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� Introduction

In vector autoregressive 	VAR
 analyses impulse responses are often used for interpreting

the relation between the variables involved� In that case bootstrap con�dence intervals

	CIs
 or regions are often reported because they are regarded as being more reliable than

con�dence intervals based on asymptotic theory� Support for this view seemingly comes

from the skewness of the bootstrap intervals which contrasts with the symmetry of standard

asymptotic intervals� Some Monte Carlo studies have also con�rmed this belief 	see� e�g��

Fachin � Bravetti 	����
� Kilian 	���


� On the other hand� it was also found that in

some cases bootstrap CIs are not very reliable� In fact� they can lead to extremely poor CIs

with actual con�dence content substantially di�erent from the nominal level 	e�g�� Gri�ths �

L�utkepohl 	����
� Kilian 	���
� ����
� Fachin � Bravetti 	����

� Of course� this may partly

be a small sample problem and hence small sample modi�cations and corrections have been

proposed 	e�g�� Kilian 	���
� ����
� Fachin � Bravetti 	����

� Although these modi�cations

are quite successful in some cases� it will turn out that they do not help with the particular

problems we encounter with impulse responses in certain regions of the parameter space�

In this study we will point out that in addition to these small sample problems there

are also conceptual problems that prevent the usual bootstrap CIs for impulse responses to

have the correct probability content even asymptotically� Sims � Zha 	����
 also launched

a critique of the usual approaches to construct CIs for impulse responses� Their critique is

based on a Bayesian point of view� however� In contrast� we will remain within the classical

asymptotic arena and argue that even in this framework problems may arise�

The main problems result from the fact that for the standard bootstrap to work the

convergence rate of the estimators to their asymptotic distribution must remain constant

over the whole parameter space� It was noted� e�g�� by L�utkepohl 	����� Sec� ���
 that

this condition is not even satis�ed for stationary VARs let alone nonstationary ones� In

particular� it is not satis�ed for some cases of interest from an applied point of view� We

will discuss the problem in detail for the simplest case of a stationary univariate AR process

of order one 	AR	�

� For that case we will also consider possible solutions and we will

discuss their potential for being generalized to higher order and higher dimensional processes�

Unfortunately� it turns out� however� that proposals which work well for the simplest case

are not easily generalizable�

�



The structure of the paper is as follows� The general framework of the analysis is pre�

sented in the next section and inference on impulse responses is considered in Section �� In

that section we also draw attention to some basic problems of asymptotic inference in the

present context� In Section � a detailed analysis of the AR	�
 case is provided and possible

solutions are o�ered for this special case� Illustrative simulations are discussed in Section 
�

Conclusions follow in Section ��

The following notation is used throughout� The symbol IK denotes the 	K�K
 identity

matrix and the operator vec stacks the columns of a matrix in a column vector� Moreover�

R denotes the real numbers� O	�
� o	�
� OP 	�
 and oP 	�
 are the usual symbols for the order

of convergence and convergence in probability� respectively� Furthermore�
d� signi�es con�

vergence in distribution� N	�� ��
 indicates a normal distribution with mean � and variance

��� More generally� L	X
 denotes the distribution function of the random variable X� We

use P 	�
 to denote the probability of some event and P�	�
 if the probability corresponding

to a speci�c parameter � of the underlying distribution is of interest� log is the natural

logarithm� LS stands for least squares and DGP means data generation process�

� VAR Processes and Impulse Response Functions

Many macroeconomic analyses are based on VAR models of the type

A�yt � A�yt�� � � � �� Apyt�p � ut 	���


where yt � �y�t� � � � � yKt�� is a K�dimensional vector of observable variables� the Ai� i �

�� �� � � � � p� are 	K �K
 coe�cient matrices and ut � �u�t� � � � � uKt�
� is a white noise process�

that is� the ut are temporally uncorrelated or independent with zero mean and nonsingular

	positive de�nite
 covariance matrix �u� The maximum lag length p is usually referred to

as the order of the VAR process and the process is brie�y called a VAR	p
 process� Usually

there are also deterministic terms such as intercepts or seasonal dummy variables in the

DGP of economic time series� They are deleted in 	���
 because they are not important for

our purposes�

The model 	���
 is not identi�ed without any restrictions on the coe�cients� The matrix

A� represents the instantaneous relationships between the variables� Identifying restrictions

may be placed on this matrix and also on the other coe�cient matrices� If A� � IK� the

�



	K �K
 identity matrix� the process is said to be in reduced form� If A� �� IK� 	���
 is a

structural form� The reduced form may then be obtained by left�multiplying 	���
 by A��� �

that is� A� has to be invertible� If 	���
 is a structural form the ut are structural residuals� In

that case� �u is often assumed to be diagonal� The model is called recursive if A� is 	upper

or lower
 triangular with unit diagonal and �u is diagonal� In contrast� in the reduced form

the ut are usually contemporaneously correlated� that is� �u is a general positive de�nite

covariance matrix� In that case the ut are also the errors of optimal linear ��step ahead

forecasts and� hence� �u is the ��step ahead forecast error covariance matrix�

The process 	���
 may be stationary or it may contain integrated and cointegrated vari�

ables� The problems of interest in the following are present in both cases� For simplicity we

will therefore predominantly consider the stationary case�

Regardless of the stationarity properties� the model 	���
 summarizes the instantaneous

and intertemporal relations between the variables� The exact form of these relations is

usually di�cult to see directly from the Ai coe�cients� Therefore impulse response functions

are often computed which represent the marginal responses of the variables of the system

to an impulse in one of the variables� These may be regarded as conditional forecasts of

the variables given that they have been zero up to time � when an impulse in one of the

variables occurs� Depending on the kind of impulse hitting the system there are various

di�erent impulse responses that have been used for interpreting VAR models� For detailed

discussions see Sims 	����� ����
� L�utkepohl 	����� ����
� Watson 	����
� L�utkepohl �

Breitung 	����
� The important property of these quantities from the point of view of our

analysis is that they are particular nonlinear functions of the parameters of the model 	���
�

say�

�ij�h � �ij�h	A�� A�� � � � � Ap
� 	���


where �ij�h represents the response of variable i to an impulse in variable j� h periods ago�

For instance� in the simple case of a reduced form with A� � IK and if the so�called forecast

error impulse responses are considered 	see L�utkepohl 	����� Sec� �����

� �ij�h is the ijth

element of the matrix �h obtained recursively as

�h �

hX
j��

�h�jAj� h � �� �� � � � � 	���


where �� � IK� If p � � this is easily seen to imply �h � Ah
�� Note that generally the �ij�h

�



are sums of products of the elements of the Ai� In the next section we will discuss potential

pitfalls in inference procedures for impulse responses that result from this special structure

of these quantities� There are also impulse responses which depend on the elements of the

white noise covariance matrix �u in addition to the Ai coe�cients� For simplicity we will

not consider this possibility here because the potential problems arise even for the simpler

case indicated in 	���
�

� Inference on Impulse Responses

Usually the coe�cients of the model 	���
 are estimated by some standard procedure such

as LS and estimators of the impulse responses are then obtained as

��ij�h � �ij�h	 �A�� �A�� � � � � �Ap
 	���


where the �A�� � � � � �Ap are� of course� the estimated VAR coe�cient matrices� Assuming that

the �Ai have an asymptotic normal distribution�

p
Tvec	� �A�� � � � � �Ap�� �A�� � � � � Ap�


d� N	��� �A
� 	���


we have that the �ij�h have an asymptotic normal distribution as well�

p
T 	��ij�h � �ij�h


d� N	�� ��
ij�h
� 	���


where

��
ij�h �

��ij�h
���

� �A

��ij�h
��

	���


with � � vec�A�� � � � � Ap�� and ��ij�h	�� denotes a vector of partial derivatives� The result

	���
 holds if ��
ij�h is nonzero which is a crucial condition for asymptotic inference to work�

Note that � �A may be singular if there are constraints on the coe�cients or if the variables

are integrated and�or cointegrated 	see L�utkepohl 	����� Chapter ��

� However� even if � �A

is nonsingular� ��
ij�h may be zero because the partial derivatives in 	���
 may be zero� In fact�

they will usually be zero in parts of the parameter space because the �ij�h generally consist

of sums of products of the VAR coe�cients and� hence� the partial derivatives will also be

sums of products of such coe�cients which may be zero�

To see the problem more clearly� consider the simple case of a one�dimensional AR	�


process yt � �yt�� � ut� In this case �h � �h� Suppose �� is an estimator of � satisfying

p
T 	��� �


d� N	�� ��
��
 	��








with ��
�� �� �� Then

p
T 	��� � ��


d� N	�� ��
���
 	���


with ��
��� � �����

�� which is obviously zero if � � �� Of course� this is a well�known result

as in that case T ��� is known to have a proper asymptotic distribution and thus
p
T ���

must be degenerate� Hence� estimated impulse responses may have a degenerate asymptotic

distribution even if the underlying DGP is a well behaved stationary process�

One might be tempted to use 	���
 as a starting point for the construction of con�dence

intervals for ��� Since the estimated ��
��� obtained by replacing � and ��

�� by their usual LS

estimators will be nonzero almost surely one may consider the t�ratio
p
T 	������
	������� as a

basis for constructing a CI� We will see in the next section that this results in a conservative

CI for the case � � �� It is not clear that a conservative CI will be obtained in the more

interesting cases where impulse responses from higher dimensional processes are considered�

Of particular concern is the fact that the procedure fails for a case of special interest� namely

when the impulse responses are all zero� This failure is typical also for higher dimensional

processes for which the order may also be greater than �� Of course� the situation where

some variable does not react to an impulse in some other variable� i�e� the impulse response

is zero� is of particular interest because it means that there is no causal link in a certain part

of the system� Hence� the asymptotic CIs fail in situations of particular importance� Note�

however� that for stable� stationary VAR	p
 processes� the asymptotic CIs work allright for

�ij�h with h � p� This fact was used by L�utkepohl � Poskitt 	����
 and Saikkonen �

L�utkepohl 	���

 to point out a possibility for circumventing the problem by assuming that

the true DGP is an in�nite order VAR process� Although the asymptotic problems can be

�xed in this way� simulations reported in L�utkepohl � Poskitt 	����
 indicate that this may

not be very helpful in samples of the size typically available in macroeconometrics�

It may be worth pointing out that a similar problem exists for forecast error variance

decompositions� For simplicity� consider a bivariate VAR	�
� yt � A�yt�� � ut� with

A� �

�� ��� ���

��� ���

��
and suppose the white noise covariance is known to be �u � I�� Then the forecast error

�



covariance matrix of a ��step forecast is known to be

�y	�
 � I� � A�A
�
� �

�� � � ��
�� � ��

�� �
������ � ������ � � ��

�� � ��
��

��
	e�g�� L�utkepohl 	����� Sec� ���

� Hence the contribution of the second variable to the

forecast error variance of the �rst variable is

��
��

� � ��
�� � ��

��

�

The estimated version of this fraction has T �convergence if ��� � � and� thus� the second

variable does not contribute to the forecast error variance of the �rst variable� Consequently�

asymptotic CIs for these quantities will be problematic in this case of special interest in

empirical work�

In practice� bootstrap methods are often used to construct CIs for impulse responses�

forecast error variance components etc�� We emphasize that derivations of the properties of

these methods usually rely on asymptotic theory� Therefore it should not come as a surprise

that standard bootstrap techniques do not work well in general for some cases of interest

here� In the next section we will consider in detail the implications of these phenomena for

constructing CIs based on asymptotic theory as well as the bootstrap� We will do so for

the simplest case of a stationary univariate AR	�
 process� We will begin with an analysis

of standard methods and then discuss modi�cations which circumvent the problems of the

former�

� CIs for Impulse Responses from a Univariate AR���

Suppose that we observe y�� � � � � yT generated by the univariate process

yt � �yt�� � ut� 	���


where the ut�s are i�i�d� with mean � and variance ��
u� For simplicity� we assume that all

moments of ut are �nite� We are interested in a CI for the impulse response coe�cient

�h � �h� The starting point for all of our methods will be the least squares estimator

b�T �

TX
t��

ytyt��	
TX
t��

y�t��� 	���


We will �rst discuss CIs based on asymptotic theory and then consider bootstrap CIs�

�



��� Naive con�dence intervals based on �rst�order asymptotic

theory

Let j�j 
 �� It is well�known that
p
T 	��T � �


d� N	�� ��
��T

� � � ��
 so that with

T��
PT

t�� y
�
t�� � ��

u		� � ��
 we haveqPT
t�� y

�
t��

�u
	b�T � �


d�� N	�� �
�

see� for example� Anderson 	��
�
� The standard approach uses b�hT as a starting point for

constructing a con�dence interval for �h�

Let

e��
u �

�

T

TX
t��

	yt � b�Tyt��
��
It is easy to see that e��

u � ��
u � oP 	�
� The asymptotic distribution of b�hT ��h can be found

by the so�called delta method� Because of

b�hT � �h � �� � 	b�T � �
�h � �h

�
h��X
k��

�
h

k

�
�k	b�T � �
h�k

� h�h��	b�T � �
 � OP 	T��
� 	���


and� using again b�T � � � OP 	T����
� we obtain for � �� � thatqPT
t�� y

�
t��e�uhb�h��T

	b�hT � �h

d�� N	�� �
� 	���


This asymptotic result may be used to establish an asymptotic CI for �h with a nominal

coverage probability of � � � as

CI� �

��b�hT � e�uhjb�T jh��qPT
t�� y

�
t��

c�������� b�hT �
e�uhjb�T jh��qPT

t�� y
�
t��

c�������

�� � 	��



where c� denotes the ��quantile of the standard normal distribution� It follows immediately

from 	���
 that for � �� ��

P
�
�h � CI�

	 �� � � � as T �	� 	���


that is� CI� has asymptotically the correct coverage probability�

�



However� for � � �� it turns out thatqPT
t�� y

�
t��e�uhb�h��T

	b�hT � �h
 �

qPT
t�� y

�
t��e�uh 	b�T � �


d�� N	�� �	h�
� 	���


As a consequence CI� is conservative� with an asymptotic coverage probability larger than

the prescribed ���� In terms of the length of the interval� CI� is about h times too large� To

see this note that� for � � �� we have that
p
T 	b�hT � �h
	b�h��T �

p
T 	b�T � �


d� N	�� ��
��
�

which means that the CI �b�h � c�����
b�h��b�b�p

T
� b�h � c�����

b�h��b�b�p
T

� has the desired coverage

probability at least asymptotically� Hence� CI� is h times as large as a proper 	���
 CI and

thus has a substantially greater coverage probability than the intended � � �� We quantify

the error in coverage probability in our simulations reported in Section 
�

At this point some general comments are in order� The di�culty in getting asymptoti�

cally correct con�dence intervals is caused by the fact that b�hT � �h has a di�erent limiting

behaviour for � �� � and � � �� respectively� In the �rst case we have that
p
T 	b�hT ��h
 has

a nondegenerate limit distribution� whereas T h��	b�hT � �h
 has a proper limit distribution

in the latter case� This change in the limiting behaviour is not fully captured by the factorqPT
t�� y

�
t��		e�uhb�h��T 
 that leads to a pivotal statistic only in the case � �� ��

Such a situation is already known for b�T � � for the critical case j�j � �� The three

cases� j�j 
 �� j�j � � and j�j 
 �� lead to very di�erent limit distributions� Assume for a

moment that ��
u � �� According to Theorem ��� of Anderson 	��
�
�

p
T 	b�T � �


d�� N	�� � � ��


holds for j�j 
 �� For one of the critical cases� � � �� White 	��
�
 states that

T 	b�T � �

d�� �

�
	W �

� � �
	

Z �

�

W �
s ds�

where Ws is a standard Wiener process� Heimann � Kreiss 	����
 showed a similar result�

T 	b�T � �

d�� �

�
	��W �

� 
	

Z �

�

W �
s ds�

for � � �� see also Chan � Wei 	����� Section ���
� Finally� under the additional conditions

y� 
 � and ut � N	�� ��
u
� White 	��
�
 showed for the case j�j 
 � that

j�jT
�� � �

	b�T � �

d�� ��

where � has a Cauchy distribution� Hence� if we extend the parameter space and also allow for

nonstationary processes the problem of incorrect CIs arises also in other situations than the

�



simple one considered in detail in the foregoing� Of course� the problem also becomes more

severe when higher order and higher dimensional processes are considered� In the following

we will now focus exclusively on stationary univariate AR	�
 processes� The reader should

be aware� however� that similar problems also arise in other situations�

��� Con�dence intervals based on the standard bootstrap

We consider the following bootstrap method!

�
 Estimate b�T by least squares�

�
 Generate bootstrap residuals u��� � � � � u�T by randomly drawing with replacement from

the set of estimated and recentered residuals� fbu� � "u�� � � � � buT � "u�g� where but � yt �b�Tyt��� and "u� � T��
Pbut�

�
 Set y�� � y� and construct bootstrap time series recursively by

y�t � b�Ty�t�� � u�t � t � �� � � � � T� 	���


�
 Calculate a bootstrap version of the statistic of interest� in our case

b��T �
TX
t��

y�t y
�
t��	

TX
t��

	y�t��

��

A slightly di�erent method was proposed by Efron � Tibshirani 	����
 who centered the

original data fytg �rst� rather than centering the estimated residuals� Such a scheme was

also proposed by de Wet � van Wyk 	����
 in the context of a linear regression model�

where the errors were assumed to be generated by a linear AR	�
 process�

Let t���� and t�������� be the �	�� and 	� � �	�
�quantiles of L		b��T 
h � b�hT j y�� � � � � yT 
�

respectively� De�ne

CI� �

b�hT � t��������� b�hT � t����

�
�

Since the limit distribution of
p
T 	b�hT � �h
 depends in a continuous manner on the index

�� as long as � �� � and j�j 
 �� it follows immediately that L	
p
T 		b��T 
h � b�hT j y�� � � � � yT 



has the same limit distribution as L	
p
T 	b�hT � �h

� Hence�

P�
�
�h � CI�

	 �� � � �� 	���


��



for all � �� �� j�j 
 ��

Now we suppose that � � �� From Theorem ��� of Anderson 	��
�
 it follows that

P
�p

T 	b��T � b�T 
 � x j y�� � � � � yT


� FN�����

�
x	
q

� � b��
T

�
� oP 	�
�

Integrating out the y�� � � � � yT shows that the unconditional distribution of
p
T 	b��T�b�T 
 con�

verges to a standard normal distribution� Moreover� b��T � b�T is asymptotically independent

of b�T � �� which implies that

p
T

�� b��T � b�Tb�T � �

�A d�� N

���� �

�

�A �

�� �� �� �

� �� ��

�A�A �

Using

	b��T 
h � b�hT �
h��X
k��

�
h

k

�b�kT 	b��T � b�T 
h�k

we obtain that

T h��		b��T 
h � b�hT 

d��

h��X
k��

�
h

k

�
Zk
�Z

h�k
� � 	����


where Z�� Z� � N	�� ����
 are independent� In contrast� for the present case where � � ��

we have that

T h��	b�hT � �h

d�� Zh 	����


with Z � N	�� �� ��
� However� to show that the bootstrap CI has the correct asymptotic

con�dence level we need the result

P
�
T h��	b�hT � �h
 � x

	 � P
�
T h��		b��T 
h � b�hT 
 � x j y�� � � � � yT

	
� oP 	�
�

This would at least require that the distribution of b�hT � �h is approximated by the uncon�

ditional distribution of 	b��T 
h � b�hT � that is

P
�
T h��	b�hT � �h
 � x

	 � P
�
T h��		b��T 
h � b�hT 
 � x

	
� o	�
�

In view of 	����
 and 	����
 this obviously does not hold� Moreover� it is clear that usual

small sample corrections which aim at reducing the bias do not help in this context�

It is well�known that a general statistic �T can be better approximated by the bootstrap

if it depends to a lesser extent on the unknown distribution that governs the data generating

��



process� For example� concerning the sample mean of i�i�d� random variables it is well known

that studentizing leads to a better rate of approximation by the bootstrap see Hall 	����
�

Therefore� we use the statistic 	b�hT � �h
	
pcvar	b�hT 
 as a basis for the construction

of a con�dence interval� and determine a bootstrap quantile from the statistic 		b��T 
h �b�hT 
	
pcvar		b��T 
h
 � The variances were estimated by the bootstrap method� that is

cvar	b�hT 
 �
�

B�

B�X
i��

	b���iT 
�h �
�

�

B�

B�X
i��

	b���iT 
h

��
and

cvar		b��T 
h
 �
�

B��

B��X
i��

	b����iT 
�h �
�

�

B��

B��X
i��

	b����iT 
h

��
�

where B� and B�� are the respective numbers of bootstrap replications� Note in particular

that b����iT is obtained by a double bootstrap� that is pseudo�data are generated according to

a process with the parameter b��T �

Let t����� and t��������� be the �	�� and 	� � �	�
�quantiles� respectively� of

L
�

�	b��T 
h � b�hT �	
pcvar		b��T 
h
 j y�� � � � � yT



� Based on our studentized statistics� we obtain

the interval

CI� �

�b�hT � t���������

qcvar	b�hT 
� b�hT � t�����

qcvar	b�hT 


�
�

However� although studentizing improves the accuracy of the bootstrap in many #regular$

cases� we do not believe that it helps in our context� Since� for � � � and h 
 �� the

distributions of 	b�hT � �h
 and 		b��T 
h � b�hT 
 are totally di�erent� one cannot expect that

those of 	b�hT ��h
	
pcvar	b�hT 
 and 		b��T 
h� b�hT 
	

pcvar		b��T 
h
 coincide asymptotically� In

the simulations reported in Section 
 we will take a closer look at the performance of the

latter bootstrap CI�

In the following we will present some modi�cations of the bootstrap which may be used

to get asymptotically correct CIs for the presently considered simple AR	�
 case�

��� Improved con�dence intervals based on a supere�cient es�

timator

The main reason why the standard bootstrap fails at the point � � � is that P�T
�
T h��	b�hT � �hT 
 � x

	
remains di�erent from P�

�
T h��	b�hT � �h
 � x

	
� even if �T tends to � with the rate T�����

��



Since b�T converges to the true value just with this rate� the bootstrap is not able to recognize

the presence of the case � � ��

A well�known remedy to such problems with singularities in the limit distribution is the

use of a so�called supere�cient estimator that converges at a faster rate just at these critical

points in the parameter space� Datta 	���

 used this idea to devise a bootstrap for AR	�


processes that estimates L		var	b�T 

����	b�T � �

 consistently for all � � R�

Whereas Datta 	���

 used an estimator that is supere�cient at � � ��� we need this

property for � � �� Let fcTg be any sequence satisfying cT � � and T ���cT �	 as T �	�

Then the threshold estimator

e�T �

��� b�T � if jb�T j 
 cT

� otherwise
	����


is supere�cient at � � �� that is e�T converges with a faster rate than T���� to the true

value� This estimator allows to switch between the two cases� � � � and � �� �� We de�ne

the following quantity!

ST �

qPT
t�� y

�
t��e�u�b�h��T � 	h� �
e�h��T �

	b�hT � �h


�

���������

qPT

t��
y�t��e�u 	hb�h��

T 
oP ����
	b�hT � �h
� if � �� �

qPT

t��
y�t��e�u 	b�h��

T 
oP �T������
	b�hT � �h
� if � � �

� 	����


Hence� it can be seen easily that

ST
d�� N	�� �
 	����


for all j�j 
 �� Therefore�

CI� �

��b�hT � e�ujb�h��T � 	h� �
e�h��T jqPT
t�� y

�
t��

c�������� b�hT �
e�ujb�h��T � 	h� �
e�h��T jqPT

t�� y
�
t��

c�������

��	���



is a con�dence interval for �h to an asymptotic level � � �� that is�

P�
�
�h � CI�

	 �� � � � for all j�j 
 �� 	����


Usually� results are formulated in a pointwise 	in �
 manner as in 	����
� However�

a closer look at the proposed procedure indicates that there is no uniformity in �� We

��



conjecture that 	����
 fails� if we consider instead of any �xed � a sequence f�Tg tending to

zero at the rate T�����

Rather than relying on the asymptotic distribution� we could also use a bootstrap ap�

proximation of L	b�hT � �h
 in connection with the above supere�cient estimator e�T � This

was done by Datta 	���

 for estimating the distribution of b�T � � around j�j � �� We

believe� however� that the same pointwise result as above is obtained in that case with the

same problem concerning uniformity in �� Of course� for practical purposes one may be sat�

is�ed with pointwise convergence� Even then it will be di�cult to generalize this approach

to higher order and higher dimensional processes because it requires that care has to be

taken for every possible singularity point of the asymptotic distribution� In general this may

be a di�cult or impossible task� The use of supere�cient estimators can solve problems

with di�erent limit distributions at known isolated points in the parameter space� Since any

estimator can only be supere�cient on sets with measure �� it is impossible to apply such

a strategy in the case of rapidly changing limit distributions� where these changes occur at

unknown points in the parameter space� Therefore other procedures have been considered

which do not require the user to identify all singularity points prior to using the bootstrap�

One such procedure will be described in the following subsection�

��� Subsampling

It can be seen from the calculations in Subsection ��� that the standard bootstrap would

have been consistent in the case � � �� if the resampling scheme 	���
 were based on an

estimator bb�T with E�	bb�T ��
� � o	T��
� where E� denotes the expectation evaluated under

� � �� This would imply that the resampling scheme adjusts with a su�ciently fast rate to

the change of the distribution of 	var	b�hT 

����	b�hT � �h
 from � � � to � �� ��

Subsampling� that is� resampling fewer than T observations� is a relatively new technique

that aims at improving the relation between the rate of convergence of the bootstrap version

of the estimator and the rate at which the parameter that controls the data generating

process in the bootstrap world converges� Surveys on this technique are given by Bertail�

Politis � Romano 	���

� in the discussion to Li � Maddala 	����
� and by Bickel� G�otze

� van Zwet 	����
�

Subsampling is relatively straightforward� if the rate of convergence is constant over the

��



whole parameter space and if only the shape of the corresponding limit distributions is

di�erent� Although recent work of Bertail et al� 	���

 also allows for the case of di�erent

rates of convergence to be estimated separately� we try to avoid these complications by

multiplying the statistic of interest� b�hT � �h� with an appropriate normalizing factor� This

was also done by Heimann � Kreiss 	����
 in the case of estimating the distribution of

	var	b�T 

����	b�T � �
 around j�j � ��

We consider the statistic

ST �

qPT
t�� y

�
t��b�h��T

	b�hT � �h
� 	����


It may be seen from 	���
 and 	���
 that ST has a nondegenerate limit distribution for all

j�j 
 �� Let N � N	T 
 be the size of the bootstrap sample� where N	T 
 � 	 and

N	T 
	T � � as T � 	� Our bootstrap mimics SN�T � rather than ST � Nevertheless� this

is asymptotically correct� since both quantities have the same limit distribution� There are

two obvious possibilities for bootstrapping!

�
 A model�based method

a
 draw bootstrap residuals u��� � � � � u�N randomly with replacement from

fbu� � "u�� � � � � buT � "u�g� where but � yt � b�Tyt���
b
 set y�� 
 y� and de�ne recursively

y�t � b�Ty�t�� � u�t � t � �� � � � � N�

c
 calculate

b��N �
NX
t��

y�t y
�
t��	

NX
t��

	y�t��

��

�
 A model�free method

a
 take all T �N � � blocks of N � � consecutive observations from y�� y�� � � � � yT �

b
 calculate� for each block y�s � � � � � y�s
N � s � �� � � � � T �N � the bootstrap estimate

b��N�t �
NX
t��

y�s
ty
�
s
t��	

NX
t��

	y�s
t��

��

�




Since we assume to know the structure of the data generating process� we opt for the �rst

method� It was shown in Heimann � Kreiss 	����
 that
qPN

t��	y
�
t��


�	b��N � b�T 
 converges

weakly to the same limit as
qPT

t�� y
�
t��	b�T � �
� for all � � R� For � �� �� we have thatqPN

t��	y
�
t��


�

	b��N
h��
�
	b��N
h � b�hT 	 �

h��X
k��

�
h

k

�b�kT
qPN

t��	y
�
t��


�

	b��N 
h��
	b��N � b�T 
h�k

� h
b�h��T

	b��N 
h��

vuut NX
t��

	y�t��

� 	b��N � b�T 
 � oP 	�


� h

vuut NX
t��

	y�t��

� 	b��N � b�T 
 � oP 	�
�

and� for � � ��qPN
t��	y

�
t��


�

	b��N
h��
�
	b��N
h � b�hT 	 �

h��X
k��

�
h

k

�b�kT
qPN

t��	y
�
t��


�

	b��N 
h��
	b��N � b�T 
h�k

�

vuut NX
t��

	y�t��

�
	b��N � b�T 
h

	b��N
h��
� oP 	�


�

vuut NX
t��

	y�t��

� 	b��N � b�T 
 � oP 	�
�

Moreover� we haveqPT
t�� y

�
t��b�h��T

	b�hT � �h
 �

qPT
t�� y

�
t��b�h��T

h��X
k��

�
h

k

�
�k	b�T � �
h�k

�

�����
h
qPT

t�� y
�
t��	b�T � �
 � oP 	�
� if � �� �qPT

t�� y
�
t��	b�T � �
� if � � �

�

Comparing the right�hand sides of the latter three displayed formulas we see that the 	con�

ditional
 distribution of qPN
t��	y

�
t��


�

	b��N
h��
�
	b��N
h � b�hT 	

approximates that of qPT
t�� y

�
t��b�h��T

	b�hT � �h


for all j�j 
 ��

��



Let t�� be the 	�� �
�quantile of the distribution of

�����
qPN

t��
�y�t���

�

�b��N �h��

�
	b��N 
h � b�hT	

������ Then

P

��
������
qPT

t�� y
�
t��b�h��T

	b�hT � �h


������ 
 t����

�A �� �� ��

which implies that

CI
 �

��b�hT � t����
jb�T jh��qPT

t�� y
�
t��

� b�hT � t����
jb�T jh��qPT

t�� y
�
t��

��
is an asymptotic 	�� �
�con�dence interval for j�j 
 ��

In more general situations where higher order and higher dimensional processes are con�

sidered it will not be easy to �nd a suitable normalization of estimated impulse responses

analogous to the factor
qPT

t�� y
�
t��	b�h��T in our simple case which guarantees a constant

rate of convergence� In the next subsection we will present a subsampling approach which is

theoretically suitable in such a case� It may be computationally quite demanding� however�

��	 Subsampling with estimated rate of convergence

The problem with the subsampling procedure of the previous subsection is that it may be

di�cult to �nd a quantity with constant rate of convergence in all of the feasible parameter

space� For this situation� Bertail et al� 	����
 proposed to estimate the rate of convergence�

�T � say�

The convergence rate is being estimated using two subsampling distributions based on

the subsampling sizes N� � N�	T 
 and N� � N�	T 
� If N�� N� �	 as T �	 we get

P 	�N�		b��N�

h � b�hT 
 � tjY 
 � P 	�N�		b��N�


h � b�hT 
 � tjY 
 � oP 	�


� L�	t
 � oP 	�
� 	����


where Y denotes the sample 	y�� � � � � yT 
 and L�	t
 the limit distribution of �N 		��N
h� b�hT 
�

The inverse of these cumulative distribution functions is needed in the form

F��
	Ni��b��Ni�h�b�hT �	tjY 
 � �NiF

��
��b��Ni�h�b�hT �	tjY 
� i � �� �� 	����


where t is a continuity point of L�	t
� From equations 	����
 and 	����
 we get

�N�F
��
��b��N�

�h�b�hT �	tjY 
 � �N�F
��
��b��N�

�h�b�hT �	tjY 
 � oP 	�


��



or� equivalently� assuming �T � T 
 and Ni � T �i� � 
 �� 
 �� 
 ��

� �
log	F��

��b��N�
�h�b�hT �	tjY 

� log	F��

��b��N�
�h�b�hT �	tjY 



	log	N�
� log	N�


� oP 	log	T 
��
�

Therefore� we estimate � by

b� �
log	F��

��b��N�
�h�b�hT �	tjY 

� log	F��

��b��N�
�h�b�hT �	tjY 



	log	N�
� log	N�


�

It follows from the consistency established in 	����
 that b� is a consistent estimate of �� In

this paper we have taken the mean over several points tj� j � �� � � � � J � Then we use the

estimator b�T � Tb
�
Now it is possible to proceed with constructing con�dence intervals using subsampling

as introduced in Section ���� The di�erence in both methods is found in the norming factor

for the statistic 		b��N
h � b�hT 
� Here� the norming factor is estimated for each �h separately�

whereas the method in Section ��� uses algebraic manipulation to handle the problem of

di�erent convergence rates� This implies that each new investigated statistic demands new

analytical work for this manipulation�

The unknown distribution of interest� L	b�T 	b�hT � �h

� is approximated by

L �b�N�T �		b��N �T�

h � b�h

T

jY 	 � 	����


with subsample size N	T 
� Let t���� and t������ be the �	� and � � �	� quantiles of 	����
�

respectively� Then

P
�
t���� 
 b�T 	b�hT � �h
 
 t������

	� 	�� �
�

Hence�

CI� �

�b�hT � t������b�T � b�hT � t����b�T
�

is a con�dence interval which has asymptotically the correct coverage probability of 	�� �
�

��
 Nearly exact con�dence intervals

Our �fth method of constructing con�dence intervals uses ideas of Sims � Zha 	����
 and

may be motivated as follows� Assume for a moment that we know the distribution of the

��



innovations ut exactly� Then we can calculate� for each �xed �� the 	hypothetical
 distribu�

tion of b�hT � Let t����� and t��������� be the �	�� and 	� � �	�
�quantile of the corresponding

distribution� De�ne

fCI� �
�
�h j b�hT � �t������ t����������

�
�

By construction�

P�

�
�h � fCI�
 � P�

�b�hT � �t������ t����������
	

� � � ��

that is� fCI� is an exact con�dence set for �h� for all values of � � R� This approach was

proposed by Andrews 	����� Section �
 in the case of a known distribution of the innovations�

Since the distribution of the innovations ut is usually unknown� we propose to estimate

it by the bootstrap� Let u��� � � � � u�T be drawn with replacement from fbu� � "u�� � � � � buT � "u�g�
where but � yt� b�Tyt��� as before� For each value of � we generate 	hypothetical
 bootstrap

processes by setting y���� 
 y� and

y���t � �y���t�� � u�t � t � �� � � � � T�

and corresponding estimators b����T �
PT

t�� y
���
t y���t��	

PT
t��	y

���
t��


�� Let t������ and t���������� be

the �	�� and 	�� �	�
�quantiles of L		b����T 
h
� respectively� According to the theoretical setfCI� above� we construct an asymptotic con�dence set as

CI� �
�
�h j b�hT � �t������� t

�
����������

�
� 	����


Although we do not have a rigorous proof� we conjecture that the set CI� is an interval

under nonrestrictive regularity conditions� To underline the uniformity of the consistency of

CI�� we formulate a result for the supremum of the error in coverage probability over a set

of ��s containing the critical region around ��

Theorem �

Let c 
 � and suppose that EjutjM 
	 for all M 
	� Then

sup
��	�c�c�

���P�	�h � CI�
 � 	� � �

��� � o	�
�

�

This result is proven in the Appendix� Moreover� it is possible to prove the consistency

of this method in a pointwise manner for all � � R� Again this method becomes rather

��



complicated and computer intensive in more general situations with higher order and higher

dimensional processes� However� in principle it can be extended� In the next section we

report some simulations which illustrate the small sample aspects of the asymptotic results

of the present section�

� Simulations

The simulation study compares the performance of CI� through CI� of impulse responses �� �� ���

and �� periods after an impulse hits the system� This is done by estimating the real cov�

erage probability� �p� of �
% con�dence intervals 	p � ��

� Additionally the length of the

con�dence intervals� l� is evaluated�

Data was arti�cially generated by the univariate AR	�
 process

yt � �yt�� � ut� t � �� � � � � T� y� � �� ut � N	�� �
� and � � �� ��� �
 	
��


We considered two sample sizes T � ��� and T � �� ���� The �rst is a common sample

size when analysing macro data� The second is thought to be a $step$ away from small

sample size� The idea is to see how the described methods react when the sample size

increases� For each �� M � �� ��� Monte Carlo 	MC
 replications were performed� Assume

E	bp
 � p� Then� the standard error of bp after ����� MC replications is approximated byp
p	� � p
	M 
 ������ In order to control variability the error vector U � 	u�� � � � � uT 
�

in 	
��
 for the m�th MC replication is identical for each �� Furthermore� in the m�th MC

replication the bootstrap based methods resampled the same indices of bU in order to get U��

Thus� the methods are fully accountable for the di�erent performance�

The quantiles in the bootstrap based intervals 	CI�� CI�� CI
� CI�� CI�
 were estimated

using two&sided symmetric quantiles� The quantile t� is thus the 	� � B
th element of the

bootstrap realizations in ascending order of the unknown distribution� A distribution was

constructed using B � �� ��� bootstrap replications� We also tried another approach� Choos�

ing two quantiles t� 
 t� of the estimated distribution L	�
 such that it minimizes t� � t�

subject to the constraint L	t�
�L	t�
 � ��� 	highest density
� The simulations showed that

the latter seems to have a slight edge over the former in terms of interval length� The gains

were highest in the case of � � �� This might be explained with the skewed distribution of

	b��N 
h�b�hT � Finally� it does not make much di�erence in terms of coverage frequency whether

��



symmetric or highest density quantiles are used in setting up the CIs� The results reported

for CI�� CI�� CI
� CI�� and CI� are therefore based on two&sided symmetric quantiles�

The threshold cT for the supere�cient estimator in Section ��� is chosen to be

cT �

p
� log TqPT

t�� y
�
t

�

While the denominator is just a scaling factor the particular choice of the numerator�
p

� log T � is motivated by the fact that a standard normal random variable in absolute

value exceeds this bound with a probability of T��� which we consider as a su�cient value�

The actual thresholds are given in Table ��

The subsample length in method 
 is N	T 
 � �� for T � ���� and N	T 
 � ��� for

T � �� ���� Finding a suitable subsample size is actually a di�cult task� Politis � Romano

	����
 found the order N	T 
 � T ��� to be optimal on the basis of second�order asymptotic

theory� In our simulations� we tried di�erent values for N	T 
 including the proposed ones�

The results showed that the estimated coverage probability does not change much when

changing N	T 
� Moreover� for T � ��� we found that #small$ N	T 
 	e�g� �
� ��
 resulted

in larger con�dence intervals than rather #large$ values for N	T 
 	e�g� �����
� Whereas this

phenomenon was not really observable for � � �� the enlargement of the con�dence intervals

became quite substantial for � � ��
� Therefore� we decided to choose N	T 
 � �� in the

current setting� For the estimation of the rate of convergence� method � uses many di�erent

subsample sizes N	T 
 	N	���
 � ��� ��� 
�� ��� N	�� ���
 � ���� ���� 
��� ���
 and quantiles

t � ��
� ���� ���� ���� ���� The results are reported in Table � where it is seen that although

the theoretical convergence rate for � � �� and � � �
 is the same� the estimated rate for

the former value of � is an intermediate value between the rate for � � � and � � �
� The

con�dence intervals are constructed with subsample sizes N	T 
�
� and 
�� for T � ��� and

������ respectively� Again we tried several subsample sizes and found that the chosen size

performs best in the current setting�

This paper does not investigate the quite popular percentile method� It basically takes

the t���� and t������ quantiles of the bootstrap distribution L		b��T 
hjy�� � � � � yT 
 as the lower

and upper con�dence bound� respectively� for a 	�� �
 con�dence interval of �� The reason

is that we cannot �nd a sound derivation of its asymptotic coverage performance� However�

it seems to perform well when L		b��T 
hjy�� � � � � yT 
 is symmetric� In our example we would

face a complete failure for the case � � � and h even� In a simulation we got a real

��



Table �� Estimated coverage probability 	bp
 and average length 	l
 of estimated �
% CIs

for AR	�
 process with T � ��� and � � �

� �� ��� ���

�p l �p l �p l �p l
� ���� � ����

Asymptotic 	CI�
 ��
� ���� ����� ���� ����� ���� ����� ����

Standard bootstrap 	CI�
 ���� ���� ���� ���� ���� ����� ���� ����

Studentized bootstrap 	CI�
 ��
� ���� ���� ��
� ���� ����� ���� �����

Supere�cient est� 	CI�
 ��
� ���� ��
� ���� ��
� ���� ��
� ����

Subsampling 	CI

 ���� ���
 ���� ���� ����� � ����� ��

Subsampling with b�T 	CI�
 ���
 ���� ���� ���� ����� ���� ����� ����

Indirect 	CI�
 ��
� ���� ��
� ���� ��
� ����� ��
� �����

' The average length was estimated 
 �

'' The average length was estimated 
 �
��

coverage probability of ���%� This can be explained with the highly asymmetric shape of

L		b��T 
hjy�� � � � � yT 
 in this case�

��



Table �� Estimated coverage probability 	bp
 and average length 	l
 of estimated �
% CIs

for AR	�
 process with T � ��� and � � ��

� �� ��� ���

�p l �p l �p l �p l
� ���� � ���	

Asymptotic 	CI�
 ��

 ���� ���
 ��

 ���� ���� ���� ����

Standard bootstrap 	CI�
 ���� ���� ���� ���� �
�� ����
 �
�� �

�

Studentized bootstrap 	CI�
 ��

 ���� ���� ���� ���� ����� ���� �����

Supere�cient est� 	CI�
 ��

 ���� ���� ���� ���� ��

 ���� ����

Subsampling 	CI

 ��
� ���� ���� ���� ���� � ���� ��

Subsampling with b�T 	CI�
 ���� ���� ���� ���� �

� ����� �
�� ����

Indirect 	CI�
 ��
� ���� ��
� ���� ��
� 
���� ��
� �����

' The average length was estimated 
 �

'' The average length was estimated 
 

��

��



Table �� Estimated coverage probability 	bp
 and average length 	l
 of estimated �
% CIs

for AR	�
 process with T � ��� and � � ��


� �� ��� ���

�p l �p l �p l �p l
� ���� � ���


Asymptotic 	CI�
 ��
� ���� ���� ���� ���� ����
 ���� ����

Standard bootstrap 	CI�
 ���� ���� ���� ���� ���� ����� �
�� ���


Studentized bootstrap 	CI�
 ��
� ��
� ���
 ���� ���� ����� ���� �����

Supere�cient est� 	CI�
 ��
� ���� ���� ���� ���� ����
 ���� ����

Subsampling 	CI

 ���
 ���� ���� ���� ����� ������ ����� �

Subsampling with b�T 	CI�
 ���� ���� ���� ���� ���� ����� �
�� ���


Indirect 	CI�
 ��
� ���� ��
� ���� ��
� ����� ��
� ����


' The average length was estimated 
 ��

��



We consider a precise coverage probability as the most important feature of a con�dence

interval� However� from the point of view of the usefulness of the intervals� their average

length is also an important factor� These two points are discussed in the following� Possible

generalizations of the methods to multivariate and higher order autoregressive processes are

discussed afterwards� Recall from the previous section that methods � to � are asymptotically

correct for all �� whereas methods � to � are only correct if � �� ��

The following observations emerge from Tables �&�� Tables �&� represent the results for

the sample size of T � ��� and Tables �&� for T � �� ���� First� all methods lead to nearly

identical results in the case of h � �� even for � � �� The indirect method is overall the best

in terms of coverage� As expected it produces the nominal coverage level almost exactly for

all cases considered� Although the average length of the CIs is in some cases a bit larger than

that of other methods it is often comparable to the asymptotic CIs� Its main disadvantage

then is the di�culty to extend it to higher dimensional and higher order cases�

For the critical case where � � � the CIs based on standard asymptotics are clearly

conservative for h 
 � and have a considerably larger coverage probability than the nominal

�
%� The length of the intervals is surprisingly small given that we found in the asymptotic

analysis that even further reductions of the length may be possible� In this respect the

CI� intervals are just outperformed by the CIs based on the supere�cient estimator which is

overall clearly the best method for the case � � �� However� for nonzero � both the CIs based

on standard asymptotics and on the supere�cient estimator are problematic in the small

sample context because their actual coverage level deteriorates substantially for growing ��

This is true in particular for the latter CIs� For instance� the coverage frequency of CI�

is only ����% for � � ��� and T � ��� when con�dence intervals for ��� are considered�

Increasing the sample size to T � �� ��� leads in this case to a far better coverage of �
��%�

Further simulations showed that the real coverage becomes ����% when the sample size

grows to T � ���� ����

The standard bootstrap leads to similar results as method �� In the majority of cases�

the performance of the bootstrap intervals is even slightly worse with respect to both the

coverage probability and the length of the intervals� The coverage probability deteriorates

again for � �� � and h 
 �� This seems to be a small sample problem� however� which

might be tackled by speci�c corrections see� e�g�� Kilian 	���
� ����
 and Fachin � Bravetti

�




Table �� Estimated coverage probability �bp� and average length �l� of estimated ��� CIs for

AR��� process with T � �� 			 and � � 	

� �� ��� ���


p l 
p l 
p l 
p l
� ���
 � ����� � �����

Asymptotic �CI�� ���� ���� ��			 
���� ��			 ���� ��			 �		�

Standard bootstrap� �CI�� ���	 ���� ���	 ����� ���� ����
 ���� ����

Studentized bootstrap� �CI�� ���	 ���
 ���	 ����� ���� ����� ���� ����

Supere�cient est� �CI�� ���� ���� ���� ����� ���� �	�� ���� � �		�

Subsampling �CI
� ���� ���� ���� ������ ��			 �� ��			 � � �

Subsampling with b�T �CI�� ���� ���� ��			 
���� ��			 ���	� ��			 ���	

Indirect �CI�� ���
 ���� ���
 ��
�� ���
 ��
�
 ���
 ���	�

� Numbers reported based on �		 Monte�Carlo�Replications� �bp � 	�	�� for p � ���

�� The average length was estimated � �� �	�


��� The average length was estimated � �� �	��

��



Table �� Estimated coverage probability 	bp
 and average length 	l
 of estimated �
% CIs

for AR	�
 process with T � �� ��� and � � ���

� �� ��� ���

�p l �p l �p l �p l
� ���� � ���	 � �����

Asymptotic 	CI�
 ��
� ���� ���� ����
 ���� ����� ��
� ����

Standard bootstrap� 	CI�
 ���� ���� ���� ����� ��
� ����� �
�� �����

Studentized bootstrap� 	CI�
 ���� ���� ���
 
���� ���� ����� ���� ��
��

Supere�cient est� 	CI�
 ��
� ���� ���� ���
� ���� ����� ��
� ����

Subsampling 	CI

 ��
� ���� ���� 
���� ���� 
���� ����� �����

Subsampling with b�T 	CI�
 ��
� ���� ���� ���
� ���� ����� �
�� ����

Indirect 	CI�
 ��
� ���� ��
� ����� ��
� ����� ��
� ����


' Numbers reported based on ��� Monte&Carlo&Replications� �bp 
 ����� for p � ��


Table �� Estimated coverage probability 	bp
 and average length 	l
 of estimated �
% CIs

for AR	�
 process with T � �� ��� and � � ��


� �� ��� ���

�p l �p l �p l �p l
� ���
 � ����

Asymptotic 	CI�
 ��

 ���� ��
� ���� ���� ����� ��
� ����

Standard bootstrap� 	CI�
 ���� ���� ���� ���� ���� ����� ���� ����

Studentized bootstrap� 	CI�
 ��
� ���� ��
� ���� ���� ����� ���� �����

Supere�cient est� 	CI�
 ��

 ���� ��
� ���� ���� ����� ��
� ����

Subsampling 	CI

 ��
� ���� ��
� ���� ���� ����� ���� ����


Subsampling with b�T 	CI�
 ���� ���� ���� ���
 ���� ���
� ���� ����

Indirect 	CI�
 ��

 ���� ��

 ���� ��

 ����� ��

 �����

' Numbers reported based on ��� Monte&Carlo&Replications� �bp 
 ����� for p � ��


��



Table �� Average threshold cT of the supere�cient estimator for sample

sizes T � ���� and ������ Numbers in paranthesis are standard deviation�

T � � � � � �� � � �


��� ����
	����


����
	����


����
	���



�� ��� ����
	���
 � ����


���

	���� � ����


����
	���� � ����


Table 	� Average rate of convergence b� for the distribution of di�erent

impulse responses� Standard deviation in paranthesis 	
� true values in

brackets � ��

T � � � � � �� � � �
b��T � b�T ��� �
��
	���



���
� �
��
	���



���
� �
��
	����


���
�

�� ��� �
��
	����


���
� �
��
	����


���
� ����
	����


���
�

	b��T 
� � b��
T ��� ����

	����

����� ����

	����

���
� �

�

	����

���
�

�� ��� ��
�
	����


����� �

�
	����


���
� �
��
	����


���
�

	b��T 
�� � b���
T ��� �����

	�����

�
��� ���
�

	�����

���
� ����

	����

���
�

�� ��� �����
	�����


�
��� �����
	����


���
� ����
	����


���
�

	b��T 
�� � b���
T ��� �����

	����


������ ����


	���
�

���
� �����

	����

���
�

�� ��� ��

�
	�����


������ �����
	����


���
� ����
	����


���
�

��



	����
� The studentized version of the standard bootstrap 	CI�
 shows in principle the same

performance for � � �� In the case of � �� � the coverage is better but still deteriorates for

� � ��� h 
 �� and T � ����

The CIs based on the subsampling bootstrap 	CI

 produce roughly the correct coverage

level� In some cases their length is considerably greater than that of other methods� especially

for large h� For ��� and ��� the interval length is unacceptable in the case of � � �� In

addition� taking into account that for more complicated situations the subsampling bootstrap

involves a substantially larger computational burden� the virtue of this method is di�cult

to see at least in the present context�

In the case of � � � the subsampling procedure which additionally estimates the rate of

convergence 	CI�
 is superior to the other subsampling method for h 
 �� Even though it

estimates more conservative CIs it seems to have a slight advantage to the standard bootstrap

in terms of interval length� This observation changes for � �� �� The interval length is still

shorter compared to the other subsampling method but it seems to be achieved at the cost

of reduced coverage probability� A reason for that might be a poor estimator of � which

implies poor estimation results for �T �

Methods �� �� � and � allow for a straightforward generalization to the case of multivariate

autoregressive processes of higher order� Remember� however� that methods �� �� and � are

asymptotically incorrect in particular cases of interest� which are mimicked by � � � and

h 
 � in our simpli�ed context� The subsampling method 
 can also be easily generalized

if one �nds a norming factor leading to a statistic with a nondegenerate limit distribution�

Even the indirect method� which was clearly the winner in our competition� can in principle

be generalized� However� this will certainly lead to quite involved computational problems�

and� hence this method will su�er from the #curse of dimensionality$�

In conclusions� the simulations show that all the CIs have severe drawbacks� Since some

of them work very poorly for the presently considered simplest case there is clearly not much

hope that they behave well in more complicated situations where higher order or higher

dimensional processes are of interest�

��



� Conclusions

In this study we have considered CIs of impulse responses computed from estimated AR

processes� A detailed analysis of the simple univariate �rst order stationary AR case reveals

that the presently used methods are all beset with severe drawbacks� CIs based on standard

asymptotic theory and standard bootstrap may be drastically too large in the case of a

degenerate limit distribution and� in small samples� may have real coverage probabilities

quite di�erent from the corresponding nominal levels� The former problem can not be cured

by simple bias adjustment or other procedures which have been proposed in the impulse

response literature� Modi�ed procedures exist� however� that can take care of the problems

asymptotically� Unfortunately� the small sample performance of these procedures is not

impressive and it is also not obvious how they can be extended to general higher dimensional

processes of order greater than one� Therefore� at present we are unable to recommend any of

the methods to assess the sampling variability of impulse responses in practice� In fact� given

this state of a�airs� it may be a reasonable strategy to use di�erent methods to determine

whether the main results are robust with respect to the method used for setting up CIs�

Clearly� reporting no measures of sampling variability of impulse responses at all is also

unaccaptable because that may result in spurious conclusions�

Appendix

Proof of Theorem �

First we rewrite fCI� in an equivalent form!

fCI� �

��� f�h j b�T � �r������ r��������g� if h is odd

f�h j jb�T j � �s������ s��������g� if h is even

where r��� and s��� are corresponding quantiles of the distribution of b�T and jb�T j� respec�

tively� Further� CI� can be rewritten in an analogous manner� based on empirical quantiles

r���� and s����� This means that we can base the proof on a comparison of the distributions

of
p
T 	b�T � �
 and

p
T 	b����T � �
�

It is well�known that
p
T 	b�T � �
 is asymptotically normally distributed� However� to

prove uniformity in �� we need some explicit bounds for the error of approximation� It can

��



be shown� for example by a Skorokhod embedding of
P

yt��ut in a Wiener process 	see� e�g��

Hall � Heyde 	����� Appendix �

� that

sup
��	�c�c�

sup
x

n���P� �	E
X

y�t��

����

X
yt��ut � x�u



� FN�����	x


���o � O	T�

�

for some � 
 �� Here and in the following we use � to denote an appropriate positive constant

which may attain di�erent values at di�erent places�

Since� for � � ��c� c�� the yt are absolutely regular 	��mixing
 with exponentially decaying

mixing coe�cients� one can show

sup
��	�c�c�

�����P������ �

T

X
y�t�� � E

�

T

X
y�t��

���� �

���� �

T

X
y�t�� � ��

u		� � ��


���� 
 T�

������ � O	T�

�

which implies that

sup
��	�c�c�

sup
x

n���P� �pT 	b�T � �
 � x
p

�� ��


� FN�����	x


���o � O	T�

� 	A��


Analogously we get

sup
��	�c�c�

sup
x

n���P� �pT 	b����T � �
 � x
p

� � ��
��� y�� � � � � yT



� FN�����	x


���o � O	T�



	A��


for 	y�� � � � � yT 
 � (T � where (T is an appropriate set with P 	(T 
 � ��O	T�

� From 	A��


and 	A��
 we obtain that

sup
��	�c�c�

sup
y

n���P�	
p
T 	b�T � �
 � y
 � P�	

p
T 	b����T � �
 � y j y�� � � � � yT 


���o � O	T�



	A��


holds with a probability exceeding ��O	T�

� Hence�

sup
��	�c�c�

n���P� 	b�T � �r�� r��
jr��r������ �r��r�������� � 	� � �

���o � O	T�

 	A��


is valid for all r������ and r�������� that correspond to 	y�� � � � � yT 
 � (T � This yields immedi�

ately

sup
��	�c�c�

���P� �b�T � �r������� r
�
��������

	 � 	� � �

��� � O	T�

� 	A�



which completes the proof in the case of odd h� The proof for even h is analogous�
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