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Zusammenfassung 

Das Hämagglutinin (HA) der Influenzaviren wird während der Assemblierung in Cho-

lesterin- und Sphingolipid-reiche Domänen (Rafts) der Plasmamembran rekrutiert. 

Vorangehende Studien konnten mittels Fluoreszenzresonanzenergietransfer eine 

Raft-Integration nachweisen, die von zwei Raft-Zielsignalen abhängig war; zum einen 

von drei S-acylierten Cysteinen in der zytoplasmatischen Domäne und zum anderen 

von hydrophoben Aminosäuren (VIL) am Beginn der Transmembrandomäne (TMD). 

Zudem zeigte sich ein möglicher Einfluss des VIL-Motives auf den intrazellulären Pro-

teintransport. Um diese Annahme zu bestätigen, wurden HA Mutanten in Zellen ex-

primiert und ihre Ankunft im medialen und trans-Golgi verfolgt. In dieser Arbeit 

konnte eine Beteiligung des VIL-Motives am Transport bestätigt werden, jedoch nicht 

der S-Acylierungen. Zudem wurde eine generelle Abhängigkeit des Transportes von 

der Sphingolipidsynthese beobachtet. Da sowohl die Cholesterinsynthese als auch die 

Sphingolipidsynthese für den Transport von HA benötigt werden, habe ich die Hypo-

these aufgestellt, dass das VIL-Motiv in der Lage sein könnte, mit Raft Lipiden zu in-

teragieren. Ein Sequenzvergleich ergab, dass kein Sphingolipid-Bindemotiv vorhanden 

ist, jedoch ein potenzielles Cholesterin-Consensus-Motiv (CCM, W/Y-I/V/L-K/R). Die-

ses Motiv wurde nur in der Sequenz von Gruppe 1 jedoch nicht Gruppe 2 HAs gefunden 

und umfasst das Leucin des VIL Motives. Tatsächlich ist die Mutation des Leucins aber 

nicht des vorangehenden Isoleucins für den verzögerten Transport verantwortlich. Un-

tersuchungen weiter Einzel- und Mehrfachmutanten konnten eine Abhängigkeit des 

intrazellulären Transportes von einer möglichen Cholesterinbindung verifizieren. Zu-

dem konnte auch ein zunehmender Effekt auf die Kinetiken vom medialen Golgi zum 

TGN beobachtet werden, welcher auch die Oberflächenexpression negativ beeinfluss-

te. FLIM-FRET Analysen zeigten zusätzlich eine reduzierte Raft Assoziation der CCM-

Mutanten mit Rafts an der Plasmamembran. Daher kann man spekulieren, dass HA mit 

Cholesterin interagiert, wodurch sein intrazellulärer Transport durch den Golgi und 

die Assoziation mit Rafts gewährleistet wird.  

Schlagwörter: Influenza Virus, Hämagglutinin, Transport, Cholesterin-Consensus-

Motiv 





 

 

Summary 

During assembly the hemagglutinin (HA) of influenza viruses is recruited to cholester-

ol- and sphingolipid rich domains of the plasma membrane (lipid rafts). Preceding 

studies using fluorescence resonance energy transfer showed that lipid-raft integra-

tion is dependent on two raft-targeting signals, three S-acylated cysteines located in 

the cytoplasmic tail and hydrophobic amino acids (VIL) in the part of the transmem-

brane region (TMR). Furthermore, they gave rise to the assumption that at least the 

VIL motif might also be important for the intracellular transport of the protein along 

the exocytic pathway. To verify this assumption, HA mutants were transiently ex-

pressed in cells and their arrival in the medial and trans-Golgi compartment was quan-

tified. The observation regarding the involvement of the VIL motif, but not the S-

acylation, was verified and a general dependency of HA´s transport on sphingolipid 

synthesis was detected. Since both cholesterol and sphingolipid synthesis are needed 

for the transport of HA, I hypothesized that the VIL motif might be able to interact 

with raft lipids. Sequence alignment revealed no sphingolipid-binding motif, but a pu-

tative cholesterol consensus motif (CCM, W/Y-I/V/L-K/R). This CCM is found only in 

the sequence of group 1 but not group 2 HAs and includes the leucine of the VIL motif. 

Indeed, mutation of the leucine, but not of the preceding isoleucine is responsible for 

the delayed transport. Investigation of further single and multiple mutations in the 

CCM verified a dependency of HA´s intracellular transport on the putative cholesterol-

binding motif. Additionally the effect on the kinetics increased from the medial Golgi 

to the TGN also negatively effecting surface expression. Analysis by FLIM-FRET fur-

thermore displayed a reduced association of HA with mutations in the CCM with lipid 

rafts at the plasma membrane. Therefore, it is speculated that HA associates with cho-

lesterol, an interaction that facilitates its intracellular transport through the Golgi and 

association with lipid rafts at the plasma membrane. 

Key words: Influenza virus, hemagglutinin, transport, cholesterol consensus motif 
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1 Introduction 

1.1 Influenza viruses 

1.1.1 Taxonomy 

Influenza viruses, the Thogoto virus and the Isavirus belong to the family Orthomyxo-

viridae. Viruses of this family are enveloped viruses with a single stranded, segmented 

RNA genome in negative orientation. We can distinguish three genera of influenza vi-

rus, influenza virus A, B and C. The classification is based on the serological differ-

ences of the nucleoprotein (NP) and the matrixprotein (M1). Additionally, influenza A 

viruses are further subdivided into subtypes due to the antigenic properties of their 

surface proteins hemagglutinin (HA) and neuraminidase (NA). So far 16 classical HA 

subtypes (H1-H16), 2 non-classical subtypes (H17 & H18), 9 classical NA subtypes 

(N1-N9) and 2 non-classical subtypes (N10, N11) have been described, whereby all 

classical subtypes can be found in wild birds, while the non classical subtypes are 

found in bats [1–4].  

Orthomyxoviruses are transmitted mainly by aerosol transmission and infect, depend-

ing on the host, the respiratory tract (mammals) or the gastrointestinal tract (birds) 

Influenza A viruses have the broadest host range of all three influenza viruses infect-

ing mammals like humans, swine, horses and wales as well as birds, whereby the pri-

mary host reservoir of influenza A viruses are wild aquatic birds [5]. Influenza B virus-

es could be isolated from humans and seals [6], whereas influenza C viruses infect hu-

man and swine [7,8].  

1.1.2 Morphology and proteins  

Influenza viruses have a pleomorphic shape with filamentous particles in field isolates 

and a spherical shape of about 100 nm diameter in cell culture. The virus particle has a 

lipid envelope that derives from the plasma membrane of the host cell [9]. Into the li-

pid envelope three viral proteins are embedded: mainly the two glycoproteins hemag-

glutinin (HA) and neuraminidase (NA) and to lower extent the matrix protein 2 (M2). 

Hemagglutinin is forming a homotrimer [10] and is responsible for the receptor bind-
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ing and the fusion of the viral with the endosomal membrane [11,12], while neuram-

inidase is a homotetrameric complex and performs cleavage of the host cell receptor 

[13]. The two glycoproteins rise about 10 nm over the membrane [14]. Influenza C vi-

ruses posses only one surface glycoprotein the HEF, which combines the functions of 

the HA and NA [15,16]. Like NA, the M2 protein forms a homotetramer but functions 

as a proton channel [17–19]. By comparison, influenza B viruses have the NB protein 

[20] and influenza C viruses the CM2 protein [21]. The inner side of the lipid envelope 

is coated with the matrix protein 1 (M1). The segmented RNA genome associates over 

its full length with the nucleoprotein (NP) and segments form helical capsids by the 

annealing of complementary sequences at the 3’- respectively the 5’-end of the RNA 

[22,23]. Each encapsidated segment is coupled to the polymerase complex, which 

comprises the proteins PB1, PB2 and PA and binds the annealed complementary end 

region. The complex of the RNA, NP and the polymerase is called viral ribonucleopro-

teincomplex or vRNP and interacts with the M1 protein within the virus particle.  

Figure 1-1: Schematic view of a typical influenza A virus particle, including the non-

structural proteins and the structure of a model vRNP Reprinted by permission from Macmillan 

Publishers Ltd: [Nature Reviews Microbiology] [24], copyright 2011 

Additionally, small copy numbers of the nuclear export protein NEP/NS2 are incorpo-

rated into the virion. The genome of influenza A viruses also encodes for several non-

structural proteins, like the non-structural protein 1 (NS1), the PB1-F2 and N40. NS1 

is translated from the unspliced mRNA of segment 7, while NEP/NS2 is translated from 
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a splice variant. NS1 has multiple functions by interacting with other proteins as well 

as with RNA, thereby antagonizing the cellular immune response and blocking the 

splicing, polyadenylation and export of cellular mRNAs (reviewed in [25]). PB1-F2 is 

translated by an alternate +1 open reading frame within PB1 and is a multifunctional 

protein with proapoptotic functions [26–29], the ability to deregulate the innate im-

mune response [30,31], the ability to regulate polymerase activity [32,33] and an en-

hancing effect on secondary bacterial infection [34–36]. N40 is a truncated version of 

PB1 starting with the 5th start codon by leaky ribosome scanning and is important for 

the interdependent expression of PB1, PB1-F2 and PB1-N40 [37,38]. In the recent 

years, more proteins were discovered. Truncated variants of the PA protein [39] as well 

as an M2 variant [40] were found, but their function is still elusive. A +1 frame shift 

product of PA, the so-called PA-X protein, is the only one so far, being further charac-

terized. It functions as an endonuclease being responsible for the degradation of cellu-

lar mRNA leading to a host cell shut off [41,42].  

1.1.3 Replication cycle 

Upon absorption of HA to its receptor α-2,6 or α-2,3 linked sialic acids (human recep-

tor or avian receptor) [43,44] the virus is internalized into early endosomes. Interest-

ingly, influenza viruses can enter by different routes. Either via clathrin-mediated en-

docytosis, clathrin- and caveolin-independent endocytosis [45] or macropinocytosis 

[46]. After internalization the virus particles are transported within the endosomes 

towards lysosomes, whereby fusion already occurs after acidification of the late endo-

some before reaching the lysosomes [47]. In detail, they are first transported in an ac-

tin dependent manner to the early endosomes, and then the endosomes are transport-

ed in a microtubule-dependent manner to the perinuclear region, where they are final-

ly maturing to late endosomes. This is accompanied by the acidification of the lumen 

of the endosomes, which triggers a conformational change in the HA molecule, expos-

ing the fusion peptide [48,49], which leads to the fusion of the endosomal and viral 

membrane. In addition, acidification of the endosome opens the proton channel M2 

[19] leading to a decrease in pH inside the virion, facilitating the detachment of M1 

from the vRNPs in order to release the vRNPs into the cytoplasm [50,51]. Due to their 

nuclear localization signals (NLS) the vRNP are then imported into the nucleus [52–
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54]. Inside the nucleus, transcription begins by the RNA dependent RNA Polymerase 

complex of PB1, PB2 and PA. For the production of viral mRNA influenza viruses use 

the so-called “cap-snatching”. PB2 binds to cellular caps [55,56], while PA “snatches” 

the cap via its endonuclease [57] activity and PB1 facilitates the actual synthesis of the 

viral mRNA from the vRNA [58]. Due to an uridin-rich stretch near the 5’end of the 

vRNA the polymerase stalls and polyadenylates the mRNA, allowing translation by 

cellular ribosomes [59,60]. Segment 7 and 8 additionally are spliced in the nucleus, 

each resulting in two mRNAs coding for M1 and M2, respectively NS1 and NEP/NS2. 

The mRNAs are then subsequently exported from the nucleus to the cytoplasm, where 

in the early stage of the infection the proteins of the polymerase complex, NP, NS1, 

NS2 and M1 are transcribed by free ribosomes. Due to their nuclear localization signals 

(NLS), they are transported back into the nucleus to perform their function in tran-

scription and the formation of new vRNPS.  

Figure 1-2: Replication cycle of influenza A viruses Reprinted by permission from Macmillan 

Publishers Ltd: [Nature Reviews Microbiology] [24], copyright 2011 

HA, NA and M2 are translated by membrane bound ribosomes at the rough endoplas-

mic reticulum (rER), to be further transported to the plasma membrane along the exo-

cytic pathway via the Golgi while being co- and posttranslationally modified. This in-

cludes glycosylation of HA and NA, and palmitoylation of HA [61] and M2 [62,63].  

α α
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Besides mRNA, the polymerase complex also transcribes complementary RNA (cRNA) 

which serves as template for the synthesis of new full length viral RNA. The switch 

from mRNA to cRNA synthesis is thought to be initiated by small negative sense viral 

RNAs (svRNA) [64,65]. Newly synthesized vRNA then associates with NP and the pol-

ymerase complex to form new vRNP complexes, which then bind to M1 and NEP/NS2 

to be exported from the nucleus by the cellular export factors Ran-GTP/CRM1 [66–69]. 

The exported vRNPs then bind to Rab11 on recycling endosomes in order to use the 

cellular transport system for vesicles, which in turn is using the microtubule system 

[70–73] for the transport to the plasma membrane. The assembly of new virions takes 

place at special membrane domains the so-called lipid rafts. HA and NA enrich in 

those domains [74–77], where they interact with M1 via their cytoplasmic tails [78–

80], thereby leading the bound vRNPs to the site of budding. The right incorporation 

of the eight segments requires packaging signals, which are located at the 3’ and 5’ un-

translated region of the gene segments and assure packaging of all eight needed seg-

ments [81–83]. The final scission of the virion is believed to be mediated by the viral 

M2 protein [84,85]. During the budding process, the neuraminidase cleaves off the si-

alic acids from the glycoproteins to avoid the agglutination of newly released viruses 

with each other and the reinfection of already infected cells. Not only is the neuram-

inidase important to cleave the bond between newly synthesized virions and the prior 

infected cell, it is also important for the entry in the airway. The ciliated airway epi-

thelium is covered with mucines and cellular glycocalix on which sugars with terminal 

sialic acids are exposed, therefore leading to binding of influenza viruses before they 

are able to infect their target cells. Neuraminidase cleaves off these sialic acids as well, 

to enable the infection of the epithelium cells [86].  

1.2 The glycoprotein hemagglutinin (HA) 

1.2.1 Structure and function of HA 

Hemagglutinin of influenza A viruses is a type I membrane protein with an ectodo-

main of about 525 amino acids (AA), a transmembrane region of 27 AA and a C-

terminal domain of 11 AA. It forms a trimeric complex, which extends 135 Å from the 

membrane. In Figure 1–3 a monomer of HA is displayed. The precursor HA0 is cleaved 
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during the replication cycle into its subunits HA1 and HA2 

(displayed in magenta and cyan, respectively), that stay 

linked by a disulfide bond. This cleavage takes place at either 

a monobasic or multibasic cleavage site located in a loop at 

the base of the molecule (yellow). The cleavage site of HA0 

determines the pathogenicity of the virus in avian influenza. 

A monobasic cleavage site with a single arginine is cleaved 

by extracellular trypsin-like proteases [87], which limits the 

permissive cells to tissue expressing the suitable protease. In 

avian hosts, the replication is limited to the respiratory- and 

gastrointestinal tract, while in humans only cells of the res-

piratory tract can be infected. So far, the tryptase Clara in rat 

bronchiolar epithel Clara cells [88], the Factor Xa in embry-

onated chicken eggs [89,90] and HAT and TMPRRS2 in hu-

man bronchial tissue [91] have been described to perform 

the cleavage of monobasic HA. Contrary to monobasic 

cleavage sites, which can occur in all 16 classical HA sub-

types, multibasic cleavage sites with the sequence R-X-K/R-

R-G occur only in H5 and H7 subtype HAs and are cleaved by intracellular proteases 

like furin and PC6 already in the trans-Golgi network [92,93]. The ubiquitous presence 

of the proteases leads to a systemic infection of the host and therefore a severe course 

with a fatal outcome in infected poultry.  

HA has several functions during the replication cycle. HA1 mainly forms the globular 

head in which the antigenic variable parts and the receptor-binding site are located. 

The receptor binding site is build by specific secondary structures, the 190 helix (resi-

dues 188-195), that binds the upper part of the receptor, the 130 loop (residues 134-

138), which binds the right side, the 220 loop (residues 221-228), which binds the left 

part and additional binding of Tyr 98, Trp 153, His 183 and Tyr 185 (H3 numbering) 

from the bottom [94]. The linkage of the terminal sialic acids, to which HA binds, de-

termines the host specificity. While avian hosts mainly express α-2,3-linked sialic ac-

ids, humans express α-2,6-linked sialic acids in their upper respiratory tract and tra-

Figure 1–3: Chrystal 

structure of a HA mon-

omer HA1 in magenta, HA2 

in cyan, loop with cleavage 

site in yellow. Created with 

Visual molecular dynamics 

(VMD) 1.9.1 and POV-Ray 

3.7.0 from PDB code 1HA0 
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chea, which are the main entry routes for influenza viruses (see figure S2 in [93]). The 

expression of α 2,3-linked sialic acids in the lower respiratory tract is associated with 

fatal cases in humans with avian viruses like H5N1. Pigs for example, posses both re-

ceptor types in their airway and therefore can be infected by avian and human viruses 

at the same time and hence can serve as mixing vessels. In case of a double infection 

of one cell with two viruses it can lead to the formation of reassortant viruses, which 

then again exhibit features of both parental viruses and can lead to the formation of 

new pandemic virus strains [96]. HA2 is forming the stem of the protein by a coiled-coil 

structure of the helices and comprises the transmembrane region and the cytoplasmic 

tail. The N-terminal end of HA2 forms the fusion peptide after cleavage, which is the 

key player in the fusion of the viral membrane with the endosomal membrane during 

entry of the virus. By the influx of protons due to the M2-ion channel activity, HA un-

dergoes a structural change, which finally leads to the exposure of the fusion peptide, 

which then integrates into the endosomal membrane [49]. By a second structural 

change the two membranes are brought in near proximity leading to hemifusion and 

finally full fusion of the two membranes [97]. The transmembrane region and the cy-

toplasmic tail have functions in the assembly of new virions, which will be described in 

more detail in the following parts.  

1.2.2 Processing and transport of hemagglutinin  

HA is synthesized as the precursor HA0 at the rough endoplasmic reticulum (rER) due 

to its N-terminal signal peptide, which is cleaved off co-translationally. Processing of 

HA starts as well in the lumen of the rER with the attachment of a high-mannose core 

oligosaccharide consisting of two N-acetyl glucosamines (GlcNAc), nine mannoses and 

three glucoses to the amid nitrogen of the asparagine of the consensus sequence N-X-

T/S, whereby X can be any amino acid except proline [98]. The glycosylation is needed 

for the proper folding of the peptide chain and thus for the trimerization of the fully 

translated protein [99–101]. Aberrant trimers with the wrong quaternary structure of 

the protein will be retained in the ER, which is true for approximately 10% of HA0 

[102]. After attachment of the core oligosaccharides, they are then further trimmed 

along the exocytic pathway. Initial trimming occurs still within the ER by cleaving off 

the three glucoses, which is followed in the cis- to medial-Golgi by cleavage of the 
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mannoses (except three) and the attachment of N-acetyl glucosamines resulting in a 

more complex oligosaccharide, which no longer can be cleaved by the endoglycosidase 

Endo-H. Since the N-acetyl glucosamine transferase is located in the medial Golgi, re-

sistance of carbohydrates to Endo-H cleavage is a convenient and reliable tool to 

measure arrival of a glycoprotein in this compartment. In the trans-Golgi network fi-

nally galactose, fucose and sialic acis are attached, whereby sialic acids gets cleaved off 

directly by the neuraminidase, resulting in the fully glycosylated protein. FPV HA has 

seven glycosylation sites, five in its HA1 subunit (Asn 12, 23, 28, 123 and 149) and two 

in HA2 (Asn 406 and 478), whereby two of the seven glycosylation sites remain unpro-

cessed [99,100]. But it needs to be stated, that the number and location of glycosyla-

tion sites are highly variable among subtypes.  

Additionally, HA gets S-acylated at three cysteines [61], one fatty acid is located at the 

boundary of the TMR with the cytoplasmic tail and two in the cytoplasmic tail. Inter-

estingly, depending on their location [103], the two cysteines in the cytoplasmic tail 

are palmitoylated, while the cysteine at the boundary to the TMR is mostly stearoylat-

ed [104], depending on the host [103]. The S-acylation is located between ER and cis-

Golgi, whereby it is unknown if it occurs in the late ER, in the transport vesicles from 

ER to Golgi or in the cis-Golgi [105], due to the fact that trimerization is completed but 

not trimming of the carbohydrates.  

Moreover, as described in 1.2.1 the highly pathogenic HA subtypes H5 and H7 are 

cleaved in the trans-Golgi network into their subunits HA1 and HA2 before they are 

transported to the plasma membrane, the site of assembly and budding. This cleavage 

is facilitated by the protease Furin. Furin itself is a protein, which undergoes proteo-

lytic maturation before acquiring its full functionality. After synthesis in the ER the 

signal peptide is removed and the propeptide gets removed. After these cleavages 

furin enters the Golgi, where it gains full functionality. Within the TGN its carbohy-

drates acquire sialic acid and the fully matured protein gets enriched [106] via a reten-

tion signal [107]. Cleavage of HA occurs after acquisition of Endo-H resistant carbohy-

drates but before the attachment of galactose and sialic acids, therefore in the medial 

and trans-Golgi [106,108]. Despite its retention signal to the TGN, furin can also be 

transported to the cell surface and recycled via endosomes back to the TGN [107,109] 
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allowing late cleavage of HA within transport vesicles to the plasma membrane as 

well. 

Figure 1-4: Transport of HA along the exocytic pathway. HA0 is synthesized as the precursor 

HA0 at the rough endoplasmatic reticulum (rER). After trimerization, folding and initial glycosylation it is 

palmitoylated on its way to the cis-Golgi, where it acquires its final glycosylation. Subsequently, the pre-

cursor HA0 is cleaved by furin into its subunits HA1 and HA2 in the trans-Golgi. Upon transport to the 

plasma membrane it is incorporated into lipid rafts. Created with CorelDRAW. 

1.2.3 Assembly 

The assembly of influenza viruses is a multistep process, which involves several pro-

tein-lipid and protein-protein interactions. The function of hemagglutinin in this pro-

cess is the definition of the budding zone by integration into so-called lipid rafts; spe-

cialized membrane domains that are enriched in sphingomyelin and cholesterol (see 

1.4 for further details). HA and NA are targeted to the lipid rafts via internal raft-

targeting signals and thus building the assembly site. The integration of these two gly-
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coproteins is already sufficient to induce the budding process. As shown in transfected 

cells, co-expression of HA and NA or expression of HA and exogenous NA facilitate 

generation of VLPs (virus like particles) that are similar to virus particles in their size 

[110].  

Once HA and NA determine the site of assembly, M1 is recruited to the assembly site 

in dependence on the presence of the cytoplasmic tails of HA and NA [110], where it 

builds the bridge between the glycoproteins and the internal virus components. It was 

shown that M1 binds membranes by several different weak interactions [111–113]. 

Additionally, by indirect methods interactions with HA and NA were detected 

[80,114,115]. As described in 1.1.3 M1 also binds the vRNPs, thereby leading them to 

the budding site. The interaction with M2 in contrast could be verified by co-

immunoprecipitation experiments [116,117]. Interestingly, M2 is not only intrinsically 

targeted to the plasma membrane, but is also targeted to the assembly site by interac-

tion with HA, as it is not integrated into lipid rafts but to the edge of them [118]. When 

all virus proteins are assembled at the budding site, M2 finally performs the scission of 

the particle, whereby it is also responsible for the filamentous particle shape that can 

be observed in human isolates [85,119].  

1.3 Composition of cellular membranes 

The first model of the structure of cellular membranes was postulated by Singer and 

Nicolson in 1972 by proposing the “fluid mosaic model” [120]. In this model, they de-

scribe for the first time that membranes have a lipid matrix in which proteins are inte-

grated in a randomly distributed manner. This model has been revised and enhanced 

in many aspects. Not only are lipids not randomly distributed, but they can form lat-

eral clusters in the membrane [121]. In addition, lipids show an asymmetry in their lo-

cation between the inner and the outer leaflet. Besides, different cellular compart-

ments like the ER and Golgi exhibit different lipid compositions. Most lipids are syn-

thesized at the ER, like phospholipids (phosphatidylcholine PC, phosphatidylethola-

mine PE, phosphatidylserine PS and phosphatidylinositols PIs) [122] and cholesterol 

[123]. 
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Figure 1-5: Lipid synthesis and steady-state composition of the different cell membranes 

Sight of lipid synthesis is shown in the picture (major lipids in blue, signaling lipids in red). Lipid compo-

sition of the different membranes is displayed in bar graphs (mammals in blue, yeast in light blue). Re-

printed by permission from Macmillan Publishers Ltd: [Nature Reviews Molecular Cell Biology], [124]  

copyright 2008 

Although cholesterol synthesis starts in the cytoplasm by the conversion of acetyl-

CoA to acetoacetyl-CoA, which then is condensed by the 3-hydroxy-3-methylglutaryl 

(HMG)-CoA synthase to HMG-CoA, the main steps of the synthesis of cholesterol are 

located to the ER and peroxisomes. HMG-CoA is reduced by the ER localized HMG-

CoA reductase (still on the cytosolic site) to mevalonate, which then in turn gets me-

tabolized to farnesyl-diphosphate by enzymes located in the peroxisome. Farnesyl-PP 

is then converted to squalene by the squalene synthase that again is located to the 

membrane of the ER. The squalene synthase is believed to obtain the substrate from 

the cytosol and release the hydrophobic product into the membrane. Following, squa-

lene is transformed to lanosterol, which subsequently is converted to cholesterol. It 

needs to be stated that steps of the conversion of lanosterol to cholesterol is also be-

lieved to be performed in peroxisomes, which is why cycling of the precursors of cho-
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lesterol between ER and peroxisomes is the favored model of the location of cholester-

ol synthesis. The process of cholesterol synthesis is highly regulated. When cholester-

ol levels in the cells are low, it is sensed and a cascade is activated leading to the tran-

scription of genes (i.e. encoding the HMG-CoA reductase) involved in cholesterol bio-

synthesis. When cholesterol levels are reaching a specific threshold again, the cascade 

is blocked and the transcription stops again (reviewed in [125]). While the phospholip-

ids are the most abundant lipids in the ER membrane, the cholesterol content is only 

low (1 %) [126]. As the plasma membrane is the largest pool of cholesterol, the lipid 

needs to be transported to it efficiently. Although the transport is still not completely 

solved, it was reported that in mammalian cells the transport occurs rapidly with a 

half-time of 10-20 min [127]. Only about 20 % of the cholesterol is transported along 

the exocytic pathway [128], whereby cholesterol content increases along it, while the 

remaining 80 % are believed to be transported by non-vesicular lipid transfer [129]. 

Sphingolipid synthesis only starts at the ER by producing the backbone ceramide, but 

the lumen of the Golgi is the main location of the production of the head groups to 

produce sphingomyelin (SM) and glycerosphingolipids (GSL) like glucosylceramide 

(GluCer) [130–132], therefore reducing the phospholipid content. Likewise cholesterol, 

the sphingolipid content increases within the Golgi and in the plasma membrane. 

Not only is there a gradient of cholesterol and sphingolipid content from ER to the 

plasma membrane, but also within a membrane of a compartment we can find a 

asymmetric lipid distribution between the two leaflets of a membrane that can be 

maintained by translocating specific lipids [124]. While the ER membrane exhibits 

equilibrium of membrane lipids, the Golgi and plasma membrane are using transport-

ers to generate and maintain an asymmetry between the cytosolic and the luminal (ex-

tracellular) leaflet. This process is important for the functionality of the cell. For ex-

ample, if PS is exposed on the cell surface it triggers phagocytosis and is a marker for 

apoptosis, as PS is actively transported by a scramblase to the outer leaflet upon acti-

vation by caspase 3 and 7 in the apoptotic process (reviewed in [133]). Additionally, 

active transport of lipids might be required for vesicle formation (reviewed in [134]). 

Already in the Golgi PS and PE are actively transported to the cytosolic side by a flip-

pases called P4 ATPases (reviewed in [124,134]). That leads to an increased level of PE 
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and PS in the cytosolic leaflet and an increase of PC, GSL and SM in the extracellular 

leaflet of Golgi membranes. Due to the lack of an active transport from the luminal to 

the cytosolic side [135,136], only the precursor glucosylceramide (GlcCer) can be ac-

tively transported from the cytosolic side to the luminal side [137]. By increasing the 

amount of PE and PS having a small headgroup in the inner leaflet a negative curva-

ture is induced, which is accompanied by the induction of a positive curvature on the 

outer leaflet by the increasing amount of lipids with a big headgroup like SM and cy-

lindrical lipids like PC, thus facilitating vesicle formation. The same is true for the 

plasma membrane, where as well P4 ATPases transport PS and PE from the extracellu-

lar leaflet to the cytosolic leaflet [138]. This is accompanied by transport of ABC trans-

porters, which are able to transport PC, PE, SM and GlcCer from the cytosolic side to 

the extracellular side (reviewed in [139]).  

The plasma membrane itself can also exhibit differential lipid compositions depending 

on its function. Epithelial cells line cavities within the body and can be found for ex-

ample in the lung or the gastrointestinal tract, where they polarize to form basal, lat-

eral and apical membrane domains. Tight junctions separate basolateral and apical 

membrane domains from each other and limit the lipid exchange between them, but 

only in the cytoplasmic and not the extracellular leaflet [140]. Simons and Van Meer 

postulated the hypothesis of a lateral lipid asymmetry in 1988 withi the plasma mem-

brane while investigating the sorting of lipids regarding their presence in apical or ba-

solateral membranes of polarized epithelial cells (MDCK, Madin-Darby canine kidney 

cells) [140]. While basolateral membranes have a similar lipid composition as non-

polarized cells, apical membranes are enriched in glycosphingolipids accompanied by 

a loss in PC (only 8 % of the phospholipids). The ratio of glycosphingolipids to phos-

pholipids and cholesterol in apical membranes is 1:1:1, while basolateral membranes 

consist of 50 % phospholipids (of which 30 % is PC), 20 % glycosphingolipids but also 

30 % of cholesterol. To explain this sorting of lipids Simons and van Meer hypothe-

sized that glycosphingolipids form cluster within the extracellular leaflet already in 

the Golgi. These clusters can from vesicles that are transported to the apical mem-

brane in which proteins can be sorted for directed transport from the Golgi to the api-

cal side of the cell. As a reason for this lipid sorting, Simons and van Meer mention 
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that the high content of glycolipids might be beneficial for the stability of the apical 

membrane.  

1.4 Lipid rafts 

Based on the previous findings, Simons later on further defined these specialized clus-

ters as lipid rafts, which are membrane patches in the outer leaflet that are enriched in 

sphingolipids and cholesterol [141]. The cholesterol is thereby filling in the voids be-

tween the sphingolipids that are caused by their bulky head groups. The inner leaflet is 

built by unsaturated phospholipids, whereby cholesterol is also filling in the space be-

tween interdigitating lipids. From studies with model membranes we learned that lipid 

membranes can exist in different physical states, which are defined by the lateral ar-

rangement of the lipids and their mobility within the membrane, like rotation, lateral 

and transversal diffusion. The liquid disordered phase is thought to be equivalent to 

the physical state of biological membranes like the plasma membrane, where they are 

building the non-raft domains. In this state lipids exhibit a high range of dynamic and 

mobility of the fatty acids. By increasing the cholesterol content, liquid disordered 

phases are built.  

Figure 1-6: Phase transition from liquid disordered phase to liquid ordered phase. Incor-

poration of cholesterol and sphingolipids leads to a higher order of the saturated fatty acids and an overall 

increased thickness of the membrane (Adapted from [142]).  

Additionally, phospholipids with unsaturated fatty acids are excluded and the amount 

of sphingolipids and phospholipids with saturated fatty acids increases (reviewed in 

[142]). The stabilizing effect of the cholesterol then in turn results in an elongated 

conformation of the saturated fatty acids, which leads to an increase in membrane 

thickness and consequently the formation of raft domains (Figure 1-6).  
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While in polarized cells the apical membrane is rich in lipid rafts, the basolateral 

membrane and non-polarized cells only exhibit a few raft clusters (see Fig. 2 in [141]), 

which supports the theory of Simons and van Meer from 1988, that lipid rafts are en-

riched in the apical membrane to increase stability. The official definition of rafts as 

“small (10–200 nm), heterogeneous, highly dynamic, sterol- and sphingolipid-

enriched domains that compartmentalize cellular processes” was restated at a Key-

stone Symposium in 2006. They further defined that these “small rafts can sometimes 

be stabilized to form larger platforms through protein-protein and protein-lipid inter-

actions” [143]. These platforms than can be used for cell signalling [144] or as sites for 

assembly and budding of many enveloped viruses (see 1.5 for detailed information). 

1.4.1 Raft like structures in the exocytic pathway: Export domains 

Simons and other researchers, proposed that membrane rafts already emerge in the 

TGN [145–147]. Their hypothesis relies on lipid sorting in the Golgi. The cholesterol 

content is increasing from cis- to trans-Golgi, which favours incorporation of proteins 

with longer TMDs that associate more easily into the thicker bilayer of rafts. This goes 

along with retrograde transport of COPI vesicles, having less sphingomyelin and cho-

lesterol and therefore enriching these lipids on the trans side of the Golgi [148]. This 

theory is in line with the cisternal maturation model of Golgi transport, in which vesi-

cles forming from the ER are coated with COPII proteins and are being transported to 

the Golgi, therefore transporting lipids along the secretory pathway, while vesicles be-

ing transported from the Golgi to the ER are coated with COPI, therefore transporting 

the lipids in a retrograde manner, restricting lipids to leave the Golgi compartment 

[149]. In addition, Simons assumes that clustering of rafts, by for example incorpo-

rated raft proteins, lead to further segregation of raft lipids and proteins in the TGN 

and finally budding of transport vesicles to the plasma membrane. Those vesicles were 

shown to be further enriched in raft lipids, but it needs to be stated that this sorting of 

lipids was only shown for polarized cells and in yeast [150].  

Based on previous findings and new experiments Patterson et al. [151] proposed a 

model of intra-Golgi transport. In addition to an existing gradient of raft lipids from 

low content in the cis- to high content in the trans-Golgi they propose the existence of 

different domains already in each Golgi cisternae. They describe so-called processing 
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domains, in which raft lipids are less prominent and export domains, which are en-

riched in raft lipids. Proteins of all sorts can diffuse in and out of both domains, but 

with different probabilities. Golgi-resident proteins like the galactose transferase 

(GalT) have a higher probability to be in processing domains, while plasma membrane 

proteins are more likely to be found in export domain. These domains are believed to 

make up the transport vesicles to the plasma membrane. Nevertheless, this model has 

the drawback that it describes transport vesicles exiting the Golgi at every level and 

not only at the TGN, therefore contradicting the accepted idea of vesicular transport.  

1.4.2 Raft targeting signals 

Incorporation of proteins into lipid rafts can be mediated by different types of intrinsic 

raft targeting signals like hydrophobic modifications such as GPI anchors [152–154] 

and palmitoylation [155–157] or ill-defined signals in the transmembrane region 

(TMR).  

While the mechanism of the integration of GPI anchors and palmitoylation are more 

discernable, due to their fatty acids being able to integrate between lipids into the 

membrane lipid bilayer, the mechanism or signal of TMRs is still elusive. So far only a 

few proteins with raft targeting signals in their TMR have been reported. For example, 

Benslimane et al. were able to show, that CD154 associates with lipid rafts, but it loses 

its raft targeting after exchanging the TMR by one of a non-raft protein [158]. Like-

wise, podoplanin no longer localizes to raft upon swapping TMRs [159]. Interestingly, 

podoplanin exhibit a GXXXG motif, which was recently described as having the ability 

to bind cholesterol [160,161]. In addition, some proteins exhibit more than one raft-

targeting signal. The death receptor FAS is palmitoylated, but also needs a lysine-rich 

region for raft association and full functionality [162]. Binding of raft lipids like 

podoplanin might be one strategy to integrate into lipid rafts.  

1.4.3 Sphingolipid- and cholesterol-binding motifs 

Hitherto, only a few lipid-binding motifs have been identified. For instance the sphin-

golipid-binding motif recently found by Björkholm et al. The motif was originally de-

scribed in the vesicular transport protein p24, comprises the amino acids VXXTLXXIY 
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[163] and can be located in single and in multiple spanning proteins like GPCRs (G-

protein coupled receptors) [164].  

In comparison, a variety of different cholesterol-binding motifs have been defined. 

Most of them share a similar pattern of amino acids, which consists of basic, aromatic 

and large hydrophobic residues. Positively charged, basic amino acids, like lysine (K) 

or arginine (R), usually flank the transmembrane region, to position it via their “snor-

kelling” effect at the interface of lipids and water [165]. This position allows the amino 

acids to form a hydrogen bond with the hydroxyl (OH) group of cholesterol, which is 

also located at the membrane-water interface. Aromatic amino acids bind to the 

sterane portion of cholesterol through CH-π stacking interactions. Finally, hydropho-

bic amino acids, like isoleucine (I), leucine (L) or valine (V) form van der Waals forces 

with the hydrocarbon side chain of cholesterol.  

For example, the Cholesterol Recognition/interaction Amino acid Consensus sequence 

or CRAC domain, first described by Li and Papadopoulos [166], consists of the hydro-

phobic amino acids leucine or valine, followed by 1-5 undefined apolar amino acid res-

idues, then a tryptophan, then again 1-5 undefined apolar amino acids and finally the 

basic amino acids lysine or arginine: L/V-X1-5-Y-X1-5-K/R. This motif can be found in 

many cellular and viral proteins like the GPCRs, which are located in lipid rafts and 

caveolae [167,168]. Moreover, in the viral context HIV gp41 [169] and more important-

ly influenza M2 protein [170] were reported to bind cholesterol via the CRAC domain. 

As the basic amino acid has to be located at the lipid-water interface, proteins exhibit-

ing the CRAC motif must interact with the inner leaflet of the membrane.  

The opposite orientated CARC motif, so far only described for the human nicotic ace-

tylcholin receptor (nAChR), is located in proteins binding cholesterol in the outer leaf-

let of the membrane. Besides having the opposite direction, the CARC motif is distin-

guished from the CRAC motif by being less strict about the middle aromatic amino ac-

id, which can be tryptophan as well as phenylalanine (K/R-X1-5-Y/F-X1-5-L/V) [171]. 

Additionally, Hanson et al. identified by crystallography and sequence comparison of 

7-TMR-receptors the so-called CCM, a cholesterol consensus motif [172]. In this case 

the amino acids interacting with cholesterol are not a linear sequence motif but dis-
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tributed between two helices. One helix contains the positively charged amino acid 

arginine (R) or lysine (K), the hydrophobic amino acid leucine (L), isoleucine (I) or va-

line (V) and the aromatic amino acid tryptophan (W) or tyrosine (Y), all facing the 

same side of the helix. In addition, another aromatic amino acid, either phenylalanine 

(F) or tyrosine (Y) is needed on a second helix of a multimer to bind the cholesterol 

from the other side. In short, the CCM for one helix can be descripted as W/Y-(X)1-3-

I/V/L-(X)1-7-K/R. Likewise the CRAC and CARC motif, the CCM can be orientated in 

two ways. Either the charged amino acids K or R can face to the lipid-water interface of 

the inner or the outer leaflet.  

Figure 1-7: Partial crystal structure of the four transmembrane regions of the human ß-

adrenergic receptor in purple. Non-interacting helices are translucent. Interacting amino acids of 

the cholesterol consensus motif are in magenta; Cholesterol in yellow. W, I and R are located on TMR IV 

and Y located on TMR II. Created with Visual molecular dynamics (VMD) 1.9.1 and POV-Ray 3.7.0 from 

PDB code 3D4S. Second binding cholesterol interacting with a protein-linked acyl chain was left out [172]. 

A different kind of cholesterol-binding motif was reported for the amyloid precursor 

protein (APP). Studies by the group of Charles Sanders revealed a double GXXXG motif 

to be involved in cholesterol binding (reviewed in [173]). By NMR studies of the 99 res-

idues comprising the C-terminal domain incorporated in model membranes contain-

ing the cholesterol derivate CHOBIMALT, they could demonstrate cholesterol binding. 

The N-helix, N-loop and the N-terminal end of the TMR, form the structure involved 

in cholesterol binding, whereby the helix has a kink after the double GXXXG motif (see 

Figure 1-8). This structure forms a pocket in which cholesterol can be integrated. To 

further investigate the amino acids being involved in cholesterol binding, they per-
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formed alanine scanning mutagenesis. Although they didn’t publish a high resolution 

structure so far, they give information about the amino acids probably binding choles-

terol. The GXXXGXXXG motif creates a flat surface that enables interaction with the 

flat surface of cholesterol, which is made by Van der Waals forces. In addition, they 

claim that after interaction of the cholesterol to the GXXXG motif the N-loop under-

goes a conformational change that allows for interaction by the formation of a hydro-

gen bond of the hydroxyl group of cholesterol with an asparagine and a glutamic acid 

within the loop. Finally, a phenylalanine could form CH-π stacking interactions with 

the sterane portion, as also shown for the other cholesterol binding motifs mentioned 

above.  

Figure 1-8: Structure of the C-terminal domain of APP in complex with cholesterol.   

Upper panel: Structure on model membrane micelles determined by NMR. Lower panel: Proposed 

model of interactions between APP and cholesterol [173]. Upper panel was adapted by the author from 

[161] with permission from American Association for the Advancement of Science. Lower panel was 

adapted from [161] with permission American Association for the Advancement of Science (left side) and 

from [174] with permission of American Chemical Society (right side). 

1.5 Lipid rafts in the viral context  

Lipid rafts are important for entry, fusion, replication, budding and assembly of a wide 

range of viruses. Hence, lipid rafts can be important in nearly every step of a virus’ 

lifecycle. The filoviruses Ebola and Marburg use lipid rafts for assembly and budding as 
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well as for entry and fusion. Regarding fusion, lipid rafts probably cluster the receptor 

for efficient viral binding to induce the fusion process [175,176]. From the family are-

naviridae representatives from the old world and new world viruses are reported to de-

pend on cholesterol in their life cycle. Although Lassa virus (old world virus) does not 

bud from rafts, the extraction of cholesterol from the viral envelope does impair infec-

tivity, presumably by a fusion defect [177]. In contrast to Lassa, Junín virus’ glycopro-

teins associate with DRMs and cholesterol depletion by methyl-β-cyclodextrin led a 

decrease in budding and titer [178]. In case of Borna disease virus cholesterol is needed 

for the binding of the receptor, which probably is located in raft, but not for fusion 

[179]. Paramyxoviruses, for example, use lipid rafts as site of budding and assembly. 

The glycoproteins of measles, RSV (Respiratory syncytial virus), Sendai virus and New 

Castle disease virus (NDV) are located in lipid rafts at the plasma membrane [180–

187]. Measles viral replication is impaired upon cholesterol synthesis inhibition [188] 

and cholesterol synthesis is downregulated in persistent infected neuronal cells [189]. 

Regarding Sendai virus, cholesterol depletion of infected cells, did not lead to a de-

creased virus production but to less infectivity [190], which hints to an entry defect as 

seen for NDV that uses rafts for its entry and fusion [191]. Even though not for all vi-

ruses assembly and budding are fully understood, literature data implicates a role of 

cholesterol and sphingolipids in the replication cycle of Hepatitis C virus, a member of 

the flaviviridae. Shi and colleagues reported that the RNA replication occurs on lipid 

raft structures [192]. Furthermore, the structural proteins associate with DRMs, ma-

ture virus particles are enriched in cholesterol and cholesterol as well as sphingolipids 

are needed for fusion of the virus with the host cell [193]. Hepatitis C virus even alters 

the sphingolipid synthesis to promote its own replication [194]. For Hepadnaviridae 

the hepatitis B virus is believed to bud from lipid rafts as the release of newly formed 

virus particles is impaired, when lipid rafts are depleted from cholesterol, and the 

phenotype is rescuable, when cholesterol is replenished [195]. Even herpesviruses, 

which bud into Golgi-derived vesicles, are linked to assembly in rafts. The glycopro-

teins of the human herpesvirus 6 (HHV6) can be found in DRMs and their lipid enve-

lope contains GM1, a raft-located protein and general marker for rafts [196].  
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Several viruses are in need of functional lipid raft for their entry and/or their fusion. 

Dengue virus’ fusion, for example, is inhibited upon cholesterol depletion from the 

viral envelope but not the cell membrane [197]. Therefore, most probably rafts are not 

important for receptor clustering but rather the lateral organization of the virus is cru-

cial for fusion. In contrast, Coronaviruses are dependent on cholesterol in the cellular 

and viral membrane, but the detailed mechanism is still unknown [198]. Non-

enveloped viruses also use lipid rafts as entry site. The bovine rotavirus is dependent 

on cholesterol and lipid rafts not for the attachment but rather the endocytosis. Sur-

prisingly, treatment of cells with methyl-β-cyclodextrin after infection also reduces 

titer, which is why raft structures seam to play a role even in the assembly of non-

enveloped viruses [199].  

HIV, besides influenza virus, is one of the best-studied viruses regarding the role of 

lipid rafts in their replication cycle. As early as in the late 1980s, only five years after 

the discovery of the virus, it was already reported that the membrane of HIV has a high 

rigidity due to the high cholesterol/phospholipid ratio, which enables a long term sta-

bility at low temperatures [200]. In 2000 it was shown for the first time that HIV buds 

from lipid rafts [201], whereby subsequent publications demonstrated that the precur-

sor Gag interacts with rafts, clusters them to build the assembly sites and recruits oth-

er viral components to the budding zone [202–204]. The origin of the viral envelope 

from lipid rafts is reflected in the lipid composition of the viral envelope. Raft lipids 

like cholesterol and sphingolipids are enriched in the virus membrane, revealed by in-

vestigations of the lipidome of HIV particles [205]. Furthermore, HIV upregulates the 

cholesterol and sphingolipid synthesis while reducing polyunsaturated PC levels de-

pending on expression of the Nef protein [206–208]. HIV does not only use rafts as 

platform for assembly, but also transcytose trough the non-permissive epithelial cells 

in a raft dependent manner to cross the outer cells layer to finally reach the CD4-

positive T-cells as their prime target [209]. The entry then occurs by endocytosis via 

CD4 containing lipid rafts [210]. For the subsequent fusion event again cholesterol in 

the host cell membrane is required, since viruses grown in cholesterol deprived cells 

only have minimal infectivity and extraction of cholesterol by methyl-β-cyclodextrin 

from virus particles leads to a loss in fusion activity [211]. Additionally, HIV is the first 
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virus reported to exhibit a CRAC motif in its gp41 protein that is crucial for fusion 

[212,213].  

1.5.1 Influenza HA integration into lipid rafts: Molecular details  

As mentioned before influenza A viruses bud from lipid rafts as well [75]. These find-

ings made by extraction of detergent-resistant membranes (DRMs), a method that is 

prone to produce artefacts, were verified by various findings that HA is not randomly 

distributed in the plasma membrane but forms clusters of various sizes. Hess et al. 

were able to show by quantitative electron microscopy and FRET experiments after 

photobleaching that HA forms clusters on the cell surface. The pattern of these clus-

tered changed after treatment with methyl-β-cyclodextrin or PDMP and PPMP (both 

structural analogues of ceramide that inhibit glycosphingolipid synthesis as well as 

sphingomyelin dependent on the concentration), thereby extracting cholesterol or re-

ducing the amount of sphingomyelin, respectively, within the membrane [214]. In the 

same year Leser et al. verified these findings by using quantitative electron microscopy 

and also showed growing clusters of HA and NA on the surface of infected cells in de-

pendence of time after infection and cholesterol content [215]. By using FPALM Hess 

et al. were able to prove the existence of HA clusters as well in living cells [216]. In ad-

dition to cholesterol and sphingolipid content, also the cytoskeleton influences the 

location and clustering of HA. The laboratory of Hess showed in a recent study, that 

HA cluster colocalize with actin-rich membrane regions, whose disruption led to a re-

duced size of the clusters and a reduced density of HA within these clusters [217]. Fur-

thermore studies by Gerl et al. using quantitative mass spectrometry confirmed the 

hypothesis, that the cholesterol and sphingolipid content increases along the exocytic 

pathway and that raft lipids are even further enriched in the viral membrane [218].  

To integrate into lipid rafts HA two raft targeting signals were proposed. On the one 

hand, three S-acylated cysteins, [61,104,219], on the other hand, hydrophobic amino 

acids (VIL) in the TMR facing the outer leaflet of the plasma membrane [74,220]. In-

terestingly, in the initial studies the TMR motif investigated by Scheiffele and Takeda 

was only loosely defined. Both studies applied alanine-scanning mutagenesis to iden-

tify VIL for incorporation into detergent-resistant-membranes (DRMs), the biochemi-

cal correlate of lipid rafts. However, biochemical extraction of DRMs might not reflect 
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the status in living cells and is prone to arte-

facts [221]. This problem was overcome when 

Stephanie Engel (Veits group) and Silvia Sco-

lari (Herrmanns group) used fluorescence res-

onance energy transfer measurements in liv-

ing cells to analyse the association of HA with 

a known raft marker. They were able to 

demonstrate that HA indeed is dependent on 

the presence of both raft-targeting signals for 

incorporation into lipid rafts [222,223]. Steph-

anie Engel used the HA protein fused to Ceru-

lean as donor fluorophore and as acceptor a 

myristoylated and palmitoylated peptide, an 

established lipid raft marker (Myr-Pal-YFP). 

This marker consists of the first 21 amino acids of the Lyn kinase and is fused to YFP.  

1.6 Methods to study raft association of proteins and choles-

terol interaction  

The investigation of lipid raft association and in particular cholesterol binding is a 

complex field. So far several methods have been described, but mostly all of them have 

drawbacks. According to Gerald Gimpl several properties could hint towards an inter-

action of proteins with cholesterol: (1) the presence in cholesterol rich membranes (2) 

altered protein function after changing the cholesterol content in membranes (3) al-

tered protein function upon substitution of cholesterol by sterol analogues (4) influ-

ence of cholesterol binding molecules as “competitors” (5) binding of radiolabeled 

cholesterol (6) spectroscopic binding assays with fluorescent sterol analogues (7) la-

beling of the protein with photoreactive cholesterol and (8) identification of choles-

terol binding by structural studies [224].  

The most common method to start with, when studying the association of proteins 

with lipid rafts, is the extraction of cholesterol with methyl-β-cyclodextrin to dis-

Figure 1-9: Schematic picture of the

location of HA-Cerulean and Myr-Pal-

YFP in the plasma membrane. Black star

indicates the location of the TMR raft-

targeting signal. Created with CorelDRAW 
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rupt lipid rafts. Cyclodextrins are a potent agent to specifically extract lipids from 

membranes. They posses a hydrophilic surface made up from seven glucose molecules 

building a ring, which encircles the highly hydrophobic cavity. Depending on the size 

and hydrophobicity, different lipids can be extracted from the membrane, whereby β-

cyclodextrins were shown to have the highest affinity to cholesterol (reviewed in 

[225]). This method is highly dependent on the concentration of the compound and 

the incubation time. High concentrations incubated over a long time period are able to 

extract 80-90 % of the cellular cholesterol, but it leads to the loss of cell morphology 

and therefore, most probably, effect more cell functions than planned to be investigat-

ed. As mentioned in 1.3 the cholesterol content of the cell is highly regulated, deplet-

ing cholesterol in the plasma membrane by β-cyclodextrins therefore may lead to an 

altered distribution of cholesterol in the intracellular membranes due to induction of 

cholesterol synthesis. When β-cyclodextrins are used to study lipid rafts at the plasma 

membrane one need to take into account that not only the cholesterol from rafts can 

be extracted but also from non-raft phases, whereby this was reported to happen slow-

er. Thus, again low concentrations (≤ 1 mM) should be used and incubated not longer 

than 10 min. Regarding the investigation of viruses, as summarized in 1.5, this method 

can give a first insight, even though not very specifically, if cholesterol is somehow 

involved in the replication cycle, leading to a decreased virus titer upon usage of β-

cyclodextrins.  

Another commonly used method is to test for the solubility of proteins in non-ionic 

detergents like Triton X-100, Brij 96 and Lubrol WX at 4°C and Brij 98 at 37°C. That 

allows drawing conclusions about the association of specific viral proteins with lipid 

rafts. While rafts and their associated proteins will stay insoluble and float up on a su-

crose gradient, soluble membranes and proteins will be found at the bottom of the 

gradient. This method has the drawback that it relies on the effective solubilization of 

the membrane and its integrated proteins. At high detergent-to-lipid ratios even lipid 

rafts can be solubilized, which is why titration of the detergent is of great importance. 

Furthermore, proteins might be soluble in detergents but might still associate with li-

pid rafts in vivo. In addition, Triton X-100 resistant membranes tend to aggregate. New 

detergents used, like Brij and Lubrol WX have the advantage that solubilized raft 
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membranes no longer form aggregates, but they were chosen under the prerequisite 

that they are able to isolate proteins, which are soluble after Triton X-100 treatment. 

Insoluble membranes, extracted with these new detergents, are no longer highly en-

riched in cholesterol and sphingolipids, therefore they are maybe not reflecting the 

lipid composition of lipids rafts in vivo (reviewed in [226]).  

Besides these two biochemical methods, fluorescent methods can be used to demon-

strate association of proteins with lipid rafts. For example, the increasing intrinsic 

fluorescence of fluorescent cholesterol derivatives like dehydroergosterol or NBD-

cholesterol in presence of a cholesterol binding protein can be used to study binding 

[227]. However, since this method relies on binding of purified protein, it does not re-

semble physiological conditions. The coupling of FRET (fluorescence resonance en-

ergy transfer) as a method to study energy transfer from one fluorophore to another, if 

in close contact (see 1.7.1), with FLIM (fluorescent lifetime imaging microscopy) al-

lows for investigation of interactions of proteins in living cells. Even though in this 

system the direct interaction of a protein with cholesterol in not measured, but rather 

the energy transfer of a protein of interest to a marker protein for rafts, this system is 

one of the first being able to study protein-raft-association under physiological condi-

tions in living cells, which is why I used this method in this study to investigate the 

association of HA with lipid rafts. The detailed methodology is described in 1.7.  

A method used to study not only lipid raft interaction but rather the interaction of vi-

ral proteins with cholesterol is to use enzymes with cholesterol as substrate as a 

reporter for binding. The cholesterol oxidase converts cholesterol to H2O2 and the cor-

responding ketones. In turn, H2O2 is then, in presence of the horseradish peroxidase 

(HRP), detected by a reagent, which reacts with H2O2 to form a fluorophore that can be 

detected with a spectrometer [224]. For example, the terms and the extend of choles-

terol binding of influenza M2 was studied using this kind of assay [119]. This reaction 

is highly sensitive, life technologies, one provider of a cholesterol assay kit 

(https://www.lifetechnologies.com/order/catalog/product/A12216), claims a detection 

level down to 200 nM and less, but in case of immunoprecipitated protein, the draw-

back is still in the choice of the right detergent to lyse the cells. In case the treatment 

is to harsh, the cholesterol can be removed as well, especially when the binding is not 
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very strong, as proteins often don’t bind cholesterol covalently but rather interact with 

it. On the contrary, another detergent might be too mild and therefore not be able to 

remove cholesterol in the vicinity of the protein investigated. Hence, control samples 

must be chosen with great care. 

Affinity chromatography with radiolabeled cholesterol can also be used to per-

form binding studies of cholesterol. Nickel agarose columns are loaded with a His-

tagged protein upon which the radioactive labeled cholesterol ([3H]cholesterol) is in-

cubated on the column. Unbound cholesterol is then washed off and bound pro-

tein/cholesterol complexes can be eluted from the column and measured in a scintilla-

tor [224]. Non-radioactive labeled cholesteryl hemisuccinate agarose was used to 

prove cholesterol binding of HIV env protein gp41 and influenza M2 [84,169]. Recom-

binant protein is incubated with the cholesteryl hemisuccinate agarose resin, unbound 

protein was washed off and the bound protein was eluted and analyzed by SDS-PAGE 

and Western Blot. Thaa and colleagues also used radioactive labeled photocholes-

terol to prove cholesterol binding of influenza M2. Thereby, M2 fused to GFP was pu-

rified from bacteria and incubated with [3H] photocholesterol and crosslinked by UV 

light upon which binding of cholesterol was detected [228]. A similar method was used 

to investigate the cholesterol binding properties of the Semliki Forest virus (SFV) E1 

protein, which was incubated with [3H] photocholesterol in liposomes and crosslinked 

by UV light [229]. Nevertheless, as photocrosslinking can also occur, when the reactive 

compound and the target protein are only in close proximity, this method still lacks 

definite prove of binding. All three methods rely on recombinant protein, which might 

not exhibit the same features as the native protein within a membrane. In case of the 

M2 protein, the results from transient expressed protein described above in regard of 

the cholesterol oxidase assay, the transfected protein alone was not able to bind cho-

lesterol and needed the other viral components expressed during infection, while the 

affinity chromatography and photocrosslinking revealed an intrinsic cholesterol bind-

ing ability. This demonstrates that often more than one method has to be applied to 

determine the binding properties of a protein.  

The most direct prove of cholesterol binding is solving the structure of the membrane 

protein with the cholesterol still attached. Solving the structure of membrane proteins 
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itself is a complex methodology. Usually the protein of interest is expressed in a suita-

ble cell system like E.coli or insect cells, whereupon it is solubilized in a detergent, pu-

rified and crystallized [230]. When studying the interaction of a membrane protein 

with lipids and in particular cholesterol the use of detergents is not optional, which is 

why new methods had to be developed. For example, the use of lipidic cubic phase 

(LCP) technology in crystallography allowed solving the structure of the human ß-

adrenergic receptor (Figure 1-7). LCP is a membrane-mimetic matrix in which the re-

combinant protein of interest is integrated, which is then loaded to allow crystalliza-

tion [231,232]. The biggest limitation of LCP is the extreme viscosity of the cubic 

phase, which makes it demanding to work with it. Another strategy is the usage of sol-

id state NMR of recombinant protein in micelles or bicelles with the desired lipid 

composition [233]. This technique was used to determine the cholesterol-binding site 

of the C-terminal domain of APP in complex with cholesterol (Figure 1-8). Both of the-

se methods need experts to perform the experiments, from choosing the right deter-

gents to solubilize the recombinant protein and its purification to the performance of 

the actual experiments solving the structure, which is why these kinds of experiments 

should be performed in cooperation with groups already using these methods.  

1.7 Fluorescence lifetime imaging microscopy by measuring 

fluorescence resonance energy transfer (FLIM-FRET) 

1.7.1 Fluorescence resonance energy transfer (FRET) 

Already in 1946 Theodor Förster described the non-radiative transfer of energy from 

one excited fluorophore (donor) to another (acceptor) via a dipole-dipole interaction 

[234]. The occurrence of energy transfer is thereby dependent on the following condi-

tions: (1) an overlap of the donor’s emission spectrum and the acceptor’s excitation 

spectrum (2) the orientation of the dipoles, which must not be perpendicular (3) the 

quantum yield of the donor and (4) the distance between the donor and the acceptor.  

The rate of the energy transfer can be described by the following formula:  

 



28 INTRODUCTION 

 

where τD is the lifetime of the donor in absence of an acceptor, R0 describing the 

Förster distance at which the energy transfer is 50 % efficient and r is the actual dis-

tance between donor and acceptor. In biological systems, R0 usually ranges from 2-

9nm, which is why FRET measurements can be used for interaction studies of proteins. 

The FRET efficiency is depending on the sixth power of R0 (and therefore extremely 

dependent on the distance) and, in case of r being near R0, can be described by the 

formula [235]: 

 

FRET can be used to study intra-molecule interactions, like folding processes of do-

mains or structural refolding due to a trigger [236–239], to study direct protein-

protein interactions [240], which can be assumed to exist in case of energy transfer at a 

distance of less than 10 nm, or to locate a protein in a specific surrounding by energy 

transfer with a specific marker for this location as has been applied in case of HA-Cer 

and Myr-Pal-YFP as a marker for lipid rafts.  

To measure FRET there are mainly two different kinds of techniques, firstly, FRET by 

steady-state intensity. This method uses the fact that in case of energy transfer the 

intensity of the donor fluorescence drops, while the intensity of the acceptor fluores-

cence increases. Radiometric FRET measurements calculate the ratio of the intensity 

of the acceptor to the intensity of the donor. The disadvantage of this method are, that 

the molar ratio of acceptor and donor should be 1:1, which limits the method to intra-

molecular energy transfer and the risk of bleed through of the donor signal into the 

acceptor signal. Several methods have been developed to correct for bleed through by 

including donor only and acceptor only controls [241]. The second technique is the de-

termination of the FRET efficiency by fluorescent lifetime measurements like fluores-

cence lifetime imaging microscopy (FLIM). FLIM has the advantage of measuring the 

lifetime only in dependence on the environment of the donor but not on the ratio of 

donor and acceptor on a molecular level [242].  
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1.7.2 Fluorescence lifetime imaging microscopy (FLIM) 

The lifetime of a fluorophore is the average time a fluorophore stays in its excited 

state before it again returns to its ground state. In case of biological experiments the 

time-dependent intensity I(t) is measured and can be described as following: 

 

where I0 is the intensity at time 0 [235].  

FLIM uses time-correlated single-photon counting (TCSPC) for the determination of 

the lifetime. In TCSPC the fluorophore is excited with a short laser pulse in a way that 

less than one emitted photon will be detected. The time between the excitation and 

the emitted photon arriving at the instrument is then depicted as a histogram. Due to 

the different arrival times after the pulses the histogram will lead to an exponential 

function, the slope of which describes the lifetime of the fluorophore [235].  

Figure 1-10: TCSPC histogram of FLIM-FRET measurement of HA. Histogram of selected re-

gion in blue, bi-exponential fit curve in black and recorded instrument response function in red; magenta 

vertical lines define the analyzed time frame 

Using a single photon avalanche photodiode (SPAD) the emitted photons can be de-

tected. While being very precise in their response, they also have the drawback of hav-

ing a wavelength dependent timing response, which might interfere with the time-

resolved measurement of the sample. Hence, the instrument response function (IRF) 

should be measured and included into the histogram [243] (see Figure 1-10 red curve). 

In the used setup the IRF can be measured by recording the Raman scattering of dou-

ble distilled water. 
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As the TCSPC recording not only recognizes the time until 

detection but also the position of the laser on the sample, 

it is also possible to reconstruct an image reflecting the 

according lifetimes to their location [242].  

Figure 1-11: FLIM image of a transfected cell. Color resembles 

lifetime. 

1.7.3 FLIM-FRET 

FLIM-FRET is based on the acquisition of the lifetime of the donor in absence and 

presence of the acceptor. In case of FRET, the lifetime of the donor will be shortened 

in presence of the acceptor. Therefore, the FRET efficiency E can be calculated accord-

ing to: 

 

where τDA and τD are the lifetimes of the donor in presence and absence of the acceptor, 

respectively.  

The most significant advantage of FLIM-FRET is, that by bi-exponential fitting it is 

possible to account for interacting and non-interacting donor fractions. In case of us-

ing FLIM-FRET to study the incorporation of HA into lipid rafts one can assume that 

not all HA molecules (donor) are interacting with the lipid raft marker Myr-Pal (accep-

tor), which should be taken account for in the calculation of the FRET efficiency. The 

non-interacting donor fluorophores are decaying slower than the interacting ones. Out 

of the amplitudes and corresponding lifetimes for both donor populations it now pos-

sible to calculate an average lifetime, which than can further be used for the calcula-

tion of the corrected FRET-efficiency [242].  

As FRET efficiency does not only reflect specific interaction but random interactions 

as well, measurements in membranes with limited space and diffusion are more com-

plex. Due to over expression of the acceptor, false-positive FRET results could be 

measured. That means that under low expression levels of the acceptor, FRET would 

be absent and would increase upon higher levels of acceptor expression. In contrast, 

specific FRET already yields high FRET efficiencies at low acceptor concentrations and 
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is relatively independent of acceptor concentration. For the analysis of FRET efficien-

cies dependent on the acceptor concentration, cluster analysis proposed by Zacharias 

et al [244] can be applied. FRET efficiencies are plotted against the acceptor intensity, 

whereupon the data is fitted to the following hyperbolic function.  

 

The respective equation yields KD as a parameter to assess the associative properties 

(clustering) of donor and acceptor. Low KD values compared to the average intensity 

indicate true clustering, which is independent on acceptor concentration, and would 

lead to a hyperbolic shape of the fitting curve. High KD values, in contrast, indicate 

random interaction, which is dependent on increasing acceptor concentration and 

would lead to linear fitting.  
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1.8 Aim of the study 

My thesis is a continuation of Stephanie Engel´s dissertation on the assembly of influ-

enza viruses. She built up the basis of this thesis by performing experiments to con-

firm the integration of hemagglutinin into lipid rafts, the site of budding, in living 

cells using FLIM-FRET analysis. She was able to show that the integration of HA into 

lipid rafts at the plasma membrane indeed was dependent on the two proposed raft 

targeting signals, as clustering with an established raft was reduced. Beside the FLIM-

FRET experiments, she carried out radioactive labeling of cells expressing the mutants 

to check for correct processing and thereby observed a different state of processed HA0 

in case of the VIL and double mutant, but not the palmitoylation mutant. For evalua-

tion of the steps of processing being affected, she performed preliminary pulse-chase 

experiments to check for the kinetics of trimerization, glycosylation and proteolytical 

cleavage of the precursor HA0 into its subunits HA1 and HA2. The kinetics obtained re-

vealed a negative effect of the mutation of the hydrophobic raft-targeting signal, but 

not the palmitoylation on the transport of HA from the time of leaving the rER.  

In the present study, the preliminary results on the delayed processing and therefore a 

delayed transport along the exocytic pathway of the VIL mutant were to be verified by 

repeating the pulse-chase experiments. Furthermore the underlying mechanism of the 

transport and the involvement of the VIL raft-targeting signal were to be analyzed. 

Colocalization studies of mutant and wild type HA with a cis-Golgi marker were to be 

performed to gain further inside of the location of the delay. As mentioned in the in-

troduction, several investigators proposed an involvement of lipid raft like structures 

in the transport within the Golgi. As cholesterol content in context of HA transport 

was already published to have an effect on HA transport [245], the focus of was laid on 

the influence of sphingolipid content in cellular membranes on transport and studied 

by inhibiting sphingolipid synthesis and subsequent monitoring of the transport ki-

netics.  

So far the VIL motif was only investigated by alanine scanning, but whether the motif 

is part of a larger signal for raft-targeting is still unknown. Since the isoleucine and 
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leucine of the VIL motif are highly conserved among all HA subtypes and are facing 

outwards of the trimeric complex [246], they are in a favourable position to interact 

with surrounding lipids. Therefore, the question arises, whether HA is able to bind 

cholesterol or sphingolipids via the VIL motif or an extended raft-targeting motif. This 

led to the aim of finding a putative lipid-binding motif within the sequence of the be-

ginning of the transmembrane region of HA by using in silico methods. If a motif could 

be found, this motif was to be mutated, and constructs were to be investigated by the 

established methods to elucidate transport kinetics and raft association.  
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2 Material and Methods 

2.1 Material 

2.1.1 Chemicals 

Table 1: Chemicals used in experiments directly and to prepare buffers and solutions 

Compound Manufacturer 

2-[N-Morpholino] ethanesulfonic  

acid (MES) hydrate 

Sigma-Aldrich, Taufkirchen 

3-[N-Morpholino] propanesulfonic  

acid (MOPS) 

Sigma-Aldrich, Taufkirchen 

Agar Gibco/Invitrogen, Karlsruhe 

Agarose Invitrogen, Karlsruhe 

Acetic Acid 100 % Carl Roth, Karlsruhe 

Acrylamide/bisacryl (37.5:1), 30 % Carl Roth, Karlsruhe 

Ammonium persulfate (APS) Sigma-Aldrich, Taufkirchen 

Bacto ™ tryptone BD Biosciences, Heidelberg 

Bacto ™ yeast extract BD Biosciences, Heidelberg 

CaCl2 dihydrate Sigma-Aldrich, Taufkirchen 

Cysteine Sigma-Aldrich, Taufkirchen 

DABCO (triethylendiamin) Sigma-Aldrich, Taufkirchen 

Dithiothreitol (DTT) Sigma-Aldrich, Taufkirchen 

Dimethylsulfoxid (DMSO) Sigma-Aldrich, Taufkirchen 

Dodecylsulafte sodium salt (SDS) Biomol Feinchemikalien GmbH,       

Hamburg 

Ethanol 100 % AppliChem GmbH, Darmstadt 

Ethylenediaminetetraacetic acid (EDTA)  Sigma-Aldrich, Taufkirchen 

Ethidium bromide Carl Roth, Karlsruhe 

Fumonisin B1 Sigma-Aldrich, Taufkirchen 
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Glutamine Sigma-Aldrich, Taufkirchen 

Glycerin Carl Roth, Karlsruhe 

Isopropyl alcohol AppliChem GmbH, Darmstadt 

Kanamycin Carl Roth, Karlsruhe 

KCl Sigma-Aldrich, Taufkirchen 

Kodak GBX developer/replenisher Sigma-Aldrich, Taufkirchen 

Methanol AppliChem GmbH, Darmstadt 

Methionine Sigma-Aldrich, Taufkirchen 

MgSO4 Sigma-Aldrich, Taufkirchen 

MnCl2 tetrahydrate Sigma-Aldrich, Taufkirchen 

Mowiol 4-88 Sigma-Aldrich, Taufkirchen 

NaCl Sigma-Aldrich, Taufkirchen 

Paraformaldehyde Carl Roth, Karlsruhe 

Protease Inhibitor “cOmplete Protease 

Inhibitor tablets” 

Roche Diagnostics Deutschland GmbH, 

Mannheim 

Protein-A sepharose Sigma-Aldrich, Taufkirchen 

Sodium salicylate Carl Roth, Karlsruhe 

Easy Tag Express Protein labeling Mix   

(> 70 % [35S]-Methionin, 15 % [35S]-

Cystein) 

Perkin Elmer, Rodgau 

RbCl Sigma-Aldrich, Taufkirchen 

Tetramethylethylendiamin (TEMED) Sigma-Aldrich, Taufkirchen 

Tris ICN Biomedicals Inc., Aurora 

Triton X-100 Sigma-Aldrich, Taufkirchen 

Trypsin Sigma-Aldrich, Taufkirchen 

Trypsin-Inhibitor Soybean T6522 Sigma-Aldrich, Taufkirchen 
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2.1.2 Consumables 

Table 2: Consumable used in cell culture and fluorography experiments 

Material Manufacturer 

Cell culture flasks T25, T75 Greiner Bio-One, Frickenhausen 

Cell culture plates 6-, 12- and 24-well Greiner Bio-One, Frickenhausen 

Glass bottom dishes MatTek , Ashland, Massachusetts 

Cell scrapers Greiner Bio-One, Frickenhausen 

Cryo tubes Sarstedt, Nümbrecht 

Glass cover slips ∅12mm  Carl Roth, Karlsruhe 

Glass slides  Carl Roth, Karlsruhe 

PVDF membrane Amersham/GE Healthcare, Freiburg 

Kodak Biomax XAR films  

(Fluorography) 

Sigma-Aldrich, Taufkirchen 

 

2.1.3 Enzymes and molecular biology reagents  

Table 3: Enzymes and markers used in this study 

Substance Manufacturer 

Phusion Polymerase Thermo Scientific, Dreieich 

One-Taq 2x Master Mix New England BioLabs, Frankfurt 

dNTP Mix 10 mM each Thermo Scientific, Dreieich 

Enzymes: EcoRI, BstZ17I New England BioLabs, Frankfurt 

CIP New England BioLabs, Frankfurt 

T4 DNA Ligase New England BioLabs, Frankfurt 

DNA Ladder “Smart Ladder” Eurogentec, Köln 

Protein Ladder „ColorPlus Prestained 

Protein Ladder, Broad Range“ 

New England BioLabs, Frankfurt 
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2.1.4 Kits 

Table 4: Kits for molecular biology 

Kit Manufacturer 

Miniprep Kit  

“Invisorb Spin Plasmid Mini Two” 

Stratec Biomedical AG, Birkenfeld 

Gelextraction Kit  

“Invisorb Spin DNA Extraction Kit” 

Stratec Biomedical AG, Birkenfeld 

PCR Cleanup Kit  

“Invisorb Fragment Cleanup Kit” 

Stratec Biomedical AG, Birkenfeld 

Maxiprep Kit  

“PureYield™ Plasmid Maxiprep System” 

Promega, Mannheim 

2.1.5 Antibodies 

Table 5: Antibodies used for immuprecipitation and immunofluorescence 

Antibody Manufacturer 

Primary antibodies:  

Rabbit anti-FPV (fowl plague virus)  Kindly provided by Hans-Dieter Klenk, 

Phillipps University Marburg, Institute of 

virology) 

Mouse anti-membrine Abcam, Cambridge 

Secondary antibodies:  

Anti-IgG mouse Alexa 488 Life technologies GmbH, Darmstadt 

Anti-IgG mouse Alexa 568 Molecular Probes/Invitrogen, Karlsruhe 
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2.1.6 Buffers and solutions 

Table 6: Buffers and solutions prepared in this study and their composition 

Buffer/Solution Composition 

PBS 0.8 % (w/v) NaCl, 0.02 % (w/v) KCl, 0.02 % (w/v) 

KH2PO4, 0.135 % (w/v) Na2HPO4 dihydrate 

RIPA buffer 20 mM Tris·HCl, 150 mM NaCl, 10 mM EDTA, 

10 mM Jodacetamid, 0.1 % (w/v) SDS, 1 % (v/v) 

Triton X-100, 1 % (w/v) Natrium-Desoxycholat, 

pH 7.4 (+ protease inhibitor) 

MNT buffer  20 mM MES, 30 mM Tris, 100 mM NaCl, 1% 

Triton X-100 in H2O pH 7.5 

TAE buffer 40 mM Tris·HCl, 20 mM acetic acid, 1 mM 

EDTA, pH 8.0 (from 50x stock solution) 

Loading dye agarose gels 5x 10 mM Tris-HCl, 100 mM EDTA, 50 % (v/v) 

glycerin, 0,1 % bromophenol blue pH 8,0 

Loading dye (SDS-PAGE) 1x 

Reducing 

62.5 mM Tris-HCl, 2 % (w/w) SDS, 10 % (v/v) 

glycerin, 0.01 % bromo-phenol blue pH 6.8, 5 % 

(v/v) β-Mercaptoethanol 

SDS-PAGE running solution 25 mM Tris·HCl, 192 mM Glycin, 0.1 % (w/v) 

SDS (pH 8.3–8.5)  

Stacking gel (SDS-PAGE) 5 % (w/v) Acrylamide/bisacrylamide (37.5:1; 

from 30-%-stock solution „Roti- phorese 30“, 

Roth, Karlsruhe); 0.1 % SDS, 125 mM Tris·HCl 

pH 6.8 (from 4x stock solution), 0.075 % (w/v) 

APS, 0.15 % (v/v) TEMED 

Resolving gel (SDS-PAGE) Acrylamide/bisacrylamide (37.5:1) from 30-%-

stock solution (Rotiphorese 30, Roth, Karls-

ruhe); 0.1 % (w/v) SDS, 375 mM Tris·HCl pH 8.8 

(from 4x stock solution); 0.05 % (w/v) APS, 0.1 

% (v/v) TEMED  
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Fixing solution for SDS-PAGE 10 % ethanol, 10 % acetic acid in H2O 

Fixing solution for immunofluo-

rescence (IF) 

2 % PFA (paraformaldehyde, Carl Roth, Karls-

ruhe) in PBS w/o Ca2+ and Mg2+ 

Blocking buffer for IF 3 % BSA in PBS w/o Ca2+ and Mg2+ 

Permeabilization solution 0.5 % Triton X-100 in PBS w/o Ca2+ and Mg2+ 

Washing buffer  PBS w/o Ca2+ and Mg2+ with 0.1 % Tween 

2.1.7 Prokaryotic cells and media 

Table 7: Bacteria used in this study and the prepared media with components 

Cells / media Manufacturer 

Escherichia coli XL-1 blue                      

Genotype recA1 endA1 gyrA96 thi-1 

hsdR17 supE44 relA1 lac [F ́ proAB lacIqZ 

ΔM15 Tn10 (Tetr)]   

Stratagene/Agilent, Waldbronn 

YT medium Powder stock (Invitrogen, Karlsruhe) (31 

g/L in H2O autoclaved); 50 μl/ml Kana-

mycin 

YT agar plates YT medium with 1.2 % (w/v) Agar; 50 

μg/ml Kanamycin) 

TYM medium 

(autoclaved) 

2 % (w/v) Bacto™ tryptone, 0.5 % (w/v) 

Bacto™ yeast extract, 0.1 M NaCl, 10 

mM MgSO4 ad 1 l dest H2O 

TfB I (pH 6.2) 

(sterile filtered, 0.22 μm filter) 

30 mM K-acetat, 10 mM CaCl2 dihydrate, 

15 % (w/v) glycerine, 100 mM RbCl, 50 

mM MnCl2 tetrahydrate ad 100 ml dest. 

H2O 

TfB II (pH 7.0) 

(sterile filtered, 0.22 μm filter) 

10 mM MOPS, 75 mM CaCl2 dihydrate, 

10 mM RbCl, 15 % (w/v) glycerine ad 40 

ml dest H2O 
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2.1.8 Eukaryotic cells and media 

Table 8: Cell lines used in this study, composition of media and transfection reagents 

Cells / media Manufacturer 

Chinese hamster ovary cells  

(CHO-K1)  

ATCC CCL-61 

DMEM  

(Dulbecco’s Modified Eagle Medium) 

10 % FBS, 1 % penicillin/streptomycin,   

1 % L-glutamine 

PAN Biotech GmbH, Aidenbach 

DMEM without phenol red PAN Biotech GmbH, Aidenbach 

MEM (Minimal Essential Medium) 

with EBSS, without L-glutamine, L-

cysteine and L-methionine 

PAN Biotech GmbH, Aidenbach 

Opti-MEM 

(reduced serum medium) 

Gibcol/life technologies, Karlsruhe 

Freezing medium 60 % DMEM, 30 % FBS, 10 % DMSO 

FBS Perbio, Bonn 

PBS w and w/o calcium/magnesium PAN Biotech GmbH, Aidenbach 

TurboFect Thermo Scientific……….. 

2.1.9 Equipment 

Table 9: Equipments used in this study 

Device Manufacturer 

Centrifuges  

Avanti J-25; Rotor JLA-16.250 Beckman Coulter, Krefeld 

Sigma 3K12 Satorius, Göttingen 

Tabletop centrifuge 5417R Eppendorf, Hmaburg 

Incubators  

Incubator for eukaryotic cells Heraeus, Hanau 
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“Heracell” 

Incubator for prokaryotic cells 

“Certomat BS-1” 

Satorius, Göttingen 

Chemiluminescence detection system 

“Fusion SL”; 

PeqLab, Erlangen 

Confocal microscope 

“FV1000”, Objective UPLSAPO 60x, 

(numerical aperture 1.35); 

Olympus, Hamburg 

FACSCanto BD Biosciences, Heidelberg 

Fluorescence lifetime microscopy 

“LSMupgrate Kit” 

PicoQuant, Berlin 

Gel dryer UniEquip, Martinsried 

SDS-PAGE System Biometra, Göttingen 

Spectrometer “NanoDrop” PeqLab, Erlangen 

Thermo cycler  

“mastercycler gradient” 

Eppendorf, Hamburg 

UV hand lamp Waldmann, Villingen-Schwenningen 

2.1.10 Software 

Table 10: Software used in this study, for analysis of data and creation of figures 

Software Company 

Another plasmid editor 

(ApE) 2.0.47  

http://biologylabs.utah.edu/jorgensen/wayned/ape/ 

Bio 1D Vilber-Lourmat, Eberhardzell 

CorelDRAW  

(Test version) 

Corel GmbH, München 

EMBOSS  http://www.ebi.ac.uk/tools/emboss/ 

FlowJO (test version) http://www.flowjo.com/flowjo-free-trial/ 

Image J 1.47v http://rsb.info.nih.gov/ij 

Helical wheel plot http://www.jci-bioinfo.cn/wenxiang2 

NEBcutter 2.0 http://tools.neb.com/NEBcutter2/index.php 
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Photoshop CS6 Adobe Systems GmbH, München 

POV Ray 3.7.0 http://www.povray.org/ 

Prism 5.01 GraphPad Software, Inc. La Jolla 

SymPhoTime 4.7.3 PicoQuant, Berlin  

Visual molecular dynamics 

(VMD) 1.9.2 Open GL 

http://www.ks.uiuc.edu/Development/Download/ 

download.cgi?PackageName=VMD 

2.1.11 Plasmids and oligonucleotides 

2.1.11.1 Plasmids 

The plasmids used in this study, pYFP-N1 (Invitrogen) and pECerulean-N1 [247], were 

generated and kindly provided by Stephanie Engel. Both plasmids express a monomer-

ric version of the yellow fluorescent protein (YFP) and Cerulean, which was achieved 

by mutating alanine in position 206 to lysine. pYFP-N1 was used to clone the raft 

marker Myr-Pal in front of the YFP (Myr-Pal-YFP). HA from influenza virus 

A/FPV/Rostock/34 (H7N1) was cloned in front of the cerulean spaced by a linker region 

consisting of the amino acids LRPEAPRARDPPVAT. All HA constructs exist in two ver-

sions, firstly the wild type version with a HA cleavable by furin and secondly a mutant 

version, which is not cleavable. The disruption of the cleavage site of furin was 

achieved by mutating arginine in position 339 to glycine.  

Therefore 8 constructs were available for this thesis: 

 Cleaved HA-mCer wt and uncleaved HA-mCer wt 

 Cleaved HA-mCer VIL3A and uncleaved HA-mCer VIL3A 

(Carrying the mutation of valine, isoleucine and leucine (position 527-529) to 

alanine) 

 Cleaved HA-mCer C3S and uncleaved HA-mCer C3S 

(Carrying the mutation of cysteine 551, 559 and 562 to serine) 

 Cleaved HA-mCer VIL3A-C3S and uncleaved HA-mCer VIL3A-C3S 

(Carrying both before mentioned mutations) 
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2.1.11.2 Oligonucleotides 

All oligonucleotides were used in the overlap-extension PCR (see 0). The oligonucleo-

tides carry the mutated base pairs (solid underline, newly introduced mutations; dot-

ted underline, mutations already existent in the template) in the middle of the se-

quence and are separately used to yield either part A or part B in the overlap-extension 

PCR. Dashed underline, recognition sequence of restriction enzyme (RE) 

Table 11: Oligonucleotides for the creation of mutants 

Name Sequence 5’ > 3’ RE 

FPV-HA 

VAL fo (IA) 
GGCTACAAAGATGTGGCACTTTGGTTTAGCTTCGGG  

FPV-HA 

VAL re (IA) 
CCCGAAGCTAAACCAAAGTGCCACATCTTTGTAGCC  

FPV-HA 

VIA fo (LA) 
GGCTACAAAGATGTGATAGCATGGTTTAGCTTCGGG  

FPV-HA 

VIA re (LA) 

CCCGAAGCTAAACCATGCTATCACATCTTTGTAGCC  

FPV-HA 

W530A fo (WA) 
GGCTACAAAGATGTGATACTTGCTTTTAGCTTCGGGGC  

FPV-HA 

W530A re (WA) 

GCCCCGAAGCTAAAAGCAAGTATCACATCTTTGTAGCC  

FPV-HA 

VIAA fo (LW2A) 
GGCTACAAAGATGTGATAGCAGCTTTTAGCTTCGGGGC  

FPV-HA 

VIAA re (LW2A) 

GCCCCGAAGCTAAAAGCTGCTATCACATCTTTGTAGCC  

FPV-HA 

YK2A fo 
CCAGTCAAATTGAGTAGTGGCGCTGCAGATGTGATACTTTGG  

FPV-HA 

YK2A re 
CCAAAGTATCACATCTGCAGCGCCACTACTCAATTTGACTGG  

FPV-HA 

KLW3A fo 
GGCTACGCAGATGTGATAGCAGCTTTTAGCTTCGGG  

FPV-HA 

KLW3A re 
CCCGAAGCTAAAAGCTGCTATCACATCTGCGTAGCC  
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FPV-HA 

ΔCCM fo (YKLW4A) 
CCAGTCAAATTGAGTAGTGGCGCTGCAGATGTGATAGCAGC  

FPV-HA 

ΔCCM re (YKLW4A) 
GCTGCTATCACATCTGCAGCGCCACTACTCAATTTGACTGG  

Bastian 71F GATAATGAATTCACTGAGGTGG EcoRI 

Bastian 72R GTCTCAGTATACAAATAGTGCACCGCATG Bstz17I 

2.2 Methods 

2.2.1 Molecular Biology 

To insert mutations in the provided plasmids overlap-extension PCR was used. The 

amplified mutated gene segments and the vector were cut with the according re-

striction enzymes, seperated by agarose gel electrophoresis and cleaned up by using 

the “Invisorb Fragment CleanUp” Kit. The cut and dephosphorylated vector and the 

cut DNA fragments were ligated and transformed into competent bacteria. After plat-

ing the bacteria on YT-agar plates containing the according antibiotic, single colonies 

were picked and submitted to colony PCR or cultured in liquid YT-medium. To check 

for correct insertion of the mutated gene segment into the plasmid, either the colony 

PCR was checked for presence of the insert and further used for inocultation of liquid 

culture or plasmid DNA was isolated from directly inoculated liquid culture and 

checked by restriction digest and further verified by sequencing.  

2.2.1.1 PCR 

The polymerase chain reaction (PCR) is a method used to amplify DNA in an exponen-

tial manner. A basic PCR requires a template DNA, a nucleotide mixture (dNTPs), two 

primers, a forward primer binding in 5’>3’ direction and a revers primer binding in 

3’>5’ direction and a suitable DNA polymerase. The PCR is carried out in a thermo cy-

cler, which allows fast heating and cooling throughout the different steps of the reac-

tion. A conventional PCR includes an initial denaturation at 98°C for 2min followed by 

three main steps, which are repeated in 25 cycles. After denaturation (98°C) of the 

DNA, the primers anneal (50-55°C) to the separated single strands and therefore allow 

the elongation (72°C) of the DNA fragment. Finally, the elongation is extended to 
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10min and the reaction is stopped by cooling down to 12°C for storage. A typical PCR 

is reported in Table 12. 

Table 12: Protocol for a regular PCR 

Component Amount  PCR step Temp Time 

Template DNA 10 ng   Initial Denaturation  98°C 2 min 

5’ primer 0.5 μM  Denaturation 98°C 10 sec 

3’ primer 0.5 μM  Annealing 55°C 30 sec 

Phusion pol. 2 U  Extension 72°C 40 sec per kb 

dNTPS 200 μM  Final Extension 72°C 10 min 

Buffer (5x HF) 5 μl  Cooling  12°C  

DMSO 1.5 μl     

ddH20 Ad 50 μl     

2.2.1.2 Colony PCR 

The Colony PCR can be used to check for the insertion of a mutated gene segment into 

a vector without inoculation of a liquid culture followed by plasmid preparation and 

restriction digest. For this purpose a part of a single colony is picked with a sterile 10 

μl tip and resuspended in the PCR mix. In case the PCR result confirms the insertion of 

the mutated gene segment, the remaining positive colony can be picked and used for 

inoculation of a liquid culture followed by plasmid preparation and direct sequencing.  

Table 13: Protocol for the colony PCR 

Component Amount  PCR step Temp Time 

Single colony 1x   Initial Denaturation  94°C 3 min 

5’ primer 0.5 μl  Denaturation 98°C 30 sec 

3’ primer 0.5 μl  Annealing 55°C 30 sec 

One Taq  12.5 μl  Extension 68°C 1 min per kb 

2x Master Mix    Final Extension 68°C 10 min 

dd H20 11.25 μl  Cooling  12°C  

 

  

25x 

25x 
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2.2.1.3 Overlap-extension PCR 

All the mutations in the HA gene described in this thesis were produced by using the 

overlap-extension PCR [248]. This method allows introducing site-directed mutations 

into a gene of interest. Insertion or mutation of sequences by a regular PCR has the 

disadvantage that only mutations near a restriction site, which is needed for cloning 

the PCR product into the vector, are permitted. By using overlap-extension PCR it is 

possible to introduce a mutation in a region, that is located between two restriction 

sites, therefore extending the possible insertion sites.  

Figure 2-1: Overlap-extension PCR. Template DNA (green) is carrying original target sequence 

(purple) in between two restriction sites. Primers A1 and B1 carry mutated target sequence (blue), Primers 

A2 and B2 bind to end of selected fragment and carry the chosen restriction sites. PCR A uses primers A1 

and 2 to create product A, while PCR B yields product B using primers B1 and 2. Product A and B are used 

as templates for AB PCR in which primers A2 and B2 are used to amplify the complete sequence carrying 

the wanted mutation. Created with CorelDRAW 

The overlap-extension PCR requires the design of four individual primers. Two over-

lapping primers (A1 and B1) are complementary to the target site containing the de-

sired mutation in the middle of the sequence and two primers (A2 and B2) comple-

mentary to the ends of the fragment carrying the chosen restriction sites. The proce-

dure consists of two PCR steps. First, two PCRs are performed side by side using the 

primers A1 and A2, respectively B1 and B2, yielding two overlapping PCR products 
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carrying the mutation at the ends of the fragments. In the second PCR step, the two 

PCR products of the first step are used as templates for the creation of the final mutat-

ed gene segment. Thereby, primers A2 and B2 are used to create a fusion product that 

contains both restriction sites at the ends and the mutated gene sequence in the mid-

dle of the fragment.  

2.2.1.4 Agarose gel electrophoresis 

In order to determine the size of DNA fragments, loading dye was added to the sam-

ples and the mixture was loaded on a 1 % (w/v) agarose gel and run in TAE buffer (0.5 

μg/ml Ethidiumbromid). Electrophoresis was run at 100 V to separate the DNA frag-

ments according to their size. 5 μl Smart Ladder was used as marker to determine the 

size of the separated fragments. For further purposes, DNA bands were visualized us-

ing a UV hand lamp (320 nm) and if needed cut out with a scalpel to extract the DNA 

from the gel by using the „Invisorb Spin DNA Extraction“ or „Invisorb Fragment 

CleanUp“ Kit. Clean up was performed according to the manufacture’s protocol. Elu-

tion was always performed in H2O. 

This clean up is needed either to yield pure PCR products for further cloning or for 

cleaning restriction digests from enzymes, which may hinder following steps of the 

cloning process.  

2.2.1.5 Restriction digest 

Restriction enzymes are endonucleases, which cut a specific DNA sequence with 

recognition sequences often containing 4-8 palindromic nucleotides. Restriction en-

zymes yield either blunt or sticky ends. If the vector and the insert (PCR product) are 

cut with the same two restriction enzymes yielding two different sticky ends, directed 

insertion of the insert is possible and religation of the vector is prevented. Typically 1-

5 μg of DNA is digested with 20 U of enzyme under according buffer conditions. An 

example for a typical restriction digest for cloning HA mutant gene segments in the 

Cerulean vector is reported in Table 14. 
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Table 14: Protocol for a typical restriction digest 

Component Amount 

DNA 1 μg 

EcoRI-HF 20 U 

BstZ17I 20 U 

Buffer 4 3 μl 

dd H20 Ad 30μl 
 

The reaction mix was incubated for 2 hrs at 37°C and loaded on an agarose gel to puri-

fy the cut DNA. The vector was additionally treated with an alkaline phosphatase, 

which dephosphorylates the 5’-end of the cut vector, to further prevent religation.  

2.2.1.6 Ligation 

After the restriction digest insert and vector have complementary sticky ends, which 

will anneal spontaneously and can be joined by using T4 ligase. The ligase is an en-

zyme that forms the phosphodiester bond between the 5’- and 3’-end of insert and 

vector.  

The ratio of vector to insert is crucial during the process and can be calculated by  

 

2.2.1.7 Preparation of competent bacteria 

TYM medium, TfB I and TfB II solutions were prepared before starting the preparation 

of the competent bacteria. For the TYM medium all the components listed in Table 7 

were mixed and autoclaved. For the TfB I solution first potassium acetate, calcium 

chloride dihydrate and glycerin were dissolved in 70 ml dest H2O and pH was adjusted 

with diluted acetic acid to 6.2. Then rubidium chloride and manganese chloride were 

added, dissolved and filled up to 100 ml with dest H2O. The solution was then filter 

sterilized with a 0.22 μm filter. For the TfB II solution MOPS, calcium chloride dehy-

drate, rubidium chloride and glycerin were dissolved in 40 ml dest H2O, adjusted with 

1N KOH to a pH of 7.0 and filter sterilized before being filled up with dest H2O to the 
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final volume of 50 ml. TfB I and II should be stored at room temperature (RT) and pre-

cooled to 4°C before use.  

For the preparation of the competent cells, a single colony of bacteria was used to in-

oculate 10 ml TYM medium (starter culture) and incubated overnight in a 37°C shaker. 

Then, 50 ml growth culture was inoculated with 0.5 ml of the starter culture and incu-

bated in a 37°C shaker until the OD reached 0.2-0.6. Subsequently, the 50 ml growth 

culture was used to inoculate 500 ml final culture and shaken at 37°C until the OD 

reached 0.4, not more. The culture was cooled down in ice-cold water for 10 min while 

shaking. The cells were collected by centrifugation for 10 min at 1000 x g. All centrifu-

gation steps should be performed at 4°C. The supernatant was discarded and the cells 

were resuspended in 100 ml ice-cold TfB I solution and incubated on ice for 10 min. 

After transfer of the cells to 50 ml falcon tubes they were centrifuged for 8min at 1500 

x g. Cells were resuspended in 10 ml ice-cold TfB II solution per falcon tube and stored 

in ice water. Finally, the cells were aliquoted à 250 μl in precooled microtubes and 

snap-frozen in liquid nitrogen before storage at -80°C.  

2.2.1.8 Transformation 

For amplification of plasmid DNA E.-coli bacteria were transformed either with exist-

ing plasmid DNA or freshly ligated new constructs. 1 μg of DNA was mixed with 100 μl 

competent cells and incubated on ice for 30 minutes. After a 45 sec “heat shock” at 

42°C cells were directly transferred on ice to incubate for 2 min. 600 μl of pre-warmed 

YT-Medium (37°C) was added and shaken (200 rpm) for 45 min at 37°C to enable ex-

pression of the according antibiotic resistance gene. 200 μl of the bacterial culture 

were subsequently plated on antibiotic containing agar plates and incubated over 

night at 37°C. 

2.2.1.9 Plasmid purification 

For the purification of plasmids two Kits were used. For the preparation of newly made 

constructs, single colonies of transformed and plated bacteria was picked to inoculate 

3 ml of YT-medium plus antibiotic and shaken (200 rpm) at 37°C over night. Bacteria 

were pelleted, and by using the “Invisorb Spin Plasmid Mini Two” Kit plasmid DNA 

was isolated according to the manufacturer’s manual. For preparation of large 
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amounts of plasmid DNA 100 ml of YT-Medium was inoculated and DNA was isolated 

by using the “Pure yield” Kit by Promega. Both Kits are based on alkaline lysis followed 

by binding of the plasmid DNA by either matrix material and elution under low-salt 

conditions (Invisorb) or anion exchange (Promega). Concentration of eluted DNA was 

determined by measuring the absorbance at 260 nm using a NanoDrop spectrometer.  

2.2.2 Cell culture 

2.2.2.1 Cell culture maintenance 

To maintain an adherent CHO-K1 cell culture, cells were passaged 1:20 every 3-4 days 

when a confluence of 90-100 % in a 75cm2 cell culture flask (T75) was reached. To that 

end, adherent cells were washed once with 10 ml PBS without Calcium and Magnesium 

followed by an incubation with 2 ml trypsin/EDTA for 5 min at 37°C. Trypsin was inac-

tivated by adding 8 ml complete DMEM containing 10 % FBS, 1 % L-glutamine and 1 % 

penicillin/streptomycin. Finally, 0.5 ml suspension was transferred to a new T75 cell 

culture flask containing 10-15 ml fresh complete DMEM. All steps were performed un-

der sterile conditions under a lamina flow. Cells were incubated at 37°C, 5 % CO2 and 

80 % humidity. 

2.2.2.2 Cell freezing and thawing 

For longtime storage cells were detached with trypsin/EDTA as described above and 

resuspended in 8 ml complete DMEM. Cells were pelleted by centrifugation for 10 min 

at 100-200 x g at RT. The supernatant was discarded and cells were washed once with 

cold PBS w/o Ca2+ and Mg2+. After resuspension in 6 ml freezing medium (60 % DMEM, 

30 % FBS and 10 % DMSO), 4 aliquots of each 1.5 ml were distributed in suitable cryo 

tubes and frozen in an isopropanol tank at -80°C over night to assure a slow freezing 

of approximately 1°C per minute. Longtime storage was performed at -196°C in a liq-

uid nitrogen tank. 

For thawing, complete DMEM was preheated to 37°C. Frozen cells were directly trans-

ferred to a preheated water bath to ensure fast defrosting and mixed with 10 ml of the 

preheated complete DMEM to dilute the DMSO. After centrifugation at 200 x g, cells 

were resuspended in 5 ml complete DMSO and transferred in a 25cm2 (T25) cell culture 

flask, which allows the cells to reach a confluence of 90 % already after 1 day. Fast 
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splitting after thawing helps to remove residual DMSO and optimizes the recovery. 

Cells of a T25 flask can be transferred to a T75 flask and will reach 90 % confluence 

within 3 days and should be passaged a couple of times before usage in further exper-

iments. 

2.2.2.3 Transfection 

Transfection was performed using TurboFect (Thermo Scientific) according to the 

manufacturer’s protocol. For transfections of 6-well cell culture plates or 35-mm glass 

bottom dishes (MatTek) 4 μg of DNA was mixed with 6 μl of TurboFect reagent and 400 

μl of Opti-Mem and incubated for 15-20min at RT. Meanwhile, 70 % confluent cells 

were washed once with PBS with Ca2+ and Mg2+ to avoid detachment of cells and 1.5 ml 

of fresh, warm Opti-Mem was added per well. After 15-20 mins the mixture was added 

drop wise to the cells. 5hrs post transfection the medium was replaced by fresh Opti-

MEM and protein expression was allowed for 16-24 hrs.  

2.2.2.4 Usage of inhibitors 

Fumonisin B1 was used to inhibit sphingolipid synthesis. Sphingolipids are synthesized 

in a stepwise manner. First, serine and palmityl-CoA are condensed to form sphin-

ganine, which is further acylated to dihydroceramide by the ceramide synthase and 

finally modified to ceramide. In addition, ceramide can be transformed to sphingosine 

by removing the 2nd acylation and reformed by acylation of sphingosine again by the 

ceramide synthase. Sphingomyelin and glycerophospholipids are then formed out of 

the ceramide backbone in the Golgi. 

Fumonisin B1 is a potent inhibitor of the ceramide synthase and therefore inhibits 

sphingolipid synthesis at a precursor stage already in the ER [249]. The inhibitor (Sig-

ma, 20 μM end concentration out of a 7 mM DMSO stock solution) was added 16 hrs 

prior to transfection of CHO-K1 cells for metabolic labeling and was present through-

out the experiment except during the transfection time of 5 hrs.  
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Figure 2-2: Scheme of sphingolipid synthesis. Inhibition of Fumonisin B1 shown as dashed line. 

Reprinted rom [249] with permission by the CC-BY license by SAGE Publications 

2.2.3 Biochemistry  

2.2.3.1 Metabolic labeling  

For the metabolic labeling of CHO-K1 cells expressing variants of the HA protein, cells 

were seeded 1:3 into 6-well plates one day prior to transfection. Constructs of choice 

were transfected (see 2.2.2.3) into the CHO-K1 cells and expression was allowed for 24 

hrs. For prestarving the cells, they were first washed twice with PBS with Ca2+ and Mg2+ 

and further incubated for 2 hrs at 37°C in MEM without L-methionine and L-cysteine. 

Labeling for pulse-chase experiments was performed by adding 3 μCi/ml [35S]-

methionine/cysteine (EasyTag™ EXPRESS 35S Protein Labeling Mix, Perkin Elmer) for 3 

or 30 min according to which further analysis was performed (see 3.2.3.1.1-3). Label-

ing (pulse) was followed by varying chasing periods with DMEM containing 100x sur-

plus unlabeled L-methionine and L-cysteine.  

For the analysis of the labeled proteins, cells were washed once with PBS with Ca2+ and 

Mg2+ before adding 500 μl ice-cold RIPA buffer for 15 min for lysis. Cell debris was pel-

leted by centrifugation for 20 min at 20.000 x g and 4°C, and supernatant was sub-

tracted to immunoprecipitation. Therefore, supernatant was transferred to a new tube, 

0.5 μl of goat anti-FPV primary antibody was added and incubated over night at 4°C 

under shaking conditions to allow binding of HA. To precipitate the protein 40-50 μl of 
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Protein-A-Sepharose was added and further incubated for 2.5 hrs at 4°C under shaking 

conditions. After the binding, samples were washed 4x by centrifugation of the target 

complex at 3000 rpm for 3 min and adding of 500 μl ice-cold RIPA buffer containing 

cOmplete Protease inhibitor (Roche, 1 tablet dissolved in 50 ml buffer). Finally, the 

pelleted complexes were solubilized either directly in SDS-buffer or according buffers 

for further analysis. 

Trimerization-test 

To analyze the trimerization status of a protein one can use proteolytic digestion. In-

fluenza HA monomers are not resistant to digestion with trypsin, but upon trimeriza-

tion will gain resistance. That means, in case of a short pulse-chase experiment HA 

monomers will be digested completely, while HA trimers will be cut into HA1 and HA2.  

Transfected cells were labeled for only 3 min to ensure labeling of only ER located pro-

tein. Samples were chased for 0, 7.5, 15 and 30 min. For 0 min chase samples, the 6-

well plate was directly put on ice to avoid further transport and processing of the HA 

molecules. All other samples were washed once with 100x surplus DMEM to avoid fur-

ther uptake of residual 35S label before chase incubation with 100x surplus DMEM. In 

this case lysis was performed by using 700 μl MNT buffer, which doesn’t affect the ter-

tiary and quaternary structure of proteins, instead of RIPA buffer as described above. 

After centrifugation samples were divided in two, one sample was mock treated (1.5 μl 

PBS) while 1.5 μl of trypsin was added to the other. After 2 min of incubation at RT, 3 

μl of Soybean-protease inhibitor was added to stop the process and immunoprecipita-

tion was performed as described above. Washed samples were solubilized in SDS-

buffer.  

Endo-glycosidase H digest  

To test whether a protein has already reached the medial Golgi one can investigate the 

acquisition of Endo-H resistant carbohydrates. Upon passing of the cis-Golgi man-

nose-rich carbohydrates get further trimmed and modified to yield complex sugars, 

which are no longer Endo-H susceptible.  
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In this case non-cleavable (uncleaved HA-mCer X) variants of the HA protein were 

used for easier detection. Transfected cells were labeled with 35S for 30 min and chased 

for 0, 1, 2, 4, 6 or 14 hrs. After lysis with RIPA buffer and immunoprecipitation, 

washed complex samples were divided in two. The mock sample was mixed with 8μl 

H2O, while the other was mixed with 8 μl denaturation buffer (delivered with Endo-H, 

Sigma-Aldrich) and heated to 100°C for 10 min. After centrifugation the supernatant, 

which contained the detached proteins, was transferred to a new reaction tube. Either 

4 μl H2O (mock) or 1 μl of G5 buffer and 1 μl of Endo-H (1:10 pre-diluted) was added to 

the sample and incubated for 1 h at 37°C before adding of SDS-buffer. 

Intra cellular cleavage of HA 

To test for passing of the trans-Golgi cleavage of the precursor HA0 into its subunit 

HA1 and HA2 was investigated. 

Transfected cells were labeled with 35S for 30 min and chased for 0, 1, 2, 4, or 6 hrs. Af-

ter lysis with RIPA buffer and immunoprecipitation, samples were solubilized in SDS-

buffer. All SDS-buffer solubilized samples from all types of experiments were heated 

for 5 min to 95°C, centrifuged and subjected to SDS-PAGE and fluorography.  

2.2.3.2 SDS-PAGE 

Denatured proteins were separated according to their differences in mass by using the 

discontinuously sodium dodecyl sulfate polyacrylamide gel electrophoreses (SDS-

PAGE) [250]. This method relies on the principle that each SDS anion binds to two 

amino acid residues and therefore applies a negative charge, which is approximately 

proportional to the mass of the protein.  

Gels were prepared as resolving gel with 12 % acryl amid and a stacking gel on top with 

5 % acryl amid. Samples were centrifuged after heating to 95°C and loaded onto the 

stacking gel. The electrophoresis was run at constant voltage of 100 V for the stacking 

gel and of 180 V for the resolving gel. Radioactive protein bands were visualized by 

fluorography.  
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2.2.3.3 Fluorography 

Fluorography is used to visualize radioactive proteins separated by SDS-PAGE. Radio-

active material can be visualized by exposing X-ray films to the radiation. To enhance 

the signal, gels can be treated with sodium salicylate, which converts the radioactive 

energy in fluorescence. Therefore, gels were fixed in fixing solution for a minimum 

time of 1 h, washed 2x for 15 min in H2O and treated with a 1 M sodium salicylate solu-

tion for 30 min. Subsequently, gels were dried and incubated in a film cassette with X-

Ray films at -80°C for 3 days or up to a month in case of short pulse-chase experi-

ments. Films were developed in a darkroom, dried and bands were analyzed using the 

Bio1D software (peqlab).  

2.2.4 Flow cytometry 

CHO-K1 cells were seeded into 24-well plates (Greiner) and transfected 24 hrs prior to 

the experiment. For 24-well plates 1 μg of DNA was mixed with 2 μl of TurboFect and 

200 μl Opti-MEM per well. All other steps were performed as described in 2.2.2.3. For 

detection of surface expression cells were detached by using Trypsin/EDTA and recov-

ered in DMEM/FCS at 37°C for 10 min. After fixation with 2 % PFA cells were blocked 

with a 3 % BSA solution and stained with an anti-FPV antiserum (1:1000) followed by 

goat anti-rabbit Alexa 488 antibody (1:1000). Overall and surface protein expression 

was analyzed using FACSCanto and FlowJo software. 

2.2.5 Microscopy 

2.2.5.1 Confocal laser scanning microscopy (CLSM) 

The confocal laser scanning microscopy is of great advantage to the classical epifluo-

rescence microscopy. Instead of light sources like xenon arc lamps or LEDs, CLSM uses 

lasers to excite the fluorophores and scans the sample point by point, whereby the 

emitted light passes a pinhole to block out the out-of-focus light. The light signal is 

then detected by a photomultiplier tube (PMT) and recorded by the computer. The full 

image is recorded by scanning the sample horizontally line by line. This allows for a 

higher resolution of the picture taken. 

In all microscopic experiments an Olympus FluoView 1000 microscope was used. Pic-

tures were obtained by using the UplanSApo oil immersion objective with a 60x mag-
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nification and a numerical aperture of 1.35. The temperature was kept constant at 

25°C. While Cerulean was excited with a laser diode with a wavelength of 440 nm and 

YFP with an argon laser with a wavelength of 515 nm, emission was detected between 

460 and 490 nm, respectively 535 and 575 nm. Alexa 568 conjugated secondary anti-

body was excited with a 559 nm Helium-Neon-Laser and detected between 580-664 

nm. Signal of double transfected or double-labeled cells was recorded sequentially.  

2.2.5.2 Immunofluorescence  

For Colocalization studies of HA raft and non-raft variants with the cis-Golgi marker 

membrin, CHO-K1 cells were seeded into 24-well plates equipped with ∅12mm cover 

slips. 24 hrs after transfection of 1μg DNA, cells were fixed with 2 % PFA for 15 min at 

RT, washed 2x with PBS 0.1 % Tween and one time with PBS 0.1 M glycine to inacti-

vate the PFA, permebealized (0.5 % Triton X-100 in PBS) and blocked for 1h with 3 % 

BSA. Membrin was detected by incubation of the cells with a mouse anti-membrin 

primary antibody (1:500) for 1 h at RT. Followed by 3x washing with PBS 0.1 % Tween 

cells were incubated with an anti-mouse Alexa 568 secondary antibody (1:1000) for 

another 45 min. Cover slips were washed 3x with PBS 0.1 % Tween and 2x with dest. 

H20 to remove residual Tween before mounting on glass slides with Mowiol mounting 

solution and drying over night. Confocal images were sequentially obtained and used 

for further analysis and quantification of colocalization. 

2.2.5.3 Quantitative analysis of colocalization – Calculation of pearson’s corre-

lation coefficient R 

By using Image J’s colocalization analysis plugin the Pearson’s correlation coefficient 

(R) can be determined. Therefore the perinuclear region was selected as region of in-

terest (ROI) and analyzed according to: 

 

where Ri and Gi are the intensity values of the red and green channels of pixel i, and 

and are the mean intensities of the red and green channels across the entire im-

age. Values for R can range from 1 to -1, with fluorescence intensities for the green 

and red channel being perfectly linear related or inversely perfectly related, respec-
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tively. Values around zero can be interpreted as uncorrelating samples [251]. Defining 

the region of interest is of great importance, because incorporation of unlabeled pixels 

into the analysis can lead to higher values for R. Values from 0.1 to 0.3 can be inter-

preted as small association, while values from 0.3 to 0.5 and from 0.5 to 1.0 can be in-

terpreted as medium and high association, respectively.  

2.2.5.4 Fluorescence lifetime imaging microscopy by measuring fluorescence 

resonance energy transfer (FLIM-FRET) 

FLIM-FRET was carried out as in [118,222,223]. CHO-K1 cells were seeded into 35mm 

glass bottom dishes (MatTek Corporation) and co-transfected 24 hrs prior to the ex-

periment with the appropriate uncl. HA-mCer variants as FRET donor and Myr-Pal-

YFP as FRET acceptor. For calculation of the donor lifetime in absence of the acceptor, 

additionally, uncl. HA-mCer alone was transfected. Confocal images were obtained 

sequentially for Cerulean and YFP using a FluoView 1000 microscope (Olympus) as 

describes in 2.2.5.2 (see Figure 2-3 A-C). Using the PicoQuant LSMupgrate kit FLIM 

measurements were performed. Excitation of Cerulean was executed using a 440 nm 

pulsed laser diode with a 20MHz pulse frequency. Emission was detected with a single 

photon avalanche photodiode (SPAD) with a 470/30 bandpass filter, and a TimeHarp 

300 photo counting board processed the signal. For later analysis of the obtained data 

the instrument response function (IRF) was recorded by measuring the scattered light 

of a double distilled water drop with the same excitation but emission detection with a 

440/10 bandpass filter. All signals were accumulated over 90 seconds and 60 pictures 

with a count rate of 2-4 x 104 counts per second.  

Using the SymPhoTime software FLIM analysis was performed. A TCSPC histogram 

was generated after manual selection of the plasma membrane of at least 25 cells co-

expressing HA–Cer and Myr-Pal-YFP (see Figure 2-3 D-F).  

To calculate the lifetime of the donor fluorophore in the absence of acceptor, ten cells 

expressing only the donor were analyzed on each day an experiment was performed. 

The amplitude-weighted lifetimes where calculated according to: 
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The optained lifetimes were judged by the χ2 values and the residues of the fit. χ2 val-

ues between 0,85 and 1,0 were considered valid for further analysis, while values of χ2 

less than 0,85 were excluded. The FRET efficiency (E in %) was calculated using the 

equation: 

 

where τDA is the lifetime of a single cell co-expressing donor and acceptor and τD is the 

average lifetime of the ten cells expressing only the donor. 

In an enclosed system like the plasma membrane, energy transfer between the donor 

and acceptor can occur due to specific interaction or random collision in case of high 

acceptor concentrations. To account for the two possible interactions the amount of 

acceptor Myr-Pal-YFP at the plasma membrane measured and displayed as the mean 

intensity of the fluorescence was determined and plotted against the FRET efficiency 

(E). Therefore, the region of interest of the FLIM analysis (Figure 2-3 F) was exported 

as a picture and used as matrix for the selection of the according area in Image J, 

which was further used for the analysis of the fluorescence intensity. The obtained 

values were corrected for background and laser intensities.  

The data were fitted with GraphPad Prism 5 to the hyperbolic function resembling a 

binding kinetic model: 

 

whereby Emax is the maximal FRET efficiency calculated from the fitting, A is the ac-

ceptor intensity and KD is a measure of clustering (detailed information in Zacharias et 

al. [244]). Low KD values compared to the average intensity indicate true clustering, 

which is independent on acceptor concentration while high KD values indicate random 

interaction, which is dependent on increasing acceptor concentration.  
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Figure 2-3: Analysis of FLIM-FRET. (A, B) Fluorescence image of HA-Cer and Myr-Pal-YFP 

(C) DIC image for evaluation of the cell vitality (D) FLIM pseudocolor image (E) selected plas-

ma membrane as ROI (F) background color exchange to exclude weak signals in the vicinity of 

the ROI and for export as TIFF as matrix for intensity analysis (G) histogram of the selected 

ROI (blue), fitted decay curve (black) and IRF (red), lifetimes and amplitudes are shown in the 

adjacent box on the left, χ2 and amplitude-weighted lifetimes are given in the lower right panel 
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3 Results  

3.1 Effect of mutations in the raft-targeting signals of HA on 

the transport along the exocytic pathway 

3.1.1 Verification and replication of Stephanie Engels data on the 

transport of raft targeting mutant HA 

The first part of the results will focus on the verification and partial replication of pre-

vious experiments performed by Stephanie Engel. The description of previous and re-

cent data is needed for understanding the hypothesis being made in this thesis and for 

the interpretation of the acquired data. The origin of the data will always be indicated 

to clarify the ownership.  

3.1.1.1 Trimerization kinetics of raft-targeting HA mutants 

The first determinant for an efficient transport is trimerization after the expression, 

folding and start of glycosylation of the HA monomers. Non-trimerized or misfolded 

protein will be retained in the ER and subsequently degraded. Differences in trimeriza-

tion of wild type and mutant protein therefore can hint towards an aberrant protein 

due to the mutations made. As Stephanie Engel only performed this experiment once 

in the previous work, the findings made before, were to be verified.  

CHO-K1 cells expressing HA-Cer wt, VIL3A or VIL3A-C3S were shortly labeled (3 min) 

to only label protein within the ER and chased for 7.5, 15 and 30 min. After digestion 

of immunoprecipitated HA with or without trypsin and SDS-PAGE, the kinetic of tri-

merization was analyzed. In this time setting cleavage should only be performed by 

trypsin, as intracellular cleavage by furin takes place at later stages of the transport 

along the exocytic pathway. Trypsin digestion will still lead to the cleavage of HA0 into 

its subunits HA1 and HA2, but with varying subunit sizes due to the multibasic cleavage 

site. Since HA is fused to the fluorophore Cerulean in this experiment, trypsin diges-

tion should only lead to one band representing HA1 and HA2-Cer. 
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When analyzing the fluorography of any given HA construct the appearance of two to 

three distinct bands in the trypsin treated sample can be observed. This is in contrast 

to the prediction of two subunit bands after cleavage. The uppermost band is repre-

senting most probably HA1 with a mass of approximately 50kDa. Cleavage sites within 

the Cerulean can explain the two lower bands with a mass of approximately 45kDa 

even after trimerization of the fusion protein, whereby the small shift in mass between 

the two bands can be explained by differential cleavage within the multibasic cleavage 

site.  

Figure 3–1: Trimerization of raft-targeting mutant HA. (A) CHO-K1 cells expressing cl. HA-Cer 

wt, VIL3A or VIL3A-C3S were labeled with [35S]-methionine for 3 min and chased for 0, 7.5, 15 or 30 min. 

Cell extracts were left untreated (–) or were digested with trypsin (+) prior to immunoprecipitation with 

anti-FPV antibodies and reducing SDS–PAGE. * Indicates an unspecific band. All fluorography pictures 

are from experiments performed by me. (B) Densitometric quantification of bands from three experi-

ments. Stephanie Engel performed one experiment, while I performed the other two. The intensity of HA-

Cer, HA1 and HA2-Cer bands was determined and the value for HA-Cer was set to 100 %. Trimerization 

was calculated [rel. intensity HA-Cer/(rel. intensity HA1 + rel. intensity HA2-Cer)] for each time point and 

is plotted against time of chase. Error bars indicate the standard deviation. Non-parametic Friedman test 

for grouped (repeated) measurements with Dunn’s multiple comparison test of all time points shows no 

significant difference between wt and VIL3A or VIL3A-C3S, respectively. Reprinted from [252] with per-

mission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. 

The analysis of the reproduced experiment verifies the findings of Stephanie Engel by 

showing an almost complete digestion of HA by trypsin after 0 min of chase. Already 
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after 7.5 min the band pattern of HA1 and HA2-Cer variants can be observed (Figure 3–

1 A). Analysis of the kinetics shows that the trimerization is complete after 15 min, 

since the amount of trimerized HA does not increase after 30 min of chase (Figure 3–1 

B).  

As wild type HA-Cer, HA-Cer VIL3A and HA-Cer VIL3A all show the same kinetics, a 

folding or trimerization defect of the mutated protein can be excluded and the con-

structs can be used for further experiments. 

3.1.1.2 Transport from ER to Golgi of raft-targeting mutants 

The following experiment and data is not part of this thesis, but was included for a 

better understanding of the modification kinetics of the raft-targeting mutants. All 

data shown here belong to Stephanie Engel and were first published in her thesis [253]. 

As described in 1.2.2 acquisition of Endo-H resistant carbohydrates takes place in the 

medial-Golgi. Analysing the status of glycosylation therefore is a valid tool to check 

the effect of the mutations on the transport of HA from the ER to the medial Golgi. 

Pulse-chase experiments were performed by Stephanie Engel to measure the amounts 

of Endo-H resistant HA after various times. CHO-K1 cells expressing HA-Cer wt, 

VIL3A, C3S or VIL3A-C3S were labelled with [35S]-methionine and chased for 0, 1, 2 

and 4 hrs. Transport affecting mutants VIL3A and double mutant VIL3A-C3S were ad-

ditionally chased for 6 and 21 hrs to show that the acquisition of Endo-H resistant car-

bohydrates is delayed but still completed. The by furin uncleavable (uncl.) version of 

HA was used for easier quantification. After immunoprecipitation, digestion with (+) 

or without (−) Endo-H and SDS-PAGE band intensities for Endo-H resistant and non-

resistant HA were calculated. It needs to be stated that only 5 of the 7 glycosylation 

sites are fully processed, which is why even after 4 hrs an Endo-H sensitive band is still 

detectable. Additionally, data was normalized to wt in the densitometric quantifica-

tion.  

Stephanie Engel was able to show that t1/2 of 40 min for wt and palmitoylation mutant 

C3S was doubled to ~80 min in case of the transmembrane mutant VIL3A and the dou-

ble mutant VIL3A-C3S. Acquisition of Endo-H resistant carbohydrates was completed 

after 4 hrs for wt and C3S, while VIL3A and VIL3A-C3S acquire full modification only 
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after more than 6 hrs. Thus, only the mutation of the raft-targeting signal in the 

transmembrane region is of importance for transport from ER to the medial Golgi. 

Figure 3–2: Acquisition of Endo-H resistant carbohydrates of raft-targeting mutant HA.  

(A) CHO-K1 cells expressing the indicated HA constructs were with [35S]-methionine for 30 min and 

chased for 0, 1, 2, 4, 6 or 21 hrs. HA was immunoprecipitated with anti-GFP antibodies and digested with 

Endo-H (H) or was left undigested (–) prior to reducing SDS–PAGE. *: Endo-H-sensitive. (B) Densitomet-

ric quantification of bands. Endo-H-resistant HA in % was calculated [(HA-Cer/(HA-Cer + HA⁄-Cer) x 100] 

and is plotted against time of chase. Data is normalized to wt. The horizontal broken line indicates 50% 

Endo H-resistance and the vertical broken line the corresponding chase time. Error bars indicate standard 

deviation. Reprinted from [252] with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT 

OWNER].  

3.1.1.3 Transport within the trans-Golgi network of raft-targeting mutants 

The precursor HA0 is cleaved into its subunits HA1 and HA2 in the TGN by furin, there-

fore investigation of cleavage kinetics allows us to monitor the transport speed in be-

tween Golgi cisternae. Cleavable versions of the HA-Cerulean fusion constructs were 

transfected into CHO-K1 cells and cleavage was assayed via radioactive pulse-chase 

after 0, 1, 2 and 4 hrs.  

The following data shown is combined from experiments performed by Stephanie En-

gel and me. Data for wt and TMR mutant VIL3A were acquired by me, while the data 

for the palmitoylation (C3S) and double mutant (VIL3A-C3S) was acquired by Stepha-

nie Engel during her PhD [253]. Since HA-Cer wt and C3S as well as HA-Cer VIL3A and 

VIL3A-C3S didn’t display a difference in their cleavage kinetics during the studies of 

Stephanie Engel, only HA-Cer wt and VIL3A were used to reproduce and verify the da-

ta. 
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The wild type HA-Cer has a t1/2 of ~50 min, which is the same for the palmitoylation 

mutant C3S. In contrast, mutation of the raft-targeting signal in the TMR alone and as 

double mutation, likewise acquisition of Endo-H resistant carbohydrates, retards the 

transport of HA-Cer as t1/2 is 140 min (see Figure 3–3 B). Cleavage for wild type HA is 

nearly completed after 4 hrs as can be seen in Figure 3–3 A, right lane, which is why 

the obtained data was normalized to the highest value for the wt. Therefore, I was able 

to confirm the data obtained by Stephanie Engel. 

Compared to the transport from ER to medial Golgi the delay in transport increases 

within the Golgi from doubling the time needed to nearly tripling it.  

Figure 3–3: Cleavage of raft-targeting mutant HA. (A) CHO-K1 cells expressing the indicated 

HA constructs were labeled with [35S]- methionine for 30 min and chased for 0, 1, 2 or 4 hrs . HA was im-

munoprecipitated with anti-FPV antibodies prior to reducing SDS–PAGE. (B) Densitometric quantifica-

tion of bands from A and for cl. HA-Cer wt and cl. HA-Cer VIL3A from three to five other experiments. 

Cleaved HA in % was calculated [(HA1 + HA2-Cer)/(HA1 + HA2-Cer + HA-Cer) x 100] and is plotted against 

chase time. The horizontal broken line indicates 50% cleavage and the vertical broken line the corre-

sponding chase time. Error bars indicate standard deviation. Reprinted from [252] with permission from 

Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. 

 

From here on, all experiments were performed by me alone.  
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3.1.1.4 Colocalization of HA-Cer wt and VIL3A with the cis-Golgi marker mem-

brin 

According to Patterson et al. [151] so-called export and processing domains exist in 

the Golgi in which the proteins part according to their function. While Golgi resident 

proteins will mainly be localized in the processing domains due to exclusion from the 

export domains, cargo protein, which is transported to the plasma membrane, will be 

enriched in the export domains.  

In case this hypothesis is valid, it might be possible to visualize this state by co-

localization studies with the HA-Cer wt as an example for a raft protein and membrin, 

an endogenous t-SNARE, as an example of a resident protein, which is located in the 

ER-Golgi intermediate compartment (ERGIC) and the first two cisternae of the Golgi 

[254,255]. Transport delayed VIL3A protein should more likely be localized within the 

processing domains like membrin, whereas wild type proteins would favor the export 

domains.  

To test for localization of HA proteins in comparison with the cis-Golgi marker mem-

brin, CHO-K1 cells were transfected with the according variant of HA, wt and VIL3A 

mutant, respectively. After 24 hrs of transfection cells were stained with an anti-

membrin antibody and confocal images were taken. Using Image J’s colocalization 

analysis plugin pictures were pseudocolored and Pearson’s correlation coefficient (R) 

was calculated. The R value determines the linear correlation of two fluorescence in-

tensities in two channels, preferably red and green. Values between 0 and 0.3 can be 

interpreted as small correlation or colocalization, while values ranging from 0.3 to 0.5 

as medium association. Values from 0.5 to 1.0 are indicating high correlation. In com-

bination with a scatter plot of the intensities against each other, the colocalization can 

be determined quantitatively.  

As a positive control for colocalization HA fused to Cerulean and fused to YFP were 

used (Figure 3–4 left panel). CHO-K1 cells transfected with both constructs should ex-

press mixed trimers of the HA protein, therefore showing the highest colocalization 

that is possible is this set up.  
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Figure 3–4: Colocalization of HA with membrin. Pseudocolored confocal images of CHO-K1 cells 

expressing the indicated constructs. Anti-membrin and Alexa568-coupled secondary antibodies were used 

to stain the cis-Golgi. Third and fourth row: merge of the whole visual field or the zoomed perinu-clear 

region. Fifth row: Scatter plot showing the fluorescence intensities for each pixel in the two channels (x-

axis: YFP, y-axis: Cer/Alexa568). R: Pearson’s coefficient, calculated from the perinuclear region of n cells 

(mean ± SEM): HA wt YFP/CFP: 0.899 ± 0.009, n = 9; HA VIL3A YFP/CFP: 0.862 ± 0.021, n = 7 (flu-

ourescence pictures not shown); HA wt/membrin: 0.185 ± 0.036, n = 23; HA VIL3A/membrin: 0.333 ± 

0.047, n = 16. Results for HA wt/membrin are statistically significantly different (p = 0.0154, p < 0.05) from 

HA VIL3A/membrin as calculated using a two-tailed unpaired Student’s t test. Reprinted from [252] with 

permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]. 
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The confocal images in Figure 3–4 are false color-coded, HA-YFP to red and HA-Cer to 

green, respectively, to allow easy classical merge. After 24 hrs of expression an almost 

complete overlap of the two signals was observed. For further analysis the Golgi was 

chosen as ROI (Figure 3–4 merge zoom). When analyzing the Pearson’s correlation 

coefficient a value of 0.899 was calculated, which indicates high correlation of the two 

signals. Also the scatter plot shows a high linear dependence of the two fluorescence 

intensities. The same was true for heterotrimers of HA-Cer and HA-YFP of the VIL3A 

mutant (R= 0.862, data not shown). These results show that the Pearsons’s R can be 

used to determine colocalization. 

Expression of wt and VIL mutant HA-YFP and subsequent staining of membrin leads 

to a partial colocalization in both cases (see merge Figure 3–4 middle and right panel), 

however, in case of HA-YFP VIL3A to a higher degree. Calculation of R supports this 

finding as values of 0.333 for mutant HA and 0.185 for wt HA were determined. Addi-

tionally, the scatter plot of HA-YFP VIL3A and membrin signal shows a more quasi-

linear form than HA-YFP wt.  

3.1.1.5 Intra-Golgi transport with Fumonisin B1 as inhibitor of sphingolipid 

synthesis 

In order to elucidate the role of raft lipids in transport of HA within the Golgi, synthe-

sis of cholesterol and sphingolipids was to be analysed. The effect of cholesterol on the 

transport of HA was already published by Keller and Simons [245], where they stated 

that inhibition of cholesterol synthesis by Lovastatin in combination with extraction 

by methyl-β-cyclodextrin does not effect the transport from ER to Golgi, but the 

transport from the Golgi to plasma membrane. Not only the arrival on the surface was 

delayed, but also a missorting of HA from the apical to the basolateral membrane in 

differentiated MDCK cells was observed. Therefore, we focussed on the influence of 

sphingolipid on the transport of HA within the Golgi.  

Sphingolipid synthesis was inhibited using Fumonisin B1, which inhibits the ceramide 

synthase being localized in the ER membrane, therefore inhibiting sphingolipid syn-

thesis at an early time point. This allows for studying the intra-Golgi transport under 

conditions, where raft like structure can’t be built.  
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CHO-K1 cells treated with 20 μM Fumonisin B1 for 16 hrs were transfected with HA-Cer 

wt and VIL3A, whereby the inhibitor was also present throughout all of the following 

procedures. 24 hrs post transfection, cells were radioactively labelled for 30 min and 

chased for 0, 1, 2 and 4 hrs.  

Figure 3–5: Cleavage of HA with sphingolipid synthesis blocker Fumonisin B1. (A) CHO-K1 

cells expressing the indicated HA constructs were labeled with [35S]- methionine for 30 min and chased for 

0, 1, 2 or 4 hrs. Cells were left untreated (−) or incubated with 20 μM Fumonisin B1 (+) prior to immuno-

precipitation of HA with anti-FPV antibodies and reducing SDS–PAGE. (B) Densitometric quantification 

of bands from A and from three to five other experiments. Data points connected by dotted line: Cells 

expressing cl-HA-Cer wt or cl-HA-Cer VIL3A were treated with Fumonisin B1 (Fumo). Cleaved HA in % 

was calculated [(HA1 + HA2-Cer)/(HA1 + HA2-Cer + HA-Cer) x 100] and is plotted against chase time. The 

horizontal broken line indicates 50% cleavage and the vertical broken line the corresponding chase time. 

Error bars indicate standard deviation. Reprinted from [252] with permission from Elsevier [OR APPLICA-

BLE SOCIETY COPYRIGHT OWNER]. 

HA cleavage was delayed for both HA variants. The overall amount of cleaved protein 

after 4 hrs was reduced by 20 % for both variants. However, if t1/2 is compared a differ-

ence can be observed. While HA-Cer wt has a t1/2 of 50 min without and 60 min with 

the inhibitor, HA-Cer VIL3A has a t1/2 of 2 hrs and 15 min without and 4 hrs with the 

inhibitor (Figure 3–5 B). Therefore, transport of HA-Cer VIL3A is impaired to a higher 

degree than HA-Cer wt.  

Additionally, it can be noted that Fumonisin B1 blocks transport at an earlier stage, as 

expected, as the shape of the curves do not vary significantly from the untreated sam-

ples. Untreated HA-Cer wt shows a sharp increase of cleavage until 2 hrs of chase until 

it turns to a slow rise. The same can be observed for Fumonisin B1 treated cells, but to 
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a lesser overall extent. For HA-Cer VIL3A an overall slower increase can be observed, 

whereby in Fumonisin B1 treated cells exhibit a similar curve shape from 1 h chase 

time on. 
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3.2 Effect of a putative cholesterol-binding motif on the trans-

port and raft association of HA 

From the data obtained in the first part of the thesis one can conclude, that the hydro-

phobic amino acids at the beginning of the TMR not only function as raft-targeting 

signal at the plasma membrane, but also further the transport along the exocytic 

pathway. As both, cholesterol and sphingolipid synthesis, are needed for a successful 

transport of HA, the amino acids within the VIL motif might be able to interact with 

lipids in their surrounding. The isoleucine and leucine are highly conserved among HA 

subtypes and are facing outwards of the trimer [246], thus, they are in a position allow-

ing them interaction with lipids. Therefore, the next part will first focus on identifica-

tion of possible lipid interaction motifs in the vicinity of the VIL motif.  

3.2.1 Sequence analysis to identify putative cholesterol-binding motifs 

To test the hypothesis, further sequence analysis was performed. The VIL motif is lo-

cated in the outer leaflet of the plasma membrane following the connecting linker re-

gion of the ectodomain and therefore is prone to interact with lipids in their surround-

ing. So far, in the literature one motif for sphingolipid binding and several motifs for 

cholesterol binding are described. Starting with the sphingolipid-binding motif, which 

was defined as followed VXXTLXXIY, no sequence could be found in HA.  

As described in 1.4.3 cholesterol-binding motifs are more diverse and in principle need 

basic, aromatic and large hydrophobic amino acids to interact. The VIL stretch and its 

vicinity matches these requirements: (1) one can find positively charged basic residues 

(K) to position the TMR inside the membrane, prior to (2) the hydrophobic VIL stretch 

which is followed by (3) the aromatic tryptophan (W) (see Figure 3–6 A).  

Neither a CRAC (L/V-X1-5-Y-X1-5-K/R) nor a CARC motif (K/R-X1-5-Y/F-X1-5-L/V) is pre-

sent in the HA sequence. In order to identify a putative cholesterol consensus motif 

(CCM) the sequence W/Y-I/V/L-K/R defined for 7-TM- receptors (see Figure 3–6 B for 

structure of the human β-adrenergic receptor) has to be inverted, since the relevant 

region in HA contacts the outer leaflet of the membrane bilayer (Figure 3–6 D). The 

HA sequence contains the amino acids K, I/L and W and thus corresponds to the in-
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verted CCM motif K/R-I/V/L-W/Y. The required helical structure and the position of 

the involved amino acids on this helix are present as well. The membrane-anchoring 

region of HA (including the linker) has a α-helical structure [256,257] and by using the 

Wenxiang diagram, which shows the angle of the amino acid around the centre of a 

helix, the desired location of the amino acids K, L and W (but not I) on the helix 

(Figure 3–6 C) was confirmed. The second requirement for a CCM is the presence of an 

aromatic residue, either Y or F, located at the end of another transmembrane helix, 

binding the hydroxyl group of cholesterol together with the charged amino acid (R, K) 

(Figure 3–6 A). Although HA contains only one TMR that, however, forms a trimer, it 

exhibits a tyrosine preceding the lysine in the sequence that in principle could bind 

the hydroxyl group from the other side. 

Figure 3–6: Comparison of putative CCM of HA with CCM of β-adrenergic receptor (A) 

Amino acid sequence of H7 HA from FPV (A/FPV/Rostock/34). VIL (underlined) is the TMR raft-targeting 

motif [22,23]. Amino acids of the CCM are in red. ‘Ecto’ denotes the beginning of the crystalized ectodo-

main of HA [51]. (B) see Figure 1-7 (C) Wenxiang diagram (http://www.jci-bioinfo.cn/wenxiang2) from 

the inner half of TMR IV of the β-adrenergic receptor (upper part) and part of the linker and outer part of 

the TMR of H7 subtype HA. The amino acids RIW (upper part) and KLW (lower part) known or supposed to 

contact cholesterol are in grey. (D) see Figure 1-9. The black star denotes the location of the putative 

CCM in HA. This figure was originally published in [258].  

Even though HA proteins are very variable, motifs being important for the viral life 

cycle should be conserved among the subtypes. Phylogenetically, HA subtypes are di-
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vided into two groups that have ~ 45% amino acid identity, but sequences considerably 

vary also within one subtype [259]. A comparison of the consensus sequences deter-

mined for each HA subtype reveals that the amino acids Y, K, L and W are completely 

conserved through all group 2 HAs, but this motif is not present at all in group 1 HAs 

(Table 3-1).  

Table 3-1: Sequence analysis of all HA subtypes. Conserved IL is underlined, CCM in red. 

Group Subtype Sequence 

1 A_H1 LESTR-IYQILAIYSTV 

1 A_H2 LSNMG-VYQILAIYATV 

1 A_H5 LESIG-TYQILSIYSTV 

1 A_H6 LENLG-VYQILAIYSTV 

1 A_H8 LEENT-TYKILSIYSTV 

1 A_H9 LESEG-TYKILTIYSTV 

1 A_H11 LDSNGNVYKILSIYSCI 

1 A_H12 LEENS-TYKILSIYSSV 

1 A_H13 LKSEDNVYKALSIYSCI 

1 A_H16 LKTEDNVYKVLSIYSCI 

2 A_H3 LKSGY--KDWILWISFA 

2 A_H4 LTQGY--KDIILWISFS 

2 A_H7 LSSGY--KDVILWFSFG 

2 A_H10 LSSGY--KDVILWSFSG 

2 A_H14 LTMGY--KDIILWISFS 

2 A_H15 LSSGY--KDVILWFSFG 

 

3.2.2 Creation of HA-Cerulean constructs with mutations in the putative 

CCM 

For the investigation of the influence of mutations in the CCM on transport, surface 

expression and raft association, seven mutant constructs with single to quadruple ex-

2 A_H7 LSSGY--KDVILWFSFG
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change of the triplets coding for the identified amino acids were created (Table 3-2). 

The different HA mutants were created as N-terminal fusion constructs with Cerulean 

as a fluorophore according to Engel et al. [222]. In the transmembrane raft-targeting 

signal VIL the highly conserved isoleucine and leucine were both exchanged individu-

ally against alanine (mutants IA and LA), while the poorly conserved valine was left 

unmutated. In case the assumption of a CCM is right, the mutation of the isoleucine 

shouldn’t show an effect, as it is located on the other side of the helix according to 

Figure 3–6 C. To further exchange amino acids in the CCM located on one helix, addi-

tionally the tryptophan was mutated either individually (WA) or in combination with 

the leucine (LW2A). Subsequently, the whole sequence on one helix was mutated to 

alanines (KLW3A). To elucidate the role of the tyrosine on the other helix two mutants 

were constructed, firstly a double mutant with exchanged Y and K, as both of the ami-

no acids are thought to bind the hydroxyl group of the cholesterol and secondly a 

quadruple mutant, where the Y on one helix and all amino acids on the other helix are 

mutated, therefore destroying the CCM completely.  

Table 3-2: Mutations of the cholesterol consensus motif 

Constructs Amino Acid Sequence 

Cholesterol consensus motif -----YK---LW 

wt KLSSGYKDVILW 

IA ---------A-- 

LA ----------A- 

WA -----------A 

LW2A ----------AA 

YK2A -----AA----- 

KLW3A ------A---AA 

YKLW4A -----AA---AA 
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3.2.2.1 Characterization of the transmembrane features of the newly con-

structed CCM mutants 

In order to exclude that the mutations made have an influence on the overall helical 

structure of the beginning of the transmembrane region, in silico analysis of the TMR 

was performed. Two prediction programs of transmembrane regions were used to de-

termine the length of the transmembrane region. The programs were run entering the 

sequence of the wild type and in comparison the quadruple mutant YKLW4A, which 

would exhibit the most drastic change in case of an influence of the mutations.  

Firstly, TMpred (http://www.ch.embnet.org/software/TMPRED_form.html) predicted 

type two transmembrane regions for the wild, one reaching from amino acid 1 to 18 

resembling the signal peptide sequence of the FPV influenza strain (see Figure 2 in 

[260]) and another reaching from amino acid 527 to 552 resembling the anchoring 

transmembrane region. Thus, the sequence of the TMR is defined as VILWFSF-

GASCFLLLAIAMGLVFICV (Figure 3–7) being delimited by the helix breakers Y and D 

in the beginning and K at the end (Figure 3–6 A). This result does not change in case of 

entering the mutated sequence ( Figure 3–8). 

Figure 3–7: Output of TMR prediction using TMpred for HA wild type. Suggested model for 

transmembrane location and topology and hydrophobicity plot.  
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 Figure 3–8: Output of TMR prediction using TMpred for HA YKLW4A. Suggested model 

for transmembrane location and topology and hydrophobicity plot.  

However, prediction softwares sometimes give contradicting results, therefore, the 

open software HMMTOP (http://www.enzim.hu/hmmtop/) was used for a second run 

of predictions. In contrast to TMpred HMMTOP predicts only the anchoring TMR with 

a slightly shorter helix for wild type HA ranging from amino acid 528 to 552, therefore 

starting at the isoleucine of the VIL motif (Figure 3–9).  

Figure 3–9: Output of TMR prediction using HMMTOP for wild type HA. Sequence shown 

from amino acid 400 on. Topology displayed in alignment O= outside, H= helix, i= inside 

Likewise, HMMTOP does not predict a change in the length of location of the trans-

membrane helix in case of HA YKLW4A (Figure 3–10). 
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Figure 3–10: Output of TMR prediction using HMMTOP for HA YKLW4A. Sequence shown 

from amino acid 400 on. Topology displayed in alignment O= outside, H= helix, i= inside 

Consequently, the mutant constructs with mutation in the putative CCM of HA do not 

interfere with helix forming of the transmembrane region and therefore can be used 

for further experiments.  

3.2.2.2 Cellular localization of the CCM mutants 

CHO-K1 cells were transfected with the according HA constructs 24 hrs before imaging 

the localization in living cells.  

As expected HA-Cer wild type is localized mainly at the plasma membrane and is en-

riched in the Golgi. Likewise, mutants HA-Cer IA, WA and YK2A show clear plasma 

membrane staining and delimited Golgi localization. In contrast to the wild type, mu-

tants HA-Cer LA, LW2A, KLW3A and YKLW4A are less delimited in their Golgi locali-

zation, although their plasma membrane localization is still present even though less 

distinct.  

Despite their differences in the expression pattern, all mutants show expression and 

location at the plasma membrane, but to different extent. For detailed analyses of the 

surface expression see 3.2.4. 
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Figure 3–11: Characterization of the CCM mutants. Expression of CCM mutants in CHO-K1 cells 

24 hrs after transfection. Two representative cells each.  

3.2.3 Investigation of the transport along the exocytic pathway of the 

CCM mutants 

As shown previously in 3.1.1.1 the trimerization is not affected by mutations in the 

HA. The same was true for all CCM mutants, which is why the data is not shown here. 

3.2.3.1 Transport from ER to the medial Golgi  

CHO-K1 cells expressing an uncleaved version of the HA mutants were labelled with 

[35S]-methionine and chased for 0, 1, 2, 4, 6 and 16 hours. After immunoprecipitation, 

digestion with (+) or without (−) Endo-H and SDS-PAGE band intensities for Endo-H 

resistant and non-resistant HA were calculated. The results obtained for the different 

mutants can be grouped according to their delay in transport. The first group consist 

of HA-Cer IA, WA (Figure 3–12 A, B) and YK2A (Figure 3–12 C, D), all showing the 

same behaviour in transport as the wild type with a t1/2 of ~40 minutes. The second 

group comprises HA-Cer LA (Figure 3–12 A, B) and HA-Cer LW2A (Figure 3–12 C, D), 

with already a delay of 50 min compared to the wild type as they exhibit a t1/2 of ~90 

minutes. The third group (HA-Cer KLW3A and HA-Cer YKLW4A; Figure 3–12 C, D) has 

an increased delay up to more than 3 hrs with a t1/2 of ~4 hrs. Processing of the mutants 

is still not completed after 6 hrs, an additional time point after 16 hrs was included to 
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exclude a general transport defect. With ~80% of Endo H-resistant carbohydrates all 

mutants showed the same processing level as the wild type (Figure 3–12 D).  

Figure 3–12: Transport from ER to medial Golgi. (A and C) CHO-K1 cells expressing the indi-

cated HA constructs were labeled with [35S]methionine for 30 min and chased for 0, 1, 2, 4 or 6 hrs. HA was 

immunoprecipitated with FPV antiserum and digested with Endo H (+) or was left undigested (−) before 

reducing SDS-PAGE and fluorography. Endo H-sensitive HA–Cer is denoted by an asterisk. Black lines 

between lanes indicate that the lanes are from different fluorograms. (B and D) Densitometric quantifi-

cation of bands from three to six independent experiments. The percentage Endo H-resistant HA was cal-

culated [(HA–Cer/(HA–Cer+HA* − Cer)×100], normalized to HA–Cer wt and plotted against time of chase. 

The horizontal broken line indicates 50 % Endo H-resistant carbohydrates and the vertical broken line the 

corresponding chase time. Results are means ± S. D. (E) CHO-K1 cells expressing the indicated HA con-

structs chased for 16 hrs. The percentage of Endo H-sensitive HA (not normalized) is specified below the 

lanes. This figure was modified and originally published in [258]. 

 



    RESULTS  79 

 

HA-Cer LW2A, HA-Cer KLW3A and HA-Cer YKLW4A are less stable than the wild type, 

as can be seen by the more faint bands after 16 hrs of chase (Figure 3–12 E). This 

means that besides the transport defect, they are more often degraded. As trimeriza-

tion is not affected (data not shown), this is not due to folding or trimerization defects. 

Therefore, degradation must take place in later stages of expression.  

3.2.3.2 Transport within the trans-Golgi-network 

CHO-K1 cells expressing cleavable versions of the HA-Cerulean fusion constructs were 

labeled with [35S]-methionine chased for 0, 1, 2, 4 and 6 hrs. 

The analysis of the cleavage of HA0 into HA1 and HA2 reveals a different evaluation of 

the results obtain for the various mutants from the analysis of the acquisition of Endo-

H resistant carbohydrates. Despite Ha-Cer IA, all other six mutations show a negative 

effect on the kinetics of cleavage (Figure 3–13 B, D). The increase of t1/2 for HA-Cer IA 

compared to HA-Cer wt from a t1/2 of 55 min to 70 min is only subordinate, since a 

grouped analysis of the percentages of cleaved HA at the different time points with a 

two-way ANOVA and Dunnet’s multiple comparison didn’t show a significant differ-

ence. Whereas the single exchange of W against A (HA-Cer WA; Figure 3–13 A, B) and 

the double mutation HA-Cer YK2A (Figure 3–13 C, D) had no influence on the acquisi-

tion of Endo-H resistant carbohydrates, t1/2 for cleavage of both mutants was only 

reached after ~2 hrs, which means a delay of 1 h compared to wild type. For HA-Cer LA 

an even higher delay was determined with a t1/2 of 190 min and a delay of over 2 hrs 

(Figure 3–13 A, B). The highest impact on transport to the TGN was determined for 

HA-Cer LW2A, HA-Cer KLW3A and HA-Cer YKLW4A with a t1/2 of roughly 5 hrs and a 

delay of ~4 hrs (Figure 3–13 A, B). The drastic increase in transport delay for HA-Cer 

LW2A can be explained by the additive effect of the mutation of the tryptophan and 

the leucine. The 2 hrs of transport time of HA-Cer WA and the 3 hrs of HA-Cer LA add 

up to an overall delay of 5 hrs for HA-Cer LW2A. Additional mutations of the lysine 

and tyrosine (YKLW4A) in comparison do not further retard the protein.  
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Figure 3–13: Intra-Golgi transport. (A and C) CHO-K1 cells expressing the indicated HA 

constructs were labeled with [35 S]methionine for 30 min and chased for 0, 1, 2, 4 or 6 hrs. HA was im-

munoprecipitated with FPV antiserum before reducing SDS-PAGE and fluorography. Owing to fusion of 

Cer to HA2, both HA subunits HA1 and HA2–Cer have an identical molecular mass. Black lines between 

lanes indicate that the lanes are from different fluorograms. (B and D) Densitometric quantification of 

bands from three to six independent experiments. The percentage cleaved HA was calculated [(HA1+HA2 –

Cer)/(HA1+HA2 –Cer+HA–Cer)×100], normalized to HA–Cer wt and plotted against the chase time. The 

horizontal broken line indicates 50 % cleavage and the vertical broken line the corresponding chase time. 

Results are means ± S. D. This figure was modified and originally published in [258]. 

From the data on acquisition of Endo H-resistant carbohydrates and cleavage of HA0 

we can calculate the time the proteins need to be transported from the medial Golgi to 

the TGN (see Table 4–1 “transport Golgi to TGN”). Likewise the cleavage, the leucine 

and tryptophan act in an additive manner. While HA-Cer LA again showed the strong-

est effect on transport with a t1/2 of 100 min and HA-Cer WA showed a milder effect 

with a t1/2 of 70 min, while the combination of both mutations leads to a t1/2 of 190 min. 

On the contrary, the additional mutation of Y and K only resulted in a t1/2 of 50 min. 
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This either suggest that mutations of the outer amino acids can compensate for the mu-

tation made in the hydrophobic and aromatic amino acids or the triple and quadruple 

mutation, respectively, already lead to a strong defect in transport from the ER to the 

medial Golgi, which is not further enhanced in the transport to the TGN.  

3.2.4 Surface expression of CCM mutants  

For quantification of the expression level of the mutant proteins at the plasma mem-

brane, we conducted flow cytometry experiments. Imaging, even if applied confocally, 

only allows for a qualitative but not quantitative analysis of the expression levels of 

the different mutants at the plasma membrane. Especially for mutants with high de-

gree in transport delay (i.e. Figure 3–11 HA-Cer YKLW4A) it becomes difficult to dis-

tinguish between cytoplasm and membrane. Therefore, flow cytometric analysis was 

used due to its ability to quantify reliably the levels of protein at the plasma mem-

brane, and in addition it is able to separate the signals from cytoplasm and plasma 

membrane. Anti-FPV polyclonal serum was used on non-permeabilized cells to specif-

ically label HA on the surface of expressing cells. To evaluate the amount of surface 

expression compared to overall expression, the signal of the Cerulean tag was meas-

ured as well. Additionally, this allows the comparison of the results in respect to the 

overall expression level of the different mutants, which might be different due to low-

er stability.  

Cells transfected with the HA-Cer variants were fixed after 24 hrs of transfection to 

prevent re-endocytosis of the protein and subsequently stained with a rabbit anti-FPV 

antiserum followed by an anti-rabbit Alexa 488 secondary antibody.  

First, the number of cells showing surface localization relative to the number of total 

transfected cells was analyzed (Figure 3–14 A). The results show that all HA variants 

are transported to the cell surface, but to a different extent. Again, it can be discerned 

between 3 groups. The first group consists of wild type HA-Cer and HA-Cer IA, both 

with approximately 90 % of cells with signal at the surface. The second group compris-

es HA-Cer LA, WA and YK2A, all having ~80 % surface expressing cells. The last group, 

HA-Cer LW2A, KLW3A and YKLW4A, has an even lower amount of surface expressing 

cells with only ~60 %.  
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Secondly, by measuring the mean fluorescence intensity the amount of HA at the 

plasma membrane relative to the overall expression was determined (Figure 3–14 B). 

The results are normalized against the surface expression of the wild type. The results 

confirm the previous grouping of the mutants. Group 1 contains HA-Cer wt and IA 

with a non-significant change (100 %, 95 %, respectively) in surface expression. Group 

2 consists of HA-Cer LA, HA-Cer WA and HA-Cer YK2A, where the amount of HA is 

significantly reduced to ∼80 %, whereas in group 3, containing HA-Cer LW2A, KLW3A 

and YKLW4A, the amount is decreased to 50 % relative to HA-Cer wt. 

Figure 3–14: Surface expression of indicated HA constructs. Flow cytometric analysis of CHO-

K1 cells expressing the indicated HA constructs. Cells were stained with FPV antiserum. The fluorescence 

from Cerulean was also recorded to include only cells that express HA in the analysis. (A) Percentage of 

HA-expressing cells with HA at the cell surface. (B) Median fluorescence intensity (equivalent to the HA 

amount) at the plasma membrane normalized to HA wt. Black to white nuances indicate statistically sig-

nificantly different groups. Black and dark grey are significantly different from light grey and white, while 

light grey is significantly different from white. P<0,001 between all groups by Ordinary one-way ANOVA 

followed by Tukey’s multiple comparison test. This figure originally published in [258]. 

In summary, these results resemble the amount of cleaved HA after 6 hrs of chase (see 

Figure 3–13 B and D), despite of HA-Cer LA, which had only 70 % cleaved HA but 77 % 

of surface expressing cells. 

 

 



    RESULTS  83 

 

3.2.5 Lipid raft association of CCM mutants  

Finally, we asked the question, if raft association at the plasma membrane is depend-

ent on the presence of the CCM. Thus, FLIM-FRET experiments were performed. CHO-

K1 cells were transfected with suitable FLIM-FRET donor and acceptor pairs; in this 

case HA fused to Cerulean as donor and the established inner leaflet raft marker Myr-

Pal fused to YFP as acceptor.  

24 hrs post transfection the lifetime of the donor in presence and absence of the ac-

ceptor was measured at the plasma membrane of living cells and used for further cal-

culation of the FRET efficiency according to: 

 

As mentioned in the introduction, the possibility of false-positive FRET efficiency 

arises due to the limited space within a membrane. There the FRET efficiencies were 

plotted against the acceptor concentration and the data was fitted according to this 

hyperbolic function: 

 

whereby low KD values compared to the average intensity indicate true clustering, 

which is independent on acceptor concentration, and would lead to a hyperbolic shape 

of the fitting curve and high KD values, in contrast, indicate random interaction, which 

is dependent on increasing acceptor concentration and would lead to linear fitting (see 

Figure 3–15).  
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Figure 3–15: Principle of FRET cluster analysis. Schematic representation of donor and acceptor 

clustering. (A) FRET efficiency increases linearly according to availability of acceptor. (B) FRET efficien-

cy increases following a hyperbolic function due to high clustering already at low acceptor concentra-

tions. Created with CorelDraw. 

Note, however, that the values should not be interpreted in a strict quantitative fash-

ion, but rather qualitatively to consider different conditions of comparable FRET pairs.  

First, the results for HA wild type and the VIL mutant from Engel et al. [222] were re-

produced to validate the methodology and to use them as controls for clustering and 

impaired clustering. Figure 3–16 A shows the expected high median FRET efficiency of 

17,6%, which is decreased to ∼7% in case of mutating the transmembrane raft-

targeting signal VIL. Likewise, clustering between wild type HA-Cer and the raft mark-

er yielded a low KD of ~1,31x10-6 (Figure 3–16 B) and a high KD of 7488 in case of HA-

Cer VIL (Figure 3–16 C). Additionally, the shape of the fitting curve changes from lev-

elling off at low acceptor concentrations to a quasi-linear shape (Figure 3–16 B and C).  

For analyzing the CCM mutants, we chose to use a suitable set, which is visibly ex-

pressed at the plasma membrane and reflects the different transport defects. HA-Cer 

WA is a mutant, which was only mildly affected in transport and also shows just a 

slight impact on plasma membrane expression, while HA-Cer LW2A is highly impaired 

in transport and one of the mutants expressing only to 50 % of HA on the plasma 

membrane (like HA-Cer KLW3A and YKLW4A). As both mutants only reflect muta-

tions on one helix, which are both located within the TMR, HA-Cer YK2A was also in-



    RESULTS  85 

 

cluded to elucidate the role of the combined binding of both helices and the role of 

mutations in the linker region.  

 

Figure 3–16: Cluster analysis of HA-Cer mutants with the raft marker Myr-Pal. (A) FRET 

efficiencies calculated for association of the raft-marker with the indicated HA mutants. FRET efficiency 

(E) measured for each cell is indicated as a dot. E is indicated as the median with interquartile range. 

P<0,0001 between wild type and mutants by Ordinary one-way ANOVA followed by Tukey’s multiple 

comparison test. (B–F) FRET efficiency (E) for each cell plotted against the relative acceptor intensity in 

that cell; hyperbolic fit (unbroken line, broken line: 95 % confidence interval) provides KD to assess clus-

tering. The KD is displayed as a vertical line. (B) Co-expression of HA–Cer wt and Myr-Pal–YFP; n (num-

ber of analyzed cells) = 25. (C) Co-expression of HA–Cer VIL3A and Myr-Pal–YFP; n = 26. (D) Co-

expression of HA–Cer WA and Myr-Pal–YFP; n = 46. (E) Co-expression of HA–Cer LW2A and Myr-Pal–

YFP; n = 49. (F) Co-expression of HA–Cer YK2A and Myr-Pal–YFP; n = 37. This figure was originally pub-

lished in [258]. 

When co-expressed in CHO-K1 cells with the raft marker Myr-Pal, all mutants reveal a 

strong reduction in FRET efficiency similar to HA-Cer VIL3A of ∼7% for HA-Cer WA 

and YK2A and non-significantly different 9% for HA-Cer LW2A (Figure 3–16 A). The 

cluster analysis, in contrast, enables to perform a more detailed analysis. While HA-

Cer LW2A (Figure 3–16 E) and YK2A (Figure 3–16 F) both are in the same range than 

HA-VIL3A with a KD of 2630 and 3662, respectively, for HA-Cer WA (Figure 3–16 D), 

compared to the other mutants, only a KD of 474 was calculated. As the result is about 
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one order of magnitude lower, one can suggest that the clustering with the raft marker 

is also reduced, but to a lesser extent than the other two mutants. Therefore, the signal 

that determines association of HA with rafts encompasses not only hydrophobic, but 

also aromatic and positively charged, residues located at the interface between the lipo-

philic core of a bilayer and the hydrophilic extracellular region.  
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4 Discussion 

4.1 Transport of HA along the exocytic pathway 

The hemagglutinin protein of influenza A viruses not only performs functions in the 

entry of the virus into its host cell, but also is the main determinant of the budding 

zone of the virus. By incorporation into lipid rafts, specialized cholesterol- and sphin-

golipid-rich plasma membrane domains, it builds the foundation of the assembly site 

[110]. Two raft-targeting signals of HA have been proposed so far. Firstly, the S-

acylation of the three cysteines being located at the edge of the transmembrane region 

and in the cytoplasmic tail and secondly the hydrophobic amino acids valine, isoleu-

cine and leucine (VIL) being located in the transmembrane region facing the outer 

leaflet of the plasma membrane. During the studies of the former PhD student Stepha-

nie Engel exploring the raft integration of HA at the plasma membrane in living cells, 

the observation was made that the raft-targeting signals, in particular the hydrophobic 

stretch, could also be crucial for the correct processing of HA and therefore the proper 

transport of the protein along the exocytic pathway.  

The first aim of this thesis was to validate the observations made regarding the 

transport, which was feasible, and showed that the mutation of the VIL motif but not 

the three S-acylation sites led to a delay in transport compared to the wild type. In ad-

dition, inhibition of cholesterol [245] and sphingolipid synthesis, as investigated here, 

also influence the transport kinetics of HA in a negative manner (all transport data will 

be discussed collectively in detail in 4.1.2). These observations on the importance of 

both, the VIL raft targeting signal and the presence of raft enriched lipids, for the cor-

rect processing and transport of HA in combination with the published data on raft-

like structures already emerging in the Golgi (see 1.4.1) led to the hypothesis, that cho-

lesterol and sphingolipid rich membrane domains are not only important for the localiza-

tion of HA at the plasma membrane, but also already early during the transport along the 

secretory pathway.  
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4.1.1 Influenza A group 2, but not group 1, hemagglutinin possess a pu-

tative cholesterol consensus motif 

How can the hydrophobic raft-signal facilitate the interaction with lipid rafts either in 

the Golgi or at the plasma membrane?  

Raft interaction of influenza HA has not been studied in detail so far. The data availa-

ble, especially on the hydrophobic beginning of the transmembrane region, is based 

only on alanine scanning mutagenesis [220,261]. The underlying mechanism of raft 

association by this motif was not studied further, which is why we were trying to eluci-

date the possibility of interaction with lipid rafts. As the amino acids isoleucine and 

leucine of the motif are facing outwards of the trimer [246], an in silicio analysis was 

performed to find possible binding motifs for raft lipids. The analysis revealed no 

sphingolipid-binding motif being present in the sequence of FPV HA, but a putative 

cholesterol consensus motif (CCM; K/R-I/V/L-W/Y) (Figure 3–6), which encompasses 

at least the leucine of the VIL motif. This is the first time this particular motif is de-

scribed for a viral protein. So far only the CRAC motif was found to be present in virus 

proteins like gp41 of HIV [169] and M2 of influenza virus  [84], where they facilitate 

raft integration [262] or localization to the edge of lipid rafts [84], respectively. The 

CCM was only described for human class A G protein-coupled receptors (GPCRs) and 

the structural details of binding were defined for the human β-adrenergic receptor 

[172]. HAs of influenza A viruses are very diverse and can be divided phylogenetically 

into group 1 and group 2, whereby the here used H7 HA of FPV, in which the CCM mo-

tif was found, is member of group 2 HAs. Analysis of the consensus sequence of all 

classical 16 subtypes revealed that the CCM motif is highly conserved among group 2 HA 

but not group 1 (Table 3-1). No cholesterol-binding motif could be found in the se-

quence of group 1 HAs, only the isoleucine and leucine are highly conserved.  

As the CCM is involved in the transport of HA, the question arises, whether the phylo-

genetic conservation pattern is reflected in already published transport data. When 

the isoleucine and leucine were mutated in a protein expression system using a group 

1 H2 HA of an influenza A/Japan /305/1957 isolate, despite loosing raft association, 

neither an effect on the arrival at the Golgi nor at the cell surface could be detected 

[261], which would support our hypothesis of a putative CCM being involved in 
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transport only of group 2 HAs. This indicates that in group 1 HAs a different mechanism 

of transport might be used, as integration into raft structures does not influence transport 

kinetics. The fact that the mutation in the IL motif still leads to the loss of raft integra-

tion at the plasma membrane further hints to a different way of raft association within 

the Golgi and at the plasma membrane, which could be explained by the altered lipid 

composition of the compartments. In contrast, when in a group 2 H3 HA (A/Udorn/72) 

the conserved IL motif in combination with the preceding tryptophan was mutated, 

the transport to the Golgi was delayed in a comparable manner as for the VIL mutant 

we analyzed [220]. Combination experiments investigating Endo-H resistance and Tri-

ton-X 100 solubility also confirmed that integration into raft-like structures occurs 

within the Golgi, as full processing of the carbohydrates correlates with insolubility of 

the proteins being expressed, therefore supporting the before mentioned theory of 

emerging raft-like structures within the Golgi. Takeda and colleagues not only investi-

gated the influence of the mutation on protein level, but also studied the phenotype of 

viruses expressing the altered HA protein produced by using a recombinant rescue sys-

tem. The subsequent characterization of the virus mutants confirmed the result of the 

loss of raft integration of the WIL mutant, which led to a decrease in virus titer of 3 

logs that was accompanied with the loss of clustering of HA on the surface of infected 

cells and 50 % less incorporation of HA into virus particles. Therefore, the data on the 

H3 HA confirms our data on the transport delay, when mutating the conserved IL and 

additionally elucidate the role of the WIL motif in the viral replication cycle. These re-

sults support our theory of a putative cholesterol-binding motif being involved in transport 

and raft integration in group 2 HAs.  

To study the influence of the putative CCM, first, mutations were introduced into the 

sequence of HA by exchanging the triplets coding for single to quadruple amino acids 

of the motif by triplets coding for alanines in the according expression plasmids. This 

enabled studying single and synergistic effects of the assumed cholesterol binding fac-

tors, thereby elucidating if all amino acids are needed for interaction with raft-like 

structures and correct transport.  

In the following chapter the role of the VIL motif and the putative CCM in transport of 

HA will be discussed collectively and in relation to each other.  
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4.1.2 The hydrophobic raft-targeting signal VIL and the CCM are crucial 

for the correct transport of HA along the secretory pathway, espe-

cially through the Golgi  

Table 4–1: Summary of the transport kinetics results 

Mutant 
Transport to 
medial Golgi 

(t1/2) 

Transport 
to TGN  

(t1/2) 

Transport 
Golgi to 

TGN 

Surface  

expression 

wt 40 min 55 min 15 min 100% 

C3S 40 min 55 min 15 min ND 

VIL3A 80 min 150 min 70 min ND 

IA 40 min 70 min 30 min 95% 

LA 90 min 190 min 100 min 85% 

WA 40 min 110 min 70 min 80% 

YK2A 40 min 120 min 80 min 80% 

LW2A 100 min 290 min 190 min 50% 

KLW3A 240 min 290 min 50 min 50% 

YKLW4A 240 min 290 min 50 min 50% 

Half times for transport to the medial Golgi and to the TGN were compiled from Figures 3-2, 3-12 and 3-

13. The time for transport between Golgi and TGN was calculated as the difference between the t1/2 for 

transport to the TGN minus the t1/2 for transport to the medial Golgi. Data for surface expression are from 

Figure 3-14. Results are divided into three classes: Mutants with the strongest effect on the respective 

process are highlighted in dark gray, with an intermediate effect are highlighted in light gray and with no 

(or very little) effect are not highlighted.  

For the interpretation of the data obtained regarding the transport and localization of 

the HA variants, firstly the kinetic data will be analyzed followed by the data on the 

steady-state localization within the cell.  

To investigate the effect of mutations in the raft-targeting signals of HA and in the 

cholesterol consensus sequence on the kinetics of the transport from the ER to the 

plasma membrane, different radioactive pulse-chase experiments and differential 

post-treatments were conducted as explained in the results. The processing of HA 
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along the exocytic pathway can be divided into three steps, which are possible to ex-

amine with metabolic labeling of newly produced protein.  

When interpreting the data obtained, the results for the trimerization are very promi-

nent. Most of the HA mutants described so far, which are defective in transport, have a 

defect in folding and/or trimerization [263,264]. For example, Garten and colleagues 

created temperature sensitive mutants and found two groups of mutation abolishing 

the exit from the ER. Either the proteins were unable to trimerize and stayed mono-

meric or the proteins were forming aggregates [263]. Formation of correct trimers is 

the limiting step for the efficient export of the protein from the ER, as aberrant trimers 

are retained in the ER [99,100]. Surprisingly, all the mutants analyzed in this study 

showed times until trimerization (see Figure 3–1 for VIL3A and C3S, data for the CCM 

mutants are not shown) that are in with the previous observations by Stephanie Engel 

[253] and with the kinetics of previous published transport data for FPV H7 HA and 

other HA subtypes [263–265], therefore, a folding defect is very unlikely. Furthermore this 

study is the first one describing a transport defect of HA protein occurring not before the 

Golgi.  

Analyzing the arrival of the protein at the medial-Golgi, the data shows that only the 

mutation of the VIL motif but not the S-acylation leads to a doubled time of transport 

from the ER to the medial Golgi (Figure 3–2). When interpreting the results obtained 

for the CCM mutants (Figure 3–12 B, D), we can make several assumptions. First of all, 

even though the cholesterol content in the ER is low, mutations in the cholesterol consensus 

motif still have an impact on the transport from the ER to the medial Golgi. But cholester-

ol binding is not absolutely required for the transport, as all mutants reach the medial 

Golgi, even though after different times (Figure 3–12 E). Under the assumption that 

the putative CCM in HA is able to interact with cholesterol, we can additionally draw 

conclusions about the importance of the different amino acids in the motif. In the fol-

lowing part, I will interpret the importance of the different amino acids of the CCM for 

the correct transport by starting with the quadruple mutant, as the mutant with the 

most drastic effect on transport kinetics and analyze the improvement of transport by 

reintroduction of the amino acids into the motif (Figure 4-1). 
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Figure 4-1: Schematic depiction of the location of the CCM mutations on the helices of 

two HA TMRs and their corresponding effect on transport to the medial Golgi.  

Since the most prominent delay in transport was observed in case of mutating all four 

amino acids (YKLW4A), but introduction of the tyrosine on one helix (KLW3A) did not 

improve the transport kinetics, we can conclude that the tyrosine is not able to rescue 

the phenotype induced by the loss of the main interaction made by the three amino acids 

binding from the other helix. Binding the hydroxyl group of cholesterol from both sides 

(via Y and K), as still possible in the LW2A mutant, seems to rescue the phenotype at 

least partially, as the delay is less prominent compared to the triple mutant. Addition-

al introduction of the tryptophan (LA mutant) does not improve transport, while in-

troduction of leucine (WA mutant) rescues the phenotype. Moreover, the presence of L 

and W (YK2A mutant) is also sufficient to rescue the phenotype, which is why we can 

assume that leucine is the crucial amino acid binding the cholesterol in the middle of the 

molecule. The finding that neither the mutation of the tryptophan, the innermost ami-

no acid in the motif, nor the double mutation of the outermost lysine and tyrosine af-

fected the transport further supports this theory.  

How do the results for the mutation of the VIL motif fit to the results for mutations in the 

CCM? As mentioned in 3.2 only the isoleucine and leucine of the VIL motif are highly 

conserved and their location on the helix facing outwards of the trimer would enable 

them to interact with lipids. However, only the leucine is part of the CCM facing to the 

right direction for interaction with cholesterol, as seen in the Wenxiang diagram 

(Figure 3–6 C). Therefore, only the mutation of the leucine but not the isoleucine 

should affect the transport. This is indeed reflected in the results obtained for the sin-

gle mutants. While the mutation of the conserved isoleucine (IA) led to the same 

transport speed as the wild type, the single mutant HA-Cer LA shows a similar delay as 

the VIL mutant (see Table 4–1, first column). Thus, the results clearly show that the de-

lay of the VIL mutant is indeed due to the mutation of the leucine within the CCM.  
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Mostly the same coherence can be found, when analyzing the cleavage kinetics of the 

HA variants. Both mutants, VIL3A and LA, respectively, show a medium effect on 

transport, when compared to the other mutants (Table 4–1, second column), while 

HA-Cer IA shows a non-significant difference. Hence, in the following analysis only 

HA-Cer LA will be discussed, as it represents the VIL3A mutant as well.  

Figure 4-2: Schematic depiction of the location of the CCM mutations on the helices of 

two HA TMRs and their corresponding effect on transport to the TGN.  

Like the previous results concerning the transport to the medial Golgi, the quadruple 

exchange of tyrosine, lysine, leucine and tryptophan (YKLW4A) has the most promi-

nent delay in transport to the TGN (Figure 3–13). On the contrary, neither the intro-

duction of Y (KLW3A) alone nor the additional introduction of K (LW2A) was able to 

rescue the phenotype. While for the transport from the ER to the medial Golgi the 

binding of the hydroxyl group of cholesterol by the outer Y and K was at least partially 

able to accelerate the transport (LW2A), for the transport within the Golgi either the 

additional introduction of the tryptophan (LA mutant) or the leucine (WA mutant) is 

needed. The aforementioned importance of the leucine is reflected in the results as 

well. The additional introduction of W (HA-Cer LA) accelerates the protein only half as 

much as the introduction of L (HA-Cer WA). In the case of the YK2A mutant, where 

both leucine and tryptophan are still present, the transport shows the same kinetic as 

in the case, where leucine is present together with aromatic Y and charged K (WA). 

Therefore, we can conclude that for partial rescue of the phenotype two features in combi-

nation are needed, either the middle hydrophobic amino acid leucine with the outer two 

amino acids, the aromatic tyrosine and the charged lysine or with the inner aromatic amino 

acid tryptophan. Nevertheless, for recovery of wild type kinetics in cleavage all three com-

ponents of the CCM are needed, whereby the leucine is the crucial amino acid.  
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When studying the involvement of raft lipids in the transport of HA by blocking the 

synthesis of sphingolipids with Fumonisin B1, we were able to demonstrate that the 

transport is affected by the treatment in case of wild type protein and the mutated var-

iant (VIL3A) in the same manner (Figure 3–3). Hence, we conclude that sphingolipids are 

involved in the transport through the Golgi independent from cholesterol binding. It was 

already published that inhibition of cholesterol synthesis interferes with the transport 

of HA [245] and we showed that inhibition of sphingolipids interferes as well with the 

transport. Our findings on transiently expressed protein were supported in an infec-

tion model by a study published by Tafesse et al. [266] a year later than our publica-

tion. They used a sphingomyelin (SM) synthase deficient cell line, which is incapable 

of transferring the phosphocholine moiety from phosphatidylcholine (PC) to ceramide 

[267,268], thus interrupting the sphingolipid synthesis within the Golgi and reducing 

SM levels to 20 %. Kinetic studies of intracellular transport of HA expressed after an 

infection with a A/WSN/33 virus revealed, that ER to Golgi transport was not affected, 

but transport from the Golgi to the cell surface was significantly delayed yet not abol-

ished, which is in line with our observations regarding Fumonisin B1 treatment. 

Tafesse et al. confirmed their data, by using myriocin in MDCK cells, an inhibitor of 

the serine palmitoyltransferase (SPT) that blocks the initial step of sphingolipid syn-

thesis even before the point of application of Fumonisin B1 leading to a near complete 

inhibition of the synthesis. As they were performing the experiments in infected cells, 

their virus results confirm our observations in transfected cells, showing that our results 

are not just an artifact of an over-expression system. Since WSN is a group 1 virus ex-

pressing a H1 HA, their findings also support our result that sphingolipids are general-

ly important for the transport of HA, independent from the ability to bind cholesterol, 

as group 1 HAs do not contain a CCM. The findings of us and other groups indicate that 

sphingolipids and cholesterol play a key role in transport of viral hemagglutinin in an addi-

tive way, as inhibition of synthesis of either one or the other lipid does not abolish 

transport but slows it down.  

In addition to the kinetic studies, the steady-state intracellular and plasma membrane 

localization of HA after 24 hrs of expression was studied. The co-expression and sub-

sequent immunostaining of the HA variants and the ERGIC or cis-Golgi resident t-
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SNARE membrin revealed HA-Cer VIL3A being more co-localized with membrin than 

the wild type HA (Figure 3–4). This supports our conclusion, that the VIL mutant, as a 

representative of a cholesterol-binding mutant, is transported slower than the wild type 

protein, as it is more associated with the cis-Golgi, while the wild type HA is probably al-

ready transported to further Golgi compartments. As a complementary method FACS was 

used to observe the plasma membrane located amounts of the HA variants. Furin cy-

cles between the TGN and the plasma membrane [109], and cleavage of HA by Furin 

takes place in the TGN or even in transport vesicles to the plasma membrane. There-

fore, we would expect the amount of surface localized HA to resemble the amount of 

cleaved HA. The data obtained for surface expression is in accordance with this as-

sumption, as the percentages calculated for surface amount (see Figure 3–14 B) do re-

flect the amount of cleaved HA. The same grouping of the different mutants as for the 

kinetics can be applied, with HA-Cer IA showing no effect, HA-Cer LA, WA and YK2A 

having a mild effect and HA-Cer LW2A, KLW3A and YKLW4A with the strongest effect 

on surface expression. Therefore, we can conclude that transport to the surface is not fur-

ther delayed or even halted. All HA variant with mutations in the CCM are transported to 

the surface only with different efficiency.  

4.1.2.1 Cholesterol binding might be already important for transport from the 

ER to the Golgi 

Mutations in the cholesterol consensus motif already influence the transport of HA to 

the medial-Golgi. As the trimerization in the ER is not affected, a different mechanism 

must lead to the delayed arrival at the medial-Golgi. Although the cholesterol content 

is low, a lipid dependent sorting might already take place at the ER. GPI-anchored raft 

proteins for example are exported from the ER in cholesterol containing vesicles that 

are differently coated than vesicles transporting non-raft proteins [269]. Nevertheless, 

our assay of acquisition of Endo-H resistant carbohydrates can only monitor the arri-

val at the medial Golgi, where the N-actyl glucosamine transferase is located and 

therefore is not able to distinguish between an export from the ER in different vesicles 

or a transport delay from the cis- to the medial Golgi due to mechanisms within the 

Golgi, which will be discussed in the following subchapter. 
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4.1.2.2 Cholesterol and sphingolipid enriched raft-like structures might be in-

volved in transport of HA through the Golgi 

What could be the underlying mechanism explaining the retarded transport through the 

Golgi of HA protein with alterations in the CCM motif?  

Munro and his group established the theory, that the different compositions of cellu-

lar membranes, with increasing amounts of cholesterol and sphingolipids from the ER 

to the plasma membrane, should be reflected in the physical properties of proteins, 

which reside in the respective membrane. By analyzing the sequences of the TMR of 

integral proteins, they found that the physical properties are organelle-specific, 

whereby the length of the TMR correlates with the thickness of the membrane it is incor-

porated in. Plasma membrane proteins usually have transmembrane regions with a 

length of more than 23 amino acids, while ER and cis-Golgi localized protein TMRs on-

ly have a length of not more than 17 amino acids [270,271]. Therefore, proteins will 

only be transported as far as they can integrate into a membrane with the appropriate 

thickness and will be retained there. One possible explanation for the delayed transport 

kinetics might be that the length of the transmembrane is shortened in case of the exchange 

of hydrophobic amino acids by alanines. Regarding this, we have to make a difference 

between the HA with exchanged VIL or CCM. The VIL is highly hydrophobic compris-

ing three hydrophobic amino acids, while the CCM only comprises one, the leucine. 

Exchanges by alanines might have a different effect on the length of the TMR. If one 

includes the polar amino acids as delimiting anchors, the TMR of HA is even 27 amino 

acids long. In silico analysis of the amino acid sequence of HA wild type and the VIL 

mutant resulted in contradicting results depending on the program used. HMMTOP 

(http://www.enzim.hu/hmmtop/index.php) and Phobius (http://phobius.sbc.su.se) 

predict a TMR having a length of 24 amino acids, as they are not including the polar 

amino acids. No change in the location or length could be detected, when the se-

quence of the VIL mutant was entered into these programs. In contrast, TMHMM 

(http://www.cbs.dtu.dk/services/TMHMM/) and TMpred (http://www.ch.embnet.org/ 

software/TMPRED_form.html) give a TMR with a length of 22 and 19 amino acids, re-

spectively, in the mutant case. Therefore, it is not possible to define the TMR in the mu-

tant case immaculately. The first two predictions contradict the theory of length of 
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TMRs being important for incorporation into raft-like structures in the Golgi as wild 

type and mutant HA exhibit the same length of the TMR, whereas the last two predic-

tions, even with different outcome, support the theory since the mutation of the VIL 

motif leads to a decreased length of the TMR. However, it needs to be stated that even if 

the predictions calculate shorter TMRs, the length is in between the described length of 

more than 24 AA for plasma membrane proteins and less than 17 AA for ER and cis-Golgi 

resident proteins. This length is already sufficient to be transported to the plasma 

membrane as this has been shown in polarized MDCK cells by our group [252]. Thus, 

we could conclude from two of the four predictions that the possible reduction in TMR 

length in the VIL mutant could lead to slower transport of the protein. If we compare this 

result with the result for the CCM, HMMTOP and TMpred, as examples for the two 

program types giving contradicting results for the TMR lengths after mutation of the 

VIL motif, we can see that both programs do not predict a change in the TMR length 

(see Figure 3–7 to Figure 3–10), when exchanging all four amino acids of the CCM. 

Since the delay in transport in the VIL motif is due to only the mutation of the leucine, the 

first two predictions with no change in TMR length should be considered and therefore, we 

can conclude that a reduction in the length of the TMR is not the reason for the slow 

transport of the CCM mutants along the secretory pathway. 

Intra Golgi transport is a process still under debate, and different lipid based theories 

have been put forward. According to Glick and Luini, so far five models have been pro-

posed trying to explain the experimental data gained on the traffic kinetics of various 

proteins: “(1) the anterograde vesicular transport between stable compartments, (2) 

cisternal progression/maturation, (3) cisternal progression/maturation with heterotyp-

ic tubular transport, (4) rapid partitioning in a mixed Golgi, and (5) stable compart-

ments as cisternal progenitors” (reviewed in [149]).  

In chapter 1.4.1 two models of intra-Golgi transport involving raft-like structures were 

introduced and are part of the upper five general models. Except the rapid partitioning 

model of Patterson and Simons’ model none of the other models include raft-like do-

mains or more general lipids in their assumptions. When we compare the model of Si-

mons with the existing ones, the cisternal maturation model is the one most compati-
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ble; as both theories take retrograde COPI vesicle transport into account regarding the 

formation of the different Golgi stacks (see Figure 4-3).  

Figure 4-3: Models of Golgi transport: (A) Cisternal maturation model: The different cisternae of 

the Golgi mature by coalescence of previous compartments with retrograde transported COPI vesicles 

from the older cisternae. (B) Rapid partitioning model: Plasma membrane proteins and Golgi resident 

proteins partition in processing (white) and export domains (grey), whereby proteins can exit the Golgi at 

every cisternae. Reprinted by permission of Cold Spring Harbor Laboratory Press [149]. 

Simons’ theory of lipid rafts being involved in proteins transport along the secretory 

pathway of polarized cells (reviewed in [145,146]) includes the findings of Munro and 

adds investigations of the lipid composition of the different compartments and carrier 

vesicles. It is based mainly on two observations: (1) the cholesterol and sphingolipid 

content increases form ER over cis- to trans-Golgi and is enhanced due to retrograde 

transport of COPI vesicles, which exclude both lipids and therefore leads to a thicker 

bilayer of the membrane [148] and (2) the existence of raft-carriers originating from 

the TGN being further enriched in raft lipids, transporting cargo to the apical mem-

brane [150,272]. The hypothesis includes that the line tension that builds up between 

ordered, in raft lipids enriched domains and non-ordered membrane domains results 

in budding of vesicles, which then transport the included proteins. The budding out of 

the membrane thereby reduces the line tension and induces further lipid and protein 

sorting (reviewed in [145]). Proteins with raft-targeting signals will help to further 
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cluster already enriched raft lipids leading to a higher line tension resulting in vesicle 

formation. HA itself can form clusters at least at the plasma membrane [215,216], 

which is why a clustering within raft-like structures already in the Golgi cannot be ex-

cluded and could explain the difference of wild type and mutant protein regarding 

transport kinetics. Interestingly, VIP17/MAL, also a raft protein localized in transport 

vesicles from the Golgi to the plasma membrane of MDCK cells, seems to be involved 

in HA apical transport [273]. When overexpressed it enhances the transport of HA to 

the apical membrane, while down regulation by RNAi led to an inhibition of transport 

of HA [274]. VIP17/MAL is thought to have the ability to cluster small rafts within the 

Golgi to larger platforms. These large raft platforms increase the line tension between 

the ordered and disordered domains of the membrane and might then finally lead to 

budding out of the membrane forming transport vesicles [275]. The additional cluster-

ing by HA clusters in raft-like structures might even increase the effect, leading to 

more efficient transport from the Golgi to the surface. As CCM motif mutants might not 

be able to localize in the cholesterol and sphingolipid enriched environment, they might be 

no longer able to cluster as much within the Golgi, as already seen on the plasma mem-

brane for the H3 WIL mutant by Takeda et al. [220]. This in turn would lead to a slower 

vesicle formation for transport along the secretory pathway. But it needs to be stated, that 

the theory of Simons and colleagues was established to explain the special lipid com-

position of apical membranes of polarized cells. The experiments of this study were 

performed in non-polarized CHO cells, which is why we cannot translate all the obser-

vations and conclusions of the theory. To find out if our findings also apply in polar-

ized cells, the experiments need to be repeated in the according system. 

Patterson’s theory was created using a simulation of the secretory pathway on the 

one hand based on published lipid distribution data for ER, Golgi and plasma mem-

brane, to ensure the right gradient of raft lipids and on the other hand based on the 

length of TMRs of proteins and their according location. This simulation led to the hy-

pothesis of two different domains existing within the Golgi cisternae, so-called “export” 

domains, from which cargo will exit the cisternae and stable “processing” domains, which 

are enriched in Golgi enzymes and in which modification of proteins is located [151]. All 

proteins can enter and exit both domains, but exhibit a specific partitioning or equilib-
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rium. Golgi resident proteins like enzymes would be more likely to be found in the pro-

cessing domains, while plasma membrane proteins like HA would be more likely to be 

found in the export domains. The results obtained by the simulation were then further 

validated experimentally by following the transport dynamics of VSV-G protein as 

plasma membrane protein and GalT (galactosyltransferase) as a Golgi resident protein. 

The main difference between the model of Simons and Patterson is, that in the parti-

tioning model proteins can exit the Golgi towards the plasma membrane at every cis-

terna since every level already has both domains (see arrows in Figure 4-3 B), while the 

theory of Simons like any other model of intra-Golgi transport includes protein first 

being transported from one cisternae to the next in cis to trans direction, with cargo 

leaving at the TGN in vesicles, which are then transported to the plasma membrane 

(see arrows in Figure 4-3 B). As wild type HA and the mutant protein gets fully processed 

before leaving the Golgi including cleavage in the TGN, albeit in case of the mutant after a 

longer time period, our findings object the part of Patterson’s theory of cargo leaving the 

Golgi at every level. However, the existence of two domains within the Golgi and conse-

quently the differential partitioning of proteins could still explain the difference in 

transport of wild type HA and the mutants. The data obtained for the intracellular lo-

calization of the wild type and mutant HA in comparison with the t-SNARE membrin 

could hint to different domains being responsible for the different transport kinetics. 

As it is known, that membrin as a Golgi-resident protein should be found in the pro-

cessing domains, the higher colocalization of the VIL mutant compared to the wild 

type HA can be interpreted as a slower transport, as it still colocalizes with earlier cis-

ternae of the Golgi. Similar observations were made investigating the transport prop-

erties of HA as a raft protein in comparison with YFP-p75 (75-kDa neurotrophin recep-

tor) as a non-raft protein. Immunofluorescence studies within the Golgi revealed [276] 

segregation into different subdomains of the Golgi, whereby YFP-p75 located mostly 

in the same domains as Furin, while HA was found in different subcompartments. The-

se data might allow the assumption that the delay in transport within the Golgi could be 

due to longer length of stay in the processing domains indicated by the higher colocaliza-

tion with Golgi resident proteins, while the wild type protein is already transported into the 

export domains and subsequently to the plasma membrane. Additionally, Schwarzer and 

colleagues investigated the association of the HIV gp41 protein with raft-like domains 
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within the Golgi by FLIM-FRET. The glycoprotein gp41 of HIV does not exhibit a CCM 

but a CRAC motif. They not only showed a raft association of gp41 at the plasma 

membrane but also within the Golgi [262]. By using a chimeric protein of YFP N-

terminally fused to gp41, therefore replacing gp120 by YFP, they performed FLIM-

FRET experiments with gp41-YFP as acceptor and GPI-CFP as raft marker. When 

measuring FRET efficiencies of this pair within the Golgi, a CRAC motif dependent clus-

tering of gp41 with the raft marker was observed, which was similar to the results obtained 

for the plasma membrane. This data provides prove of a cholesterol-binding motif de-

pendent association with raft-like structures already emerging in the Golgi, that sup-

port our indirect findings of a cholesterol-binding motif dependent transport within 

the Golgi. The results presented in this study regarding the CCM can be interpreted in 

the context of the rapid portioning model in the following manner: 

Figure 4-4: Rapid-Partitioning Model. (A) Golgi- resident proteins and CCM mutants (red) are 

more probably in the processing domains (grey) (B) transmembranal plasma membrane proteins like HA 

WT (green) are more likely to be found in the export domains (yellow). (Adapted from [151]) 

The wild type HA and CCM variants differ in their probability to be found in processing 

or export domains. While the wild type protein has a higher probability to diffuse into 

export domains, stay there and to finally being transported to the plasma membrane, 

the CCM mutant variants behave more like Golgi-resident proteins with a higher prob-

ability to diffuse out of the export domains (see Figure 4-4). Nevertheless, constant 

diffusion in and out of the two domains still enables the CCM mutant variants to be 

transported to the plasma membrane, just with a delayed kinetic.  

Another reason for the differential affinity of the wild type HA compared to the altered 

versions could be the different availability of cholesterol in the two domains. Not only 

is the cholesterol content enriched within the export domains compared to the pro-

cessing domains allowing for more interactions of HA molecules, but also the incorpo-
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ration of cholesterol between lipids in its surrounding differs, thereby potentially lead-

ing to a changing accessibility of the binding site. Cholesterol has two faces due to the 

aliphatic groups at the end of the planar sterane backbone, the α- and β-face (re-

viewed in [277]) (see Figure 4-5). When embedded in a phospholipid-rich environment 

as it would be present in the processing domains, cholesterol is neither bound by the 

α- nor the β-face but the side of the molecule and therefore has both faces available 

for interaction with TMRs of proteins, while when embedded in a sphingolipid-rich 

environment the sphingolipids interact with the cholesterol via its α-face leaving the 

β-face available.  

Figure 4-5: Structural properties of cholesterol. The symmetric distribution of aliphatic groups 

of the sterane backbone defines a smooth α-face and  a rough β-face. Reprinted and modified from [277] 

with permission by the CC-BY license.  

Consequently, it could be possible that for full binding of the CCM, sphingolipids are need-

ed to ensure the right orientation of the cholesterol towards the TMR. When having a clos-

er look at the structure of the CCM located in the β-adrenergic receptor binding the 

cholesterol (Figure 1-7 A), we can see that the TMR is binding the cholesterol via its β-

face as the aliphatic groups of the planar sterane backbone are facing the TMR and the 

interacting amino acid side chains. The altered interaction with cholesterol in a phos-

pholipid-rich membrane with both faces available, but in a different orientation, might 

additionally favor the incorporation of the wild type protein into the export domains 

over the processing domains. Therefore the wild type protein not only would be still 

able to bind to cholesterol in the export domains compared to the CCM mutant vari-
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ants, but additionally might be more attracted to the export domains because they are 

providing the correct orientation of cholesterol for binding.  

Comparing the models of Simons and Patterson with the results of this study, both 

have drawbacks. Simons only focuses on apical transport of proteins in polarized cells, 

which was not investigated here and Patterson investigated a basolateral protein 

(VSV-G) in non-polarized COS 7 cells claiming that cargo can leave from every stack of 

the Golgi, which was never detected in the case of HA. From studies on VSV-G protein 

and influenza HA in polarized MDCK cells, we know that basolateral and apical pro-

teins are transported in different vesicles to the plasma membrane [278]. The question 

arises if such a sorting system already exists in non-polarized cells. Yoshimori and col-

leagues investigated the delivery routes of the basolateral proteins VSV-G and Semliki 

Forest virus spike glycoproteins compared to the apical HA of influenza virus in non-

polarized BHK and CHO-K1 cells [279]. Their data demonstrates that basolateral and 

apical proteins use a similar transport mechanism in polarized and non-polarized cells 

to reach the plasma membrane. Different treatments interfering with the known baso-

lateral pathway and its regulation in MDCK cells interfered as well with the transport 

of VSV-G, SVF glycoproteins and a HA mutant, which is retargeted to the basolateral 

membrane in polarized cells, but not wild type HA. These findings were supported by 

another study from the same year, coming to the same conclusion investigating the 

transport of VSV-G and influenza HA in two more non-polarized cell lines (3T3 and 

GH3) [280]. Therefore, a combination of Simons and Patterson’s theory could be possible. 

Incorporation into more general raft lipid enriched export domains within the Golgi 

would be the prerequisite for a transport through the Golgi, in which then apical and 

basolateral proteins are sorted. Thereby HA would integrate into smaller raft-like 

patches, which then by clustering form vesicles due to their line tension not only at 

the TGN for transport to the plasma membrane but already within the Golgi.  
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4.2 Clustering of HA with a lipid raft maker is reduced by in-

troduction of mutations in the putative cholesterol con-

sensus motif  

Finally, FLIM-FRET measurements were performed to examine whether the cholester-

ol consensus motif is crucial for raft association. Since Stephanie Engel established the 

method with HA-Cerulean as donor and Myr-Pal-YFP as acceptor, the first aim was to 

reproduce the results obtained for HA-Cer wt and HA-Cer VIL3A. FRET measurements 

are highly sensitive to changes in the equipment, which can result in different FRET 

efficiencies measured, but should not affect clustering of the investigated protein with 

the raft marker. While Stephanie Engel was able to reproducibly detect FRET efficien-

cies of around 50 % for HA-Cer wt and Myr-Pal-YFP, in this study only a median FRET 

efficiency of 17,6 % could be detected. But remarkably, the clustering was not 

changed, as the KD of 1,6 x 10-16 was altered not significantly to 1,3 x 10-16. Additional-

ly, the loss of clustering when mutating the hydrophobic VIL motif was verified as the 

KD of 1,3 x 10-16 rises to 7488 (see Figure 3–16). Even though the actual measured FRET 

efficiencies changed between the here presented study and the study of Stephanie En-

gel, the interpretation of the data still remains the same: Mutation of the hydrophobic 

raft-targeting signal in the beginning of the TMR leads to a loss in lipid raft association.  

To ensure a correct measurement, the values measured were compared with pub-

lished data in the literature. The lifetime of the donor is the limiting factor in the 

calculation of FRET efficiencies by using the following equation:  

 

In case  (the lifetime of the donor in absence of an acceptor) is too high or too 

low,  will result accordingly in an incorrect value. The lifetime of a fluorophore is 

dependent on the environment of the chromophore. The chromophore of Cerulean 

is build by three amino acids: serine 65, tryptophan 66 and glycine 67, whereby the 

tryptophan is creating the cyan fluorescence [296]. These three amino acids are em-

bedded into the β-barrel structure of the fluorophore (Figure 4-6) and consequently 
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shielded from the surrounding. Therefore the lifetime of Cerulean should be a 

measurable constant.  

 

Figure 4-6: Structure of Cerulean. Chromophore (Ser65, Trp66 and Gly67 in yellow) is embed-

ded in β-barrel structure (cyan) (A) Side view (B) View from below. Created with Visual molecular 

dynamics (VMD) 1.9.1 and POV-Ray 3.7.0 from PDB code 2Q57. 

Cerulean expressed individually in HeLa cells exhibits a lifetime of 2.3 ns [297,298], 

which was true as well when the lifetime of purified recombinant protein was de-

termined using time-correlated single photon counting spectroscopy [247]. When 

CFP was attached to a GPI anchor to function as a raft marker, lifetimes of 2.3-2.5 

ns [223,262] were detected. During this study lifetimes of 184 HA-Cerulean ex-

pressing cells in absence of a FRET acceptor were measured for calculation of the 

FRET efficiency. The calculation of the average lifetime yielded 2.52 ns ± 0.01 (SEM 

was used due to the high number of measurements), which is in accordance to the 

published data. When interpreting FRET efficiencies one has to keep in mind the 

preconditions for energy transfer: 

3 The overlap of the donor’s emission spectrum and the acceptor’s excitation 

spectrum  

4 The orientation of the dipoles 

5 The quantum yield (QY)   

6 The distance of the donor and acceptor 
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For ECFP and EYFP a FRET efficiency of 25 % was measured [297], when both pro-

teins were expressed as fusion protein. The same was true for Cerulean as the 

FRET donor and mVenus as FRET acceptor, an enhanced version of mYFP with the 

same excitation and emission spectrum and quantum yield, but a better stability 

regarding pH and Cl- [299], with FRET efficiencies of 25 % [300] and 26 % [298], re-

spectively. Both groups also used direct fusion proteins of Cerulean and mVenus. 

As no fusion of the fluorophores to other proteins takes place changing the dis-

tance of the fluorophores, we can assume that this is the maximal FRET efficiency, 

which can be achieved with this FRET pair and the according quantum yield of Cerule-

an. According to (3) improvement in the quantum yield of the donor, like in the 

case of mTurquoise, a fluorophore with an increased QY of 0.84 instead of 0.48 

[301], can yield higher FRET efficiencies of 30 % [300] and 33 % [298], respectively. 

These publications support my finding of only about 18 % FRET efficiency for HA-mCer 

and Myr-Pal-YFP instead of about 50 % detected by Stephanie Engel, which seems to 

be in a more natural range of energy transfer of this specific FRET pair of Cerulean. If 

Cerulean or CFP is coupled to proteins the distance of the fluorophores can 

change, which is why each FRET pair has to be evaluated on its own, only mutants 

of the same construct can be compared with each other. According to (4) the in-

creased distance of the fluorophores, when coupled to proteins can lead to differ-

ent FRET efficiencies being measured. For HA, another different system was used, 

as the fluorophore was not attached to the cytoplasmic tail but rather N-terminally 

replacing the ectodomain. Under those conditions a GPI anchor can be used as raft 

marker, C-terminally fused to a fluorophore [223], whereby a medium FRET effi-

ciency of 10 % was measured. The same system was used elucidating the lateral or-

ganisation of HIV gp41 and yielded a FRET efficiency of 18 % [262], showing the 

influence of the protein attached to the fluorophores on the energy transfer.  

The above-mentioned findings demonstrate that the measurements made within this 

study are valid, and that further experiments regarding the role of the cholesterol con-

sensus motif can be performed under the same conditions as the validation of the 

FLIM-FRET measurement. 
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Table 2: Summary of all results including FLIM-FRET 

Mutant 
Transport to 
medial Golgi 

(t1/2) 

Transport 
to TGN (t1/2) 

Transport 
Golgi to 

TGN 

Surface 
expression 

Clustering 
with raft 

(KD) 

wt 40 min 55 min 15 min 100% 1,3x10-16 

VIL3A 40 min 55 min 15 min ND 7488 

IA 80 min 150 min 70 min ND ND 

LA 40 min 70 min 30 min 95% ND 

WA 90 min 190 min 100 min 85% 474 

YK2A 40 min 110 min 70 min 80% 3662 

LW2A 40 min 120 min 80 min 80% 2630 

KLW3A 100 min 290 min 190 min 50% ND 

YKLW4A 240 min 290 min 50 min 50% ND 

Half times for transport to the medial Golgi and to the TGN were compiled from Figures 3-2, 3-12 and 3-

13. The time for transport between Golgi and TGN was calculated as the difference between the t1/2 for 

transport to the TGN minus the t1/2 for transport to the medial Golgi. Data for surface expression are from 

Figure 3-14. Clustering with rafts as determined by FLIM-FRET (Figure 3-16) is displayed as KD. ND: not 

determined. Results are divided into three classes: Mutants with the strongest effect on the respective 

process are highlighted in dark gray, with an intermediate effect are highlighted in light gray and with no 

(or very little) effect are not highlighted.  

For the analysis of the influence of the CCM on lipid raft association/clustering with 

the Myr-Pal raft marker, only a subset of the created mutants was used.  

The mutation of the tryptophan (HA-Cer WA) has the least effect on clustering. Alt-

hough the FRET efficiency is reduced in the same manner than all other mutants, the 

cluster analysis shows a less pronounced reduction in clustering. Therefore, the con-

clusion can be drawn that the exchange of tryptophan in the CCM affects clustering with 

the raft marker but only in a marginal matter. As seen in the before mentioned experi-

ments, the remaining amino acids binding in the linker region and in the middle of 

the motif can partially compensate the missing binding, but not completely. For the 

other two measured mutants the results allow for a more complex analysis. While re-

garding transport and surface expression HA-Cer YK2A showed only an intermediate 
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effect comparable to HA-Cer WA and HA-Cer LW2A showed the strongest effect, the 

clustering is affected in the same range. Both have a reduction of FRET efficiency 

comparable as all other mutants investigated, but their KDs are both in the range of 

the VIL mutant (7488, 3662 and 2630, respectively for VIL3A, YK2A and LW2A) and 

not HA-Cer WA. As the VIL mutant resembles the LA single mutant, as shown in the 

previous parts, it seems that the additional mutation of the tryptophan in the LW2A 

mutant does not act in an additive manner at the plasma membrane, as seen before 

for the transport. Further, both the binding of the hydroxyl group of cholesterol in the 

linker region by the two outer amino acids lysine and arginine and the hydrophobic and 

aromatic amino acids binding the sterol rings seem to have the same effect on interaction 

with the raft marker.  

Supporting data for both parts being important for raft association at the plasma 

membrane comes from an electron spin resonance (ESR) analysis of an H3 HA with 

mutations of either the lysine (K) or leucine (L) of the putative CCM. Via ESR it is pos-

sible to measure the hydration/dehydration state of the headgroup of lipids and there-

fore the ordering state of the membrane. With increasing amount of HA TMR peptides 

incorporated into the membrane, the ordering of cholesterol rich membranes increas-

es accordingly. Mutant peptides with lysine exchanged by glutamic acid, hence chang-

ing the polarity of the amino acid from positive to negative, and leucine exchanges 

against alanine were not able to induce ordering of the membrane [281]. 

4.3 Speculations on the role of cholesterol binding of HA for 

virus replication  

Binding cholesterol can be advantageous for viruses in sense of a higher stability. In-

tegration into lipid rafts at the plasma membrane leads to budding from higher or-

dered membrane domains resulting in a more densely packed viral envelope. This 

could be of advantage especially for transmission via aerosols.  

For influenza viruses it was shown by a proton magic angle NMR study that the virus 

membrane has different physical states that are temperature dependent. At 41°C both 

liquid ordered and disordered phases could be detected, while at 22°C lipids were in a 
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gel phase [282]. This phase is even higher ordered than the liquid ordered phase [283] 

due to the fatty acid chains, which are elongated to their maximum, therefore forming 

a highly compact structure. This compact virus shell might be one reason for the high-

er transmission rates of influenza virus at lower temperatures. Lowen and colleagues 

performed transmission experiments in guinea pigs and were able to show that viral 

transmission is dependent on temperature and relative humidity [284]. Transmission 

at low temperatures (5°C) is most effective with low relative humidity. Shedding of vi-

rus is increased under those conditions probably due to higher stability of the virus 

residing in the cold upper respiratory tract, which then can be spread more easily. For 

transmission at more moderate temperature (20°C) two stable conditions of virus par-

ticles could be detected either at low or higher (65%) relative humidity.  

Despite a more stable viral envelope deriving from assembling in lipid rafts and subse-

quent budding from them, viruses exploit the properties of lipid rafts for their entry 

and fusion, as mentioned in the introduction. The fusion process of influenza viruses 

is well studied and its dependence on lipid raft association and cholesterol content in 

the viral envelope was already investigated. For the WSN strain a cholesterol depend-

ence in the viral membrane for fusion was shown by cholesterol extraction assays 

[285]. Manipulation of the cellular cholesterol content in the expressing cell line, in 

this case the increase of cholesterol content in otherwise low-cholesterol insect cells, 

revealed a positive correlation of cholesterol content and the amount of full fusion 

[286]. The same study also revealed the dependence of the presence of the TMR for 

fusion and a promotion of pore size extension by cholesterol during the fusion pro-

cess. Cholesterol thereby induces intrinsic negative curvature to build the pre-pore 

[286,287]. The abovementioned results that cholesterol in needed in the viral envelope 

as well as in the cellular membrane can be explained by the theory of Ge and col-

leagues. They stated that two highly ordered membranes with negative curvature and 

negative charge on their surface induce a water capillary bridge between the mem-

branes attracting them toward each other [281] facilitating hemifusion. Additionally, 

concentration and clustering of HA in lipid rafts seems to be important for the effi-

ciency of the fusion. Non-raft HA is less clustered on the surface of infected cells and 

is less incorporated into new virus particles, leading to a reduction in fusion activity 
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and infectivity [220]. Supporting evidence is given by several studies reporting the 

number of HA trimers needed for fusion. The latest opinion is that at least 8 HA tri-

mers aggregate at the fusion site, while 2 trimers are enough to perform the synchro-

nized activation and refolding, inducing the fusion event [288–291]. Since for HIV the 

CRAC motif is crucial for fusion, the here described putative CCM comprising the TMR 

raft-targeting signal, might also be crucial for fusion, ensuring the right clustering of 

HA.  
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5 Outlook 

So far, only a couple of possible mutants were used to assess the effect of the putative 

CCM on the transport and raft integration behavior of the influenza hemagglutinin. 

Especially, the positively charged K and aromatic Y at the water-lipid interface were 

only mutated together but not alone. The change in effect, from a medium effect on 

the intracellular transport to a comparable effect on clustering with a raft marker, is 

an aspect, which needs further investigation. New mutants with single exchange of 

lysine and arginine against alanine and double mutants with either leucine or trypto-

phan were already designed and genes were synthesized. These mutants are now ready 

to be cloned into the expression plasmid to be used in further experiments.   

For a complete insight of the function of the putative CCM, introduction of the muta-

tions in the viral context would be advantageous. Some mutations can show an effect 

on the protein behavior, but may not lead to reduction in virus growth. After subclon-

ing the mutated regions of HA into the reverse genetics system, recombinant viruses 

can be tested for propagation. Since the mutation of the VIL motif already reduced the 

titer of the Udorn virus by ∼3 [220] logs, it might be possible that viruses with a com-

plete mutation of the cholesterol-binding motif are not rescuable. For those viruses, 

which are rescuable, the classic characterization methods of growth behavior like con-

ducting growth kinetics experiments and plaque size assays should be applied. The 

prepared viruses could then further be analyzed regarding their membrane ordering 

and hence their stability in the environment. Laurdan (6-dodecanoyl-2-

dimethylaminonaph-talene) is a lipophilic fluorophore that is able to detect and dis-

play the lateral ordering status of membranes [292,293].  

1.1.1 Established method: Laurdan measurements to determine the 

lateral organization of viral membranes  

Laurdan can integrate into lipid membranes, whereby its emission spectrum is de-

pendent on the hydration state of the membrane. In ordered membranes water is 

repressed and Laurdan exhibits a blue shift in its emission spectrum from 440 nm 
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in liquid disordered (Ld) membranes to 490 nm in liquid ordered (Lo) membranes. 

From the intensity of the blue and red emission it is possible to calculate the gen-

eral polarization (GP) according to: 

 

GP values can range between +1 (most ordered) and -1 (least ordered), whereby GP 

values under +0.25 and between 0.25 and 0.5 correspond to Ld phases and Lo phases, 

as determined for model membranes [302]. However, cellular membranes have a 

more complex composition as model membranes. The determination of the mem-

brane ordering status of giant plasma membrane vesicles (GMPVs), vesicles which 

are prepared from the plasma membrane of cells, yielded values of 0.67 for Ld phas-

es and 0.80 for Lo phase. Therefore the difference of lipid rafts and the regular 

plasma membrane is less prominent [293]. Since these experiments were performed 

only at 10°C, the low temperature can influence the outcome of the measurement 

as ordering of membranes increases with decreasing temperature. At physical tem-

peratures of about 37°C the differences should be higher and better discernable.  

The method was established by me during the time of this study by measuring the 

lateral organization of FPV as a raft budding virus and Semliki Forest virus as a 

non-raft virus with a lipidome resembling the regular plasma membrane. According 

to Lorizate et al. [304], purified virus particles containing 20 μg of protein were in-

cubated in a 5 μM Laurdan solution in 100 μl TE buffer, to allow incorporation, 

whereupon non-integrating Laurdan was removed by ultracentrifugation through a 

20 % sucrose cushion. The pelleted virus was resuspended in buffer containing 150 

mM NaCl and 10 mM Hepes (pH7,4) and investigated by fluorescence spectroscopy. 

After excitation with 355 nm the emission spectrum between 400 and 550 nm was 

recorded. Values for 440 and 490 nm were used to calculate the GP value. As seen in 

Figure 5-1 the discrimination between the lateral membrane organization of raft 

and non-raft viruses is possible, since a significant difference between the GP val-

ues was detected. Even though the difference is quite small, the method is sensitive 

enough to differentiate between the two ordering states (Figure 5-1) 
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Not only can Laurdan be used to investigate purified viruses, but also to visualize the 

lateral organization of the plasma membrane in infected cells. A combination of Laur-

dan measurements of the hydration state of the cellular membrane with high resolu-

tion microscopy (established so far for widefield microscopy [294]) might make it even 

possible to monitor the assembly of newly formed viruses. Clusters build by HA on the 

 

Figure 5-1: Laurdan measurement of fowl plaque virus (FPV, black) and Semliki For-

est virus (SFV, red). (A) Recorded fluorescence emission spectrum between 400 and 550 nm (B) 

Calculated GP values. Results are median GP value. P> 0,0001 by unpaired two-tailed student’s t-test.  

The method is also applicable to investigate the increasing and decreasing stability, 

respectively, under changing temperature conditions (Figure 5-2). Higher tempera-

ture lead to an increases hydration state of the membrane, which is reflected in a 

decreasing GP value that is measured by Laurdan. 

 

Figure 5-2: Temperature dependence of the lateral organization of the viral envelope. 

(A) Recorded fluorescence emission spectrum between 400 and 550 nm at temperatures varying from 

20°C to 60°C. (B) Calculated GP values.  
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cell surface are detectable by high-resolution microscopy like FPALM (fluorescence 

photoactivation localization microscopy) [216]. Using this technique in combination 

with Laurdan, it would be possible to not only identify clusters build by HA at the as-

sembly site, but also additionally measure the lateral organization to prove directly 

the involvement of lipid rafts in the assembly of influenza A viruses. Mutations in the 

CCM might also lead to an unclustered distribution of HA as seen by electron micros-

copy for the mutation of the VIL domain [220], which could then be visualized in living 

cells.  

Performing fusion assays of viruses with labeled ghost erythrocytes could give an in-

sight in the role of the CCM or a virus membrane enriched in raft lipid, respectively in 

the fusion process of influenza viruses. Two fusion assays can be used to investigate 

the fusion capacities of the hemagglutinin. Either one investigates the fusion of puri-

fied virus with ghost erythrocytes or the fusion of infected cells with regular red blood 

cells.  

Finally, the most important question needs to be answered. Is the putative CCM really 

able to bind cholesterol? So far all the data hint towards binding, but it has not been 

proven directly. Computational modeling of HA within a cholesterol-containing mem-

brane might give further insight into the binding capacity of HA. For every computa-

tional modeling a structure of the protein or peptide of interest is a prerequisite. As 

the structure of the TMR of influenza HA is still not solved, further studies on this top-

ic are needed. Collaborators of our laboratory, Larissa Kordyukova and colleagues, 

published an article in 2010 including a computational model of the TMRs of a group 1 

and group 2 HA, subtypes H6 and H14, respectively [246]. This method of modeling 

could be used in cooperation to create a model of the TMR of H7 HA including the 

amino acids building the CCM, whereupon further MD simulations could be run to 

model in cholesterol binding [295]. The binding properties could be based on the in-

sights of known structures of the CCM bound to cholesterol or using programs like Au-

toDock. Experimentally, new collaborators being expert in studying membrane pro-

teins could perform NMR studies in micelles containing cholesterol to solve the struc-

ture of the TMR, which then in turn could be used to model trimers in a membrane to 

gain further insights of the possible cholesterol binding or association.  
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