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Abstract

The phenomenology of the pseudo scalar mesons Ds and Bs and of the vector
mesons D∗s and B∗s , each of which contain a heavy and a light quark, was investi-
gated in simulations of quenched lattice QCD. The work is particularly focused
on the minimisation of all systematic errors within this approximation.

The decay constants FDs and FD∗
s
and the difference in the masses between the

pseudo scalar Ds-meson and the corresponding vector meson D∗s were determined
from the direct computer simulation of lattice QCD in large physical volume
(L ≈ 1.5 fm). As an aside, the renormalisation group invariant charm quark
mass Mc could be obtained from the simulation results.

A platform independent software was developed for the Monte-Carlo simula-
tions of lattice QCD within the Schrödinger Functional. A number of simulations
at different lattice constants allowed the extrapolation of the results to the con-
tinuum.

Since comparable simulations for the Bs- and the B∗s -meson are not feasible
due to the large mass of the b-meson, an interpolation in the meson mass to its
physical point was carried out for the decay constant and the mass splitting. The
interpolation was carried out between the static limit and the range of meson
masses of order mDs . The desired observables were therefore determined and
extrapolated to the continuum for altogether six meson masses. The functional
form of the subsequent interpolation in the meson mass to the static limit was
guided by the prediction of the Heavy Quark Effective Theory (HQET). In order
to apply it to the results obtained in QCD, a set of conversion functions between
HQET and QCD were derived and evaluated numerically with input from results
in perturbation theory.

The final results are FDs = 226(7)MeV, FD∗
s

= 239(18)MeV,
FBs = 198(9)MeV, mD∗

s
− mDs = 136(9)MeV, mB∗

s
− mBs = 63(6)MeV and

Mc = 1.60(3)GeV. The result for the renormalisation group invariant charm

quark mass is equivalent to mMS
c (mc) = 1.27(3)GeV.

The analysis of the interpolation furthermore allowed to estimate, that the
lowest order corrections to the static limit in HQET are relatively small. One
therefore can expect HQET to offer a good approximation in the range of B-
physics.
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Zusammenfassung

Die Phänomenologie der pseudoskalaren Mesonen Ds und Bs sowie der Vektor-
mesonen D∗s und B∗s , welche jeweils ein schweres und ein leichtes Quark enthalten,
wurde in numerischen Simulationen von Gitter-QCD unter Vernachlässigung vir-
tueller Fermionschleifen untersucht. Besonderer Wert wurde auf die Kontrolle
und Minimierung aller systematischen Fehler innerhalb dieser Näherung gelegt.

Die Zerfallskonstanten FDs und FD∗
s
und die Massendifferenz zwischen dem Ds-

und dem D∗s -Meson wurden aus der direkten Computersimulation von Gitter-
QCD in großem physikalischen Volumen (L ≈ 1.5 fm) bestimmt. Als Neben-
produkt konnte auch ein präziser Wert der renormierungsgruppen-invarianten
Charm-Quarkmasse Mc ermittelt werden.

Für die Monte-Carlo Simulationen von QCD auf dem Gitter, speziell im hier
verwendeten Schrödinger Funktional, wurde eine plattformunabhängige Softwa-
re entwickelt. Eine Reihe von Simulationen bei verschiedenen Gitterabständen
erlaubte die Extrapolation der Ergebnisse zum Kontinuum.

Da vergleichbare Simulationen für das Bs- und B∗s -Meson aufgrund der großen
Masse des enthaltenen b-Quarks nicht möglich sind, wurde eine Interpolation in
der Mesonmasse zu ihrem experimentell bekannten Punkt für die Zerfallskonstan-
te und für den Wert der Massendifferenz durchgeführt. Interpoliert wurde dazu
zwischen dem statischen Limes (unendliche Mesonmasse) und dem Bereich von
Mesonmassen in der Größenordnung von mDs . Für insgesamt sechs Mesonmassen
in diesem Bereich wurden die gewünschten Observablen deshalb aus Simulationen
von Gitter-QCD in großem Volumen bestimmt und die Ergebnisse zum Kontinu-
um extrapoliert. Die Form der anschließenden Interpolation in der Mesonmasse
zum statischen Limes wurde den Vorhersagen der Heavy Quark Effective Theo-
ry (HQET) entsprechend gewählt. Um diese auf QCD zu übertragen, wurden
Konversionsfunktionen zwischen HQET und QCD hergeleitet und mit Hilfe von
Ergebnissen aus der Störungstheorie numerisch bestimmt.

Die Endergebnisse sind FDs=226(7)MeV, FD∗
s
=239(18)MeV, FBs=197(9)MeV,

mD∗
s
−mDs = 136(9)MeV, mB∗

s
−mBs = 63(7)MeV und Mc = 1.60(3)GeV. Das

Ergebnis für die Quarkmasse ist äquivalent zu mMS
c (mc) = 1.27(3)GeV.

Aus der Analyse der so bestimmten Interpolationen ließ sich außerdem ab-
schätzen, daß die führenden Korrekturen zum statischen Limes in der HQET
relativ klein sind. Man erwartet deshalb, daß HQET im Bereich der B-Physik
eine gute Näherung darstellt.

Schlagwörter:
HQET, Gitter QCD, schwere Quarks, sytematisch Fehler
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Chapter 1

Introduction

With the goal of a unification of quantum mechanics and special relativity, P.
A. M. Dirac formulated his famous equation of motion for free spin-1

2
particles

in 1928 [2]. The Dirac equation has solutions with both positive and negative
energy. The latter found an interpretation in terms of anti-particles four years
later, when C. D. Anderson discovered the positron in cosmic rays [3].

Today, based on Dirac’s findings, elementary particles are described as the
quanta of fields in local quantum field theories. The CPT-theorem [4,5,6], accord-
ing to which the field theory has to be invariant under the combined application
of charge conjugation (C), parity (P) and time-reversal (T), postulates an anti-
particle to be associated to each particle. Leaving aside gravity due to its weak
coupling to elementary particles at the energy scales accessible to experiments
today, the electro-magnetic (QED), the weak and the strong (QCD) interactions
have been combined in the Standard Model of elementary particles which has
an underlying local SU(3)c × SU(2)L × U(1)Y gauge-symmetry. The gluons, the
gauge bosons in QCD, and the photons, the gauge bosons in QED, couple to
both the left-handed and the right-handed fermions. C and P are therefore good
quantum numbers in these cases. In contrast, the gauge bosons W± and Z of the
electro-weak sector only couple to the left handed fermions and therefore parity
is violated. But at least the combination CP for the time being seemed to be a
symmetry of the electro-weak interactions.

However, the Standard Model for three generations of quarks(
u
d

)
,

(
s
c

)
,

(
b
t

)
, (1.1)

comprises the possibility of CP -violation. Although not confirmed experimen-
tally, the generation of particle masses in the Standard Model is explained by
the Higgs mechanism. The scalar Higgs field interacts with the lepton and the
quark fields through Yukawa couplings. By spontaneous electro-weak symmetry
breaking, the Higgs field acquires a non-vanishing vacuum expectation value and
thereby dynamically generates a mass term for all fields. The physical quark

1



2 CHAPTER 1. INTRODUCTION

fields u, d, s, c, b, t, are in the mass eigenstate basis, where the associated mass
matrix is diagonal. Their relation to the quark states in the weak eigenstate ba-
sis is given by a 3× 3 unitary matrix, the Cabbibo-Kobayashi-Maskawa (CKM)
mixing matrix [7]

UCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (1.2)

It depends on three real angles and six phases. Five phases can be removed due
to the freedom to redefine the phases of the quark mass eigenstates, leaving a
single physical phase δKM, the Kobayashi-Maskawa phase. In the case of the CP -
invariance of the electro-weak interactions, the phase has to vanish. However,
in 1964, Cronin, Fitch and Christenson [8] found experimental evidence for a
CP -violating 2π-decay of the neutral Kaon.

Since the discovery of CP -violation, a lot of effort has been put into preci-
sion measurements of the CKM-matrix. New experiments, like CLEO-c [9] and
the B-factories BaBar [10] and BELLE [11] have been set up for high precision
measurements of CP -violating effects.

The question arises as to why these measurements are interesting.
Once the parameters of the Standard Model have been fixed by experiment,

the consistency of the theory can be checked. In particular, as CP -violation in the
Standard Model is induced only by the phase δKM, its measurement in one process
will constrain the CP -violation allowed in other processes. For example, the
CP -violation in the decay B → ψKS is related to the CP -violation in K → πνν̄
[12]. If inconsistencies were discovered by experiment, this would be a sign for
physics beyond the Standard Model. Indeed, super-symmetric models predict
CP -violating effects, that would exceed the magnitude of CP -violation allowed
by the Standard Model [13].

According to one of Sakharov’s three conditions [14], all of which must be met
in order to allow for baryogenesis, CP must be violated in order to favor baryon
over anti-baryon production. Therefore, a deeper understanding of CP -violation
in connection with electro-weak symmetry breaking in the early universe may
help in understanding the observed asymmetry between matter and anti-matter
in the observable part of the universe.

In order to assess possible inconsistencies in the flavor physics of the Standard
Model, precision measurements on the one hand and precision predictions from
theory on the other hand are required to reduce the error on the elements of the
CKM-matrix. For example, the CLEO-c experiment intends to measure precisely
the branching ratio of the leptonic decay of a Ds-meson,

BR(Ds → lν̄) =
G2

F

8π
τDsF

2
Ds
|Vcs|2mDsm

2
l

(
1− m2

l

m2
Ds

)2

. (1.3)

In this expression, which is correct up to radiative corrections, GF is the Fermi
constant, FDs , τDs and mDs the lifetime, the decay constant and the mass of



3

the Ds-meson respectively and ml is the mass of the lepton taking part in the
decay. In order to extract the value of the matrix element |Vcs|, theorists have
to deliver precise predictions for the decay constant FDs . However, the Ds-meson
is particular, as |Vcs| can also be obtained very precisely from constraints on the
CKM-matrix [15] and therefore the experiment can also measure FDs . Hence, its
study offers the possibility to test precision predictions from the lattice and to
ensure, that the same techniques applied to experimentally less explored meson
systems produce reliable results.

In similar ways, from the measurements of the mixing Bd ↔ Bd and Bs ↔ Bs,
the product of CKM-matrix elements |Vtd||Vtb| and the ratio |Vtd|/|Vts| could be
determined. To do this, theorists would have to predict accurately the products
of the decay constant and the square root of the bag-parameter, FBd

√
Bd and

FBs

√
Bs from the study of semi-leptonic decays [16].

On the theory side, in order to determine these low-energy quantities, QCD
sum rules [17,18] or relativistic quark models [19] may be applied. Lattice QCD
however, where a Euclidean space-time lattice is used as the regulator for QCD,
appears to be the most promising approach. Physical quantities can be obtained
as the expectation values of observables evaluated on an ensemble of field con-
figurations, which have to be computer-generated by means of a Monte-Carlo
simulation [20,21].

For precision lattice phenomenology, a number of systematic uncertainties
present in the lattice approach have to be taken into account [16]:

• Finite volume effects - Simulations of lattice QCD are numerically very
costly and therefore the size of the lattices which can be simulated is limited.
Especially for light quarks, where the Compton wavelength is large, one has
to make sure that results are not affected by the presence of a space-time
boundary.

• Continuum limit and cutoff effects - Lattice QCD has to be simulated at
various finite lattice spacings in order to allow for a controlled extrapolation
to the continuum limit. This has to be done along a line of constant physics,
which amounts to renormalizing the theory. Systematic effects can be re-
duced by renormalizing the theory non-perturbatively [22]. Furthermore,
the approach to the continuum can be accelerated and systematic effects can
be reduced by non-perturbatively improving the theory [23]. In this way,
lattice artifacts vanish quadratically in the lattice spacing [24, 25] instead
of linearly, as it is the case for example for standard Wilson fermions [26].

• Extrapolations to physical quark masses - Lattice computations become very
costly for light quarks (u and d) and for heavy quarks with masses above the
charm quark mass. Light quarks require a large physical volume and at the
same time, they are particularly costly with current algorithms due to the
required inversions of the badly conditioned Dirac operator. For the heavy



4 CHAPTER 1. INTRODUCTION

quarks, mass dependent cutoff effects at finite lattice spacing are a source
of concern due to their short Compton wave length. Both problems can
be circumvented by simulating at unphysical but less costly quark masses
and then extrapolating the results to the physical point. The form of the
extrapolation is suggested by effective theories. Chiral perturbation theory
is commonly used for extrapolations to light quark masses, whereas heavy
quark effective theory (HQET) suggests a polynomial expansion of observ-
ables in the inverse quark mass for heavy quarks. The extrapolations in
each case have to be done carefully to avoid uncontrolled systematic errors.

• Excited states - In lattice computations, physical observables are mostly
extracted from the time dependence of correlation functions. One does
not know exactly how to construct particle wave functions in QCD which
would allow for a projection onto particular states of the spectrum. There-
fore, contributions of excited states to the desired observables cannot be
completely avoided. The magnitude of such contributions can however in
some cases be estimated and controlled by an accurate data analysis.

• Quenching - The generation of a representative ensemble of gauge configu-
rations in the lattice Monte-Carlo simulation is very costly in the case of full
QCD. Full QCD means that the simulation takes into account both virtual
gluon loops and virtual quark loops. In the quenched approximation, one
neglects the contributions of virtual quark loops. This reduces the costs
immensely, at the expense of significance of the results: Quenched QCD is
an uncontrolled approximation to QCD and precise and reliable results for
phenomenology cannot be obtained. But still, simulations in the quenched
theory give estimates for phenomenological quantities which in some cases
are surprisingly good and are an important tool to assess techniques for
later use in the full theory.

In this work, a feasibility study of precision lattice computations in the heavy-
flavor sector of quenched QCD has been accomplished. A particular emphasis
was placed on keeping the above sources of systematic errors, apart from quench-
ing, under control. The focus of the study was on the phenomenology of the
heavy-light pseudo scalar mesons Ds and Bs and the vector mesons D∗s and B∗s .
In particular, the simulations aimed at the computation of the leptonic decay
constants FDs , FD∗

s
, FBs and FB∗

s
, which are important for the determination of

CKM-matrix elements.
Simulations of lattice QCD for heavy-light mesons in large physical volume

(L & 1.5 fm) and with a controlled continuum extrapolation currently can be
accomplished at the physical point of charm and strange as the heavy and light
quark respectively. Thus, the Ds-meson can be simulated directly and systematic
effects due to extrapolations in the quark mass can be avoided. Since very precise
data for the matrix element |Vcs| exists, CLEO-c will determine FDs to a precision
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Figure 1.1: Using data from lattice simulations of QCD with heavy quark masses
around the charm quark mass mc in the continuum limit (bold dashed line with
error band), together with predictions or simulation results in the static limit
mQ →∞, allows for an interpolation to the physical point of the b-quark mb.

below 2% until 2005 and thereby offers a very accurate test of the lattice approach
and all the applied techniques.

Once one has gained confidence in the lattice computations, the techniques
can be applied to sectors of the Standard Model, like the Bs-mesons, which are
not easily accessed through experiments. The large mass of the b-quark however
does not allow for a direct lattice simulation of the Bs mesons. Instead, the
following procedure, which is sketched in figure 1.1, can be applied. In addition
to the simulations at the physical point of the Ds-meson, one simulates for the
desired meson observable also at a number of unphysical heavy quark masses
around charm (indicated by the dashed bold line). After the continuum limit
has been taken, the data would allow for an extrapolation to the physical point
of the b-quark mass. However, the range of heavy quark masses accessible to
relativistic simulations of QCD is limited. Therefore, such an extrapolation has
little significance and systematic effects cannot be estimated.

Fortunately, the extrapolation can be constrained further. HQET makes exact
predictions for some mesonic observables in the limit of infinite heavy quark mass,
the static limit. Also, results for the decay constant in the continuum, obtained
from lattice simulations in the static approximation with reasonable statistical
errors, exist [27]. Furthermore, HQET predicts the mass dependence of mesonic
observables as a polynomial in the inverse heavy quark mass. Combining predic-
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tions from HQET in the static limit with lattice QCD simulations in the charm
region allows for a controlled interpolation to the beauty region [28,29,30], while
keeping systematic effects under control. Furthermore, in assessing the functional
form of the resulting interpolation, an estimate of the order of magnitude of the
leading order coefficients in the heavy quark expansion is possible and at the
same time constitutes a test for HQET.

HQET [31, 32, 33] is an effective theory for QCD with heavy quarks of mass
mQ � ΛQCD. A short motivation and its definition are given in chapter 2. Con-
version functions that relate observables of heavy-light mesons in HQET in the
continuum to their analog in QCD have been derived, computed and parame-
terized in terms of the renormalization group invariant heavy quark mass MQ.
These conversion functions will finally enable an interpolation between results
from QCD in the charm region and the static limit guided by the predictions
from HQET.

Section 3 establishes the QCD Schrödinger Functional as the preferred frame-
work for the lattice computation of decay constants, meson masses and quark
masses, for which explicit expressions in terms of correlation functions and fi-
nally in terms of quark propagators will be derived.

A major part of this work consisted in obtaining a platform independent
program code that can accomplish all the necessary computations. The program
code presented in chapter 4 is based on the MILC collaboration’s lattice gauge
theory code [34]. All major changes, improvements and tests of the code will be
discussed.

Chapter 5 discusses and tabulates all parameters for the Monte-Carlo simu-
lations.

The analysis of all data is described in chapter 6. After the discussion and
estimation of all sources of systematic errors, the continuum extrapolation for
the Ds- and the D∗s -meson are presented. Afterwards, the results from the inter-
polation to the static limit are discussed. On the one hand, the values of meson
observables at the physical point of the Bs have been obtained and on the other
hand an estimate for the order of magnitude of the leading order coefficient of
the heavy quark expansion will be given. All results are discussed and compared
with other lattice computations and experiment.

The last chapter summarizes all findings of this work and gives an outlook.



Chapter 2

Non-perturbative test of HQET
with QCD

After a short motivation of HQET in section one, section two describes the com-
putation of conversion functions, which are necessary to relate matrix elements in
QCD to those in HQET. They will allow for an interpolation in the heavy quark
mass between the region of the charm quark mass and the static limit, guided by
predictions from HQET. The necessary relations are given in section three.

2.1 Heavy quark effective theory

The typical energy carried by the light constituents in mesons (u-, d-, s-quarks
and anti quarks and gluons) is of order ΛQCD ≈ 200 MeV. The phenomenology
of mesons containing a light quark q and a heavy quark Q with mQ � ΛQCD

1

(cf. figure 2.1) is therefore governed by the two different energy scales mQ and
ΛQCD. With the heavy quark’s Compton wavelength being λQ ∼ 1/mQ, the
gluons cannot resolve the heavy quark’s quantum numbers - the light degrees of
freedom are blind to spin and flavor (mass) of the heavy quark, leading to heavy
quark spin and flavor symmetry. For example the experimentally determined
spin splittings [1]

m2
B∗ −m2

B ≈ 0.49 GeV2,
m2

D∗ −m2
D ≈ 0.55 GeV2,

(2.1)

and the mass splittings [1]

mBs −mBd
= (90± 3) MeV,

mDs −mDd
= (99± 1) MeV,

(2.2)

for different heavy-light mesons are approximately the same. One expects these

1A particular choice for the quark mass definition will be done in section 2.2.2. At this point
mQ may for example be the heavy quark’s pole mass.

7
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Figure 2.1: Quark mass ranges in the MS-scheme of dimensional regularization
[1].

symmetries to be exact for heavy-light mesons with one infinitely heavy, or static,
quark. The symmetry breaking which can be observed experimentally at a finite
but large heavy quark mass can be interpreted as the consequence of small per-
turbations to the theory with a static quark due to the interaction with the
chromo-magnetic and chromo-electric fields mediated by soft gluons. This idea
has been formulated in terms of an effective theory, the heavy quark effective
theory (HQET) [35, 36, 37] which will be derived briefly in the following. For an
extensive derivation the reader may refer to the reviews [38,39] and [40].

Restricting the study on heavy-light mesons with momentum p, containing
one flavor of heavy quarks Q(x) and one flavor of light quarks q(x), the starting
point is the QCD path integral

ZQCD =
∫
q̄,q,Q̄,Q,U

e−i
∫
d4x{LYM[U(x)]+LQ[q̄(x),q(x),U(x)]+LQ[Q̄(x),Q(x),U(x)]}. (2.3)

LYM is the SU(3) Yang-Mills Lagrangian, and LQ is the QCD Lagrangian for
quark fields coupled to the gauge field U in the adjoint representation,

LQ[ψ̄(x), ψ(x), U(x)] = ψ̄(x)(i /D +m)ψ(x), (2.4)

with the Dirac operator /D. The focus will now be on the heavy quark Lagrangian.
The heavy quark in the meson is approximately on shell and therefore behaves like
a free particle moving at four-velocity v. Removing the space time dependence
of a solution of the free Dirac equation, the four-component Dirac field Q(x) can
be rewritten in terms of the large and small component fields2 hv(x) and Hv(x)
by

hv(x) = eimQv·xP v
+Q(x) and Hv(x) = eimQv·xP v

−Q(x). (2.5)

2This nomenclature stems from the free Dirac theory, where in the non-relativistic limit
E → mc2, the upper components of the Dirac spinor remain of O(1) while the lower components
vanish. One therefore refers to the upper components as the “large components” and to the
lower components as the “small components”.
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Figure 2.2: Virtual fluctuation of a heavy quark.

P v
+ and P v

− are the projection operators

P v
± =

1± /v

2
. (2.6)

The time dependence of the fields h(x) and H(x) is then expected to be deter-
mined by the residual momentum k = p − mQv which is of order ΛQCD. The
heavy quark will only be considered in its rest frame throughout this work and
therefore vµ = (1, 0, 0, 0). In this case, h(x) ≡ hv(x) corresponds to the upper
components of Q(x) and H(x) ≡ Hv(x) to the lower components.

The small components H(x) of the heavy quark field Q(x) only become rele-
vant at high energies and are the origin of the short distance effects - for example,
effects involving pair creation of heavy quarks or the zig-zag depicted in figure
2.2, where the intermediate state has an energy that differs from the initial one
by at least 2mQ and therefore propagates only over a short distance.

In terms of the fields H(x) and h(x), the heavy quark Lagrangian in the rest
frame can be rewritten as

L[Q̄(x), Q(x), U(x)] = h̄(x)iD0h(x)−H(x)(iD0 + 2mQ)H(x)

+ h̄(x)i /D⊥H(x) +H(x)i /D⊥h(x).
(2.7)

with D⊥ = (0, ~D). The large component fields h(x) do no longer have a mass
term, whereas the small component fields H(x) appear with a mass term with
twice the heavy quark mass. It is this term which will be eliminated in the
construction of the effective theory.

By Gaussian integration, which in this case is equivalent to applying the
classical equation of motion

(iD0 + 2mQ)H(x) = /D⊥h(x), (2.8)

the small component fields can be eliminated and one arrives at the non-local
effective Lagrangian

Leff [h̄(x), h(x), U(x)] = h̄(x)iD0h(x) + h(x)i /D⊥
1

2mQ(1+
iD0
2mQ

)
i /D⊥h(x). (2.9)



10 CHAPTER 2. NON-PERTURBATIVE TEST OF HQET WITH QCD

The second term in this Lagrangian represents the virtual processes suppressed by
at least 1/2mQ. In momentum space the operator that acts on h(x) corresponds
to powers of the momentum. As the residual momenta of the heavy quark field
h(x) are small with respect to the heavy quark’s mass, the quotient in the second
term can be expanded in D0/mQ by means of a derivative expansion which results
in a an effective Lagrangian, in which the operators are ordered in powers of
1/mQ. This is the HQET Lagrangian. Up to the 1st order in 1/mQ it reads3

LHQET[h̄(x), h(x), U(x)] = Lstat[h̄(x), h(x), U(x)]

+ 1
2mQ

L1/mQ
[h̄(x), h(x), U(x)] +O(1/m2

Q)
(2.10)

with

Lstat[h̄(x), h(x), U(x)]= Ostat[h̄(x), h(x), U(x)] = h(x) iD0h(x),

L1/mQ
[h̄(x), h(x), U(x)]=Okin

1/mQ
[h̄(x), h(x), U(x)]+Ospin

1/mQ
[h̄(x), h(x), U(x)]

= h̄(x)i ~D2h(x) + h̄(x)i~S · ~B(x)h(x).

(2.11)
The Si are the generators of spin SU(2) rotations and can be chosen as

Si =
1

2

(
σi 0
0 σi

)
, [Si, Sj] = iεijkSk, (2.12)

where the σi are the Pauli matrices (cf. appendix A). Bi(x) = −1
2
εijkGij(x) is

the chromo-magnetic gluon field where [iDα(x), iDβ(x)] = igGαβ(x) is the gluon
field strength tensor. The term with Okin

1/mQ
is responsible for fluctuations of order

ΛQCD in the heavy quark’s motion and Ospin
1/mQ

describes the coupling of the heavy

quark’s spin to the chromo-magnetic field. Both terms introduce the leading
order flavor and spin symmetry breaking interactions at finite heavy quark mass,
which were mentioned at the beginning of this chapter.

The theory with the Lagrangian (2.10) is not renormalizable by a finite num-
ber of counter terms. Due to the presence of couplings with negative mass dimen-
sion, terms of a given order in 1/mQ may mix with terms of higher order under
renormalization [41] and an infinite number of counter terms would be necessary.

Thus, one expands the Boltzmann-factor in the corresponding path integral

3Higher order terms will not be considered in this thesis.
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in the heavy quark mass 1/mQ,

ZHQET[U ] =
∫
h̄,h
e−i

∫
d4xLHQET[h̄(x),h(x),U(x)]

=
∫
h̄,h
e−i

∫
d4xLstat[h̄(x),h(x),U(x)]

×
{

1 + 1
2mQ

∫
d4xL1/mQ

[h̄(x), h(x), U(x)] +O(1/m2
Q)

}
.

(2.13)
¿From power counting one concludes, that the static theory defined by Lstat is
renormalizable with a finite number of parameters.

In the same way as for the derivation of the HQET Lagrangian, an operator
OX(x) containing heavy quark degrees of freedom, at tree-level can be expanded
in a power series in 1/mQ,

OX(x) = OX
0 (x) +

1

2mQ

OX
1 (x) +O(1/m2

Q). (2.14)

This may for example be done for the heavy-light axial vector current Aµ(x) =
q̄(x)γµγ5Q(x) (X = PS4) and the vector current Vµ(x) = q̄(x)γµQ(x) (X = V)
which then at leading order are defined as

OPS
µ (x) = Aµ(x) = q̄(x)γµγ5h(x),

OV
µ (x) = Vµ(x) = q̄(x)γµh(x).

(2.15)

Unlike the analog weak current operators in QCD, OPS
0,µ(x) and OV

0,µ(x) become

scale dependent under renormalization. Also the chromo-electric moment Ospin
1/mQ

receives a scale dependence. In contrast, Okin
1/mQ

(x) stays scale independent due

to re-parameterization invariance [42,43].
For the cases X=PS, V and spin one then writes

OX
R(x, µ) = ZX(µ)OX(x), (2.16)

with the renormalization constant ZX(µ) whose scale dependence is determined
by the renormalization group equation

γX,MS(ḡ(µ)) = µ
d logZX(µ)

dµ
. (2.17)

The renormalized coupling ḡ(µ) is the one in the MS-scheme of dimensional reg-

ularization and the anomalous dimension γX,MS(g) has the generic perturbative
expansion

γX,MS(g) = −γMS
0 g2 − γMS

1 g4 − γMS
2 g6 + . . . . (2.18)

4This common notation refers to the transformation properties of Aµ(x) under parity (odd),
which are the same as for a pseudo scalar.
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X=PS,V X=spin

γX,MS
0 − 1

(4π2)
6

(4π)2

γX,MS
1 −

(
254
9

+ 56
27π2

)
1

(4π)4
68

(4π)4

γX,MS
2 − 12.941

(4π2)3

Table 2.1: Coefficients for the 3- resp. 2-loop anomalous dimension for renor-
malized heavy-light quark currents (axial vector and vector current) and the
chromo-magnetic moment of a heavy quark.

It is equivalent for X=PS and V and has been determined in the MS-scheme of
dimensional regularization at one-loop in [44, 37], at two-loop in [45, 46] and at
three-loop precision in [47]. For X = spin, the one-loop anomalous dimension is
given in [31, 48] and at two-loop in [49, 44]. The corresponding coefficients are
given in table 2.1. The vacuum expectation value of an operator OX

R(x, µ) in
HQET then takes the form〈

OX
R(x, µ)

〉
=

〈
(OX

0 )R(x, µ)
〉

+ 1
2mQ

〈
(OX

1 )R(x, µ)
〉

+ 1
2mQ

〈
(OX

0 )R(x, µ)
∫
d4y

(
(Okin

1/mQ
)R(y, µ)+ (Ospin

1/mQ
)R(y, µ)

) 〉
+ O(1/m2

Q),
(2.19)

where the operator expectation values have to be understood in the theory defined
by the path integral

Z =
∫
q̄,q,h̄,h,U

e−i
∫
d4x{LYM[U(x)]+LQ[q̄(x),q(x),U(x)]+Lstat[h̄(x),h(x),U(x)]}. (2.20)

2.2 Matching the effective theory to QCD

By explicitly integrating out the short distance physics associated with the heavy
quark in the last section, an effective theory for heavy quarks has been derived
which one expects to correctly describe the long-distance physics of QCD.

It is known from QCD, that quarks couple to gluons which can have virtual
momenta as high as the quark mass. In HQET, when taking the limit mQ →∞,
this introduces logarithmic divergences for example in weak matrix elements.
Those matrix elements therefore have to be renormalized.

The matching of the effective theory to QCD amounts to reintroduce the high
energy behavior of matrix elements in HQET in terms of Wilson coefficients.
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They allow to define conversion functions C, which relate QCD matrix elements
for heavy quarks of massmQ to the corresponding renormalization group invariant
matrix elements in HQET.

2.2.1 The conversion functions CX(mQ) for
X = PS, V, PS/V, spin

The Wilson coefficients are defined by the relation between the matrix element
of the corresponding operator OR(x,mQ) in QCD, containing heavy degrees of
freedom of mass mQ, and the operator in the effective theory, renormalized at
the scale µ,〈
OX

R(x,mQ)
〉

QCD
= CX(mQ, µ)

〈
(OX

0 )R(x, µ)
〉

stat

+
BX(mQ,µ)

2mQ

{〈
(OX

1 )R(x, µ)
〉

stat
+

〈
(OX

0 )R(x, µ)
∫
d4y

(
Ckin(µ, µ)(Okin

1/mQ
)R(y, µ)

+ Cspin(µ, µ)(Ospin
1/mQ

)R(y, µ)
) 〉

stat

}
+ O(1/m2

Q).

(2.21)
The coefficient BX(mQ, µ) is mentioned for completeness but will be of no rele-
vance for this work. In practice, one determines the Wilson coefficients CX(mQ, µ)
in perturbation theory at the scale µ = mQ from a comparison or matching of
suitable matrix elements in the full and in the effective theory5. Here, mQ is
the heavy quark’s pole mass. As the pole mass does not have a well defined
perturbative expansion [51], it will be replaced by the renormalization scheme
independent renormalization group invariant quark mass MQ in the next section.

CX(mQ,mQ) depends on the particular Dirac structure of the operator
OX

R(x, µ) and has been determined in perturbation theory for a number of heavy-
light current matrix elements. The coefficients have an expansion in a power
series in the renormalized coupling

CX(mQ,mQ) = 1 + cX1 ḡ
2(mQ) + cX2 ḡ

4(mQ) + . . . . (2.22)

For the axial vector and the vector current, the one-loop computation has been
accomplished in [35] and at two-loop precision it is given in [52]. In the case of the
kinetic term, Ckin(µ, µ

′) = 1 holds due to re-parameterization invariance [42,43].
For Cspin(mQ,mQ) only the one-loop coefficient is known [31]. The factors cX1 and
cX2 for the quenched theory are collected in table 2.2 for the phenomenologically
important cases X=PS, V and spin.

5In [50], a method, how to do the matching non-perturbatively has been suggested.
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X matrix element cX1 cX2

PS ΦPS = 〈0|q̄γ0γ5Q|PS〉 −2
3

1
4π2 −4.2 1

(4π2)2

V ΦV = 〈0|q̄γ0Q|V〉 −4
3

1
4π2 −11.5 1

(4π2)2

spin
Φspin

PS = 〈PS|Q̄~S · ~BQ|PS〉 13
6

1
4π2 —

Φspin
V = 〈V|Q̄~S · ~BQ|V〉

Table 2.2: Coefficients for the matching factors CX(mQ,mQ) in the quenched
theory.

The scale dependence of the Wilson coefficients derives from the renormaliza-
tion of the associated heavy quark current (cf. section 2.2). After integrating the
renormalization group equation (2.17) one gets the relation

CX(mQ, µ)=CX(mQ,mQ) exp


ḡ(µ)∫

ḡ(mQ)

dg
γX,MS(g)

β(g)

. (2.23)

Here, γX,MS(g) is the anomalous dimension introduced in the last section and β(g)
is the anomalous dimension of the renormalized coupling ḡ(µ) in the MS-scheme
of dimensional regularization which is known at 4-loop accuracy [53],

β(g) = −b0g3 − b1g
5 − b2g

7 − b3g
9 − . . . . (2.24)

The leading coefficients are b0 = 11/(4π)2 and b1 = 102/(4π)4 and the higher
order coefficients are collected in appendix B.

To eliminate any dependence on the renormalization scale in the relation
between matrix elements in QCD and in HQET, it is convenient to take the limit
µ → ∞ in the above expressions. The Wilson coefficients then relate matrix
elements in QCD to the renormalization group invariants

OX
RGI(x) = lim

µ→∞

{
[2b0ḡ

2(µ)]−γ
X,MS
0 /(2b0)OX

R(x, µ)
}

(2.25)

in HQET and one can write

CX(mQ, µ)OX
R(x, µ) → CX(mQ)OX

RGI(x). (2.26)

2.2.2 Computation of CX(MQ/ΛQCD)

Since the pole mass mQ has a badly behaved perturbative expansion due to
non-perturbative infrared effects [51], it will now be eliminated in favor of the
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dimensionless ratio between the renormalization group invariant quark mass MQ

and the ΛQCD-parameter as the new argument of the conversion functions6. MQ

is scale- and scheme-independent. It is defined via the limiting behavior of any
renormalized mass m(µ),

MQ = lim
µ→∞

{
[2b0ḡ

2(µ)]−d0/(2b0)m(µ)
}
, (2.27)

where d0 = 8/(4π)2 is the universal leading order coefficient of any quark mass
anomalous dimension. How mQ and MQ are related to each other in detail is
explained in the appendix B.

As an intermediate step, in the computation of the coefficients CX(MQ/ΛQCD),
one defines the conversion functions parameterized with the renormalized mass
m∗ = m(m∗) in the MS-scheme,

CX(m∗) =
[
2b0ḡ

2(m∗)
]γX

0 /(2b0)
exp


ḡ(m∗)∫
0

dg

[
γX(g)

β(g)
− γX

0

b0g

] . (2.28)

The anomalous dimension β(g) and the the anomalous dimension for X = PS, V,

γX(g) = −γX
0 g

2 − γX
1 g

4 − γX
2 g

6 − . . . (2.29)

will always be taken at 4- respectively 3-loop precision. The difference to taking
the 3-loop β-function instead, turned out to be tiny. The perturbative error
introduced by γX(g) was estimated with half the difference between the values
for CX obtained with the 2-loop and the 3-loop expression. For X=PS, V, the γi
are defined as

γX
0 = γX,MS

0 ,

γX
1 = γX,MS

1 + 2b0c
X
1 ,

γX
2 = γX,MS

2 + 4b0(c
X
2 + γX

0 k) + 2b1c
X
1 − 2b0[c

X
1 ]2.

(2.30)

All the coefficients are collected in the tables 2.1 and 2.2. γX(g) contains a
contribution which has been derived from the matching (2.22) of the HQET
operators and a contribution that originates from a re-parameterization: The
matching was originally done at the matching scale given in terms of the heavy
quark’s pole mass mQ. Using the ratio mQ/m∗, which is known at three-loop
precision [55, 56, 57] (cf. appendix B), the pole mass can be replaced by m∗.
However, given the anomalous dimensions of the currents to three-loop order,
only the one-loop term actually contributes to γX(g) (appearing as the piece
proportional to k = −1/(3π2) in equation (2.30)).

6Since only the case Nf = 0 was considered in this thesis, the non-perturbatively determined
value ΛQCD = ΛMS = 238(19) MeV (quenched) [54] is used.
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The chromo-magnetic operator Q̄(x)~S · ~B(x)Q(x) in the heavy quark expan-
sion is multiplied by the inverse pole mass. Since the preferred expansion param-
eter for HQET in this thesis is MQ rather than mQ, the corresponding conversion
function Cspin(MQ/ΛQCD) must also include the factorsm∗/mQ andMQ/m∗ in or-
der to cancel the factor 1/mQ in favor of 1/MQ. Using the relation (cf. appendix
B)

MQ/m∗ =
[
2b0ḡ

2(m∗)
]−d0/(2b0)

exp

−
ḡ(m∗)∫
0

dg

[
τMS(g)

β(g)
− d0

b0g

] , (2.31)

where
τMS(g) = −g2d0 − g4d1 + . . . (2.32)

denotes the quark mass anomalous dimension in the MS scheme in QCD known
up to four-loop precision [58,59], one then obtains for X=spin

γspin
0 = γspin,MS

0 − d0,

γspin
1 = γspin,MS

1 − d1 + 2b0(c
spin
1 + k),

(2.33)

where d1 = 404/(3(4π)4). For the case X = PS/V, all but the contributions from
the matching cancel and one gets

CPS/V(m∗) = exp


ḡ(m∗)∫
0

dg
γPS(g)− γV(g)

β(g)

 . (2.34)

Using (2.31), one finally changes the argument of the various CX(m∗) to the
renormalization group invariant ratio MQ/ΛQCD and arrives at expressions for
the conversion functions

CX(MQ/ΛQCD) with X = PS,V,PS/V and spin. (2.35)

For practical purposes, such as repeated use in the fits of the heavy quark mass
dependence of QCD observables that will be considered, a parameterization of
all conversion functions in terms of the variable

x ≡ 1

ln (MQ/ΛQCD)
(2.36)

was determined from a numerical evaluation. This parameterization is suggested
by the asymptotic behavior of the conversion functions

CX(MQ/ΛQCD)
MQ→∞∼ (ln(MQ/ΛQCD))−γ

X
0 /(2b0)

{
1 +O

(
ln[ln(MQ/ΛQCD)]

ln(MQ/ΛQCD)

)}
(2.37)
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Figure 2.3: Plots of the perturbative matching coefficients CX, X=PS, V, PS/V
and spin for 1-loop, 2-loop and 3-loop γ-function (dotted, dashed and solid line
respectively).

for X=PS, V and spin. The functions decompose into a prefactor encoding the
leading asymptotics as x → 0, multiplied by a polynomial of appropriate order
in x. The results are given in table 2.3 and plotted in figure 2.3.

The parameterizations of the matching factors deviate little from the numer-
ical data and the error from perturbation theory is not too large (cf. table 2.3).
Taking as an estimate for it half the difference between the numerical data based
on the n-loop γ-function and the (n− 1)-loop γ-function, the functions CPS, CV,
CPS/V have an error in the range of 1%− 5.3%.

The results for Cspin with the 1-loop and the 2-loop anomalous dimension
differ only little. As this may be accidental, the size of the three-loop term in
CPS has been taken as the uncertainty in order to arrive at a conservative estimate
for the error. A better error estimate would require the knowledge of γspin

2 .

2.3 Combining QCD and HQET

The decay constants for pseudo scalar mesons FPS(mPS) and vector mesons
FV(mV) are defined as

〈0|Aµ(0)|P〉 = ipµFPS,

〈0|Vi(0)|V(λ)〉 = iελimVFV,
(2.38)

where |P〉 and |V〉 are zero-momentum states with the quantum numbers of a
pseudo scalar and a vector meson, respectively, and the |0〉 represents the ground
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state of the gluonic vacuum. In the case of the vector meson decay constant, ελµ
is a polarization vector. mPS and mV are the associated meson masses. With
the matching coefficients of the last section one obtains the following relations
between meson decay constants in the full theory (l.h.s.) and in HQET (r.h.s.):

YPS

CPS
≡ FPS(mPS)

√
mPS

CPS(MQ/ΛQCD)
= Φstat

PS,RGI +O(1/MQ), (2.39)

YV

CV
≡ FV(mV)

√
mV

CV(MQ/ΛQCD)
= Φstat

V,RGI +O(1/MQ). (2.40)

In the static limit no interactions of the gluon field with the heavy quark’s spin
survive and therefore

Φstat
PS,RGI

Φstat
V,RGI

= 1 (2.41)

holds. Φstat
PS,RGI, which is the renormalization group invariant of the matrix ele-

ment defined in table 2.2, has been computed non-perturbatively in [27] in the
static approximation.

For the ratios of decay constants one expects a behavior like

R
CPS/V

≡ FPS(mPS)
FV(mV)

√
mPS√
mV

1
CPS/V(MQ/ΛQCD)

= 1 +O(1/MQ). (2.42)

Furthermore, HQET predicts the relation

mX = mQ + Λ̄ +
1

2mQ

∆m2 +O(1/m2
Q) for X = PS, V. (2.43)

between the heavy-light meson mass mX and the heavy quark mass [60], where

∆m2 = −λ1 + 2

[
J(J + 1)− 3

2

]
λ2. (2.44)

J is the total spin of the meson, i.e. J = 0 for pseudo scalar mesons and J = 1
for vector mesons. Λ̄ is a parameter, that describes the properties of the light
degrees of freedom in the background of the static color source provided by the
heavy quark and and λ1 ∝ 〈X|− Q̄(i ~D)2Q|X〉 and λ2 ∝ Φspin

X . The mass splitting

∆m
Cspin

≡ mV−mPS

Cspin(MQ/ΛQCD)
= O(1/MQ), (2.45)

where the lowest order contribution comes from λ2, is therefore expected to van-
ishes in the limit MQ →∞.

By producing data for the l.h.s. of these equations from relativistic lattice
QCD for the range of heavy-light meson masses accessible to current lattice sim-
ulations, it is the scope of this work to try to

• estimate, down to which heavy quark mass in heavy-light meson systems
observables scale with 1/MQ without sizeable contributions from the higher
orders
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• check the compatibility of the relativistic simulations with the static ap-
proximation from an interpolation in 1/MQ

• obtain a value for the decay constant and the mass splitting for a meson
containing a b-quark from an interpolation in the mass, i.e. including the
prediction from HQET in the static limit.

• estimate the order of the 1/MQ corrections to the static limit from a fit-
ansatz á la

FPS,V

CPS,V

= a0 +
a1

MQ

+ . . . . (2.46)



Chapter 3

Masses and meson decay
constants on the lattice

It has been shown in the previous chapter that the validity of HQET can be tested
by exploring the mass dependence of meson observables in QCD. At their physical
point such observables are also an important input for the phenomenology of the
Standard Model.

A particularly suitable framework in which a non-perturbative determination
of mesonic observables is possible is the Euclidean QCD Schrödinger Functional
on the lattice [61, 62]. It has been demonstrated, that its Monte-Carlo simula-
tion allows for the determination of mesonic observables with smaller statistical
fluctuations than with conventional methods like lattice QCD on the torus. In
addition, systematic errors introduced by excited states can be estimated more
reliably [63].

First, the O(a)-improved QCD Schrödinger Functional will be introduced in
this chapter. Then, the meson mass and the decay constant of pseudo scalar
mesons and vector mesons, and also the quark mass will be expressed in terms of
renormalized and improved quark bilinear currents, whose expectation values can
be evaluated in a Monte-Carlo simulation of the Schrödinger Functional. Finally,
expressions of these currents in terms of quark propagators will be derived for
the direct implementation in a computer program.

3.1 The Schrödinger Functional - geometry and

fields

The QCD Schrödinger Functional on the lattice is the partition function

Z[C,C ′, ρ̄, ρ, ρ̄′, ρ′] =

∫
ψ̄,ψ,U

e−S[U,ψ̄,ψ], (3.1)

21
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discretized on a hyper-cubic 4-dimensional Euclidean space-time cylinder

ΓE = {x| x/a ∈ Z; 0 ≤ x0 ≤ T ; 0 ≤ xk < L; k = 1, 2, 3} (3.2)

with boundaries in the time direction. Here, S[U, ψ̄, ψ] is the QCD action dis-
cretized on ΓE and will be specified in the next section. The integration in (3.1)
is the short form of ∫

ψ̄,ψ,U

=

∫ ∏
x

dψ̄(x)dψ(x)dU(x). (3.3)

The quark fields ψa,A,α(x) are assignments of Grassman numbers to each lattice
site x ∈ ΓE and carry the flavor-, Dirac- and color-indices a,A, α respectively.
The gauge fields U(x, µ) ∈ SU(3) are associated to the links between two adjacent
sites (x, x+ µ̂), µ̂ being a unit vector in the µ-direction.

In the spatial directions, the gauge fields U(x, µ) obey periodic boundary
conditions

U(x+ Lk̂, k) = U(x, k), k = 1, 2, 3. (3.4)

while the fermion fields ψ(x) are θ-periodic

ψ(x+ Lk̂) = eiθkψ(x) and ψ̄(x+ Lk̂) = e−iθkψ̄(x), k = 1, 2, 3. (3.5)

The functional explicitly depends on Dirichlet conditions at the boundaries
in the time direction. In particular, the gauge fields on the time slices x0 = 0
and x0 = T are set to identity matrices1

U(x, k)|x0=0 = exp{Ck} = U(x, k)|x0=T = exp{C ′k} = 13×3 for k = 1, 2, 3. (3.6)

As the Dirac equation is a first order differential equation, only two of the four
components of the Dirac spinors ψ(x) on the boundaries have to be prescribed
[62]. With P± = 1

2
(1± γ0), the boundary conditions are

P+ψ(x)|x0=0 = ρ(~x), P−ψ(x)|x0=T = ρ′(~x),

ψ(x)P−|x0=0 = ρ(~x), ψ(x)P+|x0=T = ρ′(~x).
(3.7)

3.2 Lattice action

As in the continuum, a generic lattice action for QCD consists of a gauge action
SG[U ], and a quark action SF[U, ψ̄, ψ], describing the dynamics of massive quarks
coupled to the gauge field,

S[U, ψ̄, ψ] = SG[U ] + SF[U, ψ̄, ψ]. (3.8)

1Other choices of the boundary conditions have been used to define the running coupling
constant in the Schrödinger Functional scheme, that scales with the size of the lattice volume
like µ = 1/L [64, 61].
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Wilson suggested the plaquette action, which in the version adapted for the
Schrödinger Functional reads

SG[U ] =
1

g2
0

∑
p

w(p)Tr {1− U(p)} . (3.9)

The sum runs over all oriented plaquettes p. A plaquette is the smallest closed
loop of link variables U(p) = U(x, µ)U(x + µ̂, ν)U−1(x + ν̂, µ)U−1(x, ν). The
coefficient w(p) will be specified in the next section.

The quark action is

SF[U, ψ, ψ] = a4
∑
x

ψ(x) (D +m0)ψ(x). (3.10)

Here, D is the Wilson Dirac operator

D =
1

2

{
γµ

(
∇∗µ +∇µ)− a∇∗µ∇µ

)}
(3.11)

with the covariant lattice forward and backward derivatives

∇µψ(x) = 1
a
{λµU(x, µ)ψ(x+ aµ̂)− ψ(x)} ,

∇∗µψ(x) = 1
a

{
ψ(x)− λ∗µU

−1(x− aµ̂, µ)ψ(x− aµ̂)
}
.

(3.12)

λµ = eiaθµ/L, with θ0 = 0 and −π < θk ≤ π (k = 1, 2, 3), is a phase factor that
incorporates the spatial boundary conditions (3.5) for the fermion fields. Also
the covariant lattice derivatives acting to the left side,

ψ̄(x)
←
∇µ = 1

a

{
λ∗µψ̄(x+ aµ̂)U−1(x, µ)− ψ̄(x)

}
,

ψ̄(x)
←
∇
∗
µ = 1

a

{
ψ̄(x)− λµψ̄(x− aµ̂)U(x− aµ̂, µ)

}
,

(3.13)

can be defined. They will be useful at a later point.
With the hopping parameter κ = (8 + 2am0)

−1, the fermion fields can be
rescaled like ψ(x) →

√
2κψ(x) and ψ̄(x) →

√
2κψ̄(x). The fermionic part of the

action can then be rewritten as

SF [U, ψ, ψ] = a4
∑
x,y

ψ(x)Mψ(x), (3.14)

with

Mψ(x) = ψ(x)− κ
3∑

µ=0

{λµU(x, µ)(1− γµ)ψ(x+ aµ̂)

+ λ∗µU
−1(x− aµ̂, µ)(1 + γµ)ψ(x− aµ̂)

}
.

(3.15)
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3.3 O(a)-improvement

In Wilson’s original formulation of lattice fermions [26], discretization effects due
to the finite lattice cut-off π/a turn up at leading order in a. At the same time, in
the Schrödinger Functional, also the Wilson gauge action is affected by O(a) cut-
off effects due to the presence of the boundary. Using an O(a)-improved action
and O(a)-improved expressions for observables, lattice-discretization effects can
be reduced (ideally removed) at leading order in a and the approach to the
continuum limit is accelerated.

The basic idea was first formulated by Symanzik [24,25], who showed for the
φ4-theory, that the corresponding lattice field theory can be described by a local
effective continuum field theory with the action

Seff =

∫
dx4

{
L0 + aL1 + a2L2 + . . .

}
. (3.16)

L0 is the generic continuum Lagrangian. The terms Lk (k = 1, 2, 3, . . .) are
combinations of local operators of dimension 4 + k, all of them respecting the
exact discrete symmetries of the lattice theory. In the effective continuum theory,
the lattice fields are represented by the renormalized effective fields

φeff(x) = φ0(x) + aφ1(x) + a2φ2(x) + . . . . (3.17)

The fields φk(x) (k = 0, 1, 2, 3, . . .) also must have the appropriate dimension and
respect the same lattice symmetries.

The O(a)-improved theory can now be obtained by adding suitable counter
terms with properly tuned improvement coefficients to the lattice action and to
the lattice fields, such that the O(a)-terms in the effective continuum action and
the effective continuum fields are canceled. In the cases of interest for this work,
only observables on the mass shell will be considered. Thus, on-shell improve-
ment can be applied, where the number of counter-terms, that are necessary
to improve the action and the fields at O(a) can be reduced by exploiting the
classical equations of motion.

O(a)-improvement has shown to be an efficient tool for lattice-field theory [22].
The improvement coefficients have been determined non-perturbatively [65,66] in
most of the cases, or otherwise are available from perturbation theory [65,67,68].

One thing to mention here is, that Symanzik’s proof, that O(a)-improvement
works, relies on perturbation theory. On the lattice one therefore always assumes,
that O(a)-improvement is applicable beyond perturbation theory. Experience
from lattice simulations of QCD however support, that this assumption is justified
[22,69,70,71,72].
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3.3.1 Improved action

To cancel the O(a)-effects in the Wilson SU(3) gauge action in the Schrödinger
Functional, one has to choose the weight w(p) in (3.9) as [67,68]

w(p) =


1
2
cs(g0) if p is a spatial plaquette at x0 = 0 or x0 = T,
ct(g0) if p is a time-like plaquette attached to a boundary plane,
1 elsewhere.

(3.18)
cs(g0) can be dropped for simulations with vanishing background field, as it will be
the case throughout this thesis, while ct(g0) has been determined in perturbation
theory at 2-loop order [68] and is given in appendix C.

For the O(a)-improvement of the fermionic part of the QCD Schrödinger
Functional, volume and boundary counter terms δSv[U, ψ̄, ψ] and δSb[U, ψ̄, ψ]
have to be added to the action which then reads

SIF[U, ψ̄, ψ] = SF[U, ψ̄, ψ] + δSb[U, ψ̄, ψ] + δSv[U, ψ̄, ψ]. (3.19)

The superscript I from now on indicates O(a)-improvement. The boundary im-
provement term is

δSb[U, ψ̄, ψ] = a4
∑
~x

{
(c̃s(g0)− 1)

[
Ôs(x) + Ô′s(x)

]
+ (c̃t(g0)− 1)

[
Ôt(x)− Ô′t(x)

]}
,

(3.20)

where

Ôs(x) = ρ̄(~x)
1

2
γk (∇∗k +∇k) ρ(~x), (3.21)

Ô′s(x) = ρ̄′(~x)
1

2
γk (∇∗k +∇k) ρ

′(~x), (3.22)

Ôt(x) =
{
ψ̄(x)P+∇∗0ψ(x) + ψ̄(x)

←
∇
∗
0 P−ψ(x)

}
|x0=a

and (3.23)

Ô′t(x) =
{
ψ̄(x)P−∇0ψ(x) + ψ̄(x)

←
∇0 P+ψ(x)

}
|x0=T−a

. (3.24)

(3.25)

The volume- or Sheikholeslami-Wohlert-term [73], has the form

δSv[U, ψ̄, ψ] = a5

T−a∑
x0=a

∑
~x

ψ̄(x) cSW(g0)
i

4
σµν · F̂µν(x)ψ(x). (3.26)

σµν = i
2
[γµ, γν ] and F̂µν is the symmetric lattice field strength tensor

F̂µν =
1

8a2
{Qµν(x)−Qνµ(x)} (3.27)
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with

Qµν(x) = U(x, µ)U(x+ aµ̂, ν)U(x+ aν̂, µ)−1U(x, ν)−1

+U(x, ν)U(x− aµ̂+ aν̂, µ)−1U(x− aµ̂, ν)−1U(x− aµ̂, µ)

+U(x− aµ̂, µ)−1U(x− aµ̂− aν̂, ν)−1U(x− aµ̂− aν̂, µ)U(x− aν̂, ν)

+U(x− aν̂, ν)−1U(x− aν̂, µ)U(x+ aµ̂− aν̂, ν)U(x, µ)−1.
(3.28)

Qµν(x) is the sum over four plaquettes in a hyper plane, all having the site x in
common and therefore resembling a clover leaf.

The improved fermion action can equivalently be expressed in terms of an
action with the improved Dirac operator

DI = D + δDv + δDb, (3.29)

where

δDvψ(x) = acSW(g0)
i

4
σµν · F̂µν(x)ψ(x) (3.30)

and

δDbψ(x) = (c̃t(g0)− 1) 1
a

{
δx0,a

[
ψ(x)− U(x− a0̂)−1P+ψ(x− a0̂)

]
+ δx0=T−a

[
ψ(x)− U(x, 0)P−ψ(x+ a0̂)

]}
.

(3.31)

As for the unimproved Dirac operator, a parameterization in terms of the hopping
parameter κ is possible, namely(

DI +m0

)
ψ(x) =

1

2κ
(M + δM)ψ(x) =

1

2κ
M Iψ(x) (3.32)

with δM = 2κ (δDv + δDb).
The improvement constant c̃t(g0) has been determined in perturbation theory

at 1-loop order [67] and cSW(g0) has been determined non-perturbatively [74].
Both constants are given in appendix C.

3.3.2 Improved fields

As it will be explained in section 3.6, all phenomenological observables that have
been determined in this work, can be expressed in terms of quark bilinear currents.
Of particular interest are the iso-vector axial current Aaµ(x) = ψ̄(x)γµγ5

τa

2
ψ(x),

the iso-vector vector current V a
µ (x) = ψ̄(x)γµ

τa

2
ψ(x) and the iso-vector pseudo
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scalar density P a(x) = ψ̄(x)γ5
τa

2
ψ(x). Except for the pseudo scalar density, these

currents get contributions from dimension five operators under improvement [23].
The improved axial current is

(Aaµ)
I(x) = Aaµ(x) + cA(g0)a∂̃µP

a(x), (3.33)

where

∂̃µf(x) =
f(x+ aµ̂)− f(x− aµ̂)

2a
(3.34)

is the symmetric lattice derivative. For the vector current V a
µ (x) = ψ̄(x)γµ

τa

2
ψ(x),

one adds the symmetric derivative of the tensor current

T aµν = ψ̄(x)σµν
τa

2
ψ(x), (3.35)

(V a
µ )I(x) = V a

µ (x) +
i

2
cV (g0)a∂̃νT

a
µν (3.36)

cA(g0) and cV (g0) have been determined non-perturbatively in [74] and [75, 66],
and their parameterizations in terms of the bare coupling2 are given in appendix
C.

3.4 Fermionic observables in the Schrödinger

Functional

Summarizing the last section, the O(a)-improved Euclidean QCD Schrödinger
Functional with the lattice action

SI [U, ψ̄, ψ] = SIG[U ] + SIF[U, ψ̄, ψ]. (3.37)

and vanishing background field is

Z[ρ, ρ̄, ρ′, ρ̄′] =

∫
ψ̄,ψ,U

e−S
I [U,ψ̄,ψ]. (3.38)

SIG and SIF are the improved Wilson gauge and fermion action introduced before.
A source term

SS[ψ̄, ψ, η̄, η] = a4
∑

0<x0<T

∑
~x

{
η̄(x)ψ(x) + ψ̄(x)η(x)

}
(3.39)

will now be added to the action. One can then identify

ψ(x) = δ
δη̄(x)

, ψ̄(x) = − δ
δη(x)

,

ζ(~x) = δ
δρ̄(~x)

, ζ̄(~x) = − δ
δρ(~x)

,

ζ ′(~x) = δ
δρ̄′(~x)

, ζ̄ ′(~x) = − δ
δρ′(~x)

,

(3.40)

2In the case of cV (g0), the parameterization derived in [76] has been used here
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where ζ(~x), ζ̄(~x), ζ ′(~x) and ζ̄ ′(~x) can be interpreted as boundary fields. Ex-
pectation values of operators that are polynomials O in these fields are defined
as

〈O〉 =
{

1
Z

∫
ψ̄,ψ,U

O e−S
I [U,ψ̄,ψ]−SS[ψ̄,ψ,η̄,η]

}
|ρ=ρ̄=ρ′=ρ̄′=η̄=η=0

. (3.41)

With Õ being the polynomial O, where all fields replaced by the associated
functional derivative, the expectation value can be obtained as

〈O〉 =
{
Õ lnZ[ρ, ρ̄, ρ′, ρ̄′, η̄, η]

}
|ρ=...=η=0

. (3.42)

For the following, only the fermionic contribution to 〈O〉 on a given gauge
background,

[O]F[U ] =
1

ZF

∫
ψ̄,ψ

O e−S
I
F[U,ψ̄,ψ], (3.43)

with

ZF[U, ρ, ρ̄, ρ′, ρ̄′, η̄, η] =

∫
ψ̄,ψ

e−S
I
F[U,ψ̄,ψ]−SS[ψ̄,ψ,η̄,η] (3.44)

will be considered. The relation to the full expectation value is given by

〈O〉 = 〈[O]F〉G, (3.45)

where the subscript G indicates, that the expectation value has to be evaluated
with respect to the path integral of the quenched theory.

3.5 Renormalization

Usually, a mass independent renormalization scheme is employed [23] in which the
renormalization constants are independent of the quark mass and therefore the
renormalization group equations, which describe the scale dependence of renor-
malized quantities, take a particularly simple form. In this scheme, the theory is
parameterized around a critical line κcrit(g0) for which the subtracted bare quark
mass

amq =
1

2

(
1

κ
− 1

κcrit(g0)

)
, (3.46)

and also the renormalized quark mass is zero.
All the bare parameters and fields receive a multiplicative renormalization

factor. However, when taking the continuum limit, uncanceled O(amq)-cutoff
effects arise [23]. In the improved mass independent renormalization scheme, one
subtracts these effects by a multiplicative counter term of the form 1 + b(g0)amq

and defines [23] the improved renormalized subtracted quark mass (with flavor
index i = s, c, b)

mR,i = Zm(g0)m̃q,i = Zm(g0)mq,i(1 + bm(g2
0)amq,i). (3.47)
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The renormalization of the heavy-light quark currents can be discussed con-
veniently after introducing the off-diagonal iso-matrices

τ± = τ 1 ± iτ 2. (3.48)

Then, the improved renormalized axial current

(A±µ )IR(x) = ZA(g0)(1 + bA(g0)
1

2
(amq,h + amq,l))(A

±
µ )I(x), (3.49)

the vector current

(V ±µ )IR(x) = ZV (g0)(1 + bV (g0)
1

2
(amq,h + amq,l))(V

±
µ )I(x), (3.50)

and the renormalized pseudo scalar density

(P±)R(x, µ) = ZP (g0, µ)(1 + bP (g0)
1

2
(amq,h + amq,l))P

±(x) (3.51)

can be defined, where h and l indicate a heavy and light flavor respectively. The
mass renormalization constant Zm(g0) and the scale dependent renormalization
constant ZP (g0, µ) will only be needed in terms of the composite renormalization
factor Z(g0) = Zm(g0)ZA(g0)Z

−1
P (g0) (cf. section 3.6.3). Z(g0) has been deter-

mined non-perturbatively in [77] and ZA(g0) and ZV (g0) in [65] and [54]. Their
parameterizations in terms of the bare coupling constant g0 have been summa-
rized in table C.1 in appendix C. The improvement constants bA(g0), bV (g0),
bP (g0) and bm(g0) have to be tuned in order to compensate for the O(amq)-
terms. bA(g0) and bV (g0) have been determined non-perturbatively in [74] and
bm(g0) in [77]. bP (g0) will only be needed in the difference bA(g0)− bP (g0), which
also has been determined in [77]. All the b-factors are given in appendix C in
table C.2.

3.6 Meson masses, decay constants and quark

masses in the Schrödinger Functional

In this section, expressions for the pseudo scalar (X=PS) and the vector me-
son (X=V) decay constants FX and the corresponding meson masses mX will be
derived. In the the Schrödinger Functional, this can be done in terms of corre-
lation functions of quark-bilinear currents O carrying the appropriate quantum
numbers,

X = PS : O ≡ A±0 (x) = ψ̄(x)γ0γ5
τ±

2
ψ(x) and

X = V : O ≡ V ±i (x) = ψ̄(x)γi
τ±

2
ψ(x).

(3.52)
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Furthermore, expressions for renormalized quark masses will be given in this
framework.

The derivation is based on the transfer matrix formalism which has been
formulated for the QCD Schrödinger Functional in [62]. Although the derivation
does not carry over rigorously to the improved theory, universality implies that
the construction is valid there as well and that one can replace the currents (3.52)
by the improved currents (3.49) and (3.50) [63].

3.6.1 Correlation functions in the Schrödinger Functional

The lattice Schrödinger Functional for QCD (3.1) [62] can be represented as the
QCD transition matrix element3

Z[C,C ′, ρ̄, ρ, ρ̄′, ρ′] = 〈i′|
(
e−H

)T
P|i〉 (3.53)

between an initial state |i〉 and a final state 〈i′| (at times x0 = 0 and x0 =
T respectively). The exponential e−aH, with the QCD-Hamiltonian H, can be
interpreted as the transfer matrix connecting two adjacent time slices. P is a
projector constraining the dynamics to the gauge invariant subspace of the whole
Hilbert space.

Relevant for this work are the eigenstates |n, q〉 of the Hamiltonian which are,
next to the energy quantum number n, specified by the set of quantum numbers
q = (J, C, P,mh,ml) (total angular momentum, parity, mass of the heavy and
light quark respectively).

The pseudo scalar Ds-meson for example can be specified by the quantum
numbers q = (0,±,−,mc,ms), the one of the corresponding vector meson D∗s by
q = (1,±,−,mc,ms)

4.
The |n, q〉 build a complete set of energy eigenstates of the mesonic sector of

the Hamiltonian H with

|n, q〉, n = 0, 1, 2, . . . , (3.54)

H|n, q〉 = Eq
n|n, q〉 (3.55)

and the normalization
〈n′, q′|n, q〉 = δn,n′δq,q′ . (3.56)

In the case of a Schrödinger Functional with vanishing fermion and gluon
boundary fields,

|i′〉 = |i〉 = |i0〉 (3.57)

holds, with |i0〉 carrying the quantum numbers of the vacuum.

3The boundary fields C and C ′ are mentioned for completeness here and will again be set
to 0 in the following.

4As electromagnetic effects only play a minor role here (cf. [78]), the associated charge will
be neglected.



3.6. MESON MASSES, DECAY CONSTANTS AND QUARK MASSES IN
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PSfrag replacements

ζ̄ ζ

ψ̄(x)ΓOψ(x)

x0 = 0

x0 = T

fO

Γ′

O

PSfrag replacements

ζ̄ ζ

ζ̄ ′ζ ′

fT
O

Γ′

O

Γ′

O

Figure 3.1: The Schrödinger Functional correlation functions fO and fTO .

In the following, the focus will be on two types of matrix elements. The first
matrix element is

fO(x0) = −Z−1 1

2
〈i0|e−(T−x0)HPO(~x)e−x0HP|iX〉. (3.58)

It measures the correlation between the operator O(~x) at time x0 with the initial
and final states |iX〉 and 〈i0|. The physical picture is that of a meson with
quantum numbers qX being created from fermionic boundary sources at time
x0 = 0 and being annihilated at some later time x0 by the operator O(~x) (cf.
figure 3.1). The second matrix element is5

fTO = −Z−1 1

2
〈i′X|e−THP|iX〉. (3.59)

It measures the correlation between the initial state |iX〉 and the final state 〈i′X|
after time evolution over the time extent T and thereby represents a meson state,
traveling through the space-time from the boundary at x0 = 0 to the boundary
at x0 = T . In practice, the states |iX〉 and 〈i′X| are created by dimensionless
mesonic boundary operators in the zero-momentum projection,

Oa
O = a6

L3

∑
~x,~y

ζ̄(~x)Γ′O
τa

2
ζ(~y)|x0=0, Oa′

O = a6

L3

∑
~x,~y

ζ̄ ′(~x)Γ′O
τa

2
ζ ′(~y)|x0=T . (3.60)

and the operator O(~x) typically represents a bilinear quark current of the form

Oa(x) = ψ̄(x)ΓO
τa

2
ψ(x). (3.61)

5In the literature on the Schrödinger Functional, these matrix elements are also often refered
to as f1 = fT

P and k1 = fT
V .
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O A V P T

ΓO γ0γ5 γi γ5 σij

Γ′O γ5 −1
3
γi γ5 −1

3
γi

Table 3.1: Dirac structure for the currents O(x) (σij = i
2
[γi, γj]).

The Dirac matrices Γ
(′)
O are collected in table 3.1 for the axial current (A),

the vector current (V ), the pseudo scalar density (P ) and the tensor current (T ).
They determine the desired quantum numbers of angular momentum and parity.
The matrix ΓA ≡ γ0γ5 for example corresponds to (J, P ) = (0,−), while the
matrix ΓV ≡ 1√

3
γµ corresponds to (J, P ) = (1,−). The SU(2) flavor structure of

the current is given by the matrices τa (a = 1, 2, 3, cf. appendix A).

The matrix elements fO(x0) and fTO can then be identified with the expecta-
tion values

fO(x0) = −L
3

2
〈O+(x0)O−O〉 for O = A,P, V, T (3.62)

and

fTO = −L3

2
〈O+′

O O
−
O〉 for X = A,P. (3.63)

where again the flavor off-diagonal fields (cf. (3.48)) have been used. In order
to arrive at expressions for the meson mass mX and the meson decay constant
FX in terms of these correlation functions one first inserts twice the identity
1 =

∑
n,q

|n, q〉〈n, q| into (3.58). This yields

fO(x0) = −Z−1L3

2

∑
q, q′

n, n′

〈i0|e−(T−x0)HP|n, q〉〈n, q|O|n′, q′〉〈n′, q′|e−x0HP|iX〉

≈ −Z−1L3

2

{
〈i0|e−(T−x0)HP

(
|0, 0〉〈0, 0|+ |0, qX〉〈0, qX|

+ |1, 0〉〈1, 0|+ |1, qX〉〈1, qX|
)
O

(
|0, 0〉〈0, 0|+ |0, qX〉〈0, qX|

+ |1, 0〉〈1, 0|+ |1, qX〉〈1, qX|
)
e−x0HP|iX〉

}
.

(3.64)
In the second step, all but the ground state, the first excited state n(′) = 0, 1
and q = 0, qX have been neglected, since their contribution will be suppressed
exponentially. With

Z ≈ 〈i0|P|0, 0〉〈0, 0|P|i0〉e−E
(0)
0 T , (3.65)
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one arrives at

fO(x0) ≈ −L3

2
1

〈i0|P|0,0〉〈0,0|P|i0〉 e
E

(0)
0 T

×
{
〈i0|P|0, 0〉〈0, 0|O|0, qX〉〈0, qX|P|iX〉e−E

(0)
0 (T−x0)e−E

qX
0 x0

+ 〈i0|P|0, 0〉〈0, 0|O|1, qX〉〈1, qX|P|iX〉e−E
(0)
0 (T−x0)e−E

qX
1 x0

+ 〈i0|P|1, 0〉〈1, 0|O|0, qX〉〈0, qX|P|iX〉e−E
(0)
1 (T−x0)e−E

qX
0 x0

+ 〈i0|P|1, 0〉〈1, 0|O|1, qX〉〈1, qX|P|iX,〉e−E
(0)
1 (T−x0)e−E

qX
1 x0

}
.

(3.66)

In order to write this in a more compact form, the following abbreviations can be
introduced. First, mqX = EqX

0 −E0
0 and mG = E0

1−E0
0 are the mass of the ground

state meson and the glueball respectively, ∆ = Eqx
1 − Eqx

0 is the gap energy in
the meson sector. Furthermore one defines the matrix elements

ρ =
〈0, qX|P|iX〉
〈0, 0|P|i0〉

, (3.67)

ηxX =
〈0, 0|O|1, qX〉〈1, qX|P|iX〉
〈0, 0|O|0, qX〉〈0, qX|P|iX〉

and (3.68)

η0
X =

〈i0|P|1, 0〉〈1, 0|O|0, qX〉
〈i0|P|0, 0〉〈0, 0|O|0, qX〉

. (3.69)

(3.70)

fO then takes the simple form [63]

fO(x0) ≈ −L3

2
ρ 〈0, 0|O|0, qX〉 e−x0mX

{
1 + ηqXX e−x0∆ + η0

Xe
−(T−x0)mG

}
,

(3.71)
which decays with the mass of the meson. For fTO one derives

fTO ≈
1

2

|〈iX|P|0, qX〉|2

|〈i0|P|0, 0〉|2
e−T (E

qX
0 −E0

0) =
1

2
ρ2 e−TmqX . (3.72)

The correlation function fO(x0) contains contributions from higher excited states
for small x0, which decay exponentially with the gap energy ∆. For large x0,
bound states of gluons, the so called glueballs contribute exponentially enhanced
with their mass mG.

For the numerical implementation it is very convenient to also define the
backward correlation functions

gO(T − x0) = L3

2
〈O+′

O O
−(x0)〉 for O = A, V,

gO(T − x0) = −L3

2
〈O+′

O O
−(x0)〉 for O = P, T.

(3.73)
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(next to the forward correlation functions fO). They are constructed in the same
way as fO(x0) but with the meson sources at the time slice at x0 = T and serve
the same purpose, provided that the background field is zero. In a Monte-Carlo
simulation, both the forward correlation functions and the backward correlation
functions will be evaluated on the same sample of gauge configurations. Although
the resulting data will be correlated, the statistics can be increased in this way.

The improvement of the axial current (3.49) and the vector current (3.50) is
taken over from [63] to define the improved correlation functions

fA(x0) → f IA(x0) = fA(x0) + acA(g0)∂̃0fP (x0) (3.74)

and

fV (x0) → f IV (x0) = fV (x0) +
i

2
acV (g0)

~̃∂ ~fT (x0) (3.75)

and analogously for the correlation functions gO(T − x0).

3.6.2 The meson mass and the meson decay constant

The meson mass mX can be extracted as the effective mass,

meff(x0 + a
2
) = 1

a
ln

(
fI

O(x0)

fI
O(x0+a)

)
≈ mX

{
1 + 2 sinh(a∆/2)

amX
ηqXX e−x0∆ − 2 sinh(amG/2)

amX
η0

Xe
−(T−x0)mG

}
.

(3.76)
The connection to the meson decay constant, which is defined as [63]

ZO〈0, 0|O|0, qX〉 = FXmX(2mXL
3)−1/2 (3.77)

is then given by

FX ≈ −2ZO(mXL
3)−1/2 e(x0−T/2)mX

fI
O(x0)√
fT

O

×
{
1− ηqXX e−x0∆ − η0

X e
−(T−x0)mG

}
.

(3.78)

Here, ZO is the renormalization constant of the current O and (2mXL
3)−1/2 in

(3.77) is the conventional normalization of one-particle states.
In terms of the backward correlation functions, the effective mass and the

decay constant can be expressed by replacing f IO(x0) with gIO(T − x0) in (3.76)
and (3.78).

3.6.3 Quark masses

On the lattice, there exist various ways to define quark masses, which differ at
finite lattice spacing but converge in the continuum limit. One definition has
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already been introduced in (3.47), where the renormalized valence quark mass is
given in terms of the hopping parameter. Another way to obtain the quark mass
is guided by the PCAC relation in the continuum

∂µA
a
µ = 2mP a, (3.79)

wherem is the quark mass. The average bare current quark mass in the Schrödinger
Functional can be written as [23]

mhl =
1

2

[
1

2
(∂∗0 + ∂0)fA(x0) + cAa∂

∗
0∂0fP (x0)

]
/fP (x0). (3.80)

The sum of the renormalized valence quark masses can then be obtained by
multiplicative renormalization of the axial current (3.49) and the pseudo scalar
density (3.51) [77],

mR,h +mR,l = 2
ZA(1+bA(g0) 1

2
(amq,h+amq,l))

ZP (1+bP (g0) 1
2
(amq,h+amq,l))

mhl +O(a2)

= 2ZAZ
−1
P (1 + (bA(g0)− bP (g0))

1
2
(amq,h + amq,l))mhl +O(a2).

(3.81)

3.6.4 Correlation functions, propagators and symmetries

For their implementation in a Monte-Carlo simulation program, the correlation
functions fO(x0), gO(T − x0) and fTO must be expressed in terms of contractions
of quark propagators which will be derived in the following.

Writing down the flavor indices explicitly fO(x0) reads

fO(x0) = −a6L3

2

∑
~y,~z

〈ψ̄h(x)ΓOψl(x) ζ̄l(~y)Γ′Oζh(~z)〉. (3.82)

for O = A,P, V, T . Therefore one can write fO as

fO(x0) = a6L3

2

∑
~y,~z

〈
Tr

{[
ζh(~z)ψ̄h(x)

]
F

ΓO
[
ψl(x)ζ̄l(~y)

]
F

Γ′O
}〉

G
, (3.83)

where the trace is over Dirac and color indices. Analogously one obtains

gO(T − x0) = ±a6L3

2

∑
~y,~z

〈
Tr

{[
ψh(x)ζ̄

′
h(~y)

]
F

Γ′O
[
ζ ′l(~z)ψ̄l(x)

]
F

ΓO
}〉

G
, (3.84)

where the sign has to be chosen according to (3.73), and

fTO =
a12L3

2

∑
~v,~w,~y,~z

〈
Tr

{[
ζh(~z)ζ̄

′
h(~v)

]
F

Γ′O
[
ζ ′l(~w)ζ̄l(~y)

]
F

Γ′O
}〉

G
. (3.85)
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Applying the functional derivatives (3.40) to the fermionic generating functional
lnZF[U, ρ, ρ̄, ρ′, ρ̄′, η̄, η], the propagators [ · ]F in (3.83), (3.84) and (3.85) can now
be written down explicitly:[

ζ(~z)ψ̄(x)
]
F

(3.40)
= −

{
δ

δρ̄(~z)
δ

δη(x)
lnZF[U, ρ, ρ̄, ρ′, ρ̄′, η, η̄]

}
|ρ=...=η̄=0

= c̃tP−U(z, 0)S(z, x)|z0=a,

(3.86)

[
ψ(x)ζ̄(~y)

]
F

= c̃tS(x, y)U−1(y, 0)P+ |y0=a,[
ψ(x)ζ̄ ′(~y)

]
F

= c̃tS(x, y)U(y, 0)P− |y0=T−a,[
ζ ′(~z)ψ̄(x)

]
F

= c̃tP+U
−1(z, 0)S(z, x)|z0=T−a,[

ζ(~z)ζ̄ ′(~v))
]
F

= c̃2tP−U(z, 0)S(z, v)U(v, 0)P− |z0=a, v0=T−a,[
ζ ′(~w)ζ̄(~y))

]
F

= c̃2tP+U
−1(w, 0)S(w, y)U−1(y, 0)P+ |w0=T−a, y0=a.

(3.87)

Inserting these expressions into fO(x0) one gets, denoting the quark flavor by the
subscripts h and l respectively,

fO(x0) = c̃2a6L3

2

∑
~y,~z

〈
Tr

{
P−U(~z, 0)Sh(x, z)Γ

′
OSl(x, y)U

†(~y, 0)P+ΓO
}〉

G|y0=z0=a

= c̃2a6L3

2

∑
~y,~z

〈
Tr

{
P+U(~z, 0)S†h(x, z)γ5Γ

′
OSl(x, y)U

†(~y, 0)P+ΓOγ5

}〉
G|y0=z0=a

= L3

2

〈
Tr

(
S̄†h(x)γ5Γ

′
OS̄l(x)ΓOγ5

)〉
G
.

(3.88)
Here, the summation over the boundary fields has been included into the propa-
gator

S̄(x) = c̃ta
3
∑
~y

S(x, y)U−1(~y, 0)P+ |y0=a , (3.89)

which is the propagator of a zero-momentum quark state at y0 = 0 to a space-
time point x in the interior of the Schrödinger Functional. In the same way,
gO(T − x0) is

gO(T − x0) = ±L3

2

〈
Tr

(
R̄†h(x)γ5Γ

′
OR̄l(x)ΓOγ5

)〉
G
. (3.90)

with

R̄(x) = c̃ta
3
∑
~y

S(x, y)U(y, 0)P− |y0=T−a, (3.91)
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being the propagator of a zero-momentum quark state at y0 = T to the space-time
point x. The boundary-to-boundary correlation function fTO is

fTO =
c̃2a6L3

2

∑
~v,~w

〈
Tr

{
S̄†h(v)U(~v, 0)P+γ5Γ

′
OP+U

−1(w, 0)S̄l(w)Γ′O

}〉
G|v0=T−a,w0=a

.

(3.92)
Introducing the boundary-to-boundary quark propagator

S̄T = c̃t
∑
~x

P+U
−1(x, 0)S̄(x)|x0=T−a (3.93)

it takes the form

fTO =
L3

2

〈
Tr

{
S̄†T,hγ5Γ

′
OS̄T,lΓ

′
O

}〉
G
. (3.94)

Observing that
S̄(x)P− = R̄(x)P+ = 0 (3.95)

in the chiral basis for the gamma matrices, the relations

S̄A1(x) + S̄A3(x) = 0, S̄A2(x) + S̄A4(x) = 0,
R̄A1(x)− R̄A3(x) = 0, R̄A2(x)− R̄A4(x) = 0,

(3.96)

hold, where A is a Dirac index. Thus, all correlation functions introduced so far
are completely determined if only half of the Dirac-components of the forward-
and backward propagators S̄(x) and R̄(x) are known.

In the numerical simulation, these components of S̄(x) and R̄(x) have to be
determined on each gauge background of the Monte-Carlo history. The equations(

DI +m
)
S̄(x) = c̃ta

3
∑
~y

(
DI +m

)
S(x, y)U−1(~y, 0)P+ |y0=a

= c̃ta
−1δx0,aU

−1(~x, 0)P+

(3.97)

and (
DI +m

)
R̄(x) = c̃ta

−1δx0,aU(~x, 0)P−, (3.98)

or equivalently
M I S̄(x) = 2κc̃ta

−1δx0,aU
−1(~x, 0)P+,

M IR̄(x) = 2κc̃ta
−1δx0,aU(~x, 0)P−

(3.99)

therefore have to be solved for S̄(x) and R̄(x), using a matrix inversion algorithm,
the stabilized biconjugate gradient [79] for example.



Chapter 4

The PC-Code

For a major part of the simulation parameters, the production runs could be ac-
complished on the APEMille supercomputers at the John von Neumann Institute
for Computing [80]. In particular, the simulations for the scaling study with the
bare couplings β = 6/g2

0 = 6.0, 6.1, 6.2, 6.45 1 were all done within this framework
using the ALPHA-collaboration’s approved program code for the simulation of
quenched QCD in the Schrödinger Functional. In simulations for the lattice with
the finest resolution, i.e. at β = 6.7859, the number of lattice points L/a and
therefore the amount of memory space that needs to be allocated to store the
associated fields gets very large and the available memory on the APE-computer
is not sufficient any more.

An alternative supercomputer with the appropriate specifications was the
newly installed system of 26 IBM pSeries 690 eservers at the Norddeutscher
Verbund für Hoch- und Höchstleistungsrechnen (HLRN). Each of these servers
has 32 IBM-Power4 processors (with a peak performance of 5.2 GFlop/s each)
that share between 64 to 256 GByte of memory.

As the lattice-gauge code on the APE-computer is written in a proprietary lan-
guage (TAO), a new simulation code had to be obtained. To this end, the lattice
code by the MIMD2 Lattice Computation (MILC) Collaboration [34], published
under the GNU General Public License [81], seemed to be an appropriate choice.
It consists of a set of routines written in C for doing simulations of four dimen-
sional SU(3) lattice gauge theory. The version which the collaboration shares
on the Web, already comprises many of the features that are necessary for the
realization of this project. Among those are

• Schrödinger Functional boundary conditions,

• Wilson pure gauge code,

1Here, g2
0 denotes the bare gauge coupling.

2The aforementioned IBM-computer has a MIMD architecture (Multiple Instructions, Mul-
tiple Data), as opposed to a computer architecture like the one of the APEMille which is a
SIMD (Single Instruction, Multiple Data) computer.

38
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• Wilson Dirac operator,

• O(a)-improvement,

• stabilized biconjugate gradient inverter,

• platform-independence,

• MPI-based parallelism (MIMD).

This chapter discusses the MILC Code, all changes and improvements added
to it and the extensive testing previous to the data production. Other topics are
the resource allocation for the production runs and the corresponding applications
for CPU-time at the HLRN.

4.1 The MILC Code

The two building blocks in the lattice simulation of gauge theories are the gen-
eration of a Monte-Carlo series of gauge-configurations and the subsequent eval-
uation of observables on the given gauge background.

The gauge updates in the MILC Code are done with a quasi-heatbath gauge
update by three SU(2) subgroups à la Kennedy-Pendleton [82] and Cabibbo-
Marinari [83]. Also micro canonical over relaxation steps by doing SU(2) gauge
hits have been implemented. The pseudo random number generator is the ex-
clusive-OR of a 127 bit feedback shift register and a 32 bit integer congruence
generator. It runs with a different seed on each of the parallel processors to avoid
correlations.

Based on the even-odd preconditioned Dirac operator [84], the quark propaga-
tors on a given gauge background are evaluated using the stabilized biconjugate
gradient algorithm [79].

Up to the random number generator, the implementation of the algorithms
resemble very much the ones in the ALPHA Collaboration’s lattice code. How-
ever, some peculiarities should be mentioned here. The MILC code uses the
Weyl-basis (γ5 diagonal) Dirac matrices. In contrast to the standard convention,
the projectors P± = 1

2
(1 ± γ0) are implemented with opposite sign, that means,

the projectors in the MILC code PMILC
± are

PMILC
± = P∓ (4.1)

The MILC code uses MPI-based (MPI stands for Message Passing Inter-
face [85] ) parallelization. The code has been designed in such a way, that the
user in most cases does not have to bother about the parallelization, e.g. when
implementing a set of correlation functions. Only at a deeper level, for example
for the implementation of a new action, these issues have to be considered. As-
suming, that the number of lattice sites is divisible by the number of nodes, which
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is a power of two, the lattice volume is divided by factors of two in any of the four
directions. Dividing the direction of the largest lattice extent is favored in order
to keep the area of the surface minimal. Similarly, dividing directions, which
have already been divided is preferred, thereby keeping the number of off-node
directions minimal.

The root project directory has the following listing:

generic/

generic_clover/

generic_pg/

generic_schroed/

generic_wilson/

include/

libraries/

schroed_pg/

f_A/

The two main directories are schroed_pg/ and f_A/. They contain the main
program file for the gauge-update and the code for the evaluation of observables
on a given gauge background.

The generic/ directory contains high level routines that are more or less
independent of the physics. Examples of generic code are the communication
routines (MPI), random number routines, routines to evaluate the plaquette, etc.
A set of slightly more specific directories is generic_clover/, generic_wilson/,
and generic_schroed/. They contain the implementation of the Dirac operator,
the clover term, the matrix inversion routines or routines for setting up the lattice
topology. All applications share the include/ directory, containing most of the
header files and the libraries/ directory containing low-level routines, mostly
linear algebra routines.

Detailed instructions on how to use the code can be found in appendix E.
Further information about the MILC code in general can be found on the project
web site [34]

4.2 Changes

The MILC code as it is available on the web had to be customized in a couple of
places in order to conform to the requirements demanded by the project.

4.2.1 The main program

Next to setting up the lattice including the fermionic sources, initializing MPI-
based inter-node communication and loading the gauge configuration, the main
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program control_cl.c contains a nested loop in which the inverter is called for
a given set of indices like

for(color = 0; color < 3; color++){

for(spin = 0; spin < 2; spin++){

for(kappa = 0; kappa < num_kap; k++){

*** CALL BiCG (color, spin, kappa)***

} /* kkappa */

for(kkappa = 0; kkappa < num_kap; k++){

for(lkappa = k; lkappa < num_kap; l++){

*** EVAL CORRELATION FUNCTIONS (color, spin, kappa) ***

} /* lkappa */

} /* kkappa */

} /* spin */

} /* color */

In this loop-structure, the symmetries of the propagators pointed out at the end
of section 3.6.4 have already been taken into account. The loop over the spin
components only runs from 1 to 2. Only one color component of the propagator
has to be stored in the memory at a time. Whether the code evaluates the
forward- or backward-propagators has to be decided at compilation time and
just affects, the way the fermion sources are set up at the boundaries.

The contraction of the propagators that give the correlation functions given in
3.6.4 have been implemented in the routines f_A.c, f_P.c, f_1.c, f_V.c, k_T.c,
k_1.c.

4.2.2 Double precision arithmetics

The official MILC code with Schrödinger Functional boundary conditions is based
on single precision arithmetics3. For simulations of large lattices, this may become
a source of concern, especially when evaluating sums over fluctuating numbers
over the whole lattice. To be on the safe side, double precision arithmetics have
been implemented throughout the code.

A compiler flag now allows for changing back to single precision arithmetics at
compilation time (defined in include/config.h). Thus, allowing at the price of
reduced precision, to allocate only roughly half the memory necessary for double
precision arithmetics.

A better number precision results in a better precision of the inversion al-
gorithm. This has been investigated with the following test. First, the Dirac
operator applied to a quark source φin was inverted on a gauge background

3According to the IEEE-standard, a single precision number consists of a sign bit, eight
exponent bits and 23 bits for the mantissa, while a double precision number consists of one sign
bit, 11 exponent bits and 52 bits for the mantissa.
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Figure 4.1: Exact residuum ||φin − φout||/||φin|| plotted against the iterated
residuum using single precision arithmetics (crosses) and the newly implemented
double precision arithmetics (circles). The dashed lines indicate a residuum of
10−8 and 10−16.

(L/a = 483 × 96, β = 6.7859, κ = 0.117625). Then, the Dirac operator was
again applied to the result, i.e.,

φout = M̂(M̂−1φin)BiCGstab. (4.2)

The inversion algorithm monitors the convergence with an iterated solver
residual ε [79]. After every iteration, it can be constructed from the change of
the solution vector with respect to the previous iteration. Compared to the exact
residuum

||φin − φout||
||φin||

=

√√√√√
∑
x

(φx,in − φx,out)2∑
x

φx,in
2 , (4.3)

one thereby saves one time consuming application of the Dirac operator in each
iteration step.

The solution φout is accepted as soon as the iterated residual is smaller than
the stopping criterion ε. This computation has been repeated for a number of
residuals ε = 10−4,10−6,. . . ,10−20. The expectation is, that for single precision
arithmetics, a residual of ≈ 10−8 can be reached and ≈ 10−16 in the case of double
precision.

The results shown in figure 4.1 confirm, that the implementation works in the
desired way: The exact residual decreases with ε and then saturates at about the
corresponding arithmetic precision.
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4.2.3 Performance

A well-known disadvantage of the MILC code is the way the allocation of memory
is organized [86]. All variables associated to a lattice site are stored in a local
structure called site - metaphorically speaking this is a container for indices,
gauge fields, auxiliary fields etc., defined at each lattice site. It has the form

typedef struct {

/* coordinates of this site */

short x,y,z,t;

/* is it even or odd? */

char parity;

/* index of the site in the lattice array */

int index;

/* Physical fields, application dependent.

add or delete whatever is needed.*/

/* gauge field */

su3_matrix link[4];

/* spatial boundary links */

su3_matrix boundary[3];

/* temporary link variable for Field Major /*

su3_matrix link_tmp[4];

/* wilson complex vectors */

wilson_vector psi; /* solution vector */

wilson_vector chi; /* source vector */

.

.

.

} site;

(c.f. lattice.h in the project directory).
The sites on each node of the parallel machine are the elements of a local

array which occupies a linear space in the node’s memory. One often refers to
this type of memory arrangement as site major because one first has to point to
a particular site before accessing the appendant variables.

On the one hand site major is concise and user-friendly as it allows to easily
add new variables, auxiliary fields e.g., that may become necessary when creat-
ing new projects. On the other hand, it is very ineffective with respect to the
communication between the main memory and the computer’s cache.

One reason for this is, that during a lexicographic sweep through the lattice,
one often asks for the value of a certain variable at the current site. As detailed
before, not each variable on its own, but the array of sites occupies a connected
address space in the memory. In each single step of the sweep, the address pointer
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therefore has to be translated by the length of one site in address space, causing
sizeable latency.

Another reason is intimately connected with hardware prefetching, a common
feature of modern processor architectures (e.g. IBM Power4), where the processor
guesses which address space has to be prefetched into the cache for processing
during the next clock steps. This feature only works properly if the variables to
be processed in a loop are allocated in a reasonably homogeneous way.

A third point is, that some processors allow for multiple data streams (e.g.
IBM p690 up to 8 streams). That means that the processor can handle a number
of simultaneous data interchanges - streams - between the main memory and
the cache. The processor can identify streams only, if the data is contained in a
connected region of the address space.

An important example, where all these issues play a role is the application of
the Dirac operator onto a source vector in a lexicographic sweep over all lattice
sites on a node. This is the most time consuming operation during the compu-
tation of propagators. At each site, the source vector, the link matrices and a
destination vector are needed. In the case of site major they are not contained in
a connected piece of address space. The pointer to the data of interest therefore
has to be moved very often and only a single stream is recognized.

This situation can be improved by copying the necessary fields in lexicographic
order into temporarily allocated variables at the beginning of the inversion. These
temporary fields are then used throughout the inversion. Each temporary variable
now occupies a connected piece of address space which the processor can recognize
as streams. This philosophy of memory allocation is usually referred to as field
major (cf. figure 4.2). In order to maintain the user-friendliness of the site
major approach, the fields are copied back to the site structure ordering after the
inversion has stopped. This can be done in a negligible amount of time.

These ideas have been implemented in the MILC code for the stabilized bi-
conjugate gradient algorithm and the Wilson Dirac operator (dslash_tmp in
dslash_lean.c and bicgilu_cl in d_bicgilu_cl_cttilde_lean.c).

The measured performance improvement on a single IBM p690 CPU for dif-
ferent lattice sizes has been summarized in table 4.1. While the achieved speedup
first rises with the lattice volume and then saturates, the overall performance re-
duces with increasing lattice volume. For small lattices, a larger part of the fields
permanently resides in the cache, which improves performance in general. At
this point the difference between site major and field major is already sizeable.
The larger the part of the lattice data residing outside the cache becomes, the
more the effects of a sensible memory allocation manifests itself. The numbers
quoted for the speedup are quite impressive and illustrate that it is of utmost
importance to take into account the target computer architecture at the time of
the creation of the production code.

Table 4.1 also contains numbers for the efficiency of the code assuming a peak
performance of 5.2 GFlop/s for a single IBM processor [87]. The performance
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Figure 4.2: Sketch of site major and field major cache processing

numbers quoted there are disappointing. On custom designed computers for lat-
tice gauge theory, like the APEMille computer [88,89] for example, efficencies of
up to 50% are not unusual. When the experiments with the MILC-code on the
IBM-computers at the HLRN code started, no experience with codes for lattice
gauge theory, in particular for the application of the Dirac operator with a much
better performance existed [90]. In the meantime, other groups have achieved
better performance numbers. For example the NIC/DESY-Zeuthen group [91]
have measured the performance of their implementation of the SU(3)-Dirac oper-
ator (Clover improved Wilson action) which uses MPI-based parallelism as well.
The test was done with a 164-lattice. Although not yet published, they claim to
get a single-processor performance of 802 MFlop/s on the same computer which
is by a factor of 2.3 better than the improved version of the MILC code. It would
be interesting to learn more about their program code and to transfer their ideas
to the MILC code.

4.2.4 Miscellaneous other changes

O(a)-improvement at the boundary

The O(a)-improvement term proportional to (c̃t(g0) − 1) (cf. (3.20)) is not im-
plemented in the version of the code that the MILC collaboration shares on the
web. It is a term that adds to the diagonal of the Dirac matrix at the boundary
and has been implemented in the routine make_clov. The value of c̃t(g0) (cf.
table C.2) has to be specified in the input file.
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site major field major field major
L/a performance performance speedup efficiency

[MFlop/s] [MFlop/s]

6 350 510 1.5 9.8%
8 246 467 1.9 9.0%
12 187 349 1.9 6.7%
14 173 355 2.1 6.8%
16 93 345 3.7 6.6%

Table 4.1: Performance improvement for different lattice sizes after migrating
from site major to field major, measured on a single IBM p690-CPU with a peak
performance of 5.2 GFlop/s.

Large file support for gauge configurations and propagators

A gauge configuration consists of

[(L/a)3 × T/a]V × [3× 3]SU(3) × [4]µ̂ × [2]C (4.4)

real numbers. In the case of double precision arithmetics, a lattice of size (L/a)3×
T/a = 483 × 96 needs roughly 6.1 GB of memory space. A propagator on the
other hand consists of

[(L/a)3 × T/a]V × [3× 3]SU(3) × [4× 2]Dirac × [2]C (4.5)

real numbers which, in double precision, for the above lattice size corresponds to
12.2 GB. Here, the symmetries (3.96) have already been exploited.

To be able to allocate and store such large address spaces of memory, all
I/O-routines had to be rewritten to work with a 64Bit address space.

4.3 Testing the code

Previous to the production runs, the adopted MILC code had to pass through
a number of tests which are described in the following. All the tests were done
on the IBM computer. In particular, the ALPHA-Collaboration’s lattice gauge
theory code for the QCD Schrödinger Functional was taken as a reference to test
all routines of the MILC-code that are involved in the production runs.

4.3.1 Testing the plaquette

Up to the pseudo random number generator, the MILC code is based on the same
gauge update algorithm as the one that is implemented in the ALPHA code. The
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average plaquette value was taken as a test observable to evaluate the functioning
of the MILC code gauge-update algorithm.

One test consisted of determining the normalized average plaquette value

Up =
1

9L3(2T − 1)

∑
p

〈U(p)〉 (4.6)

with both, the ALPHA and the MILC code. The results are compiled in the
following table.

L3 × T statistic U
MILC

p U
ALPHA

p τMILC
int τALPHA

int

43 × 4 1000 0.62871(37) 0.62850(32) 0.054(1) 0.044(7)
163 × 32 100 0.59319(3) 0.59323(3) 0.0005(1) 0.0003(1)

In the case of the smaller lattice, the measurements were separated by one heat
bath and 20 over relaxation steps and in the case of the larger lattice they were
separated by 100 heat bath steps, each followed by 8 over relaxation steps. The
integrated auto correlation time τint is quoted in units of sweeps, not distinguish-
ing between over relaxation and heat bath sweeps.

As it will be detailed in chapter 6, the production runs with the MILC code
were done with a geometry of (L/a)3×T/a = 483×96 at β = 6.7859. The lattice
cutoff is already large for this β (a/r0 ≈ 0.0625 → 6.3GeV)4 and perturbation
theory for the value of the plaquette should give a rough estimate.

To evaluate whether the MILC-code produces sensible gauge configurations,
a comparison of the average value of the plaquette to computations in Numeric
Stochastic Perturbation Theory (NSPT) [92] has been carried out. The result
is depicted in figure 4.3. The circles correspond to Monte-Carlo data, generated
with the MILC code. The corresponding parameters are (100 measurements at
each value of β):

β 6.0 6.1 6.2 6.45 6.7859

L3 × T 163 × 32 243 × 40 243 × 48 323 × 64 483 × 96

The solid line (where the error band is barely visible) corresponds to the pla-
quette obtained at 10th order in NSPT. Although the non-perturbative data
tends to agree with NSPT for larger values of β, there remains a discrepancy
at β = 6.7859. The MILC code gives Up = 0.658732(3), while NSPT yields
Up = 0.65896(15).

Still, the findings indicate, that the MILC code produces sensible gauge con-
figurations, since the discrepancy between NSPT and the non-perturbative result
for the plaquette can be expected to vanish for larger values of β.

4The Sommer scale r0 = 0.5 fm was employed to convert to physical units (cf. section 5.1.1).
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Figure 4.3: Average Plaquette U(p) from Numerical Stochastic Petrurbation The-
ory (line with error band) and Monte Carlo simulation (circles).

4.3.2 Testing the implementation of the correlation func-
tions

All correlation functions introduced in section 3.6 were implemented in the MILC-
code and tested against the ALPHA-code. For this test, a PERL-script was writ-
ten (alpha2milc), that converts gauge-configurations produced by the ALPHA-
collaboration’s lattice gauge code into a format, which can be imported by the
MILC-code. In this way, the correlation functions could be evaluated on the
same gauge background with both codes. The test was done on a gauge con-
figuration (163 × 32-geometry), generated by the ALPHA-code at β = 6.0, and
with seven different values of the hopping parameter with a solver stopping cri-
terion of ε = 10−7 (The κ-values are the ones that are tabulated in table 5.3 for
β = 6.0). All the correlation functions fA, fP , fV , fT and fTP and fTV were eval-
uated for the combinations of hopping parameters κ1 − κ1, κ1 − κ2, . . . , κ1 − κ7.
Averaged over the correlation functions at all times x0, there was a mean devia-
tion of 0.03%. A maximum deviation of 0.5% was observed for the value of the
boundary-to-boundary correlation function kTV at the largest value of the mass.

As communicated with the authors of [78, 93], where roundoff errors in the
same correlation functions where studied, the deviations of the magnitude ob-
served here lead to systematic errors in the final results, e.g. for the decay
constant, that are much smaller than the expected statistical error.
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4.3.3 Testing the whole setup: A comparative test-run

This test was carried out in order to simulate the conditions for a production run
with the MILC code, while having results from the ALPHA code with the same
simulation parameters as a reference.

The reference from the ALPHA code was given in terms of 200 measurements
of the correlation functions necessary to construct the decay constant FPS, i.e.
f IA(x0) and fTP . The data was taken from the production runs for [93] at β = 6.0.
As a test observable, the pseudo scalar meson decay constant FPS as a function
of the inverse pseudo scalar mass 1/r0mPS was studied. The above data contains
all the correlation functions for seven meson masses. While the light quark mass
was fixed to the strange quark mass, altogether six heavy quark masses around
the charm quark mass were simulated for (The hopping parameters are those
summarized in table 5.3).

The same number of measurements were then carried out with the MILC
code, employing double precision arithmetics. The data analysis was done with
the procedure that will be explained in detail in chapter 6. The dependence of
the decay constant on the meson mass is plotted in figure 4.4 which shows, that
the data agrees within errors.

Both codes produce compatible results under production conditions.



Chapter 5

Simulations in quenched QCD

The lattice simulations in quenched QCD were done for heavy-light mesons con-
taining a strange quark as the light quark and a quark with a mass around the
charm quark mass as the heavy quark. The correlation functions for altogether
six different heavy quark masses were simulated at five different values of the
lattice spacing in order to allow for a reliable continuum extrapolation. This
chapter presents the choice of simulation parameters.

5.1 Simulation parameters

5.1.1 Setting the scale

Dimensionful parameters are often given in terms of the Sommer scale r0 [94].
This is convenient in so far as the attribution of physical units to results in
the quenched approximation is ambiguous. For example, lattice studies of the
hadronic spectrum in the quenched theory have revealed inconsistencies in the
comparison with the experiment of up to 10% [95]. Turning this around, one
expects different hadronic input to influence the results for observables.

The Sommer scale has two advantages. On the one hand, [r0/a](β) has been
determined precisely over the range of cutoff values [94, 96, 97] which have been
used in the scaling study in this thesis. Furthermore, in the absence of dynamical
quarks, r0 is only affected by cutoff effects of order a2 [97].

When using physical input from experiments, the conversion will be done by
setting r0 = 0.5 fm. For this value of the reference scale, the decay constant
of the K-meson takes its physical value r0FK = 0.405(5) in quenched lattice
simulations [98]. One therefore often refers to this choice as setting the scale with
the Kaon decay constant. Setting the scale with the nucleon mass instead, the
reference scale would have to be r′0 = 0.55 fm to match the experimental value.
This corresponds to a 10% shift in the scale. An estimate for the size of the
ambiguity for the observables determined in this work will be given in chapter

50
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L/a T/a L/r0 a[fm] nmeas nupdate nOR

β1 = 6.0 16 32 2.98 0.093 380 100 8
β2 = 6.1 24 40 3.79 0.079 201 100 12
β3 = 6.2 24 48 3.26 0.068 251 100 12
β4 = 6.45 32 64 3.06 0.048 289 100 12
β5 = 6.7859 48 96 3.00 0.031 150 50 24

Table 5.1: Lattice geometries and simulation parameters used in the simulations
for the scaling study.

6.2.4.

A parameterization of the ratio a/r0 has been obtained as a function of the
bare coupling β = 6/g2

0 in [97],[
a
r0

]
(β) = exp {−1.6804− 1.7331(β − 6) + 0.7849(β − 6)2 − 0.4428(β − 6)3} ,

for 5.7 ≤ β ≤ 6.92.
(5.1)

The accuracy of this formula ranges from 0.5% at low values of β to 1% at large
values of β.

5.1.2 Parameters for the scaling study

For the scaling study, simulations were done for five different lattices of ap-
proximately constant physical size L/r0 ≈ 3, but decreasing lattice spacing.
The values β1, . . . , β4 were taken over from previous work within the ALPHA-
collaboration [93]. The value of β5 was obtained with (5.1). The corresponding
lattice geometries are given in table 5.1.

As the time-extent of the lattice, T ≈ 2L was chosen. The experience from
earlier simulations with the Schrödinger Functional, e.g. in [98, 78] showed, that
with this asymmetric geometry, the plateaus of the effective masses (3.76) and
decay constants (3.78) are well pronounced. A numerical check for pseudo scalar
mesons in [98] revealed, that with a lattice extent of L/r0 ≈ 3 fm, T = 2L,
finite volume effects can be neglected when simulating for mesons containing a
strange quark as the light quark. The corresponding vector mesons are heavier
and therefore have a shorter Compton wavelength. It is concluded, that finite
volume effects for this channel are also negligible.

A peculiar choice for the lattice geometry had to be made at β2 = 6.1,
where the hardware and memory configuration of the APEMille computers at
NIC/DESY-Zeuthen [80] did not allow to follow the relation T = 2L.
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5.1.3 Improvement and renormalization constants

Most of the improvement and renormalization constants needed for the derivation
of simulation parameters and for the data analysis have already been introduced
in chapter 3. Where available, only non-perturbatively determined improvement
and renormalization constants were used. The parameterizations of all constants
in terms of the bare coupling g0 or β = 6/g2

0 are given in appendix C, in the
tables C.1 and C.2.

Two additional renormalization constants, namely Z [77] and ZM [54] will be
needed. On the one hand,

Z =
mi

mq,i

(5.2)

relates the bare current quark mass mi (PCAC) of some flavor i to the subtracted
bare quark mass mq,i, while

ZM(g0) =
Mi

mi(µ)

ZA(g0)

ZP (g0, µ)
(5.3)

on the other hand that relates the bare current quark mass to the renormalization
group invariant mass Mi.

In [54], the non-perturbative parameterization of ZA(β) [65] together with
simulations for the ratio Mi/mi(µ = (2Lmax)

−1) = 1.157(12) and for ZP (g0, µ =
(2Lmax)

−1) at five values of β were combined to give a parameterization for ZM(g0)
in the range 6.0 ≤ β = 6/g2

0 ≤ 6.5. The scale dependence of the parameters was
computed in the mass independent Schrödinger Functional scheme, where the
renormalization scale is given by the finite box size, L = 1/µ. In this particular
case, µ = (2Lmax)

−1 ≈ (1.436r0)
−1 was used.

With further data from [54], it is possible to derive a parameterization of
ZM(g0) for a larger range of β which will be needed in the continuum extrapolation
for the renormalization group invariant charm quark mass Mc (cf. table 5.1).

First, one has to find an extended parameterization of ZP (g0, (2Lmax)
−1). This

factor has been determined for several values of β, once along lines of constant
physics defined by the fixed volume Lmax and once along an equivalent (in the
continuum) condition defined by the renormalized coupling in the Schrödinger
Functional [99], ZP (g0, (2L)−1)|ḡ2(1/L)=3.48 [54]. The corresponding data is sum-
marized in table 5.2. The two definitions of lines of constant physics differ by
O(a2), since the simulations have been done in the improved theory.

The two data sets are compatible, as can be seen in figure 5.1. The diamonds
represent the data along constant volume and the circles along constant renor-
malized coupling. The parameterizations for ZP (g0, (2Lmax)

−1) [54] and a new
parameterization for the data of ZP (g0, (2L)−1)|ḡ2(1/L)=3.48 have been added to
the plot (dash-dotted and dashed line). The latter parameterization describes
both the data sets very well in the range 6.0 ≤ β ≤ 7.0 and the combination
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fixed 2Lmax ≈ 1.436r0

β 6.0 6.0219 6.1628 6.2885 6.4956
ZP (g0, (2Lmax)

−1) 0.5253(26) 0.5218(16) 0.5177(19) 0.5179(23) 0.5157(19)

fixed ḡ2(1/L) = 3.480(13)

β 6.257 6.476 6.799 7.026
ZP (g0, (2L)−1) 0.5179(19) 0.5143(23) 0.5133(19) 0.5137(27)

Table 5.2: Non-perturbative data for ZP (g0, (2Lmax)
−1).

of both data sets into one parameterization is thus justified. For a polynomial
ansatz one obtains

ZP (β, (2Lmax)
−1) = 0.5228− 0.0231(β − 6) + 0.0142(β − 6)2. (5.4)

It describes the data with a maximal deviation of 0.5% and is plotted in figure
5.1 as the solid line.

In a second step, the data for ZP (g0, (2Lmax)
−1) can be combined with the

ratio Mi/mi((2Lmax)
−1) = 1.157(12) and with the non-perturbatively determined

values of ZA(β) to give ZM(g0) which then can be parameterized as

ZM(β) = 1.754 + 0.27(β − 6)− 0.10(β − 6)2. (5.5)

This parameterization describes the data within 0.5% accuracy. The error of
ZA(g0) and of the ratio Mi/mi((2Lmax)

−1) was taken into account in the error
analysis.

5.1.4 Hopping parameters and stopping criteria

In order to obtain correlation functions for mesons containing a strange quark
and for various heavy quark masses in the range of charm, propagators for seven
different hopping parameters were determined in the Monte-Carlo simulation.
They were chosen such, that the lightest quark mass corresponded to the strange
quark mass. A second hopping parameter was tuned to simulate at the charm
quark mass and the remaining five parameters were distributed homogeneously
over the mass range between the strange quark mass and the lattice cut-off.

κcrit - the critical hopping parameter

κcrit has been determined in [74] in quenched QCD for a large range of β-values
(c.f. table 1 therein). For β = 6.0 and 6.2, the values could be taken over directly.
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Figure 5.1: The renormalization factor ZP (g0, 1/2Lmax). The diamonds cor-
respond to non-perturbative data at fixed 2Lmax = 1.436r0 and the circles
correspond to non-perturbative data obtained from the simulations at fixed
ḡ2(1/L) = 3.48.
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Figure 5.2: Quadratic interpolation for κcrit(β). Only the data at the filled squares
was included into the fit.

In collaboration with the authors of [74], the critical hopping parameters for
β = 6.1, 6.45, and 6.7859 were determined from quadratic interpolations in β, of
which the case β = 6.7859 has been illustrated representatively in figure 5.2.

κs - the hopping parameter corresponding to the strange quark

The hopping parameters for the strange quark for β1 − β5 were obtained, using
previous work by the ALPHA- and UKQCD-collaboration [98]. There, the sum
of the renormalization group invariant strange and light quark mass Ms + M̂
with M̂ = 1

2
(Mu + Md) has been determined in a quenched simulation with

O(a)-improved Wilson fermions. The basic idea in this work was to exploit the
PCAC-relation

Ms + M̂ = ZM
FK

GK

m2
K (5.6)

between the renormalization group invariant quark masses of the strange quark,
Ms, the average light quark mass M̂ = 1

2
(Mu + Md) and the mass of the corre-

sponding meson, mK. ZM, as detailed in the previous section, relates the bare
current quark mass to the renormalization group invariant quark mass. FK is the
Kaon decay constant and GK denotes the vacuum-to-K matrix element of the
pseudo scalar density, which was determined in that work [98].
The computation used r0mK = 1.5736 [1] as experimental input. The follow-
ing table summarizes the results for ZM

FK

GK
at β = 6, 6.1, 6.2, 6.45 obtained with

O(a)-improved Wilson fermions. The value at β = 6.7859 has been extrapolated
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the data at the filled squares was included into the fit. The circle represents the
extrapolated value at β = 6.7859.

linearly in (a/r0)
2 based on the numerical data at β = 6.1, 6.2, 6.45, as is depicted

in figure (5.3).

β 6 6.1 6.2 6.45 6.7859
ZMFK

GKr0
0.1939(30) 0.2077(28) 0.2160(30) 0.2205(46) 0.2268(57)

Ms can be extracted from (5.6) by using the ratio Ms/M̂ = 24.4±1.5 from chiral
perturbation theory [100]. Together with the definition of the subtracted bare
quark mass (3.46), this defines the hopping parameter κs of the strange quark as
the solution of the quadratic equation in amq,s = 1

2

(
κ−1
s − κ−1

crit(g0)
)
,

r0(Ms + M̂) = r0Ms(1 +
M̂

Ms

) =
[r0
a

]
ZMZamq,s(1 + bmamq,s). (5.7)

κc - the hopping parameter corresponding to the charm quark

The hopping parameters at β1 . . . β4 for the charm quark have been determined in
the computation of the renormalization group invariant mass Mc [78]. With the
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Figure 5.4: Linear extrapolation in (a/r0)
2 for r0Mc. Only the filled squares

entered the fit. The circle represents the extrapolated value at β = 6.7859.

values for Mc at finite lattice spacing (β1 − β4) listed in the following table, one
can extrapolate linearly in (a/r0)

2 to obtain a first guess at β5. The extrapolation
is illustrated in (c.f. figure 5.4).

β 6 6.1 6.2 6.45 6.7859

r0Mc 3.224(41) 3.479(43) 3.711(47) 3.975(53) 4.277(85)

As in the case of the strange quark hopping parameter, κc can again be obtained
by solving the quadratic equation (5.7).

Five additional hopping parameters

Five additional hopping parameters were guessed such that a roughly uniform
distribution of quark masses between the strange quark and half the b-quark
mass for β1, . . . , β4 and 4.5 GeV in the case β5 was achieved. In particular, the
parameters were determined from a linear inter- resp. extrapolation with respect
to the pseudo scalar masses r0mK = 1.5735 and r0mDs = 4.988 [1].
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β 6 6.1 6.2 6.45 6.7859

κcrit 0.135196 0.135496 0.135795 0.135701 0.135120

κ1 0.134108 0.134548 0.134959 0.135124 0.134739
κ2 0.128790 0.130750 0.131510 0.132690 0.132440
κ3 0.123010 0.125870 0.127470 0.130030 0.130253
κ4 0.119053 0.122490 0.124637 0.128131 0.128439
κ5 0.115440 0.119370 0.122000 0.126330 0.126774
κ6 0.112320 0.116640 0.119680 0.124730 0.123571
κ7 0.109270 0.113960 0.117370 0.123120 0.117625

Table 5.3: Summary of all hopping parameters. The shaded fields indicate the
value of the hopping parameters corresponding approximately to the strange
quark and to the charm quark.

The solver stopping criterion ε

Heavy-light correlation functions decay exponentially with the meson mass in
time. Thus, large components contribute in the heavy quark propagator for
initial times and small components for large times x0. If one takes for example the
heavy-light correlation function fA(x0), that decays by 28 orders of magnitude
between x0 = a and x0 = T − a for the cases with a very large heavy quark
mass ((L/a)3 × (T/a) = 483 × 96, β = 6.7859, κ1 and κ7 as in table 5.3 ). In
its computation, sums over numbers of different order of magnitude have to be
evaluated, thereby possibly introducing roundoff errors if the number precision is
not sufficient.

Adjusting the stopping criterion of the inverter is a crucial task in the prepa-
ration of the production runs. A stricter value for ε causes the inverter to iterate
longer. But the stopping criterion is also connected with the precision to which
the observables constructed from quark propagators are determined. The runs
at β = 6.0, 6.1, 6.2 and 6.45 were all done in single precision and the value of
ε = 10−7 was taken for all hopping parameters. The run with the MILC code at
β = 6.7859 used double precision arithmetics. In order to find out the optimal
stopping criteria for this production run, the quark propagators for all seven val-
ues of the hopping parameter were computed on a gauge background, once with
ε = 10−7 and once with ε = 10−16. All meson correlation functions defined in
chapter 3.4, were then computed for all combinations of the hopping parameters
κ1−κ2, κ1−κ3, . . . , κ1−κ7. Then, the relative deviations of correlation functions
were computed. It turned out, that especially the light quark propagators are
not sensible to the changed stopping criterion (cf. figure 5.5). The maximum
deviation for the combinations of hopping parameters κ1 − κ2, . . . , κ1 − κ4 was
less than 0.01% and the mean deviation of all correlation functions at all values
of x0 was better than 0.002%. In contrast, for the combinations κ1 − κ5, κ1 − κ6
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Figure 5.5: Upper plot: Relative deviation between correlation functions evalu-
ated once with a stopping criterion of ε = 10−7 and once with ε = 10−16. Lower
plot: Relative deviation between ε = 10−12 and ε = 10−13 (plus signs) and be-
tween ε = 10−13 and ε = 10−14 (circles). Each plot shows the relative deviation for
the correlation functions fA(x0), fP (x0), kV (x0) and kT (x0) for x0/a = 1 . . . 95.
Missing markers indicate vanishing relative deviation.
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and κ1 − κ7 the correlation functions for the two different stopping criteria dif-
fered by orders of magnitude for times x0/a > 50. In a second test, the meson
correlation functions for the combination of hopping parameters κ1 − κ5 were
computed with stopping criteria ε = 10−13, 10−14 and 10−15. The lower plot in
figure 5.5 shows the result. While the correlation functions deviate sizably when
changing the solver precision from ε = 10−13 to ε = 10−14 (crosses), the change is
small between the two solver precisions ε = 10−14 and ε = 10−15 (circles). Thus,
a conservative solver residual of ε = 10−16 for the large quark mass associated to
κ5 was used. The same stopping criterion was applied to κ6 and κ7. However,
roundoff errors could not be ruled out in these cases.

5.2 The simulations

The simulations at β = 6.0, 6.1, 6.2 and 6.45 were all done on the APEMille
computer at NIC/DESY-Zeuthen [80] with the ALPHA-collaboration’s TAO-
code, while the simulation at β = 6.7859 was done with the MILC-code at the
HLRN [87]. The data of the former runs were already available when this project
started and could be taken over.

Beginning with a cold gauge configuration, O(100) update sweeps were done
at each value of β to guarantee thermalization. The average plaquette value
(4.6) was also monitored but took a stable mean earlier at every β. The runs
on the APEMille computer were not so time consuming and a large number of
intermediate updates, followed by O(L/2a) over relaxation steps was done at all
values of β. The number of intermediate updates was reduced for the run at
β = 6.7859, but no correlation effects in the data were observed.

After the thermalization phase, the configurations for the production were
generated.

The runs on the IBM computers at the HLRN

The generation of gauge configurations was carried out with a parallelization over
64 CPUs where the 50 update steps take 3.4 hours.

To save CPU-time, the generation of the field configurations was done using
the code with single precision arithmetics.The gauge configurations obtained in
this way were then converted to double precision arithmetics using a PERL-script.

During the computation of the correlation functions with double precision
arithmetics, a total of 114 GB of memory had to be allocated: 6 GB for the gauge
field, 56 GB for the storage of one color and two spin components of the seven
quark propagators and the rest for auxiliary fields, necessary for the biconjugate
gradient routine. This large amount of memory assigned to the auxiliary fields
was due to the re-shuffling which was necessary for changing from site-major to
field-major (cf. 4.2.3).
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As the IBM servers at the HLRN are divided into units of 8 CPUs (LPAR)
with a shared memory of at least 64 GByte, it was expected, that the code per-
forms properly with a parallelization over 64 CPUs. In this case, the program
allocates 57GB of RAM on each LPAR. However, the code then ran very instable.
Fluctuations of the total runtime by a factor of two were observed. The project
consultants at the HLRN found out, that memory intensive system software (e.g.
the operating system itself and software connected to the GPFS file system man-
agement) consumed a considerable part of the shared memory. This caused the
production code to swap, i.e., parts of the allocated memory temporarily had to
be stored to disk in order to free dynamic memory, thereby slowing down the pro-
gram considerably. In order to avoid these losings in performance, the production
was reorganized to use 128 CPUs instead. This unfortunately prolonged waiting
times in the Queue, because larger numbers of CPUs were free less frequently.

With a parallelization with 128 CPUs, the computation of the propagators
for the seven hopping parameters given in table 5.3 took 9.5 hours. Loading the
gauge configuration in the beginning, contracting the propagators to compute the
correlation functions and saving propagators took a negligible amount of time.

Application for CPU-time

In the beginning, the plan was to produce a statistic of 200 measurements of all
the forward and backward correlation functions at β5.

The thermalization and most of the initial tests could be done at the HLRN
before the official accounting started and was for free. For the production runs
however, applications for CPU-time had to be written.

At the HLRN, the CPU-time is measured in NPL (Norddeutsche Parallel-
rechner-Leistungseinheit). 1 NPL is defined as 1 hour wall-clock time on 32 IBM
p690 CPU’s.

At the time of writing of the first application, some of the improvements of
the code were not yet implemented and one point in the Monte-Carlo-History was
estimated to cost 128 NPL. On this basis, an application for 25600 NPL for one
year was written, of which 10000 NPL were granted for the period 04-2003 until
03-2004. Another 10000 NPL were granted after an application for an upgrade
in 09-2003.

The progress during the first six months of the production runs for β =
6.7859 was very slow because the computing facilities did not provide the expected
services. On the one hand, the computer at the HLRN had a lot of down times
and the code did not perform very well, as detailed above. Furthermore, a fair
queueing system, that prefers massively parallel applications from jobs with a
small number of CPUs was introduced only after the first six months of the
production.

Most of the problems were finally resolved after nine months when the project
was granted an extension of another three months. At this point, the generation of
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one gauge configuration cost 7.8 NPL and the measurement of the corresponding
forward and backward correlation functions roughly 80 NPL.

The project finished with a statistic of 151 measurements at β = 6.7859. The
forward propagators and the backward propagators for the hopping parameters
κ1 and κ3, which approximately correspond to the mass of the strange quark and
the charm quark respectively, were stored on tape for 80 measurements. They
can be restored for further usage.



Chapter 6

Data analysis

This chapter addresses the analysis of the data which were obtained from the
Monte-Carlo simulations of lattice QCD in the quenched approximation. The
continuum limit was taken for the decay constant and the mass splitting of the
D

(∗)
s -meson and the renormalization group invariant charm quark mass. The

combined analysis of the simulation results for a number of heavy quark masses
around the charm quark mass, together with predictions and simulation results
from HQET, allowed to determine the decay constant of the B

(∗)
s -meson and

the corresponding mass splitting at the physical point from an interpolation in
the meson mass. Furthermore, estimates for the magnitude of the first spin- and
flavor-symmetry breaking terms in the 1/MQ-expansion in HQET could be given.

6.1 Data analysis - general remarks

The results and errors from the simulations at all values of β have been obtained
from statistical samples of the primary quantities

fO(x0), gO(T − x0) for O = A, V, P, T and

fTO for O = P, V,
(6.1)

over the whole range of x0 ∈ [a, T − a], using the jackknife method. The correla-
tion functions for the forward and the backward direction fO(x0) and gO(T −x0)
have been averaged at each step of the Monte-Carlo history1,

fO(x0) ≡
1

2
(fO(x0) + gO(T − x0)). (6.2)

1This is possible only for vanishing background field in the Schrödinger Functional.

63
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Using the improvement and renormalization constants introduced in section 5.1.3,
the secondary quantities

FPS, FV, FPS/FV, mPS, mV, mPS −mV and

YPS

CPS
, YV

CV
, R
CPS/V

, ∆m
Cspin

(6.3)

were constructed from them following the definitions in section 3.6.2 and section
2.3. No autocorrelation in the data was observed.

The renormalization and improvement coefficients are only known up to sta-
tistical and systematic errors from their determination in lattice simulations. In
order to take this error properly into account, a statistical sample of all constants
with a Gaussian distribution around their mean and with the width defined by
their error was generated, using a pseudo random number generator (randn in
MATLAB). These samples were handed over to the jackknife routine and then
treated in the same way as the Monte-Carlo data of the primary observables.

The error due to perturbation theory in the conversion functions CX(MQ/ΛMS)
as listed in table 2.3 has been taken into account by error propagation.

6.1.1 Plateaus

First, jackknife results were determined for the effective mass

mX
eff(x0 + a

2
) = 1

a
ln

(
fI

O(x0)

fI
O(x0+a)

)
. (6.4)

Figure 6.1 shows the results for the combination κ1 − κ3 of hopping parameters
at β5 = 6.7859. As expected from (3.76), the effective mass exhibits a plateau for
intermediate times, and contributions from excited states of mass ∆ and glueballs
of mass mG for small and large times x0, respectively.

The meson massmX can be extracted as the average over the plateau. In order
to keep the systematic errors in mX due to contaminations by excited states under
control, the time interval, where their relative contributions are below a chosen
threshold was determined. The thresholds that have been used are given in table
6.1. Thus, the statistical error will always exceeds the systematic error. The time
interval, or plateau range, can be determined by means of the following iterative
procedure:

One first subjectively chooses a sensible plateau range and subtracts the av-
erage over the plateau from the data.

1.) From the logarithm of this data, estimates for the contributions (cf. (3.76))

2 sinh(a∆/2)ηqXX e−x0∆, 2 sinh(amG/2)η0
Xe
−(T−x0)mG (6.5)

to the effective mass can be obtained in terms of linear fits to the time
dependence for small and large times. The fit ranges have to be chosen
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Figure 6.1: Plot of the effective mass meff
X and the decay constant FX(x0) at

β = 6.7859 for the combination of hopping parameters κ1 and κ3.

r0mPS r0mV r0FPS r0FV

0.5% 0.7% 0.5% 0.7%

Table 6.1: Thresholds for the accepted contribution of excited states to the
plateau range.
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subjectively. This procedure is illustrated in figure 6.2, again for κ1 −
κ3 at β = 6.7859. The data sometimes does not exhibit a clear linear
behavior and the fit range cannot be chosen without ambiguities. Therefore,
the extracted glueball masses and mass gaps can only be interpreted as
estimates, which however suffices for the purposes here.

2.) The sum of the relative contributions of excited meson states and glueballs
to the plateau as a function of the time x0 is shown in figure 6.3. The
new plateau range is defined as the time interval, where this contribution
is below the threshold given in table 6.1.

3.) The procedure can be repeated with the newly defined plateau average,
until the plateau range is stable, which usually occurs after one or two
iterations.

One finally obtains the meson mass mX as the average over all the plateau
ranges listed in table D.1 in the appendix. They typically extend over 1r0 to 1.5r0
and their position approximately scales with β. The estimates for the glueball
mass have been summarized in table 6.2. The values given there for each value
of β are the averages over the fits obtained from the six hopping parameter
combinations κ1− κ2 . . . κ1− κ7. The estimates for the gap energy are tabulated
in table D.2.

With the plateau ranges of mX at hand, one now has to repeat the procedure
for the decay constant

FX(x0) = −2ZO(mXL
3)−1/2 e(x0−T/2)mX fO(x0)√

fT
O

. (6.6)

Here, the contributions of the excited states to the plateau are of the form

ηqXX e−x0∆, η0
X e
−(T−x0)mG . (6.7)

Representative plots of the procedure are shown next to the ones for the effective
mass in the figures 6.1 to 6.3.

Although feasible in principle, a continuum limit for the glueball mass has not
been taken because of the uncertainties in the determination of the corresponding
fit ranges. But even at finite lattice spacing, the data is mostly compatible
with the glueball mass of the 0++-glueball as obtained in the dedicated lattice
simulations and summarized in table 6.3.

For the determination of the charm quark mass using the PCAC-relation, no
plateau average over the involved correlation functions has been taken, as the
statistical errors turned out to be very small. Instead, the value at x0 = 2/3T
was used, where the contamination by excited states was reasonably small.
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Figure 6.2: Fits to the logarithm of the subtracted effective mass and the sub-
tracted decay constant. The slope of the linear fits give an estimate for the mass
gap ∆ (dashed line) and the glueball mass mG (dash-dotted line). The dotted
lines indicate the corresponding fit range in each case.

r0mG,FPS
r0mG,FV

r0mG,meff
PS

r0mG,meff
V

β1 5.9 - 5 4
β2 5.3 4.9 5 4
β3 4.5 4.5 4.1 3.7
β4 4.7 4.4 4.0 3.3
β5 4.38 3.4 3.5 3.5

Table 6.2: Estimates for the glueball mass. In the case r0mG,FV
at β1, the data

was too noisy to allow for a sensible fit.



68 CHAPTER 6. DATA ANALYSIS

0 10 20 30 40 50 60 70 80 90 100
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

PSfrag replacements

x0/a

r
e
la

t
iv

e
e
r
r
o
r

in
m
e
ff
P
S
(
x
0
)

0 10 20 30 40 50 60 70 80 90 100
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

PSfrag replacements

x0/a

r
e
la

t
iv

e
e
r
r
o
r

in
F
P
S
(
x
0
)

0 10 20 30 40 50 60 70 80 90 100
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

PSfrag replacements

x0/a

r
e
la

t
iv

e
e
r
r
o
r

in
m
e
ff
V

(
x
0
)

0 10 20 30 40 50 60 70 80 90 100
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

PSfrag replacements

x0/a

r
e
la

t
iv

e
e
r
r
o
r

in
F
V
(
x
0
)

Figure 6.3: Estimated systematic contribution to the plateau due to excited
meson states (dashed line), due to glueballs (dash-dotted line) and the sum of
both contributions (solid line). The plateau average is taken over the range,
where both contributions are below the threshold (indicated by the bold dashed
line).

Collab. r0m0++

Morningstar et. al. [101] 4.21(11)(4)
Bali et. al. [102] 4.33(10)
Teper [103] 4.35(11)
UKQCD [104] 4.05(16)
Niedermayer et. al. [105] 4.12(21)

Table 6.3: Lattice data for the lowest glueball mass (0++) in the continuum with
(combined) statistical and systematic errors.
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6.1.2 Interpolation in the meson mass

The observables at different quark masses but at constant β have been evaluated
on the same set of gauge configurations and are therefore correlated. Indeed,
the corresponding normalized covariance matrix of the observables which was
determined in the jackknife procedure has large off-diagonal elements. It was
checked, that this does not affect the error estimation in the data interpolation.

Interpolation to lines of constant physics

The pseudo scalar and vector meson masses computed at each lattice spacing
do not coincide exactly (cf. figure 6.4 and table D.3 in the appendix). Thus,
for a continuum limit along a line of constant physics, the secondary quantities
(6.3) were interpolated to common values. For the decay constant and the mass
splitting, this was done linearly in the inverse meson mass mPS or mV, whereas
in the case of the renormalization group invariant charm quark mass, linearly in
the meson mass. These parameterizations are not only suggested by HQET, but
are also supported by visual examination of the mass dependence of all secondary
quantities.

Figure 6.4 shows the choice of meson masses given in table 6.4 for the pseudo
scalar and the vector meson channel, to which the secondary observables were
interpolated. Most of the masses were chosen such as to lie in the vicinity of the
simulated ones in order to reduce the error introduced by the interpolation. In
one case, the interpolation was performed to the experimentally known masses [1]
of the Ds and D∗s meson respectively.

The data obtained for κ6 and κ7 at β5 = 6.7859 were discarded for the whole
analysis, since roundoff effects were observed for the heavy quark masses simu-
lated for, which could be ruled out reliably only for κ5 (cf. 5.1.4).

Interpolation to the b-quark

Prior to the interpolation between the region of the charm quark mass and the
static limit, the continuum extrapolation for the desired observables at the masses
given in table 6.4 was carried out. This ordering of the procedure is suggested by
the expectation, that discretization errors are quark mass dependent. Since all
the observables have been determined in the O(a)-improved theory, one would
naively assume, that they approach the continuum limit approximately linearly in
a2. In [106], deviations from this scaling behavior for heavy quarks were observed.
A comparison of lattice results in the finite volume O(a)-improved Schrödinger
Functional at non-vanishing lattice spacing with results from perturbation theory
at zero lattice spacing revealed, that the expected scaling behavior breaks down
for heavy quark with (amMS

Q )2 & 0.2. Thus, the bound

aMQ . 0.64. (6.8)
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i 1 2 3 4 5 6

r0m
i
PS 3.768 4.327 4.987 5.653 6.211 6.560

aMQ < 0.64 β2 − β5 β2 − β5 β3 − β5 β3 − β5 β3 − β5 β3 − β5

r0m
i
V 4.210 4.660 5.363 5.920 6.280 6.550

aMQ < 0.64 β2 − β5 β2 − β5 β3 − β5 β3 − β5 β3 − β5 β3 − β5

Table 6.4: Meson masses to which all observables were interpolated before taking
the continuum limit. The masses in the third column (i = 3) correspond to the
experimentally known values of the Ds and D∗s meson respectively [1]. In addition,
the lattices which will be included into the continuum extrapolation are given in
terms of the corresponding coupling constant (cf. section 6.1.2).

0.1 0.15 0.2 0.25 0.3 0.35

PSfrag replacements

1/(r0mPS)

1/(r0mV)

β1

β2

β3

β4

β5

Figure 6.4: Simulated inverse pseudo scalar masses for the combinations of hop-
ping parameters κ1 − κ2, . . . , κ1 − κ7 (circles). The dashed lines indicate the
inverse masses to which the observables have been interpolated at each value of
β before the continuum limit has been taken.
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has to be fulfilled by all the data that enter the analysis. Table 6.4 shows the
meson masses together with the range of β-values that are compatible with this
bound.

The interpolations were carried in the meson mass. This allowed to localize the
physical point of the Bs-meson exactly, because its mass is known very precisely
from experiment (mBs = 5.36966(24) GeV [1]). In units of the Sommer-scale, the
mass translates to r0mBs = 13.6056(6).

In HQET, one expects that the heavy quark mass differs from the heavy-light
meson mass only by the binding energy Λ̄ and terms of O(1/MQ) (cf. (2.43)).
Thus, the functional dependence of the observables on the meson mass is com-
patible with the fit-ansatz

a0 +
a1

r0mPS

+
a2

r0m2
PS

+ . . . . (6.9)

The coefficients ai can be taken as estimates for the magnitude of the contribu-
tions to heavy-light observables from higher orders in the HQET expansion.

6.2 The Ds- and the D∗
s-meson and the c-quark

mass

In this section, a precise determination of the observables

FDs , FD∗
s
, FDs/FD∗

s
and r0(mD∗

s
−mDs) (6.10)

is presented.
Simulations with a continuum extrapolation for the decay constant from

rather coarse lattice resolutions have been done in [107, 108, 109, 110] and more
recent studies with an extended approach to the continuum limit, O(a)-improved
Wilson fermions and also partly with dynamical quarks have been carried out
in [111, 112, 113, 114, 115, 116, 93, 117, 118]. A recent summary of lattice data for
the Ds-system can be found for example in [119]. Some representative results are
summarized in table 6.5.

6.2.1 The decay constants FDs
and FD∗

s
and the ratio FDs

/FD∗
s

After interpolating the data for the decay constants FDs and FD∗
s

at each finite
lattice spacing (cf. table D.3) to the physical point, given in terms of the mass
r0mDs = 4.987 [1], one obtains the corresponding values in the continuum from
a linear extrapolation in (a/r0)

2. The extrapolations for FDs and FDs/FD∗
s

are
shown in figure 6.5. For FDs , the fit has χ2/d.o.f. = 1.9, for FD∗

s
χ2/d.o.f. = 1.6

and for FDs/FD∗
s

a value of χ2/d.o.f. = 0.7. The final results in the continuum
are
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Figure 6.5: Continuum limit for the decay constant FDs and the ratio FDs/FD∗
s
.

r0FDs = 0.572(18) ,
r0FD∗

s
= 0.605(47) ,

FDs/FD∗
s

= 0.939(61) .

Using r0 = 0.5 fm, the results for the decay constants translate to
FDs = 226(7)MeV and FD∗

s
= 239(18)MeV. The error is the combination of

statistical and systematic contributions within the quenched approximation.
Following the arguments of section 6.1.2, the data from the simulations at

β1 = 6.0 and β2 = 6.1 has not been included into the fits. However, the stability
of the extrapolation has been tested by studying the change in observables under
the inclusion of β2 = 6.1. This resulted in r0FDs=0.585(15) with χ2/d.o.f. = 1.9,
r0FD∗

s
=0.658(38) with χ2 = 2.4 and FDs/FD∗

s
=0.885(49) with χ2/d.o.f. = 1.5.

Thus, the observables change by 2%, 8% and 6% respectively, and the results
from both fit ranges agree within errors.

The data at β2 − β4 has previously been used to determine the pseudo scalar
decay constant in the continuum with a final value of FDs = 252(9)MeV [93],
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Reference F
Nf=0
Ds

/MeV Nf FDs/MeV F
Nf=0
D∗

s
/MeV

scale
setting

ALPHA [93] 252(9) r0
Becirevic et. al. [114] 231(12)(+6

−0) 272(16)(+0
−20) mρ

Bowler et. al. [115] 229(3)(+23
−12) 264(10)(+15

−20) fπ
CP-PACS [113] 250(1)(+24

−18) 2 267(13)(+27
−17) mρ

de Divitiis [116] 240(5)(5) r0
MILC [117] 223(5)(+18

−17) 2 241(5)(+29
−26) fπ

UKQCD [118] 229(3)(+23
−12) fπ

Wingate et. al. [120] 3 290(7)(41) Υ

Ryan (world av.) [119] 230(15) 250(30)

Table 6.5: Results for the decay constant FDs and FD∗
s

from other groups. The
errors are statistical and systematic.

where the scale was also set with the Kaon decay constant. This value differs
from the one obtained here by 26 MeV and the two results are not compatible
within errors.

Table 6.5 summarizes some recent values for the decay constants from quenched
as well as from dynamical simulations by other groups. There are indications,
that the effect of unquenching is a shift in the decay constant to about 10%
higher values [119,117]. However, results with dynamical quarks still suffer from
large statistical and systematic uncertainties so that a reliable estimate of the
quenching error is not yet possible.

Only the decay constant for the Ds-meson has been determined in an ex-
periment. Two recent measurements quote Fexp

Ds
= 285(19)(40)MeV [121] and

Fexp
Ds

= 280(19)(28)(34)MeV [122], where the first error is statistical and the sec-
ond systematic. In the latter case, the third error is also systematic due to an
uncertainty in branching ratios. The present world average from experimental
determinations is Fexp

Ds
= 267(33)MeV [1].

Also QCD sum rules have been used to determine FDs . In [18] a value of
FDs = 235(24)MeV has been suggested.

6.2.2 The mass splitting r0(mD∗
s
−mDs

)

In the same way as for the decay constant, after interpolating the data to the
physical point given by the mass of the Ds-meson, the continuum extrapolation
can be carried out for the mass splitting r0(mD∗

s
− mDs) (cf. figure 6.6). The

resulting value is
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Figure 6.6: Continuum limit for the mass splitting. The diamond represents the
experimental value. Only the data at the filled squares entered the fit.

r0(mD∗
s
−mDs) = 0.345(23),

The linear fit has χ2/d.o.f. = 0.1. Converted to physical units with r0 = 0.5 fm,
the value is (mD∗

s
− mDs) = 136.0(92) MeV. The result is compatible with the

current experimental data taken from [1], (mD∗
s
−mDs)

exp = 143.8(4)MeV.
In a previous lattice study, where the same techniques were applied but the

continuum extrapolation was made from coarser lattices [78], a value of (mD∗
s
−

mDs) = 122(14)MeV was quoted. Another computation [114] gave (mD∗
s
−mDs) =

97(12)MeV as the final result. This result was obtained on rather coarse lattices
and the discrepancy with respect to experiment was ascribed to cutoff effects.

6.2.3 The renormalization group invariant charm quark
mass Mc

The renormalization factor ZM(g0), which has been introduced in section 5.1.3,
can be used to relate the two definitions of renormalized quark masses (3.47) and
(3.81) to the renormalization group invariant quark masses.

On the one hand, employing the definition of the PCAC-mass (3.80), the
charm quark mass can be extracted from the correlation functions containing
non-degenerate quarks,

r0Mc|msc = ZM

{
2r0msc

[
1 + (bA − bP )1

2
(amq,c + amq,s)

]
− r0ms [1 + (bA − bP )amq,s]

}
.

(6.11)

Here, the flavor indices have been replaced by the particular quark flavor (c for
charm and s for strange). The relation can also be applied to the mass degenerate
case, where one obtains

r0Mc|mc = ZMr0mc [1 + (bA − bP )amq,c] . (6.12)
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On the other hand, it can be extracted directly from the corresponding bare
subtracted quark mass via the relation

r0Mc|mq,c = ZMZr0mq,c [1 + bmamq,c] . (6.13)

The continuum extrapolations of all the three definitions of the renormaliza-
tion group invariant charm quark mass Mc are illustrated in figure 6.7. Within
the errors, they all converge to the same continuum result. The final result was
taken from the continuum limit of r0Mc|msc , since the smallest cutoff effects were
observed in this case. The corresponding linear fit has χ2/d.o.f. = 0.32 and the
extrapolated value at a = 0 is

r0Mc = 4.05(7) .

Using r0 = 0.5 fm, this translates into Mc =1.597(28) GeV. By inverting equation
(2.31) with MAPLE, this value can be translated to the MS-scheme and one gets

mc(mc) = 1.27(3) GeV. In this step, the 4-loop anomalous dimensions γMS and
β have been employed and the error of ΛQCD = 238(19) MeV [54] has been taken
into account.

The Particle Data group [1] gives mc(mc) ≈ 1.15 − 1.35 GeV as a range for
the charm quark mass, excluding current data from the lattice. In addition, they
also quote mc(mc) = 1.26(13)(20)GeV as the world average from the lattice.
Here, the second error is an estimated uncertainty of 15% due to the quenched
approximation.

The determination of the charm quark mass in lattice QCD has a long history
[123, 124, 125, 126, 78, 127, 128]. Other recent measurements in quenched lattice
QCD include [127] with mc(mc) = 1.26(3)(12)GeV and [125] with mc(mc) =
1.33(8)GeV, with statistical and systematic error in the first case and combined
statistical and systematic error in the second case. The first result has been
obtained in the O(a)-improved theory at the rather coarse lattice spacing a ≈ 0.07
fm and the latter has been obtained from a continuum extrapolation. In [128],
the continuum limit for the charm quark mass was taken by using a step scaling
method. The final result quoted there is mc(mc) = 1.319(28) GeV. A result
for the charm quark mass which was obtained in the same way as here, but
without a simulation at β5 has been carried out in [78], with a final value of
mc(mc) = 1.301(34) GeV.

An unquenched computation has been carried out by UKQCD [120] with
Nf = 3 flavors of dynamical light quarks. Although only preliminary and at
very large lattice spacing (a ≈ 1.1 fm), no effects of sea quarks compared to the
quenched results [78,127] were observed.

The value for the charm quark mass obtained here is compatible within errors
with all previous determinations.
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Figure 6.7: Continuum extrapolation for the renormalization group invariant
charm quark mass Mc. Only the data at the filled squares entered the respective
fit.
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6.2.4 Quenched scale ambiguity

In order to assess the quenched scale ambiguity (cf. section 5.1.1), the data
has been analyzed again, with the line of constant physics for the continuum
extrapolation defined at the physical meson masses r′0mDs = 5.486, to which the
data has been interpolated. The results and the ambiguity with respect to the
case r0 = 0.5 fm are the following:

ambiguity

FDs |r′0
= 205.8(70) MeV → −9%

FD∗
s |r′0

= 213(17) MeV → −11%

(mD∗
s
−mDs)|r′0 = 111.9(66) MeV → −18%

Mc|r′0 = 1.690(33) GeV → +6%

mc(mc) = 1.32(3) GeV → +4%

The magnitude of the ambiguities agree with equivalent estimates in [93] for the
decay constant and in [78] for the charm quark mass. It should be mentioned
here, that the quenched scale ambiguity only gives an estimate for the ambiguity
inherent to the quenched approximation. The true quenching error can only be
determined by direct comparison to results in the full theory.

6.2.5 Discussion

All results in this section have been summarized in table 6.6 together with the
final error and the corresponding experimental values (where available). Most of
the observables determined here, are compatible within errors with the previous
lattice simulations and with QCD sum rules. Especially in the case of the pseudo
scalar decay constant it has been demonstrated, that it is possible to produce
lattice data, which matches the precision of experiments, i.e. CLEO-c with a
predicted error for FDs of 2% [129].

In the case of the meson mass splitting and the renormalization group in-
variant charm quark mass, the data obtained here is nicely compatible with the
expected linear scaling in (a/r0)

2, which is confirmed by the small χ2 of the
corresponding fits.

For the decay constant FDs , although still acceptable, the relatively large value
χ2/d.o.f. = 1.9 indicates, that the data is not quite compatible with the expected
linear scaling behavior. In contrast to the mass splitting and the quark mass, the
boundary-to-boundary correlation functions fTA and fTV enter the definition of the
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observable experiment [1] lattice precision
(quenched)

FDs 267(33) MeV 226(7) MeV 3%
FD∗

s
239(18) MeV 8%

FDs/FD∗
s

0.939(61) 7%

mDs 1.9683(5) GeV input
mD∗

s
−mDs 143.8(4) MeV 136.0(92) MeV 7%

Mc 1.597(28) GeV 2%
mc(mc) 1.27(3) GeV 2%

Table 6.6: Summary of results for the Ds- and the D∗s -meson and the c-quark
mass.

pseudo scalar and the vector meson decay constant, respectively. Both quantities
are known to fluctuate strongly in the Monte-Carlo history. The situation might
therefore improve with larger statistics at β5.

The simulation results from the coarser lattices, which have been excluded
from the continuum extrapolation in order to avoid mass dependent cutoff effects,
deviate considerably from a linear scaling in (a/r0)

2. This confirms the findings
in [106] and the upper bound aMQ ≤ 0.64 for the heavy quark mass at finite
lattice spacing, suggested there.

Despite working in the quenched approximation, most of the results presented
in this section are compatible within errors with the corresponding values from
experiment. A slight discrepancy was discovered for the decay constant. However,
unquenching in this case is expected to increase the value by about 10%.

Although all sources of systematic error have been taken into account during
the data analysis, it could be shown, that lattice results can meet the accuracy
of precision experiments.

6.3 The Bs- and the B∗s-meson and HQET

This section presents the combined analysis of predictions from HQET together
with the relativistic data for heavy quarks with masses around the charm quark
mass.
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at the largest pseudo scalar mass

m6
PS with χ2/d.o.f. = 2.5. Only the data at the filled symbols entered the fit.

6.3.1 Incorporation of results from the static limit

Similar to the observables for the Ds-meson, the quantities

r
3/2
0

YPS

CPS

,
R

CPS/V

and r0
∆m

Cspin

, (6.14)

which are defined in section 2.3, have been extrapolated to the continuum at the
pseudo scalar masses which are collected in table 6.4 together with the associated
fit range.

In the case of r
3/2
0

YPS

CPS
at the largest mass m6

PS, the linear continuum extrap-

olation of three data points as depicted in figure 6.8 has a large χ2/d.o.f. = 2.5.
Although P (χ2/d.o.f. = 2.5) . 10%, the continuum value has been included into
the further data analysis, since the extrapolations to a = 0 at all other pseudo
scalar masses behaved much better.

For r
3/2
0 YPS/CPS, the non-perturbatively determined value in the static ap-

proximation [27]

r
3/2
0 Φstat

PS,RGI = 1.74(13) (6.15)

has been included into the fit as a constraint in the static limit. For the ratio
R/CPS/V and the mass splitting r0∆m/Cspin, the asymptotics as detailed in sec-
tion 2.3 have been included to constrain the interpolation. Figure 6.9, 6.10 and
6.11 show the results. The interpolation has been carried out, once including the
data in the range of pseudo scalar masses from r0m

1
PS− r0m6

PS and once with the
masses r0m

3
PS − r0m

6
PS. For the larger mass range, a second order polynomial

was used as the fit-ansatz, while for the smaller mass range also a linear fit was
applied. The physical point of the Bs-meson and the corresponding results from



80 CHAPTER 6. DATA ANALYSIS

observable linear quadratic
a0 a1 a0 a1 a2

mass range m1 . . .m6

r
3/2
0 YPS

CPS
- - 1.7(2) -3(2) 3(4)

R
CPS/V

- - 1.0 0.1(6) -5(3)

r0∆m
Cspin

- - 0.0 1.8(3) 1(1)

mass range m3 . . .m6

r
3/2
0 YPS

CPS
1.7(1) -2.4(7) 1.8(2) -3(2) 4(8)

R
CPS/V

1.0 -0.8(2) 1.0 - -

r0∆m
Cspin

0.0 1.99(8) 0.0 1.6(8) 2(4)

Table 6.7: Coefficients and associated error of the polynomial fit a0 + a1

r0mPS
+

a2

(r0mPS)2
for the interpolation between the relativistic data and the static approx-

imation for various observables.

the interpolations are indicated by the circles. Table 6.7 shows the parameters
of the fit polynomial

a0 +
a1

r0mPS

+
a2

(r0mPS)2
+ . . . . (6.16)

The errors associated to the fit-parameter a1 in the case of linear interpolations
is not too large. Thus, a1 can be taken as a rough estimate of the magnitude of
the first-order correction.

A fit of R/CPS/V over the mass range r0m
3
PS − r0m

6
PS with a 2nd order poly-

nomial is not feasible due to the large error associated with the data. In the
other cases, 2nd order polynomials fit the data well for both mass ranges. How-
ever, the corresponding coefficients can only be determined very inaccurately and
significant statements about higher order contributions cannot be made.
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Fit linear quadr. linear quadr.
Mass range m1

PS . . .m
6
PS m1

PS . . .m
6
PS m3

PS . . .m
6
PS m3

PS . . .m
6
PS

r0FBs 0.50(3) 0.51(3) 0.50(3) 0.53(3)

FBs/FB∗
s

0.921(9) 0.98(3) 0.94(1) -

r0(mBs −mB∗
s
) 0.171(5) 0.16(2) 0.167(7) 0.15(4)

Table 6.8: Results for Bs from the interpolation.

6.3.2 Interpolation to the B
(∗)
s -meson

In the following, the determination of the observables

FBs , FBs/FB∗
s
, and r0(mB∗

s
−mBs) (6.17)

will be presented. One first extracts the value of the corresponding interpolation
at the physical point [1]

mBs = 5.3696(24)GeV → r0mBs = 13.604(61), (6.18)

which is indicated by the blue circles in the respective plots 6.9, 6.10 and 6.11.
Then, the conversion functions have to be eliminated. In the case of the decay
constant and the ratio of the decay constants, also the square roots of the meson
masses have to be eliminated (cf. section 2.3). To this end, the conversion
functions CX(MQ/ΛMS) were taken at the value of the b-quark mass r0Mb =
16.12(29) which has been determined non-perturbatively in quenched QCD [50].
The results for all observables for the Bs-meson are summarized in table 6.8 for
the various interpolations that have been carried out.

The quadratic interpolation over the mass range m3
PS . . .m

6
PS leads to very

large errors and significant results cannot be obtained. The linear interpola-
tion over the larger mass range m1

PS . . .m
6
PS on the other hand stretches across

a domain, where sizeable higher order contributions are to be expected. Both
interpolations were therefore discarded for the further analysis. In order to de-
termine the final results, the linear interpolation including the massesm3

PS . . .m
6
PS

and the quadratic interpolation including the masses m1
PS . . .m

6
PS were then com-

pared. First, the corresponding results from table 6.8 translated to physical units
are
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Fit linear quadr.
Mass range m3

PS . . .m
6
PS m1

PS . . .m
6
PS

FBs 200(10) MeV 198(9) MeV

FBs/FB∗
s

0.94(1) 0.98(3)

mBs −mB∗
s

66(3) MeV 63(6) MeV

The results of both fits are compatible within 1σ. While the error for the ratio
of the decay constants and for the mass splitting is twice as large in the case of
the interpolation with the 2nd order polynomial, the error is approximately the
same for the decay constant. Comparing the results from both fits, no preference
becomes apparent. However, in order to arrive at a conservative error estimate,
the values obtained from the quadratic interpolation were chosen as the final
results. All final results for the B

(∗)
s -meson are collected in table 6.10

Using QCD sum rules, FBs = 236(30)MeV [18] and FBs = 244(21)MeV
[130] have been determined. Other groups have done lattice simulations in the
quenched theory as well as with dynamical quarks with Nf = 2 and Nf = 3
flavors. The corresponding results have been summarized in table 6.9. Again it
turns out, that unquenching yields decay constants that are about 10% larger
than in the quenched case. However, dynamical simulations still suffer from large
systematic errors.

The experimental value of the mass splitting is 47.0(26)MeV [1].

6.3.3 Quenched scale ambiguity

As in the case of the Ds- and D∗s -meson, the quenched scale ambiguity has been
estimated. The size

ambiguity

FBs |r′0
= 182(10) MeV → −8%

(mB∗
s
−mBs)|r′0 = 52(6) MeV → -18%

is roughly the same as for the corresponding observables of the Ds-meson.

6.3.4 Discussion

The interpolation between the results from quenched QCD around the charm
sector and HQET indicates, that the coefficients of the linear and quadratic term
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Reference F
Nf=0
Bs

/MeV Nf FBs/MeV
scale

setting

ALPHA [131] 206(10) r0
Becirevic et. al. [114] 204(16)(+28

−0 ) mρ

Bowler et. al. [115] 220(6)(+23
−28) fπ

CP-PACS [113] 219(10) 2 250(10)(+15
−13) mρ

de Divitiis [116] 192(6)(4) r0
JLQCD [132] 2 215(9)(+14

−13) mρ

MILC [117] 199(5)(+23
−22) 2 217(6)(+37

−28) fπ
UKQCD [118] 220(6)(+23

−28) fπ
Wingate et. al. [120] 3 260(7)(28) Υ
Ryan (world av.) [119] 200(20) 230(30)

Table 6.9: Results for the decay constant FBs from other groups with statistical
and systematic errors.

in the heavy quark expansion

a0 +
a1

r0mPS

+
a2

(r0mPS)2
+ . . . (6.19)

are of order O(1) and one can therefore expect, that HQET is a good approxi-
mation for B(s)-mesons.

The interpolation has also been used successfully to determine observables of
the Bs-meson with reasonable errors. All final results have been summarized in
table 6.10, together with experimental data and the associated errors within the
quenched approximation.

The result for the decay constant is compatible with most of the previous
studies. The mass splitting that was determined from the simulations is not
compatible with experiment when setting the scale with the Kaon decay constant.
It agrees however, when setting the scale with the nucleon mass instead.
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observable experiment [1] lattice precision
(quenched)

FBs 198(9) MeV 5%

FB∗
s

190(10)MeV 6%
FBs/FB∗

s
0.98(3) 3%

mBs 5.3696(24) GeV input

mB∗
s

5.4166(35) GeV
mB∗

s
−mBs 47.0(26) MeV 63(6) MeV 11%

Table 6.10: Summary of results for the Bs- and the B∗s -meson.



Chapter 7

Summary and outlook

The work for this thesis was focused on precision measurements of heavy-light
meson observables in quenched QCD. The systematic errors stemming from

• discretization effects

• contributions from excited states

• the continuum extrapolation

• finite volume effects

• interpolation to the physical quark mass

have been controlled, estimated and considered in the analysis. Only the unknown
error due to the quenched approximation remains. In particular, the meson decay
constants and the mass splitting for the D

(∗)
s - and the B

(∗)
s -meson and the charm

quark mass were studied. Moreover, the order of magnitude of the coefficient of
the leading order contributions to the static approximation in the heavy quark
expansion was estimated.

Starting from the MILC-collaboration’s computer program for SU(3) lattice
gauge theory, a platform independent tool was created and tested, that can ac-
complish all the necessary computations, for example on a PC-cluster, using
MPI-based parallelism.

In a scaling study with five lattices of constant volume but decreasing lattice
spacings a ≈ 1, 0.8, 0.7, 0.5, 0.3 fm, the desired observables were extrapolated to
the continuum. At each lattice spacing, simulations were carried out for six heavy
quark masses in the region of the charm quark mass, while keeping a seventh
quark mass at the physical value of the strange quark mass. Deviations from
the expected linear scaling in (a/r0)

2 were observed in all considered observables.
They were stronger for the heavier meson masses. The expected scaling could be
recovered by restricting the data that enters the continuum extrapolation with
the upper bound aMQ < 0.64 for the heavy quark mass [106].

The results at the physical mass of the Ds-meson show, that a final combined
statistical and systematic error of 3% on the pseudo scalar meson decay constant
in the continuum can be achieved. This is at the level of the precision of currently
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running experiments. For example, CLEO-c claims, that the error on FDs from
experiment will be reduced below 2% in the near future [129]. Also the results for
the charm quark mass in the continuum could be determined with a final error
of 2%.

The conversion functions, that are necessary to relate observables in QCD
and their renormalization group invariant analog in HQET were computed and
parameterized as functions of the renormalization group invariant quark mass.
The simulation results of quenched QCD in the region of the charm quark mass,
extrapolated to the continuum, were successfully combined with predictions from
HQET by means of an interpolation in the inverse meson mass. Also the error
due to the finite order in perturbation theory in the conversion functions entered
the data analysis.

The results from the interpolation indicate, that the leading spin- and flavor
symmetry breaking corrections in the heavy quark expansion have coefficients
that are sufficiently small to expect HQET to be a good approximation for mesons
containing a b-quark as the heavy quark. These findings are compatible with
a similar study of very heavy relativistic quark masses in small volume [133].
Furthermore, by evaluating the interpolation at the physical point of the Bs-
meson, predictions for the pseudo scalar and the vector meson decay constant
and the mass splitting with a combined statistical and systematic error of 5%,
6% and 10%, respectively, were obtained.

On a wish list of what has to be done next in order to improve the current
status are:

• the calculation of the 1/m-corrections to the static limit

• the inclusion of a more precise value for the decay constant in the static limit

• the extension of the calculations to the B-mesons containing a u or d quark
as the light quark

• non-perturbative matching

• the repetition of the simulations with dynamical fermions

The first two wishes are work in progress by the ALPHA collaboration [131,134]
and will allow to further constrain the interpolation and thus to reduce the error
on the observables of the Bs-meson.

Including the light u- and d-quarks in order to simulate for the B-meson is
very costly and involves a chiral extrapolation which introduces an additional
source of systematic errors.

A program to non-perturbatively match HQET and QCD which would reduce
the systematic uncertainty due to perturbation theory in the conversion functions
has been set up by the ALPHA collaboration [50].

Finally, only results from simulations of full QCD can be used to reliably
predict the physical observables, that are necessary for a precision analysis of the
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Standard Model. When keeping all sources of systematic errors under control,
this is still a very costly task.



Appendix A

Notation
Pauli matrices
The Pauli matrices are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.1)

They fulfill the Lie-Algebra

[σi, σj] = 2iεijkσk, (A.2)

and are, in context with the iso-spin algebra, also often referred to as τi = σi.

Dirac Matrices
The Dirac Matrices in Euclidean space and in Minkowski space are connected via

γEuclidean
1,2,3 ≡ −iγMinkowski

1,2,3

γEuclidean
0 ≡ γMinkowski

0

(A.3)

They obey the anti-commutation relation

{γµ, γν} = 2δµν . (A.4)

and can be constructed from the Pauli matrices. In the chiral representation, the
Euclidean Dirac matrices γµ (µ = 0, 1, 2, 3) read

γ1,2,3 =

(
0 −iσ1,2,3

iσ1,2,3 0

)
. (A.5)

The matrices for µ = 0 and γ5 = γ0γ1γ2γ3 in the chiral representation are

γ0 =

(
0 1
1 0

)
, γ5 =

(
1 0
0 −1

)
. (A.6)

γ5 anti-commutes with the γµ,

{γµ, γ5} = 0. (A.7)
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Appendix B

The relation between the pole
mass and the renormalization
group invariant quark mass

The pole mass mQ is related to the renormalization group invariant quark mass
MQ via

mQ =

(
mQ

m(m)

) (
m(m)

MQ

)
MQ. (B.1)

m(m) is the renormalized mass in the MS-scheme of dimensional regularization.
The ratio mQ/m(m) has been determined to three loop precision in [55, 56, 57]
and is quoted here for the quenched approximation:

mQ

m(m)
= 1 + ḡ2(m)

3π2 + 13.4434 ḡ
4(m)
16π4 + 190.595 ḡ

6(m)
64π6 . (B.2)

The ratio m(m)/MQ on the other hand can be determined from the renormaliza-
tion group equations

µ
dm(µ)

dµ
= τMS(ḡ(µ)) and µ

dḡ(µ)

dµ
= βMS(ḡ(µ)), (B.3)

using the 4-loop anomalous dimension of the renormalized coupling βMS(g) [53]

and the 4-loop quark mass anomalous dimension τMS(g) [59], which have the
expansions

βMS(g) = −b0g3 − b1g
5 − b2g

7 − b3g
9 − . . . and

τMS(g) = −d0g
2 − d1g

4 − d2g
6 − d3g

8 + . . . .

(B.4)

The corresponding coefficients are collected in table B.1. Integrating the renor-
malization group equations (B.3), one obtains

MQ

m(m)
= (2b0ḡ

2(m))−d0/2b0 exp

−
ḡ(m)∫
0

dg

[
τMS(g)

βMS(g)
− d0

b0g

] , (B.5)
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βMS [53] τMS [59]

b0 = 11
(4π)2

d0 = 8
(4π)2

b1 = 102
(4π)4

d1 = 404
3(4π)4

b2 = 2857
2(4π)6

d2 = 2498
(4π)6

b3 = 29243−5033/18
(4π)8

d3 = 50659
(4π)8

Table B.1: 4-loop anomalous dimension of the coupling and the mass in the
MS-scheme of dimensional regularization.

which can be evaluated using MAPLE.
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Summary of improvement and
renormalization constants
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κ1 − κ2 κ1 − κ3 κ1 − κ4 κ1 − κ5 κ1 − κ6 κ1 − κ7

r 0
∆

m
P
S β1 1.556(64) 1.408(85) 1.355(98) 1.32(11) 1.30(13) 1.29(15)

β2 1.529(56) 1.396(81) 1.349(96) 1.32(12) 1.29(13) 1.28(13)
β3 1.571(56) 1.449(71) 1.397(87) 1.36(10) 1.35(11) 1.32(13)
β4 1.732(84) 1.549(99) 1.48(12) 1.42(13) 1.38(15) 1.37(17)
β5 1.552(92) 1.50(11) 1.50(18) 1.44(17) 1.37(19) 1.36(56)

r 0
∆

m
V β1 1.35(13) 1.45(16) 1.32(18) 1.37(32) 1.43(31) 1.38(25)

β2 1.44(10) 1.275(72) 1.30(11) 1.29(12) 1.27(14) 2.667(99)
β3 1.431(86) 1.363(88) 1.32(11) 1.30(12) 1.30(13) 1.28(15)
β4 1.378(86) 1.338(99) 1.41(12) 1.38(14) 1.37(16) 1.34(16)
β5 1.338(82) 1.317(77) 1.302(94) 1.29(11) 1.29(15) 1.26(24)

r 0
∆

F
P
S β1 1.598(34) 1.424(38) 1.354(43) 1.310(47) 1.282(51) 1.260(58)

β2 1.534(26) 1.496(37) 1.471(40) 1.428(50) 1.417(60) 1.338(62)
β3 1.623(33) 1.474(32) 1.420(38) 1.447(43) 1.435(49) 1.390(56)
β4 1.816(30) 1.692(44) 1.619(49) 1.518(52) 1.521(72) 1.590(77)
β5 1.723(42) 1.830(56) 1.804(47) 1.829(52) 1.848(69) 2.233(88)

r 0
∆

F
V

β1 - - - - - -
β2 1.341(61) 1.89(14) 1.73(14) 1.64(15) 1.61(17) 1.55(18)
β3 2.01(19) 1.46(12) 1.240(77) 1.192(81) 1.114(73) 0.973(63)
β4 1.53(11) 1.514(96) 1.43(10) 1.33(15) 1.35(19) 1.62(14)
β5 1.86(15) 1.85(16) 1.89(14) 1.83(14) 1.87(14) 1.91(12)

Table D.2: Estimates for the gap energy as obtained from fits to the effective
masses and the decay constants. For r0∆FV

at β1, the data was too noisy to
allow for a sensible fit.
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κ1 − κ2 κ1 − κ3 κ1 − κ4 κ1 − κ5 κ1 − κ6 κ1 − κ7

r 0
m

P
S β1 3.147(15) 4.294(19) 4.971(22) 5.541(24) 6.005(26) 6.439(28)

β2 3.069(14) 4.273(20) 4.988(23) 5.597(25) 6.099(28) 6.574(30)
β3 3.093(15) 4.286(20) 5.012(23) 5.636(26) 6.153(28) 6.648(30)
β4 3.095(18) 4.277(25) 5.020(29) 5.678(32) 6.229(35) 6.756(38)
β5 3.742(28) 5.179(36) 6.250(42) 7.170(48) 8.818(58) 11.588(77)

r 0
m

V

β1 3.645(22) 4.637(26) 5.253(29) 5.766(33) 6.203(35) 6.609(38)
β2 3.567(20) 4.612(23) 5.272(26) 5.843(29) 6.318(31) 6.769(35)
β3 3.604(24) 4.653(26) 5.323(29) 5.908(31) 6.402(33) 6.884(36)
β4 3.637(31) 4.656(34) 5.337(37) 5.954(40) 6.475(43) 6.967(45)
β5 4.141(35) 5.461(41) 6.480(46) 7.370(51) 8.981(61) 11.698(77)

r 0
F

P
S

β1 0.493(12) 0.528(16) 0.539(19) 0.547(22) 0.551(24) 0.554(27)
β2 0.524(10) 0.565(13) 0.577(16) 0.583(18) 0.589(20) 0.599(23)
β3 0.539(11) 0.584(15) 0.599(18) 0.607(21) 0.606(24) 0.604(26)
β4 0.5508(98) 0.594(13) 0.606(15) 0.616(17) 0.628(19) 0.646(22)
β5 0.555(11) 0.572(15) 0.571(18) 0.567(20) 0.558(26) 0.233(11)

r 0
F

V

β1 0.594(36) 0.565(36) 0.535(38) 0.498(42) 0.471(44) 0.441(47)
β2 0.572(26) 0.578(26) 0.570(28) 0.559(31) 0.551(33) 0.547(37)
β3 0.629(44) 0.663(44) 0.667(50) 0.661(53) 0.648(56) 0.651(59)
β4 0.732(49) 0.700(42) 0.689(42) 0.687(45) 0.687(48) 0.681(49)
β5 0.620(39) 0.600(38) 0.581(37) 0.568(39) 0.550(42) 0.248(19)

F
D

s
/F

D
∗ s β1 0.829(52) 0.935(61) 1.009(73) 1.097(92) 1.17(11) 1.26(13)

β2 0.917(44) 0.978(45) 1.012(49) 1.043(55) 1.068(61) 1.095(68)
β3 0.857(58) 0.880(55) 0.897(61) 0.919(65) 0.936(71) 0.928(71)
β4 0.753(50) 0.848(47) 0.880(48) 0.897(51) 0.915(53) 0.949(55)
β5 0.895(52) 0.953(51) 0.982(53) 0.999(56) 1.015(63) 0.939(63)

r 0
M

Q
| m

s
c β1 1.657(33) 3.206(68) 4.332(96) 5.43(12) 6.43(15) 7.48(18)

β2 1.578(30) 3.156(64) 4.280(89) 5.35(11) 6.33(14) 7.32(16)
β3 1.657(28) 3.200(57) 4.293(79) 5.33(10) 6.26(12) 7.21(14)
β4 1.691(25) 3.161(48) 4.204(65) 5.193(83) 6.072(99) 6.96(12)
β5 2.394(36) 4.278(65) 5.820(91) 7.23(11) 9.93(16) 15.04(26)

Table D.3: Plateau averaged data for the effective masses, the decay constants
and the renormalization group invariant quark mass.
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κ1 − κ2 κ1 − κ3 κ1 − κ4 κ1 − κ5 κ1 − κ6 κ1 − κ7

r3
/
2

0
Y
P
S

C
P
S β1 0.940(21) 1.053(30) 1.114(38) 1.163(45) 1.200(52) 1.232(59)

β2 0.996(19) 1.127(26) 1.196(32) 1.249(38) 1.295(44) 1.349(51)
β3 1.020(20) 1.165(29) 1.243(37) 1.306(45) 1.341(52) 1.370(59)
β4 1.038(19) 1.185(26) 1.264(31) 1.334(37) 1.402(42) 1.481(50)
β5 1.082(24) 1.208(33) 1.280(41) 1.335(49) 1.419(67) 0.660(32)

R
C

P
S

/
V

β1 0.641(41) 0.804(54) 0.894(66) 0.991(84) 1.07(10) 1.16(12)
β2 0.702(35) 0.840(39) 0.896(44) 0.939(50) 0.973(56) 1.005(63)
β3 0.661(46) 0.755(48) 0.793(55) 0.826(59) 0.850(65) 0.849(66)
β4 0.579(40) 0.726(42) 0.776(43) 0.805(46) 0.830(49) 0.869(51)
β5 0.741(44) 0.845(46) 0.891(48) 0.918(52) 0.946(59) 0.887(59)

r 0
∆
m

C
sp

in

β1 0.395(15) 0.333(15) 0.264(16) 0.214(19) 0.181(21) 0.183(20)
β2 0.386(10) 0.3287(99) 0.2713(95) 0.238(10) 0.210(12) 0.193(13)
β3 0.410(15) 0.356(15) 0.300(16) 0.266(15) 0.242(16) 0.233(17)
β4 0.428(19) 0.367(18) 0.306(17) 0.272(18) 0.242(18) 0.219(18)
β5 0.389(17) 0.336(16) 0.282(16) 0.252(15) 0.227(15) 0.215(15)

Table D.4: Plateau averaged data for the decay constant, the ratio of the pseudo
scalar to the vector meson decay constant and the mass splitting converted to
HQET.



Appendix E

Running the code

This appendix explains the structure of the PC-code, how it has to be compiled
and how the input files that specify run parameters have to be designed. For the
official MILC-Code documentation, please refer to
http://www.physics.utah.edu/~detar/milc/milcv6.html

or contact the author of this thesis in case of any questions.

E.1 Directory structure

After unpacking the code, the following directories will be created:

f_A
This is the project’s main directory. It contains spe-
cific program code for the computations of correlation
functions needed in this work.

schroed_pg
Gauge-update routines specific for Schrödinger func-
tional boundary conditions.

generic
Generic routines, like e.g. I/O or the layout for paral-
lelization.

generic_clover Inversion routine (BiCGstab).

generic_pg Generic gauge update routines.

generic_schroed
Routines that are specific to Schrödinger Functional
boundary conditions.

generic_wilson Routines for boundary sources and the Dirac operator.
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include
Macros and declarations and definitions for structures
like e.g. the site-structure.

library Linear algebra routines.

E.2 Job steps in a production run

A production run is organised as follows: There is always one binary for the gauge-
updates. It starts from a cold gauge configuration for generating a thermalized
field configuration or reloads the configuration from the previous Monte-Carlo
step. The resulting field configuration will be written to disc (In contrast to
the experience with the APEMille computer at NIC/DESY Zeuthen, the I/O
is not very time-consuming, even for very large lattices). The binary for the
calculation of the correlation functions reads the gauge configurations from disc,
computes the propagators and evaluates the correlation functions. If desired, the
computed propagators can be saved to disk. All run-parameters are handed over
to the programs by input files via STDIN.

E.3 Compiling the code

Fist a list of important compiler flags:
DOUBLE:

If it is defined in the file include/config.h, all arithmetics will be done
with double precision arithmetics. If it is not defined, only some global sums
will be done in double precision. Note however, that setting this flag will
double the CPU-time and will also nearly double the amount of memory to
be allocated.

FIELD_MAJOR and TMP_LINKS:

If defined in Make_template, the code will be compiled for use of field major
(cf. section 4.2.3). This improves performance. Additional memory for the
allocation of temporary fields is needed.

FORWARD and BACKWARD:

Depending on which flag is defined, only the propagators in the forward
or in the backward direction will be computed. This is convenient for the
simulation of large lattices with long run-times. At the HLRN, this allowed
to submit the job-steps into job-queues with a shorter waiting time because
of reduced wall-clock time. For smaller lattices just set both, the FORWARD
and BACKWARD flag. Note, that saving propagators works only for one of
the flags being defined.
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Depending on the local installation of the MPICH library, one may have to
change the PATH to the correpsonding libraries in the Makte_linux_mpi file.

Comilation of the Pure Gauge part:

# cd schroed_pg

# make -f Make_linux_mpi su3_schr_ora

Compilation of the Inversion routine

# cd f_A

# make -f Make_linux_mpi su3_schr_cl_bi

The directories schroed_pg and f_A should now contain the executables
su3_schr_ora and su3_schr_cl_bi.

E.4 Job Scripts

Sample job script (DESY-Zeuthen-Cluster):

##################################################################

#!/bin/csh

# QSUB -e multiple.err

# QSUB -r jobtest

# jump into working-directory

cd <your working dir.>

# start the thermalization procedure

mpirun -np <no. of cpus to use> -machinefile

<file containing machine names>

./bin/su3_schr_ora_single \< ./<thermalize input file> >>

thermalize.out

# Keep thermalized configuration and copy it to working

# configuration

cp thermalized checkpoint

# define a variable that counts job steps

set a=(1)

# start loop over job-steps (e.g. 100 measurements)

while ($a <= 100)
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# start job

# Take care for seed, increase it before every update

awk ’{if($1 ~ /iseed/)print $1,$2+123;else print $0}’

<update input file> > dummyfile

cp dummyfile <update input file>

mpirun -np <no. of cpus to use> -machinefile

<file containing machine names>

./bin/su3_schr_ora \< ./<update input file> >>update.out

mpirun -np <no. of cpus to use> -machinefile

<file containing machine names>

./bin/su3_schr_cl_bi \< <measurement input file>

>>measure.out

# increase a by one

set a=(‘expr $a + 1‘)

end

rm dummyfile

##################################################################

The file <thermalize input file> may be the following (It is important to re-
move all comments!):

##################################################################

prompt 0

nx 20 # define lattice dimensions

ny 20

nz 20

nt 20

iseed 12318352 # seed for random number gen.

warms 0 # warm ups

trajecs 500 # no. of trajectories

traj_between_meas 5 # output gauge-info every # steps

beta 7.8439 # beta

bc_flag 0 # boundary condition flag

steps_per_trajectory 10 # heatbath steps

qhb_steps 1 # OR steps

fresh # start with flat gauge config

save_serial # save gauge config as binary after end

./thermalized # name of gauge-config file

##################################################################
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The file <update input file> may be the following (It is important to remove
all comments!):

##################################################################

prompt 0

nx 20 # define lattice dimensions

ny 20

nz 20

nt 20

iseed 12318352 # seed for random number gen.

warms 0 # warm ups

trajecs 25 # no. of trajectories

traj_between_meas 25 # output gauge-info every # steps

beta 7.8439 # beta

bc_flag 0 # boundary condition flag

steps_per_trajectory 10 # heatbath steps

qhb_steps 1 # OR steps

reload_serial # start with flat gauge config

./checkpoint # save gauge config as binary after end

save_serial # name of gauge-config file

./checkpoint

##################################################################

The file <measurement input file> may be the followingi (It is important to
remove all comments!):

##################################################################

prompt 0

nx 20 # define lattice dimensions

ny 20

nz 20

nt 20

number_of_kappas 5 # total number of hopping params.

bc_flag 0 # boundary condition flag

num_smear 0 # this is redundant,

# I will remove it soon

kappa 0.133373 # values of the hopping params.

kappa 0.128989

kappa 0.128214

kappa 0.127656
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kappa 0.125309

cttilde 0.9862 # cttilde

clov_c 1.3066 # csw

ferm_phases[0] 0.5 # theta

ferm_phases[1] 0.5

ferm_phases[2] 0.5

max_cg_iterations 100000

max_cg_restarts 2

error_for_propagator 1e-14 # solver residuals

error_for_propagator 1e-14

error_for_propagator 1e-14

error_for_propagator 1e-14

error_for_propagator 1e-14

reload_serial # reload binary field config.

<filename> # name of binary field config.

num_prop_load aa # number of propagators to reload

which_prop_load bb # aa consecutive lines with

# numers of the hopping params.

# of the propagator which you

# want to save

reload_serial_prop <filename> # conescutive lines with the names

# of the propagators

num_prop_sav cc # number of propagators to save

which_prop_sav bb # same as for load

save_serial_prop <filename> #

##################################################################

If one of the lines num_prop_load or num_prop_sav has 0 input value, leave
out the which_prop_load/sav and reload/save_serial_prop lines

E.5 Hints

• For running the program on a single CPU, one can either use the mpi-code
and mpirun -np 1 or compile the code as ”vanilla”version with Make_vanilla.

• Two test input files for the inverter are located in the directory f_A/

(in.csw1.7 und in.test) The output of the corresponding runs can be
found in the files data.csw1.7 and data.test.

• There are some PERL scripts which the user might be interested in:
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– singdoub: converts a single precision arithmetics gauge config into a
double precision.

– alpha2milc: a tool that converts binary or ASCII ALPHA-collaboration
(APEMille for binary) gauge configurations into a format readable by
the MILC code

– mouta: extracts correlation function data from output files and pro-
duces output that is directly readable by the data analysis program
used here
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Erratum

This addendum summaries the changes and corrections to the thesis (apart from
typos and corrected references), that were carried out as suggested by the referees.

Page Comment

p. 1 The photons of course couple to both, left- and right-handed fermions.
p. 2 The branching ratio (1.3) has been replaced by its tree-level expres-

sion.
p. 14 In formula (2.23), the r.h.s. has been corrected. The factor

(2b0ḡ
2(mQ))γ

X,MS
0 /2b0 and the wrong term in the exponent have been

removed.
p.15 There was a wrong sign in formula (2.30)
p. 17 The definition of the vector meson decay constant (2.38) has been

corrected.
p. 28ff The iso-structure of the currents has been formulated more consis-

tently.
p. 47 The integrated auto-correlation time τint is now given normalised with

the total number of intermediate OR and update steps.
p. 52ff The arguments of the functions ZP have been corrected and rewritten

in a less misleading way. The error estimates for ZP and ZM have
been corrected in (5.4), (5.5) and figure (5.1).

p. 73,
p. 85

The way, the scale has been set in the various lattice simulations for
FDs and FBs has been added to the tables (6.5) and (6.9).

p. 80 The values of the errors in table 6.7 have been corrected.
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