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No scientist is admired for failing in the attempt to solve problems that lie beyond his competence. The 
most he can hope for is the kindly contempt earned by the Utopian politician. If politics is the art of the 

possible, research is surely the art of the soluble. Both are immensely practical-minded affairs. 
 
 
 

P B Medawar, The Art of the Soluble (1967) Nobel Prize Laureate in Physiology or Medicine, 
1960 for the discovery of acquired immunological tolerance (Medawar, 1999). 
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SUMMARY 

 

Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system whose 

pathological mechanisms are far from completely understood. The current hypothesis is that 

pro-inflammatory T cells are orchestrating the pathogenesis of this condition. It is considered 

that a dysregulation in T cell control to be involved, with an imbalance in apoptosis-regulating 

molecules possibly playing a role. In fact, therapeutic strategies aim to reduce T cell activation, 

proliferation and cytokine production or to promote T cell elimination. The focus of this thesis 

was to identify the role of regulatory molecules for T cell survival in the immune pathogenesis of 

MS, and to investigate antiproliferative or apoptosis-promoting effects on T cells by potential 

therapeutic molecules.  

A limitation in the apoptotic regulation of autoreactive T cells in the periphery and in the CNS 

may contribute to the pathophysiology of MS. As key regulators of apoptosis, members of the 

Bcl-2 family were investigated in both MS patients and controls. These factors were examined 

in relation to the susceptibility of T cells, from both groups, towards activation-induced cell death 

(AICD). To mimic the in vivo elimination of antigen-reactive T cells, an in vitro model of AICD 

involving repetitive T cell receptor mediated stimulation was utilized.  In fact, polyclonal T cells 

from MS patients showed a decreased susceptibility to undergo AICD as shown by both 

caspase activity (p=0.013) and DNA fragmentation (p=0.0071) assays. Furthermore, Bcl-XL 

protein levels, as measured by immunoblotting, were increased in the peripheral immune cells 

of MS patients (p=0.014). An inverse correlation observed between Bcl-XL levels and 

susceptibility of T cells to undergo AICD is in line with previous data on the significance of this 

anti-apoptotic protein in T cell resistance. Since this molecule has already been shown to 

aggravate the outcome of experimental autoimmune encephalitis, the animal model for MS, the 

observation of elevated Bcl-XL levels in patients offers perspectives towards therapeutic 

manipulation in MS. 

Apart from promoting apoptotic elimination, current therapeutic strategies aim at inhibiting 

activation and further proliferation of potentially harmful T cells. Based on clinical experience 

with rather non-selective therapies that promote T cell elimination, a therapeutic goal is to 

identify newer immunomodulatory substances with better selectivity in order to maximize the 

therapy’s benefit to risk ratio. Thus, two different substances, both interfering with cell cycle 

regulation, were investigated. The first candidate was the recently discovered member of the 

TNF/NGF family of death ligands, TNF-related apoptosis inducing ligand (TRAIL) since it has 

been reported to have immunoregulatory functions and since human antigen-specific T cells 

were shown to be resistant towards apoptosis induction by this ligand. The second candidate 

drug with potential in MS therapy is atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme  
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(HMG-CoA) reductase inhibitor and lipid-lowering drug, already indicated for anomalies in 

lipid metabolism. 

In order to prove the hypothesis that these substances interfere with T cell receptor signaling, 

human antigen-specific T cell lines from both MS patients and controls, characterized with 

regards to T helper differentiation and peptide specificity, were employed. Exogenous treatment 

of TRAIL resulted in an inhibition in proliferation, albeit to varying degrees (6.2% - 63.8% 

inhibition). Atorvastatin also inhibited proliferation of antigen-specific T cell lines in a dose-

dependent manner. Both compounds induced hypoproliferation independently of antigen 

presentation, as shown by their ability to block T cell proliferation in response to direct T cell 

receptor engagement, thus indicating a direct influence on T cell function. The growth inhibition 

by TRAIL was associated with a downregulation of the cell cycle regulator CDK4, indicative of 

an inhibition of cell cycle progression at the G1/S transition. Incubating T cells with atorvastatin 

also induced a downregulation of CDK4 expression, which was accompanied by an 

upregulation of p27Kip1 expression. The atorvastatin-mediated inhibition in proliferation and cell 

cycle progression could be reversed by mevalonate, an intermediate product of the HMG-CoA 

reductase pathway, suggesting a direct involvement of atorvastatin in this pathway, necessary 

for the isoprenylation of small GTPase proteins of the Rho family.  

Utilizing a thapsigargin model of calcium influx to activate the same calcium-release activated 

calcium (CRAC) channels as T cell receptor-stimulation by antigen, an inhibition in calcium 

influx could be observed on pre-incubating T cells with TRAIL. Co-incubating with human 

recombinant TRAIL receptor 2 fusion protein, a competitive antagonist for TRAIL, reversed this 

inhibition. A direct influence on calcium influx is indicative of an influence of TRAIL on the 

activation status of human T cells. Therefore, TRAIL directly inhibits activation of these cells via 

blockade of calcium influx. However, no impact of atorvastatin on early T cell activation was 

observed, since calcium influx was unaffected.  

While TRAIL-mediated interference with T cell activation and further cell cycle progression is 

still in the pre-clinical phase, statins, which have also been shown here to interfere with the  

T cell cycle, are already employed in the clinic for other ailments. In fact, clinical trials are 

currently being undertaken with this group of drugs for MS. Further studies on detailed 

mechanisms of antiproliferative substances effective in MS will allow the development of highly 

selective immunomodulatory agents with increased beneficial profile as MS therapy.   
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1. Introduction 

1 INTRODUCTION 
 

Multiple sclerosis (MS) is the most common disease of the central nervous system (CNS) 

that causes prolonged and severe disability in young adults in Europe and North America. 

Over a century and a half ago Charcot, Carswell, Cruveilhier, and others described the 

clinical and pathological characteristics of this enigmatic neurological disease (Carswell, 

1838; Cruvellhier, 1842; Charcot, 1868), defining it as ‘la sclerose en plaques’ (Charcot, 

1868). As an enigmatic, relapsing, and often eventually progressive disorder of the CNS, 

multiple sclerosis continues to challenge investigators to understand its pathogenesis and 

come up with new therapies to prevent its progression (rev. Noseworthy et al., 2000). 

Although MS has a variable prognosis, fifty percent of patients need help with walking within 

15 years after the onset of disease (rev. Noseworthy et al., 2000). Recent progress has 

occurred in understanding the cause, the genetic components, and the pathologic process 

of multiple sclerosis. Advanced magnetic resonance imaging (MRI) and spectroscopy has 

also recently allowed clinicians to follow the pathological progression of the disease and 

monitor the response to treatment (Miller et al., 1998).  

The pathological hallmark of chronic MS is the demyelinated plaque, lesions commonly 

occurring in the optic nerves, periventricular white matter, brain stem, cerebellum, and 

spinal cord white matter, and often surrounding one or several medium-sized vessels. MS is 

characterized by multifocal infiltration of autoreactive T lymphocytes from the systemic 

immune system across the blood-brain barrier (BBB). Infiltrating T cells orchestrate an 

inflammatory response. This response leads to demyelination (rev. Martin et al., 1992; rev. 

Martino and Hartung, 1999) and, according to recent knowledge, damage of neurons 

(Peterson et al., 2001) and their axons (Bitsch et al., 2000), which can already occur early 

during disease and lesion formation (Trapp et al., 1998; Kuhlmann et al., 2002).  

MS is associated with genes relevant to the immune response, especially genes of the 

‘Human Leukocyte Antigen’ region (rev. Martin et al., 1992; Zipp et al., 1995; Zipp et al., 

1998a). These association studies, together with observations of T cell infiltration in the 

brain parenchyma as well as a clinical response of MS patients to immunosuppressive and 

immunomodulatory therapy, designate MS as an autoimmune disease of the CNS. 

However, the strongest evidence stems from studies on the animal model of MS, 

experimental autoimmune encephalomyelitis (EAE), which show that immunization of 

animals with candidate CNS antigens or by transferring activated encephalitogenic T cells 

that are specific for such proteins leads to damage of CNS tissue and, subsequently, to 

neurological deficits (rev. Wekerle et al., 1994).  
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1. Introduction 

A multi-step model for the initiation of T cell-mediated autoimmune inflammatory disease of 

the CNS is assumed (Fig. 1). This involves the peripheral activation of T cells specific for 

myelin antigens and T helper (Th) 1-type differentiation (rev. Martin et al., 2001). Activated 

antigen-specific T cells that have survived and have not undergone elimination by 

regulatory mechanisms transmigrate the BBB where they respond to CNS antigens in situ. 

Adhesion molecules, cytokines, chemokines, leukocytic enzymes, cerebrovascular 

endothelium, and the parenchymal cells also contribute to this process (Cannella et al., 

1991; rev. Karpus and Ransohoff, 1998). Once in the CNS, myelin-specific T cells 

encounter their target autoantigen on antigen presenting cells (APC), presumably microglia 

and astrocytes, and, on further stimulation, secrete cytokines, such as apoptosis-mediating 

TNF and CD95L, which contribute to the local effector mechanisms (rev.Hartung, 1993; rev. 

Zipp et al., 1999). 

 

 

 

 
Figure 1   The 
pathophysiology of 
multiple sclerosis 
Autoantigen-specific T cells 
that escape AICD are 
capable of transmigrating the 
blood-brain barrier. In the 
CNS, these myelin-specific T 
cells encounter their specific 
target autoantigen and are 
induced to secrete cytokines, 
such as TNF or CD95L to 
cause the tissue damage 
(adapted from (rev. Zipp et 
al., 1999)). 

 

 

Both elimination of T cells in the periphery and damage to CNS tissue such as myelin, 

oligodendrocytes, and neurons by immune cells are central pathogenic mechanisms of MS. 

Apoptosis seems to play a central role in both of these processes (rev. Gold et al., 1997; 

rev. Zipp et al., 1999). While elimination of T cells by apoptosis in the periphery is 

diminished, CNS damage by apoptosis is an occurring unwanted feature. To develop 

selective therapies, one has to understand the pathophysiologic progression in detail. The 

aim is to interfere with T cell activation and proliferation and to promote T cell elimination. 
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1. Introduction 

1.1 T CELLS: CENTRAL ROLE IN MULTIPLE SCLEROSIS 
The pathogenesis of chronic inflammatory autoimmune disease such as MS, diabetes and 

rheumatoid arthritis seems to be initiated by CD4+ T helper (Th) cells (rev. Lafaille, 1998). In 

MS, T cells specific for myelin antigens are thought to initiate (rev. Hohlfeld et al., 1995) 

and, in cooperation with other immune cells, perpetuate the pathogenic processes (rev. 

Noseworthy et al., 2000; rev. Zipp, 2000).  

 

1.1.1 T HELPER CELL DIFFERENTIATION 
In 1986 Mosmann and colleagues reported that CD4+ T cell clones could be classified 

(based upon the cytokines they secrete) into two groups which they named Th1 and Th2 

(Mosmann et al., 1986). The two main subsets, nowadays designated as Th1-like and Th2-

like cells, are characterized by the pattern of cytokines secreted upon stimulation, by 

distinct activation (Munoz et al., 1990), by differential expression of chemokine receptors 

(Sallusto et al., 1998) and by different sensitivities to undergo AICD (Ramsdell et al., 1994; 

Varadhachary et al., 1997; Zhang et al., 1997). While Th2-like cells (producing IL-4, IL-5 

and IL-13) play a role in the pathogenesis of allergic diseases, it is known that Th1-like cells 

(producing functionally opposite cytokines which are proinflammatory in nature: IFN-γ, IL-2, 

TNF-α) are involved in chronic inflammatory reactions (rev. Abbas et al., 1996).  

The role of the different Th cell populations on autoimmune diseases has received 

considerable attention over the past several years (rev. Lafaille, 1998). Th1 cells have been 

implicated in the pathogenesis of MS and Th1/Th2 balance potentially affects prognosis 

(rev. Olsson, 1995). Th1 cells stimulate macrophages and can directly destroy or mediate 

injury of target cells. In fact, the main cytokines produced by Th1-like cells (TNF-α, TNF-β, 

IFN-γ) are all present in the MS plaque. Interferon-γ and TNF-α can upregulate MHC class II 

and adhesion molecules, allowing T cells to interact with the endothelium at the BBB and 

with glia (antigen-presenting cells) such as microglia and astrocytes in the parenchyma 

(rev. Zipp, 2000).  

Therefore, MS is considered to be a Th1-mediated autoimmune condition and treatment 

with glatiramer acetate (GA), one of the currently available immunomodulatory therapies for 

MS, induces a Th1 to Th2 immune deviation both in vivo (Miller et al., 1998) as well as in 

vitro (Neuhaus et al., 2000). Apart from an induction of Th2-type regulatory T cells, another 

proposed mechanism of action of GA, is a competition with myelin basic protein (MBP) at 

the MHC and T cell antigen receptor (TCR) level (Fridkis-Hareli et al., 1994).  

Nevertheless, Th1 and Th2 cells represent only extremes of a polarized spectrum and Th 

subdivision is far more complex. In fact, a further subset of immunoregulatory CD4 cells, 
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1. Introduction 

Th3, producing transforming growth factor-beta (TGF-β), has also been defined. This 

cytokine is increasingly being recognized in immunoregulation and tolerance and its 

production correlates with protection and/or recovery from autoimmune diseases. While 

encephalitogenic T cells producing Th1 cytokines can transfer disease in EAE (Racke et al., 

1994), spontaneous recovery from EAE correlates with a switch to TGF-β and Th2 

cytokines (Khoury et al., 1992). An upregulation of TGF-β has also been detected in CNS 

conditions with a traumatic or inflammatory etiology and has been implicated in the 

induction of a prominent astrocytic reaction (Logan et al., 1994), which mediates the 

structural reorganization of tissues and scar formation (rev. McCartney-Francis et al., 1998). 

 

1.1.2 T CELL APOPTOSIS  

In order to cross the blood-brain barrier and to mediate their effector damage-function in the 

CNS, autoreactive T cells need to escape regulatory mechanisms of the immune system.  

An ongoing immunological means of controlling autoreactive T cells is tolerance 
(immunologic unresponsiveness), a process that begins centrally during T cell maturation in 

the thymus and continues throughout the cell's life in the periphery by a network of 

regulated restraints. In both central and peripheral tolerance, apoptosis is a common way of 

eliminating potentially harmful T cells.  

The term apoptosis was coined in 1972 by Kerr et al. (rev. Kerr et al., 1972). It is derived 

from the Greek word απατοσισ, meaning falling leaves. On the contrary to necrosis, 

apoptosis results in condensation of the nucleus and cytoplasm, release of cytochrome c 

from mitochondria into cytosol, condensation of chromatin and cleavage into regular 

fragments, shrinking/blebbing of plasma membrane and formation of apoptotic bodies (rev. 

Wyllie et al., 1980). The rapid clearance of apoptotic cells makes it difficult to observe the 

phenomenon in vivo (rev. Manfredi et al., 2002). 

Apoptosis is considered a physiologic process and a major form of cell death that is used to 

remove excess, damaged or infected cells throughout life (rev. Bratton and Cohen, 2001). It 

is therefore important in normal cell development, occurring during embryonic development 

as well as in the maintenance of tissue homeostasis. Loss of control of the apoptotic 

program contributes to many diseases, including accumulation of unwanted cells through 

insufficient apoptosis (e.g. lack of elimination of autoreactive cells as in autoimmune 

disease) and cell loss due to excessive apoptosis (e.g. neurodegeneration, stroke and heart 

failure). Since it describes a process in which a cell actively participates in its own 

destruction, it had been earlier termed ‘programmed cell death’ (Lockshin, 1969).  
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1. Introduction 

Ligation of plasma-membrane death receptors and nuclear DNA damage have long been 

recognized as initial triggers of apoptosis that induce mitochondrial membrane 

permeabilization and/or the direct activation of cysteine aspartyl-specific proteases 

(caspases). Principally, two alternative apoptosis pathways (Fig. 2) exist: one is mediated 

by death receptors on the cell surface — the ‘extrinsic pathway’; the other is mediated by 

mitochondria — ‘intrinsic pathway’ (rev. Igney and Krammer, 2002). In both pathways, 

caspases are activated to cleave cellular substrates, leading to the biochemical and 

morphological changes characteristic of apoptosis (rev. Bratton and Cohen, 2001).  

 

 
Figure 2   
Apoptotic 
signaling 
cascades  
Two alternative 
apoptosis pathways 
exist: one — referred 
to as the extrinsic 
pathway — is 
mediated by death 
receptors on the cell 
surface, the other — 
referred to as the 
intrinsic pathway — is 
mediated by the 
mitochondria (adapted 
from (rev. Bratton and 
Cohen, 2001; rev. 
Igney and Krammer, 
2002)). 

 

Intrinsic Pathway of apoptosis: Bcl-2 family of apoptosis regulators 
The cell intrinsic pathway triggers apoptosis chiefly in response to DNA damage, defective 

cell cycle, hypoxia and loss of survival factors among many types of severe cell stresses.  

This pathway involves activation of the pro-apoptotic arm of the Bcl-2 superfamily. 

Members of the Bcl-2 family, pro-apoptotic (Bid, Bax, Bak, PUMA, Noxa) and anti-apoptotic 

(Bcl-2, Bcl-XL), are key regulators of the cell suicide program critical for normal development 

and maintenance of tissue homeostasis (rev. Adams and Cory, 1998; rev. Green, 2000; rev. 

Hunt and Evan, 2001). This pathway is also induced following death receptor engagement 

and acts as amplifier to the extrinsic pathway (rev. Igney and Krammer, 2002). Pro-

apoptotic Bid, cleaved by active ‘initiator’ caspase-8, translocates to the mitochondria and 
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stimulates the insertion or oligomerization of Bax or Bak in the outer membrane or agents 

acting on the PTPC of the mitochondria (Fig. 2). Membrane permeabilization, which is 

controlled by anti-apoptotic Bcl-2 molecules, such as Bcl-2 or Bcl-XL, then causes the 

release of apoptogenic factors, SIMPs, such as cytochrome c (Li et al., 1998), AIF and 

SMAC/DIABLO (Du et al., 2000; Verhagen et al., 2000) into the cytosol. Cytochrome c 

binds the adaptor APAF1, forming an ‘apoptosome’ and, in the presence of dATP, activates 

the apoptosis-initiating protease caspase-9. In turn, caspase-9 activates ‘executioner’ 

proteases caspase-3, -6 and -7. SMAC/DIABLO promotes apoptosis by binding to inhibitor 

of apoptosis (IAP) proteins, preventing them from attenuating caspase activation (Du et al., 

2000; Verhagen et al., 2000). 

Engagement of the cell intrinsic pathway results in the rapid induction of nuclear p53 (Wu 

and Lozano, 1994) as well as localization of p53 protein to mitochondria in vivo (Marchenko 

et al., 2000). The transcriptional activity of p53, induced through post-translational 

mechanisms, is important for its pro-apoptotic function (Fig. 2). Apart from inhibiting 

expression of Bcl-2, p53 can induce pro-apoptotic members of the Bcl-2 family such as Bax 

(Miyashita and Reed, 1995), Noxa (Oda et al., 2000) and PUMA (Yu et al., 2001), all of 

which can translocate from the cytosol to the outer mitochondrial membrane to induce 

mitochondrial membrane permeabilization. Moreover, mitochondrial anti-apoptotic 

regulators like Bcl-2 and Bcl-XL specifically block stress-induced mitochondrial p53 

localization and apoptosis but not nuclear p53 induction and cell cycle arrest. p53 also 

induces some death receptors (Fig. 2), such as CD95 (Muller et al., 1998) and TRAIL-R2 

(DR5) (Wu et al., 1997).  

Death receptor upregulation increases cellular sensitivity to death receptor ligands. In some 

cell types, death receptor engagement alone, without use of the cell intrinsic pathway 

suffices for commitment to apoptotic death. In other cell types, commitment to apoptosis 

requires amplification of the death receptor signal by the above-described cell intrinsic 

pathway (Scaffidi et al., 1999). It is therefore of consequence that both the intrinsic and the 

extrinsic apoptosis signaling pathways communicate with each other.  

 

Extrinsic Pathway of apoptosis: Death ligands and receptors of the TNF superfamily 
The cell extrinsic pathway is becoming recognized as an important path used by T cells to 

trigger apoptosis. This pathway triggers apoptosis in response to engagement of death 

receptors by their ligands. Death receptors and their ligands are members of the tumor-

necrosis factor (TNF) receptor/ligand superfamily. The ligand conferring its name to this 

group TNF is the prototype member of the ligand superfamily (rev. Locksley et al., 2001).  
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1. Introduction 

Most TNFR-superfamily members function as transmembrane signal transducers that 

respond to ligand binding and comprise a subfamily characterized by an intracellular 

domain — the death domain (orange box, Fig. 2). Decoy receptors are closely related to the 

death receptors but lack a functional death domain. When death ligands bind to their 

respective death receptors, intracellular adaptor protein FADD (Fas-associated death 

domain protein) gets attracted to the receptors via death domains.  

This complex, death-inducing signaling complex (DISC), recruits the inactive proforms of 

certain members of the caspase protease family — caspase-8 (FLICE) and caspase-10 

(Kischkel et al., 1995). At the DISC, these procaspases are cleaved and function as active 

‘initiator’ caspases (Sprick et al., 2000; Kischkel et al., 2001). A regulator of this pathway is 

FLIP (FLICE-inhibitory protein), a molecule structurally similar to caspase-8 but lacks a 

functional catalytic domain and therefore interferes with apoptosis signaled through death 

receptors (Thome et al., 1997). Although FLIP is expressed early during T cell activation, it 

disappears when T cells become susceptible to CD95L-mediated apoptosis (Irmler et al., 

1997). As already described, although some cells known as type I cells, contain sufficient 

amounts of active caspase-8 to initiate apoptosis directly, some cells, type II cells, contain 

too small an amount and employ the intrinsic pathway, using mitochondria as ‘amplifiers’ of 

the apoptotic signal (Scaffidi et al., 1999).  
Following a scan in the human genome database for sequences with homology to TNF, 

identification of expressed sequence tags led to the cloning of a novel TNF-superfamily 

member (Wiley et al., 1995; Pitti et al., 1996). Due to its protein sequence homology to 

CD95L (APO1L) and TNF, the newly discovered protein was named ‘APO2L’ for APO2 

ligand (Pitti et al., 1996) or TRAIL for TNF-related apoptosis-inducing ligand (Wiley et al., 

1995), respectively. Similar to CD95L and TNF-alpha, TRAIL was shown to rapidly induce 

apoptosis in susceptible cells upon trimerization of its receptors and subsequent activation 

of the caspase cascade leading to fragmentation of DNA (Wiley et al., 1995; Pitti et al., 

1996).  TRAIL can interact with five different receptors. Of these, only TRAIL receptor 1 

(TR1), also referred to as DR4 (Pan et al., 1997) and TR2 or DR 5 (Sheridan et al., 1997; 

Walczak et al., 1997) are capable of transmitting a death signal. Transmembrane TR3 

(DcR1, TRID) contains no death domain and TR4 (DcR 2, TRUNDD) a truncated one. They 

have been suggested to act as decoy receptors by binding TRAIL without transmitting a 

death signal, thereby inhibiting apoptosis (Pan et al., 1997; Sheridan et al., 1997; Degli-

Esposti et al., 1997a; Degli-Esposti et al., 1997b). TRAIL and its receptors were shown to 

be constitutively expressed by a variety of cell types including human (auto)antigen-specific 

T cells (Wendling et al., 2000).  
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1. Introduction 

Involvement of apoptotic mechanisms in MS 
There is already growing evidence for the involvement of apoptosis in the pathogenesis of 

MS.  Particularly, a Janus-faced function: while failing to control potentially dangerous 

autoreactive T cells, apoptosis contributes to the CNS tissue damage. Infiltrating T cells, 

escaping control mechanisms, are thought to mediate their effect via death receptor-ligand 

interactions. The induction of T cell death, especially via death receptor-mediated 

apoptosis, reduces the possibility of invading T cells and thus autoimmune-mediated tissue 

damage: a regulatory process which is effective during recovery (Schmied et al., 1993) and 

treatment of EAE (Critchfield et al., 1994).  

An impairement of CD95-dependent T cell elimination, both in the CNS (Ciusani et al., 

1998) as well as in the periphery (Zipp et al., 1998b; Zipp et al., 1998c; Macchi et al., 1999; 

Zang et al., 1999) has been reported in MS.  Factors which protect against apoptosis, such 

as soluble CD95 (Zipp et al., 1998c) or FLIP (Semra et al., 2001) are increased in 

peripheral immune cells of MS patients, indicating an overall reduction of T cell apoptosis in 

MS patients (rev. Zipp et al., 1999). On the other hand, an upregulation of disease-

promoting apoptosis-inducing ligands of the TNF superfamily such as TNFα, CD95L and 

TRAIL in MS might indicate counterregulatory mechanisms or the involvement of apoptosis 

in T cell effector mechanisms in the CNS (Zipp et al., 1995; Hermans et al., 1997; Huang et 

al., 2000; Tejada-Simon et al., 2001). 

In T cells, the CD95/CD95L system plays a major role in the induction and regulation of 

AICD, a signal-induced programmed cell death initiated at the TCR (rev. Kabelitz et al., 

1993). An involvement of CD95L-CD95 interaction in AICD is derived from studies on mice 

carrying CD95 (lpr) or CD95L (gld) mutations (Watanabe-Fukunaga et al., 1992; Takahashi 

et al., 1994). These animals spontaneously develop a multi-organ autoimmune disease, 

with symptoms that are similar to SLE, due to a defect in AICD of mature T cells (Russell et 

al., 1993; Russell and Wang, 1993). CD95L-CD95 interactions therefore regulate immune 

selection and peripheral tolerance (Russell, 1995; rev. Kabelitz and Janssen, 1997). CD95L 

binds to CD95 expressed on the same or on neighboring cells, triggering CD95-dependent 

apoptosis (Singer and Abbas, 1994; Alderson et al., 1995; Brunner et al., 1995; Dhein et al., 

1995; Ju et al., 1995) in either an autocrine “suicide” or  paracrine “fratricide” manner 

(Mariani et al., 1996). In MS, an increase in MBP-specific T cell frequency, only in the 

presence of CD95 ligand-blocking antibody in vitro, suggests that a significant proportion of 

MBP-reactive T cells, although sensitive to CD95L-mediated apoptosis, are not deleted in 

vivo (Zang et al., 1999), possibly due to an impairment of AICD. Although the role of the 

CD95/CD95L system in the induction of T cell apoptosis is unambiguous, it is evident that 
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other molecules are equally important (Peter et al., 1995). Other members of the TNF 

superfamily, including TNFα (Zheng et al., 1995) and TRAIL (Martinez-Lorenzo et al., 

1998), have also been implicated in AICD. Additionally, the induction of AICD is influenced 

by other cytokines such as IL-2. This T cell growth factor has been implicated in the priming 

of mature T cells for AICD (Lenardo, 1991) by driving cells into the S phase of the cell cycle, 

where they are sensitive to TCR-triggered AICD (Boehme and Lenardo, 1993). Additionally, 

susceptibility of T cells towards CD95-mediated AICD is associated with subsiding levels of 

Bcl-XL (Boise et al., 1995; Broome et al., 1995; Peter et al., 1997).  

Concerning the damage mechanisms within the CNS, members of the TNF superfamily 

have also been reported to be involved in the T-cell mediated effector mechanisms. An 

earlier report which has been supported by a more recent study, describes a role for the 

TNF system in oligodendroglial cell loss in MS (Selmaj et al., 1991; Akassoglou et al., 

1998). An involvement of the CD95 system in MS stems from the observation of an 

enhanced CD95/CD95 ligand expression in brain lesions of MS patients (Dowling et al., 

1996). TRAIL induces massive cell death of brain cells, including neurons, astrocytes, and 

oligodendrocytes (Nitsch et al., 2000). Additionally, the presence of TRAIL receptors but 

absence of the death-inducing ligand on these parenchymal cells (Dorr et al., 2002a), 

makes them potentially susceptible to attack by TRAIL-expressing T cells (Dorr et al., 

2002b). These findings indicate a potential role for the TRAIL receptor–TRAIL system as an 

effector mechanism in neuroinflammation such as MS. On the other side of the BBB, 

studies on animal models of autoimmune diseases have reported an influence of TRAIL on 

T cell growth and effector function. Systemic neutralization by TRAIL receptor 2 was 

demonstrated to exacerbate collagen-induced arthritis (Song et al., 2000) and experimental 

autoimmune encephalomyelitis (Hilliard et al., 2001). This suggests a dual role for TRAIL: 

regulation in the immune system and toxicity at sites of inflammation. 

In EAE, data also exist for the role of both the CD95/CD95 ligand (Sabelko et al., 1997; 

Waldner et al., 1997) and the TNF receptor/TNF system (Akassoglou et al., 1998) in tissue 

damage. While lpr and gld mice are protected from active EAE (Sabelko et al., 1997; 

Waldner et al., 1997), gld mice with passive EAE, induced by transfer of autoreactive T 

cells, developed prolonged clinical signs when immunized with wildtype T cells (Sabelko-

Downes et al., 1999). Thus, in the passive EAE model, inhibiting the CD95L results in 

reduced disease remission. Although this indicates a role of CD95-mediated apoptosis in 

the regulation of T cells in EAE, it is still unclear under which conditions T cells are rendered 

susceptible to apoptosis (Klas et al., 1993; Peter et al., 1997; Zipp et al., 1997). 
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1.1.3 T CELL ACTIVATION 

While naïve T cells cannot readily penetrate the BBB, activated autoantigen-specific T cells 

that have survived elimination transmigrate into the CNS and get reactivated on further 

autoantigen presentation (Merrill and Benveniste, 1996).  

In T cells, activation is initiated by signal 1, which occurs at the T cell antigen receptor 

(TCR) (Fig. 3). This comprises of a ligand-binding subunit (α and β chains) and a signaling 

subunit (CD3ε, γ and δ chains and TCRζ chain). The physiologic ligand for the TCR is 

antigen presented by MHC expressed on APCs such as dendritic cells, macrophages or B 

cells. Although signals generated by the TCR determine the specificity of the T cell 

response to antigen, costimulatory receptors, such as CD28, contribute to signal 2, which 

is important for the realization of the TCR response. In fact this dual signaling is necessary 

for the prevention of anergy, a state of unresponsiveness which develops in the absence of 

CD28 costimulation (rev. Nel and Slaughter, 2002). The coordinated activation of T cells by 

antigen leads to clonal expansion, differentiation, cytotoxic killing, or induction of their own 

programmed cell death.  

 

 
 
Figure 3   
Signaling 
cascades in T cell 
activation  
The initial steps of a T 
cell response involve 
protein tyrosine kinase 
activation following 
MHC-Ag-TCR binding 
and a subsequent 
activation of 
downstream signaling 
pathways including 
intracellular free 
calcium increase and 
MAPK activation, all 
necessary for T cell 
activation and further 
proliferation. (adapted 
from (rev. Nel, 2002)). 

 

TCR signaling commences with an early wave of protein tyrosine kinase activation, which is 

mediated by the Src kinases Lck and Fyn, the 70-kd ζ-associated protein (ZAP70) kinase, 
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and members of the Tec kinase family such as Itk. This early wave of protein tyrosine 

phosphorylation leads to two main paths: an initiation in inositolphospholipid (IP) turnover 

resulting in activation of downstream signaling pathways including intracellular free calcium 

increases (left arm of Fig. 3) and Ras–mitogen-activated protein kinase (MAPK) activation 

(right arm of Fig. 3). Both arms of this signaling cascade activate transcription factors, such 

as activator protein 1 (AP-1), nuclear factor of activated T cells (NFAT) and nuclear factor 

κB (NF-κB), ultimately leading to the expression of genes that control cellular proliferation, 

differentiation, anergy, or apoptosis (rev. Nel, 2002). 

 

Intracellular calcium 
Calcium is one of the many ubiquitous secondary messengers that regulate innumerable 

cellular responses. Elucidation of the role of calcium as an intracellular messenger began 

over 100 years ago with early observations by Ringer (Ringer S, 1883; rev. Barritt, 1992). It 

has since been considered that calcium is responsible for certain cell responses in both 

electrically-excitable and non-electrically-excitable cells. “Ja, Kalzium ...das ist al les” is 

a famous statement by the Nobel Prize laureate Otto Loewi (1873-1961).  

As shown in the left-arm of the signal cascade in Fig. 3, calcium is released from 

endoplasmic reticulum storage sites following activation by inositol-1,4,5-trisphosphate (IP3) 

cleaved from phosphatidyl inositol-4,5 biphosphate (PIP2) by tyrosine phosphorylated PLC-γ 

(rev. Berridge et al., 1998). A rise in [Ca2+]i following T cell activation is necessary for most 

of the physiological functions of T cells including proliferation and cytokine production. 

Following TCR engagement, mobilization of Ca2+ from intracellular stores and depletion of 

these stores triggers prolonged Ca2+
 influx through store-operated Ca2+ (SOC or CRAC, 

calcium release-activated calcium) channels in the plasma membrane. The elevation in 

[Ca2+]i produced is required for T cell activation (Zweifach and Lewis, 1993) and a lasting 

rise greater than 200nM is required to induce transcriptional activation in the nucleus such 

as IL-2 synthesis (Negulescu et al., 1994).  

The spatiotemporal characteristics of [Ca2+]i signaling (transient, sustained, or oscillatory) 

are important in determining which genes are activated. For instance, sustained [Ca2+]i 

elevation is critical for the activation of calcineurin, a calcium-calmodulin–dependent serine 

phosphatase, to dephosphorylate NFAT (rev. Baksh and Burakoff, 2000) which leads to its 

nuclear translocation and binding to IL-2 promoter (rev. Rao et al., 1997). In fact, a lasting 

rise greater than 200 nM is required to induce IL-2 synthesis (Negulescu et al., 1994) and 

substances which reduce [Ca2+]I to lower levels than this, such as CD95-stimulation  

(Lepple-Wienhues et al., 1999), might play a role in anergy induction. 
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Cell cycle regulation 
T cell proliferation is tightly controlled by a large number of positive regulators such as 

cyclins and cyclin dependent kinases (CDKs), and negative regulators such as CDK 

inhibitors (Nagasawa et al., 1997; Appleman et al., 2000). These regulate progression of T 

cells from the G0 to G1 → S → G2 → M phases of the cell cycle. The right arm of the signal 

cascade (Fig. 3) involves activation of downstream MAPKs pathways, which switch on 

another set of transcription factors such as AP-1, factors also involved in T cell proliferation 

and cell cycle progression possibly via the influence of Jun/Fos complexes on cell cycle–

activating protein. Cells entering the G1 phase after TCR engagement are characterized by 

an upregulation of cyclin D and CDK4/6 (Modiano et al., 1994; Kwon et al., 1997). Apart 

from their known function in cell cycle progression, cell cycle regulators have also been 

shown to control mechanisms implicated in T cell tolerance, such as anergy (rev. 

Balomenos and Martinez, 2000). In fact p27Kip1 has been found to be responsible for the 

blockade of clonal expansion of anergic T cells (Boussiotis et al., 2000).  

The decision between activation and anergy upon TCR occupancy is generally considered 

to be dependent on the balance between positive and negative signals in T cells, with 

costimulatory pathways tipping this balance from anergy to activation (rev. Kamradt and 

Mitchison, 2001). 

 

These intracellular pathways of signal transduction, initiated by the binding of extracellular 

ligands to their specific receptors, represent an obvious target for pharmacological 

intervention. In many instances at least some of the intracellular signaling proteins are 

specifically linked to the ligand–receptor system so that relatively selective inhibition should 

be possible not only at the level of the receptor–ligand interaction but also at the level of 

intracellular signalling. 
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1.2 AIMS OF THIS THESIS 
 
Pro-inflammatory T cells, which are not properly controlled by regulatory mechanisms such 

as activation-induced cell death (AICD), are assumed to orchestrate the pathogenesis of 

MS.  

 

The primary focus of this thesis was:  

i. to identify the role of regulatory molecules for T cell survival in the pathogenesis of MS 

and  

ii. to investigate the antiproliferative or apoptosis-promoting effects on T cells by potential 

therapeutic targets and the underlying mechanisms involved. 

 

I. To address the first question, i.e. to investigate regulatory molecules that might be 

responsible for the lack of T cell control in MS, the Bcl-2 family of apoptotic regulators 

was studied. For this purpose a group of MS patients and healthy controls were 

selected and the expression of three main members of the Bcl-2 family were 

investigated. In relation to this, the susceptibility of T cells from both groups towards 

AICD was examined. For this, an in vitro method of AICD involving repetitive T cell 

receptor mediated stimulation was employed. 

 

II. To address the second question, i.e. to study new therapeutic strategies capable of 

reducing T cell activation/proliferation and promoting elimination, investigations on 

TRAIL, a novel member of the TNF/NGF family of death ligands, and atorvastatin, a 

drug belonging to the HMG-CoA reductase inhibitors, were undertaken. Human antigen-

specific T cell lines, characterized with regards to T helper differentiation and peptide 

specificity, were employed to prove the hypothesis that these two molecules influence T 

cell signaling. To dissect the underlying mechanisms involved in the TRAIL-mediated 

and atorvastatin-mediated immunomodulation of antigen-specific T cell response, the 

interference of both molecules on T cell activation and cell cycle regulation was 

investigated. For this, calcium influx and the expression of cell cycle regulators, 

respectively, were monitored following incubation with either molecule. To determine 

whether the underlying mechanisms involved in the atorvastatin-induced growth 

inhibition were mediated via an inhibition of the HMG-CoA reductase pathway, an 

intermediate product of this pathway, mevalonate, was coincubated with atorvastatin.  
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2 MATERIALS 
 
Cell Culturing  
Media: AB Medium (ABM). RPMI supplemented with 10mM HEPES buffer (Gibco 

Invitrogen Corp., Paisley, Scotland), 2mM L-glutamine (Gibco Invitrogen Corp.), 

100U/ml penicillin and 100µg/ml streptomycin (Biochrom AG, Berlin, Germany), 

10µg/ml ciprofloxacin (Ciprobay® 100, Bayer, Germany) and 5% pooled human 

AB serum (obtained from clotted blood from normal human AB donors, Institute 

of Transfusion Medicine, Charite, Berlin).  

 FBS Medium (FBM). RPMI supplemented with 10mM HEPES buffer, 2mM L-

glutamine, 100U/ml penicillin, 100µg/ml streptomycin and 10% heat-inactivated 

FBS serum (Gibco Invitrogen Corp.) 

 Freezing Medium (FM). RPMI supplemented with 10mM HEPES buffer (Gibco 

Invitrogen Corp.), 2mM L-glutamine (Gibco Invitrogen Corp.), 20% heat-

inactivated FBS serum (Gibco Invitrogen Corp.) and freshly added ice-cold 10% 

DMSO (99.9%; Sigma, Steinheim, Germany).  

 All media stored at 2-8°C 

Density gradient:  Lymphoprep™: diatrizoate and polysaccharide (Nycomed Pharma AS, Oslo, 

Norway), stored at RT 

Dye exclusion: 0.4% Trypan Blue: prepared in 0.81% NaCl and 0.06% KPO4, dibasic (Sigma 

Cell Culture, Irvine, UK), stored at RT 

IL-2:  recombinant human IL-2 Teceleukin, Tecin™ (Hoffmann-La Roche Inc., 

Nutley, NJ, USA) provided by Dr. C.W. Reynolds, National Cancer Institute, 

Frederick Cancer Research and Development Center, MD, USA, stored for 

short-term at 2-8°C, otherwise aliquoted at -20°C 

[methyl-3H]thymidine:  specific activity 185GBq/mmol, 5.0Ci/mmol; 777MBq/mg, 21mCi/mg (stock: 

37MBq/ml, 1.0mCi/ml) (Amersham, Braunschweig, Germany), stored at 2-8°C 

Antigens: Myelin Basic Protein (MBP) from autopsied brains, supplied from Dept. of 

Clinical Cell- and Neurobiology, Institute of Anatomy, Charite, Berlin; Birch 
pollen (Bet) Betula verrucosa (Allergon, Pharmacia & Upjohn, Sweden); 

Tetanus toxoid (TT): vaccine concentrate (Chiron Behring, Marburg, 

Germany), all stored at -20°C 

Stimuli/Costimuli: PHA lectin from Phaseolus vulgaris (Sigma, Steinheim, Germany); PMA tumor 

promoter and activator of PKC (Sigma); ionomycin calcium ionophore (Sigma); 

goat anti-SF21-derived recombinant human soluble CD28 (rhsCD28) purified 

(R&D Systems, MN, USA), all stored at -20°C. OKT3 (Orthoclone®, Ortho 

Biotech, Janssen-Cilag, Neuss, Germany), stored at 2-8°C 
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Flow cytometric and fluorometric measurements 

Antibodies: Intracellular staining: FITC-conjugated mouse anti-human interferon IFN-γ-FITC IgG1 

(PharMingen, Heidelberg, Germany) and FITC-labeled mouse IgG1 isotype control 

(Sigma). PE-conjugated mouse anti-human IL-4-PE IgG1 (PharMingen) and PE-labeled 
mouse IgG1 isotype control (Becton Dickinson, Heidelberg, Germany), all used at 

conc of 2µg/ml and stored at 2-8°C 

Buffers: 1x FACS wash buffer: 0.5% BSA, 0.05% NaN3 in PBS  

 1x FACS permeabilization buffer: 0.1% saponin, 0.5% BSA, 0.1% NaN3 in PBS 

 20x DNA fragmentation buffer: 0.1% sodium citrate, 0.1% Triton X-100 in H20) 

 1x Annexin binding buffer: 10mM Hepes/NaOH, pH 7.4, 140mM NaCl, 2.5mM CaCl2

 1x Caspase 3 lysis buffer: 60mM NaCl, 5mM Tris-HCl, 2.5mM EDTA, 0.25% NP40  

 all stored at 2-8°C 

 

Intracellular calcium measurement  

Fluorescent probes: acetoxymethyl (AM) esters of ratiometric calcium indicators: FURA-2AM, 
C44H47N3O24 (Molecular Probes, Eugene, OR, USA) and INDO-1/AM, 

C47H51N3O22  (Molecular Probes), both stored at -20°C 

Reagents: Thapsigargin endoplasmic reticular Ca2+-ATPase inhibitor C34H50O12 

(Calbiochem, San Diego, CA, USA), EGTA calcium chelator (Sigma, Steinheim, 

Germany), CaCl2 (Sigma), all stored at -20°C 

 

Western Blotting  

Protein extraction: 1x Lysis buffer (0.15M NaCl, 0.01M Tris-HCl, 0.005M EDTA, 1% Triton X-

100), stored at 2-8°C, freshly added with protease inhibitors: 2µg/ml aprotinin 

(Sigma, Steinheim, Germany), 100µg/ml PMSF (Sigma) and 200µM sodium 

orthovanadate (Sigma), all stored at -20°C 

Protein quantification: BCA Protein Assay Kit (Pierce, Illinois, USA) contains: BCA Reagent A 

(Na2CO3, NaHCO3, BCA detection reagent, sodium tartrate in 0.1N NaOH), 

BCA Reagent B (4% CuSO4•5H2O) and BSA concentrate (2mg/ml in a 0.9% 

aqueous NaCl solution containing NaN3) for standard curve, stored at 2-8°C 

Electrophoresis: 2x Loading buffer (50mM Tris-HCl (pH 6.8), 100mM DTT, 2% SDS, 0.1% 

bromophenol blue, 10% glycerol) and full-range Rainbow molecular weight 
marker recombinant protein (Amersham LifeScience, Uppsala, Sweden), both 

stored at -20°C. 10x Electrophoresis buffer (0.25M Tris pH 8.3, 1.92M 

glycine, 1% SDS), stored at RT. 30% Acrylamide/Bis Solution 29:1 ratio (Bio-
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Rad, California, USA); TEMED (GibcoBRL, Karlsruhe, Germany); APS 

(GibcoBRL); SDS (Sigma, Steinheim, Germany), stored at 2-8°C 

Blotting/Blocking: S&S Protran® BA nitrocellulose transfer membranes pore size 0.45µm 

(Schleicher & Schuell, Dassel/Relliehausen, Germany), stored at RT 

 1x Blot Buffer (2.5mM TrisOH, 11mM glycine, 20% methanol), freshly 

prepared 

 1x Blocking buffer (0.01M Tris-HCl (pH 7.5), 0.15M NaCl, 0.1% Tween 20, 5% 

skimmed milk powder, 2% BSA, 0.1% NaN3), stored at -20°C  

 1x Washing buffer (0.05% Tween 20 in PBS), stored at RT 

Antibodies: Primary antibodies: monoclonal mouse anti-Bcl-X recognizing Bcl-XL (long) 

protein (BD PharMingen, California, USA) used at 5µg/ml, monoclonal mouse 

anti-Bcl-2 (DAKO, California, USA) at 3.6µg/ml, polyclonal rabbit anti-Bax 

(DAKO) at 13µg/ml, monoclonal mouse anti-p27Kip1 (Santa Cruz, California, 

USA) at 2µg/ml, polyclonal rabbit anti-CDK4 (Santa Cruz) at 1µg/ml and 

monoclonal anti-β-actin (Sigma-Aldrich, Steinheim, Germany) at 24ng/ml, 

stored at 2-8°C 

 Secondary antibodies: anti-mouse, rabbit or goat coupled to horse radish 

peroxidase (DAKO, California, USA), stored at 2-8°C 

Protein Detection:  Hyperfilm ECL double-coated detection film (Amersham Life Science, Uppsala, 

Sweden), ECL Plus™ chemiluminescent detection reagents (Amersham 

LifeScience) contains acridinium ester intermediates react with peroxide under 

slight alkaline conditions to produce a chemiluminescence with max emission at 

λ 430nm, both stored at 2-8°C 

 

Pharmacological Reagents 

TRAIL: human recombinant form of soluble TRAIL employed together with an enhancer antibody for 

multimerization (Alexis Corporation, Lausen, Switzerland) and rhTRAIL-R2:Fc fusion protein: human 

recombinant protein consisting of the extracellular domain of TRAIL receptor 2 (DR5) fused to the Fc 

portion of human IgG1 (Alexis Corporation), both stored at -20°C 

Atorvastatin: atorvastatin calcium powder (supplied by Pfizer GmbH, Karlsruhe, Germany) insoluble in 

aqueous solutions of pH 4 and below, slightly soluble in distilled water, pH 7.4 phosphate buffer, and 

acetonitrile, slightly soluble in ethanol, and freely soluble in methanol), stored at 2-8°C  

Mevalonate: 1N NaOH-activated L-mevalonic acid lactone (Sigma, Steinheim, Germany) was 

neutralized with 1N HCl to pH 7.2, diluted with distilled water, and filter-sterilized, stored at -20°C  
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3 METHODS 
 

3.1 CELL CULTURE 
Cell preparation and handling was always performed under a laminar flow hood, HERASafe 

HS15 or HSP12 (Kendro Laboratory Products, Hanau) and carried out under strict aseptic 

conditions. All cultures and assays were done in culture medium (CM) such as ABM or FBM 

at 37°C in a 5% CO2 atmosphere and 95% humidity. 

 
3.1.1 DENSITY GRADIENT CENTRIFUGATION 
Mononuclear cells were isolated from whole blood using density gradient centrifugation 

according to the method by Boyum (Boyum, 1968). The principle of this method is based 

on the fact that different cell types differ in their density. Density gradients are used to 

separate mononuclear cells (low density) from erythrocytes/granulocytes (high density) and 

to separate live cells (low density) from dead ones (high density).  

Blood was withdrawn from both healthy controls as well as patients suffering from multiple 

sclerosis using EDTA Monovette® blood tubes and infusion set. After diluting with PBS in a 

ratio of blood:PBS of 3:2, the blood suspension was carefully layered on top of 

Lymphoprep™, an iso-osmotic density barrier (ρ = 1.078g/ml at 20°C). Importantly, the 

density gradient and blood had the same temperature, room temperature (RT). 

Lymphoprep™ contains the impermeant ion diatrizoate and a polysaccharide, which causes 

the erythrocytes to aggregate. Following centrifugation at 700g, at RT for 40min, living 

mononuclear cells and thrombocytes form a layer on the surface of the gradient (as a misty 

white interface) whereas granulocytes and erythrocytes sediment lower down in the tube. 

The interface was carefully collected with a pipette, transferred to another tube and 

centrifuged for 15min at 500g at RT. Cells were washed twice (once with PBS, once with 

medium) with centrifugation steps of 10min 250g RT, counted using Trypan blue exclusion 

staining (see Cell Viability Assay below) and resuspended in either culture or freezing 

medium, depending on whether cells were to be placed in culture or frozen at -80°C for 24h 

for subsequent storage in liquid nitrogen. 

 
3.1.2 CELL VIABILITY ASSAY 
The viability of cells was determined by the dye exclusion test. This test is based on the 

principle that certain dyes such as propidium iodide and trypan blue are not able to pass 

the intact membranes. Therefore, one can distinguish between viable cells and dead cells: 
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living cells remain unstained whereas dead cells, permeable to these dyes, are eventually 

stained. 

Cell suspension was mixed 1:1 with Trypan blue. An aliquot of this mixture (c. 10µl) was 

transferred to an improved Neubauer-hemacytometer covered with a coverslip. Unstained 

(viable) cells were counted using a binocular microscope. The total number of viable cells 

was calculated as follows: Total living cells = n x df x V x 104 (n is the no. of cells counted in 

one field of the hemacytometer, df is 2 the dilution factor, V is the volume in which cells are 

suspended) 

 
3.1.3 GENERATION AND MAINTENANCE OF ANTIGEN-SPECIFIC TCLs 
Human antigen-specific CD4+ T cell lines (TCLs) specific for myelin basic protein (MBP), 

tetanus toxoid (TT), or birch pollen (Bet) were generated, as previously described (Zipp et 

al., 1997), from both healthy individuals and from patients suffering from multiple sclerosis. 

MBP was isolated from human brain (see Methods 3.5.1 Protein Purification), birch pollen 

was purified from a crude extract of Betula verrucosa (Allergon, Pharmacia & Upjohn, 

Sweden) and tetanus toxoid was purchased as a vaccine concentrate (Chiron Behring, 

Marburg, Germany). 

 

3.1.3.1 PRIMARY CULTURES AND SPLIT-WELL TECHNIQUE 

Antigen-specific CD4+ TCLs were established using a modified "split-well" protocol (Fig. 4). 

Two hundred thousand peripheral blood mononuclear cells (PBMC) in 200µl AB medium 

(Materials) in the presence of 20µg/ml myelin basic protein (MBP), 8µg/ml birch pollen 

extract (Bet) or 4µg/ml tetanus toxoid (TT) were seeded in 96-well round bottom microtiter 

plates. After 7 days, 20IU/ml recombinant human interleukin-2 (IL-2) (Tecin™, teceleukin, 

Hoffmann-La Roche Inc., Nutley, NJ) were added to the cultures. Seven days thereafter, 

100µL of the 14 day primary cultures were taken from each well of the original master plate 

and split into 2 wells on a new split plate preseeded with 50µl antigen presenting cells 

(3000rad irradiated autologous 1 x 105 PBMC) in the presence or absence of antigen. The 

split plates served for the analysis of antigen specificity by a proliferation assay (see below). 

In parallel, the rest of the 14-day primary cultures (100µl) from the wells of the original 

master plate were added to a new daughter plate preseeded with 100µl antigen presenting 

cells preincubated with antigen (as for split plates). Proliferation plates consisting of T cells 

with and without relevant antigen were incubated for 72h following antigen stimulation. 

Wells in the daughter plate that showed stimulation index of > 2 (indication of antigen 
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specificity) in the corresponding wells of split plates used for the proliferation assay were 

cultured further and expanded.  

 

 
 
Figure 4   Split-well approach  
A master plate contains 14-day primary cultures with specific antigen in 200µl AB medium per well. From 
each original well 100µL were taken and split into 2 wells on a new split plate preseeded with 50µl 
antigen presenting cells (irradiated autologous PBMC) in the presence or absence of antigen. The split 
plates served for proliferation assays. In parallel, 100µl antigen presenting cells preincubated with antigen 
were added to each well of the master plate. Wells that show stimulation index of > 2 in the proliferation 
assay were further cultured and expanded.  

 
3.1.3.2 PROLIFERATION ASSAYS 

Specificity of the different antigen-specific T cell lines was tested by a standard proliferation 

assay via 3H-thymidine incorporation. Proliferation plates consisting of T cells with and 

without relevant antigen were incubated for 72h following antigen stimulation. 3H-thymidine 

(Amersham, Braunschweig, Germany) was then added at a dose of 0.5µCi to each well. 

After 18h, incorporation of radioactivity was measured in counts per minutes (cpm) with a 

Microbeta β counter (Wallac ADL, Freiburg, Germany). In some cases, results of the 3H-

thymidine uptake are expressed as stimulation index (SI). SI = cpm obtained from 

stimulated wells/cpm obtained from control unstimulated wells. 
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3.2 FLOW CYTOMETRIC TECHNIQUES 
Flow cytometry has been used to identify cell populations expressing a given antigen, to 

measure the production of intracellular molecules, in particular cytokines, and to identify 

different DNA populations. Antigens or cytokines were stained by antibodies coupled to a 

specific fluorescent dye and analyzed using a FACSCalibur® flow cytometer (Becton 

Dickinson and Co., Mountain View, CA) equipped with CELLQuest™ software (BD 

Biosciences). 

The principle of flow cytometry is based on light scatter and fluorescence to analyze 

particles or cells in suspension while they flow in a fluid stream one by one through a laser 

ray (488nm, 200mW). The scattered and fluorescent light produced by cells passing 

through the illuminated capillary is collected by a system of lenses, mirrors, filters and 

photodetectors that convert the photon pulses into electronic signals. Further electronic and 

computational processing results in a graphic display and statistical analysis of the 

measured parameters. This technology provides quantitative, multiple analysis on single 

cells. The FACSCalibur is equipped with a 480nm Argon Laser and a 630nm Diode Laser 

and is able to measure and analyze up to six different parameters:  

P1 is Forward scatter (FSC) and is proportional to the cell size. 

P2 is Sideward scatter (SSC) and is proportional to the cell granularity. 

P3 is Fluorescence 1 and is usually proportional to dye intensity of fluorescein isothiocynate 

(FITC) - absorption maximum at 492nm and an emission maximum at 520-530nm. 

P4 is Fluorescence 2 and is usually proportional to dye intensity of phycoerythrin (PE) - 

absorption maximum at 488nm and an emission maximum at 570-576nm. 

P5 is Fluorescence 3 and is usually proportional to dye intensity of propidium iodide (PI) 

absorption max. 495nm and emission max. 639nm and PerCP (peridinin chlorophyll A 

protein).  

P6 is Fluorescence 4 and is usually proportional to dye intensity of Cy5 and 

allophycocyanine, absorption max. 625-650nm and emission max. 660-670nm.  

 

3.2.1 STAINING OF SURFACE ANTIGENS 
Sample preparation and staining of antigen were performed in blocking wash buffer 

(Materials). Cells (105-106) were harvested, washed in a centrifugation step at 300g and 

resuspended in the appropriate volume of buffer. To avoid unspecific binding of antibodies 

to low affinity Fc receptors (expressed on many cell types), cells were incubated before 

staining in FACS wash buffer with 10% pooled human serum (IVIg) for 10min at 4°C. Cells 

were then washed once and incubated with antibody. Antibody solutions were prepared 
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separately in FACS wash buffer, at a final concentration ranging between 0.5 and 7.5µg/ml, 

50µl of this master solution was then added to each sample, in order to ensure that each 

sample received the same concentration of a given antibody.  

After incubation with the primary antibody coupled to fluorescent dye, cells were washed 

twice and pellet was resuspended in 500µl FACS wash buffer. Surface expression was then 

analysed with a FACSCalibur. Data were analyzed using the program CELLQuest. 

 

3.2.2 STAINING OF INTRACELLULAR CYTOKINES 
T cells were stimulated in vitro using the polyclonal activators phorbol ester (PMA) and 

ionomycin. Before stimulation, cells were harvested, washed twice, counted and 

resuspended at 2x106 cells/ml. PMA and ionomycin were added to the culture at 100ng/ml 

and 1µg/ml final concentrations, respectively. Cells were then incubated with the activators 

for 5-6h. In order to block intracellular transport processes, 5µg/ml Brefeldin A was added to 

the culture for the last 2h of incubation. Addition of this protein transport inhibitor during cell 

activation, assures accumulation of the specific cytokines within the cell. 

Following incubation, cells were harvested, washed once with PBS and fixed by 20min 

incubation with 2% paraformaldehyde at a concentration of 1-2x106 cells/ml. Fixation of 

activated cells allows manipulation of the cell membrane without destroying its structure. 

Fixed cells can be stored at 4°C for weeks before performing the intracellular staining. 

After fixation, cells were washed twice with FACS permeabilization buffer (Materials). Cell 

membranes were permeabilized with the detergent saponin (Sigma) to facilitate the 

passage of antibodies through the membrane and staining of intracellular molecules. 

Permeabilized cells were stained for intracytoplasmatic interferon (IFN)-γ and IL-4 by 

incubating with FITC-conjugated mouse anti-human IFN-γ and PE-conjugated mouse anti- 

human IL-4 and FITC-/PE-labeled rat IgG1 isotype control antibodies diluted in 0.1% 

saponin permeabilization solution. After 30min in the dark and at 4°C, cells were washed 

twice with FACS permeabilization buffer and finally in FACS wash buffer (Materials) to allow 

membrane closure. Analysis was performed with the FACSCalibur and 1 x 104 events were 

acquired. 

 

3.2.3 DNA FRAGMENTATION ASSAY 
Degree of DNA fragmentation as a measure of late apoptotic cell death was analyzed as 

previously described by staining DNA with propidium iodide (Nicoletti et al., 1991). The 

principle of this method is based on the observation that fragmented DNA from apoptotic 

cells shows diminished propidium iodide (PI) staining than G0/G1 population of normal 
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diploid cells, identified as a distinct hypo-diploid cell population in flow cytometric 

histograms.  

After 24h incubation in 96-well U-bottomed plates with apoptotic stimulus, 2x105 cells were 

lyzed and nuclei stained by incubating with a hypotonic fluorochrome solution (50µg/ml PI in 

0.1% sodium citrate and 0.1% Triton X-100) for 3h at 4°C. The extent of apoptotic nuclei 

undergoing DNA fragmentation was analyzed by measuring the magnitude of the 

hypodiploid DNA peak with the FACSCalibur. Results were expressed as percentage of 

apoptotic populations from total events and DNA fragmentation indexes calculated by 

dividing the percentage of hypodiploid nuclei from cells incubated with apoptotic stimulus by 

the percentage of hypodiploid nuclei obtained from controls (without stimulus). 

 

3.2.4 STAINING OF APOPTOTIC CELLS: ANNEXIN V ASSAY 
Annexin V–FITC was used to quantitatively determine the percentage of cells undergoing 

apoptosis as previously described (Vermes et al., 1995). The principle of this method relies 

on the property of cells to lose membrane asymmetry during the early phases of apoptosis. 

In apoptotic cells, the membrane phospholipid phosphatidylserine (PS) is translocated from 

the inner leaflet of the plasma membrane to the outer leaflet, thereby exposing PS to the 

external environment. Annexin V is a 35 kDa Ca2+-dependent phospholipid-binding protein 

that binds to PS. Propidium iodide (PI) is a standard flow cytometric viability probe and is 

used to distinguish viable from nonviable cells. Viable cells with intact membranes exclude 

PI, whereas as the membranes of dead and damaged cells are permeable to PI. Cells that 

stain positive for Annexin V–FITC and negative for PI are undergoing apoptosis. Cells that 

stain positive for both Annexin V–FITC and PI either are in the end stage of apoptosis, 

undergoing necrosis, or are already dead. Cells that stain negative for both Annexin V–

FITC and PI are alive and not undergoing measurable apoptosis. After incubation with 

apoptotic stimulus in 96-well flat-bottomed plates, cells were washed twice with PBS and 

stained with Annexin-V for 15min at RT in the dark. Following this incubation 100µl binding 

buffer was added and transferred to FACS tubes. PI (0.5µg/ml) was added directly before 

measurement with the FACSCalibur and 1 x 104 events were acquired. 

 

3.3 CASPASE 3 ACTIVITY ASSAY 
For the analysis of aspargine-glutamine-valine-asparagine-7-amido-4-methylcumarine 

(DEVD)-amc-cleaving caspase activity, a previously described protocol (Wendling et al., 

2000) was used. Briefly, 105 polyclonal T cells were plated in 96-well flat bottom microtitre 

plates, with or without second stimulus. Six hours following induction of apoptosis, T cells 
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were incubated for 10min in lysis buffer and cytosolic extracts were thereafter incubated for 

30min with 20µM of the fluorogenic substrate Ac-DEVD-AMC (Bachem, Heidelberg, 

Germany). The level of fluorescence measured at 360nm excitation and 480nm emission 

wavelengths using a CytoFluor 2400 cytofluorimeter (Millipore Corp., Eschborn, Germany) 

is an indication of caspase 3-like activity. Results are expressed as fluorescence indexes 

calculated by dividing values obtained from wells treated with second stimulus by values 

from control wells (untreated with second stimulus). 

 

3.4 INTRACELLULAR CALCIUM MEASUREMENTS 
Antigenic stimulation of T cells triggers intracellular calcium release and the consequent 

opening of calcium release-activated calcium channels (CRAC) that in turn generate the 

prolonged elevation of intracellular calcium ([Ca2+]i) required for T cell activation (Zweifach 

and Lewis, 1993). Two methods have been employed to measure [Ca2+]i, namely a spectro-

fluorometric method and a flow cytometric method. Since thapsigargin (Tg) has been shown 

to activate the same CRAC as TCR-stimulation by antigen (Aussel et al., 1996), a Tg model 

of calcium influx to bypass TCR signals upstream of the endoplasmic calcium store was 

used for direct monitoring of the influence of external agents on CRAC. Tg blocks the Ca-

ATPase pumps of calcium stores and this model was used in both methods of [Ca2+]i 

measurements.  

Cells, 5 x 106/ml, were loaded with either 2µM of the acetoxymethyl ester precursor of 

FURA-2, FURA-2/AM (for fluorescence spectrophotometer method) or 5µM Indo-1/AM (for 

flow cytometry method) for 30min at 37°C in a shaking water bath. Unloaded dye was 

removed by centrifugation, and cells were resuspended in calcium-free PBS. During 

measurements, cells loaded with either ratiometric fluorescence dyes were incubated with 

0.5mM EGTA for 5 minutes to bind any extracellular calcium. After incubation, 0.25µM Tg 

was added to block the calcium from going in against a concentration gradient and 

therefore allowing calcium to leak out by diffusion. Once all the calcium had leaked out of 

the intracellular stores and CRAC channels were activated, 1.2mM calcium was added to 

the cell suspension.  

 

3.4.1 FLUORESCENCE SPECTROPHOTOMETRY 
A Hitachi F4500 fluorescence spectrophotometer coupled to a PC with F-4500 Intracellular 

Cation Measurement System© software was used. The spectrophotometer is equipped with 

2 excitation monochromators and a dual mirror chopping mechanism to permit rapid 

alternating (30Hz) excitation of FURA-2/AM at 2 wavelengths (340nm and 380nm). The 
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instrument’s parameters were set at 0.1-second response level, 700V PM voltage, 10nm ex 

bandpass, 10nm em bandpass and 300s scan time. The processing parameters were set 

according to Grynkiewicz’s formula and the apparent dissociation constant (KD) set at 

224nm. Measurements were carried out in the dark. 1mL of cell suspension was incubated 

with EGTA or calcium (depending on the type of experiment) for 5min within siliconised 

cuvettes (cuvette compartment is equipped with continuous stirring). After incubation, 

selecting ‘Run Sample’ from the ‘Next Sample’ window initialized the fluorescence trace. 

The ‘Add Marker’ was used to record the time point at which external agents were 

administered to the cell suspension. The fluorescence trace for the 2 wavelengths was 

followed on the monitor. Measurements were terminated by addition of 20µL 10% Triton X-

100 to lyse cells (maximal fluorescence) and 20µL MnCl2 to quench all fluorescence 

(minimal fluorescence). The results obtained (intracellular calcium concentration expressed 

in nM) were calculated using the standard equation: [Ca2+]i = KD * (R – Rmin)/(Rmax – R) as 

described (Grynkiewicz et al., 1985) using 224nm as KD for Ca2+ and FURA-2. 

 

3.4.2 FLOW CYTOMETRY 
The flow cytometric method used was adapted from a method from Griffioen et al. (Griffioen 

et al., 1989). The analyses were performed on a flow-activated cell sorter (BD FACS LSR, 

Becton Dickinson) with up to six fluorescence channels, fitted with three lasers (Ar+ 488nm, 

HeNe 630nm, HeCd 325nm) and designed for Ca2+ flux measurements. The FL4 (510/20) 

and FL5 (380LP) fluorescence channels were used to measure free Indo-1 and the complex 

Ca2+-Indo-1 concentrations, respectively. Calculation of the ratio of these 2 fluorescence 

wavelengths allows the evaluation of changes in cytosolic free Ca2+ concentrations [Ca2+]i 

independently of the cell size and the intracellular Indo-1 concentration. The flow rate was 

set to 300 events/s and the mean ratio of 2000 cells were noted every 20s. Typical 

measurements involved 106 cells in 1ml of calcium-free buffer. Approximately 80s after 

measurement was acquired (baseline), 5µM thapsigargin (Tg) (Calbiochem) was added to 

fully deplete intracellular Ca2+ stores. Following a 5min-incubation with Tg, 1.2mM calcium 

was added to the cell suspension to monitor the extent of Ca2+ influx.  
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3.5 PROTEIN PURIFICATION  
Some of the antigens utilized to establish human antigen-specific T cell lines were prepared 

in the lab. These included myelin basic protein (MBP) and birch pollen (Bet). MBP was 

isolated from human brain and birch pollen was purified from a crude extract of Betula 

verrucosa (Allergon, Pharmacia & Upjohn, Sweden) 

 

3.5.1 EXTRACTION OF MBP FROM HUMAN BRAIN 
Human myelin basic protein (MBP) was purified as described in established protocols (Eylar 

et al., 1974). Briefly, brain sections obtained from autopsies were homogenized with ice-

cold methanol to a turbid suspension and extracted with ice-cold chloroform. Using a 

separating funnel, the lower clear lipid-phase was discarded, whereas the upper dirty water-

phase was preserved and washed with acetone using a Büchner porcelain funnel fitted with 

a Whatman 41 filter paper. The dried brain mass was resuspended in water, adjusted to pH 

2 and the suspension was left to extract overnight at 4°C. On the following day, the extract 

was ultracentrifuged at 5000g for 30min at 4°C and the supernatant was adjusted to pH 5.5 

and mixed for 1h at 4°C for protein precipitation. Following a further centrifugation step, 

crude MBP was obtained from the supernatant. For precipitation of MBP, 50% saturated 

ammonium sulphate was added to the supernatant, mixed for 20min at room temperature, 

adjusted to pH 6 and left stirring overnight at 4°C. On the next day, solution was centrifuged 

at 500g for 30min at 4°C and pellet was carefully resuspended in 10% acidified acetone. 

For protein coagulation, solution was left standing for a maximum of 1h and then 

centrifuged at 585g for 20min at 4°C without lid. The pellet, containing MBP, was 

resuspended in water and dialyzed against water overnight at 4°C. The dialyzed solution 

was then centrifuged at 585g for 20min at 4°C and the supernatant was frozen as a thin-

layered coat at the base of a large round-bottomed flask for lyophilization. The lyophilized 

powder was eventually reconstituted in PBS, sterile filtered through a 0.22µm filter and 

protein was quantified using the BCA assay (3.6.1). Final step protein was run on an SDS-

polyacrylamide gel and stained with Coomasie Blue to confirm purity of MBP. 

 

3.5.2 EXTRACTION AND PURIFICATION OF BIRCH POLLEN (BETV1) 
Birch pollen was purified from a crude extract of Betula verrucosa (Allergon, Pharmacia & 

Upjohn, Sweden) according to established protocols (Wiedermann et al., 1998). Allergen 

extracts were prepared using phosphate-buffered saline (PBS, pH 7.8) as extraction 

medium. After stirring the pollen overnight in PBS (c. 100mg/ml) at 4°C, the medium was 

centrifuged at 4000g for 60min at 4°C. The supernatant was collected, filtered (cellulose 
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acetate, 0.45µm) and dialyzed (Membra-Cel™ Dialysis Membranes, MWCO 7000; Ø 

22mm, Serva) against PBS for 24h. The protein content of the allergen extracts was 

determined using the BCA assay (3.6.1). Final step protein was run on an SDS-

polyacrylamide gel and stained with Coomasie Blue to confirm purity of birch pollen. 

 

 

3.6 PROTEIN DETECTION BY WESTERN BLOTTING 
Western blotting, a conservative semi-quantitative method for the detection of protein is 

useful for the identification and quantification of specific proteins in complex mixtures of 

protein. However, it often requires a subjective interpretation of results. For this reason, 

representative blots have also been included in the Results section. The principle of this 

method is based on a three-step approach for identifying protein: size resolution by gel 

electrophoresis, transfer of separated proteins to a membrane, and specific identification by 

labeled antibodies. 

 

3.6.1 PREPARATION OF TOTAL PROTEIN FROM CELL LYSATE 
Cell pellets (minimum of 3x106 cells) were resuspended in lysis buffer (Materials) with a 

Hamilton syringe and incubated for a minimum of 15min on ice with occassional vortexing in 

between. Cell lysates were centrifuged for 15min at 4°C in a Eppindorf microfuge at 6000g. 

The supernatant was carefully aspirated and transferred to a new microfuge tube and 

protein amounts were determined by the bicinchoninic acid (BCA) method (Pierce, Illinois, 

USA).  

Using the BSA concentrate (Materials) different dilutions for a standard curve was prepared 

(62.5, 125, 250, 500 and 1000µg/ml BSA). Once protein samples and standards were 

pipetted in a 96-well U-bottom plate, a working BCA reagent solution was prepared by 

mixing 50 parts of BCA Reagent A with 1 part BCA Reagent B (Materials) and 150µl was 

added to all samples and standards. Plates were incubated for 30min at 37°C and after 

cooling read with a spectrophotometer (MRX® microplate reader, Dynex Technologies) at 

562nm and measured with Revelation™ (Dynex Technologies) program. 

 

3.6.2 SDS-PAGE AND IMMUNOBLOTTING 
For SDS-polyacrylamide gel electrophoresis (PAGE), 10-15% polyacrylamide resolving gels 

were prepared (1 part TEMED, 25 parts freshly prepared 10% ammonium persulphate 

(APS), 25 parts 10% SDS, 625 parts 1.5MTris (pH 8.8) and 1250 parts 30% acrylamide mix 
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(Materials) and 575 parts water) and 5% polyacrylamide stacking gels layered on top of 

them. Quantified protein samples were denatured by boiling, cooled on ice and resolved on 

the precast gels. Electrophoretic chambers were attached to an electric power supply and a 

voltage of 8 to 15 V/cm was applied to the gel. Transfer of protein from gel to blots was 

done using the wet method. Nitrocellulose membranes, stacking filter paper and resolved 

gel were soaked in transfer buffer and stacked on top of each other such that membrane, 

gel and filters were aligned exactly on top of each other (air bubbles squeezed out) with gel 

on cathode side and the electrical leads connected to a power supply. A current of 

0.65mA/cm2 gel was applied for a period of 1½-2 hours. After blotting, membranes were 

blocked overnight at 4°C or 2h at RT in blocking buffer (Materials). Membranes were 

incubated with specific monoclonal primary antibodies (Materials) for 1h at room 

temperature or overnight at 4°C depending on the specific antibody. In most cases, 

antibodies were diluted in a 1:40 dilution of the blocking buffer to prevent unspecific binding. 

Following a series of washing steps, membranes were incubated for <1h with 1.25µg/ml 

secondary antibody coupled to horse radish peroxidase (Materials). Specific bands were 

detected using the ECL-plus system (Materials). The membranes were exposed to film in 

the dark for a time period, ranging from a few seconds to 1h, depending on the antibodies 

used and developed using a Kodak X-OMAT film-developing machine. Bands were 

densitometrically quantified using TINA Version 2.09g. All immunoblots were sequentially 

incubated with anti-β-actin as control, and specific signals adjusted in relation to the 

expression of this housekeeping gene. Blotting and exposure times were kept constant 

throughout for each molecule under investigation. However, in the case of semi-quantitative 

purposes such as in the Bcl-2 study on MS patients, both patient and healthy control 

samples were loaded and transferred on each immunoblot in order to compensate for minor 

gel-to-gel variations. 

 

3.7 REVERSE TRANSCRIPTASE-POLYMERASE CHAIN REACTION 
Using peqGOLD purification kit (peqLab, Erlangen, Germany), total RNA was isolated from 

PBMC pellets stored at -80°C. Any contaminating genomic DNA was removed by Dnase I 

digestion (Boehringer Mannheim, Mannheim, Germany). cDNA was synthesized from 1µg 

of RNA, using a first-strand cDNA synthesis kit (Pharmacia Biotech, Freiburg, Germany). 

The amplification profiles for the primer pairs were as follows: Bcl-XL 30 cycles, 45s/95°C, 

45s/65°C, 60s/72°C, primer sequences ACAAGGAGATGCAGGTATTGGT (nucleotides 

601-622) and GAGTGGATGGTCAGTGTCTGGT (nucleotides 836-857), glyceraldehyde-3-

phosphate dehydrogenase housekeeping gene (G3PDH) 26 cycles, 45s/95°C, 45s/54°C, 
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60s/72°C, primer sequences GTCAACGGATTTGGTCGTATT (nucleotides 82-102) and 

AGTCTTCTGGGTGGCAGTGAT (nucleotides 601-621). The PCR fragments were 

separated with 2% agarose gels and visualized by ethidium bromide. For all genes, PCR 

protocols were standardized such that the cycle number ensured that PCR amplification 

was in its exponential phase (Schmidt et al., 1998). A water control was included in each 

amplification reaction to rule out the possibility of cross-contamination between reaction 

tubes. For quantification of Bcl-XL, optical density (OD) was measured with BioDocII 

(Biometra, Göttingen, Germany) documentation system. Specific signals were adjusted in 

relation to the expression of the housekeeping gene G3PDH, and expressed as arbitrary 

OD index. 

 

3.8 STATISTICS 
Statistical analyses were performed with SPSS 10.0 software for Windows (SPSS, Chicago, 

USA). Data is typically represented as mean ± SEM (standard error of mean). For group 

comparisons, the non-parametric Mann-Whitney U test was used. Degree of correlation 

was analyzed with the non-parametric Spearman Bivariate Correlation Coefficient test. p 

values < 0.05 were regarded significant. 
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4 RESULTS 
 

4.1 ANALYSIS OF THE BCL-2 FAMILY MEMBERS  
The expression of the apoptosis-regulating Bcl-2 family members (Bcl-2, Bcl-XL and Bax) 

was analyzed in MS patients and compared to healthy individuals. An increased protein 

expression of anti-apoptotic Bcl-XL (Fig. 5), but no alteration in anti-apoptotic Bcl-2 or pro-

apoptotic Bax (Fig. 7), was observed in patients.  

Twenty-three patients (13 females, 10 males) with clinically definite MS (Poser et al., 1983) 

and 29 healthy individuals (15 females, 14 males) were included. Approval from the local 

ethics committee and informed consent from each patient was obtained for this study. 

Fourteen MS patients participating in this study presented with a relapsing-remitting course 

of the disease (RRMS), 4 patients were diagnosed as secondary chronic progressive 

(SPMS) and 5 patients presented with primary chronic progressive MS (PPMS) (Table 1).  

 
Table 1   Clinical features of MS patient groups 

Clinical group Total no. (females) Age (years) 

Multiple sclerosis 23 (13) 40.0 ± 11.8 

RRMSa  14 (10) 33.8 ± 8.2 

PPMSa 5 (1) 53.8 ± 5.6 

SPMSa 4 (2) 42.8 ± 11.3 

   

Healthy controls 29 (15) 33.6 ± 12.2 
a RR = relapsing-remitting; PP = primary progressive; SP = secondary progressive. 
b Values expressed as mean (SD)  

 

Sixteen out of the 23 patients did not receive any immunomodulatory treatment; five 

patients were on interferon-beta (IFN-β) and two patients on other therapies, namely 

mitoxantrone and azathioprine (Table 2).  

 

4.1.1 Bcl-XL but not Bcl-2 or Bax protein upregulation in MS 
Bcl-2, Bcl-XL and Bax protein expression was investigated in resting peripheral 

mononuclear cells of patients with MS and healthy controls using western blotting. The 

immunoblots were sequentially incubated with β-actin as control.  

Bcl-XL bands, detected at 26 kDa, were more intense in MS patients than healthy controls 

(Fig. 5A). Bcl-XL levels were calculated in relation to β-actin, in three independent 

-29- 



4. Results 

experiments. A significant difference in the expression of Bcl-XL was observed between the 

23 MS patients and 29 healthy controls (p=0.014) but no correlation was observed between 

the levels of Bcl-XL and the type of MS (Fig. 5B).  

 
 
Figure 5   Elevated Bcl-XL 
protein expression in MS 
patients 
(A) A representative western blot 
shows that specific Bcl-XL bands, 
detected at 26 kDa, are more 
intense in MS patient samples (Lane 
1-4) compared to healthy controls 
(Lane 5-8) and in relation to β-actin 
reference protein, detected on the 
same blot.  

(B) Each point represents the mean 
Bcl-XL level of 3 independent 
experiments. Bcl-XL levels were 
calculated from the density ratio of 
Bcl-XL:β-actin specific signals on the 
same blot. MS patients (  PPMS;  

 SPMS;  RRMS) express 
significantly higher levels of Bcl-XL 
protein than normal healthy controls 
( ) (p=0.013). Indicated are mean ± 
standard errors of mean (SEM) for 
both, MS patients (0.69 ± 0.07) and 
controls (0.44 ± 0.03). 

 

 

 
Table 2   Bcl-XL expression of MS patients on different treatment regimen 

Clinical groups Bcl-XL
 protein levels a

Multiple sclerosis 0.69 ± 0.07 c

Untreated 0.70 ± 0.08 d

IFN-β b  0.70 ± 0.29 

Other treatment (MT, AZ) b  0.59 ± 0.34 

  

Healthy controls 0.44 ± 0.03 
a expressed as an Bcl-XL:β-actin index, b IFN-β = interferon-beta; MT = mitoxantrone; AZ = azathioprine  
c p = 0.013 compared to levels in healthy controls, d p = 0.006 compared to levels in healthy controls 

-30- 



4. Results 

Interestingly, the subgroup of untreated MS patients revealed a larger difference in the  

Bcl-XL protein levels compared to healthy controls (p=0.006) (Table 2). Patients treated with 

azathioprine (AZ) and mitoxantrone (MT) expressed lower Bcl-XL levels than untreated 

patients or patients treated with IFN-β, although this finding was not statistically significant 

(p>0.05) (Table 2). 

To determine whether the increased Bcl-XL protein expression in MS patients was based on 

a regulation of gene expression, messenger RNA levels by RT-PCR were investigated in 

both, MS patients as well as healthy controls. 

 

 
Figure 6   No alterations in Bcl-
XL mRNA expression  
Specific Bcl-XL signals were adjusted in 
relation to the expression of the 
housekeeping gene, GAPDH, in three 
independent experiments and 
expressed as arbitrary OD indices (see 
Methods). 

 

 

On the contrary to protein expression, no alteration in Bcl-XL mRNA expression (Fig. 6) was 

observed between MS patients and healthy controls. Specific Bcl-XL signals were adjusted 

in relation to the expression of the housekeeping gene, G3PDH, in three independent 

experiments and expressed as arbitrary OD indexes. A mean OD index ± SEM revealed no 

difference between MS patients (1.56 ± 0.22) and healthy controls (1.88 ± 0.48) (p>0.1). 

 
Figure 7   No alterations in Bax and Bcl-2 protein expression 
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Figure 7 (cont.) Representative western blots show no apparent differences in the expression of (A) pro-
apoptotic protein Bax, detected at 24 kDa, and (B) anti-apoptotic protein Bcl-2, detected at 30 kDa, 
between patients (Lane 1-4) and healthy controls (Lane 5-8). (C,D) Bax and Bcl-2 protein levels were 
calculated from the density ratio of Bax:β-actin specific signals and Bcl-2:β-actin specific signals, 
respectively. The data represent the mean ± SEM of (C) Bax/β-actin and (D) Bcl-2/β-actin expression in 
immune cells of all MS patients and healthy controls. Samples from each individual donor were analyzed 
in 3 independent instances and a mean was calculated. 

 

Unlike Bcl-XL, no apparent differences in the expression of both, anti-apoptotic protein Bcl-

2, detected at 30 kDa, and pro-apoptotic protein Bax, detected at 24 kDa, were seen 

between patients and controls (Fig. 7A,B). Bcl-2 and Bax basal levels were calculated in 

relation to β-actin, in three independent experiments, and no statistically significant 

differences were observed between MS patients and healthy controls (Fig. 7C,D). 

 

4.1.2 Increased resistance of immune cells from MS patients to undergo AICD 
The present study made use of a modified model of in vitro AICD (Klas et al., 1993) by 

stimulating day 0 peripheral mononuclear cells ex vivo with 1µg/mL of PHA and eventually 

inducing apoptosis in polyclonal day 6 T cells with 10µg/mL PHA. Mononuclear cells were 

thawed and resuspended at 106/ml in FBM (Materials). Cell viability was determined by 

trypan blue dye exclusion assay (Methods).  

 
Figure 8   Decreased 
susceptibility of T cells 
towards AICD in MS 
Susceptibility of activated 
polyclonal T cells towards 
apoptosis was analyzed with 
caspase 3-like activity and DNA 
fragmentation assays. MS patients 
(closed bars) show a significant 
decrease in apoptotic cell death 
when compared to healthy controls 
(open bars) with respect to caspase 

3-like activity (p=0.013) and DNA fragmentation (p=0.0071). Data represent the mean apoptotic index ± 
SEM. Mean absolute values for caspase 3-like activity: 237 ± 11.3 fluorescence units for unstimulated 
controls and 499.4 ± 26.4 fluorescence units for stimulated cells. Mean absolute values for DNA 
fragmentation: 19.7% ± 0.13 cells with hypodiploid DNA for unstimulated controls and 35.22% ± 0.18 cells 
with hypodiploid DNA for stimulated cells. Both methods for AICD quantification correlated significantly 
with each other (R=0.740, p=0.01). 

 

Following 24h stimulation, T cell blasts (day 1 cells) were washed twice with PBS, split in 

two wells, and thereafter cultured for a further 5 days in complete medium supplemented 
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with 25U/ml IL-2 (Klas et al., 1993). Apoptosis of polyclonal (day 6) T cells was induced with 

a second stimulus of 10µg/ml PHA. The extent of AICD was determined by analyzing the 

activity of downstream caspases, specifically DEVD-amc-cleaving caspase activity, and the 

level of DNA fragmentation. Following kinetic studies, the incubation time of day 6 T cells 

with PHA was established at 6h for DEVD-amc-cleaving caspase activity assays and at 24h 

for DNA fragmentation assays. T cells from MS patients showed a significantly lower 

susceptibility towards AICD than T cells from controls, as shown by both, DEVD-amc-

cleaving caspase activity (p=0.013) and DNA fragmentation (p=0.0071) assays (Fig. 8). 

 

4.1.3 Inverse correlation between Bcl-XL levels and AICD 
Using the Spearman Bivariate Correlation Coefficient test, and taking the whole population 

of patients and controls into account, a significant inverse correlation was observed 

between Bcl-XL levels in peripheral immune cells and the susceptibility of these cells to 

undergo DNA fragmentation (R=-0.406, p=0.016) (Fig. 9). The latter finding implicates a 

role for Bcl-XL in the protection of T cells against AICD. No correlation could be extracted 

between the degree of apoptosis sensitivity and the clinical course of MS. 

 

 
Figure 9   Bcl-XL levels inversely 
correlate with T cell AICD  
Increasing Bcl-XL levels in peripheral 
immune cells accompany a reduced 
susceptibility of T cells towards AICD as 
shown by the significant inverse 
correlation obtained between DNA 
fragmentation indices and Bcl-XL protein 
levels (R=-0.406, p=0.016). 

 

 

 

In this study, the expression of the apoptosis-regulating Bcl-2 family members was 

investigated and, in relation, the T cell susceptibility towards AICD in MS patients compared 

to healthy individuals. An increased protein expression of anti-apoptotic Bcl-XL, but no 

alteration in anti-apoptotic Bcl-2 or pro-apoptotic Bax, was observed in MS patients. 

Overexpression of Bcl-XL was correlated with a decreased susceptibility of polyclonal T 

cells from MS patients to undergo AICD.  
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4.2 CHARACTERIZATION OF HUMAN ANTIGEN-SPECIFIC T CELL LINES 
A panel of human antigen-specific CD4+ T cell lines (TCLs) specific for myelin basic protein 

(MBP), tetanus toxoid (TT), or birch pollen (Bet) from both, healthy individuals and patients 

suffering from multiple sclerosis (Table 3), were generated as previously described. TCLs 

were characterized as T helper 1 (Th1), T helper 2 (Th2) or T helper 0 (Th0)-like cells 

according to their intracellular cytokine profile (Table 4).  

 

4.2.1 Donors for human T cell lines 
MS patients and control individuals donated fresh blood at start of the primary MBP, Bet or 

TT culture and 2 weeks later for the split-well. For the restimulations, frozen autologous 

PBMCs serving as APCs were thawed each week and preincubated with antigen prior to 

addition to the TCLs. The clinical status of the MS donors is listed in Table 3 and the 

reactivity of allergic individuals to birch pollen, measured by RAST method (Pharmacia CAP 

– System, Uppsala, Sweden) was analyzed. 

 
Table 3   Donors for human antigen-specific TCLs 

MS Patient Clinical group  Gender  Age 

BA RRMS F 29 

PE SPMS M 47 

BL RRMS F 43 

GU RRMS F 31 

KI RRMS M 30 

CH RRMS F 21 

BÜ RRMS F 32 
 

Control Birch pollen allergy Gender  Age 

AV NA M NA 

MA NA F 30 

FZ 0.89 kU/l IgE F 39 

MB 5.52 kU/l IgE M 31 

EG 8.89 kU/l IgE F 34 

OW NA M 26 

SE NA M 24 

SR NA F 28 
Most of the patients donating blood for the TCLs were suffering from the relapsing-form of MS 
(RRMS). Control individuals donating for the birch pollen specific TCLs suffer from one or more 
allergies, including birch pollen (IgE conc in serum indicated in kU/l); § NA = not available 
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4.2.2 Characterization of T helper phenotype 

The T helper differentiation was based on the ratio of IFN-γ and IL-4 production. 

Predominant IFN-γ staining by flow cytometry determined a Th1-like cell line, double 

staining a Th0 cell line, and IL-4 staining a Th2-like cell line (Fig. 10). The classification of 

each antigen-specific TCL, both MS patient and healthy control-derived, is listed in Table 4. 

 
Table 4   Human antigen-specific T cell lines 

Control TCLa Antigen Specificity Th-status 

AV4 MBP Th2 

MA1 MBP Th0 

MA14 MBP Th0 

FZ2 MBP Th1 

FZ3 MBP Th0 

FN8 MBP Th1 

MB2 Bet Th0 

MB7 Bet Th2 

MB8 Bet Th2 

MB10 Bet Th0 

MB12 Bet Th2 

EG1 Bet Th2 

EG3 Bet Th2 

EG4 Bet Th2 

OW4 Bet Th0 

OW8 TT Th0 

SE4 TT Th0 

SE5 TT Th0 

SE13 TT Th0 

SR6 TT Th0 

SR12 TT Th2 

FZ4 TT Th0 
 

MS Patient TCLa Antigen Specificity Th-status 

BA1 MBP Th1 

BA4 MBP Th1 

DE1 MBP Th1 

DE4 MBP Th2 

PE4 MBP Th0 

BL4 MBP Th1 

GU3 MBP Th0 
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MS Patient TCLa Antigen Specificity Th-status 

KI2 MBP Th1 

ES10 MBP Th1 

CH2 MBP Th0 

CH3 MBP Th2 

BÜ1 Bet Th2 

BÜ2 Bet Th2 
a Each TCL is denoted with the initials of the donor (MS patient or control) and the indicated antigen 
specificity (MBP = myelin basic protein, Bet = birch pollen, TT= tetanus toxoid) 
All T cell lines exhibited a minimum SI of three at all times indicating acceptable antigen specificity 

 

As shown in Table 4 most TCLs specific to MBP are Th1-like with only a few showing a Th2 

shift (AV4, DE4 and CH3) and allergic TCLs, specific to birch pollen allergen are Th2-like. 

Tetanus-toxoid specific T cells lines typically stain for both IFN-γ and IL-4 cytokines, 

denoting them as Th0-like. 

 
Figure 10 Typical Th1, Th2 and Th0-like cell lines  
FZ2 is a typical Th1, MB7 a typical Th2 and MA1 a typical Th0-like cell line. Resting TCLs (Day 7-8) were 
stimulated with 0.1µg/ml PMA and 1µg/ml ionomycin in the presence of 5µg/ml brefeldin A. After 5h, cells 
were harvested, fixed and stained for intracytoplasmic interferon (IFN)-γ and IL-4 by incubating with 
fluorescein (FITC)- conjugated rat anti-human IFN-γ (XMG1.2, PharMingen), phycoerythrin (PE)- 
conjugated rat anti-mouse IL-4 (11B11, PharMingen) and FITC-/PE-labeled rat IgG1 isotype control 
antibodies (R3-34, PharMingen). Analysis was performed with a FACSCalibur® flow cytometer (Becton 
Dickinson and Co., Mountain View, CA) equipped with CELLQuest software, and 1 x 104 events acquired. 

 

4.2.3 MBP epitope mapping of human antigen-specific T cells 
T cell reactivity to major encephalitogenic myelin antigens has been studied extensively in 

Caucasian patients with MS (Meinl et al., 1993; Correale et al., 1995; Wallstrom et al., 

1998). The peptide-binding motif of the HLA-DR2 (DRA*0101-DRB1*1501) gene product has 

been determined in the MBP peptide recognized by T cell clones derived from Caucasian 

patients with MS (Wucherpfennig et al., 1994).  
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To identify the epitopes recognized by the MBP-specific TCLs utilized in this study, the 

reactivity of the TCLs against MBP antigen peptides was screened. Sixteen 19-mer 

peptides (Table 5) spanning the whole MBP molecule, displaced by 10 aa and overlapping 

by 9 aa, were synthesized using standard F-moc chemistry on an Abimed AMS 422 multiple 

peptide synthesizer (Abimed, Langenfeld, Germany). Mass spectroscopy was performed on 

a matrix-assisted laser desorption/ionization–time-of-flight mass spectrometer (Laser 

BenchTopII; Applied Biosystems). The purity of the products was characterized by 

analytical high-pressure liquid chromatography. All peptides were stored at 10mg/mL in 

DMSO and aliquots of 1mg/ml in medium. 

 
Table 5   Amino acid sequences of synthetic peptides for 170MBP 

Peptide Amino acid sequence 

MBP1–19 ASQKRPSQRHGSKYLATAS 

MBP11–29 GSKYLATASTMDHARHGFL 

MBP21–39 MDHARHGFLPRHRDTGILD  

MBP31–49 RHRDTGILDSLGRFFGGDR  

MBP41–59  IGRFFGGDRGAPKRGSGKD  

MBP51–69  APKRGSGKDSHHAARTTHY  

MBP61–79  HHAARTTHYGSLPQKSHGR  

MBP71–89  SLPQKSHGRTQDENPVVHF 

MBP81–99  QDENPVVHFFKNIVTPRTP  

MBP91–109  KNIVTPRTPPPSQGKGRGL  

MBP101–119  PSQGKGRGLSLSRFSWGAE  

MBP111–129 LSRFSWGAEGQRPGFGYGG  

MBP121–139  QRPGFGYGGRASDYKSAHK 

MBP131–149  ASDYKSAHKGLKGVDAQGT  

MBP141–159 LKGVDAQGTLSKIFKLGGR  

MBP151–170  SKIFKLGGRDSRSGSPMARR 
 

Resting T cell lines (Day 7 following last restimulation) were cultured in the absence or 

presence of MBP, to determine the level of specificity of the cell line, and in parallel with 

5µM of each of the above listed overlapping MBP peptides. Reactivity towards peptide was 

analyzed 96h after incubation with whole antigen/peptides by proliferation assays utilizing 

[3H]–thymidine uptake. Peptide specificities from eight TCLs (5 from healthy controls: MA1, 

MA14, FN8, FZ2, LS7 and 3 from MS patients: CH3, KI2, GU3) are shown in Fig. 11. Data 

are expressed as mean stimulation index (as compared to unstimulated controls) ± SEM.  
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Figure 11 Peptide specificity of MBP-autoreactive TCLs  
T cell lines from healthy controls (A-E) and MS patients (F-H) were cultured in the absence or presence of 
different MBP peptides for 96h. Peptide specificity was analyzed by proliferation assessment utilizing 
[3H]–thymidine uptake in triplicates. Results are expressed as mean stimulation index (as compared to 
unstimulated controls) ± SEM.  
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As shown in Fig. 11, TCLs from 2 MS patients (KI2, GU3) showed reactivity to MBP141–159 

epitope, whereas TCLs from a third patient (CH3) showed reactivity to MBP81–99 epitope. 

TCLs MA1 and MA14 (both from the same healthy control, MA) showed reactivity to  

MBP101–119 peptide and TCLS FZ2 and FN8 (both from the same healthy control, FZ) 

showed reactivity to MBP31–49 peptide.  This is in line with original work on the MBP-specific 

T cell repertoire where the MBP29–48 domain was mostly recognized by control-derived 

TCLs and the MBP80–105 domain frequently by MS patient-derived TCLs (Meinl et al., 1993). 

 

The TCR of the MBP-specific CD4+ TCLs recognizes MBP antigen in the context of MHC 

class II on APC. In principle, there are two types of MHC molecules: class I, which includes 

human leukocyte antigens (HLA)-A, -B and -C, and class II, which includes HLADR, -DP 

and -DQ. The latter antigens take up peptide, which is recognized by CD4+ T cells. Donors 

for the MBP-specific TCLs were tissue typed for the HLA class II antigens. Genomic DNA 

was prepared from PBMC of each individual by the salting-out method (Miller et al., 1988). 

Typing for the polymorphism of HLA class II-loci was performed by polymerase chain 

reaction amplification with sequence specific primers, as described previously (Olerup and 

Zetterquist, 1992). The DR, DQ and DP type of most of the donors for the TCLs is 

presented in Table 6 according to established nomenclature (Schreuder et al., 1999). 
 

Table 6   HLA Typing of MS patients and controls 

Patient DR  DQ DP 

BL (F) B1*0808/1515 B5*pos(51) B1*0404/0606 B1*0401/1301 

CH (F) B1*1515/1616 B5*pos(51) B1*0505/0606 - 

KI (M) B1*0101/0404 B4*pos(53) B1*0303/0505 - 
 

Control DR  DQ DP 

LS (F) B1*0404 B4*pos(53) B1*0303 - 

MA (F) B1*09012(9)/1313 B3*pos(52), B4*pos(53) B1*0606/0303 - 

FZ (F) B1*1313/1515 B3*pos, B4*neg, B5*pos B1*0606 - 
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4.3 ROLE OF TRAIL IN HUMAN ANTIGEN-SPECIFIC T CELL LINES 
Although expressing death inducing receptors TRAIL receptor 1 and 2, human T cells are 

not killed by soluble leucine-zipper TRAIL in vitro (Wendling et al., 2000). However, studies 

on animal models of autoimmune diseases suggested an influence of TRAIL on T cell 

growth and effector function. Systemic neutralization by TRAIL receptor 2 was 

demonstrated to exacerbate collagen-induced arthritis (Song et al., 2000) and EAE (Hilliard 

et al., 2001). Therefore, immunoregulatory effects of TRAIL other than clonal deletion by 

induction of apoptosis were investigated in the human immune system using characterized 

antigen-specific human T cell lines. For this, a human recombinant form of soluble TRAIL 

was employed together with an enhancer antibody for multimerization (Materials) 

 

4.3.1 TRAIL inhibits proliferation of human antigen-specific T cells  
As outlined in Table 7, TRAIL inhibited the antigen-induced proliferation of 22 characterized 

T cell lines, in eight of them (highlighted in gray) by more than 40%. The inhibitory effect 

was independent of the antigen-specificity and Th1/Th2 differentiation of these T cells. 

Furthermore, no differences in the proliferative response of the T cell lines derived from MS 

patients or healthy individuals were observed. TRAIL at concentrations ranging from 30 to 

300ng/ml did not affect proliferation of the T cell lines cultured with APC in the absence of 

the nominal antigen (data not shown). 

 
Table 7   TRAIL inhibits proliferation of human antigen-specific T cell lines 

TCL Donor Antigen Specificity TH-status % InhibitionMax
* TRAIL†

BA1 MS MBP Th1 32.1 300 

BA4 MS MBP Th1 46.5 100 

BL4 MS MBP Th1 63.8 300 

GU3 MS MBP Th0 47,9 100 

KI2 MS MBP Th1 39.1 300 

ES10 MS MBP Th1 6.2 100 

BU2 MS MBP Th2 38.6 300 

CH2 MS MBP Th0 54.1 300 

AV4 control MBP Th2 53.8 300 

MA1 control MBP Th0 19.8 300 

MA3 control MBP NA§ 16.85 300 

MA7 control MBP NA§ 9.3 300 

MA14 control MBP Th0 27.8 100 
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TCL Donor Antigen Specificity TH-status % InhibitionMax
* TRAIL†

FZ2 control MBP Th1 47.3 300 

MB2 control Bet Th0 19.9 100 

MB7 control Bet Th2 49.3 300 

MB8 control Bet Th2 47.0 300 

OW8 control TT Th0 20.5 30 

SE4 control TT Th0 18.2 100 

SE5 control TT Th0 15.7 30 

SE13 control TT Th0 17.6 300 

FZ4 control TT Th0 36.8 100 
*  % Inhibition = (cpm in the presence of TRAIL/cpm in the absence of TRAIL) x 100; max % inhibition from TRAIL 

concentrations used; † Lowest TRAIL conc in ng/ml at which max inhibition is observed, § NA = not available  

Proliferation was assessed by [3H]–thymidine uptake and measured as counts per minute (cpm). All 
T cell lines showed a stimulation index (SI) >3 and the effect of TRAIL on antigen-stimulated 
proliferation was investigated in each particular cell line >3 times. Highlighted in gray are TCLs, 
whose proliferation is inhibited by more than 40% 

 

4.3.2 TRAIL-induced hypoproliferation is independent of Ag presentation  
To investigate whether the TRAIL-induced hypoproliferation is due to interference with 

antigen-processing or -presentation, 12 representative T cell lines were stimulated with 

plate-bound anti-CD3 (1µg/ml) and soluble anti-CD28 (2.5µg/ml) antibodies.  

 
 
Figure 12 TRAIL inhibits proliferation of TCLs independently of APC 
T cell lines were cultured in the absence or presence of different TRAIL concentrations for 96h. 
Proliferation was assessed by [3H]–thymidine uptake in triplicates. Results from 2 representative TCLs, 
stimulated once with specific antigen and once by direct triggering of TCR are expressed as mean 
stimulation index (as compared to unstimulated controls) ± SEM.  (A) MBP-specific T cell line FZ2 
antigen-stimulated (background 198cpm), (B) MBP-specific TCL FZ2 anti-CD3/CD28-stimulated 
(background 227cpm), (C) Bet-specific TCL MB7 antigen-stimulated (background 121cpm), (D) Bet-
specific TCL MB7 anti-CD3/CD28-stimulated (background 276cpm). 
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As demonstrated in Fig. 12, TRAIL substantially inhibited T cell proliferation, also in the 

absence of APC, indicating that this cytokine influences T cell function directly rather than 

via APC-mediated signals. 

 

4.3.3 TRAIL dose-dependently decreases Ca2+ influx  
Antigenic stimulation of T cells triggers intracellular calcium release and the consequent 

opening of calcium release-activated calcium channels (CRAC) that in turn generate the 

prolonged elevation of cytosolic calcium ([Ca2+]i) required for T cell activation (Zweifach and 

Lewis, 1993). A lasting rise greater than 200nM is required to induce IL-2 synthesis 

(Negulescu et al., 1994). Since thapsigargin (Tg) has been shown to activate the same 

CRAC as TCR-stimulation by antigen (Aussel et al., 1996), a Tg model of calcium influx 

was used to bypass TCR signals upstream of the endoplasmic calcium store and to directly 

monitor the influence of TRAIL on CRAC. As shown in Fig. 13A, addition of external calcium 

to Tg-treated cells causes a peak in intracellular calcium, and incubation with TRAIL causes 

a downregulation of this calcium entry into the cell. The blockade of calcium influx was 

further accompanied by an inhibition of proliferation (Fig. 13B) indicating that TRAIL 

negatively regulates human T cell calcium channels. 

 
 
Figure 13 TRAIL induces a dose-dependent decrease in Ca2+ influx 
(A) This panel shows the [Ca2+]i measured by fluorescence spectrophotometry of an MBP-specific T cell 
line (GU3) and is representative of 6 independent experiments. Cells were incubated for 1h at 37°C in the 
absence (bold trace) or presence of 100ng/ml (thinner trace) and 300ng/ml (thinnest trace) TRAIL and 
enhancer. FURA-2/AM-loaded resting T cell lines were incubated with 0.5mM EGTA for 5min, during the 
last minute the calcium trace was started . To activate CRAC channels cells were treated with 2µM 
thapsigargin for 5min . Ca2+ entry was seen upon addition of 1.2mM-extracellular Ca2+ . 
Measurements were terminated by Triton-X (maximal calcium) and 3mM MnCl2 fluorescence quencher 
(minimal calcium)  (see Methods) (B) The TRAIL-induced decrease in Ca2+ influx was followed by an 
inhibition of proliferation. During the same time point, GU3 showed hypoproliferation with TRAIL (65% 
inhibition with 300ng/ml) as analyzed by [3H]-thymidine uptake. 
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TRAIL reduced Ca2+ influx to a minimum, just within the lower concentration limit (200nM) 

required for IL-2 production and consequent proliferation.  

Additionally, co-incubation of TRAIL with 4µg/ml of a human recombinant protein consisting 

of the extracellular domain of TRAIL receptor 2 (DR5) fused to the Fc portion of human IgG1 

(rhTRAIL-R2:Fc fusion protein; Alexis) antagonized the inhibitory effect of TRAIL (Fig. 14). 

Thus, this further confirms that interaction of TRAIL with its receptors negatively regulates 

human T cell calcium channels resulting in reduced T cell activation.  

 
 
Figure 14 TRAIL-induced inhibition in Ca2+ influx is reversed by sDR5:Fc 
Bet-specific T cell line (MB8) was incubated with the enhancer alone (2µg/ml) as negative control, TRAIL 
co-incubated with sDR5:Fc (4µg/ml) or TRAIL alone. Addition of the TRAIL R2 fusion protein antagonized 
the inhibitory effect of TRAIL on calcium influx (A) and subsequent proliferation (B). 

 

4.3.4 TRAIL inhibits G1/S transition   
T cell proliferation upon TCR engagement is controlled by a large number of positive 

regulators such as cyclins and cyclin dependent kinases (CDK), and negative regulators 

such as CDK inhibitors (Nagasawa et al., 1997; Appleman et al., 2000). Since DNA 

synthesis and [3H]-thymidine incorporation occur during the S phase of the cell cycle, TRAIL 

could block cell cycle progression during the G1 to S phase transition. CDK4 allows transit 

through the G1 phase of the cell. Therefore, the influence of TRAIL on expression of this 

kinase was examined. Furthermore, the expression of the cyclin-dependent kinase inhibitor, 

p27Kip1, was investigated since it has recently been found to be responsible for the blockade 

of clonal expansion of anergic T cells (Boussiotis et al., 2000; Jackson et al., 2001). The 

expression levels of CDK4 and the kinase inhibitor p27Kip1 were measured following both 

antigenic stimulation and anti-CD3/CD28 stimulation in the presence or absence of TRAIL 

in 7 T cell lines. Fig. 15 depicts data from a representative T cell line showing an 

upregulation of CDK4 upon T cell stimulation as expected (Nagasawa et al., 1997; 
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Appleman et al., 2000) and a downregulation upon incubation of TRAIL with either of both 

stimuli, MBP (Fig. 15A) and anti-CD3/CD28 (Fig. 15B). This indicates an inhibition of cell 

cycle progression at the G1/S transition level. However, p27Kip1 expression was unaltered in 

the presence of TRAIL, which therefore excludes induction of clonal anergy by TRAIL as an 

underlying mechanism of the observed inhibitory properties on T cell activation. 

 

 
 
Figure 15 TRAIL downregulates expression of CDK4 
The MBP-specific T cell line (LS4) was restimulated with either (A) antigen (MBP) for 72h or (B) anti-
CD3/anti-CD28 stimulus for 24h in the presence (+) or absence (-) of 100ng/ml of TRAIL and 
enhancer. Lysates were prepared and equal amounts of protein were analyzed by 12% SDS-PAGE. 
Blots were sequentially incubated with CDK4, p27Kip1, and β-actin antibodies.  

 

Once again, co-incubation of TRAIL with 4µg/ml of the human recombinant TRAIL receptor 

2 (rhTRAIL-R2:Fc) fusion protein antagonized the inhibitory effect of TRAIL (Fig. 16) 

confirming once more a requirement for an interaction between TRAIL and its receptor to 

regulate human T cell cycle progression. 

 

 
Figure 16 Influence of TRAIL 
on cell cycle regulation is 
reversed by sDR5:Fc 
The CDK4 downregulatory effect of 
TRAIL could be reversed by co-
incubation with sDR5:Fc (4µg/ml), 
whereas the enhancer antibody 
(2µg/ml) which served as irrelevant 
control protein did not affect the 
regulation of CDK4. 
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4.4 MECHANISM OF ACTION OF ATORVASTATIN 
Atorvastatin is capable of treating and preventing relapsing paralysis in experimental 

encephalomyelitis by targeting Th1 cells (Youssef et al., 2002; Aktas et al., 2003). Along 

with several other statins, atorvastatin has been long-approved through several large-scale 

intervention trials for the treatment of hypercholesterolemia (rev. Maron et al., 2000) 

Statins are known to inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase 

(Fig. 17), thereby inhibiting isoprenoid synthesis and subsequent isoprenylation of signaling 

molecules such as Ras, Rho and Rac from the Ras superfamily. 

 

 

 

 

 

 

 

 

 

 
Figure 17 Cholesterol 
biosynthesis pathway 
Inhibition of HMG-CoA reductase by 
statins decreases the synthesis of 
isoprenoids and cholesterol. PP 
indicates pyrophosphate. 

 

In order to understand via which mechanisms atorvastatin is inducing its protective and 

therapeutic effects on EAE, the immunoregulatory effects of this statin were investigated in 

the human immune system using characterized antigen-specific human T cell lines. Since 

pure atorvastatin (provided by Pfizer) is not soluble in PBS, the stock was dissolved in 2% 

DMSO (100µM stock in 2% DMSO). The carrier was used as vehicle control in the same 

dilution as atorvastatin. Atorvastatin inhibited not only antigen-specific responses, but also 

decreased T cell proliferation mediated by direct TCR engagement independently of MHC 

class II and LFA-1. Inhibition of proliferation was not due to apoptosis induction, but linked 

to a negative regulation on cell cycle progression. However, early T cell activation was 

unaffected, as reflected by unaltered calcium fluxes. Thus, these results provide evidence 

for a beneficial role of statins in the treatment of autoimmune attack on the CNS. 
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4.4.1 Atorvastatin inhibits proliferation of human antigen-specific T cells  
To investigate whether atorvastatin interferes with antigen-specific proliferation, antigen-

specific TCLs were incubated with varying doses (1-25µM) of statin for 96h. Proliferation 

was assessed by measuring the extent of 3[H]-thymidine uptake. The doses of 1-25µM 

atorvastatin used in these assays are comparable to the levels measured in human plasma 

(rev. Lea and McTavish, 1997; Stern et al., 2000).  

 
Figure 18 Atorvastatin inhibits T cell proliferation in a dose-dependent manner 
Bet-specific TCL MB7 (A) and MBP-specific TCL FN8 (B) were stimulated with or without antigen 
presented by irradiated autologous APC in the absence or presence of different concentrations of 
atorvastatin (filled bars) or vehicle alone (open bars), and following 96h incubation 3[H]-thymidine uptake, 
as a measure of proliferation, was assessed. 

 

As indicated in Fig. 18, antigen-specific proliferation of both, the Bet-specific TCL MB7 (Fig. 

18A) and the MBP-specific TCL FN8 (Fig. 18B), was suppressed by atorvastatin in a dose-

dependent manner. Interestingly, blockade of proliferation was also observed when 

atorvastatin was added to proliferating T cells, 24h or 48h after stimulation (Fig. 19).  

 

 
Figure 19 Atorvastatin 
inhibits proliferation of 
already activated T cells
  
The representative human Bet-
specific T cell line MB7 was 
stimulated with (+) or without  
(-) antigen presented by 
irradiated autologous APC. 
Atorvastatin (filled bars) or 
vehicle (open bars) was added 
immediately (0h), after 24h or 
48h antigen presentation. 

This points to further 
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pathways of immunomodulatory function in addition to those involving a reduced MHC class 

II upregulation by inhibition of the inducible promoter IV of the transactivator CIITA (Kwak et 

al., 2000), and the blockade of LFA-1/ICAM-1 interactions (Weitz-Schmidt et al., 2001) by 

statins.  

 

4.4.2 Atorvastain inhibits proliferation independently of Ag presentation 
To determine whether the inhibition of T cell proliferation to be via direct T cell receptor 

engagement, TCLs were stimulated independent of Ag presentation, by anti-CD3/CD28.  

As shown in Fig. 20, 3[H]-thymidine uptake of the cell lines, FN8, was also markedly 

suppressed by atorvastatin when stimulated with anti-CD3/CD28. Thus, in an environment 

lacking APC, expressing MHC class II and ICAM-1, atorvastatin is nonetheless capable of 

inhibiting proliferation.  

 
Figure 20 Atorvastatin inhibits 
proliferation independently of 
antigen presentation 
The representative human MBP-
specific TCL FN8 was stimulated with 
or without 1µg/ml coated anti-CD3 
and 2.5µg/ml soluble CD28 in the 
absence or presence of different 
concentrations of atorvastatin (filled 
bars in grayscale) or vehicle alone 
(open bars), and following 72h 
incubation 3[H]-thymidine uptake, as a 
measure of proliferation, was 
assessed. 

 

 

4.4.3 No role of atorvastatin in early T cell activation 
In T cells a rise in [Ca2+]i is one of the first events occurring following stimulation. In this 

study, the thapsigargin model of calcium influx was used once again to directly monitor the 

influence of atorvastatin on CRAC (s. Sections 1.1.1, 3.4 and Results 4.3.3). For this 

experiment a flow cytometric method was used, adapted from Griffioen et al. (Griffioen et 

al., 1989). The analyses were performed on a flow-activated cell sorter (BD FACS LSR, 

Becton Dickinson), designed for Ca2+ flux measurements. 
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Figure 21 Intracellular calcium measurement using flowcytometry 
The representative Bet-specific T cell line EG8 is demonstrated as an example for the measurement of 
Ca2+ influx by flow cytometry. Cells were incubated for 1h in the absence (vehicle) or presence of 
atorvastatin and Ca2+ influx was monitored, using a thapsigargin model of CRAC activation. Gadolinum, a 
Ca2+ entry blocker, was used as positive control. 

 

As shown in Fig. 21-22 atorvastatin did not mediate any influence on calcium influx 

therefore indicating no impact on early T cell activation. 

 

 
Figure 22 Atorvastatin does not influence Ca2+ influx 
(A) Quantification of the intracellular calcium levels shows no effect of atorvastatin on calcium influx. Cells 
were incubated for 1h at 37°C in the absence ( ) or presence of 5µM atorvastatin (ë) and corresponding 
vehicle control ( ). 250µM Gadolinum (ï) was used as positive control. Indo-1/AM-loaded resting T cell 
lines were incubated at 3-4 x 106 cells/ml with 0.5mM EGTA for 5min, during the last minute of which the 
calcium trace measurement was started . To activate CRAC by depletion of intracellular stores, cells 
were treated with 2µM thapsigargin for 5-6min  and Ca2+ entry was observed upon addition of 1.2mM-
extracellular Ca2+ . (B) During the same time point, EG8 showed hypoproliferation with atorvastatin as 
analyzed by [3H]-thymidine uptake. 
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4.4.4 Impact of atorvastatin on cell cycle regulation  
Statins block the synthesis of isoprenoid intermediates essential for the isoprenylation and 

function of intracellular signaling molecules such as Ras and Rho (rev. Liao, 2002). 

Geranylgeranylated Rho, for example, has been reported to be essential for the 

degradation of p27Kip1 (Hirai et al., 1997) and therefore Rho’s inhibition by statins could 

result in the upregulation of this inhibitor of cyclin dependent kinases, thereby restricting the 

progression of T cells from the G1 to S Phase in T cells. For this reason the influence of 

atorvastatin on the expression of this negative regulator of cell cycle was investigated. In 

addition, CDK4 expression was analyzed. The expression levels of CDK4 and the kinase 

inhibitor p27Kip1 were measured following 24h anti-CD3/CD28 stimulation in the presence or 

absence of atorvastatin. 

Growth inhibition by atorvastatin was associated with an inhibition in the regulation of cell 

cycle progression (Fig. 23) as shown by a downregulation of the positive cell cycle regulator 

CDK4 and upregulation of the negative cell cycle regulator p27Kip1. This finding, together 

with a direct effect of atorvastatin on T cell function suggests an inhibition of T cell cycle 

progression at the late part of the G1 phase. 

 

 
Figure 23 Atorvastatin modulates expression of cell cycle regulators 
The representative human Bet-specific T cell line EG8 was stimulated by anti-CD3/CD28 in the presence or absence 
of atorvastatin, and the expression of CDK4 and the CDK inhibitor p27Kip1 was assessed after 24h by 
immunoblotting. During the same time point, EG8 showed hypoproliferation with atorvastatin as analyzed 
by [3H]-thymidine uptake (see Fig. 22). 

 

4.4.5 Reversibility of atorvastatin-induced effects by L-mevalonate 
Since atorvastatin can confer its immunomodulatory effects both via (Kwak et al., 2000) and 

independently of (Weitz-Schmidt et al., 2001) HMG-CoA reductase inhibition, the role of the 

HMG-CoA pathway (Fig. 17) in the observed T cell targeted antiproliferative effect was 
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investigated by employing mevalonate. By employing this product of HMG-CoA reduction 

the reversibility of the atorvastatin-induced effects could be examined.  

Mevalonate was used at a concentration of 200µM. L-mevalonic acid lactone (Sigma) was 

activated by 1N NaOH. The resulting solution was neutralized with 1N HCl to pH 7.2, diluted 

with distilled water, and filter-sterilized.  

 
Figure 24 HMG-CoA-reductase-dependent T cell hypoproliferation by atorvastatin 
The Bet-specific MB7 (A) and MBP-specific FN8 (B) TCLs were stimulated with anti-CD3/CD28 together 
with increasing doses of atorvastatin and corresponding vehicle dilutions (open bars) and the presence 
(hatched bars) or absence (grey-scale filled bars) of 200µM L-mevalonate. 

 

As shown in Fig. 24, the inhibitory effects of atorvastatin on 3[H]-thymidine uptake and 

therefore T cell proliferation could be reversed by L-mevalonate, providing direct evidence 

that the immunomodulatory effects of atorvastatin are mediated by inhibition of HMG-CoA 

reductase. Additionally the influence of atorvastatin on cell cycle regulation could also be 

inverted by addition of mevalonate as shown by the return of p27 to normal levels (Fig. 25). 

This indicates that the cell cycle arrest brought about by statins could be reversed and 

could therefore be mediated via HMG-CoA reductase mechanisms. 

 
Figure 25 Role of HMG-
CoA-reductase in p27Kip1 
regulation 
The same cell line, MB7, 
demonstrated a reversibility of the 
atorvastatin-induced upregulation 
of the CDK inhibitor p27Kip1 by 
200µM mevalonate. Resting cells 
were co-treated with mevalonate 
and atorvastatin throughout the 
24h anti-CD3/CD28 stimulus. 
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5 DISCUSSION 
 

The pathological mechanisms involved in the autoimmune disease of the CNS, multiple 

sclerosis (MS), are far from completely understood. The current hypothesis is that 

autoreactive T cells, which are not controlled by apoptotic mechanisms such as activation-

induced cell death (AICD), are orchestrating the pathogenesis of this condition. In this 

thesis, a reduction in the susceptibility of T cells from MS patients to undergo AICD was 

reported. A dysregulation in T cell control might be associated with an imbalance in 

apoptotic molecules. In fact, this study implicates an increase in Bcl-XL levels as potential 

mechanism for the observed resistance towards AICD in MS patients. According to the 

current hypothesis, autoreactive T cells, specific towards myelin antigen, transmigrate the 

blood-brain barrier into the CNS. After further presentation of autoantigen by glial cells, 

these pro-inflammatory T cells get reactivated and instigate the inflammatory and 

destructive process observed in MS. Thus, it became clear that T cell activation, 

proliferation and elimination are major players in the pathogenesis and therefore potential 

targets for therapeutic strategies in MS. The focus of this thesis was to identify the role of 

regulatory molecules for T cell survival in the immune pathogenesis of MS, and to 

investigate antiproliferative or apoptosis-promoting effects on T cells by potential 

therapeutic targets. In this dissertation the 2 candidate substances TNF-related apoptosis 

inducing ligand (TRAIL) and atorvastatin were investigated and were both shown to 

interfere with cell cycle progression in antigen-specific T cell lines.  

 

 

IDENTIFICATION OF THE ROLE OF T CELL APOPTOSIS-REGULATING MOLECULES 

A limitation in the apoptotic regulation of autoreactive T cells in the periphery and in the 

CNS may contribute to the pathophysiology of MS. One of the aims of this thesis was to 

identify the role of apoptosis regulating molecules associated with T cell elimination in MS. 

Members of the Bcl-2 family are renowned regulators of apoptosis, critical for normal 

development and maintenance of T cell homeostasis (rev. Adams and Cory, 1998). In 

particular, Bcl-XL has a predominant role in T cell growth and death (Boise et al., 1995; 

Broome et al., 1995; Peter et al., 1997). On investigating the protein expression of the three 

main members of the Bcl-2 family (Bcl-XL, Bcl-2, and Bax), anti-apoptotic member Bcl-XL 

was reported to be increased in MS patients (Fig. 5), whereas expression of both, anti-

apoptotic Bcl-2 as well as pro-apoptotic Bax were unaltered (Fig. 7). In contrast to Bcl-2, 

Bcl-XL was reported to be upregulated upon T cell receptor-mediated activation, 
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determining resistance of T cells towards CD95-mediated apoptosis. In fact transformed T 

cells could be rendered resistant to apoptosis by transfection with Bcl-XL (Boise et al., 1995) 

and susceptibility towards apoptosis was accompanied by a downregulation of Bcl-XL levels 

(Peter et al., 1997). In mice, transgenic expression of Bcl-XL increased T cell antigen-

specific proliferation (Issazadeh et al., 2000) and enhanced T cell survival in vitro when 

these cells were left unstimulated or stimulated without anti-CD28 (Wells et al., 1999). In 

fact, blockade of T cell clearance by overexpressing Bcl-XL led to earlier onset and more 

severe expression of EAE, as well as a reduction in remission (Issazadeh et al., 2000). 

Since Bcl-2 expression was also reported to be comparable in T cells of MS patients and 

neurologic controls by others (Semra et al., 2001) but was shown to correlate with 

remyelination in MS plaques, specifically oligodendrocytes (Kuhlmann et al., 1999), this 

survival molecule might play a more important role in the apoptosis modulation of cells 

primarily localized within the CNS.  

Although the mechanism of action of Bcl-2 family members remains to be fully clarified, 

these factors have been reported to regulate cell survival. They accomplish this function by 

either promoting or suppressing apoptotic pathways initiated at the mitochondria (Memon et 

al., 1995; Strasser et al., 1995; Erhardt and Cooper, 1996), where Bcl-XL and the other 

members of the Bcl-2 family are predominantly located (Hsu et al., 1997). The 

mitochondrion is one checkpoint in intrinsic apoptotic pathways that activates its own 

initiator and effector caspases via compartmentalization of cytochrome c (rev. Vander 

Heiden and Thompson, 1999). It has been suggested that peripheral T cells might be 

independent of mitochondrial functions following CD95 signaling (Scaffidi et al., 1998). 

However, growing evidence shows that the extrinsic and intrinsic pathways of caspase 

activation are tightly interconnected (Li et al., 1998). Overexpression of Bcl-XL was 

correlated with a decreased susceptibility of polyclonal T cells from MS patients to undergo 

AICD (Fig. 9). AICD is an apoptotic deletional mechanism, involving the CD95 system, 

which is supposed to regulate peripheral T cell tolerance. In the in vivo situation, AICD 

occurs when previously primed T cells are repeatedly activated (rev. Van Parijs and Abbas, 

1996; rev. Janssen et al., 2000). An in vitro model of AICD was used in this study, a model 

which via repetitive mitogenic stimulation attempts to exemplify the susceptibility or 

resistance of antigen-reactive T cells towards apoptosis in vivo. AICD data showed an 

impairment of T cells from MS patients to undergo apoptosis (Fig. 8). An inverse correlation 

of Bcl-XL levels with susceptibility of T cells to undergo AICD (Fig. 9) is in line with previous 

data on the significance of this anti-apoptotic protein in T cell resistance (Peter et al., 1997).  
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The observation of elevated Bcl-XL levels in MS patients together with an involvement of 

this molecule in the earlier induction and reduced remission of EAE (Issazadeh et al., 2000) 

offer perspectives towards manipulation of this apoptosis-regulating molecule as a means 

of therapy in MS.  Antisense oligonucleotide therapies directed against members of the Bcl-

2 family are in fact currently under investigation in studies on cancer cell lines (Leech et al., 

2000; Olie et al., 2002) as well as in the treatment of lymphoma patients (Webb et al., 1997; 

Waters et al., 2000).  

 

MODULATION OF T CELL RESPONSE AS A THERAPEUTIC STRATEGY 

The treatment of autoimmune diseases is still in its infancy: glucocorticoids and other 

immunosuppressants remain the mainstay therapies. Three types of medications are 

currently approved for the treatment of MS. These include various formulations of IFN-β; 

glatiramer acetate (GA), a random copolymer of four amino acids; and mitoxantrone, a drug 

previously approved for use in cancer. The most encouraging results have been obtained 

with the Type I interferon, IFN-β (rev. Chofflon, 2000). IFN-β has been shown to reduce 

relapse rates, slow the progression of disability and substantially reduce the accumulation 

of new MRI lesions in patients with relapsing-remitting (RR) MS (The IFNB Multiple 

Sclerosis Study Group, 1993; Johnson et al., 1995; Jacobs et al., 1996; Jacobs et al., 2000; 

Comi et al., 2001). IFN-β has been suggested to mediate its effect by inhibiting T cell 

activation (Rudick et al., 1993) and by interfering with lymphocyte migration into the brain 

(Stuve et al., 1996). Type-I interferons have also been reported to augment AICD of T cells, 

not only in healthy controls (Kaser et al., 1999b) but also in patients suffering from MS 

(Kaser et al., 1999a). On the other hand, GA, which was actually developed due to its ability 

to suppress EAE in various forms in rodents and primates, alters the cytokine production by 

autoimmune T cells and competes with MBP at the MHC and TCR level (Milo and Panitch, 

1995). Since 1993, IFN-β1b and IFN-β1a, along with synthetic GA have been implemented 

as immunomodulatory agents for the treatment of MS in Europe and the US (rev. Galetta et 

al., 2002). However, the heterogeneity of autoimmune diseases such as MS challenges 

investigations for the discovery of new immune interventions, which are more effective than 

the present pleiotropic medications available. In fact current therapies are only moderately 

effective and reduce disease exacerbations by only 30% (Johnson et al., 1995; The IFNB 

Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis 

Group, 1995). Based on clinical experience with rather non-selective therapies, the goal is 

to identify newer target-specific substances with better selectivity to maximize the benefit to 

risk ratio.  
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Here, two different substances, both interfering with cell cycle regulation, were investigated. 

The first candidate was the recently discovered member of the TNF/NGF family of death 

ligands, TNF-related apoptosis inducing ligand (TRAIL) and the second candidate was 

atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme (HMG-CoA) reductase inhibitor and 

lipid-lowering drug already indicated for anomalies in lipid metabolism. 

 

T cell modulation by TNF-related apoptosis-inducing ligand (TRAIL) 
Death ligand TRAIL was originally thought to have the capacity to induce T cell elimination 

due to its high-affinity binding properties to death-inducing receptors (Truneh et al., 2000). 

However a selectivity of TRAIL in its killing has been shown. Although T cells express the 

death-inducing TRAIL receptors 1 and 2, they were shown to be resistant to apoptosis by 

soluble leucine-zipper TRAIL in vitro (Wendling et al., 2000). Nonetheless, studies on 

animal models of autoimmune diseases suggested an influence of TRAIL on T cell growth 

and effector function since systemic neutralization by TRAIL receptor 2 was demonstrated 

to exacerbate collagen-induced arthritis (Song et al., 2000) and experimental autoimmune 

encephalomyelitis (Hilliard et al., 2001). In this study, immunoregulatory effects of TRAIL, 

other than apoptosis, were investigated in human untransformed antigen-specific human T 

cell lines, which were previously shown to be immune to TRAIL-induced apoptosis. The 

results obtained from this study show that TRAIL is capable of inhibiting T cell activation, 

subsequent cell cycle progression, and cytokine production in human antigen-specific T 

cells. Exogenous treatment of TRAIL to antigen-specific TCLs resulted in an inhibition in 

proliferation, albeit to varying degrees and irrespective of T helper differentiation or donor 

(Table 7). Whereas marked dose-dependent inhibition was apparent in one third of the T 

cell lines, the other T cell lines exhibited only slight effects. Both foreign (TT/Bet-specific) 

and autoreactive (MBP-specific) T cell lines and T cells derived from patients with multiple 

sclerosis as well as healthy individuals were inhibited. The reduction of T cell proliferation 

was also independent of antigen specificity. Since the inhibitory effect on T cell proliferation 

by exogenously applied TRAIL was shown to be dose-dependent, lower TRAIL 

concentrations in supernatants of activated T cells, which are comparable to serum levels of 

healthy volunteers (data not shown), might be ineffective in modulating T cell growth. 

However, this does not exclude a possible impact of soluble TRAIL on T cell activation and 

growth in inflammatory situations. Of note, an upregulation of TRAIL in peripheral immune 

cells of MS patients could be explained as a secondary compensatory mechanism that 

downregulates the inflammatory response (Huang et al., 2000). 
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An independency on antigen presentation was concluded since the inhibitory effect was 

also observed in anti-CD3/CD28-stimulated T cells (Fig. 12). Thus, TRAIL directly 

influences T cell function. Concerning the mechanisms of the observed apoptosis-

independent properties of death ligand TRAIL, an interference with cell cycle regulation was 

revealed. Cell cycle regulators such as cyclins, cyclin-dependent kinases (CDKs) and CDK 

inhibitors are important for the coordination of T cell proliferation. Cells entering the G1 

phase after TCR engagement are characterized by an upregulation of cyclin D and CDK4/6 

(Modiano et al., 1994; Kwon et al., 1997). Investigating CDK4 expression in antigen-specific 

T cells, in parallel to the TRAIL-induced hypoproliferation, showed a downregulation of this 

positive cell cycle regulator with TRAIL (Fig. 15), indicating an inhibition of cell cycle 

progression at the G1/S transition. Apart from their known function in cell cycle progression, 

cell cycle regulators have also been shown to control mechanisms implicated in T cell 

tolerance, such as anergy (rev. Balomenos and Martinez, 2000). The cycling inhibitor 

p27Kip1 contributes to the association and activation of cyclin D with their complementary 

CDK and was recently demonstrated to be important for the induction and maintenance of T 

cell anergy (Boussiotis et al., 2000; Jackson et al., 2001). No evidence for an involvement 

of TRAIL in peripheral T cell tolerance was found since p27Kip1 expression was unaltered 

(Fig. 15) and IL-2 production upon secondary antigen challenge remained the same (data 

not shown).  

Calcium influx is crucial to lymphocyte activation, including cytokine generation and cell 

proliferation (rev. Qian and Weiss, 1997) and the inhibition of calcium-dependent signaling 

pathways was shown to completely suppress T cell activation (rev. Lewis and Cahalan, 

1995). To identify whether the inhibitory effect of TRAIL could be related to alterations in 

calcium signaling, a thapsigargin-model for monitoring calcium influx was utilized. Following 

TRAIL incubation, an inhibition of calcium entry through calcium-release activated channels 

(CRAC) was observed in human T cells. Inhibition of CRAC channels has also been 

described for other TNF-superfamily members. Applying the same model utilized here for 

evoking calcium entry, TNF-α was reported to inhibit store-operated calcium influx in a rat 

thyroid cell line (Tornquist et al., 1999) and CD95-stimulation was reported to inhibit 

activation of calcium channels and subsequent IL-2 synthesis in apoptosis-resistant Jurkat 

T cells (Lepple-Wienhues et al., 1999). The latter observation indicates that the CD95 

system might play a role in anergy induction prior to or in the absence of apoptosis. TRAIL, 

however, reduced calcium influx to a level, just within the lower concentration limit required 

for subsequent IL-2 production and proliferation (Negulescu et al., 1994), and thus showed 

no anergy-inducing properties in the T cell lines investigated.  
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The present observations of apoptosis-independent immunomodulatory properties of TRAIL 

in vitro, implicate TRAIL in the regulation of inflammatory conditions such as those involved 

in the autoimmune disease MS. However, TRAIL seems to play an additional role in T cell 

effector-functions within the CNS. TRAIL has been shown to induce massive cell death of 

brain cells, including neurons, astrocytes, and oligodendrocytes (Nitsch et al., 2000). 

Therefore, untransformed human brain tissue, which lacks TRAIL but expresses apoptosis-

mediating TRAIL receptors on oligodendrocytes and neurons, is potentially susceptible to 

TRAIL-mediated apoptosis (Dorr et al., 2002a). Since T cells upregulate TRAIL upon 

activation (Wendling et al., 2000), the scenario might be that T cells, which invade the brain, 

might induce cell death of the parenchymal cells via TRAIL /TRAIL receptor interaction. In 

fact activated T cells could induce TRAIL-mediated glioma cell death (Dorr et al., 2002b). 

Additionally cell-to-cell contact was a prerequisite for this TRAIL-mediated brain cell 

apoptosis, indicating an involvement of surface-expression of this ligand in the cytotoxicity 

observed in the CNS pathology. Therefore, the roles of surface-expressed and soluble 

TRAIL need to be dissected.  

As presented here, soluble TRAIL inhibited T cell activation and cell cycle progression in 

the present in vitro study. This indicates that unlike the membrane-bound form, high 

amounts of soluble TRAIL are rather involved in systemic immunomodulation. Additionally, 

the suppression of calcium-dependent lymphocyte activation might represent a primary 

mechanism responsible for the immunomodulatory properties of TNF/NGF superfamily 

members. These molecules are known to be critically involved in the regulation of immune 

responses and are currently being targeted for therapeutic modulation in autoimmune and 

malignant diseases (Rau, 2002).  

 

T cell modulation by Atorvastatin 
Another potential therapeutic candidate analyzed here was atorvastatin, from the statin 

group of drugs. Statins, also referred to as 3-hydroxy-3-methylglutaryl coenzyme A (HMG-

CoA) reductase inhibitors, were originally indicated for the sole treatment of lipid anomalies. 

These effects are attributed to alteration in cholesterol metabolism (end product of HMG-

CoA pathway) and reduction in low-density lipoprotein (LDL) formation (rev. Maron et al., 

2000). However, in 1995 a new mode of action for statins was discovered since increased 

survival in cardiac transplant recipients following pravastatin therapy was reported to be 

independent of its cholesterol-lowering effects (Kobashigawa et al., 1995). This observation 

prompted subsequent in vitro studies, which demonstrated that statins interfered with 

production of several important proinflammatory mediators (Pahan et al., 1997; Youssef et 
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al., 2002). Lovastatin, like atorvastatin an HMG-CoA reductase inhibitor, suppressed 

production of inducible nitric oxide synthase (iNOS) and secretion of TNFα by IFN-γ-

activated astrocytes and microglia (Pahan et al., 1997). iNOS and TNFα may play important 

roles in the inflammatory process of MS (Steinman, 2001). In fact lovastatin blocked the 

development of acute inflammation during EAE by inhibiting iNOS, TNFα and IFN-γ 

expression in the CNS (Stanislaus et al., 2001) but most probably also by inhibiting LFA-1 

(Weitz-Schmidt et al., 2001) and IFN-γ-induced MHC class II expression (Kwak et al., 

2000). Kwak et al. demonstrated that statins inhibit the IFN-γ-induced expression of MHC 

class II on most APC, including B cells and macrophages, by suppressing the inducible 

promoter IV of the transactivator CIITA (Kwak et al., 2000). A recent study showed that 

certain statins inhibit the LFA-1-dependent stimulation of T cells and that a lovastatin-based 

LFA-1 inhibitor reduces infiltration of neutrophils in the murine thioglycollate-induced 

peritonitis model (Weitz-Schmidt et al., 2001). Overall, these data indicate the potential of 

cholesterol-reducing agents, such as atorvastatin, in MS therapy (Bradbury, 2002).  

Indeed, atorvastatin inhibits the inflammation observed in the animal model of MS in both a 

preventive as well as therapeutic manner (Youssef et al., 2002; Aktas et al., 2003). Having 

demonstrated the inhibitory effects of atorvastatin on murine cells in vivo and in vitro (Aktas 

et al., 2003), the influence of this statin on the proliferation of human antigen-specific TCLs 

was investigated. As indicated in Fig. 18, antigen-specific proliferation of both a birch pollen 

(Bet)-specific TCL (MB7) as well as an MBP-specific TCL (FN8) was suppressed by 

atorvastatin in a dose-dependent manner. Since inhibition of proliferation was also 

observed when atorvastatin was added to proliferating T cells, 24h or 48h after antigen 

presentation (Fig. 19) an MHC class II independent pathway was thought to be involved. To 

confirm this, the ability of atorvastatin to block T cell proliferation in response to direct T cell 

receptor engagement, independently of antigen-presentation, was tested. As shown in Fig. 

20 proliferation of the same TCLs following stimulation with anti-CD3/CD28 was markedly 

suppressed by atorvastatin. Thus, in an environment lacking APC, which express MHC 

class II and ICAM-1, atorvastatin is nonetheless capable of inhibiting proliferation. 

Therefore, a reduced MHC class II induction (Kwak et al., 2000) and blockade of 

LFA-1/ICAM-1 interactions (Weitz-Schmidt et al., 2001), required for the transmigration of 

mononuclear cells into the CNS (Stanislaus et al., 2001) is not sufficient to explain the 

antiproliferative effect of atorvastatin in human anti-CD3/CD28-stimulated T cells (Fig. 20).  

No impact of atorvastatin on early T cell activation was observed, since calcium influx was 

unaffected (Fig. 21-22). This suggests that the left arm of the T cell signaling cascade 

initiated by protein tyrosine kinases (PTKs) as depicted in Fig. 3 to be unaffected by statins.  
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An influence of statins on cell cycle regulation has previously been reported in rat 

mesangial cells (Danesh et al., 2002) and in aortic cells by upregulation of p27Kip1 (Weiss et 

al., 1999) via Ras and/or Rho, a family of GTPase proteins from the Ras superfamily. Ras 

promotes cell cycle progression via activation of the mitogen-activated protein kinase 

pathway (rev. Hughes, 1995) whereas Rho causes cellular proliferation possibly through 

destabilizing p27Kip1 protein (Hengst and Reed, 1996), responsible for the blockade of clonal 

expansion of anergic T cells (Boussiotis et al., 2000). GTPase proteins function as 

GDP/GTP-regulated switches that cycle between an active GTP-bound state and an 

inactive GDP-bound state. They accumulate in the vicinity of the T cell membrane following 

TCR ligation and phosphorylation of guanine nucleotide exchange factor (GEFs; such as 

Grb2 and SOS) by upstream protein tyrosine kinases (PTKs) (Nel et al., 1995). Figure 26 

shows a schematic representation of how specific Ras signaling pathways link with the 

regulation of cell cycle progression (rev. Pruitt and Der, 2001). 

Apart from necessitating activation by GEFs to switch to an active GTP-bound state, 

GTPases require posttranslational modification, specifically isoprenylation, in order to fulfill 

their function. Protein isoprenylation permits the covalent attachment, subcellular 

localization, and intracellular trafficking of membrane-associated proteins (rev. Liao, 2002). 

This process is mediated by isoprenoid intermediates of the HMG-CoA cholesterol 

biosynthetic pathway, such as geranylgeranylpyrophosphate (GGPP) and 

farnesylpyrophosphate (FPP) (see Fig. 17). Farnesylation of Ras by FPP recruits serine-

threonine kinase Raf-1 to the membrane (Fig. 3) and results in the activation of the 

MAPK/ERK signaling pathways (rev. Rincon et al., 2000) and geranylgeranylation of Rho by 

GGPP has been reported to be essential for the degradation of p27Kip1 (Hirai et al., 1997) 

(Fig. 26). Therefore, the isoprenylation of GTPase molecules is essential for the activation 

of downstream signaling pathways involved in cell cycle progression. Indeed, MAPK 

signaling following farnesylation of Ras is important for the induction of AP-1 transcription 

factors, consisting of dimeric proteins such as the Jun and Fos sub-family. c-Jun was 

reported to be necessary for the expression of cyclin D1 (a positive regulator of cell cycle, 

specifically G1/S progression), which associates with cyclin dependent kinases (CDK). 

Regulators of the cell cycle such as CDK4 are important for the phosphorylation and 

inactivation of the retinoblastoma (Rb) tumor suppressor protein (Fig. 26), which otherwise 

binds to E2F, recruiting histone deacetylases to the promoters of E2F-responsive genes 

and repressing their transcription (Wisdom and Verma, 1993). 

Therefore, by blocking HMG-CoA reductase and mevalonate synthesis, statins prevent the 

synthesis of important isoprenoid intermediates of the cholesterol biosynthetic pathway, 
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important for the isoprenylation of Ras and Rho, ultimately important for cell cycle 

progression. The possible interference at the T cell cycle level by atorvastatin was 

investigated in this study. The growth inhibition by atorvastatin was associated with a 

downregulation of CDK4 and an increased expression of p27Kip1 (Fig. 23), thus revealing an 

inhibition of cell cycle progression by atorvastatin at the late part of the G1 phase. 

The proposed atorvastatin mechanism of action on APC-independent T cell cycle 

progression and proliferation, suggests a direct influence of statins on HMG-CoA reductase. 

To confirm this hypothesis, T cells were cotreated with an intermediate product of HMG-

CoA reductase, mevalonate, along with the statin. In fact, this analysis revealed a 

reversibility of the statin-induced hypoproliferation (Fig. 24) as well as cell cycle arrest (Fig. 

25), following co-administration with mevalonate. Therefore, one may deduce that 

atorvastatin is rather involved in an inhibition of isoprenylation of Rho or Ras (by FPP and 

GGPP), necessary for MAPK signaling and the destabilization of the CDK inhibitor p27Kip1. 

 

 
Figure 26 Proposed mechanisms of action of statins in immunomodulation 
Statins inhibit IFN-γ-induced expression of MHC class II on APC and the LFA-1-dependent stimulation 
of T cells. This study extends a role for statins in T cell–cycle regulation. By inhibiting the HMG-CoA 
reductase pathway and therefore isoprenoid synthesis, statins prevent the isoprenylation of Ras and 
Rho (required for cell-cyle regulation) by farnesylpyrophosphate and geranylgeranyl-
pyrophosphate  (adapted from (rev. Pruitt and Der, 2001)). 
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Since atorvastatin mediated an upregulation of p27Kip1, an involvement of statins in the 

induction of anergy as a mechanism of peripheral T cell tolerance is feasible. Future studies 

should aim at investigating the involvement of atorvastatin in anergizing T cells, possibly by 

monitoring IL-2 production and proliferation following preincubation with statin and 

reencounter with antigen. The unresponsive state observed in some models of T cell 

anergy may also be the result of CTLA-4 receptor upregulation, which antagonizes the 

effects of CD28 (Perez et al., 1997). Therefore, such prospective studies would determine 

whether the HMG-CoA-reductase mediated statin-induced cell cycle arrest to be mediated 

via an influence on costimulatory signals.  

 

CONCLUSIONS AND PERSPECTIVES 

Most therapies, both those currently employed in the clinic and those under preclinical 

investigation, induce their immunomodulatory effects, either by promoting apoptotic 

elimination of potentially harmful T cells or by inhibiting activation and further proliferation of 

these cells. Although this is the mode of action of currently available medications, these 

drugs are pleiotropic in their actions and have a low success rate in reducing relapses. New 

treatment approaches are still under preclinical investigation or undergoing clinical trials and 

include monoclonal antibodies to immune system receptors, cytokines, and chemokines or 

the application of drugs previously approved and already employed in other diseases. 

Concerning the latter therapeutic approach and in view of the data described here on 

atorvastatin, clinical trials, including a simvastatin multicenter phase II study, are currently 

being undertaken for the safety evaluation of statins in MS (National Multiple Sclerosis 

Society Advisory Committee, 2002, Internet Communication). Additionally, the observation 

of an elevation in Bcl-XL levels in patients which correlates with a decreased susceptibility of 

their T cells to undergo apoptosis also offers perspectives towards therapeutic manipulation 

in MS. Antisense oligonucleotide therapies directed against members of the Bcl-2 family are 

for example already under investigation in the treatment of lymphoma patients (Webb et al., 

1997; Waters et al., 2000). Additionally, a large number of pre-clinical studies on other 

potential therapeutic strategies targeting T cell responses have been reported. Such studies 

include the selective phosphodiesterase type 4 inhibitor rolipram (Sommer et al., 1997), the 

tetracycline minocycline (Nessler et al., 2002; Popovic et al., 2002) and the 

thiazolidinedione peroxisome proliferator-activated receptor agonist pioglitazone (Feinstein 

et al., 2002). All these candidates have been shown to reduce and/or protect against the 

clinical signs of EAE. A prerequisite for finding innovative treatment strategies for MS is to 

identify mechanisms influenced upon inhibiting T cell function and thereafter targeting the 
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identified molecules within the complex signaling machinery with highly selective agents. 

Novel molecules targeting specific intracellular molecules with high selectivity would 

enhance the efficacy to risk ratio associated with therapy. The reported interference with 

cell cycle regulation as underlying mechanism for TRAIL and atorvastatin-mediated 

modulation of human T cell responses has therapeutic implications. This is further 

supported by data on the influence of both agents on T cell growth and effector function in 

the EAE animal model (Hilliard et al., 2001; Youssef et al., 2002; Aktas et al., 2003). While 

the TRAIL-mediated interference with T cell activation and further cell cycle progression is 

still in the pre-clinical phase, statins, which have also been shown here to interfere with the 

T cell cycle, are already employed in the clinic for other ailments.  

The overall goal is to identify new mechanisms involved in the immunomodulatory role of 

effective therapeutic agents on T cells, thus enabling the successive development of highly 

selective pharmacological intervention in MS.   
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ZUSAMMENFASSUNG 
 

Multiple Sklerose (MS) ist eine heterogene Krankheit des Zentralnervensystems, 

deren pathologische Mechanismen noch nicht vollständig aufgeklärt sind. Die 

gegenwärtige Hypothese ist, daß pro-inflammatorische T-Zellen entscheidend an der 

Pathogenese der MS beteiligt sind. Man geht davon aus, daß eine Fehlregulation der T-

Zell-Kontrolle, möglicherweise bedingt durch ein Ungleichgewicht an Apoptose-

regulierenden Molekülen, dabei eine Rolle spielt. Tatsächlich zielen therapeutische 

Strategien darauf ab, T-Zell-Aktivierung,  Proliferation und Produktion von Zytokinen zu 

verringern, oder T-Zell-Eliminierung zu fördern. Diese Arbeit sollte zum einen die 

Bedeutung regulatorischer Faktoren klären, die für das überleben der T-Zellen von  

MS-Patienten verantwortlich sind. Zum anderen sollten die antiproliferative oder 

Apoptose-fördende Wirkung potentiell therapeutisch wirksamer Moleküle untersucht 

werden. 

Eine eingeschränkte Regulation der autoreaktiven T-Zellen durch Apoptose in der 

Peripherie und im ZNS trägt möglicherweise zur Pathophysiologie der MS bei. Als 

Schlüsselfaktoren der Regulation von Apoptose wurden Mitglieder der Bcl-2-Familie in 

MS-Patienten und Probanden untersucht. Diese Faktoren wurden in Relation zu der 

Suszeptibilität der T-Zellen gegenüber aktivierungsinduziertem Zelltod (sog. Activation-

induced cell death oder AICD) überprüft. Um die in-vivo-Elimination der Antigen-

reaktiven T-Zellen nachzuahmen, wurde ein in-vitro-Modell des AICD mit repetitiver T-

Zell-Stimulation verwendet. Tatsächlich zeigten polyklonale T-Zellen von MS-Patienten 

eine verringerte Suszeptibilität für AICD, nachgewiesen sowohl durch verminderte 

Caspaseaktivtät (p=0.013) als auch durch DNA-Fragmentierung (p=0.0071). Weiter 

wurden höhere Spiegel des Proteins Bcl-XL in den Immunzellen von MS-Patienten mit 

Immunoblotting gemessen (p=0.014). Eine inverse Korrelation zwischen der Expression 

an Bcl-XL und der Empfindlichkeit der T-Zellen gegenüber AICD steht in 

Übereinstimmung mit vorhergehenden Daten bezüglich der Bedeutung dieses Proteins 

für die Apoptose-Resistenz von T-Zellen. Es wurde bereits gezeigt, daß dieses Molekül 

die Ausprägung der experimentell-autoimmun Enzephalomyelitis, des Tiermodells der 

MS, verstärkt. Zusammen mit den erhöhten Bcl-XL-Werten bei MS-Patienten, ergeben 

sich nun Perspektiven für einen therapeutischen Ansatz. 

Abgesehen von dem Konzept die apoptotische Eliminierung von T-Zellen zu 

unterstützen, streben gegenwärtige therapeutische Strategien an, die Aktivierung und 
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weitere Proliferation der schädlichen T-Zellen zu hemmen. Basierend auf klinischer 

Erfahrung mit eher unselektiven Therapien, ist es ein therapeutisches Ziel, neue 

immunomodulatorische Substanzen mit besserer Selektivität zu finden, um das 

Nutzen/Risiko-Verhältnis zu maximieren. Aus diesem Grund wurden zwei 

unterschiedliche Substanzen untersucht die beide den Zellzyklus beeinflussen. Als 

erster Kandidat wurde der kürzlich entdeckte Todesligand TRAIL (engl.: TNF-related 

apoptosis inducing ligand) aus der TNF/NGF-Familie untersucht, da diesem bereits T-

Zell-regulatorische Funktionen zugeschrieben worden waren, humane Antigen-

spezifische T-Zellen jedoch resistent gegenüber TRAIL-induzierter Apoptose sind. Der 

zweite Kandidat mit potenziell therapeutischer Wirkung bei MS ist Atorvastatin, ein 

HMG-CoA-Reduktase-Hemmer, der bereits als Lipidsenker bei Patienten eingesetzt 

wird. 

Um die Hypothese zu überprüfen, daß diese Substanzen T-Zell-Rezeptor-Signale 

beeinflussen können, wurden humane Antigen-spezifische T-Zell-Linien von MS-

Patienten und gesunden Probanden eingesetzt. Diese wurden hinsichtlich T-Helfer-

Phänotyp und Peptid-Spezifität charakterisiert. Eine Behandlung mit TRAIL führte zur 

Hemmung der Proliferation in unterschiedlichem Ausmaß (6.2% - 63.8%). Atorvastatin 

hemmte in Abhängigkeit von der Dosis ebenso die Proliferation Antigen-spezifischer T-

Zellen. Beide Substanzen wirkten antiproliferativ unabhängig von der 

Antigenpräsentation, aufgrund ihrer Fähigkeit, die Proliferation in Abwesenheit von 

professionellen Antigen-präsentierenden Zellen zu vermindern. Diese Eigenschaft weißt 

auf einen direkten Einfluß auf die T-Zell-Funktion hin. Die TRAIL-induzierte 

Hypoproliferation war assoziiert mit einer Herunterregulation der Zyklin-abhängigen 

Kinase CDK4 (engl.: cyclin dependent kinase 4), einem Schlüsselenzym für die nach T-

Zell-Rezeptor-Stimulation einsetzende Transition von der G1- zur S-Phase des 

Zellzyklus. Inkubation mit Atorvastatin induzierte ebenso eine Verminderung von CDK4, 

begleitet von einer Erhöhung von p27Kip1. Die Atorvastatin-vermittelte Proliferations- und 

Zellzyklus-Blockade konnte durch Mevalonat rückgängig gemacht werden. Mevalonat 

ist ein Zwischenprodukt des HMG-CoA-Reduktaseweges. Atorvastatin scheint demnach 

einen direkten Einfluß auf diese Enzymkaskade zu haben, der wichtig für die 

Isoprenylierung von GTPase-Proteinen der Rho-Familie ist. 

T-Zell-Rezeptor-Stimulation führt zur Freisetzung von Kalzium aus intrazellulären 

Speichern und nachfolgend zur Öffnung transmembranöser Kalzium-Kanäle (sog. 

calcium release-activated calcium oder CRAC-Kanäle), die eine für die T-Zellaktivierung 
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notwendige und anhaltende Erhöhung der intrazellulären Kalzium-Konzentration 

hervorruft. Nach Behandlung mit TRAIL wurde eine konzentrationsabhängige Inhibition 

des Einstroms extrazellulärer Kalzium-Ionen durch die CRAC-Kanäle beobachtet. Dies 

wurde mit löslichem TRAIL-Rezeptor-Fusionsprotein, einem TRAIL-Antagonisten, 

rückgängig gemacht. Die Blockade von Kalzium-abhängigen Aktivierungssignalen stellt 

damit möglicherweise einen primären immunregulatorischen Mechanismus für diese 

Todesliganden dar. Jedoch wurde keine Auswirkung von Atorvastatin auf die T-

Zellaktivierung beobachtet, da der Einstrom von extrazellulärem Kalzium nicht 

beeinflußt wurde. 

Während Studien zum TRAIL-vermittelten Einfluß auf die T-Zell-Aktivierung und dem 

Zellzyklus erst in der präklinischen Phase sind, werden Statine, die ebenfalls den 

Zellzyklus beeinflussen, bereits in der Therapie anderer Erkrankungen angewand. 

Darüber hinaus werden derzeit bereits klinische Studien mit Statinen zur MS-Therapie 

durchgeführt. Weitere Untersuchungen zu den detaillierten Mechanismen 

antiproliferativer Substanzen mit potenziellem therapeutischen Effekt in der MS 

ermöglichen die Entwicklung von selektiveren immunomodulatorischen Therapien mit 

höherem therapeutischen Nutzen für MS-Patienten. 
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ABBREVIATIONS 
 
Aa Amino acid 
Ab Antibody 
Ag Antigen 
AICD Activation-induced cell death 
AIF Apoptosis-inducing factor 
AP-1 Activator protein 1 
APAF-1 Apoptotic protease activating factor-1 
APC Antigen-presenting cell 
APS Ammonium persulphate 
BBB Blood-brain barrier 
BCA Bicinchoninic acid 
Bet Betula verrucosa (birch pollen) 
BSA Bovine Serum Albumin 
[Ca2+]i Intracellular calcium concentration 
Caspase Cysteine aspartyl-specific protease 
CD Cluster of Designation 
CDK Cyclin dependent kinase 
CIITA MHC class II transactivator 
CNS Central nervous system 
CRAC Calcium release-activated calcium 
CTLA-4 Cytotoxic T-lymphocyte antigen 
DAG 1,2-Diacyl glycerol 
DEVD aspargine-glutamine-valine-asparagine-7-amido-4-methylcumarine 
DIABLO Direct IAP binding protein with low pI 
DMSO Dimethyl sulphoxide  
DR Death receptor 
DTT Dithiothreitol 
EAE Experimental autoimmune encephalomyelitis 
ECL Enhanced Chemiluminescence System 
EDTA Ethylenediaminetetraacetic acid 
EGTA Ethylene Glycol-bis(β-aminoethyl Ether) N,N,N’N’-tetraacetic acid 
ER Endoplasmic reticulum 
Erk Extra-cellular signal regulated kinase 
et al. et alii (and others) 
FADD Fas-associated death domain protein 
FACS Fluorescence activated cell sorter 
FBS  Fetal Bovine Serum 
Fc Constant fragment of immunoglobulin molecule 
FITC Fluorescein-isothiocyanate 
FLICE Fas-associated death domain–like IL-1b–converting enzyme 
FPP Farnesylpyrophosphate 
FSC Forward scatter 
FURA-2/AM 1-[2-(5-Carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2’- amino-5’- methylphenoxy)-

ethane-N,N,N’N’-tetraacetic acid pentaacetoxymethyl ester 
GAP GTPase activating protein 
GDP Guanosine-5`-diphosphate 
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GEF Guanine nucleotide exchange factors 
GGPP Geranylgeranylpyrophosphate 
Grb2 Growth factor receptor–bound protein 
GTP Guanosine-5`-triphosphate 
h Hours 
HLA Human Leukocyte Antigen 
HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A 
HRP  Horse Radish Peroxidase 
IAP Inhibitor of Apoptosis Protein 
ICAM-1 Intercellular adhesion molecule-1 
IFN Interferon 
IgG Immunoglobulin G 
IκB Inhibitory κB protein 
IκK IκB kinase 
IL Interleukin 
INDO-1/AM 1H-Indole-6-carboxylic acid, 2-[4-[bis[2-[(acetyloxy)methoxy]-2- oxoethyl]amino]-3-[2-[2-

[bis[2- [(acetyloxy)methoxy]-2-oxoetyl]amino]-5- methylphenoxy]ethoxy]phenyl]-, 
(acetyloxy)methyl ester 

iNOS Inducible nitric oxide synthase 
IP3 Inositol 1,4,5-triphosphate 
ITAM Immunoreceptor tyrosine-based activation motif 
Itk Inducible T cell kinase 
JNK N-terminal c-Jun kinase 
LAT Linker for activated T cells 
LFA-1 Lymphocyte function–associated antigen 1 
LPS Lipopolysaccharide 
MAPK Mitogen Activated Kinase 
MAPKK  Mitogen Activated Kinase Kinase 
MBP Myelin Basic Protein 
MHC Major Histocompatibility Complex 
min Minutes 
MRI Magnetic resonance imaging 
MS Multiple sclerosis 
n Number of experiments 
NaN3 Sodium azide 
NF-κB Nuclear factor κB 
NFAT Nuclear factor of activated T cells 
NGF Neural Growth Factor 
NK Natural killer 
PBMCs Peripheral blood mononuclear cells 
PBS Phosphate Buffered Saline 
PE Phycoerythrin 
PeSt Penicillin-Streptomycin 
PHA Phytohemagglutinin 
PI3K Phosphatidylinositol 3'-kinase 
PIP2 Phosphatidylinositol 4,5-biphosphate 
PKC Protein Kinase C 
PLC Phospholipase C 
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PMA Phorbol 12-myristate 13-acetate  
PMSF Phenylmethylsulphonyl fluoride 
PP Pyrophosphate 
PPMS Primary progressive multiple sclerosis 
PTKs Protein Tyrosine Kinases 
PTPC Permeability transition pore complex 
rad Unit of radiation 
Rb  Retinoblastoma  
rev. Review 
RPMI 1640 Roswell Park Memorial Institute 1640 
RRMS Relapsing-remitting multiple sclerosis 
RT Room temperature 
SDS Sodium dodecylsulphate  
s seconds or soluble 
SEM Standard Error of Mean 
SIMP Soluble intermembrane protein 
SLE Systemic lupus erythematosus  
SLP-76 SH2 domain–containing leukocyte protein of 76 kd 
SMAC Second mitochondria-derived activator of caspase 
SOS Sons of Sevenless 
SPMS Secondary progressive multiple sclerosis 
Src Sarcoma 
SSC Sideward scatter 
TBS Tris Buffer Saline 
TCL T cell line 
TCR T cell antigen receptor 
TEMED  N,N,N’,N’-tetramethylethylenediamine 
Tg Thapsigargin 
TNF-α Tumour Necrosis Factor -α 
TR TRAIL receptor 
TRAIL TNF-related apoptosis-inducing ligand 
TT Tetanus toxoid 
Tween 20 Polyoxyethylene-sorbitan monolaurate 
Tyr Tyrosine 
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