

 

Restoration of PM integrity after injury is essential for the survival of animal 

cells. As already mentioned, in many cell types LYs can fuse with the PM in re-

sponse to an increase in the concentration of cytosolic calcium. Such LYs provide 

the extra lipid bilayer for PM wound repair [111]. Calcium-regulated exocytosis of 

LYs and direct fusion with the PM require the activity of the ubiquitously expressed 

calcium-sensor, member of the synaptotagmin family, Syt-VII. When calcium is re-

leased from the lumen of LYs (e.g. upon stimulation via NAADP), a LEs/LYs fusion 

process might occur. Much of such fusions occur in the perinuclear region of the 

cell, since LEs and LYs are mostly concentrated near the MTOC. In common with 

other fusion events in the secretory and endocytic pathways, the fusion of LEs with 

LYs requires the presence of N-ethylmaleimide sensitive factor (NSF), soluble NSF 

attachment proteins (SNAPs) and a small GTPase of the Rab family, probably Rab7 

[102]. Similar to other fusion events, the fusion process between LYs and LEs can 

be divided into three fundamental steps: I) tethering, II) formation of a trans-

SNARE complex that bridges across the two organelles and III) membrane fusion 

[112,113] (see schematic representation in Figure 35).  
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3.2 HIV-VLPs phagocytosis in macrophages via Env-PS-

LUVs 

 

The aim of the second part of the work was to develop a nanotechnological sys-

tem able to induce phagocytosis of Gag/Env-VLPs (in the following part called HIV-

VLPs) in macrophages. An immunoliposomal system based on PS-containing lipo-

somes ( Env-PS-LUVs) is here presented. Confocal microscopy imaging on live 

macrophages, electron microscopy and flow cytometry were applied to study the 

validity of the system (see schematic representation in Figure 37). 

 

 

Figure 37. Schematic representation of HIV-VLPs phagocytosed in the presence of Env-PS-

LUVs. Env-PS-LUVs bind to HIV-VLPs, are phagocytosed into macrophages (shown in grey) via a PS-

dependent mechanism and finally delivered to lysosomes. 
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3.2.1 Env-PS-LUVs trigger efficient phagocytosis of HIV-VLPs by 

macrophages 

 

The efficiency of phagocytosis of HIV-VLPs by macrophages in different condi-

tions was investigated. To this end, HIV-VLPs were produced co-expressing in HEK-

293T cells HIV-1 Gag-EGFP and Env, as already described elsewhere [47,144]. Puri-

fied HIV-VLPs were loaded on an SDS-Page and blotted to verify the presence of 

both Gag and Env proteins (Figure 38). As already mentioned before, it is known 

that the polyprotein Gag precursor, even in the absence of other viral proteins and 

the viral genome, is sufficient to drive the formation and the release of non-

infectious VLPs when expressed in an appropriate cell line. Furthermore, the pres-

ence of EGFP at the C-terminus of Gag, even if it decreases the yield of produced 

VLPs, affects neither the assembly nor the release process of VLPs [145] and repre-

sents a simple tracking strategy to monitor and quantify the presence of VLPs (e.g. 

when internalized by macrophages).  

 

 

Figure 38. Western blot of purified HIV-VLPs. HIV-VLPs were separated by electrophoresis through 

10% SDS-polyacrylamide gels and electroblotted onto nitrocellulose membrane. The presence of Gag-

EGFP and Env in the HIV-VLPs was determined with mouse anti-p24 (CA domain) and goat anti-gp120-

biotin conjugated antibodies. 
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Figure 39. Schematic representation of a Env-PS-LUV. The LUVs included in their bilayer phos-

phatidylserine (Phosphatidylserine polar head shown in red), biotinylated lipids (Biotin-cap of the lipid 

shown in grey) used to decorate the LUVs with biotin-conjugated Env-Abs (shown in green) via strep-

tavidin (shown in blue) binding, and thus obtained PS-containing LUVs bound to Env-Abs. 

 

100 nm radius PS-containing LUVs were produced. These LUVs included in their 

bilayer a biotinylated lipid used to decorate the LUVs with biotin-conjugated Env-

Abs via streptavidin binding, and thus obtaining PS-containing LUVs bound to Env-

Abs ( Env-PS-LUVs) (see schematic representation in Figure 39). It was expected 

that the Env-PS-LUVs would effectively recognize and bind the Env proteins on the 

HIV-VLPs and, due to the presence of PS, would be phagocytosed by macrophages 

together with the bound HIV-VLPs (see schematic representation in Figure 37). For 

internalization measurements, HIV-VLPs were first mixed either with I) Env-PS-

LUVs, II) Env-LUVs (without PS), III) Env-Abs (i.e. antibodies without liposomes) 

or IV) PS-LUVs (i.e. PS-containing liposomes without antibodies). In the following 

step, they were administrated to macrophages and incubated by gentle agitation for 

1 hour at 37°C. The intracellular fluorescence signal of phagocytosed HIV-VLPs was 

quantified with flow cytometry. In the live cell confocal fluorescence microscopy 

images reported in Figure 40 it is possible to visualize the internalization of HIV-

VLPs/ Env-PS-LUVs complexes in macrophages.  
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Figure 40. HIV-VLPs are most efficiently internalized in the presence of Env-PS-LUVs. Live 

cell confocal microscopy images of living macrophages incubated with HIV-VLPs together with Env-PS-

LUVs. The focal plane was positioned approximately at the middle of cell height. HIV-VLPs (green chan-

nel) co-localize with Env-PS-LUVs (magenta channel) in the intracellular environment. Scale bar is 2 

μm. Images were collected at 37°C. 

                                                                                                                     

The fluorescence images merged with the DIC channel in confocal-geometry give 

additional information about the localization of the HIV-VLPs/ Env-PS-LUVs com-

plexes into the cells: visualization of part of the nuclear membrane, observable in 

the DIC channel, suggests that the internalized complexes are not localized on the 

cell surface, but rather in the inner part of the cells. Figure 41 further confirms that 

incorporation of PS into Env-LUVs resulted in the most effective phagocytosis of 

HIV-VLPs into macrophages. Env-LUVs or Env-Abs alone caused less internaliza-

tion of HIV-VLPs and the lowest internalization values were observed when viral 

particles were incubated by themselves or in the presence PS-LUVs without anti-

bodies. It appears clear that the internalization of the HIV-VLP/immunoliposome 

complex is determined primarily by the presence of the antibody-decorated lipo-

somes (PS-LUVs in particular), since HIV-VLPs are not internalized by themselves. 

For this reason, the attention was next focused on the mechanism of liposome up-

take by macrophages. Furthermore, since the presence of antibodies does not in-

crease the uptake efficiency induced by LUVs or PS-LUVs (data not shown), it was 

decided to use PS-LUVs and LUVs without Env-Abs for the following test.  

Merge Merge w ith DI C

Env- PS- LUVsHI V- VLPs
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Figure 41. Flow cytometry analysis show how Env-PS-LUVs trigger efficient internalization of 

HIV-VLPs. Macrophages were incubated for 1 hour at 37°C in gentle agitation with HIV-VLPs exclusively 

or together with Env-PS-LUVs, Env-LUVs, Env antibodies, or with PS-LUVs. (A) Representative flow 

cytometry histograms for all the examined samples. Each curve refers to a single independent meas-

urement for one treatment condition and represents the number of cells as a function of the fluorescence 

intensity of internalized HIV-VLPs. The color-code used for the histograms is the same used in panel B. 

(B) The fluorescence signal of internalized HIV-VLPs was quantified with flow cytometry and normalized 

to the value measured for the Env-PS-LUVs sample, averaged over a 10000-cell population. Error bars 

represent standard deviations of 6 independent replicates. The average fluorescence signal of Env-PS-

LUV samples was normalized to 100%. “*” corresponds to datasets that cannot be statistically distin-

guished (i.e. two-sample t-test probability p>0.05). “**” and “***” denote significantly different da-

tasets with two-sample t-test associated probability p<0.05 and p<0.01, respectively. 

 

The internalization efficiency of the liposomes under inhibition of actin polymeriza-

tion, which is known to be required for phagocytosis [146], was measured. Cyto-

chalasin D is a potent inhibitor of actin polymerization and a highly toxic compound 

for animal cells. To avoid an excessive toxicity of Cytochalasin D on macrophages, a 

concentration 10-fold lower than that usually needed to have 90% inhibition of 

phagocytosis was used [147]. Notwithstanding the very low amount of Cytochalasin 

D, these cells showed already ~30% less internalization of PS-LUVs (Figure 42A). 

Inhibition of dynamin-dependent processes (e.g. endocytosis) with the dynamin 

inhibitor Dynasore did not affect the internalization of the PS-LUVs (Figure 42B).  
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Figure 42. Inhibition of actin polymerization, and not of dynamin, decreases uptake of PS-

LUVs. Macrophages were incubated for 1 hour at 37°C with PS-LUVs or LUVs in the presence or in the 

absence of (A) 1 μM Cytochalasin D or of (B) 1 μM Dynasore. The fluorescence signal of internalized 

fluorescently labeled liposomes was quantified with flow cytometry and normalized to the value meas-

ured for the PS-LUVs sample, averaged over a 10000-cell population. Error bars represent standard 

deviations of 3 independent replicates. The respective value of Env-PS-LUVs was normalized to 100% in 

each experiment. “*” corresponds to datasets that cannot be statistically distinguished (i.e. two-sample 

t-test probability p>0.05). “***” denotes significantly different datasets with two-sample t-test associat-

ed probability p<0.05 and p<0.01, respectively. 

 

These results suggest that actin-mediated internalization pathways might play a 

prevalent role in the uptake of liposomes. Engulfment of external bodies through 

the phagocytosis process requires not only the polymerization of actin, but also the 

activation of a specific intracellular signaling [148]. Concerning phagocytosis of 

apoptotic cells, it was shown that an acute and sustained calcium flux from the ER 

into the cytosol of phagocytic cells represents a direct and specific consequence of 

the recognition of apoptotic bodies by macrophages [148]. In order to show wheth-

er the treatment of macrophages with the Env-PS-LUVs (but also with PS-LUVs - 

not shown) is able to trigger this specific intracellular response, the cells were load-

ed with the membrane-permeable calcium fluorophore Fura2, a fluorescent dye 

which binds to free intracellular calcium, and treated either with I) Env-PS-LUVs, 

II) Env-LUVs, or III) pretreated with Thapsigargin (Thaps) and then with Env-PS-

LUVs. Fura2 fluorescence can show an acute increase or decrease in its uores-

cence intensity re ecting a change in the cytosolic calcium concentration. In Figure 
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43 the intracellular Fura2 fluorescence was visualized in a pseudo color mode and 

monitored live at an epifluorescence microscope. The addition of Env-PS-LUVs to 

macrophages resulted in a strong and fast increase of the intracellular Fura2 fluo-

rescence, while the addition of Env-LUVs did not. Furthermore, pre-treatment with 

Thaps, which causes the depletion of calcium from ER, and subsequent addition of 

Env-PS-LUVs did not result in an increase of the Fura2 fluorescence, suggesting 

that the intracellular source of calcium needed upon binding between macrophages 

and Env-PS-LUVs is the ER. 

 

 

Figure 43. Addition of Env-PS-LUVs to macrophages results in release of calcium from endo-

plasmic reticulum. Macrophages were incubated for 30 minutes at 37°C with Fura2-AM in calcium-free 

medium, then washed with PBS and, when indicated, treated with 2 μM Thapsigargin (Thaps) for 1 hour 

at 37°C. Addition of either Env-PS-LUVs or Env-LUVs was performed live at an epifluorescence micro-

scope. The pseudo color scale was the same for all the samples. Scale bar is 8 μm. 
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3.2.2 Internalization of PS-LUVs is specific for macrophages 

 

It was shown that cell type plays a prominent role in intracellular uptake of na-

noparticles with different physical characteristics [149,150]. In the context of our 

studies, it would be important to show that immunoliposomes are preferentially 

internalized by macrophages, rather than unspecifically interacting with the PM of 

also other cell types. To this end, the internalization of PS-LUVs in macrophages 

was compared with the internalization in epithelial non-phagocytic cells (e.g. Madin-

Darby canine kidney cells (MDCK)). The results shown in Figure 44 indicate that the 

uptake efficiency of PS- LUVs in this cell type is much lower (ca. 60% decrease) 

than in macrophages. This result is in agreement with previous studies showing 

increased internalization of negatively charged particles specifically to phagocytic 

cells [150]. 

 

 

Figure 44. Comparison of internalization efficiencies of PS-LUVs or LUVs in macrophages and 

MDCK cells. Macrophages or MDCK cells were incubated with PS-LUVs or LUVs for 1 hour at 37°C. The 

fluorescence signal of internalized fluorescently labeled liposomes was quantified with FACS and normal-

ized to the value measured for the PS-LUVs sample in macrophages, averaged over a 10000-cell popula-

tion. Error bars represent standard deviations of 3 independent replicates. The respective value of Env-

PS-LUVs was set to 100% in each experiment. “***” denotes significantly different datasets with two-

sample t-test (probability p<0.01). 
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3.2.3 The amount of PS in LUVs influences phagocytosis efficiency 

of both LUVs and HIV-VLPs 

 

Next, the effect of increasing PS concentration on the HIV-VLPs internalization effi-

ciency was investigated. The internalization of liposomes and HIV-VLPs is strongly 

correlated to the amount of PS incorporated in the liposome bilayer. As shown in 

Figure 45, this dependence is more pronounced for the liposomes (almost 10 fold 

increase in the internalization of Env-50mol%PS-LUVs compared to Env-

0mol%PS-LUVs) than for the HIV-VLPs. The highest internalization was observed 

for the HIV-VLPs sample incubated with Env-50mol%PS-LUVs. A lower but non-

negligible uptake of HIV-VLPs incubated with Env-0mol%PS-LUVs was also ob-

served, in agreement with the results reported in Figure 41. According to the re-

sults shown in Figure 45B, already 30mol% PS concentration in the Env-PS-LUVs 

is sufficient to induce significant HIV-VLPs internalization. Therefore, in all further 

experiments 30mol% PS concentration was used. In order to investigate the possi-

ble presence of multiple populations in our samples (e.g. cells that massively inter-

nalized liposomes coexisting with cells showing negligible internalization), the for-

ward scatter/fluorescence intensity dot-plot was analyzed. These 2-d histograms 

shown in Figure 45C-D report the cell distribution of two different samples of mac-

rophages as a function of cell-size and fluorescence intensity of internalized Env-

30mol%PS-LUVs. The dot-plots of untreated cells and cells incubated with Env-

30mol%PS-LUVs are shown in Figure 45C, respectively. First, the background fluo-

rescence of macrophages in an untreated sample was identified (population 1 -P1, 

rectangle in Figure 45C), i.e. the cells that did not internalize any liposome. Only 

few outliers were observed, and they were not included. The plot in Figure 45D re-

fers to cells that were incubated with Env-30mol%PS-LUVs. The vast majority of 

these cells can be grouped together as a single population (population 2 -P2, rec-

tangle in Figure 45D). Only a negligible amount of the total cell population shows a 

fluorescence signal compatible with the parameters identified in Figure 45C for P1. 

In other words, almost all of the macrophages incubated with Env-30mol%PS-

LUVs do internalize liposomes and the data here presented do not support the 

presence of heterogeneity in the examined samples. 
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Figure 45. Internalization efficiency of LUVs and HIV-VLPs is related to PS concentration. 

Macrophages were incubated for 1 hour at 37°C in gentle agitation with Env-PS-LUVs containing differ-

ent PS mol% concentration and HIV-VLPs.  The fluorescence signal of internalized fluorescently labeled 

liposomes (A) and HIV-VLPs (B) were quantified with flow cytometry and normalized to the value meas-

ured for Env-50mol%PS-LUVs, averaged over a 10000-cell population. Error bars represent standard 

deviations of 3 independent replicates. “*” corresponds to datasets that cannot be statistically distin-

guished (i.e. two-sample t-test probability p>0.05). “**” and “***” denote significantly different da-

tasets with two-sample t-test associated probability p<0.05 and p<0.01, respectively. (C-D) Representa-

tive dot-plots of two independent flow cytometry-measurements of 10000-cells populations. The two 

dot-plots report the distribution of the cells in relationship to their size (forward scatter) and fluores-

cence intensity of internalized Env-30mol%PS-LUVs. Panel C shows untreated cells identified as popula-

tion 1 (P1), and panel D shows cells incubated with Env-30mol%PS-LUVs and identified as population 2 

(P2). The previously determined P1 position in the graph is also shown in panel D. The cells distribution 

is reported as intensity profile of the number of cells (red= high, blue=low); outlier cells are indicated as 

single points. 
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3.2.4 Env-PS-LUVs deliver co-internalized HIV-VLPs to acidic 

compartments 

 

Once the Env-PS-LUVs-mediated phagocytosis of HIV-VLPs has been trig-

gered, it is of paramount importance that the internalized pathological agents are 

properly degraded. In order to investigate the exact intracellular fate of Env-PS-

LUVs and HIV-VLPs, confocal microscopy imaging of live macrophages incubated 

with Env-PS-LUVs and HIV-VLPs and stained with a marker for acidic compart-

ments was performed. The images in Figure 46A show that HIV-VLPs together with 

Env-PS-LUVs accumulate in lysosomes, while HIV-VLPs administrated alone to the 

macrophages (Figure 46B) do not localize therein. It is worth noting that, in the 

latter case, we observed a much lower internalization of HIV-VLPs, in line with the 

results shown in Figure 41. A statistical analysis of the intracellular localization of 

HIV-VLPs in 30 images of the three samples is shown in Figure 46C (see Material 

and Method section). This analysis revealed that more than 70% of the HIV-VLPs 

co-localize with LYs if they were together with Env-PS-LUVs. If the particles were 

administrated alone, the localization into LYs was estimated below ca. 14%. In the 

presence of Env-LUVs, the co-localization of HIV-VLPs into LYs was on average 

intermediate between the two above-mentioned cases. Also, although the Env-LUV 

samples were not statistically distinguishable from the Env-PS-LUV samples, they 

exhibited much larger sample-to-sample variation (see standard deviations in Fig-

ure 46C). In order to further characterize the intracellular localization of HIV-VLPs 

and immunoliposomes with high spatial resolution, a correlative fluorescence and 

electron microscopy imaging approach was used. Figure 47 shows that HIV-VLPs 

co-localize with Env-PS-LUVs in membrane-delimited intracellular compartments. 

These sub-cellular structures are vesicular in shape and well separated from the 

PM. 
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Figure 46. HIV-VLPs together with Env-PS-LUVs accumulate in LYs. Representative confocal 

images of living macrophages at 37°C stained with Lysotracker and treated with (A) HIV-VLPs together 

with the Env-PS-LUVs (green arrows indicate HIV-VLPs co-localized with Env-PS-LUVs into acidic com-

partments) or (B) HIV-VLPs alone for 1 hour at 37°C (yellow arrows indicate the HIV-VLPs outside acidic 

compartments). The fluorescence signals of internalized HIV-VLPs, Env-PS-LUVs and LYs marked with 

Lysotracker are shown. Cell boundaries are shown in white. White bars represent 2 μm. (C) Percentages 

of HIV-VLPs/LYs co-localization with or without co-administration of Env-PS-LUVs, or Env-LUVs. The 

co-localization was calculated as ratio between overlapping areas (i.e. pixels occupied both by HIV-VLPs 

and Lysotracker) and total pixel areas occupied by HIV-VLPs, expressed in percentage and averaged over 

ten different confocal micrographs. Standard deviation (SD) and two-sample t-test probability (compari-

son to Env-PS-LUV sample) are also shown. 
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Figure 47. HIV-VLPs together with Env-PS-LUVs accumulate in phagosome-like compart-

ments. Correlative fluorescence and electron microscopy. (A-E) HIV-VLPs (green) and Env-PS-LUVs 

(red) were visualized by confocal laser scanning microscopy and correspond to a membranous, phago-

some-like structure imaged by transmission electron microscopy (F). (A) Fluorescence confocal image, 

(B, E, F) electron micrographs, (C, D) correlation of fluorescence images with electron micrograph by 

alignment of cellular surface structures. Indicated squares represent the area of magnification in the 

subsequent panel. Scale bars: 5 μm (A-C), 1 μm (D,E), 500 nm (F). 

 

 

3.2.5 Treatment with HIV-VLPs and Env-PS-LUVs does not affect 

viability of macrophages 

 

Finally, the effects of HIV-VLPs/ Env-PS-LUVs treatment on the viability of 

macrophages was tested. The cells were treated with HIV-VLPs/ Env-PS-LUVs or 

10% dimethylsulfoxid (DMSO), and incubated for 1, 48 or 72 hours at 37°C. Sub-

sequently, two different tests were performed in parallel. The results of the first test 

are shown in Figure 48A, which reports the values of responsiveness of the cells to 

the CellTiter-Blue test. This test measures the metabolic activity of the cells upon 

addition of the non- fluorescent dye resazurin. During the incubation period, cells 
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convert resazurin to the fluorescent resorufin product. The conversion of resazurin 

to fluorescent resorufin, measured at a plate-reader, is proportional to the number 

of metabolically active and viable cells. As shown in Figure 48A the viability of the 

cells treated with HIV-VLPs/ Env-PS-LUVs is not affected. Moreover, after 72 hours 

the curves of treated and untreated cells both increase, indicating that the cells are 

actively dividing. As expected, the metabolic activity of the DMSO (positive control) 

treated cells decreases monotonously over the observation time.  

 

 

Figure 48. Treatment with HIV-VLPs and Env-PS-LUVs does not affect viability of macro-

phages. (A) Macrophages were plated in 96-well plates and incubated with HIV-VLPs/ Env-PS-LUVs or 

10%DMSO or with medium only, for the indicated times. The fluorescence signal of the converted reso-

furin product for each sample was quantified with a plate reader and normalized to the value measured 

for the “untreated cells 1 hour after treatment” sample. Error bars represent standard deviations of 24 

independent replicates. (B) Macrophages were plated in 12-well plates and incubated with HIV-

VLPs/ Env-PS-LUVs or 10%DMSO or with medium only, for the indicated times. The fluorescence signal 

of propidium iodide for each sample was quantified with FACS analysis and normalized to the value 

measured for the “10% DMSO-treated cells 1 hour after treatment” sample. Error bars represent stand-

ard deviations of 3 independent replicates. 
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The second test performed was the propidium iodide (PI) test. PI is a fluorescent 

and intercalating agent, which shows an increase up to 30 fold of its fluorescence 

upon binding to nucleic acids. PI is membrane impermeable and generally excluded 

from viable cells. The fluorescence of PI was measured with FACS. As shown in Fig-

ure 48B, cells treated with HIV-VLPs/ Env-PS-LUVs maintain low values of PI fluo-

rescence over 72 hours after addition of the particles/liposomes. For the positive 

control, a strong decrease of membrane impermeability is observed in the first 

hour. Concerning the results of the DMSO control on a longer time range (see 48-

hours and 72-hours points, marked in red), two aspects must be considered: first, 

treatment with 10% DMSO is known to produce almost 90% cell death after 1 hour 

treatment [151]. Second, the FACS measurements must be performed in PBS, 

which implicates that the dead cells detached and present in the culture medium 

were excluded from the FACS analysis. Therefore, the DMSO-treated cells after 48 

and 72 hours, which show low level of PI fluorescence, most probably are repre-

sentative only of the 10% of the survived cells after the first hour. 

 

3.2.6 Summary and conclusion 

 

The results shown in the previous section demonstrated the efficacy of Env-

PS-LUVs in triggering efficient internalization of HIV-VLPs in macrophages, without 

affecting cell viability. The efficient internalization of HIV-VLPs into macrophages 

was shown to be primarily dependent by I) the presence of PS into the LUVs and II) 

the decoration of the LUVs with Env-Abs (Figure 41). The mechanism of internali-

zation of the HIV-VLPs/immunoliposomes complex was identified as phagocytosis. 

In fact, inhibition experiments demonstrated the need of actin polymerization for 

successful internalization of HIV-VLPs in macrophages. Furthermore, the release of 

calcium from the ER in macrophages, which is necessary (and specific) for a suc-

cessful cargo-phagocytosis [148], occurred exclusively after addition of PS-LUVs 

and was not observable after depletion of the ER-calcium stores (Figure 43). In-

creasing amount of PS in the immunoliposomes correlated with higher internaliza-

tion of both liposomes and HIV-VLPs. Fluorescence confocal and electron microsco-

py of macrophages treated with HIV-VLPs and Env-PS-LUVs showed that HIV-VLPs 

are localized in membrane-delimited vesicles and that, specifically Env-PS-LUVs, 
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and not Env-LUVs, are able to deliver the viral particles to membrane-delimited 

phago-lysosomal compartments (see schematic representation in Figure 49). 

 

 

Figure 49. Representation of HIV-VLPs phagocytosed by a macrophage in the presence of 

Env-PS-LUVs. Env-PS-LUVs bind to HIV-VLPs, are phagocytosed into macrophages via a PS-

dependent mechanism and finally delivered to lysosomes. The presence of internalized HIV-VLPs and 

Env-PS-LUVs can be evaluated by fluorescence: HIV-VLPs are made by Env and Gag-EGFP (shown in 

green in the cartoon) and Env-PS-LUVs contain Vybrant DiI (shown in red in the cartoon). On the back-

ground, an electron micrograph of a macrophage treated with HIV-VLPs together with Env-PS-LUVs 

(taken from Figure 41). 

 

Now, at this point, it has to be highlighted that, even if the previously described 

mechanism for VLPs release from LYs (LYs exocytosis) might be shared also by 

macrophages, phagocytosis of HIV-VLPs and subsequent delivery to acidic com-

partments (i.e. LYs) via PS-immunoliposomes is expected to follow a very specific 

internalization pathway proper to the mechanism of clearance of apoptotic cells by 

macrophages. This process, initiated by PS recognition, is known to represent a 

highly degradative pathway, characterized by an immediate targeting of the cargo 

to phago-lysosomes that undergo a progressive acidification of the phagosomal 

lumen and acquisition of vacuolar H+-ATPases [129,152].  
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3.2.7 DISCUSSION: internalization of HIV-VLPs into macrophages 

via Env-PS-LUVs-mediated phagocytosis 

 

 Macrophages are believed to play a potential active role in the fight of the 

immune system against HIV-1. However, as soon as these cells are infected by the 

virus, many of their effector functions are impaired. This represents one of the prin-

cipal causes of the development of AIDS pathogenesis. Specifically, phagocytosis of 

opsonized viral particles is compromised in infected macrophages [66,67,153]. On 

the other hand, PS-dependent phagocytosis seems not to be affected by the pres-

ence of the virus [80]. Also, in those cases where phagocytosis of apoptotic cells 

seemed affected by HIV-1 infection, the molecular mechanisms involved are not 

related to specific PS-recognition [154-156]. In this study, efficient internalization 

of HIV-VLPs into macrophages via Env-PS-LUVs -mediated phagocytosis was 

demonstrated. 

 

3.2.7.1 Phagocytosis of HIV-VLPs via Env-PS-LUVs in macrophages 

 

The internalization of HIV-VLPs into macrophages via Env-PS-LUVs was highly 

efficient and much higher compared to the cases of incubation of HIV-VLPs with 

Env-LUVs, PS-LUVs or with antibodies alone. The intracellular localization (rather 

than simple binding to cell surface) of the HIV-VLPs/immunoliposomes complexes 

can be deduced by the data in Figure 40. As previously stated in the Results (sec-

tion 3.2.1), the confocal plane was positioned approximately in the middle of the 

cell plane, therefore excluding detection of liposomes or VLPs bound to the PM (well 

above or below the focal plane). PS-dependent internalization (rather than simple 

membrane binding) was already confirmed in the same system (i.e. PS-liposomes 

in macrophages) [94]. These results are compatible with a model according to 

which HIV-VLP bind to liposomes through a specific antibody. Subsequently, PS-

containing liposomes are phagocytosed due to the presence of PS, carrying the 

bound viral particles into the macrophage. In the absence of antibodies, PS-LUVs 

are efficiently internalized but cannot carry HIV-VLPs into the phagocyte (see e.g. 

Figure 41). Furthermore, the mere presence of Env-Abs bound to HIV-VLPs does 

not elicit phagocytosis by itself. This result is reasonable, since the antibody used 

here (goat Env IgG) should not be specifically recognized by mouse macrophages. 
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Therefore, this in vitro system mirrors in this respect the behavior of HIV-infected 

macrophages characterized by impaired antibody-dependent phagocytosis. 

 

3.2.7.2 Influence of PS amount in LUVs phagocytosis efficiency of both 

LUVs and HIV-VLPs  

 

The specific amount of PS strongly correlates with the internalization of lipo-

somes: LUVs made with 0 or 10 mol% PS have a similar degree of internalization 

and both are internalized to a much lesser degree than LUVs with 30-50 mol% PS. 

Qualitatively, these results are compatible with previous studies [94]. The amount 

of PS needed for optimal internalization in our experiments is somewhat different 

from that reported by Geelen et al. [94], probably due to e.g. differences in the cell 

line used, specific lipid composition, and/or liposome size. PS-mediated internaliza-

tion of the PS-LUVs must be ascribed to the previously characterized capability of 

PS-liposomes to activate a specific phagocytosis signal in macrophages [149]. The 

PM of viable cells is characterized by an asymmetric distribution of phospholipids 

across the bilayer, PS being mostly localized into the inner lea et of the PM. Expo-

sure of the anionic phospholipid PS in the outer leaflet represents one of the most 

dramatic changes on the surface of apoptotic cells [74,77], eventually leading to 

phagocytosis by macrophages in vivo. 

The dependence of HIV-VLPs uptake on the presence of PS in liposomes is less 

straightforward compared to uptake of the mere PS-liposomes, since this lipid is not 

strictly needed for HIV-VLPs internalization. In fact, a non-negligible internalization 

of HIV-VLPs in the presence of immunoliposomes without PS was observed. Alt-

hough these data do not provide a definitive explanation for this observation, one 

possibility could be that HIV-VLPs and Env-LUVs form large aggregates that are 

non-specifically internalized by macrophages. Such aggregates seem to be enriched 

in HIV-VLPs rather than lipids (see Figure 45A and 45B – noticeable internalization 

of HIV-VLPs compared to that of immunoliposomes in absence of PS). Furthermore, 

non-specific internalization of HIV-VLPs does not occur in the absence of immu-

noliposomes (Figure 41). Nevertheless, it must be emphasized that PS should be 

present in a rationally designed liposomal system for viral particle phagocytosis 

since I) the presence of at least 30 mol% PS dramatically increases internalization 

of HIV-VLPs and II) the presence of PS triggers an internalization pathway which is 
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specific and supposedly not impaired in HIV-infected macrophages. 

 

3.2.7.3 Env-PS-LUVs internalization: mechanism and target specificity 

 

Different receptors on the macrophage membrane are known to interact with 

ligands (e.g. PS) on the apoptotic cell surface, resulting in the association of dead 

cells to the macrophages, which represents the first step of phagocytosis [157]. 

The recruitment of specific receptors also triggers cytoskeletal changes in the phag-

ocytic cell structure required for the engulfment of apoptotic cells. Here, it was 

shown that inhibition of actin polymerization, and not of dynamin, correlates with a 

strong decrease in PS-LUVs uptake, suggesting that the mechanism of PS-LUVs 

internalization is indeed phagocytosis. In the context of a therapeutic approach 

against HIV-1, it is of great importance to ensure that the pathological agent (i.e. 

virus/immunoliposome complexes) is specifically delivered to the appropriate cell 

types where they can be properly disposed of, without toxic effects for the target 

cells. First it was verified that treatment with HIV-VLPs and Env-PS-LUVs is not 

toxic for macrophages (see Figure 48). Then it was investigated how specifically PS-

LUVs are taken up by macrophages, comparing the internalization of PS-LUVs in 

macrophages and Madin-Darby Canine Kidney cells (MDCK), here used as an ex-

ample of non-phagocytosing cells (see Figure 44). The results presented in this 

work show that MDCK cells internalize a significantly lower amount of PS-LUVs 

compared to macrophages. 

 

3.2.7.4 Intracellular fate of internalized HIV-VLPs 

 

After phagocytosis, depending on different factors (e.g. the intrinsic nature of 

the cargo, the type of the target cell, the internalization pathway), the internalized 

material is delivered to specific intracellular compartments. This will eventually de-

termine the fate of the acquired content [158]. Subcellular localization is extremely 

important in HIV-1 infection as well, as it influences also its ability to infect the host 

and other cells [159]. Indeed, HIV-1 particles found in membrane-proximal com-

partments with neutral pH in macrophages (e.g. viral containing compartments 

(VCCs) and endosomal-like structures) [129] are still infectious and represent the 
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so-called virus-reservoirs, known to be one of the major causes of viral persistence 

in the host [18,160]. VCCs, shown in Figure 50, are tubule-vesicular membranous 

webs that extend throughout the macrophage and are frequently connected to the 

extracellular space [129].  

 

 

Figure 50. Virus-containing compartment (VCC) morphology. (A–H) Digital slices (from electron 

tomography) through a region of a HIV-1-infected macrophage depicting the morphological complexity 

and variability of the VCC. The arrows point to membranous protrusions that were initially thought to be 

a separate form of VCC but were later shown to be part of the overall three-dimensional VCC structure. 

Scale bar corresponds to 200 nm. From [129]. 

 

Confocal microscopy live imaging and correlative electron microscopy of macro-

phages showed that HIV-VLPs bound to Env-PS-LUVs are localized into membrane-

delimited intracellular compartment morphologically similar to phagosomes and 

enriched in the LYs tracker Lysotracker. More specifically, image analysis (Figure 

46C) showed that immunoliposomes - with or without PS - induce delivery of HIV-

VLPs into LYs. This effect is significantly more reproducible in the presence of PS, as 

judged by the small standard deviation observed for the Env-PS-LUV sample 

(Figure 46C, compare to Env-LUVs). Lysotracker-stained compartments are very 

different from the above-mentioned VCCs, and are probably highly acidic vesicles. 

These results are in agreement with the fact that, as previous studies have shown, 

apoptotic cells, once inside the phagocyte, are processed via a phago-lysosomal 

pathway characterized by a progressive acidification of the phagosomal lumen and 

acquisition of vacuolar H+-ATPases [129,152]. 
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4 CONCLUSION AND OUTLOOK 

 

 

4.1 Identification of a calcium-dependent pathway for 

VLPs release as potential new antiviral target   

   

Although antiretroviral therapy effectively diminishes viral replication and sub-

stantially increases survival of patients, it has not been possible yet to achieve a 

cure. High viral replication rate, generation of extensive viral genetic diversity and 

spontaneous development of antiretroviral-drugs resistance (or interruption of an-

tiretroviral therapy) result in rebound of virus replication and development of AIDS 

[84]. Furthermore, HIV-1 is able to escape from the immune surveillance establish-

ing reservoirs in a small pool of latently infected cells. For all these reasons, re-

sistance to the antiretroviral drugs, and the emergence of drug-resistant viral 

strains may occur, resulting, in the end, in treatment failure. The demand of new 

antiretroviral drugs and innovative therapies is therefore not decreasing and still 

remains an important objective for the research. 

In recent years, medical and pharmaceutical research has supported, in contrast 

with conventional pathogen-targeting strategies, a new drug discovery paradigm 

[161]: it has been proposed that focusing on identifying and targeting the host fac-

tors hijacked by the pathogens might represent a novel possible successful strategy 

to develop new therapies. In other words, this kind of therapeutic approach against 

pathogens should not target molecular structures of the pathogen itself, but rather 

host structures or cellular mechanisms that directly or indirectly support one or 

more fundamental steps of the pathogen’s life cycle [162]. Examples of drugs that 

have host factors as targets are various, and in some cases already available for 

treatment (see Table 3).  
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Table 3. Examples of antiviral or antiparassitic drugs that inhibit cellular factors requested for 

the pathogen's life cycle. The information summarized in this table were taken from [161]. 

 

Concerning anti-HIV-1 therapy, the CCR5 co-receptor has been suggested to repre-

sent an attractive anti-HIV target, since individuals with a natural CCR5 32 muta-

tion (which has little apparent impact on immune status or general health) are 

highly protected against HIV-1 infection. Maraviroc (brand-named "Selzentry" 

or "Celsentri") is an antagonist of the CCR5 receptor, which inhibits the viral fusion 

process with the host PM [163]. This drug is commonly used in the therapy of AIDS 

patients.  

In the last few years, the study of the interactions between HIV-1 and the host cell 

and the characterization of the viral life cycle in its different steps have seen some 

progresses, specifically thank to the technical advancements (e.g. super resolution 

microscopy) and the use of RNAi screening procedures [6]. In particular, the central 

process of ESCRT mediated budding seems to be now fairly well established [124]. 

In particular, the cellular factors exploited by Gag to achieve the viral assembly pro-

cess include cellular structures, single proteins and protein complexes [164,165]. 

Such interactions between host and viral components may surely provide attractive 

new antiviral targets [84]. Nevertheless, identification of such host-directed targets 

requires a detailed biological and biochemical characterization. However, the differ-

ent aspects of viral life cycle, particularly regarding the release of viral particles, 

still require further investigations. Specifically, despite the progress achieved in un-

derstanding viral structural properties and its single components, high-resolution 

structures of their complexes with cellular partners are very limited. Moreover, the 

fact that the virus is exploiting different assembly pathways in different target cells 

represents a further obstacle in the identification of potential target for a new an-

tiretroviral therapy.  

Pathogen Host  factor hijacked Role played by the host  factor 
in the pathogen life  cycle Drug of choice

SARS-Coronavirus clathrin-dependent endocytosis 
machinery Entry into the host cell Chlorpromazine 

Hepat it is C virus Endoplasmic-reticulum 
glucosidase Folding of the envelop proteins Celgosivir 

Vaccinia virus Abl-kinase /Src-kinase Actin motility Gleevec 

Plasm odium  falciparum 20S proteasome Proteasome activity MLN-273
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In this work, on the basis of previous preliminary observations [1,2,23], an intra-

cellular pathway for viral release, which functions through the activity of cellular 

machineries common to all cell types was investigated. The here presented results 

allowed the identification of a model for a calcium-dependent release of VLPs which 

I) further confirms the relevance of intracellular calcium in the release of VLPs from 

the host cell, II) identifies a possible calcium-dependent pathway for rescue of 

LY/LE entrapped VLPs from degradation, which requests the activity of the lysoso-

mal protein Syt-VII. The slight modulation in VLPs release upon TBHQ-treatment or 

knockdown of Syt-VII suggests that the role played by this pathway, in the context 

of HIV-1 release from the infected cell, might be not predominant. However, chemi-

cal compounds that modulate the intracellular calcium signaling, only mimicking the 

activity of extracellular (or intracellular) stimuli, might not be able to exactly repro-

duce real physiological conditions. The intracellular concentration of calcium might 

undergo oscillations that vary in the intensity and duration in dependence of the 

activated pathway. Furthermore, considering that perturbation of host-cell PM is a 

primary mechanism of HIV-1 cytopathology [166], it is reasonable that the virus 

itself, also through the continuous budding at the PM, might be able to induce a 

mechanism of PM-repair that requires the activity of lysosomal calcium signaling 

and ends in LYs-exocytosis and consequent release of LYs-entrapped VLPs. 

The discovery of new cellular factors that play a role in the complex release mecha-

nism of HIV-1 should pave the way for further investigations and hopefully will lead 

to identification of novel mechanisms and/or pathways critical for virus assembly. 

Such knowledge should facilitate the development of better approaches for the 

treatment of HIV-1. 

 

4.2 Medical and biological relevance of the immunolipo-

somal system and further perspectives 

 

 Liposomes containing PS have been used in the past to target macrophages 

(e.g. for in vivo imaging [167]), and liposomes bound to antibodies have been 

largely used to target specific cells (e.g. during drug delivery [93,168]).  This work 

adds to the existing body of knowledge by joining these two unrelated approaches 

in order to address the problem of the poor immune response against HIV-1. This is 

the first study in which the above-mentioned strategies are combined to produce a 
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nanobiotechnological system able to elicit phagocytosis and delivery of HIV-VLPs to 

acidic compartments (i.e. LYs) in macrophages.  

 

Exploiting PS-mediated phagocytosis of HIV-1 particles would potentially help to 

support the immune system in the case of HIV-1 infection on multiple levels, with 

several potential advantages: first, the rapid clearance of HIV-1 particles from the 

circulation via macrophage-phagocytosis could diminish the high viral load observed 

in the first few months after the infection. Moreover, the direct delivery of the inter-

nalized particles to acidic compartments should allow for a more rapid destruction 

of the virus (Figure 46 and Figure 47). Second, PS-mediated phagocytosis of the 

viral particles, exploiting a specific cargo-internalization pathway different in re-

spect to that activated by opsonized antigens, would allow circumventing the im-

paired phagocytosis via the Fc R pathway, which has been reported to be compro-

mised in infected patients [68,69]. Furthermore, the mere binding of anti-HIV IgG 

to viral particles may even favor the persistence of the virus if trapped by follicular 

dendritic cells (FDC): a study has shown that optimal maintenance of HIV-1 infec-

tivity requires both antibodies against particle-associated determinants and the 

FDC-Fc R [169]. Third, the influence of PS modulating the inflammatory response 

in macrophages, already demonstrated in previous studies [167,170], would 

strongly decrease the ongoing activation of the immune system and persistent in-

flammation, both of which are key driving forces in the loss of CD4+ T-cells and pro-

gression to AIDS pathogenesis [41]. Specifically, in macrophages PS is able to 

down-regulate TNF-  production [171], whose up-regulated production is connect-

ed to HIV-associated dementia and other neuronal injuries [59,142]. Fourth, PS-

mediated phagocytosis of apoptotic cells is known to induce antigen-presentation to 

the major histocompatibility complex class II on the macrophage surface [74,172]. 

Accidentally, a proper antigen presentation via major histocompatibility complex 

class II requires actin-dependent phagocytosis of the cargo [173], similarly to the 

internalization of the immunoliposomes described in this work. This may result in 

the stimulation of specific T-helper cells and, ultimately, stimulation of specific B-

cells, which results in the subsequent secretion of antibodies. In conclusion, beside 

the development of a vaccine for HIV-1, which still seems extraordinarily challeng-

ing, and the advances in the identification of potent neutralizing antibodies 

[174,175], the immunoliposomes investigated in this work might provide the basis 

for the design of new and alternative therapeutic applications to combat HIV-1 in-
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fection and positively stimulate the immune system.  

Although in this work the capability of Env-PS-LUVs to produce efficient HIV-VLPs 

phagocytosis by macrophages was demonstrated and the potential role of this 

nanobiotechnological approach stimulating the immune system against HIV-1 and 

reducing persistent inflammation was illustrated, additional experiments on the po-

tential of Env-PS-LUVs are required to further characterize the system presented 

here. For instance, proving Env-PS-LUVs functionality in other cells of the immune 

systems (e.g. DCs), testing the Env-PS-LUVs capability to also bind wild type  HIV-

1 virus, testing the usefulness of this system on other viruses, and in vivo studies 

represent future work that could be of great importance.
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Appendix 

 

Molecular structures of the lipids used in this work. 

Images from the website of Avanti Polar Lipids, Inc. 

 

L- -phosphatidylcholine  

 

 

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(cap-biotinyl) 

 

 

1-palmitoyl-2 (dipyrrometheneborondifluoride) undecanoyl-sn- glycero-3- phosphocholine  

 

 

1,2-diacyl-sn-glycero-3- phospho-L-serine 
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Abbreviations  

Abs 

AIDS 

ART 

AZT 

CA 

CTL 

DAG 

DC 

DIC 

DMSO 

Env 

ER 

ESCRT 

 

FACS 

Fc R 

FDC 

Gag 

GPCR 

HIV-1 

IgG 

IN 

LE 

LTR 

LUV 

LY 

MA 

MTOC 

MVB 

NSF 

NC 

PI 

Antibodies 

Acquiered immunodeficiency syndrome 

Anti-retroviral therapy 

Azidothymidine 

Capside 

Cytotoxic T-cell 

Diacylglycerol 

Dendritic cell 

Differential interference contrast (microscopy) 

Dimethyl sulfoxide 

Envelope 

Endoplasmic reticulum 

Endosomal sorting complexes  

required for transport 

Fluorescence-activated cell sorting 

Fc-gamma receptor 

Follicular dendritic cell 

G-antigen 

G-protein coupled receptor 

Human immunodeficiency virus-1 

Immunoglobulin G 

Integrase 

Late endosome 

Long terminal repeat 

Large unilamellar vesicles 

Lysosome 

Matrix 

Microtubule-organization center 

Multivesicular bodies 

N-ethylmaleimide-sensitive factor 

Nucleocapside 

Propidium iodide 
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PIP2 

PKC 

PLC 

PM 

Pol 

PR 

PS 

RES 

RF 

RT 

SD 

SERCA 

SIV 

SNAP 

SNARE 

Syt-VII 

TBHQ 

Thaps 

TKR 

TNF 

TPC 

TRIM5 

VCC 

VLP 

Phosphatidylinositol(4,5)-bisphosphate 

Protein-kinase C 

Phospholipase C 

Plasma membrane 

Polimarase 

Protease 

Phosphatidylserine 

Reticuloendotelial system 

Restriction factor 

Reverse transcriptase 

Standard deviation 

Sarco/endoplasmic reticulum Ca2+-ATPase 

Simian immunodeficiency virus 

Soluble NSF attachment protein 

SNAP receptor 

Synaptotagmin-VII 

Tert-butylhydroquinone 

Thapsigargin 

Tyrosine-kinase receptor 

Tumor necrosis factor 

Two pore channel 

Tripartite motif-containing motif 5 

Virus-containing compartment 

Virus-like particle 
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