
Noname manuscript No.
(will be inserted by the editor)

Parallel stochastic optimization based on descent
algorithms

Olivier Bilenne

Abstract This study addresses the stochastic optimization of a function un-
known in closed form which can only be estimated based on measurements
or simulations. We consider parallel implementations of a class of stochastic
optimization methods that consist of the iterative application of a descent algo-
rithm to a sequence of approximation functions converging in some sense to the
function of interest. After discussing classical parallel modes of implementa-
tions (Jacobi, Gauss-Seidel, random, Gauss-Southwell), we devise effort-saving
implementation modes where the pace of application of the considered descent
algorithm along individual coordinates is coordinated with the evolution of the
estimated accuracy of the convergent function sequence. It is shown that this
approach can be regarded as a Gauss-Southwell implementation of the initial
method in an augmented space. As an example of application we study the
distributed optimization of stochastic networks using a scaled gradient projec-
tion algorithm with approximate line search, for which asymptotic properties
are derived.

1 Introduction

We are concerned with the parallel minimization of a real-valued function g :
Rm 7→ (−∞,∞] unknown in closed form and which can only be estimated by
means of inexact measurements or Monte-Carlo simulations. The objective of
the study is to derive parallel implementations of a stochastic optimization
method suggested in [22,19] and based on the approximation of the unknown
function g—called the true function—by a sequence of function models which
converges toward g in some sense, combined with the iterative application to

Olivier Bilenne
Control Systems Group, Technical University of Berlin, Germany
Tel.: +49 (0)30 314-78692
Fax: +49 (0)30 314-21137
E-mail: bilenne@control.tu-berlin.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127604086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Olivier Bilenne

the model sequence of an effective descent algorithm taken from the nonlinear
optimization theory. Given any arbitrary descent algorithm M, we question
how the algorithm can be parallelized in the stochastic optimization context.
Section 2 surveys the traditional modes of implementation of the parallel and
distributed nonlinear optimization framework, such as Jacobi, Gauss-Seidel, or
random implementations [5]. Implementability issues more specific to the con-
sidered stochastic optimization setting are discussed in Section 3. The purpose
of our developments is illustrated in Section 4 with numerical results based
on cyclic gradient projections for a stochastic network optimization problem.
Asymptotic considerations are included in the Appendix. In the rest of this in-
troduction we specify the requirements for parallel optimization (Section 1.1)
and recall the basics of the stochastic optimization methods based on descent
algorithms (1.2).

Notation — In this paper vectors are column vectors and denoted by x =
(x1, ..., xn), where x1, ..., xn are the coordinates of x. Subscripts are reserved
for vector coordinates. The transpose of x is denoted by x′. For any real
space Rp, Lsc(Rp) denotes the class of functions Rp 7→ (−∞,∞] proper and
lower semicontinuous.

1.1 Requirements for parallel analysis

In this study, the notion of parallel analysis for the stochastic minimization of
a function g ∈ Lsc(Rm) is understood as the ability to derive descent directions
along individual coordinates or blocks or coordinates. We assume that a set of
coordinate directions N = {1, ..., n} is implicitly defined by g, and denote by
m1, ...,mn the respective dimensions of the coordinates, where

∑n
i=1mi = m.

We symbolize the optimization of any f ∈ Lsc(Rm) at a point y ∈ dom(f)
along a particular coordinate direction i ∈ N by the function fi:y ∈ Lsc(Rmi)
obtained from f(y) by fixing the other coordinates, i.e.

fi:y(z) = f(y1, ..., yi−1, z, yi+1, ..., yn), ∀z ∈ Rmi . (2)

For the minimization of f over any setX ⊆ dom(f), we use iterative descent al-
gorithms, the executions of which are terminated when the produced sequence
of points gets close enough to a specific subset of X, denoted by Sf (X), where
descent can no longer be guaranteed. The set Sf (X) ordinarily consists of
fixed points, stationary points in the case of gradient methods, or minima if f
is convex.

Since, typically, the convergence of function sequences is effective on bounded
vector sets, we constrain the minimization of g within a (fixed) closed set

0 An example of norm topology suitable for the case when g is continuously differentiable
on its domain, i.e. F (X) ⊂ C1(X) on any X ⊆ dom(g), is to consider the norm [19,17]

f ∈ F̄ (X) 7→ ‖f‖1,X = supx∈X |f(x)|+ supx∈X ‖∇f(x)‖. (1)

Parallel stochastic optimization based on descent algorithms 3

Ȳ ⊆ dom(g) enjoying a Cartesian product structure as required by parallel
analysis, i.e. Ȳ =

∏n
i=1 Ȳi, where Ȳ ⊆ dom(g) and Ȳi ⊆ Rmi for i ∈ N . Lastly,

we let F (X) ⊂ Lsc(Rp) define, for any X ⊆ Rp, a functional class of interest
equipped1 with a norm ‖·‖X . With all the above in mind, we characterize the
function g as follows.

Assumption 1 (Parallel analysis over Ȳ) Let g ∈ F̄ (Ȳ), where F̄ (Ȳ) is a
subclass of F (Ȳ) such that, for any f ∈ F̄ (Ȳ) and y ∈ Ȳ , one has fi:y ∈ F (Ȳi)
∀i ∈ N and

y ∈ Sf (Ȳ)⇔ yi ∈ Sfi:y (Ȳi) ∀i ∈ N. (3)

A consequence of (3) is that the minimization over Ȳ of any function of F̄ (Ȳ)
can be done in parallel along each coordinate.

Assumption 1 covers the classes of functions usually assumed to allow for
parallel analysis, including, for instance, the accepted form [20]

g(y) = f(y) + h(y), (4)

where h ∈ Lsc(Rm) is such that h(y) is additively separable with respect to n
coordinates y1, ..., yn, i.e. h(y) =

∑n
i=1 hi(yi), with hi ∈ Lsc(Rmi) convex for

i = 1, ..., n, and f : Rm 7→ R is continuously differentiable over dom(h) [4].
Indeed, suppose that g is given by (4) and let d = (d1, ..., dn) be a descent
direction for g at a point y ∈ dom(g), i.e.

a∇f(y)′d+ h(y + ad)− h(y) + o(a) < 0, (5)

where ∇f = (∇1f, ...,∇nf). By additive separability of h, (5) rewrites as∑n

i=1
[a∇if(y)′di + hi(yi + adi)− hi(yi)] + o(a) < 0. (6)

Hence a global descent direction exists at y iff one can find i ∈ N such that a
descent direction exists (in the subspace Rmi) for g(y1, ..., yi−1, ·, yi+1, ..., yn)
at yi—a property summarized by (3). The model (4) is met for instance in
bound-constrained optimization, where h is of the type h(y) = 0 if l ≤ y ≤ u
(l, u ∈ Rm) and h(y) = +∞ otherwise. The dual function of the separable
constrained optimization problem studied in Section 4 falls into this category.

1.2 Stochastic optimization based on descent algorithms

We consider an approach to minimizing g on the set Ȳ where the stochastic
optimization algorithms take the recursive form

yk+1 ∈M(gk, yk), k = 0, 1, 2, ... , (7)

where {gk} is a sequence of functions in F̄ (Ȳ) which is expected to converge
to g in the norm topology of F̄ (Ȳ), and the point-to-set mappingM : F̄ (Ȳ)×
Ȳ 7→ 2Ȳ is closed on F̄ (Ȳ)× Ȳ and a descent algorithm for the minimization
of g on Ȳ .

Let us recall the notions of closed mappings and descent algorithms [19]
for the generic class of functions F (·) introduced in Assumption 1.

4 Olivier Bilenne

Definition 1 (Closed mapping) Let X be a closed vector set. A point-to-
set mappingM : F (X)×X → 2X is said to be closed at (f, y) ∈ F (X)×X if
for any sequence {(fk, yk)} in F (X)×X such that (fk, yk)→ (f, y) and any
vector sequence (zk) such that zk → z and zk ∈ M(fk, yk) for all k, we have
z ∈ M(f, y). For a given f ∈ F (X), M is said to be closed at f if it closed
at (f, y) for every y ∈ X. The mapping M is said to be closed on F (X)×X
if it is closed at each point of F (X)×X.

Definition 2 (Descent algorithm) Consider a closed vector set X and a
mapping M : F (X)×X → 2X . Given a function f ∈ F (X) and a set S ⊂ X,
we say that a continuous, real-valued function ∆f : X → R is a descent
function for M with respect to f and S if:

(i) If y ∈ X \ S and z ∈M(f, y), then ∆f (z) < ∆f (y).
(ii) If y ∈ S and z ∈M(f, y), then ∆f (z) ≤ ∆f (y).

The mappingM is called a descent algorithm is it possesses a descent function.

If Ȳ is compact, Sg(Ȳ) is nonempty, and the mappingM is closed at g and a
descent algorithm with respect to g and Sg, then sequences generated by (7)
prove to converge to Sg(Ȳ) [19, Theorem 2.1]. An example of a descent algo-
rithm for continuously differentiable functions is given in Appendix A.

Sample-average approximations of expectation functions. In many problems,
the function g can be expressed as the expectation of another function ĝ :
Rm×Ω → (−∞,∞] which is known and varies randomly with a parameter ω
defined on a probability space (Ω,F , P), i.e.

g(y) = E[ĝ(y, ω)], ∀y ∈ Rm, (8)

where E[·] ≡
∫
Ω
·P (dω) denotes the expectation with respect to the random

parameter ω , and P may be unknown. It is usually assumed for such prob-
lems that sequences of random realizations of ω can be observed and used to
estimate g, or that random samples of growing sizes can be generated for ω
by Monte-Carlo simulations. In the context of two-stage stochastic program-
ming, for instance, the quantity ĝ(y, ω) is given by the optimal value of the
second-stage problem [17].

Suppose that (8) holds, and that a sequence {ωk,l}q(k)−1
l=0 of independent

realizations of ω is available at each step k, with q(k) → ∞ as k → ∞. A
natural choice for the sequence (gk) is given by the sample average estimator

gk(y) =
1

q(k)

∑q(k)−1

l=0
ĝ(y, ωk,l), k = 0, 1, 2, ... , (9)

which is known to converge almost surely and uniformly towards g on any
compact set C where ĝ(·, ω) is continuous for P -almost every ω ∈ Ω and
E[supy∈C |ĝ(y, ω)|] <∞ [15]. It follows from the central limit theorem that (9)
is asymptotically normal at every y ∈ dom(g), i.e.

q(k)−
1
2 [gk(y)− g(y))]

d−→ ν(y), (10)

Parallel stochastic optimization based on descent algorithms 5

where
d−→ denotes convergence in distribution and ν(y) is a centered normal

random variable with variance σ2(y) = Var [ĝ(y, ω)]. In particular, when (7)
is used with (9) and the optimal value algorithmM(f, y) ≡ Sf (Ȳ), it reduces
to the sample average approximation estimator (SAA), for which asymptotic
properties are known [17].

Notice that the computational complexity of (9) grows with k and may
become prohibitive for the stochastic optimization algorithm (7), especially
when ĝ is unavailable in closed form. Viable implementations of (9) can nonethe-
less be designed by controlling the generated samples in the case of simulation-
based optimization (see Section 3), or by using variance reduction techniques [16,
18,17]. The complexity of (7) may also increase quickly with the dimension
of Rm and the cardinality of Ω, which is sometimes expected to expand ex-
ponentially with the size of the problem [9]. This dimensionality issue can be
addressed, under certain conditions, by parallel computing.

2 Parallel stochastic optimization

Let the operator M symbolize, for any closed vector set X, a point-to-set
mapping F (X) ×X 7→ 2X which is both closed on F (X) ×X and a descent
algorithm with respect to any f ∈ F (X) and its corresponding set Sf (X), and
let ∆f denote the associated descent function. We are interested in optimiza-
tion algorithms based on the application of M along coordinates or blocks of
coordinates and consider, in the rest of this section, various parallel modes
of implementation for M. In Sections 2.1 and 2.2 it is assumed that the op-
timization process is operated in parallel by n computers (sometimes called
nodes), each of them assigned to a particular coordinate i ∈ N , and which
collaborate in minimizing g along their respective directions.

2.1 Synchronous implementations

In the synchronous mode of implementation, the mappingM is applied simul-
taneously—as in the Jacobi method—by all the computers, i.e.

yk+1
i ∈M(gi:yk , y

k
i), ∀i ∈ N, k = 0, 1, 2, (11)

In the general case (11) is not a descent algorithm because simultaneous de-
scent along gki:yk for every i ∈ N in accordance with (11) does not imply

descent along gk. This is a well-known issue of the Jacobi methods which is
typically addressed by scaling the coordinate descents with step-sizes so as to
guarantee descent at the global level. We refer to e.g. [5] for related results.

2.2 Cyclic implementations

Consider, for i ∈ N , the mapping Mi : F̄ (Ȳ)× Ȳ 7→ 2Ȳ defined by

Mi(f, y) = {(y1, ..., yi−1, z, yi+1, ..., yn) | z ∈M(fi:y, yi)} (12)

6 Olivier Bilenne

for all (f, y) ∈ F̄ (Ȳ) × Ȳ . By assumption on Ȳ , it is straightforward to show
that M1, ...,Mn are closed on F̄ (Ȳ) × Ȳ if M is closed. By applying the
mappings M1, ...,Mn sequentially as in the Gauss-Seidel method, we can
devise a cyclic implementation of M,

yk+1 ∈ C(gk, yk), k = 0, 1, 2, ... , (13)

where we define
C =Mn ◦Mn−1 ◦ · · · ◦M1 (14)

and ◦ denotes the composition operator2. The mapping C inherits the closed-
ness and descent properties of M under the following condition.

Condition 1 (Sequential analysis of (M, F̄)) If f ∈ F̄ (Ȳ), y ∈ Ȳ \Sf (Ȳ),
and if for some i, j ∈ N we have yi ∈ Sfi:y (Ȳi) and yj /∈ Sfj:y (Ȳj), then

yj /∈ Sfj:(y1,...,yi−1,z,yi+1,...,yn)(Ȳj) for every z ∈M(gi:y, yi).

Note that Condition 1 is usually satisfied in implementable settings, in partic-
ular whenM is a descent algorithm and Sf (Ȳ) is the set of stationary points
of f (e.g. gradient projection methods for (4), or extensions [21]), in which
case we have M(fi:y, yi) = {yi} if yi ∈ Sfi:y (Ȳi).

Result 1 When Condition 1 holds, the mapping C is closed on F̄ (Ȳ)× Ȳ and
a descent algorithm with respect to g and Sg(Ȳ) with descent function ∆g.

Proof We first show by induction that C is closed. We already know that M1

is closed. Now, for i = 2, ...n, assume that Ni = Mi−1 ◦ · · · ◦ M1 is closed,
and let {(fk, yk)} be a sequence in F̄ (Ȳ)× Ȳ with (fk, yk)→ (f, y) and {zk}
a sequence in Ȳ such that zk ∈ (Mi ◦ Ni)(fk, yk) for all k and zk → z.
Consider the sequence {ŷk} such that ŷk = (zk1 , ..., z

k
i−1, y

k
i , ..., y

k
n) for all k.

By assumption on Ni and Mi, we have ŷk ∈ Ni(f, yk) and zk ∈ Mi(f, ŷ
k)

for all k, and ŷk → ŷ = (z1, ..., zi−1, yi, ..., yn) ∈ Ȳ . Since Ni and Mi are
closed, we successively find ŷ ∈ Ni(f, y), then z ∈Mi(f, ŷ) ⊂ (Mi ◦Ni)(f, y).
Hence Mi ◦ Ni is closed and it follows by induction that C is closed.

Now we show that ∆g meets the conditions of Definition 2 for C with
respect to g. For every i ∈ N we have, by definition of Mi,

∆g(z) = ∆gi:y (zi) ≤ ∆gi:y (yi) = ∆g(y), ∀y ∈ Ȳ , z ∈Mi(g, y). (15)

By induction on i, we find ∆g(z) ≤ ∆g(y) for any y ∈ Ȳ , z ∈ C(g, y). It
remains to show that, for any vector y ∈ Ȳ \ Sg(Ȳ), C(g, y) produces a strict
descent along ∆g. It follows from (3) that one can find at least one coordinate
direction i ∈ N such that yi /∈ Sgi:y (Ȳi). Among such directions, denote that
of smallest index by j. Let z ∈ C(g, y). There exists a sequence ŷ0, ..., ŷn such
that ŷ0 = y, ŷn = z, and ŷt ∈Mt(g, ŷ

t−1) for t = 1, ..., n. By Condition 1, we
have ŷj−1

j /∈ Sgj:ŷj−1 (Ȳj). Since ŷjj ∈ M(gi:ŷj−1 , ŷj−1
j), we find ∆gi:ŷj−1 (ŷjj) <

∆gi:ŷj−1 (ŷj−1
j), i.e. ∆g(ŷj) < ∆g(ŷj−1). Using (15), we also have ∆g(ŷt) ≤

∆g(ŷt−1) for t 6= j. All in all, we find ∆g(z) < ∆g(y), which completes the
proof. �

2 Given two mappings M,N : F (X)×X 7→ 2X , the composition of M and N is defined
by N ◦M : (f, x) ∈ F (X)×X 7→ (N ◦M)(f, x) = {z ∈ N (f, y) | y ∈M(f, x)} ∈ 2X .

Parallel stochastic optimization based on descent algorithms 7

Remark 1 (Random implementations) The order in whichM1, ...,Mn are ap-
plied in (14) is arbitrary, and C remains a descent algorithm for the composition
of any arrangement (with possible repetitions) of M1, ...,Mn provided that
eachMi appears at least once. By considering the union of the mappings gen-
erated by all these possibilities, we obtain the mapping of a descent algorithm
where the order of the directional descents Mi may change randomly at each
step k, hence a random parallel implementation ofM. Convergence to Sg(Ȳ)
is however not guaranteed for the parallel implementations where every Mi

would not be used at each step.

2.3 Implementations based on block-coordinate selection

In this section we consider algorithms where M is applied at each step to a
block of one or several coordinates. The successive coordinate blocks are chosen
according to a specific coordinate selection policy ensuring convergence (e.g. of
the Gauss-Southwell type [21]). Since in the sequel the coordinates directions
are treated by blocks, we consider the family 2N = {I | I ⊂ N} of all the
subsets of N and the familyN = 2N \{∅} of the nonempty blocks of coordinate
directions, denoted herein by capital letters. The subscript notation previously
used for coordinates can be extended without ambiguity to block coordinates.
For any I ∈ N , we define ȲI =

∏
i∈I Ȳi and, for y ∈ Ȳ , denote by yI ∈ ȲI the

composite vector of the coordinates (ordered by coordinate index) of y along I.
Extending (2) and (12) to coordinates blocks, we define, for any f ∈ F̄ (Ȳ) and
I ∈ N ,

fI:y(z) = f(x) where xI = z, xN\I = yN\I , ∀y ∈ Ȳ , z ∈ ȲI , (16)

and the mapping MI : F̄ (Ȳ)× Ȳ 7→ 2Ȳ given by

MI(f, y) = {z | zN\I = yN\I , zI ∈M(fI:y, yI)}, ∀(f, y) ∈ F̄ (Ȳ)× Ȳ . (17)

We first characterize the coordinate selection procedure.

Definition 3 (Coordinate selection) Given a descent algorithm M with
descent function ∆f , we call coordinate selection policy over F̄ (Ȳ) × Ȳ any
mapping K : F̄ (Ȳ) × Ȳ 7→ N closed on F̄ (Ȳ) × Ȳ and such that, for all
(f, y) ∈ F̄ (Ȳ) × Ȳ , we have ∆f (z) < ∆f (y) if y /∈ Sf (Ȳ), I ∈ K(f, y) and
z ∈MI(f, y).

Remark 2 The conditions of Definition 3 are satisfied, independently of the
descent algorithm M, by any closed mapping K : F̄ (Ȳ) × Ȳ 7→ N such that
K(f, y) ⊂ {I ∈ N | yI /∈ SfI:y (ȲI)} holds for all (f, y) ∈ F̄ (Ȳ)× Ȳ .

Now, let K : F̄ (Ȳ)× Ȳ 7→ N be a coordinate selection policy over F̄ (Ȳ)× Ȳ
in the sense of Definition 3. We consider the algorithm

yk+1 ∈ K(gk, yk), k = 0, 1, 2, ... , (18)

8 Olivier Bilenne

where K is a mapping F̄ (Ȳ)× Ȳ 7→ Ȳ defined by

K(f, y) = ∪I∈K(f,y)MI(f, y). (19)

Result 2 The mapping K is closed on F̄ (Ȳ)× Ȳ and a descent algorithm with
respect to g and Sg(Ȳ) with descent function ∆g.

Proof It is immediate from (19) and Definition 3 that K is a descent algorithm.
We show that K is closed. Let {(fk, yk)} be a sequence in F̄ (Ȳ) × Ȳ with
(fk, yk)→ (f, y) and {zk} a sequence in Ȳ such that zk ∈ K(fk, yk) for all k
and zk → z. Assume that coordinate selection yields a certain coordinate block
sequence {Ik} during the generation of {zk}. Suppose that I ∈ N appears an
infinity of times in the block sequence. One can find a subsequence {Iκ(k)}
with Iκ(k) = I for all k. Since K is closed, I ∈ K(f, y). Consider now the
subsequence {zκ(k)}. We have zκ(k) ∈ MI(f

κ(k), yκ(k)) for all k. Since MI is
closed, we find z ∈MI(f, y) ⊂ K(f, y). Hence K is closed. �

Example 1 One possible coordinate selection policy, denoted by L, assigns to
every (f, y) the block coordinate index I for which the descent from y along ∆f

is potentially the most effective for some test points generated by MJ(f, y)
(J ∈ N). We define L : F̄ (Ȳ)× Ȳ 7→ N by

L(f, y) = {I ∈ N | maxJ∈N minz∈MI(f,y),ẑ∈MJ (f,y)[∆
f (z)−∆f (ẑ)] ≤ 0}.

(20)

Result 3 If the graph of ∆·(·) (seen as a function on F̄ (Ȳ) × Ȳ) is closed,
then the mapping L is a coordinate selection policy over F̄ (Ȳ)× Ȳ .

Proof We first show that L is closed. Let {(fk, yk)} be a sequence in F̄ (Ȳ)× Ȳ
with (fk, yk)→ (f, y) and {Ik} a block-sequence inN such that Ik ∈ L(fk, yk)
for all k and Ik → I ∈ N . For any J ∈ N\{I}, consider in accordance with (20)
two sequences {zk} and {ẑk} such that zk ∈ MI(f

k, yk), ẑk ∈ MJ(fk, yk)

and ∆fk(zk) ≤ ∆fk(ẑk) for all k. We can find convergent subsequences {zκ(k)}
and {ẑκ(k)} with zκ(k) → z, ẑκ(k) → ẑ, and ∆fκ(k)(zκ(k)) ≤ ∆fκ(k)(ẑκ(k)) for
all k. By assumption on ∆·(·), we infer ∆f (z) ≤ ∆f (ẑ), where z ∈ MI(f, y)
and ẑ ∈ MJ(f, y) since MI and MJ are closed. Repeating this rationale for
all J ∈ N , we find z ∈ L(f, y), and L is closed. �

3 Parallel implementations with computer standby

One relevant topic of investigation in relation to algorithm (7) lies in the co-
ordination of the applications of the descent algorithms with the generation
of the model sequence for the true function (see e.g. [7]). In fact, there exists
a contrast between the prevalent descent algorithms, sometimes approaching
superlinear convergence rates, or their coordinate descent implementations,
which in most cases converge linearly (see Appendix B), and the generation
of {gk}, which often is a much slower process—recall (10) for the sample

Parallel stochastic optimization based on descent algorithms 9

average model—inclined to hamper the execution of (7). The competition ex-
perienced by the two processes may be addressed by temporarily suspending
the successive applications of the descent algorithm when the precision of the
current function model gk is too poor to expect sensible improvements in
minimizing the true function g [18]. In section 3, we parallelize this idea by
assuming that the sequence {gk} is given and that each individual computer
of a parallel setting, which in the current framework is programmed to apply
the descent mapping at its coordinate level, can decide on its own to refrain
from doing so when no significant improvement is to be expected.

3.1 Considerations on the sample average model

Suppose that (7) is used with any parallel implementationM of a given descent
algorithm. Consider an operator δ such that, for any given set X and (f, y) ∈
F̄ (X) ×X, δ(f, y) is a quantity related to the optimality of the point y with
regard to the minimization of f on X, so that δ(f, y) = 0 iff y ∈ Sf (X).
Further assume that δ has the δ = (δ1, ..., δn) on F̄ (Ȳ)× Ȳ , where, for i ∈ N ,
δi takes its values in some vector space Rpi , we have δi(f, y) ≡ δ(fi:y, yi) at
every (f, y) ∈ F̄ (Ȳ)× Ȳ , and thus δi(f, y) = 0 iff yi ∈ Sfi:y (Ȳi).

Recall the sample average model sequence given in (9) and let i ∈ N . It is
convenient to assume that, at any y ∈ Ȳ ,

√
q(k)[δi(g

k, y)− δi(g, y)] is asymp-
totically normal as k →∞ with a certain covariance Σi(y)—see Section 4 for
an example of such a mapping δ in the context of continuously differentiable
functions. In δi(g

k, y) we find a consistent estimate of δi(g, y) at y ∈ Ȳ . If, in
addition, we can derive a sequence {Σ̂k

i (y)} of approximate covariance matrices
converging to Σi(y), then our estimator δi(g

k, y) may be seen, due to sample
averaging, as an approximately normal variable with mean δi(g, y) and covari-
ance Σ̂k

i (y)/q(k). It follows that the hypothesis δi(g, y) = 0 (or equivalently
yi ∈ Sgi:y (Ȳi)) can be tested at every step k and point y ∈ Ȳ by inspec-
tion of the statistic δi(g

k, y)′[Σ̂k
i (y)/q(k)]†δi(g

k, y), which is asymptotically
chi-squared with rk(Σi(y)) degrees of freedom, where † denotes the Moore-
Penrose pseudoinverse and rk(·) the matrix rank. We suggest the heuristic

0 ∈{δi(gk, y) + [Σ̂k
i (y)]

1
2x |x ∈ Rpi}

∩ {x ∈ Rpi | [x− δi(gk, y)]′[Σ̂k
i (y)/q(k)]†[x− δi(gk, y)] ≤ βrk(Σ̂ki (y))(π)},

(21)

where the parameter π ∈ [0; 1] is an arbitrary p-value, and βd(π) is the max-
imum squared Mahalanobis distance between 0 and δi(g

k, y) observed with
probability π under the δi(g, y) = 0 hypothesis, approximately given by the
cumulative chi-squared distribution with d degrees of freedom [8]. If Σ̂k

i (y) has

full rank, then (21) reduces to δi(g
k, y)′[Σ̂k

i (y)]−1δi(g
k, y) ≤ βpi(π)/q(k).

When (21) holds, it may be considered that yi is close enough to the
set Sgi:y (Ȳi) and that further improvements along coordinate i can only be
obtained by reducing its covariance, i.e. by increasing k and thus q(k). The

10 Olivier Bilenne

optimization algorithms considered in this section have the property to ignore
coordinate i at step k whenever (21) is true by setting yk+1

i = yki , thus placing
computer i into ‘standby’ mode as long as (21) is satisfied.

In summary, we consider effort-saving implementations of (7), in which
descent is only performed at the coordinates where significant progress along
the true function can be expected, and designed based on a quantity q(k)−1Σ̂k,
where q(k)−1 is a scalar sequence decreasing to 0 and Σ̂k = (Σ̂k

1 , ..., Σ̂
k
n) is a

bounded vector sequence of functions on Ȳ .

3.2 Standby policies

Less specifically, consider a continuous function d : R≥0 7→ R≥0 such that
d(0) = 0 and 0 < d(x) < x if x > 0, and a decreasing sequence {wk}
in W ≡ [0; +∞) such that w0 > 0 and wk+1 = d(wk) for all k. Assume that
one can compute (in complement to {gk}) a function sequence {vk} in a func-
tional set V (Ȳ) equipped with a norm ‖·‖V

Ȳ
and such that vk = (vk1 , ..., v

k
n) for

all k and supk>t ‖vk(y)‖V
Ȳ
<∞ for some t ≥ 0. It follows that {wkvk} vanishes

uniformly on Ȳ . The process of selection of the active and inactive comput-
ers is represented by a mapping Z((gk, vk), (yk, wk)), which differs from the
coordinate selection policies of Section 2.3 in the presence of arguments (vk

and wk) outside F̄ (Ȳ) and Ȳ . This difficulty is circumvented by integrating
the additional variables into an augmented space, which considers wk as an
(n+ 1)th coordinate and is specified as follows.

Definition 4 (Descent in Ỹ) Consider the set Ỹ = Ȳ ×W , and the func-
tional set F̃ (Ỹ) defined by F̃ (Ỹ) = {(f, v) : (y, w) ∈ Ỹ 7→ (f(y), v(y)) | (f, v) ∈
F̄ (Ȳ)× V (Ȳ)} and equipped with the norm ‖(f, v)‖ = ‖f‖Ȳ , where ‖·‖Ȳ de-
notes the accepted norm in the topology of F̄ (Ȳ). We introduce the function
g̃ ∈ F̃ (Ỹ) such that g̃(y, w) = g(y) for (y, w) ∈ Ỹ , the function ∆̃g̃ defined
on Ỹ by ∆̃g̃(y, w) = ∆g̃(y)+w, and the mapping M̃ : F̃ (Ỹ)×Ỹ 7→ Ỹ such that
M̃((f, v), (y, w)) =M(f, y)× {d(w)} for all (f, v) ∈ F̃ (Ỹ) and (y, w) ∈ Ỹ .

Result 4 The mapping M̃ is closed on F̃ (Ỹ) × Ỹ and a descent algorithm
with respect to g̃ and Sg̃(Ỹ) ≡ Sg(Ȳ) × W with descent function ∆̃g̃. The
minimization of g̃ over Ỹ is equivalent the minimization of g over Ȳ .

Proof First notice that the last statement is immediate from Definition 4.
Consider sequences {(fk, vk)} in F̃ (Ỹ) and {(yk, wk)} in Ỹ which respec-

tively converge to (f, v) ∈ F̃ (Ỹ) and (y, w) ∈ Ỹ , and a sequence {(zk, uk)}
in Ỹ such that (zk, uk) ∈ M̃((fk, vk), (yk, wk)) for all k, and (zk, uk)→ (z, u).
By definition of M̃ and continuity of d we find u = d(w) and, since M is
closed, z ∈M(f, y). Hence (z, u) ∈ M̃((f, v), (y, w)), and M̃ is closed.

It remains to show that M̃ is a descent algorithm. For any ((g, v), (y, w)) ∈
F̃ (Ỹ) × Ỹ and (z, u) ∈ Ỹ such that (z, u) ∈ M̃((g, v), (y, w)), we have z ∈
M(g, y) and u = d(w). Hence ∆g(z) ≤ ∆g(y) and u ≤ w. Thus, ∆̃g̃(z, u) ≤
∆̃g̃(y, w). If, in addition, (y, w) /∈ Sg̃(Ỹ) or, equivalently, y /∈ Sg(Ȳ), then

Parallel stochastic optimization based on descent algorithms 11

yI0

w

ȲI

SfI:y (ȲI)

I /∈ Z((f, v), (y, w))

I ∈ Z((f, v), (y, w))

Fig. 1 Graph {(y, w, Z((f, v), (y, w))) | y ∈ Rm, w ∈ W} of a standby policy Z along one
block coordinate yI , for some f ∈ F̄ (Ȳ), v ∈ V (Ȳ), and I ∈ N . The shaded area contains the
points (yI , w) where I may be chosen by Z((f, v), (y, w)). Notice that for any yI /∈ SfI:y (ȲI),
this area is eventually reached when w ↓ 0.

∆g(z) < ∆g(y). We then find ∆̃g̃(z, u) < ∆̃g̃(y, w), and M̃ is a descent algo-
rithm. �

Next, we characterize the standby policies. An example of standby policy is
illustrated in Fig. 1.

Definition 5 (Standby policy) We call standby policy over F̃ (Ỹ)× Ỹ any
mapping Z : F̃ (Ỹ)× Ỹ 7→ 2N closed on F̃ (Ỹ)× Ỹ and such that

(i) for every (f, v) ∈ F̃ (Ỹ), y ∈ Y \ Sf (Ȳ) and w ∈ W , we have I /∈
Z((f, v), (y, w)) if I ∈ N and yI ∈ SfI:y (ȲI);

(ii) for every (f, v) ∈ F̃ (Ỹ) and y ∈ Y \ Sf (Ȳ), we have ∅ /∈ Z((f, v), (y, 0));
(iii) for any y ∈ Ȳ , one can find ε > 0 such that I /∈ Z((f, v), (y, w)) for every

I ∈ N and (v, w) ∈ V (Ȳ)×W satisfying w‖vI(y)‖V
ȲI
> 1

ε .

Now, consider the mapping Z : F̃ (Ỹ)× Ỹ 7→ Ỹ defined by

Z(f̃ , ỹ) = ∪J∈Z(f̃ ,ỹ)M̃J(f̃ , ỹ), ∀(f̃ , ỹ) ∈ F̃ (Ỹ)× Ỹ , (22)

where Z : F̃ (Ỹ) × Ỹ 7→ 2N is a standby policy in the sense of Definition 5,
and M̃J is defined based on (17), for all (f, v) ∈ F̃ (Ỹ) and (y, w) ∈ Ỹ , by

M̃J((f, v), (y, w)) =

∣∣∣∣MJ(f, y)× {d(w)} if J ∈ N
{(y, d(w))} if J = ∅ . (23)

We derive the algorithm

yk+1 ∈ Z((gk, vk), (yk, wk)), k = 0, 1, 2, ... , (24)

in which w0 > 0. It is easily seen that (24) is an application of (18) in the
augmented space with the coordinate selection policy K̃ defined by

K̃(f̃ , ỹ) = {I ∪ {n+ 1} | I ∈ Z(f̃ , ỹ)}, (f̃ , ỹ) ∈ F̃ (Ỹ)× Ỹ . (25)

12 Olivier Bilenne

Result 5 For any standby policy Z over F̃ (Ỹ)×Ỹ , the mapping given by (25)
is a coordinate selection policy over F̃ (Ỹ)× Ỹ with descent algorithm M̃ and
descent function ∆̃g̃.

Proof By definition of Z we already know that K̃ is a closed mapping with
values in 2N∪{n+1} \ {∅}. It remains to show that the last condition of Defini-
tion 3 is satisfied. Let ((g, v), (y, w)) ∈ F̃ (Ỹ)×Ỹ . Suppose that (y, w) /∈ Sg̃(Ỹ),
i.e. y /∈ Sg(Ȳ), and choose any coordinate block I ∪{n+ 1} ∈ K̃((g, v), (y, w))
and point (z, u) ∈ M̃I((g, v), (y, w)).

First assume that w = 0. It follows from (ii) in Definition 5 that I 6= ∅,
and from (i) that yI /∈ SfI:y (ȲI). By (23) and sinceM is a descent algorithm,
we have ∆g(z) < ∆g(y). Using u ≤ w, we find ∆̃g̃(z, u) < ∆̃g̃(y, w).

If now w > 0, we find u < w and ∆g(z) ≤ ∆g(y). Hence ∆̃g̃(z, u) <
∆̃g̃(y, w) as well, and K̃ satisfies the conditions of Definition 5. �

The next result is a corollary of Results 2 and 5.

Result 6 The mapping Z is closed on F̃ (Ỹ)× Ỹ and a descent algorithm with
respect to g̃ and Sg̃(Ỹ) with descent function ∆̃g̃.

Remark 3 Notice from the proof of Result 5 that only (i) and (ii) in Definition 5
are needed by Z to work as a valid coordinate-block selection policy. The role
of Condition (iii) is to improve the computational efficiency by ensuring that
the application of the mappingM is avoided—totally or partially for a subset
of coordinates—when the model gk is inaccurate.

Remark 4 The dimension of the problem is only augmented in Definition 4 for
analysis needs, with no effect on the implemented algorithm.

Remark 5 The algorithm (24) will minimize g over Ȳ for any descent algorithm
closed on F̄ (Ȳ)× Ȳ . It follows from Results 1 and 2 that algorithms such as C
or K may also be used with standby policies.

4 Application: stochastic network optimization

4.1 Problem description

The function g takes the form (8) for instance, when it is the dual function of
a convex stochastic optimization problem, formulated below in standard form.

Problem 1 (Convex stochastic optimization) Let ω ∈ Ω be a random
parameter defined on a probability space (Ω,F , P) and f : Rp×Ω → (−∞,∞]
a cost function such that f(·, ω) is convex for all ω ∈ Ω. Consider the problem

minimize
x

E[f(x(ω), ω)]

subject to E[d(x(ω), ω)] ≤ 0
E[h(x(ω), ω)] = 0

(26)

where the function x : Ω × Rp is the unknown, d : Rp × Ω → (−∞,∞]v,
h : Rp ×Ω → (−∞,∞]u, and d(·, ω) is convex and h(·, ω) affine for all ω ∈ Ω.

Parallel stochastic optimization based on descent algorithms 13

Separability — When placed in a network environment composed of a col-
lection N = {1, ..., n} of n computing nodes, Problem 1 frequently enjoys the
property to be separable, suggesting a distributed analysis of the problem. The
problem variables and parameters are then stored and managed locally: every
x ∈ Rp is seen as a vector x = (x1, ..., xn), where xi ∈ Rpi is local to node i
and

∑n
i=1 pi = p. One condition for separability is that the cost function be

additively separable with respect to x1, ..., xn, i.e., f(x, ω) =
∑n
i=1 fi(xi, ω) for

all x ∈ Rp and ω ∈ Ω, where each fi(xi, ω) is a function Rpi ×Ω → (−∞,∞]
convex in xi. Furthermore, the constraints of the problem must be locally
assignable to the nodes, i.e. d = (d1, ..., dn) and h = (h1, ..., hn), so that
each di or hi is only concerned with a node subset Ni ⊂ N , called the neigh-
borhood of i and typically including i and a few other nodes (its neigh-
bors) located in the communication range of i. By gathering the inequal-
ity and equality constraints, we can introduce ci = (hi, di) with dimension
mi = ui + vi, where ci rewrites as ci(x, ω) =

∑
j∈Ni ςij(xj , ω) for some func-

tions ςij : Rpj ×Ω → (−∞,∞]mi . When these separability conditions are met,
Problem 1 falls into a class of problems sometimes referred to as stochastic net-
work utility maximization (NUM) [13,12,6]. Distributed methods for solving
the stochastic NUM problem include Lyapunov optimization frameworks [11,
12], and the dual methods [13], which are addressed in this section.

The dual function of the separable problem is given by (8), i.e. g(y) =
E[ĝ(y, ω)], where the dual variable y = (y1, ..., yn) ∈ Rm is such that each
coordinate yi ∈ Rmi , and ĝ is given by ĝ(y, ω) =

∑n
i=1 ĝi(y, ω) for all y ∈ Rm

and ω ∈ Ω, where we define

ĝi(y, ω) = − infx∈Rpi [fi(x, ω) +
∑

j∈Ni
y′jςji(x, ω)], ∀y ∈ Rm, ω ∈ Ω, i ∈ N.

(27)
In particular, when f(·, ω) is strictly convex with nonempty compact do-
main and d(·, ω) continuous for every ω ∈ Ω, then ĝ(·, ω) is continuously
differentiable for all ω over the set Y =

∏m
i=1 Yi, where Yi ≡ Rvi≥0 × Rui

and, for every i ∈ N , arg infx∈Rpi{fi(x, ω) +
∑
j∈Ni y

′
jςji(x, ω)} reduces to

a singleton that we denote by {x∗i (y, ω)} [2, Lemma 6.3.2]. It follows from
Danskin’s theorem [17] (see also [2, Theorem 6.3.3]) that the function g is
(under mild conditions) continuously differentiable on Y with gradient given
by ∇g = (∇1g, ...,∇ng), where ∇ig(y) = −E[(di(x

∗(y, ω), ω), hi(x
∗(y, ω), ω))],

where x∗(y, ω) = (x∗1(y, ω), ..., x∗n(y, ω)).
Under a constraint qualification, Problem 1 has the same optimal value as

the dual problem of minimizing g on Y . Then, one says that strong duality
holds, and a solution x̄ of Problem 1 can be recovered indirectly from any
solution ȳ of the dual problem by solving x̄(ω) ∈ x∗(ȳ, ω) ∀ω ∈ Ω.

4.2 Stochastic optimization

In the following example g is minimized over a convex compact set Ȳ ⊂ Y
with the Cartesian product structure Ȳ =

∏n
i=1 Ȳi. We consider the func-

14 Olivier Bilenne

tional set F l(Ȳ) and a cyclic implementation of the gradient projection map-
ping G, both introduced in Appendix A. A model sequence {gk} converging
with probability one towards g in the norm topology (1) is generated in a func-
tional set F̄ l(Ȳ) satisfying Assumption 1 with respect to Ȳ and F l(Ȳ). Based
on (14) and (31) we derive the cyclic algorithm CG = CGn ◦ · · · ◦ CG1 , where CGi
is defined as in (12) by CGi (f, y) = {(y1, ..., yi−1, z, yi+1, ..., yn) | z = G(fi:y, yi)}
for (f, y) ∈ F̄ l(Ȳ)× Ȳ and i ∈ N .

In order to improve the computational efficiency of CG , the network nodes
are granted the possibility to suspend their individual efforts in accordance
with the developments of Section 3.2. We consider the sample average model (9)
for the sequence {gk}, and set δ(f, y) ≡ P⊥H∗(Ȳ ,y)(−∇f(y)) for any (f, y) ∈
F̄ l(Ȳ) × Ȳ , where H∗(Ȳ , y) is defined in Appendix A as the polar cone of
the normal vectors of all the hyperplanes supporting Ȳ at y, and P⊥H∗(Ȳ ,y)

denotes the orthogonal projection on H∗(Ȳ , y). If, for some i ∈ N and y ∈
Ȳ , P⊥H∗(Ȳi,yi) is continuously differentiable at −∇ig(y) with Jacobian matrix

JP⊥H∗(Ȳi,yi). It follows from the delta method [17] that the asymptotic covari-

ance of
√
q(k)[δi(g

k, y)− δi(g, y)] reduces to

Σi(y) = [JP⊥H∗(Ȳi,yi)(−∇ig(y))]Γi(y)[JP⊥H∗(Ȳi,yi)(−∇ig(y))]′, (28)

where Γi(y) =
∫
Ω

[∇iĝ(y, ω) − ∇ig(y)][∇iĝ(y, ω) − ∇ig(y)]′P (dω). A sample-
average estimate of (28) is given by

Σ̂k
i (y) = [JP⊥H∗(Ȳi,yi)(−∇ig(y))]Γ̂ ki (y)[JP⊥H∗(Ȳi,yi)(−∇ig(y))]′, (29)

where Γ̂ ki (y) = 1
q(k)−1

∑q(k)−1
l=0 [∇iĝ(y, ωk,l) −∇igk(y)][∇iĝ(y, ωk,l) −∇igk(y)]′

is a consistent estimate of Γi(y). Note that bounds on Σi(y) and Σ̂k
i (y) can

also be derived at points y where the Jacobian JP⊥H∗(Ȳi,yi)(−∇ig(y)) is not

defined, based on the directional derivatives of P⊥H∗(Ȳi,yi).

Consider now the decreasing sequence {wk} with wk = 1/q(k) for all k, and
the sequence {vk} such that vk = (vk1 , ..., v

k
n) and vki = Σ̂k

i for all k and i ∈ N .
We let V (Ȳ) =

∏n
i=1 Vi(Ȳ), where Vi(Ȳ) is of the type Ȳi 7→ Rpi×pi . Using (22)

and Definition 4, we devise the algorithm ZG given by

ZG(f̃ , ỹ) = ∪J∈Z(f̃ ,ỹ)C̃
G
J (f̃ , ỹ), ∀f̃ ∈ F̄ l(Ȳ)× V (Ȳ), ỹ ∈ Ȳ ×W, (30)

where C̃GJ is defined as in (23) via (17), in which we set M ≡ CG , and Z is a
standby policy3 that can produce the heuristic specified by (21) in Section 3.1.

3 Such a policy can be defined by extrapolation from the points of interest
((f, vk), (z, wk)), for all k and every (f, z) ∈ F̄ l(Ȳ) × Ȳ . Proceeding by induction, we
set Z̄0((f, vk), (z, wk)) = ∅ and, for i ∈ N , Z̄i((f, v

k), (z, wk)) = Z̄i−1((f, vk), (z, wk))
if (21) holds with strict inequality at every y ∈ CGJ (f, z) with J ∈ Z̄i−1((f, vk), (z, wk)),

Z̄i((f, v
k), (z, wk)) = {J ∪ {i} | J ∈ Z̄i−1((f, vk), (z, wk))} if one can find y ∈ CGJ (f, z)

with J ∈ Z̄i−1((f, vk), (z, wk)) such that (21) does not hold, and Z̄i((f, v
k), (z, wk)) =

Z̄i−1((f, vk), (z, wk)) ∪ {I ∪ {i} | I ∈ Z̄i−1((f, vk), (z, wk))} otherwise. It is easily seen that
Z ≡ Z̄n satisfies the conditions of Definition 5.

Parallel stochastic optimization based on descent algorithms 15

1 000 2 000 3 000 4 000 5 000 6 000

1 000

2 000

3 000

4 000

5 000

6 000

0
0

ϕ(k)

k

ZG (π = 0%)

ZG (π = 25%)

ZG (π = 50%)

ZG (π = 80%)
ZG (π = 90%)

Fig. 2 Cumulative number of applications of G per node at step k: ϕ(k)

4.3 Numerical results

Problem 1 is implemented as detailed in Appendix C, and we report the per-
formance of a run of the algorithm (30) for the minimization of the dual
function g of a random instance of the problem. The generated network is
limited to 10 nodes and 20 edges in order to allow for comparison with the
stochastic approximation method with averaging (SA) [14]. The cyclic algo-
rithm ZG is implemented in a large compact set Ȳ ⊂ Y with Newton scaling
for G along each coordinate, i.e. T (f, x) = [∇2f(x)]−1, and with the standby
policy specified by (21) for growing values for the parameter π.

Figure 4.3 displays a quantity ϕ(k) denoting, in function of the number of
iterations k, the cumulative number of applications per node of the mapping G,
which is only effective when (21) is rejected. The abrupt shifts in the slope
of ϕ(k) betray phases where most nodes are active and sequences {yk} follow
trajectories in Y typical of the coordinate descent methods, alternating with
other phases where the nodes remain in standby and the prevalence of which
increases with π.

Table 1 reports, for several values of π and for various precisions ε, the
number of steps τ(ε) after which the duality gap |E[f(x∗(yk, ω), ω)] + g(yk)|
remains less than ε in the collected data. Observe that increasing π does not
considerably slow down the convergence of ZG—essentially dictated by the
convergence speed of the sequence {gk}—in spite of the important reduction in
the frequency of application of G. Hence substantial savings in operations can
be effected by an appropriate choice for π, as illustrated by the second table,
which reports the cumulative number of applications of G per node needed
for the duality gap to be less than ε, denoted by τ̄(ε) ≡ ϕ(τ(ε)). A trade-off
symbolized by the parameter π can be observed between speed of convergence

16 Olivier Bilenne

Table 1 Number of steps τ(ε) = mink̄{k̄ : |E[f(x∗(yk, ω), ω)] + g(yk)| < ε, ∀k ≥ k̄} after
which the duality gap is less than ε, and corresponding cumulative number of applications
of G per node τ̄(ε) ≡ ϕ(τ(ε))

τ(100) τ(10−1) τ(10−2) τ(10−3) τ(10−4) τ(10−5)

ZG (π = 25%) 5 6 14 85 1 424 3 879
ZG (π = 50%) 5 6 14 150 1 424 5 240
ZG (π = 80%) 5 5 16 177 1 244 8 572
ZG (π = 90%) 5 5 17 82 1 102 8 800

SA 15 32 385 10 380 > 999 999

τ̄(100) τ̄(10−1) τ̄(10−2) τ̄(10−3) τ̄(10−4) τ̄(10−5)

ZG (π = 25%) 3.0 4.0 10.2 76.8 1 404.3 3 127.4
ZG (π = 50%) 2.9 3.9 7.6 62.0 1 240.0 2 199.0
ZG (π = 80%) 2.7 2.7 5.5 13.2 456.9 472.8
ZG (π = 90%) 2.7 2.7 5.2 7.7 167.1 180.4

and computational cost. The comparative struggle of the SA method to solve
the problem shows the potential of the approach addressed in this paper.

5 Conclusion

In this study we addressed the stochastic optimization of functions qualify-
ing for parallel analysis. With focus set on a particular family of stochastic
optimization methods characterized by the association of (i) a descent al-
gorithm specified by a closed mapping and (ii) a sequence of approximate
functions—typically: the sample average estimator—converging in some sense
to the function of interest, we took a systematic approach to the parallelization
of these methods, extending a convergence result due to [19] to their parallel
and distributed modes of implementation.

Besides the benefits usually credited to parallel computing, the paralleliza-
tion of stochastic optimization algorithms comes out as a means to scalability,
as for instance in the applications where the true function has the form of
an expectation with respect to random parameters. Often, the set of possible
outcomes for these parameters is expected to grow quickly in volume with the
dimension of the problem. Parallelisation brings an answer to this ‘curse of
dimensionality’ by decomposing such parameters into local components with
lessened complexities invariant with the problem size.

A specificity of the considered stochastic optimization methods is that their
computational cost can be reduced by coordinating the iterative pace of the
descent algorithm with the accuracy of the convergent function sequence. This
can be understood, in a parallelized context, as the possibility to suspend
the iterative descent process along any individual coordinate whenever the
current function estimate is too inaccurate to expect actual progression along
that direction. The resulting algorithm, identified in this text as a Gauss-

Parallel stochastic optimization based on descent algorithms 17

Southwell-like implementation of the initial algorithm, was shown to lead to
considerable savings in operations even for small problems.

A Scaled gradient projections with line search

Let X be a closed subset of a vector space Rp and and l a positive scalar constant. We
consider the functional class F l(X) ⊂ Lsc(Rp) of the functions f continuously differentiable
on X and such that ∇f is Lipschitz continuous on X with Lipschitz constant l. Given two
positive scalars λ

¯
and λ̄ with 0 < λ

¯
≤ λ̄ <∞, we let T (p) define the set of the symmetric,

positive definite scaling matrices in Rp×p bounded by λ
¯

and λ̄, i.e. T (p) = {T ∈ Rp×p :
λ
¯
I � T � λ̄I}, where I denotes the identity matrix. A descent algorithm based on scaled

projected gradient descents may be formulated as follows.

Definition 6 (Scaled gradient projection algorithm) Let T : F l(X)×X → T (p) be
a scaling mapping, and β, σ ∈ (0, 1) fixed scalar parameters. Consider the point-to-point
mapping G : F l(X)×X 7→ X defined at every (f, x) ∈ F l(X)×X by G(f, x) = x̄(â), where

x̄(a) = arg min
y∈X
∇f(x)′(y − x) +

1

2
(y − x)′[aT (f, x)]−1(y − x), ∀a > 0, (31)

and â is chosen as the largest element of {βm}∞m=0 satisfying

f(x)− f(x̄(â)) ≥ σ(x̄(â)− x)′[âT (f, x)]−1(x̄(â)− x). (32)

In (31)-(32) the step-size is selected using an approximate line search ruleof the type
Armijo [1]. From [3] we know that the step-sizes computed by (32) are restricted to a
set [a

¯
, 1], where a

¯
> 0 is a function of the Lipschitz constant l.

Notice that Algorithm G is covered by the present framework as a particular implemen-
tation of the the algorithm H : F l(X)×X → 2X defined by [6]

H(f, x) = {x̄f,x,T (a) | a ∈ [a
¯
, 1], T ∈ T (p), f(x)− f(y) ≥ σ

a
‖y − x‖2

T−1}, (33)

where x̄f,x,T (a) = arg miny∈X ∇f(x)′(y − x) + 1
2

(y − x)′[aT]−1(y − x). It is easy to see

that H is a descent algorithm with respect to any f ∈ F l(X) and the set of stationary points

Sf (X) ≡ {y ∈ X | ∃ε > 0 ∇f(y)′(z − y) ≥ 0 ∀z ∈ Xε(y)}, (34)

where Xε(y) = {z ∈ X | ‖z − y‖ < ε} denotes a neighborhood of y within X, and with de-
scent function ∆f ≡ f . The closedness ofH on F l(X)×X follows from continuity arguments
and the properties of the scaled projection operator (Proposition 3.7 in [5, section 3.3]).

Optimality condition on convex sets — When X is a convex set, (34) reduces to Sf (X) =
{y ∈ X |∇f(y)′(z − y) ≥ 0 ∀z ∈ X}. For any f ∈ F l(X) and y ∈ X, we find y ∈
Sf (X) iff −∇f(y) ∈ H(X, y), where H(X, y) = {v ∈ Rp | v′(z − y) ≤ 0 ∀z ∈ X} defines
the cone of the normal vectors of all the hyperplanes supporting X at y. If H∗(X, y) =
{v ∈ Rp | v′w ≤ 0 ∀w ∈ H(X, y)} denotes the polar cone of H(X, y) and P⊥H∗(X,y)(·) the

orthogonal projection on H∗(X, y), it follows from the projection theorem [5] that

y ∈ Sf (X)⇔ P⊥H∗(X,y)(−∇f(y)) = 0. (35)

If X is has the Cartesian product form X =
∏n
i=1, then H∗(X, y) =

∏n
i=1H

∗(Xi, yi)

and (35) rewrites as yi ∈ Sfi:y (Xi) ⇔ P⊥H∗(Xi,yi)
(−∇if(y)) = 0 for i ∈ N . Hence the

projected gradient can be used to devise standby policies as introduced in Section 3.

18 Olivier Bilenne

B Local convergence of gradient projection methods

In some cases it is possible to sudy the asymptotic properties of the algorithm (7). In this
section we consider, for the sake of illustration, any parallel implementation of the gradient
projection mapping G in a convex, compact, polyhedral set Ȳ ⊆ dom(g) and used with
the functional set F l(Ȳ) (see Appendix A). The sample average model sequence {gk} is
generated in F l(Ȳ) according to (9) so that it converges with probability one towards g
in the norm topology ‖·‖1,Ȳ . We further assume that g has a unique minimizer z on Ȳ

(Sg(Ȳ) = {z}) and, similarly, that every gk has a unique minimizer on Ȳ denoted by zk

and equal to the SAA estimator.
Under a strict complementarity condition at z, i.e. −∇g(y) ∈ int(H(Ȳ , z)) using the no-

tations of Appendix A, [6, Proposition 4.6] extends to the stochastic optimization framework
and local convergence to z takes place in a reduced space Rm̃ (0 ≤ m̃ ≤ m). Then, one can
find an m× m̃ matrix E with orthonormal columns such that any sequence {yk} generated
by the considered stochastic optimization algorithm and converging almost surely towards z
satisfies, with probability one, yk = z + Eỹk for large k and for some vectors ỹk ∈ Rm̃.
Similarly, for k large enough, there exist vectors z̃k ∈ Rm̃ such that zk = z + Ez̃k. Under
stronger assumptions—typically g twice continuously differentiable in a neighborhood of z
and ∇2g(z) positive definite—, an asymptotic convergence rate can be derived for the oper-
atorM(gk, ·) in the form of an m̃×m̃ matrix R̃(gk, zk) � I given as a function of ∇2gk(zk)
by the Taylor theorem through an equation of the type:

ỹk+1 − z̃k = R̃(gk, zk)(ỹk − z̃k) + ρ(gk, ỹk)(ỹk − z̃k)(ỹk − z̃k)′. (36)

We refer to [6] for the derivation of R̃ for various implementations of the gradient projec-
tion method (e.g. Jacobi, Gauss-Seidel, or more sophisticated settings such as in [10]). The
remainder ρ(gk, ỹk) in (36) is a function of second derivatives of gk and, with probability
one, it is uniformly bounded if ∇2gk(zk) exists for large k and {∇2gk} converges uniformly
towards ∇2g on a neighborhood of z. Since E′E = I, (36) then rewrites as

yk+1 − z = Ãk(yk − z) + B̃k(zk+1 − z) + o(‖yk − z‖), (37)

where Ãk = ER̃(gk, zk)E′, B̃k = E(I − R̃(gk, zk))E′, and I is the m̃× m̃ identity matrix.

If we now suppose that 1/
√
q(k)[gk − g] converges in distribution and in accordance

with (10) to a random element ν of F l(Ȳ), then the hypotheses of [17, Theorem 5.8] are
satisfied at z. It follows that the first order asymptotics of the SAA estimator zk can be
inferred from the second order Taylor expansion of g at z and the Delta theorem provided
that arg infh∈C(z){2h′∇δ(z) + h′∇2g(z)h} yields a singleton {h̄(δ)} for every δ ∈ F l(Ȳ),

where C(z) = {h ∈ H∗(Ȳ , z) |h′∇g(z) = 0} is the critical cone at z. In that case we have

q(k)−
1
2 [zk − z] d−→ h̄(ν). (38)

We see from (37) and (38) that the convergence of the sequence {yk} is then asymptotically
analogous to that of a discrete-time random dynamical system characterized by the affine
mapping sequence {Ãk} (converging almost surely towards an asymptotic convergence rate
Ã∞ = ER̃(g, z)E′) and a random noise process with variance vanishing like O(q(k)−1).

C Implementation of a network flow allocation problem

An instance of Problem 1 is given by the network flow optimization problem studied in [6],
where a network with node set N = {1, ..., n} and edge set E is represented by a directed
graph G = (N ;E). Each edge connects an arbitrarily ordered pair of nodes of N , and each
pair of nodes is connected by at most one edge. Direct transmissions of information are
only allowed along edges, and the neighborhood Ni of a node i ∈ N is assumed to coincide
with its transmission range. By assigning the edges to one of their connected nodes and
ordering them accordingly, the n × |E| incidence matrix A takes the block form (Aij)n×n

Parallel stochastic optimization based on descent algorithms 19

where Aij is a line vector, and null iff j /∈ Ni. The prospect of node failure or unavailability
is modeled by the random parameter ω ∈ Ω, which reflects the availability of all the network
nodes at a given time. For ω ∈ Ω, we introduce the stochastic incidence matrix Â(ω) such

that Âij(ω) = Aij if the nodes i and j are available under ω, and Âij(ω) = 0 otherwise
(i, j ∈ N). Since the random parameter ω is the conjunction of local parameters, we can
write Ω ⊂

∏n
i=1Ωi, where each Ωi relates to parameters local to node i.

The objective of the problem is to optimize the expectation of the additively separable
cost function f with respect to a transmission flow policy x(ω) ∈ Rp with x = (x1, ..., xn)
and xi : Ω 7→ Rpi (i ∈ N), subject to a mean flow conservation constraint

E[
∑
j∈Ni Âij(ω)xj(ω)− bi(ω)] = 0, ∀i ∈ N, (39)

where bi(ω) is the rate of information generated by node i under ω with E[
∑n
i=1 bi(ω)] = 0,

and to a convex capacity constraint

E[
∑
j∈Ni κ̂ij(xj(ω), ω)] ≤ 0, ∀i ∈ N, (40)

which limits the mean total activity of each node i ∈ N , where κ̂ii(x, ω) = A+
iix

+
i − di

and κ̂ij(x, ω) = A+
ijx

+
j if j 6= i, d = (d1, ..., dn) is a positive constant, and we introduce an

operator ·+ such that (vij)
+ = (v+

ij) for any matrix with scalar components vij . We obtain

a separable instance of the problem (26), in which ui = vi = 1, mi = 2, Yi = R × R≥0,

hi(x, ω) =
∑
j∈Ni∪{i} Âij(ω)xj − bi(ω), and di(x, ω) =

∑
j∈Ni∪{i} κ̂ij(xj , ω) for i ∈ N .

We use the strictly convex cost function suggested in [23] and defined, for all i ∈ N , by

fi(v1, ..., vl) =
∑l
j=1(eγvj + e−γvj), where γ is a positive constant.

In the tests of Section 4.3, it is assumed that a realization ωk of the parameter ω ∈ Ω
can be measured or randomly generated prior to each step k of the stochastic optimization
algorithm. A model sequence {gk} is built for g based on ω0, ..., ωk and in accordance
with the sample average model (9), in which we set q(k) = k + 1 for all k, ωt,k ≡ ωk for
0 ≤ t ≤ k+ 1, and ĝ =

∑n
i=1 ĝi which can be computed locally at the nodes using (27). The

estimation, at each node i ∈ N , of variations of g along yi and of the derivative ∇ig relies in
practice on the estimation of the probability distribution of a multinomial variable4 with |Ωi|
possible outcomes [8]. This distribution is specified by the |Ωi|-dimensional vector µi, the
components of which symbolize the probabilities of the possible outcomes and sum up to 1.
A consistent estimate for µi is given at each step k by the empirical probability vector µ̂ki
computed from ω0, ..., ωk. The estimation of Σi, required by (21), follows from (29) and we
find

Γ̂ki (y) =
1

k
(∇iĝ(y, ω0), ...,∇iĝ(y, ωk))′[diag(µ̂ki)− µ̂ki µ̂ki ′](∇iĝ(y, ω0), ...,∇iĝ(y, ωk)), (41)

where diag(µ̂ki) denotes the diagonal matrix with the components of µ̂ki as diagonal entries.

References

1. Armijo, L.: Minimization of functions having lipschitz continuous first partial deriva-
tives. Pacific Journal of Mathematics 16(1), 1–3 (1966)

2. Bazaraa, M.F., Sherali, H.D., Shetty, C.M.: Nonlinear Programming, Theory and Algo-
rithms. John Wiley and Sons, New York (1993)

3. Bertsekas, D.: On the Goldstein-Levitin-Polyak gradient projection method. Au-
tomatic Control, IEEE Transactions on 21(2), 174 – 184 (1976). DOI
10.1109/TAC.1976.1101194

4 For simplicity, it is assumed in Section 4.3 that at most one network node is unavailable
at any time within a two-hop distance of each node, and that all the nodes break down
with equal probability. It follows that |Ωi| = n̄i + 1, where n̄i denotes the number of nodes
located within a two-hop distance of i. In the general case, one would have |Ωi| ≤ 2n̄i .

20 Olivier Bilenne

4. Bertsekas, D.: Convex Optimization Theory. Athena Scientific (2009)
5. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical Methods.

Athena Scientific (1997)
6. Bilenne, O.: Distributed Methods for Convex Optimisation – Application to Cooper-

ative Wireless Sensor Networks. Ph.D. thesis, Technische Universität Berlin (2014).
Submitted

7. Dupuis, P., Simha, R.: On sampling controlled stochastic approximation. Automatic
Control, IEEE Transactions on 36(8), 915 –924 (1991). DOI 10.1109/9.133185

8. Evans, M., Hastings, N.A.J., Peacock, B.: Statistical distributions. A. Wiley-Interscience
Publication, New York (2000)

9. Hauskrecht, M., Singliar, T.: Monte-carlo optimizations for resource allocation problems
in stochastic network systems. In: Nineteenth International Conference on Uncertainty
in Artificial Intelligence, pp. 305–312 (2003)

10. Jadbabaie, A., Ozdaglar, A., Zargham, M.: A distributed Newton method for network
optimization. In: 48th IEEE Conference on Decision and Control (CDC) combined with
the 28th Chinese Control Conference, pp. 2736–2741. Shanghai, China (2009)

11. Kelly, F.: Charging and rate control for elastic traffic. European Transactions on
Telecommunications (1997)

12. Neely, M.: Stochastic Network Optimization with Application to Communication and
Queueing Systems. Synthesis Lectures on Communication Networks. Morgan & Clay-
pool Publishers (2010)

13. O’Neill, D., Thian, B., Goldsmith, A., Boyd, S.: Wireless NUM: rate and reliability
tradeoffs in random environments. In: IEEE Wireless Communications & Networking
Conference, pp. 444–449 (2009). DOI 10.1109/WCNC.2009.4918024

14. Polyak, B., Juditsky, A.: Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim. 30(4), 838–855 (1992). DOI 10.1137/0330046. URL
http://dx.doi.org/10.1137/0330046

15. Rubinstein, R.Y., Shapiro, A.: Discrete event systems: Sensitivity analysis and stochas-
tic optimization by the score function method. John Wiley & Sons Ltd., Chichester
(1993)

16. Shapiro, A.: Simulation Based Optimization. In: Proceedings of the 28th Con-
ference on Winter Simulation, WSC ’96, pp. 332–336. IEEE Computer So-
ciety, Washington, DC, USA (1996). DOI 10.1145/256562.256644. URL
http://dx.doi.org/10.1145/256562.256644

17. Shapiro, A., Dentcheva, D., Ruszczyski, A.: Lectures on stochastic programming : mod-
eling and theory. MPS-SIAM series on optimization. Society for Industrial and Applied
Mathematics, Philadelphia (2009)

18. Shapiro, A., Homem-de Mello, T.: A simulation-based approach to two-stage stochastic
programming with recourse. Mathematical Programming 81(3), 301–325 (1998). DOI
10.1007/BF01580086. URL http://dx.doi.org/10.1007/BF01580086

19. Shapiro, A., Wardi, Y.: Convergence analysis of stochastic algorithms. Mathematics
of Operations Research 21(3), 615–628 (1996). DOI 10.1287/moor.21.3.615. URL
http://mor.journal.informs.org/content/21/3/615.abstract

20. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming 117, 387–423 (2009)

21. Tseng, P., Yun, S.: A block-coordinate gradient descent method for linearly constrained
nonsmooth separable optimization. Journal of Optimization Theory and Applications
140(3), 513–535 (2009)

22. Wardi, Y.: Stochastic algorithms with Armijo stepsizes for minimization of func-
tions. Journal of Optimization Theory and Applications 64, 399–417 (1990). URL
http://dx.doi.org/10.1007/BF00939456. 10.1007/BF00939456

23. Zargham, M., Ribeiro, A., Jadbabaie, A., Ozdaglar, A.: Accelerated dual descent for
network optimization. CoRR abs/1104.1157 (2011)

