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ZUSAMMENFASSUNG 
Mycobacterium tuberculosis (Mtb), der Erreger der Tuberkulose (TB) ist eines der 

erfolgreichsten Pathogene mit dem ein Drittel der Weltbevölkerung infiziert ist und das in 

Infizierten zumeist lebenslang persistiert. Es ist die Hauptursache für die Sterblichkeit HIV-

koinfizierter Individuen. Zusammen mit dem Auftreten multi- und extensiv 

medikamentenresistenter (MDR und XDR) Stämme hat dies zu einem Anstieg der 

Todeszahlen insbesondere in Entwicklungsländern geführt. Es besteht dringender Bedarf, 

existierende Behandlungsstrategien zu verbessern. Mtb ist ein intrazelluläre Erreger, der 

tausende Jahre mit seinem menschlichen Wirt evolvierte. Mtb nimmt innerhalb des Wirtes 

einen oft als „Persistenz“ bezeichneten metabolischen Zustand an, der es widerstandsfähiger 

gegen Medikamente der Standardtherapie macht. Initiativen zur Medikamenten- und 

Impfstoffentwicklung fokussieren ihre Interventionsstrategien daher vermehrt auf alternative 

Leitmoleküle und Stoffwechselwege.  

Ziel dieser Studie war, das Ag85C-Protein von Mtb, eine Mycolyltransferase, als neues 

Angriffsziel für medikamentöse Behandlungsstrategien, zu überprüfen. Ag85C gehört zu einer 

Familie von drei Proteinen, Ag85A, B und C, die hohe Sequenzhomologien und einen nahezu 

identischen katalytischen Bereich miteinander teilen. Sie sind an der komplexen Biogenese 

der Zellhülle in Mykobakterien beteiligt und möglicherweise redundant in ihrer Funktion. 

Diese Studie verwendet eine Reihe von Molekülen, Ag85C-1-4, die möglicherweise die 

katalytische Aktivität von Ag85C inhibieren. Die Fähigkeit dieser Moleküle an Ag85C zu 

binden wurde durch Nuklearmagnetresonanz (NMR) festgestellt. Ag85C-1 dient als 

Ausgangsstruktur; die Analoga Ag85C-2-4 wurden über Struktur-Aktivitäts-Beziehungen 

abgeleitet.  

Die antimykobakterielle Aktivität dieser Molekülen wurde mit qualitativen und quantitativen 

Standardanalysen untersucht. Alle Verbindungen inhibierten das Wachstum von Mtb in 

Flüssigkulturen in vitro, aber nur das wirksamste Analog Ag85C-3 inhibierte auch das 

Wachstum intrazellulärer Bakterien in einem zellbasierten Makrophageninfektionssystem. Die 

Aktivität von Ag85C-3 wurde zusätzlich im Maus-Mtb-Aerosolinfektionsmodell getestet. Die 

Zugabe von Ag85C-3 führte an frühen Zeitpunkten zu einer schwachen Reduktion der 

mykobakteriellen Belastung in den Lungen der Mäuse. Kleine Moleküle, die die Funktion von 

Ag85C stören, können demnach das Wachstum von Mtb sowohl direkt als auch innerhalb von 

Makrophagen und Lungengranulomen inhibieren.  

Um die Wirkmechanismen der Toxizität von Ag85C-3 auf Mtb zu entschlüsseln wurde eine 

detaillierte Untersuchung durchgeführt. Ag85C funktioniert hauptsächlich als Transferase von 
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Mykolsäuren zu seinem terminalen Substrat und führt so zum finalen Zusammenbau der 

lipidreichen Zellhülle von Mykobakterien. Analysen der Reaktionskomponenten, 

Trehalosemonomykolat (TMM, Substrat), Trehalosedimykcolat (TDM, Produkt) und 

Mykolsäure gebundenes mit Arabinogalaktanpeptidoglykan (mAGP, Produkt) von Mtb 

zeigten nach Ag85C-3 Behandlung eine deutliche Hemmung dieses Syntheseschrittes. 

Zusätzlich zeigte die Analyse einer Mtb Mutante, dem Ag85C fehlt, dass diese Modulation der 

Glykolipide nicht spezifisch für Ag85C ist, sondern auch durch eine Blockade von Ag85A 

und B verursacht werden kann. Darüber hinaus führte die Pertubation der 

Lipidzusammensetzung durch Ag85C-3 zur einer schwachen Zunahme der Permeabilität der 

Mtb-Zellhülle. Folglich ist die unkontrollierte Diffusion die wahrscheinlichtse Ursache für 

den Ag85C-3 induzierten Mtb Tod. 

Eine umfassende Analyse der durch Ag85C-3 regulierten Signalwege wurde mittels 

genomweiter Studie der Genexpressionsmuster durchgeführt. Interessanterweise führte die 

Zugabe von Ag85C-3 zur Hochregulation von Gengruppen, die an die Biosynthese von 

Siderophoren und Lipidtransport beteiligt sind. Die Biosynthese von Siderophoren und damit 

einergehend der Eisenhomöostase sind kritisch für das Überleben jedes Organismus und ihre 

Modifikation könnte einen alternativen Mechanismus darstellen, durch den Ag85C-3 den Tod 

verursacht. Die Überprüfungen weiterer wichtiger regulierter Gene sollte die Generierung 

eines eindeutigen Profils dieser Klasse von Inhibitoren ermöglichen. 

Zussamenfassend, ist die Inhibition von Ag85C durch Ag85C-3 eine vielversprechende 

Interventionsstrategie für die zukünftige TB-Medikamentenforschung. Erste Ergebnisse 

zeigen, dass Ag85C-3 ebenfalls Mtb MDR-Stämme inhibiert und unterstreichen das Potential 

von Ag85C-3 in der Bekämpfung von Breitbandresistenzen. Weitere Optimierung der Ag85C-

3-Struktur zur Verbesserung der Aktivität und Löslichkeit sollten hierfür folgen. Diese Studie 

untermauert die zielorientierte Identifikation chemischer Inhibitoren als berechtigte und 

wertvolle Vorgehensweise in der Medikamentenentwicklung. 
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ABSTRACT 
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) is one of the most 

successful pathogens infecting about one-third of the world’s population and mostly persists 

in the host for life. It is the main cause of mortality in HIV coinfected individuals. This com-

bined with emergence of multiple and extensively drug resistant strains (MDR and XDR) has 

led to an escalation in number of cases worldwide. Therefore there is an urgent need to im-

prove existing intervention strategies. Mtb is an obligate intracellular pathogen which has co-

evolved with its human host for thousands of years. It has thus devised means to convert the 

adversity of the immune response to its own advantage enabling its survival inside macro-

phages. Mtb adapts an alternate metabolic state often referred to as `persistence´ within the 

host which makes it refractory to current first line drugs. Persistent and drug-resistant Mtb 

emphasize the need for alternate molecules and pathways as targets for novel drug discovery 

and vaccine development initiatives. 

This study aimed to evaluate the Mtb Ag85C protein, a mycolyl transferase, as a novel target 

for drug mediated intervention strategies. Ag85C belongs to a family of three cognate pro-

teins, Ag85A, B and C, which share high sequence homology and an almost identical catalytic 

site. They are involved in the final steps of the complex cell envelope biogenesis in mycobac-

teria and are assumed to be partially redundant in function. Nevertheless, the essentiality of 

their catalytic activity makes them relevant targets for drug development. A panel of chemical 

molecules, Ag85C-1-4, which bind to Ag85C as detected by Nuclear Magnetic Resonance 

(NMR) were utilized as inhibitors of Ag85C in this study. Ag85C-1 was the starting structure 

while the analogues Ag85C-2-4 were derived through structure activity relation (SAR) stu-

dies.  

Anti-mycobacterial activity of the molecules was examined with standard qualitative and 

quantitative assays both in liquid medium cultures and in a cell-based macrophage infection 

system. All the compounds inhibited growth of Mtb in vitro but only the most potent analogue 

Ag85C-3 had an effect on intracellular bacteria. The activity of Ag85C-3 was also tested in 

the well studied mouse aerosol infection model of TB. A mild reduction of Mtb survival in 

lungs was observed at early time points after dosage with Ag85C-3. Targeting Ag85C by 

small molecules can thus inhibit growth of Mtb both directly as well as within macrophages 

and in lung granulomas. Importantly, Ag85C-3 can inhibit in vitro survival of a MDR strain of 

Mtb making it a relevant molecule in the current search for novel classes of anti-

mycobacterial compounds. 
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Unravelling the mechanisms by which Ag85C-3 induces toxicity in Mtb is essential to further 

modify its structure and improve its efficacy. For this, a detailed functional characterization of 

its effect on Mtb was performed. Ag85C primarily functions as transferase of mycolic acids to 

its terminal substrates leading to the final assembly of the lipid rich cell envelope of mycobac-

teria. Analysis of the reaction components, trehalose monomycolate (TMM, substrate), treha-

lose dimycolate (TDM, product) and mycolic acid linked arabinogalactan-peptidoglycan 

(mAGP) upon Ag85C-3 treatment of Mtb clearly demonstrated a block at this step. TDM 

amounts were reduced with a concomitant increase in TMM while mAGP remained unaf-

fected. There was also an unexpected accumulation of free mycolic acids. This modulation of 

glycolipids was not specific to Ag85C and could be through blockade of Ag85A and B also as 

indicated by growth inhibition of an Mtb mutant strain lacking Ag85C. Moreover perturba-

tions of the lipid composition by Ag85C-3 led to mild increase in permeability of Mtb cell 

envelope which might be the major cause of death through uncontrolled diffusion. 

A more comprehensive analysis of signaling pathways regulated by Ag85C-3 was performed 

through whole genome level study of Mtb gene expression patterns upon treatment. Interes-

tingly gene clusters involved in siderophore biosynthesis and lipid transport were markedly 

up-regulated with Ag85C-3 treatment. These could either be indirect effects of Ag85 inhibi-

tion or be totally independent effects of Ag85C-3. Siderophore biosynthesis and iron homeos-

tasis is crucial for survival of any organism and modification of this could be an alternate me-

chanism by which Ag85C-3 induces death. Further validation of other relevant regulated 

genes could enable generation of a unique signature profile for this class of inhibitors.  

Thus the target, Ag85C and the inhibitor, Ag85C-3 are promising candidates for future TB 

drug research aimed at combating broad spectrum resistance development. Further optimiza-

tion of Ag85C-3 structure for improving activity and solubility is necessary for this process. 

This study also reinforces target based identification of chemical inhibitors as a valid and val-

uable approach in drug development. 
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1 Introduction 
Tuberculosis (TB) has resurged as one of the deadliest infectious diseases causing up to 2 mil-

lion deaths annually (WHO, 2009). Mtb, the etiologic agent, is only second to HIV in number 

of deaths caused by any infectious agent and is the biggest killer amongst bacterial pathogens. 

Mtb was discovered in 1882 by Robert Koch (Koch, 1882). It commonly attacks the lung but 

also affects the central nervous system, lymph nodes, bones and skin. Development of Ba-

cille-Calmette-Guerin (BCG) vaccine in 1920s by Albert Calmette and Camille Guerin was 

the first milestone in intervention against TB (Dockrell, et al., 2008). This vaccine entered 

clinics in 1921 and has been administered more than 4 billion times worldwide. in spite of its 

variable efficacy against pulmonary TB (Kaufmann, 2000). Nevertheless, chemotherapy has 

been identified as the only means of treating TB. 

The seminal discovery of streptomycin (SM) by Selman Waksman and Albert Schatz ushered 

in the golden era of TB drug discovery (Schatz, et al., 1944). This was followed by identifica-

tion of anti-tubercular activity of para-aminosalicylic acid (PAS) and nicotinamides like iso-

niazid (INH) and pyrazinamide (PZA) (Bernstein, et al., 1952; Lehmann, 1946; Malone, et al., 

1952). In the 1950s and 60s a number of anti-TB drugs like D-cycloserine, viomycin, ca-

preomycin, rifamycin and its derivative rifampin (RIF) were obtained from soil isolates 

(Bartz, et al., 1951; Kurosawa, 1952; Maggi, et al., 1966). Current TB therapy was mostly 

designed based on combination of these agents with the broad range quinolones being the 

only later addition (Tsunekawa, et al., 1987). Though this regimen along with BCG vaccina-

tion led to a decline in TB cases initially, the emergence of drug resistant Mtb strains and HIV 

co-infection has drastically escalated number of TB infected individuals in recent years. This 

forced WHO to declare it a 'Global Emergency' in 1993 (WHO, 1993).  

More than half a century after streptomycin discovery, TB continues to plague millions, espe-

cially, in the developing world. Recent WHO report estimates about 9.27 million incident 

cases of TB in 2007 with most of the cases occurring in Asia (55%) and Africa (31%) (WHO, 

2009). Of these an estimated 1.37 million (15%) were HIV positive and 80% of these cases 

were reported in Africa indicative of the dangerous liaison between HIV and TB. Additionally 

there were 0.5 million cases of MDR TB and 55 countries reported XDR TB. MDR is defined 

as those strains resistant to at least INH and RIF, 2 of the 4 frontline drugs, INH, RIF, PZA 

and EMB, while XDR are those MDR strains with additional resistance to any fluroquinolone 

and one of the three injectable second-line anti-TB drugs (capreomycin, kanamycin and ami-

kacin). Rapid spread of the virtually untreatable XDR TB threatens to jeopardise existing 

therapeutic regimens calling for new intervention strategies (Raviglione and Smith, 2007). To 
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develop these, the scientific community has revisited the complex biology of Mtb, with sup-

port from global policymakers and public and private funding organizations (Kaufmann and 

Parida, 2007). Current understanding of this biology with an update on intervention strategies 

is detailed in this section. 

1.1 Phylogeny of Mtb 

Mtb belongs to phylum Actinobacteria, comprising gram positive bacteria with high G+C 

content and one of the largest taxonomic units within the domain Bacteria. Within this, the 

genera Corynebacterium, Mycobacterium and Nocardia form a monophyletic taxon called 

CMN group characterized by an unusual waxy cell envelope mainly composed of unique long 

chain fatty acids called mycolic acids (Ventura, et al., 2007). The genus Mycobacterium com-

prises 85 different species indicating its high diversity. Majority of these are non-pathogenic 

environmental bacteria related to soil growing Streptomyces or Actinomyces but a few like 

Mtb and M. leprae belonging to the slow growing sub-lineage are highly successful patho-

gens. Mtb belongs to the M. tuberculosis complex consisting of Mtb, M. africanum, M. canet-

tii, M. bovis and M. microti which share more than 99% identity at the nucleotide level 

(Brosch, et al., 2002).  

Whole genome sequencing of Mtb and M. leprae has given immense boost to understanding 

of evolutionary relationships between members of Mtb complex (Cole, et al., 1998; Cole, et 

al., 2001). Analyses looking into gene deletion events have shown that Mtb and M. canettii are 

the most ancestral with lowest number of gene deletions while M. bovis has evolved more 

recently. The presence or absence of an Mtb specific deletion (TbD1) also divides Mtb strains 

into ancestral and "modern" strains, the latter comprising representatives of major epidemics 

like the Beijing, Haarlem, and African Mtb clusters (Brosch, et al., 2002). Though initial stud-

ies indicated very low sequence diversity amongst Mtb strains, recent analysis suggests that at 

the whole genome level there is substantial genetic variation which has led to identification of 

large sequence polymorphisms (LSPs) and single nucleotide polymorphisms (SNPs). Analy-

ses of these by different investigators have given rise to classification of Mtb isolates into four 

distinct lineages (Gagneux and Small, 2007). The high congruency amongst these studies is 

indicative of the well known clonal nature of Mtb population structure. These studies also 

revealed that Mtb isolates displayed a clear phylogeographic distribution meaning distinct 

lineages were associated with specific geographical regions.  

Though these studies are a big leap forward, more data is needed; especially sequence data of 

isolates from high TB burden areas like east and South-east Asia, Indian subcontinent and 

Africa to completely define the phylogeny of Mtb. This information has huge implications in 
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development of better and more reliable diagnostic tools, drugs, vaccines and biomarkers 

since strain variation can be a deciding factor in their success. 

1.2 Pathogenesis of Mtb 

Chronic infections represent some of the most advanced forms of crosstalk between host and 

pathogen, TB being a classical example. Mtb, the causative agent, is transmitted via aerosol 

and is taken up by alveolar macrophages once it reaches the lung (Fig.1) (Kaufmann, 2001). 

Macrophages play the contradictory roles of being the first line of defense against Mtb as well 

as its primary niche. Mtb efficiently counters the extensive anti-microbial artillery of macro-

phages and establishes itself in the phagosome by blocking its fusion with acidic lysosome. 

Meanwhile, activation of macrophages and dendritic cells induces an elaborate immune re-

sponse initiated by secretion of cytokines like Interleukin-12 (IL-12) and Tumour necrosis 

factor-α (TNF-α) and chemokines like (C-C) Ligand 5 (CCL5) and Macrophage inflammatory 

protein-1α (MIP-1α) finally leading to organized cellular structures called granulomas, hall-

mark of chronic infections (Flynn and Chan, 2001). These are organized collections of diffe-

rentiated macrophages mainly but other cells like T cells, some B cells, neutrophils, dendritic 

cells and fibroblasts are also found in Mtb granulomas (Ulrichs and Kaufmann, 2006). 

Though Mtb is primarily found inside macrophages adaptive response facilitated by T cells is 

also crucial for the completion and maintenance of these structures wherein Mtb is walled off 

from host tissue (Russell, 2007). 

 
Figure 1: Pathogenesis of Mtb.  

Adapted from Stewart, G.R. et al. (2003). 

Mtb infection can have multiple outcomes including an early clearance which does not leave 

any imprint or immediate progress to active disease also called primary disease or a sub-

clinical asymptomatic infection called latent TB which can reactivate at a later time point. The 
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last is the most likely scenario with about two billion individuals, almost a third of the world’s 

population, harbouring dormant Mtb with a 10% risk of reactivation while 90% of individuals 

remain protected (Cosma, et al., 2003; Kaufmann and McMichael, 2005). In these individuals, 

Mtb is never completely eliminated and likely switches to an alternate metabolic state which 

is considered almost dormant or non-replicating (Connolly, et al., 2007). These dormant bac-

teria which are refractive to current anti-TB drugs are also found to co-exist with actively di-

viding bacteria in diseased individuals leading to prolonged therapy. This results in frequent 

patient non-compliance and thus emergence of resistance. Reactivation leading to post-

primary disease is mostly a consequence of immune suppression either due to a disease like 

AIDS or diabetes or even therapies like anti-TNF antibody treatment (Barry, et al., 2009). 

Persistence, reactivation and drug resistance in the context of the pathogen as well as the host 

are the primary areas of research in TB. 

1.3 Characteristics of Mtb 

Mtb is aerobic, prototrophic bacterium shaped as irregular rod 0.3-0.5µm in diameter and of 

variable length (Fig. 2 i) (Cook, et al., 2009). When cultured on artificial media it forms cha-

racteristic ruffled colonies reflecting the unique composition of its lipid rich cell wall (Mid-

dlebrook, 1947). Mtb is a very slow growing organism with an average replication time of 22-

24 hours and has only about 10% metabolic activity of fast growing E. coli. Additionally, 

slow growing pathogenic species tend to switch to a state of dormancy or persistence when 

exposed to extreme stress environments in the host. Its enormous success as pathogen can be 

attributed to its ability to evade host defense mechanisms and adapt to adverse environments 

with relative ease unmatched by other pathogenic bacteria. Two of its characteristic features, 

cell envelope and persistence, which are relevant to this study are described here. 

1.3.1 Cell Envelope 

The complex cell wall of Mtb is distinct in its chemical nature from that of both gram positive 

and gram negative bacteria thus making it amenable only to acid fast staining procedures 

(Brennan and Nikaido, 1995). Acid fastness is a physical property by which mycobacteria 

resist decolorization by mild acid or ethanol after staining with Ziehl-Neelsen dye making it 

visible as bright red rods against blue background. The cell wall lipids make up about 40% of 

dry weight of bacterial cells and are made mostly of unusual lipids like mycolic acids and 

mycocerosic acids linked to polysaccharides and/or proteins (Daffe, 2008). Mycobacteria pos-

sess unique biosynthetic modules devoted to their production which due to their singularity 

and essentiality are attractive targets for existent and future intervention strategies (Cole, et 

al., 1998). For example INH and ethambutol (EMB) two prominent front line drugs target 
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mycolic acid and arabinogalactan synthesis, respectively (Dover, et al., 2008). The cell enve-

lope also gains special importance being at the interface between pathogen and host mediating 

their interactions and promoting the pathogen’s survival. 

1.3.1.1 Structure 

Though it has been known that mycobacterial envelope consists of the innermost plasma 

membrane, an intermittent layer of peptidoglycan like gram positive bacteria and an outer 

membrane like gram negative bacteria, clear evidence of its layout has been elusive. Recent 

developments in cryo-electron microscopy techniques have overcome this, capturing the 

whole cell envelope of M. bovis and M. smegmatis in its native form (Hoffmann, et al., 2008; 

Zuber, et al., 2008). These studies indicate the presence of a zone similar to periplasmic space 

in gram positive bacteria and a semi-dense layer made up of peptidoglycan. Beyond this is the 

outer membrane mostly made up of mycobacteria specific lipids (Fig. 2 b). Contrary to popu-

lar belief, it is a symmetric bilayer of 7-8nm thickness which is only slightly thicker than that 

of plasma membrane though the carbon chain length of mycolic acids is almost 5 times that of 

phosphatidylcholine/serine. Hence this suggests an intercalated zipper like arrangement of 

hydrophobic mycolic (with the meromycolic chain folded upon itself) and other fatty acid 

tails with exposure of hydrophilic sugar/protein head groups to external environment. Glu-

cans, made of repeating sugar molecules and other lipid moieties like lipoarbinomannan and 

phenolic glycolipids are also found decorating this outer membrane. 

 
Figure 2: Mycobacterium tuberculosis.  

(a) Scanning electron microscopy image of Mtb H37Rv showing the rod shaped cells (b) Schematic of outer-
membrane of Mtb adapted from Zuber, B. et al. (2008). 

This closely interlinked arrangement drastically reduces the permeability of the cell wall and 

also makes it highly resistant to antibiotics and host derived stress. In fact, the permeability of 

mycobacterial cell wall is found to be 10 to 100 times less than that of notoriously imperme-

able Pseudomonas aueroginosa (Jarlier and Nikaido, 1994). This scenario makes the role 
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played by transporter proteins, like porins, embedded in the cell envelope, in uptake of nutri-

ents and other essential hydrophilic molecules crucial for bacterial survival. A clear under-

standing of the mechanisms underlying transport across the envelope is still lacking and is an 

active area of research. 

Thus mycolic acids and peptidoglycan-arabinogalactan provide the structural framework to 

which extractible lipids are attached. The following sections describe the biosynthetic path-

ways associated with these and their relevance to host pathogen interaction as well as inter-

vention strategies. 

1.3.1.2 Mycolic acids  

Mycolic acids, the major building blocks of mycobacterial cell envelope, are long α-chain 

branched, ß-hydroxylated fatty acids which upon pyrolysis are cleaved into a meroaldehyde 

main chain also called meromycolic chain and a meroacid or shorter α branch (Asselineau and 

Lederer, 1950; Marrakchi, et al., 2008). They consist of 60 to 90 carbon atoms depending on 

mycobacterial species and various chemical functions like cyclopropane rings and oxygenated 

groups. Mtb mycolic acids are of three main types: α, methoxy and keto, where α is the most 

apolar with 74 to 80 carbon atoms and generally two double bonds or two cis cyclopropyl 

groups located in the meromycolic chain (Fig.3) (Daffe, et al., 1983). The other two subtypes 

contain supplementary oxygen functions namely methoxy and keto groups located in the dis-

tal part of the meromycolic chain and have 84 to 88 carbon atoms, 4 to 6 carbon atoms longer 

than the α mycolates.  

 
Figure 3: Types of mycolic acids in M. tuberculosis.  

Adapted from Takayama, K. et al. (2005). 

A diverse panel of up to 24 known enzymes are involved in the three basic steps of synthesis 

and elongation of α-alkyl branch and meromycolic chains, their modification and condensa-

tion to final product. Initial steps in synthesis involve fatty acid synthase (FAS) systems which 

use malonyl- coenzyme A as the basic building block (Fig. 4). These are generated by acyl-
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CoA carboxylases (ACCases) from acetyl-CoA and Mtb carries an unusually high number of 

these enzymes in its genome. FAS are of two main types: FAS-I, the multifunctional polypep-

tide (type I) and the FAS-II system which is made of a series of discrete soluble enzymes 

(Bloch and Vance, 1977; Fernandes and Kolattukudy, 1996; Odriozola, et al., 1977). FAS-I 

aids in de novo synthesis of long chain acyl-CoA from acetyl-CoA using malonyl-CoA pro-

ducing both C16-18 and C24-26 chains. The shorter C16-18 are substrates for elongation by FAS-II 

to give rise to meromycolic chain precursors while the longer chain C24-26 give rise to the α 

branch precursors. Additionally these fatty acids also contribute to the conventional phosphol-

ipids of plasma membrane.  

 
Figure 4: Biosynthesis of mycolic acids.  

Schematic representation of steps in mycolic acid biosynthesis involving FAS-I and FAS-II systems. Adapted 
from Bhowruth, V. et al. (2008). 

Mycobacterial FAS-II is incapable of de novo fatty acid synthesis unlike other bacterial FAS-

II and depends on Acyl-carrier-protein M (AcpM) to transfer intermediates between the dis-

crete monofunctional enzymes (Fig.4) (Bhowruth, et al., 2008). Elongation is initiated by 

condensation of acyl-CoA product of FAS-I with malonyl-ACP by ß-ketoacyl-ACP-synthase 

III (MtFabH). Four enzymes catalyze each step of the elongation: NADPH dependent MabA 

reduces ß-ketoacyl-ACP into ß-hydroxyacyl ACP and subsequently dehydrated to an enolyl-
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ACP by dehydratase (Marrakchi, et al., 2002). Next NADPH dependent InhA reduces the 

enolyl chain to produce acyl-ACP. Final elongation step is performed by the condensing en-

zymes KasA/KasB which uses malonyl CoA to increase chain length by two carbon atoms, 

giving rise to ß-ketoacyl-ACP which feeds into the cycle. This process is probably terminated 

when the acyl-CoA-ACP attains the chain length required for meromycolic precursors. The 

observation that FAS-II is the target of the frontline antitubercular drug, INH, proves its im-

portance in the physiology of Mtb (Marrakchi, et al., 2000).  

Modifications of the meromycolic chain lead to the chemical diversity of mycolic acid spe-

cies. Mtb harbours cyclopropyl rings (in α mycolates) and keto or methoxy groups in combi-

nation with cyclopropyl rings and loss of these groups can lead to drastic changes in virulence 

and pathogenicity underlying their importance (Glickman, et al., 2000). Eight putative S-

adenosylmethionine (SAM) dependent methyltransferases could introduce these modifica-

tions. CmaA1, CmaA2, PcaA (UmaA2) and MmaA2 have been studied with mutant analysis 

and shown to be important for cyclopropane ring formation in distal and proximal positions of 

meromycolic chain (Glickman, et al., 2001; Glickman, et al., 2000). Hma (MmaA4), on the 

other hand, is responsible for introducing keto and methoxy groups at proximal position in 

addition to introducing a methyl group. Condensation of modified meromycolic and alkyl 

branch precursors is the final step performed by polyketide synthase 13 (Pks13) belonging to 

type I Pks enzyme as the probable condensase (Portevin, et al., 2004). Prior to condensation 

meromycolic precursor need to be activated to an acyl-AMP derivative by fadD32 while the 

alkyl precursor gets carboxylated by AccD4 to yield an alkyl-malonyl intermediate. These are 

then condensed by Pks13 to give a keto ester which is then reduced to form mature mycolic 

acids.  

The final processing steps where mature mycolic acids get transferred outside the plasma 

membrane to cell envelope components is not fully understood. Putative mycolyltransferases I 

and II (unknown identity) have been postulated in transfer of mycolic acid from Pks13 to tre-

halose phosphate to give rise to trehalose monomycolate (TMM) which is transported across 

plasma membrane by an ABC transporter (Takayama, et al., 2005). In the periplasmic space 

Antigen85 (Ag85) proteins play the critical role of transferring mycolic acids from TMM to 

peptidoglycan- arabinogalactan and another molecule of TMM to form mAGP and trehalose 

dimycolate (TDM) respectively. TDM, found on the outer layer of the envelope, has been 

associated with the typical cording phenotype of mycobacteria, earning it the name ‘cord fac-

tor’ (Glickman, 2008). Recent studies indicate that quality of mycolic acids meaning their 

chemical modifications rather than quantity drives this cord like structure formation. TDM is 
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also a high virulence lipid capable of inducing granulomas in a mouse aerosol model of Mtb 

infection (Perez, et al., 2000). Thus the two mycolic acid carrying molecules are important for 

the structural integrity (mAGP) as well as pathogenicity (TDM) of Mtb. 

1.3.1.2.1 Antigen85 complex 

Ag85 A, B and C are the three members of the Ag85 complex which share 68-79% identity at 

sequence level in Mtb. They are some of the most abundant proteins in the culture filtrate of 

Mtb. This also explains their high immunogenicity which is of interest in vaccine and TB 

biomarker development. Ag85 A, B and C are located in distinct regions of genome and are 

independently transcribed. Ag85B has a molecular mass of 30KDa while Ag85 A and C have 

the mass of 32KDa each and exist as monomers. They are secreted in the ratio of Ag85 B: A: 

C of 3:2:1 into the culture filtrate (Harth, et al., 1996). Initial studies focussed on their fi-

bronectin binding property (fbp) and hence were named fbp A, B and C2 (Abou-Zeid, et al., 

1988). But presence of these proteins in non-pathogenic M. smegmatis and elegant in vitro 

studies showed a more fundamental role in biogenesis of complex cell wall of mycobacteria 

(Belisle, et al., 1997). 

 
Figure 5: Ag85 complex and cell wall biogenesis.  

Schematic representation of thefunction of Ag85 proteins. 

Their location in the periplasmic space is ideal for their function as mycolyl transferases in-

volved in the final transfer of mature mycolic acids from its substrate, TMM to give rise to 

TDM and m-AGP (Fig. 5). Structure studies implicate a highly conserved carboxyl esterase 

sequence in this activity (Anderson, et al., 2001; Ronning, et al., 2000; Ronning, et al., 2004). 
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Mutant and anti-sense knockdown studies have indicated that these proteins might have par-

tially redundant functions in cell wall synthesis and hence survival (Armitige, et al., 2000; 

Harth, et al., 2002; Jackson, et al., 1999; Puech, et al., 2002). Nevertheless, absence of similar 

proteins in the genome suggests that they cannot be bypassed and hence have been targeted 

via chemical inhibitors extensively with some degree of success (Gobec, et al., 2007; Rose, et 

al., 2002; Wang, et al., 2004). In this study, we investigate the effects of a panel of chemical 

molecules which bind to Ag85C on the growth and physiology of Mtb. 

1.3.1.3 Arabinogalactan Peptidoglycan (AGP) 

Peptidoglycan (PG), a polymer of sugars and amino acids, is found in all bacteria outside the 

plasma membrane. It serves a structural role providing structural strength as well as counter-

acts osmotic pressure of cytoplasm. PG of mycobacteria is made of linear glycan chains con-

sisting of alternating N-acetyl-ß-D-glucosamine (GlcNAc) and modified muramic acid (Mur) 

with a peptide side chain that is cross linked with parallel glycan strands (Crick and Brennan, 

2008). It forms a rigid layer providing shape and strength to the envelope. The major cell wall 

polysaccharide of mycobacteria, branched- chain arabinogalactan (AG) is linked to pepti-

doglycan. It is mostly made of arabinose and galactose residues in the furanose configuration 

and lacks repeating units. About two-thirds of the non-reducing ends of terminal hexaarabino-

furanosides carry mycolic acids giving rise to mAGP. Polyprenylphosphate (Pol-P), a lipid 

carrier of activated sugars, plays a pivotal role in the synthesis of this cell wall core. Myco-

bacteria use at least three forms of Pol-P where Mtb predominantly uses a decaprenyl phos-

phate (Dec-P). 

Though PG biosynthesis pathway is not well characterized in Mtb, the arrangement of genes 

is very similar to that in other bacteria; hence the biochemistry is assumed to be almost the 

same. Initial steps in synthesis involve the enzymes MurA and MurB which generate UDP-

MurNAc from UDP-GlcNAc. Then pentapeptide chain is linked to it by subsequent reactions 

catalyzed by orthologs of MurC, MurD, MurE and MurF of E. coli. This UDP-MurNAc-

pentapeptide is then transferred to Dec-P to form Lipid-I. GlcNAc is then added to it to form 

Lipid-II which is then translocated across the membrane to add to the peptidoglycan chain. 

Penicillin binding proteins (PBPs) catalyze the formation of peptide crosslinks leading to ma-

ture PG. Mycobacterial peptidoglycan has a variety of alterations to the murapeptides includ-

ing the presence of MurNGlyc and GlyNAc when most other bacteria have only MurNAc. 

Amidation at the carboxylic functions of the petide side chains have also been reported. These 

modifications occur at the level of Lipid-II. 
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AG synthesis also uses Dec-P and is initiated with the synthesis of the linker unit, Dec-P-

GlcNAc-Rha. Galf residues are then added to the linker unit from UDP-Galf followed by Araf 

residues which are added to the linker unit-galactan polymer from a decaprenyl-phosphoryl-

Araf (DPA). Synthesis of the arabinan and galactan moieties seems to comprise concomitant 

events involving arabinosyl transferases and galactosyl transferases respectively. EmbABC 

are prominent glycosyl transferases which are postulated as cellular targets of another front-

line antituberculosis drug, EMB, again underlining the importance of AG for bacterial sur-

vival. Mature AG is linked to PG by as yet unidentified ligase and could most probably occur 

at the level of Lipid-II. PG and AG synthesis pathways provide numerous novel targets for 

future drug discovery, in fact, a recently characterized lead molecule, benzathiazinone, targets 

DPA isomerases (Makarov, et al., 2009). 

1.3.1.4 Extractible lipids 

Lipids located in the outer most layer of the envelope also function as the first points of con-

tact between Mtb and the host. The most prominent extractible lipids are lipomannans (LM) 

and mannosylated lipoarabinomannan (ManLAM), phenolic glycolipids (PGL), pthiocerol 

dimycocerosates (PDIM) and sulfolipids (SLs) in addition to TDM which was discussed in 

previous section. LMs and MANLAMs are structurally similar lipoglycans generated by re-

lated biosynthetic pathways which use phosphatidyl-myo-inositol mannosides (PIM) as the 

starting point (Gilleron, et al., 2008). The exact localization of these phospholipids is not yet 

resolved with studies suggesting both an outer membrane anchoring which would expose 

them to host receptors as well as a more hidden localization within periplasmic space. 

PGLs and PDIMs share a common lipid core which is synthesised by the polyketide synthase 

family of enzymes and they are mostly clustered on a 73kBp region called DIM-PGL locus 

(Guilhot, et al., 2008). PGLs are species specific and are significantly produced by M. leprae, 

a few strains of Mtb, M.kansasii, many strains of M.bovis and a few other slow-growing my-

cobacteria. PGLs and PDIMs are found in the outermost layers of the cell envelope and could 

be important for the permeability barrier of the Mtb envelope. However, most Mtb clinical 

isolates do not produce PGL while PDIM is found in all suggesting that PDIM might be play-

ing a structural role (Daffe and Laneelle, 1988). Additionally, a DIM-less strain is more per-

meable to the hydrophobic probe, chenodeoxycholate (Camacho, et al., 2001). 

SLs, also found in the outer membrane of cell envelope associated with mycolic acids initially 

attracted interest as virulence factors (Bertozzi and Schelle, 2008). They have a trehalose base 

with long acyl groups but the sulphate ester functionally distinguishes it from other Mtb lip-

ids. There are about five types of SLs with SL-1 being the most abundant and a whole operon 
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found to be regulated by the phoP/R two component system has been dedicated to their syn-

thesis (Gonzalo Asensio, et al., 2006; Lee, et al., 2008). In spite of much speculation no clear 

evidence has yet been unearthed linking sulfolipids and virulence in vivo. 

1.3.1.5 Immunological relevance of lipids 

As described in Section 1.2, the extensive host response mounted against Mtb fails to clear the 

infection completely and the complex mycobacterial lipids play an important role in this phe-

nomenon. Cells of the innate immune system like macrophages and dendritic cells get acti-

vated when exposed to specific components of pathogens called pathogen associated molecu-

lar patterns (PAMPs) which could be of protein, sugar or lipid origin and are recognised by 

specific receptors in these cells. It is well known that ManLAM, LM and PIM are prominent 

PAMPS of Mtb recognized by various host cell receptors activating signalling cascades initiat-

ing host-pathogen cross-talk (Gilleron, et al., 2008). ManLAMs have been postulated to bind 

to the C-type lectin dendritic cell-specific intercellular adhesion molecule 3 grabbing nonin-

tegrin (DC-SIGN) on dendritic cells and mannose receptor on macrophages leading to sup-

pression of the pro-inflammatory cytokines (Geijtenbeek, et al., 2003). On the other hand, 

LMs and PIMS are Toll-like receptor-2 (TLR-2) agonists which induce inflammation. 

ManLAM can also induce phago-lysosome arrest in macrophages similar to live Mtb and 

PIMs and LMs also stimulate non-conventional T cells (Kang, et al., 2005).  

TDM, another exposed lipid, is also important for inducing macrophages to secrete inflamma-

tory cytokines like TNF-α and IL-12 as demonstrated by up regulation of expression of these 

genes in mouse lungs after TDM administration (Guidry, et al., 2007; Perez, et al., 2000; 

Welsh, et al., 2008). Removal of TDM from Mtb surface also reduces secretion of these cyto-

kines and chemokines from macrophages (Indrigo, et al., 2002). TDM also blocks phago-

lysosome fusion in macrophages similar to other virulence lipids (Axelrod, et al., 2008; In-

drigo, et al., 2003). 

PGLs and PDIM have been closely linked with virulence. DIM-less mutants show reduced 

multiplication in mouse lungs especially in the initial phases of infection and also appeared to 

induce higher amounts of pro-inflammatory cytokines from macrophages accompanied by a 

defective phago-lysosomal block (Camacho, et al., 1999; Cox, et al., 1999). PGLs on the other 

hand have been associated with the hypervirulence phenotype associated with a clinical iso-

late (HN878) of the Beijing family genotype (Reed, et al., 2004). Strains belonging to this 

genotype are believed to have originated in China, have been linked to major outbreaks of TB 

and are now found distributed worldwide (van Soolingen, et al., 1995). All Beijing strains 



INTRODUCTION 21 

have been found to harbour structural variants of DIM and eventually PGLs suggesting a 

close link between virulence and lipid moieties (Constant, et al., 2002). 

1.3.2 Persistence/Dormancy  

Drug persistent Mtb refers to those that survive in the host in spite of extensive antibiotic 

treatment (Sacchettini, et al., 2008). This could either be because of reduced access of these 

drugs to Mtb enclosed in granulomas or the adaptation of bacteria to a non-replicating state. 

Persistent Mtb, thus, acquires phenotypic tolerance to antibiotics due to their distinct metabol-

ic status leading to prolonged treatment, frequent non-compliance and thus drug resistance. 

This complex phenotype continues to confound mycobacteriologists but development of new 

intervention methods necessitates its better understanding (Stewart, et al., 2003).  

A variety of simplified in vitro models; Wayne model of hypoxia, nutrient starvation, nitrosa-

tive stress model, acid stress model and macrophage infection, have been employed with 

whole gene expression analysis as starting points towards understanding Mtb biology under 

various stress conditions (Betts, et al., 2002; Schnappinger, et al., 2003; Voskuil, et al., 2003; 

Wayne and Hayes, 1996). The low level of replication or activity in this alternative state 

might explain resistance to current antibiotics which target pathways used in actively replicat-

ing bacilli. Even then, a minimal level of metabolism involving ATP synthesis, NAD- NADH 

shuttling and cell wall remodeling should be operative which can be attractive targets for 

therapy. The dosR regulon and recently the enduring hypoxic response (EHR) cluster are a 

few of the candidate regulatory networks which seem to be important for this process (Park, et 

al., 2003; Rustad, et al., 2008). An accumulation of tri-acyl glycerides and subsequent switch 

to fatty acid catabolism involving isocitrate lyase has also been postulated (McKinney, et al., 

2000). An inclusive analysis of datasets generated by different model systems rather than ex-

clusive studies would aid in throwing light on essential pathways active in persistent Mtb and 

thus bring up more relevant candidates. 

Additionally, the absence of a reliable mouse model mimicking persistence has made in vivo 

validation of these studies even more difficult (Kaufmann, 2003). This has led to recent explo-

ration of new animal models like non-human primates to better reconstruct human TB scena-

rio but results are forthcoming (Barry, et al., 2009). What is now very well appreciated is the 

fact that human TB lesions display a wide range of phenotypes and Mtb could be exposed to 

varying environments depending on its location. Thus there is heterogeneity in Mtb subpopu-

lations and design of new therapies need to take this in to account. Another important aspect 

of persistent infection is the host response, mainly the immune response which effectively 

contains Mtb but stops short of eliminating it. The mechanisms with respect to types of T cells 
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etc involved in persistent infection are still not completely understood and are relevant to vac-

cine development (Dorhoi and Kaufmann, 2009; Kaufmann, 2007). A better understanding 

and consideration of these phenomena, persistence and reactivation, in context of both Mtb 

and host is needed in the design and development of intervention methods. 

1.4 Intervention 

Classically, two intervention strategies exist for infectious diseases: 1) Chemotherapy which 

aims at curing diseased individuals using chemical molecules which preferentially eliminate 

the pathogen and 2) Vaccination which aims at preventing infection in healthy individuals by 

priming their protective immune response. In the case of TB, both have existed since last cen-

tury but recent escalation in cases has prompted research aimed at improving them.  

BCG, an attenuated version of M. bovis is a neonatal vaccine which protects efficiently against 

childhood tuberculosis but is virtually ineffective against adult pulmonary tuberculosis. Pre-

sently, multipronged approaches with modification of current BCG combined with boost vac-

cines are being evaluated to deal with this issue (Kaufmann, 2005; Reece and Kaufmann, 

2008). Chemotherapy which is more relevant to this study is described in detail below. Cur-

rent strategies for TB control focuses on those with active disease thus eliminating chances of 

transmission but in order to achieve the ambitious goal of eradicating TB by 2050 the scien-

tific community needs to come up with innovative ideas to tackle latency and drug resistance 

(Barry, et al., 2009; WHO, 2009). 

1.4.1 Drugs 

Current treatment regimen against TB has not seen many changes since its inception more 

than 40 years ago. It is prolonged, taking up to 6-9 months, which has led to extensive patient 

non-compliance and thus emergence of drug resistance (Nathan, et al., 2008). Hence new 

drugs and/or regimens need to be urgently introduced to shorten treatment and in fact mathe-

matical modelling predicts that if a 2 month regimen were introduced in 2012, it would pre-

vent 20% of new cases and 25% of deaths in South-east Asia alone by 2020-30 (Salomon, et 

al., 2006).  

One of the main reasons for this lengthy regimen is the ability of Mtb to shift to a non- repli-

cating/persistent state in the host making it resistant to the current suite of anti-tuberculars 

(Sacchettini, et al., 2008). INH, EMB and RIF which are all part of the first line of therapy 

can kill or inhibit only actively multiplying bacteria. PZA, on the other hand, acts on less ac-

tive bacteria in an acidic and hypoxic environment, the most likely situation inside macro-

phages and granuloma (Dover, et al., 2008). Thus, drugs targeting non-replicating/dormant 

bacteria are a main requirement to achieve the challenging goal of a short 2 month therapy. 
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Nevertheless, new molecules which target pathways distinct from that of current drugs are 

essential to tackle the existing problem of rampant drug resistance. Another major hurdle is 

the high prevalence of TB amongst HIV patients, calling for TB drugs which would not be 

antagonistic to current anti retro-virals. 

1.4.1.1 Current regimen 

To improve or modify the present state of TB chemotherapy it is important to first understand 

the efficiency, mechanisms of action and resistance patterns of current drugs. Existing chemo-

therapeutic regimen consists of an initial 2 month phase with INH, RIF, PZA and EMB fol-

lowed by a 4 month phase with INH and RIF (Mitchison, 2004). Second line drugs include 

aminoglycosides, polypeptides, fluoroquinolones, thioamides, cycloserine and p-

aminosalicylic acid. 

 

 
Figure 6: Current panel of drugs.  

a) Isoniazid b) Rifampin c) Pyrazinamide d) Ethambutol 

INH and EMB, as mentioned before, interfere with cell wall biosynthesis though at different 

points (Fig. 6 a & d). INH, belonging to the nicotinamide family, is still the most potent my-

cobactericidal drug with an MIC close to 0.2µg/ml (Bernstein, et al., 1952). INH is a pro-drug 

requiring activation by the catalase-peroxidase KatG leading to an INH-NAD adduct which 

binds to members of FAS II cycle (Zhang, et al., 1992). The exact target of INH is still a con-

tentious issue with evidence suggesting involvement of InhA, the enoyl-ACP reductase and 

KasA, the ß-Ketoacyl synthase (Banerjee, et al., 1994; Mdluli, et al., 1998). Regardless of 

this, INH blocks mycolic acid synthesis at level of meromycolic chain elongation leading to 
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accumulation of C24/C26 fatty acids, drastic changes in cell wall envelope followed by cell 

lysis. Mutations in KatG, InhA and KasA have been implicated in INH resistance.  

Ethionamide (ETH) is a second line drug whose mode of action is very similar to that of INH 

though a lack of cross-resistance suggests some uniqueness. Being a structural analogue of 

INH, ETH is also a pro drug though its activation route seems to be the distinctive characteris-

tic. Two independent studies show that EthA, a FAD containing monooxygenase, and its rep-

ressor EthR play an important role in its activation and binding to InhA thus affecting mycolic 

acid synthesis (Baulard, et al., 2000; DeBarber, et al., 2000).  

EMB belonging to the family of diamine analogues is another front line drug which interferes 

with cell wall synthesis as shown by the almost immediate destabilisation of cell envelope 

(Thomas, et al., 1961). Detailed radiolabel studies indicated that arabinogalactan synthesis 

was impaired at the level of arabinosyl transferases which was confirmed with resistance stud-

ies with mutants showing the EmbBAC arabinosyl transferase operon to be the target of EMB 

(Takayama and Kilburn, 1989; Telenti, et al., 1997).  

PZA is another nicotinamide based anti-TB drug which needs activation by the Mtb protein 

PncA, a pyrazinamidase/nicotinamidase (Fig. 6 c) (Konno, et al., 1967). PZA is unique in that 

its high bactericidal activity is observed only in vivo while in vitro activity requires acidic pH 

and or hypoxia. This suggests activity against semi-dormant bacteria located inside cells and 

in anoxic or hypoxic lesions in the lung. There has been no clear resolution of its mechanism 

of action since resistant mutants mostly carry mutations in the activating PncA gene. Some 

studies suggest that it inhibits activity of the fatty acid synthase (Fas I) while others point to a 

dysregulation of plasma membrane potential (Zhang, et al., 2003; Zimhony, et al., 2000). 

Whatever might be the case it is generally accepted that PZA is one of the main factors re-

sponsible for shortening TB treatment from 9-12 months to 6-9 months. 

RIF, a broad spectrum antibiotic and the other prominent mycobactericidal molecule, inhibits 

RNA synthesis by binding to the ß subunit of the prokaryotic DNA-dependent RNA poly-

merase (Fig. 6 b) (Wehrli, 1983). This specific binding also prevents any toxic side effect on 

host cells since eukaryotic RNA polymerases are inhibited only at concentrations about 104 

fold above MIC. The RIF-RNA polymerase complex is extremely stable though there are no 

covalent bonds formed between the two. Instead, hydrogen bonds and Π-Π bond interactions 

involving aromatic residues in the protein are hypothesized to be responsible, hence mutations 

in the RpoB gene coding for the RNA polymerase mostly confer resistance to this drug. The 

main drawback of RIF is its inductive effect on cytochrome P450 enzymes leading to rapid 
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metabolism of certain AIDS drugs reducing efficiency of anti-retroviral (ARV) treatment in 

HIV co-infected individuals (Kwara, et al., 2005). 

Second line anti-TB drugs are mostly less effective than the main front line drugs but are in-

valuable against drug resistant strains due to their distinct modes of action. Aminoglycosides 

like streptomycin, kanamycin and amikacin belong to this group and target 30S subunit of 

ribosomes inhibiting protein synthesis. Cyclic peptides like capreomycin and viomycin also 

target the ribosome machinery by binding to the interface between the subunits. Fluoroqui-

nolones, on the other hand, act on DNA gyrases (Topoisomerase II) which maintain DNA 

supercoils necessary for DNA replication. Resistance to fluoroquinolones is attributed to 

stepwise mutations in the quinolone resistance determining region of Mtb GyrA and GyrB 

genes which encode topoisomerases (van den Boogaard, et al., 2009). The mechanism by 

which p-aminosalicylic acid inhibits Mtb growth is not well understood though thymidylate 

kinase and mycobactin synthesis pathways have been implicated. 

1.4.1.2 New drug candidates  

The current TB regimen is lengthy and involves multiple medications. Normal therapy re-

quires 6-9 months whereas treatment of drug-resistant TB takes 18-24 months or even longer 

(Connolly, et al., 2007). Second-line drugs are also much more toxic and considerably more 

expensive than the standard first-line anti-TB regimen. Furthermore, current first-line treat-

ment regimens are not compatible with certain common antiretroviral therapies used to treat 

HIV/AIDS (TBAlliance, 2009). Therefore, new drugs are needed that will be effective in 

treating children, and latent TB infection and will be compatible with antiretroviral therapy. A 

robust and sustainable pipeline of TB drug candidates and discovery programs has been initi-

ated and some of the leading candidates in clinical trials are described below (TBAlliance, 

2009). 
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Figure 7: New drug candidates.  

a) Moxifloxacin b) Linezolid c) SQ109 d) PA-824 e) TMC207 

Cell wall synthesis inhibitors: Cell envelope continues to be the most attractive target for fu-

ture TB drug development due to its proven essentiality for Mtb survival. Bicyclic nitroimida-

zoles like PA-284 and OPC-67683 are promising drug candidates now in clinical trials and are 

active not only against replicating bacteria but also those which are non-replicating due to 

hypoxia addressing the key issue of eradicating the so-called ‘dormant Mtb’ (Fig. 7 d) (Ma-

tsumoto, et al., 2006; Stover, et al., 2000). These pro-drugs are activated by the deazaflavin 

cofactor F420 and the non-essential F420 dependent glucose-6-phosphate dehydrogenase, 

Fgd1 and deazaflavin (F420) dependent nitroreductase, Ddn and mutations in these genes 

render Mtb highly resistant to PA-824 (Manjunatha, et al., 2006). Though both PA-824 and 

OPC-67683 affect the amount of mycolic acids specifically of oxygenated mycolic acids, in 

the case of PA-824, this cannot explain their activity against non-replicating bacteria since cell 

wall remodelling barely occurs in this metabolic state. Recent in vitro studies have shown a 

novel mechanism leading to formation of reactive nitrogen radicals within bacteria in the 

presence of PA-824 which could augment host macrophage induced reactive radicals attack 

(Singh, et al., 2008). 

SQ109 is a diamine analogue derived from the EMB pharmacophore, much more active than 

EMB and displays strong synergy with INH and RIF (Fig. 7 c) (Protopopova, et al., 2005). In 

spite of high structural similarity there seems to be some mechanistic divergence between 

EMB and SQ109 avoiding issues of cross resistance. 
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DNA dependent process inhibitors: Moxifloxacin and gatifloxacin, fluoroquinolones targeting 

DNA gyrases, are favoured candidates for shortening TB treatment due to their lowest MIC’s 

and hence highest bactericidal activities (Fig. 7 a) (Ji, et al., 1998). They are in advanced 

stages of clinical trials but the main concern is possibility of resistance due to the wide spread 

use of fluoroquinolones for other infections (Conde, et al., 2009). Rifapentine, belonging to 

the RIF family, is another molecule in clinical trials which has been favoured due to its syn-

ergy with moxifloxacin which might aid in shortening treatment duration. It also targets Mtb 

RNA polymerase like RIF, and has been hypothesised to act on latent bacilli and poses fewer 

drug-drug interactions unlike RIF. 

Protein synthesis inhibitors: Linezolid belonging to the class of oxazolidinones is one of the 

few antibacterials targeting 50S subunit of the ribosome (Fig. 7 c) (Vera-Cabrera, et al., 2006). 

It binds to 23S rRNA inhibiting translations at an early phase preventing binding of formyl 

methionine tRNA. This distinct mechanism of protein synthesis inhibition makes it active 

against MDR strains of Mtb. 

F0/F1 ATPase inhibitor: TMC207, a diarylquinone, is a promising new mycobactericidal agent 

which shows equal activity against susceptible and drug resistant strains of Mtb (Fig. 7 e). It 

targets a novel pathway involving ATP synthesis drastically reducing possibilities of cross 

resistance (Andries, et al., 2005). It specifically targets the c subunit of membrane bound F0 

unit of ATP synthase and resistant strains harbour mutations in AtpE gene which synthesises 

this c subunit. It does not inhibit DNA gyrases indicating no commonality with fluoroqui-

nolones. 

These molecules represent some of the most advanced investigations in clinical trials but ad-

ditionally, numerous initiatives have brought forth compounds in lead optimization as well as 

pre-clinical stages (StopTBPartnership, 2009). Encouragingly, most of these have been col-

laborative efforts between industry and academic institutions emphasizing the high success of 

this public-private partnership approach. More recently, novel compounds targeting Mtb 

pathways aiding its adaptation to the host environment have been identified paving way for a 

paradigm shift in TB drug discovery by establishing the host-pathogen interface as an impor-

tant target (Bryk, et al., 2008; Lin, et al., 2009). Additionally studies aiming to improve effi-

cacy of existing drugs like ß–lactams and ethionamide have met with tremendous success 

against drug resistant strains as well (Hugonnet, et al., 2009; Willand, et al., 2009). Under-

standing the biology of persistent Mtb combined with development of more relevant models 

for this state would aid drug discovery move closer towards finding a lasting solution for this 
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age old problem. Nevertheless, keeping in mind the constant attrition in the drug discovery 

pipeline it is imperative to constantly feed it with new targets and molecules. 
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2 Aim of the study 
The current high burden of tuberculosis worldwide has made it the focus of drug discovery 

initiatives in academia and industry. Drug resistance and persistence are pressing issues and 

have prompted research into novel targets which could be whole pathways or specific entities.  

The aim of this study is to evaluate one such target, Ag85C, by investigating the anti-

mycobacterial activity of a panel of inhibitors, Ag85C- 1-4. Ag85C is a mycolyl transferase 

belonging to the highly conserved family of Ag85 complex proteins involved in the final steps 

of mycolic acid incorporation into the outer membrane of mycobacteria. INH, the most potent 

mycobactericidal drug targeting mycolic acid biosynthesis emphasises the essentiality of cell 

envelope for Mtb survival as well as its potential as a drug target. Ag85 proteins play a pivotal 

role in its biogenesis thus rendering Ag85C an attractive target for intervention.  

The hits, Ag85C-1-4, against Ag85C were identified through nuclear magnetic resonance 

(NMR) screen of a small molecule library of 5000 compounds and based on binding to 

Ag85C. Ag85C-2-4 are analogues derived through structure activity relation (SAR) studies 

with Ag85C-1. Since these compounds bind to the active site domain of Ag85C and could 

hence interfere with cell envelope formation, their activity against Mtb in broth culture, inside 

macrophages and in granulomas in infected mouse lungs was examined. This also gives in-

formation about viable structural modifications of the starting moiety Ag85C-1 in terms of 

inhibitory potential against Mtb. Additionally the utility of Ag85C inhibitors in tackling drug 

resistance was examined. An MDR strain of Mtb resistant to INH and RIF was used to test the 

activity of compounds since this would give information about cross resistance patterns.  

Detailed characterization of the functional impact of one of the analogues, Ag85C-3, was un-

dertaken with the aim of identifying its modes of action. Ag85 complex catalyse the tranfer of 

mycolic acids to the two main components of Mtb cell outer membrane namely, mAGP and 

TDM. Hence biochemical analysis of cell wall lipids with an emphasis on mycolic acid con-

taining species was performed. These lipids also contribute to the structural integrity of the 

cell envelope of Mtb rendering it highly resistant to harsh treatments and environments. 

Therefore, possible effect of Ag85C inhibitor on permeability of the external envelope was 

investigated. Specificity is another major concern and this has been addressed by testing the 

compound against the Mtb mutant strain lacking Ag85C.  

Further, to gain better understanding of mycobacterial pathways perturbed by the compound 

microarray based analysis of gene expression patterns upon Ag85C-3 treatment in vitro has 

also been done. This gives a more complete picture of the impact of Ag85C-3 and Ag85C 

inhibition on the signalling networks in Mtb. Some of the most promising hits which were 
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involved in iron homeostasis were investigated in detail to gain insights in to their probable 

role in toxicity and/or Mtb cell envelope modification. This information is invaluable for fu-

ture strategies for compound modification in order to improve its efficacy. 

 



RESULTS 31 

3  Results 
3.1 In vitro anti-mycobacterial activity 

The panel of compounds Ag85C-1-4 were found to bind to Ag85C as detected by NMR stud-

ies. Ag85C-1 is the starting structure and Ag85C-2-4 are the modifications derived through 

Structure activity relation (SAR) studies (Appendix 8.1 Fig. 24). These compounds also inhib-

ited growth of the fast growing non-pathogenic species of mycobacteria, Mycobacterium 

smegmatis (Msmeg), as observed with qualitative assay (Schade, M. et al, unpublished data). 

Ag85C protein with the other Ag85 complex proteins, Ag85A and B, play an important role in 

cell envelope synthesis of mycobacteria and consequently their survival. They are periplasmic 

transferases which catalyse the transfer of mycolic acids to its substrates to give rise to the 

final components, mAGP and TDM, of the mycolic acid rich outer membrane (Armitige, et 

al., 2000; Belisle, et al., 1997; Jackson, et al., 1999; Puech, et al., 2000). Hence, these com-

pounds were evaluated for activity against pathogenic Mtb lab strain H37Rv grown in en-

riched liquid medium. A qualitative resazurin based assay relying on colorimetric detection of 

live versus dead bacteria was first used. This was followed by a quantitative assessment of 

transcriptional activity of bacteria which correlates with number of live bacteria. 

3.1.1 Qualitative assay of anti-mycobacterial activity 

The resazurin based assay is a standard test to monitor anti microbial compounds (Gabrielson, 

et al., 2002; Yajko, et al., 1995). It is based on reduction of active blue colored compound 

resazurin to red fluorescent compound resarufin by enzymes in the electron transport system 

of living cells. Dead cells are unable to perform this conversion thus facilitating visual detec-

tion of inhibition. Log phase culture of Mtb was diluted in rich 7H9 medium and treated with 

varying concentrations of compounds in a 96 well plate format for 96 hours at 37°C. The blue 

`alamar blue´ reagent containing resazurin was then added and incubated with the samples for 

another 24 hours at 37°C. The visual colour change was then captured on digital camera. 

Thus, this is an end point assay which gives an indication of the cumulative effect of the 

tested compounds on Mtb. 



RESULTS 32 

 
Figure 8: Alamar blue assay.  

Mtb H37Rv from log phase culture was diluted 1:25 in 7H9 medium without detergent. 100µl of this suspension 
was added to 100µl of same medium containing the compounds Ag85C-1, 2, 3 and 4 at the indicated concentra-
tions in 96 well plates and incubated at 37°C for 96 hours. 50µl of alamar blue substrate was added and colour 
change from pink (live bacteria) to blue (dead bacteria) monitored after 24 hours. 

Ag85C-1, the starting compound, was first tested. It inhibited growth of Mtb at millmolar 

concentrations starting from 1.3mM (Fig. 8). Modified compounds, Ag85C- 2, 3 and 4, were 

then tested. They had improved activity with inhibitory concentrations in the micro molar 

range starting at 250µM for Ag85C-2, 100µM for Ag85C-3 and 50µM for Ag85C-4, thus, 

supporting the SAR studies (Fig. 8). Therefore, Ag85C-1-4 which bind to Ag85C also inhibit 

growth of Mtb in 7H9 medium. 

3.1.2 Quantitative assay of anti-mycobacterial activity  

Further detailed investigation of the inhibitory profile of the analogues, Ag85C-2-4, was per-

formed due to their lower micromolar values of putative MIC. [3H]-uracil incorporation assay 

is a highly sensitive method to determine number of viable mycobacteria over time (Benitez, 

et al., 1974). It is based on incorporation of radioactive uracil into mRNA during transcription 

in living, dividing bacterial cells. The scintillation counts directly correlate with number of 

live bacteria in an actively growing population. Uptake of radiolabel by live bacteria was 

measured after compound treatment. Log phase culture of Mtb was treated with 50, 100 and 

250 µM of compounds and fed with 1µCi of [3H]-uracil for 24 hours at 24, 72 and 120 hours 
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post treatment. Since the assay is performed over a period of 120 hours it gives additional 

information about the rate of inhibition over time. 

 
Figure 9: [3H]-Uracil incorporation assay  

Mtb H37Rv from log phase culture was added at a density of 107 bacteria/ml to 100µl of 7H9 medium without 
detergent containing the indicated concentrations of compounds Ag85C-2, 3 and 4 in 96 well plates. 1µCi of 
[3H]-Uracil was added to each well 24 hours prior to each time point and plates frozen and fixed. Scintillation 
counts were then measured with TopCount (Perkin Elmer) (a) Ag85C-2 (b) Ag85C-3 (c) Ag85C-4. Untreated 
(■), 50μM (■), 100μM (■), 250μM (■) and Isoniazid-10μM (■). Average of hex-plicates for each condition was 
calculated with standard deviation and plotted. 

Scintillation counts on the Y axis determine the number of bacteria and thus the degree of 

inhibition while the duration of treatment is plotted on the X axis in hours. Untreated bacteria 

(■) serve as the standard against which activity of each compound is measured. Ag85C-2 re-

duced scintillation counts by about 85% at 250µM both at 72 and 120 hours after treatment 

while lower concentrations did not have a significant effect (Fig. 9 a). Ag85C-3 was observed 

to be more potent since 100µM and 250µM showed reduction which began at 24 hours and 

persisted till later time points. 100µM caused a strong reduction of up to 80% at 120 hours 

and 250µM reduced counts up to 99% while 50µM had a smaller yet significant effect of 26% 

reduction (Fig. 9 b). Ag85C-4, on the other hand, showed an effect at 50, 100 and 250µM but 

only at the later time point of 120 hours post treatment (Fig. 9 c). INH, a first-line anti tuber-

culosis drug was used at 10µM as a positive control (Dover, et al., 2008). 

Thus the analogues Ag85C-2-4 inhibited growth of Mtb in broth culture over a period of 120 

hours. Each compound had a distinct pattern of inhibition with Ag85C-3 showing the strong-

est effect. These quantitative studies also correlated well with the qualitative alamar blue as-

say, reinforcing the latter as a reliable tool to screen potential lead compounds rapidly. 

3.1.3 Activity against drug resistant strains 

Emergence of drug resistance is one of the main concerns of public healthcare systems in de-

veloping countries since it could lead to potentially incurable cases of TB as well as increase 

the expenditure of therapy (Kaufmann and Parida, 2007; Nathan, et al., 2008). Inhibitors tar-

geting molecules or pathways distinct from that of current TB drugs are urgently needed to 
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tackle this issue. In this context, the most active analogue, Ag85C-3, was tested against a clin-

ical multi drug resistant (MDR) isolate of Mtb,SROB3023. MDR refers to resistance against 

INH and RIF irrespective of susceptibility to other first line or second line drugs. The simple 

colorimetric assay was used to observe activity of Ag85C-3 at 50, 100 and 250µM. INH at 

100µg/ml was included to confirm resistance. 

 

 
Figure 10: Alamar blue assay with MDR Mtb.  

SROB3023 from log phase culture was diluted 1:25 in 7H9 medium without detergent. 100µl of this suspension 
was added to 100µl of same medium containing the compound Ag85C- 3 at the indicated concentrations in 96 
well plate and incubated at 37°C for 96 hours. 50µl of alamar blue substrate was added and colour change from 
pink (live bacteria) to blue (dead bacteria) monitored   after 24 hours. 

As shown in Figure 10, Ag85C-3 inhibited growth of the MDR strain at 100µM as indicated 

by slight colour change to purple while at 250µM the inhibition is complete. INH at 100µg/ml 

had no effect on this strain confirming its resistance pattern. Therefore, Ag85C-3 induced tox-

icity by a mechanism distinct from that employed by INH and RIF since the pattern of inhibi-

tion is identical to that observed with lab strain H37Rv. Ag85C-3 is thus an attractive starting 

molecule for research in to novel targets and pathways in TB drug discovery. 

3.2 Growth of mycobacteria in macrophages 

In the initial stage of infection, upon being inhaled, Mtb crosses the epithelial barriers of the 

alveoli to be taken up by host macrophages (Cosma, et al., 2003). Although macrophages are 

programmed to destroy invading pathogens, mycobacteria are able to circumvent microbicidal 

pathways and establish a safe niche inside macrophages(Kaufmann, 2001). Thus macrophages 

are the primary cells which harbour and promote infection. Signalling by these infected cells 

leads to formation of classical organized cellular structures called granulomas made up of T 

cells, dendritic cells, a few B cells and fibroblasts in addition to macrophages (Russell, 2007). 

TB pathogenesis progresses from these granulomas in lungs. 
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Since Ag85C-2-4 showed a direct effect on replicating Mtb, as a next step, their activity on 

phagocytosed bacteria was assessed. For this, an ex vivo model system was set up using pri-

mary mouse bone-marrow derived macrophages. 

3.2.1 Toxicity 

Ag85C-2-4 are hydrophobic molecules with low solubility in aqueous solutions and stock 

solutions are prepared in dimethyl sulfoxide. Hence, their toxic side effects were determined 

before testing on Mtb residing in primary macrophages. For this the simple MTT assay was 

used. It is based on reduction of yellow MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide, a tetrazole) by enzymes in the electron transport system of live 

cells to purple formazan (Mosmann, 1983). Formazan has an absorbance peak at 550nm 

which is used to quantify its amounts.  

Macrophages were generated from bone marrow derived monocytes obtained from C57BL/6 

mice through standard differentiation protocols (Austin, et al., 1971). These were then treated 

with varying concentrations of compounds and incubated at 37°C for 48 and 96 hours. MTT 

was fed to these cells for 3 hours to facilitate production of formazan which was then meas-

ured. As shown, Ag85C-2, -3 and -4 did not have any cytotoxic side-effects on the macro-

phages at concentrations up to 100μM, higher concentrations were toxic (Fig. 11). 

 

 
Figure 11: MTT assay for toxicity.  

Primary macrophages obtained by differentiation of mouse bone marrow derived monocytes were plated at a 
density of 3*105 cells/ well in 48 well plate. The cells were incubated overnight at 37°C to allow complete adhe-
sion. Compounds were then added at 10, 50 and 100µM and incubation continued. At 48 and 96 hours post 
treatment MTT was added to each well at 50µg/ml concentration for 3 hours to allow formation of purple forma-
zan product. Cells were then solubilised in 100µl of dimethysulfoxide and absorbance measured at 550nm. Via-
bility was calculated in % with untreated sample taken as 100%. (a) Ag85C-2 (b) Ag85C-3 (c) Ag85C-4. Aver-
age of triplicates for each condition was calculated with standard deviation and plotted. 

3.2.2  [3H]-Uracil incorporation assay 

[3H]- Uracil incorporation by active bacteria was used to analyse effect of Ag85C-2, 3 and 4 

on intracellular bacteria. This assay provides a much faster read-out of the impact of these 

compounds when compared with the conventional colony forming unit (CFU) assay. Primary 
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mouse bone marrow derived macrophages were infected with Mtb H37Rv at a multiplicity of 

infection (MOI) of 5 for 4 hours to allow complete phagocytosis. Compounds were added to 

media at 10, 50 and 100µM and tritiated uracil fed for 24 hours at 24, 72 and 120 hours post 

treatment. Thus this method measures effect of compounds on internalised bacteria and also 

provides kinetics of the inhibition, if any. In comparison transcriptional activity of macro-

phages is only to background levels. 

 

 
Figure 12: Inhibition of Mtb residing in macrophages.  

Primary mouse bone marrow derived macrophages were infected with log-phase Mtb H37Rv at an MOI of 5:1. 
After 4 hours of incubation at 37°C to allow complete phagocytosis, fresh medium was added with indicated 
concentrations of compounds Ag85C-2, 3 and 4. 1µCi of [3H]-Uracil was added to each sample 24 hours prior to 
each time point and plates frozen and fixed. Scintillation counts were then measured with TopCount (Perkin 
Elmer) (a) Ag85C-2 (b) Ag85C-3 (c) Ag85C-4.Untreated (■), 10μM (■), 50μM  (■), 100μM (■) and Isoniazid-
100μM (■). Average of hex-plicates for each condition was calculated with standard deviation and plotted. 

Infected cells which were not treated were the standard against which effect of Ag85C-2-4 

was measured. Ag85C-3 showed a slight reduction in scintillation counts at 50μM after 120 

hours of treatment while 10μM had no effect at any time points (Fig. 12 b). At 100μM the 

inhibition was about 40% at the earlier time point of 72 hours post treatment and was up to 

70% after120 hours. INH at 100µM was the positive control and reduced the scintillation 

counts close to 99%. Meanwhile Ag85C-2 and -4 had no effect on intracellular bacteria at 

these concentration ranges (Fig. 12 a & c). Ag85C-1 was tested at higher mill molar concen-

trations and did not show any effect as well (data not shown). 

In conclusion, one of the analogues, Ag85C-3, did inhibit growth of Mtb inside resting 

macrophages, while the other two were inactive under these conditions. [3H]- Uracil incorpo-

ration thus provides a fast and reliable indication of activity of compounds in a cell-based 

infection model as well. 

3.2.3 Colony forming unit measurement  

The ability of Ag85C-3 to kill intracellular bacteria was confirmed by measuring number of 

colony forming units (CFU) of Mtb inside treated macrophages. Mouse bone marrow derived 

macrophages were infected with Mtb at a low MOI of 5 for 4 hours, washed with PBS to re-
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move non-internalised bacteria and treated with Ag85C-3. 24, 72 and 120 hours post treat-

ment cells were lysed, lysate dilutions plated out and colonies counted after 3 weeks of incu-

bation at 37°C. 50 and 100µM of Ag85C-3 was used with INH at 50µM as the positive con-

trol. As shown in Figure 13, at a later time point of 120 hours post infection 100µM reduced 

CFU by about 40% while there was no effect at earlier time points and at a lower concentra-

tion of 50µM. INH cleared intracellular Mtb up to 99%. 

 

 
Figure 13: Colony forming units (CFU) measurement.  

Primary mouse bone marrow derived macrophages were infected with log-phase Mtb H37Rv at an MOI of 5:1. 
After 4 hours of incubation at 37°C to allow complete phagocytosis cells were washed with PBS and fresh me-
dium added with indicated concentrations of Ag85C-3. At each time point cells were lysed, dilutions prepared 
and plating done on 7H11 agar. CFU was measured after 3 weeks of incubation at 37°C. Untreated (■) 50µM(■) 
100µM(■) and Isoniazid at 50µM (■). Average of triplicates for each treatment was calculated with standard 
deviation and plotted. 

3.3 In vivo studies 

Efficacy of Ag85C-3 in an in vivo model of TB infection was assessed to estimate its potential 

as a drug candidate. The mouse is one of the best established animal models of TB due to the 

ease of manipulation, availability of mutants and genetically altered strains and the wide 

range of reagents developed for analysis (Flynn, 2006). Mice are relatively resistant to Mtb 

leading to a contained infection. Infection of C57BL/6 mice via aerosol or intravenous routes 

displays a distinct profile with an initial acute phase of multiplication lasting up to 4 weeks 

arrested by the onset of adaptive response. The bacterial numbers then stabilize giving rise to 

the plateau phase with approximately one million CFU in the lungs. Within the acute phase of 

infection Mtb also disseminates to the spleen and liver after aerosol infection (Stewart, et al., 

2003). Varied mouse strains, modes of infection and drug application have been developed to 

measure efficacy of drugs. In this study the resistant C57BL/6 mice were used with intranasal 

administration of compound. This experiment was done once with the aim of optimising pa-

rameters for future experiments. 
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Since aerosol is the more physiologically relevant means of infection, C57BL/6 mice were 

exposed to aerosolized Mtb H37Rv at 50-100 CFU/mouse. On the seventh day post infection 

dosage of Ag85C-3 and INH was started with Ag85C-3 administered at 0.5 and 1mM and 

INH at 100µM. Combination of Ag85C-3 and INH was also administered. The compounds 

were applied intranasal every alternate day for two weeks due to the expected direct access to 

lungs by the comparatively lower amounts of compound. One and three weeks after comple-

tion of treatment mice were sacrificed, lungs homogenized and dilutions plated out on 7H11 

agar plates. CFUs visible after 21 days of incubation at 37°C were counted and plotted.  

 

 
Figure 14: Mouse model of TB infection.  

C57BL/6 mice in groups of five were exposed to aerosolized Mtb H37Rv at a density of 50-100 CFU per mouse. 
Dosage of compounds, Ag85C-3 at 0.5mM and 1mM and INH at 100µM, was started 7 days after infection and 
administered every alternate day for 2 weeks. Placebo refers to control group which were administered DMSO, 
the Ag85C-3 solvent. On day 28 and day 42 post infection mice were sacrificed, lungs homogenized and plated 
out. CFUs were observed after 21 days of incubation at 37°C and were counted. a) Day 28 CFU counts in loga-
rithmic scale to base 10 b) Day 42 CFU counts in logarithmic scale to base 10. Average of 2 dilutions for each 
mouse was calculated and plotted, the mean value is indicated. `**´ indicates p<0.01 and `*´ indicates p<0.05 
where p is significance calculated by Mann-Whitney test. 

At the early time point of 28 days post infection which is one week after completion of com-

pound administration a mild effect could be observed. INH at 100µM reduced CFU counts by 

0.5 log units while Ag85C-3 at 1mM and in combination with INH reduced CFU counts by 

approximately 0.4 log units in each case (Fig. 24 a). But at the later time point of 42 days 

post-infection this reduction was no longer observed (Fig. 24 b). Moreover, the CFU counts 

was also lower than the earlier time point which suggests that probably in these mice the in-

fection had not established itself normally or the initial inhaled CFU numbers itself were 

lower. Nevertheless, this data reveal that Ag85C-3 does have some effect on survival of Mtb 

inside mouse lungs and does not antagonise activity of INH. Additionally the comparatively 
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short duration of treatment might have caused the reduced phenotype and further optimisation 

of this set up is necessary for a more complete analysis. 

Hence the panel of compounds, Ag85C-1-4, which bind to Ag85C at the active site also inhib-

ited growth of broth cultured Mtb, though at differing concentration ranges and showed dis-

tinct patterns of inhibition over time. In the ex vivo system mimicking Mtb survival in its pri-

mary host cells, macrophages, they had varied effects with Ag85C-3 being the only active 

molecule. This again emphasizes the differences between the two systems used for testing 

activity. Ag85C-3 also decreased survival of Mtb in mouse lungs at early time points after 

treatment. Nevertheless, these experiments clearly demonstrated that the compounds under 

study which bind to Ag85C also inhibited growth of Mtb both directly as well as in the 

macrophage and mouse lung granuloma stage. The most potent analogue, Ag85C-3 also re-

duced growth of a MDR strain of Mtb underlining its utility as a novel inhibitor. To better 

characterize Ag85C-3, detailed investigation of its mode of action in whole Mtb cells was 

undertaken. 

3.4 Mtb lipid analysis 

Ag85 complex proteins function in the transfer of mycolic acids, major components of myco-

bacterial cell wall, to TMM and cell wall linked arabinogalactan-peptidoglycan to generate 

trehalose TDM (cord factor) and mAGP (Belisle, et al., 1997; Jackson, et al., 1999; Taka-

yama, et al., 2005). Mycolic acids are very long chain α-alkyl β-hydroxy fatty acids, the hall-

mark of Mycobacteria, and essential for maintaining integrity of its complex envelope (Mar-

rakchi, et al., 2008). A disruption of  its synthesis, for example, by the first line drug INH 

which targets the initial steps of mycolic acid synthesis pathway, leads to  immediate death 

(Marrakchi, et al., 2000). INH is by far the strongest mycobactericidal compound available for 

treatment underlining the importance of cell wall to mycobacterial survival. Hence it could be 

that inhibition of the final steps in this pathway by Ag85C antagonists induces toxicity.  

To analyse this, synthesis of mycolic acid containing lipids of Mtb cell wall was investigated 

during treatment with Ag85C-3. Sodium acetate labelled with [14C] was used as precursor to 

label mycolic acid species. Crude lipid extraction yielded loosely bound lipid extractibles con-

taining TDM, TMM and phospholipids and delipidated cells which had the mAGP attached to 

their surface. These samples were then subjected to standard thin layer chromatography 

(TLC) accompanied with biochemical manipulation, where necessary, to assess the synthesis 

of lipids, visible as distinct bands. A systematic study of all the mycolic acid carrying species 

was performed to ascertain if Ag85C-3 had any impact on this pathway. 

3.4.1 TDM and TMM 
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TDM and TMM are found non-covalently attached to outer surface of Mtb cell envelope and 

numerous studies have implicated TDM as a virulence factor (Glickman, 2008). It induces 

granuloma like structures when administered to mice and also initiates pro-inflammatory re-

sponse in macrophages (Indrigo, et al., 2002; Perez, et al., 2000). To measure amount of TDM 

and TMM synthesized during compound treatment, log phase cultures of Mtb were treated 

with 50 and 100µM of compound or left untreated for 48 hours. Then [14C]-acetate was added 

and its incorporation into the lipid fraction allowed for 24 hours. The crude lipid extractible 

obtained was separated by TLC with Chloroform/Methanol/Water, 30:8:1, as solvent (Fig. 15 

a) on a silica gel matrix. With this solvent TDM migrates with a retention factor (Rf) of 0.81 

while TMM has an Rf of about 0.48. Phospholipid bands are observed below TMM. The 

bands corresponding to TDM and TMM were densitometrically analysed by ImageQuant 

software.  

 

 
Figure 15: Synthesis of TDM and TMM.  

Mtb H37Rv was grown in 7H9 medium without detergent to an OD580 of 0.3 to 0.4. Ag85C-3 was added to the 
culture at indicated concentrations and incubated at 37°C with mild shaking for 48 hours. To label lipids [14C]-
acetate was added at a rate of 0.5µCi/ml and incorporation allowed for 24 hours. Lipid extraction was then per-
formed (a) TLC of lipid extractible fraction containing TDM and TMM with CHCl3/CH3OH/H2O (30:8:1) (b) 
Intensity of TDM and TMM bands in TLC. Untreated is taken as 100%. Average value from 3 independent expe-
riments was calculated with standard deviation and plotted. ‘*’ indicates p < 0.05, ‘***’ indicates p < 0.001 
where p denotes significance calculated by paired Student’s t-test. INH is Isoniazid at 10µM. 

As shown in Figure 15 b, 100μM of Ag85C-3 reduced TDM synthesis by 14% accompanied 

by up to 100% increase in TMM while 50µM had no impact on TDM amounts but increased 
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TMM by about 25%. INH at 10μM reduced the amounts of both TDM and TMM since it af-

fects the synthesis of mycolic acids at the earlier step of FAS-II cycle in mycolic acid biosyn-

thesis. This strongly suggests inhibition of the mycolyl transferase step by Ag85C-3 since the 

substrate of the reaction, TMM, accumulated significantly while the product, TDM, was re-

duced. The extent of TDM reduction was small possibly due to a significant increase in num-

ber of bacteria treated with same amount of compound in this experimental set-up required to 

detect lipids. Thus 100µM is most likely a sub-optimal concentration where the inhibition is 

underway. At higher concentrations like 250µM the TDM band was completely abolished 

(data not shown). These results demonstrated that Ag85C-3 inhibited mycolyl transferase re-

action catalysed by its target, Ag85C. 

3.4.2 Free mycolic acids 

Upon compound treatment it was observed that a band migrating very high with the solvent 

CHCl3/CH3OH (90:10) showed increased intensity (Fig. 16 c). It was speculated that it could 

be glycerol monomycolate (GMM), another mycolic acid containing moiety observed in ex-

tractible lipids. Consequently TLC was done with the solvent CHCl3/CH3OH (9:1) with puri-

fied glycerol monomycolate as standard (purified from extractible lipids of Mtb H37Rv by 

column chromatography). But it was observed that the band had an Rf higher than GMM sug-

gesting it could be a different lipid entity. Additionally, it was also observed that INH treat-

ment abrogated this band indicating that this molecule contained mycolic acids (Fig. 16 c). 
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Figure 16: Detection and quantification of free mycolic acids.  

Lipid extractible from Mtb H37Rv was left untreated (Lane 1), saponified and methylated (Lane 2) or methylated 
(Lane 3) (a) TLC of the treated samples run with the solvent CHCl3/CH3OH (9:1), the unknown lipid of interest 
is indicated (b) TLC of the treated samples run with CH2Cl2 as solvent, Mycolic acid methyl esters (MAME) is 
indicated (c) TLC of  lipid extractible from Mtb H37Rv treated with indicated concentrations of Ag85C-3 run 
with the solvent CHCl3/CH3OH (9:1) (d) Band intensity of free mycolic acids in the TLC, average value from 3 
independent experiments was calculated with standard deviation and plotted. INH is Isoniazid at 10μM. ‘**’ 
indicates p<0.01 where p denotes significance calculated by paired Students t-test. 

To resolve the identity of this species, a lipid extractible sample was taken and split into 3 

parts, one untreated (Fig. 15 a & b, Lane 1), the second saponified and then methylated (Fig. 
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16 a & b, Lane 2), and the third only methylated (Fig. 16 a & b, Lane 3). Saponification refers 

to treatment with strong alkali to break ester bonds to release fatty acid moiety while methyla-

tion is treatment with highly reactive diazomethane species which methylates the free acyl 

moiety to yield methyl esters. Methyl esters of mycolic acids referred to as MAMEs (Mycolic 

acid methyl esters) have characteristic migration pattern with dichloromethane solvent. So if 

this molecule had mycolic acid esterified to an unknown substrate it would give rise to 

MAME in the second treatment. If it was free mycolic acid it would give rise to MAMEs in 

both the second and third treatments. Analysis of the sample clearly showed that the latter was 

true since MAME bands could be visualised in lanes 2 and 3 of Figure 16 b with dichloro-

methane as solvent. Further, the band of interest vanished when sample was methylated (Fig. 

16 a, Lane 3) or saponified and methylated (Fig. 16 a, Lane 2) and run with Chloro-

form/Methanol (9:1) as solvent, clearly showing that it is indeed free mycolic acids. 

Quantification of the free mycolic acid band intensity showed that there was an increase of up 

to 100% of free mycolic acids with 100μM of Ag85C-3 (Fig. 16 d). This is a surprising find-

ing and could most likely be a consequence of the block in transferase reaction. 

3.4.3 Time course analysis of TDM, TMM and free mycolic acid biosynthesis 

Free mycolic acids have not been detected in log phase culture of Mtb. Hence it was surpris-

ing to observe them in lipid extractible of untreated and treated samples. Studies with M. 

smegmatis and Mtb biofilms have reported copious amounts of free mycolic acids which were 

also secreted externally (Ojha, et al., 2008).  

The accumulated mycolic acids observed with 100µM of Ag85C-3 could either be degrada-

tion products from TDM and TMM or have previously uncharacterized role as precursors of 

these glycolipids. To better understand this, kinetic analysis of TDM, TMM and free mycolic 

acid synthesis in lipid extractible of Mtb H37Rv was undertaken. [14C]- sodium acetate was 

fed to mid-log phase culture of Mtb and lipid extraction performed after 45 minutes (Lane 1), 

1.5 hours (Lane 2), 3 hours (Lane 3), 6 hours (Lane 4) and 24 hours (Lane 5) respectively 

(Fig.17). The lipid extractible was run with two different solvent systems separately to visual-

ise TMM, TDM and free mycolic acids. 
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Figure 17: Time course analysis of TMM, TDM and free mycolic acids.  

Mtb H37Rv was grown to an OD580 of 0.3-0.4 in 7H9 medium without detergent and [14C]- acetate added at the 
rate of 0.5µCi/ml. Culture was incubated at 37°C with mild shaking and after 45 minutes (Lane 1), 1.5 hours 
(Lane 2), 3 hours (Lane 3), 6 hours (Lane 4) and 24 hours (Lane 5) post labelling 10ml of culture was collected 
and standard lipid extraction performed. Lipid extractible was run on silica gel coated TLC with chloroform/ 
methanol/ water (30:8:1) to visualise TDM and TMM (a) and with chloroform/methanol (9:1) to visualise free 
mycolic acids and TDM (b). 

As shown in Figure 17 a, TMM appeared at the earliest time point of 45 minutes while TDM 

began to appear as a faint band 1.5 hours post labelling and after 3 hours it was clearly visible. 

Free mycolic acids also appeared as a faint band 1.5 hours post labelling strongly suggesting 

that they could be degradation products of TMM and/or TDM and not precursors (Fig. 17 b). 

Thus, accumulation of free mycolic acids with Ag85C-3 treatment might be a consequence of 

the drastic increase of TMM which then gets degraded in cell envelope. It could also be an 

indirect effect of modulation of mycolic acid biosynthesis pathway by Ag85C-3. 

3.4.4 Cell wall linked mycolic acids 

The Ag85C mutant strain of Mtb showed a drastic 40% reduction in cell wall linked mycolic 

acids (Jackson, et al., 1999). Over-expression of Ag85A and B proteins in this mutant strain 

could partially rescue this phenotype (Puech, et al., 2000). This has led to the general assump-

tion that Ag85C is more important for the synthesis of mAGP complex. The mAGP is respon-

sible for the structural integrity of Mtb cell wall and reduction in its amounts leads to in-
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creased permeability to hydrophobic and hydrophilic molecules (Jackson, et al., 1999). There-

fore, the effect of Ag85C-3 on amounts of cell wall linked mycolic acids was studied. 

Mtb cultures grown to mid-log phase were treated with 50 and 100µM of Ag85C-3, 10µM of 

INH or left untreated. Crude lipid extraction was performed and the remnant delipidated bac-

terial cells containing mAGP on its surface were analysed. Mycolic acid methyl esters (MA-

MEs) were obtained from these cells by extensive saponification and methylation procedures. 

TLC was then performed with the samples with petroleum ether/diethyl ether, 9:1, as solvent 

(Fig. 18 a). With this solvent three types of MAMEs, namely, alpha, methoxy and keto, repre-

senting the three types of mycolic acids found in Mtb, can be seen as distinct bands with alpha 

as the upper band, methoxy as the middle band and keto as the lowest.   

 

 
Figure 18: Synthesis of arabinogalactan linked mycolic acids.  

Mtb H37Rv was grown in 7H9 medium without detergent to an OD580 of 0.3 to 0.4. Ag85C-3 was added to the 
culture at the indicated concentrations and incubated at 37°C with mild shaking for 48 hours. To label lipids 
[14C]-acetate was added at a rate of 0.5µCi/ml and incorporation allowed for 24h. Lipid extraction was then 
performed (a) TLC of methyl esters of mycolic acid and fatty acids obtained after saponification and methylation 
of delipidated bacteria. TLC was run four times with petroleum ether/ diethyl ether (9:1) to resolve alpha, me-
thoxy and keto mycolic acids (b) Band intensity of three types and total mycolic acids linked to the cell wall, 
average value from 3 independent experiments was calculated with standard deviation and plotted. INH is iso-
niazid at 10µM. 

Quantification of the band intensities of individual MAMEs and total MAMEs showed no 

change upon treatment (Fig. 18 b) with untreated taken as 100%. INH, on the other hand, had 

a drastic effect on cell wall linked mycolic acids. Thus, Ag85C-3 has an effect only on TMM 
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to TMM transfer of mycolic acids to generate TDM while there is no impact on the transfer to 

AGP. 

3.4.5 Total mycolic acids 

Modulation of TDM and TMM could modify the total amounts of mycolic acids as a conse-

quence of regulatory feed-back loops and thus amplify the actual differences. To resolve this, 

total mycolates synthesized during treatment was measured by saponification of the complete 

cell pellet from treated and untreated bacteria. The resultant mycolic acid acyl groups were 

methylated with diazomethane to give rise to methyl esters and subjected to TLC with di-

chloromethane as solvent. In this solvent system fatty acid methyl esters migrate above while 

MAMEs migrate as two bands below, namely alpha MAME as the upper band and oxygen-

ated MAME (including both methoxy and keto MAMEs) as the lower band (Fig. 19 a). 

Quantification of two types of MAMEs and total mycolates in cells showed that Ag85C-3 had 

no impact on mycolic acid synthesis machinery in the cell unlike INH which completely ab-

rogated mycolic acids (Fig. 19 b). This reinforces the finding that Ag85C-3 specifically inhib-

its the final transfer step in mycolic acid biosynthesis catalysed by Ag85 complex. 

 
Figure 19: Synthesis of total mycolic acids.  

Mtb H37Rv was grown in 7H9 medium without detergent to an OD580 of 0.3 to 0.4. Ag85C-3 was added to the 
culture at the indicated concentrations and incubated at 37°C with mild shaking for 48 hours. To label lipids 
[14C]-acetate was added at a rate of 0.5µCi/ml and incorporation allowed for 24h. The cell pellet was then autoc-
laved (a) TLC of methyl esters of mycolic acid and fatty acids obtained after saponification and methylation of 
complete cell pellet. TLC was run with dichloromethane as solvent to resolve alpha and oxygenated mycolic 
acids (b) Band intensity of two types and total mycolic acids in the cell, average value from 3 independent expe-
riments was calculated with standard deviation and plotted. INH is isoniazid at 10µM 
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Complete analysis of the mycolic acid containing lipids of Mtb upon treatment with Ag85C-3 

confirms that it blocks the activity of its target protein, Ag85C. The reduction in TDM 

amounts with a concomitant increase in TMM is strong evidence for a specific block at the 

mycolyl transferase step catalysed by the Ag85 complex proteins. Interestingly this also led to 

an accumulation of free mycolic acids which could either be a direct or indirect effect of the 

disruption of the mycolic acid synthesis pathway. The kinetics of free mycolic acid synthesis 

is similar to that of TDM suggesting that they do not have a precursory role in the mycolyl 

transferase reaction. Additionally, the total mycolic acid amounts are not modified by Ag85C-

3 strengthening the proof for a block in transferase step. But, surprisingly, Ag85C-3 has no 

impact on the transfer of mycolic acids to covalently associated AGP which could be due to 

its distinct binding patterns to the possible different active site confirmations of Ag85C. INH 

which blocks mycolic acid synthesis at the earlier biosynthetic FAS-II cycle reduced amounts 

of both TDM and TMM and also abrogated mAGP and total mycolic acids. Thus, the mode of 

Ag85C-3 disruption of the mycolic acid biosynthesis pathway is distinct from that of INH. 

3.5 Permeability of cell wall 

The modulation of cell wall glycolipid amounts by Ag85C-3 could perturb the integrity of the 

cell wall and hence its permeability to both hydrophilic and hydrophobic molecules. To inves-

tigate this aspect, radioactively labelled glycerol was used as a probe (Laneelle and Daffe, 

2008). Glycerol is a small, organic molecule that is the preferred source of carbon and due to 

its neutral charge is taken up by both passive and facilitated diffusion.  

 
Figure 20: Cell wall permeability.  
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Mtb H37Rv mid-log phase culture was diluted in 7H9 medium without detergent at a density of 7.5* 106 bacte-
ria/ml and incubated at 37°C for 24 hours. Ag85C-3 was then added at 100µM while the control culture was 
untreated and incubated at 37°C for 48 hours with mild shaking. [3H]-uracil was added at 0.5µCi/ml to normalise 
for cell number and cultures incubated for another 24 hours. An aliquot of the cell pellet was fixed for [3H] 
counts while 2µCi of [14C] glycerol was added to the remnant cell suspension. At 0, 2, 6, 10, 15 and 20 minutes 
after glycerol addition 100µl of cell suspension was collected and prepared for [14C] scintillation measurement. 
Each sample was normalised to total cell numbers and the counts of the untreated standard was taken as 1. Aver-
age from 2 measurements with standard deviation was calculated within a single representative experiment 
shown here. 

Mtb treated with 100µM of Ag85C-3 and the untreated control were incubated with [14C] 

glycerol for short duration of time and processed for uptake measurements. The incorporation 

of [3H]-uracil prior to glycerol uptake was used to normalise the differing bacterial numbers 

between treated and untreated samples. As shown in Figure 20, the amount of [14C] counts 

relative to the untreated sample (which is taken as 1) is higher in the Ag85C-3 treated sample 

indicating increased permeability to glycerol. This shows that the integrity of the cell enve-

lope is modified by Ag85C-3 through the changes in TDM, TMM and free mycolic acid 

amounts. Thus, the increased permeability of the cell wall could cause uncontrolled diffusion 

of substances including solvents in to the cell finally leading to cell death. 

3.6 Inhibition of Mtb deficient in Ag85C 

Specificity of a chemical inhibitor is a key issue while studying its mechanism. To understand 

if Ag85C is the sole target of the compound under study, tests were performed with an Mtb 

strain deficient in Ag85C protein, named MYC1554. This mutant was generated by transpo-

son insertion in the Ag85C locus in a clinical isolate, Mt103, which led to abrogation of 

Ag85C protein. This led to 40% reduction of cell wall linked mycolic acids while TDM and 

TMM amounts remained unaffected (Jackson, et al., 1999). Hence Ag85 A, B and C proteins 

probably have a partially redundant role in TDM biosynthesis. Nevertheless, Ag85C-3 activity 

against MYC1554 and Mt103 was investigated. 

3.6.1 In vitro anti-mycobacterial assay 

The strains, MYC1554 and Mt103, were tested for inhibition by Ag85C-3 with the qualitative 

colorimetric test and then with the quantitative [3H]-uracil incorporation assay. Qualitative 

readout from alamar blue colour change showed that growth of the mutant, MYC1554, and 

the wildtype,Mt103, was inhibited starting from 100μM, similar to the profile of the Mtb lab 

strain H37Rv (Fig. 21 a). Uptake of [3H]-uracil after treatment with 50, 100 and 250μM of 

Ag85C-3 was then measured to determine if the degree of inhibition was also similar in the 

mutant compared to its wild type, Mt103, and H37Rv. MYC1554 had a pattern of inhibition 

almost identical to H37Rv; 100μM reduced scintillation counts at 72 hours which went up to 

70% after 120 hours of treatment (Fig. 21 c). In contrast, growth of Mt103 was inhibited to a 
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lesser degree at 100μM of Ag85C-3 (Fig. 21 b). 250μM had a sterilizing effect on both strains 

starting from 24 hours and persisting till 120 hours of treatment. INH at 10μM was the posi-

tive control in each case. 

 
Figure 21: Ag85C-3 activity on Ag85C mutant.  

Ag85C mutant, MYC1554, and its wild type background, Mt103, were grown to log phase and treated with 
indicated concentrations of Ag85C-3 to determine anti-mycobacterial activity (a) Alamar blue assay (b) [3H]-
Uracil  incorporation assay with the wild type strain, Mt103 (c) [3H]-Uracil incorporation assay with Ag85C 
mutant, MYC1554. Untreated (■), 50μM (■), 100μM (■), 250μM (■) and Isoniazid-10μM (■). Average of hex-
plicates for each treatment was calculated with standard deviation and plotted. 

Thus the mutant was as susceptible to Ag85C-3 as Mt103 and H37Rv, clearly indicating that 

the molecule is not specific to Ag85C. Its effect on survival of Mtb could be facilitated by 

interaction with the other two homologues, Ag85A and B or could be through yet undetected 

interacting partners. 

3.6.2 TDM and TMM analysis 

To investigate if Ag85C-3 induced survival defect in the mutant is due to an effect on the my-

colyl transferase reaction TDM-TMM synthesis assays were performed. For this, the mutant, 

MYC1554 and the wild type, Mt103, were either treated with 100µM of Ag85C-3 or not 

treated for 48 hours. As described before, incorporation of radioactive [14C] acetate for the 
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next 24 hours into the lipid extractible was monitored. Quantification of band intensities 

showed that there was a reduction in TDM amounts up to 50% in the mutant and up to 20% in 

the wild type strain (Fig. 22 a). The TMM amounts, on the other hand, did not change in the 

Ag85C mutant and the wild type strain unlike the increase observed in H37Rv. This could be 

because of a higher turnover of TMM in these clinical isolates. Moreover, the change in 

amount of free mycolic acids in the mutant and in the wild type was more drastic with up to 

200-300% increase (Fig. 22 b). This also supports a high turnover scenario with larger 

amounts of free mycolic acids being produced as degradation products or side-products of the 

mycolyl transferase block. 

 
Figure 22: Synthesis of TDM, TMM and free mycolic acids in Ag85C mutant.  

Ag85C mutant, MYC1554, and its wild type background, Mt103, were treated with 100µM of Ag85C-3 as de-
scribed in Figure 14, lipid extraction done and TLC performed with lipid extractible (a) Band intensities of TDM 
and TMM in Mt103 (wild type) and MYC1554 (Ag85C mutant), untreated is taken to be 100% (b) Band intensi-
ty of free mycolic acids in Mt103 (wild type) and MYC1554 (Ag85C mutant), average of tetra-plicates for each 
treatment was calculated with standard deviation and plotted, untreated is taken to be 100%. ‘*’ indicates p<0.05, 
‘**’ indicates p<0.01 and ‘ns’ is non- significant with p>0.05 where p denotes significance calculated by paired 
Student’s t-test. 

Thus, even in the absence of Ag85C protein Ag85C-3 inhibits growth of Mtb indicating that it 

is not specific to Ag85C and has other targets. Further, analysis of TDM and TMM abundance 

showed reduction of TDM in the mutant strain with Ag85C-3 treatment. This strongly sug-

gests inhibition of the other two Ag85 proteins, Ag85A and B, leading to complete block in 

the transferase reaction. Hence, it could be that Ag85C-3 binds to the highly conserved active 

site of all the three Ag85 proteins leading to changes in cell envelope and consequently 

growth inhibition.  

3.7 Gene expression analysis 

The results of experiments with the Ag85C mutant strain establish that the other Ag85 pro-

teins might also be targets of Ag85C-3. However it does not exclude other non-specific targets 

or pathways. These could either be direct and indirect effects of block in the mycolyl trans-
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ferase step or be totally independent effects. To better understand this, whole genome level 

expression study was performed of Mtb treated with the compound in vitro. It is important to 

note that the regulatory role of mycolyl transferase reaction catalysed by Ag85 proteins has 

not been studied so far due to unavailability of a triple mutant and partial functional redun-

dancy of the three proteins. Thus the availability of Ag85C-3 which inhibits this pathway as 

indicated by reduction of TDM and accumulation of TMM provides a valuable tool to under-

stand impact of this pathway on general signalling networks of Mtb. 

 

Microarray analysis of the transcriptional response of Mtb after treatment with Ag85C-3 was 

performed with custom made chips from Agilent technologies with probes against the com-

plete list of annotated ORFs and intergenic regions in Mtb H37Rv (Cole, et al., 1998). An 

early time point of 48 hours was chosen with 50 and 100μM treatment. With a low cut off of 

1.5 times fold change difference, up to 10 and 62 genes were up-regulated at 50 and 100μM, 

respectively with a common pool of 7 genes. Simultaneously, 7 and 29 genes were down-

regulated at 50 and 100μM respectively with a common pool of 7 genes (Table 1). Interest-

ingly, the most strongly regulated genes were transporters belonging to MMPL (Mycobacte-

rial membrane protein large) family believed to play a role in lipid transport (Domenech, et 

al., 2005). Additionally most of the genes belonging to one of the mycobactin biosynthesis 

operons were up-regulated specifically at 100µM (Rodriguez, 2006). This was surprising 

since mycobactin synthesis is normally repressed in enriched medium. MprA (Mycobacterial 

persistence regulator A), part of the MprAB two component regulatory system, was the most 

notable transcription factor up-regulated at 100µM (He, et al., 2006; Zahrt, et al., 2003). 

Genes like Cyp132, AlkB, Cyp125 and LldD1 involved in fatty acid metabolism and general 

respiration were also up-regulated by the compound. 
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Table 1: Regulation of Mtb genes with Ag85C-3 treatment.  

Total number of genes regulated after 50 and 100µM of Ag85C-3 treatment for 48 hours is tabulated according 
to functional categories described by Cole et al. (Cole, et al., 1998). ↓Represents down-regulation and 
↑represents up-regulation.  

 

 

PPE proteins 50 and 51 were the most strongly down-regulated genes at both concentrations 

(Brennan and Delogu, 2002). Notably, IniB (Isoniazid inducible protein B) was down-

regulated, again suggesting that mechanism of action is different from that of INH (Alland, et 

al., 2000). Pks11 (polyketide synthase 11), AcpM (acyl carrier protein M), Fas (fatty acid syn-

thase) and Mas (multi functional mycocerosic acid synthase) were some of the general lipid 

biosynthesis genes down-regulated after treatment (Marrakchi, et al., 2008; Mathur and Kolat-

tukudy, 1992). Ribosomal protein synthesis genes like RplL, RpsR2, RpsN2 and RpmB2 were 

also down-regulated possibly as a stress response. 

3.7.1 MBT operon 

Iron is an essential nutrient for most organisms and its uptake is tightly regulated at transcrip-

tional level. Mtb acquires iron from its environment by synthesising mycobactins, sideropho-

res with a distinct hydroxyphenyloxazoline ring moiety (Rodriguez, 2006). Two genetic loci 

named mbt-1 and mbt-2 have been implicated in the biosynthesis of mycobactins (Krithika, et 

al., 2006; Quadri, et al., 1998). The expression of genes belonging to these loci is under the 

control of the IdeR protein, an iron dependent transcription repressor (Rodriguez, et al., 

2002). 
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Seven of the ten genes of the mbt-1 locus, namely MbtB, MbtC, MbtD, MbtE, MbtG, MbtH 

and MbtI, were up-regulated in the range of 1.62-2.1 fold change values after treatment with 

100μM of Ag85C-3 for 48 hours. This locus is primarily involved in the synthesis of myco-

bactin backbone structure composed of salicylic acid derived moiety. The mbt-2 locus, which 

is necessary for attachment of long acyl chains to generate lipophilic mycobactins, remained 

unaffected by Ag85C-3. Further confirmation of these results was done with quantitative PCR 

against selected genes, MbtG, MbtD and MbtJ, of the mbt-1 operon with the same samples. 

An increased expression up to 3 fold relative to untreated samples was observed for the 3 

genes with this method which could be due to its high sensitivity (Fig. 23 c). SigA was the 

housekeeping gene used as the normalizing factor. 

 

 
Figure 23: Mycobactin synthesis:  
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Mtb H37Rv mid-log phase culture was inoculated in 7H9 medium without detergent at a density of 7.5* 106 
bacteria/ml and incubated at 37°C for 24 hours. Ag85C-3 was then added at 50 or 100µM while the control cul-
ture was untreated and incubated at 37°C for 48 hours with mild shaking. [14C]-salicylic acid was added at 
0.5µCi/ml and cultures incubated for another 24 hours. Mycobactins were then extracted from the cell pellet and 
supernatant in to chloroform after saturation with ferric chloride. These samples were then run on silica gel plate 
with petroleum ether/n-butanol/ethyl acetate (2:3:3). Gene expression level was determined through quantitative 
PCR as described in the next figure. a) TLC of mycobactin samples, 0-C is Untreated cell pellet; 100-C is 
Ag85C-3 100µM-cell pellet; 0-S is Untreated-culture filtrate;100-S is Ag85C-3 100µM-culture filtrate b) Quan-
tification of band intensities of total mycobactins, Cell is cell associated and Sup is culture filtrate, average of 
two independent experiments was calculated with standard deviation and plotted c) Quantitative PCR gene ex-
pression of MbtG, MbtD and MbtJ, average of triplicates for each treatment was calculated with standard devia-
tion and plotted. 

Functional impact of this up-regulation was investigated by measuring amounts of mycobac-

tins, both cell-associated mycobactins and extracellular carboxy mycobactins in culture fil-

trate. For this, untreated and treated bacterial cultures were fed with radioactive [7-14C]- sali-

cylic acid which is a common precursor of both carboxy and normal mycobactins for 24 

hours. Cell pellets were treated with ethanol, saturated with ferric chloride and the mycobac-

tins finally extracted into chloroform. Carboxy mycobactins in the culture filtrate were satu-

rated with ferric chloride and then separetly extracted into chloroform. These samples were 

then subjected to TLC with the solvent petroleum ether/n-butanol/ethyl acetate (2:3:3) (Fig. 

23 a). Quantification of the distinct bands observed showed a marked increase in both myco-

bactin and carboxy mycobactins in Mtb treated with 100μM of Ag85C-3 (Fig. 23 b). Thus, 

genetic up-regulation of this operon also leads to increase in amounts of siderophores in the 

bacterial cells strongly suggesting a shift in the iron homeostasis within these cells. The 

higher amounts of mycobactins could either lead to accumulation of iron inside cells or be a 

stress response to reduced iron levels induced by modifications to cell envelope. Either sce-

nario is detrimental to Mtb and might be an important mechanism by which Ag85C-3 induces 

toxicity. 

3.7.2 MMPL transporter proteins 

MMPLs are large transmembrane proteins belonging to the resistance, nodulation and divi-

sion superfamily (RND superfamily) of transporters. 14 genes of this family have been identi-

fied in Mtb and postulated to play a role in the transport of lipids across the cell membrane 

(Domenech, et al., 2005). Two of these genes, namely MmpL6 and MmpL5, were found to be 

the most strongly up-regulated genes upon Ag85C-3 treatment. Quantitative PCR indicated an 

up-regulation of up to 70 fold for MmpL6 and up to 13 fold for MmpL5 with 100μM of 

Ag85C-3 (Fig. 24 a). The fact that MmpL5 is also regulated by iron levels in the environment 

strongly correlates with the mbt-1 locus up regulation (Rodriguez, et al., 2002). MmpL6 pro-

tein, on the other hand, is reported to be truncated in H37Rv and hence considered non-

functional. But the large up-regulation suggests a previously undeciphered function in Mtb 
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lipid metabolism. It could also be a general response to cell wall changes induced by Ag85C-

3. 

 
Figure 24: Quantitative PCR analysis.  

Mtb H37Rv mid-log phase culture was inoculated in 7H9 medium without detergent at a density of 7.5*106 bac-
teria/ml and incubated at 37°C for 24 hours. Ag85C-3 was then added at 50 or 100µM while the control culture 
was untreated and incubated at 37°C for 48 hours with mild shaking. Cell pellets were collected and resuspended 
in 1ml TRIZOL for RNA extraction according to standard protocols. cDNA was synthesized from this RNA 
using random hexamers with standard protocols. Quantitative PCR reactions were set up with 1:150 dilution of 
the cDNA with readymade Sybergreen mix and 150nM gene primer mix in AB7000. SigA was used as the 
housekeeping standard control gene. Fold change expression relative to untreated control was calculated from 
the Ct values. i) Relative expression of MmpL genes. ii) Relative expression of lipid synthesis genes, FabD, Fas, 
Mas and Pks11. Average of triplicates for each treatment was calculated with standard deviation and plotted. 

3.7.3 Lipid biosynthesis 

Amongst the down-regulated genes in the microarray analysis were genes belonging to lipid 

synthesis pathways. These either belonged to general fatty acid synthesis genes like AcpM, 

FabD and Fas or to special PDIM/phenolic glycolipid pathways like Mas and Pks 11 (Guilhot, 

et al., 2008; Marrakchi, et al., 2008). However, quantitative PCR experiments showed that the 

degree of regulation was only up to 0.5 fold in the case of Fas and Mas while a slight down 

regulation up to 1.5 fold was observed with FabD and Pks 11 genes (Fig. 24 b). These results 

indicate that the basic lipid synthesis processes remain virtually unaffected after Ag85C-3 

treatment unlike the concerted up regulation of fatty acid synthesis genes observed with INH 

treatment (Waddell, et al., 2004; Wilson, et al., 1999). 

Thus, whole genome expression study provided novel insights into the mechanisms of 

Ag85C-3 activity against Mtb. The increase in mycobactin biosynthesis as indicated by up 

regulation of mbt-1 gene cluster, MmpL5 expression and accumulation of mycobactin mole-

cules hints at perturbation of iron homeostasis within the treated bacterial cells which could 

also lead toxicity. Additionally, modulation of MmpL6 could point to its probable link to my-

colic acid synthesis and transport. More detailed validation of other regulated genes would aid 

in developing a signature expression profile of this class of inhibitors. 
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4 Discussion 
Tuberculosis (TB) drug discovery is in one of its most challenging phases in history due to the 

growing threat of extensively drug resistant (XDR) and multiple drug resistant (MDR) TB 

(Borgdorff and Small, 2009; Wright, et al., 2009). One of the main causes for the emergence 

of resistance is the 6-9 months long current regimen which encourages patient non-

compliance especially in developing countries. Another concern is the lethal liaison between 

TB and AIDS which is the main contributing factor to the dramatic increase in infected indi-

viduals worldwide (Kaufmann and McMichael, 2005; WHO, 2009). This scenario calls for an 

urgent overhaul of the current regimen with new drugs which could shorten treatment dura-

tion as well as be synergistic with anti-retroviral therapy. 

This study has focussed on Ag85C, a mycolyl transferase of Mtb as a drug target with a panel 

of chemical molecules identified through a small molecule library screen. The starting chemi-

cal moiety Ag85C-1 and its analogues Ag85C-2, Ag85C-3 and Ag85C-4 bound to Ag85C as 

detected by NMR (Schade, M. et al, unpublished data). Ag85C belongs to a family of three 

proteins, namely Ag85A, Ag85B and Ag85C, which are highly homologous to each other and 

conserved across mycobacterial species. They are secreted by Mtb with Ag85B being the most 

abundant protein in the culture filtrate and are immune-dominant antigens (Harth, et al., 1996; 

Wiker and Harboe, 1992). Belisle et al. (1997) elucidated their more fundamental physiologi-

cal function as transferases of mycolic acids essential in the final critical steps of cell enve-

lope biogenesis in mycobacteria. They demonstrated that all three Ag85 proteins transfer my-

colic acids, building blocks of cell wall, to its terminal substrate trehalose monomycolate 

(TMM) to generate trehalose dimycolate (TDM) (Belisle, et al., 1997). TDM is non-

covalently attached to the outer surface of cell wall while the arabinogalactan-peptidoglycan 

linked mycolic acids (mAGP) form the covalently attached structural framework. An Mtb 

strain with a deficiency in Ag85C showed a marked reduction of 40% in mAGP amounts sug-

gesting that these proteins are also involved in transfer of mycolic acids to arabinogalactan-

peptidoglycan multimer (Jackson, et al., 1999).  

4.1 Activity of Ag85C antagonists 

Ag85 proteins thus play a pivotal role in the assembly of mycobacterial cell wall which also 

makes them attractive targets from the drug discovery perspective. Other advantages include 

their uniqueness to mycobacteria which reduces the chances of cross reaction with host mole-

cules. These proteins are located in the periplasmic space which also lowers the possibility of 

inhibitors being effluxed by drug efflux pumps. Initial studies identified 6-azido-6-deoxy--

trehalose (ADT), one of many trehalose and TMM analogues, which blocked in vitro mycolyl 
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transferase activity, inhibited growth of M. aurum and reduced TDM, TMM and cell wall 

bound mycolates in treated bacteria (Belisle, et al., 1997). Rose et al. (2002) tested additional 

derivatives of trehalose based on 6, 6’-dideoxy trehalose against non-virulent Mtb H37Ra and 

a few clinical strains of M. avium (Rose, et al., 2002). They observed a wide range of activity 

which depended on the length of linked acyl chains. Another trehalose derivative which was a 

TDM mimic was synergistic with INH when tested against M.smegmatis suggesting that Ag85 

blocking could enhance the activity of current anti-tuberculars (Wang, et al., 2004). More re-

cently, phosphonate inhibitors of Ag85C were shown to be growth inhibitors of M. aurum in 

vitro (Gobec, et al., 2007). Though none of these molecules have a sufficiently low MIC to be 

considered a lead compound, they emphasize the relevance of Ag85 proteins as a novel target. 

In this context, detailed study of anti-mycobacterial potential of Ag85C-1, -2, -3 and -4 was 

undertaken with pathogenic Mtb as the model organism. 

4.1.1 Effect of Ag85C inhibition on in vitro Mtb culture 

Resazurin based viability assay has been accepted as a standard qualitative test to measure 

anti-microbial activity (Gabrielson, et al., 2002). It is a simple, fast assay which relies on re-

duction of blue colored tetrazole substrate into pink product by respiratory dehydrogenases of 

live cells. The ease of this method makes it a convenient indicative test for large scale anti-

mycobacterial studies (Yajko, et al., 1995). This assay has been used to assess biological ac-

tivity of Ag85C-1-4 against Mtb. It was observed that all four molecules inhibited growth of 

Mtb in rich liquid medium, but at different concentrations (Fig. 8). The analogues with modi-

fications to primary Ag85C-1 structure driven by SAR studies showed improved activity at 

micromolar concentration ranges compared to 1.3mM putative value of MIC for Ag85C-1. 

Ag85C-2, -3 and -4 had a putative MIC of 250µM, 100µM and 50µM, respectively. Thus, 

chemical binders of Ag85C had an impact on Mtb survival under growth inducive conditions. 

Moreover, structural improvements to the primary molecule led to increased activity indicat-

ing a broad chemical space which could be explored in the future. Similar experiments with 

M. smegmatis, B. subtilis and E. coli showed an effect on M. smegmatis and not on the other 

two representatives of gram positive and negative bacteria suggesting specificity for myco-

bacterial species (Schade, M. et al, unpublished data). Detailed characterization of the inhibi-

tory properties of the analogues Ag85C-2-4 was performed with [3H]-Uracil incorporation 

assay to gain further insights in to their activity. 

The uptake of radioactive uracil in to the mRNA during transcription has been used as a direct 

read out of bacterial numbers in an actively replicating population (Benitez, et al., 1974). 

Thus, scintillation counts are directly proportional to the number of bacteria and have been 
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used to follow cell numbers over time. Kinetics of inhibition showed that Ag85C-3 is the most 

potent of the three analogues with reduction of scintillation counts observed from 24 hours 

post-treatment at 100 and 250µM and close to 99% at 250µM after 120 hours (Fig. 9 b). This 

was more than the 77% inhibition observed with 10µM of INH, the positive control, after 120 

hours. Though Ag85C-4 inhibited at 50µM, this effect was only observed at 120 hours post 

treatment and was only up to 50% inhibition (Fig. 9 c). Ag85C-2, on the other hand, had a 

strong effect only at 250µM while 100µM reduced counts by 20-30% after 120 hours of 

treatment (Fig. 9 a). The three analogues possessed distinct patterns of inhibition over time 

which could be due to the differences in their chemical structures. It thus gives us more in-

formation about the preferred functional group changes for improvement of inhibitory activ-

ity. These studies indicate that further modification of Ag85C-3 structure could yield more 

active antagonists of Ag85C. 

The anti-mycobacterial activity of Ag85C-1-4 may not be attributable to Ag85C blockage 

alone, as genetic inactivation of Ag85A, B or C alone does not modify the growth kinetics of 

Mtb in liquid medium (Armitige, et al., 2000; Jackson, et al., 1999; Puech, et al., 2000). But a 

simultaneous antisense blockage of the three Ag85 enzymes using phosphorothioate-modified 

oligodeoxyribonucleotides (PS-ODN) diminished Mtb growth in liquid medium by 1.7 log 

colony forming units (CFU) while individual PS-ODNs only had a slight effect (Harth, et al., 

2002). Hair pin extensions to these ODNs further improved their efficacy and reduced Mtb 

growth in THP1 macrophages as well (Harth, et al., 2007). These studies support the hypothe-

sis that the three proteins are functionally redundant. Molecular analysis of the gene se-

quences identified a carboxylesterase conserved sequence which is necessary for catalysing 

the transesterification reaction (Belisle, et al., 1997). Analysis of crystal structures of all three 

proteins indicated an almost identical active site carrying the Ser-Asp/Glut-His catalytic triad 

(Anderson, et al., 2001; Ronning, et al., 2000; Ronning, et al., 2004). Since NMR analysis 

showed that Ag85C-1-4 bind to the active site and substrate binding domains as the artificial 

probe octylthioglucoside(OSG), these compounds may act through blocking Ag85A, B and C 

altogether, leading to growth inhibition (Schade, M. et al, unpublished data). This activity of 

Ag85C-1-4 is similar to that of previous trehalose derivative inhibitors which competitively 

bind to and block all three Ag85 proteins causing toxicity. This does not exclude induction of 

other non-specific pathways by the compounds in the whole Mtb cell. Functional investigation 

of these effects as discussed in section 4.2 has been carried out to approach these pertinent 

questions. 
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4.1.1.1 Activity against MDR Mtb 

One of the main concerns of current TB drug discovery initiatives is development of resis-

tance and hence searches for lead compounds targeting novel pathways. Therefore, the most 

potent analogue, Ag85C-3, was tested against a multi-drug resistant (MDR) strain of Mtb with 

the colorimetric assay. An African clinical isolate of Mtb, SROB3023, which is resistant to 

both INH and RIF making it an MDR strain, was used. Ag85C-3 inhibited growth of this 

strain at 100µM with complete inhibition at 250µM, identical to the profile obtained with lab 

strain H37Rv (Fig. 8 & Fig. 10). Thus, Ag85C-3 has no cross resistance with two prominent 

mycobactericidal drugs, INH and RIF, making it attractive for development into a potential 

lead compound. Additionally, this also indicates that the pathways targeted by Ag85C-3 are 

distinct from those of INH and RIF. Studies with more MDR and also XDR strains could give 

additional information about cross-resistance patterns and thus probable targets of Ag85C-3. 

Nevertheless, direct inhibition of Mtb growth by the compounds raises the question about 

their effect and relevance in an infection scenario and this has been approached in ex vivo and 

in vivo models of TB. 

4.1.2 Activity in ex vivo infection model 

Since Mtb resides mainly in the lung macrophages of infected individuals, the activity of the 

analogues in a primary mouse macrophage infection model was evaluated. Mtb can counter 

normal antimicrobial strategies deployed by macrophages upon its phagocytosis (Kaufmann, 

2001). This includes blocking phagolysosmal fusion and neutralising reactive radicals re-

leased to kill the bacteria. From within its safe location inside these macrophages, Mtb modu-

lates the immune response enabling it to survive and establish a chronic infection in most in-

dividuals (Cosma, et al., 2003). Thus, a molecule which retards the growth of Mtb directly 

should also be active against intracellular bacteria for it to be considered as a promising anti-

mycobacterial compound. To address this aspect, an ex-vivo model with macrophages has 

been used. They were generated from bone-marrow cells of C57BL/6 mice using standard 

differentiation protocols (Austin, et al., 1971). Notably, none of the previously studied Ag85 

inhibitors had been tested against intracellular mycobacteria in either primary macrophages or 

cell lines. Prior to testing their activity, toxicity of Ag85C-2-4 was evaluated since cytotoxic-

ity is an essential parameter for any mammalian cell or animal based study of inhibitor mole-

cules. Absorbance measurements of the product, purple formazan, produced by macrophage 

respiratory enzymes from yellow tetrazole MTT showed that up to 100µM of the three com-

pounds was well tolerated (Fig. 11). Since the compounds were non-toxic, macrophages were 

treated with Ag85C-2, 3 and 4 post Mtb infection followed by a kinetic analysis of transcrip-
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tional activity of Mtb with [3H]-Uracil uptake measurements. Ag85C-3 markedly reduced 

scintillation counts reflecting reduction of intracellular bacteria at 100μM while Ag85C-2 and 

Ag85C-4 had no effect (Fig. 12). Assessment of colony forming units further confirmed the 

activity of Ag85C-3 on phagocytosed Mtb at 100µM (Fig.13). The defective survival of Mtb 

inside macrophages upon Ag85C-3 treatment clearly shows that this molecule is active in an 

infection scenario and also hints that Ag85C inhibition could hinder the adaptation of Mtb to 

intracellular growth. 

Previous studies have shown that though Ag85 complex proteins were detected in the 

phagosomes and cytosol of infected cells by immune-cytochemistry, only the Ag85A mutant 

had reduced survival in mouse and human macrophages while Ag85B and C mutants did not 

(Armitige, et al., 2000; Harth, et al., 1996; Jackson, et al., 1999). This defect was exacerbated 

in interferon gamma activated macrophages and was attributed to the decreased SOCS-

1(Suppressor of cytokine signalling-1) activation by the Ag85A mutant in these cells (Katti, et 

al., 2008). However antisense blocking of the three genes together in Mtb inside human THP1 

macrophages led to 0.3 to 0.4 log CFU reduction (Harth, et al., 2007). Comparative expres-

sion studies in human macrophages and liquid cultures have also indicated a differential ex-

pression pattern of the three genes in varied environments with increased expression of 

Ag85A in resting macrophages (Lee and Horwitz, 1995; Mariani, et al., 2000). Thus, Ag85C-

3 might block all three Ag85 proteins with a pronounced effect on Ag85A leading to inhibi-

tion of growth inside primary mouse macrophages. There could also be non-specific activa-

tion of macrophage antimicrobial mechanisms by the compound. The observation that 

Ag85C-3 could retard growth of intracellular Mtb led to investigation of its activity in an ani-

mal model of infection. 

4.1.3 In vivo studies 

The mouse is the best established model for understanding TB pathogenesis as the result of 

cross-talk between host and pathogen. A large variety of reagents and tools have been devel-

oped to dissect cellular and immune response pathways in mice. Mtb infection via the aerosol 

or intravenous routes in mice leads to chronic infection with an initial acute phase of rapid 

replication followed by a plateau phase where the induced adaptive response contains the bac-

terial numbers for many months. But there are notable differences in the pathology of disease 

in mice when compared to human TB. The main points are the very high bacterial burden 

observed in mice even during the chronic infection stage and the absence of heterogeneity in 

granuloma structures (Flynn, 2006; Stewart, et al., 2003). In spite of this, mice have been ex-

tensively used for preclinical assessment of experimental compounds mainly because of the 
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relative ease in developing and establishing the mouse model. Initial studies used high intra-

venous doses of Mtb which was up to 50% of the lethal dose to infect the mice. These bacteria 

are taken up by spleen and liver macrophages thus representing the disseminated stage of in-

fection.  

More recently a low dose aerosol model of infection of mice was established for large scale 

screening of compounds. This system more closely resembles the primary stages of infection 

in humans where low numbers of inhaled bacteria establish infection accompanied with initia-

tion of the adaptive response leading to positive tuberculin skin test(Kelly, et al., 1996). A 

modification of this model was used as a pilot study to determine if Ag85C inhibition had an 

effect whatsoever on lung resident Mtb. The compounds were administered via the intranasal 

route with the aim of expediting access to the bacteria. At the early time point of 28 days post 

infection a mild reduction of colony forming unit (CFU) counts was observed at 1mM dosage 

of Ag85C-3 and at 0.5mM and 1mM Ag85C-3 in combination with 0.1mM INH (Fig. 24). 

Thus, the compound does have an antimycobacterial effect in mice lungs and is active in 

combination with the first line anti-tubercular, INH. At the later time point of 42 days post 

infection this effect vanished probably due to rapid degradation of the compound. Therefore a 

continuous dose of compounds at higher concentrations via the more physiologically relevant 

oral route should be used in future experiments. Moreover, detailed understanding of the 

pharmacokinetics of the molecule is required for further optimisation of parameters.  

Thus, the panel of molecules, Ag85C-1-4, which bind to the mycolyl transferase Ag85C, were 

also found to inhibit growth of Mtb in broth culture. This could be through simultaneous 

blocking of the three Ag85 proteins since they share a highly conserved active site and are 

partially redundant in function. Importantly, the most potent analogue, Ag85C-3, could also 

inhibit growth of the MDR strain SROB3023 in the same concentration ranges as observed 

for lab strain, H37Rv. Hence, the pathway/s being targeted by this compound is/are distinct 

from that of INH and RIF reducing the possibility of cross resistance development. Addition-

ally, Ag85C-3 could retard the growth of Mtb residing in macrophages, the primary host cells 

of the pathogen. Preliminary studies also indicated that Ag85C-3 administration leads to a 

mild reduction in Mtb survival in lungs of infected mice at early time points after treatment. 

The potent anti-mycobacterial activity of Ag85C-3 in both liquid culture, macrophage infec-

tion model and in mouse lungs led to detailed functional investigation of its direct effect on 

Mtb cells. 
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4.2 Mechanisms of action 

As periplasmic transferases, Ag85 complex proteins are necessary for terminal incorporation 

of mycolic acids to cell wall components, mAGP and TDM (Takayama, et al., 2005). Mycolic 

acids are long chain α-alkyl ß-hydroxy fatty acids with 80-90 carbon atoms and are the main 

structural components of the mycobacterial outer membrane. They are critical in establishing 

the characteristic low permeability of mycobacterial cell wall which makes it resistant to 

harsh treatments and antibiotics (Marrakchi, et al., 2008). INH, frontline antitubercular, in-

duces bacterial death by disrupting biosynthesis of mycolic acids underlining their importance 

for Mtb survival (Dover, et al., 2008). Hence the impact of Ag85C-3 which binds to Ag85C, 

on the lipid composition of Mtb cell envelope was studied as a first step towards deciphering 

its mode of action. 

4.2.1 Lipid analysis 

The function of Ag85 proteins as mycolyl transferases, involved in the production of TDM 

and mAGP, the two most prominent mycolic acid carrying species, was discovered through in 

vitro, structural and mutant studies. TMM generated by unknown cytoplasmic transferase 

from trehalose-6-phosphate and mycolic acid-Pks13 is considered the common substrate of 

Ag85 proteins (Takayama, et al., 2005). They catalyze the transfer of a mycolic acyl group 

from one molecule of TMM to another TMM to give rise to TDM in periplasmic space (Be-

lisle, et al., 1997). However, Ag85 B and C mutants showed no changes in amounts of TDM 

and TMM when compared with wild type strains (Jackson, et al., 1999; Puech, et al., 2002). 

Though initial experiments indicated a similar situation in Ag85A mutant, recent studies indi-

cate that this strain might have slightly lesser amount of TDM (Katti, et al., 2008; Puech, et 

al., 2002). This suggests that the proteins are redundant for this arm of the reaction. The 

Ag85C mutant had reduced amounts of mAGP which is the strongest proof for its role in 

transfer of mycolic acids to the polysaccharide (Jackson, et al., 1999). Ag85A and B mutants, 

on the other hand, had no defects in mAGP and could only partially rescue the Ag85C mutant 

suggesting partial redundancy of these proteins in this second arm of the transferase reaction 

(Puech, et al., 2002). The initial trehalose analogue ADT is the only chemical inhibitor of 

Ag85 proteins which was probed for effect on cell wall lipids (Belisle, et al., 1997). It reduced 

amounts of TMM, TDM and mAGP in M. aurum hinting that a complete block of this step in 

the pathway could lead to drastic changes in amounts of mycolic acid carrying species. There-

fore, a detailed analysis of Mtb lipids with an emphasis on TDM, TMM, mAGP and total my-

colic acids has been performed to understand Ag85C-3 induced toxicity. 
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4.2.1.1 TDM and TMM 

Analysis of TDM and TMM biosynthesis in Ag85C-3 treated Mtb was performed by radio-

labelling lipids using [14C] - sodium acetate precursor which is highly sensitive to minor per-

turbations. Quantification of TDM and TMM synthesis was done by feeding treated and un-

treated bacteria with radiolabel, extraction of loosely bound lipids and separation and visual 

detection with TLC. Measurement of band intensity showed that TDM amounts reduced by 

14% with 100µM of Ag85C-3 with a concomitant 100% increase of TMM relative to the un-

treated samples (Fig.15 b). This established a direct effect of Ag85C-3 on the mycolyl trans-

ferase reaction since previous studies have shown TMM to be the substrate and TDM, the 

product of this reaction (Belisle, et al., 1997). This again points to the scenario where all three 

Ag85 proteins are blocked by Ag85C-3 since single mutants do not show a significant defect 

in TDM or TMM amounts (Jackson, et al., 1999; Puech, et al., 2002). INH reduced amounts 

of both TDM and TMM by close to 60% at 10µM (Fig. 14 b) (Dover, et al., 2008). Thus, even 

though Ag85C-3 targets cell wall biogenesis, the mechanism is distinct from that of standard 

cell wall modulator, INH. This could explain susceptibility of the INH resistant MDR strain, 

SROB3023, to Ag85C-3. 

4.2.1.2 Free mycolic acids 

Interestingly, accumulation of free mycolic acids up to 100% in extractible lipids was ob-

served with 100µM of Ag85C-3 (Fig.16 d). Free mycolic acids have not been detected in pel-

licle forming stationary Mtb cultures. But recent studies with Mtb and Msmeg biofilms in vitro 

showed that the extensive extracellular matrix observed in these structures were lipid rich 

particularly with free methoxy mycolic acids. Biofilm formation is dependent on mycolic acid 

biosynthesis and they harbour drug resistant persisters hinting that such a physiological state 

might be present in granulomas (Ojha, et al., 2008). Nevertheless, the high sensitivity of [14C] 

assay might have detected minor amounts of these molecules produced in log-phase cultures 

of Mtb used for testing Ag85C-3. Hence, to ascertain that the bands were truly free mycolic 

acids samples were subjected to biochemical manipulations like saponification and methyla-

tion procedures. This yielded typically two bands of α and oxygenated mycolic acid methyl 

esters with standard TLC protocols which confirmed that it was free mycolic acids (Fig. 16 b).  

Thus, Ag85C-3 treatment increased amounts of free mycolic acids which might be a conse-

quence of an imbalance in the amounts of mycolic acids due to a perturbation of transfer by 

Ag85C-3. These molecules could either be degradation products from accumulated TMM or 

be as yet unidentified precursors of this pathway. Time course analysis of synthesis of all my-

colic acid containing species in the extractible lipids was performed to resolve this. It clearly 
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showed that while [14C] - acetate was incorporated into TMM from the earliest time point of 

45 minutes, TDM and free mycolic acids were further downstream in the synthesis route (Fig. 

17). Thus, the accumulated mycolic acids would most likely be degradation products or side-

products of the block in enzymatic activity of Ag85 proteins. Since free mycolic acids are 

essential for the maintenance of biofilm like phenotype of Mtb, the excess amounts of free 

mycolic acids upon Ag85C-3 treatment might induce signalling pathways modifying the 

physiological state of Mtb leading to toxicity. 

4.2.1.3 Cell wall linked mAGP and total mycolic acids 

In contrast to Ag85C inhibition by Ag85C-3, genetic inactivation of Ag85C showed no defect 

in TDM synthesis, but displayed a 40% reduction in the amount of cell wall linked mycolic 

acids (mAGP) (Jackson, et al., 1999). The Ag85A and B mutants, on the other hand, showed 

no reduction in cell wall linked mycolic acids and over expression of these proteins in the 

Ag85C mutant could only partially rescue the drastic phenotype indicating that the Ag85C 

might be more important for the synthesis of mAGP (Puech, et al., 2002). Hence modulation 

of mAGP synthesis by Ag85C-3 was determined. mAGP is found attached to outer surface of 

delipidated bacteria and were extracted by extensive biochemical manipulation of delipidated 

cells. Measurement of amount of radiolabel incorporation into the cell wall linked mycolic 

acids as indicated by band intensities of the three types of mycolic acid methyl esters revealed 

that Ag85C-3 treatment had no significant effect on transfer of mycolic acids to AGP (Fig. 

18). This could be because the binding conformation of Ag85C-3 at the active site might be 

modulating only TMM to TMM transfer and not to cell wall linked AGP. Thus, Ag85C-3 

mainly modified mycolic acid composition of the extractible compartment of cell envelope 

and not of the covalently associated one.  

Disruption of mycolic acid biosynthesis pathways by certain drugs like INH led to upregula-

tion of enzymes like KasA, FabD and AcpM which could then increase total mycolic acids as 

a feedback response (Waddell, et al., 2004; Wilson, et al., 1999). To exclude the possibility of 

an effect of Ag85C-3 on total mycolic acid biosynthesis, whole cells loaded with radiolabel 

precursor were saponified, methylated and analysed by TLC. There was no change in their 

amounts clearly indicating that Ag85C-3 is specifically affecting transfer of mycolic acids and 

not their synthesis. This is in contrast to INH which completely abrogated total mycolic acids 

(Fig. 19). Modification of TDM and TMM by Ag85C-3 could lead to changes in the composi-

tion and thus integrity of the cell envelope. The immediate aftermath of cell envelope pertur-

bation is varied permeability which has been investigated as described below.  
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4.2.2 Permeability 

One of the main consequences of the complex architecture of mycobacterial cell wall is its 

very low permeability to both hydrophilic and even hydrophobic molecules. This is one of the 

main reasons for its renowned resistance to harsh treatments (Daffe, 2008). To overcome the 

lipid barrier to hydrophilic nutrient molecules required for their survival mycobacteria have 

porins like gram negative bacteria. Porins are water filled protein channels that non-

specifically facilitate the influx of hydrophilic solutes. Though MspA has been identified as 

the major porin of non-pathogenic Msmeg a similar protein in Mtb has been not been detected 

(Niederweis, 2003). Nevertheless the need for transporters spanning outer membrane is well 

accepted. 

Since Ag85C-3 modifies cell envelope glycolipid composition it could also change the per-

meability of the envelope to extrinsic molecules. This was investigated by measuring the up-

take of the small hydrophilic molecule, glycerol. It is used as carbon source by mycobacteria 

and has been postulated to partially diffuse through the lipid barrier due to the sparse distribu-

tion of porins on Mtb envelope (Laneelle and Daffe, 2008). The continued accumulation of 

glycerol is dependent on glycerol metabolism and thus ATP production as demonstrated by 

arsenate mediated inhibition of this process. But uptake at earlier time points up to 25 minutes 

depends on the cell envelope integrity and reduction of mAGP leads to drastic increase in 

glycerol uptake (Jackson, et al., 1999). Hence, the increased [14C]-glycerol uptake by Ag85C-

3 treated Mtb clearly established increased permeability of the membrane. The degree of in-

crease is up to 30% which correlates with the low reduction of TDM amounts up to 14% (Fig. 

20 & Fig.15 b). However, any change in permeability could lead to uncontrolled accumulation 

of solvents culminating in death of the bacteria. This could be one of the major mechanisms 

by which Ag85C-3 kills Mtb. Thus, modulation of cell wall components even by slight de-

grees can lead to drastic changes in survival.  

4.2.3 Specificity 

Another aspect is the redundant role of Ag85 complex proteins in transfer of mycolic acids 

from TMM to another TMM by trans-esterification to generate TDM (Belisle, et al., 1997). To 

investigate if Ag85C-3 modified TDM amounts by a specific effect on Ag85C, it was tested 

against an Mtb strain lacking Ag85C, MYC1554. This strain was identified by screening a 

transposon library on clinical isolate Mt103 background based on insertion in Ag85C locus. It 

showed no defect in TDM amounts but cell wall linked mycolic acids were reduced up to 

40% (Jackson, et al., 1999). Qualitative and quantitative anti-mycobacterial assays indicated 

that the mutant was equally susceptible to Ag85C-3 as the wild type (Fig. 21). Additionally, 
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analysis of extractible lipids showed that TDM synthesis was reduced in the mutant but TMM 

accumulation could not be observed (Fig. 22 a). This unchanged TMM amount was also ob-

served in the wild type background and might be due to a higher turnover of TMM in these 

strains. This is supported by a much higher accumulation of free mycolic acids in these strains 

compared to H37Rv (Fig. 22 b).  

Thus the mycolyl transferase reaction is blocked by Ag85C-3 even in the absence of Ag85C 

again suggesting that Ag85A and Ag85B might be inhibited by this molecule. To confirm this 

we first need to test the compound on the Ag85A and B single mutants and then a conditional 

knockdown of all three proteins. But it is important to emphasise that demonstration of an 

effect on mycolyl transferase activity does not exclude other putative targets which could also 

contribute to toxicity. A more large scale approach, through screening of a whole genome 

level over expression library or a mutagenesis library with the aim of picking up resistant 

strains or a whole genome level expression study as described below, would help identify all 

the possible targets of this compound. 

4.2.4 Gene expression analysis 

An organism adapts to any change in its environment by modifying the expression of those 

genes which would aid in its survival and growth under the new conditions. Hence, mRNA 

levels would be a very good indication of signalling networks being evoked or suppressed 

upon stimulus. Based on this knowledge microarray analysis of Mtb response to a variety of 

perturbations including drug treatment has been performed. One of the most extensive studies 

performed by Boshoff et a.l (2004) analysed Mtb response to drugs and growth inhibitory 

conditions using a data set of 430 microarray profiles. In addition to generating signature pro-

files for drugs or groups of drugs this kind of analysis helps in assigning target pathways to 

previously uncharacterized inhibitory molecules (Boshoff, et al., 2004). Individual studies 

looking into Mtb gene expression after INH, EMB, PA-824 and Benzothiazinones, to name a 

few, have also been performed to better understand their impact on Mtb (Makarov, et al., 

2009; Manjunatha, et al., 2009; Wilson, et al., 1999). In this context, whole genome expres-

sion profiling of in vitro grown Mtb after treatment with Ag85C-3 was done for a complete 

functional characterization of the phenotype. Due to the partial redundancy of the Ag85 com-

plex proteins and the absence of a triple mutant not much is known about the probable regula-

tory role of the mycoyl transferase reaction. Hence, gene regulation analysis after Ag85C-3 

treatment is a useful tool to probe this aspect. Stringent analysis of expression levels based on 

fold change and P-value cut offs gave rise to a relatively short but robust list of 65 and 29 

regulated genes with 50 and 100µM of Ag85C-3, respectively, after 48 hours of treatment.  
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The strongest up regulation was observed with proteins belonging to the Mycobacteria mem-

brane protein large (MmpL) family, namely, MmpL6 and MmpL5 (Fig.24 a). MmpLs are 

transporter proteins with up to 12 transmembrane domains and is a subset of the larger resis-

tance, nodulation and division (RND) superfamily of transporters (Jain, et al., 2008). In gram 

negative bacteria RND proteins primarily function as drug efflux pumps while in more closely 

related gram positive bacteria they serve as transporters for endogenous substrates. In myco-

bacteria most of the 14 MmpL genes are located in the vicinity of polyketide synthase genes 

suggesting that they could be involved in transport of the various polyketide derived products 

across plasma membrane. MmpL7 and 8 are the best characterized with their Mtb mutant 

strains showing defective transport and synthesis of PDIMs and SLs, respectively (Converse, 

et al., 2003; Cox, et al., 1999). Since none of the Mtb mmpL mutants displayed altered sus-

ceptibility to drugs, they have been hypothesized to function as putative lipid/polyketide 

transporters and not drug efflux pumps (Domenech, et al., 2005). 

MmpL6 is a 42kDa truncated protein with only 5 transmembrane regions and is located in the 

variable TbD1 region in the Mtb genome (Domenech, et al., 2005). It is deleted in `modern´ 

strains of Mtb but is conserved in the ancestral strains and in M. bovis (Brosch, et al., 2002). 

The mutant strain of Mtb lacking this protein has no survival defects either in broth culture or 

in infected mice. The increased expression of up to 70 fold of MmpL6 with Ag85C-3 hints at 

a probable role in lipid transport specifically of mycolic acid or trehalose containing species 

(Fig. 24 a). The fact that it is located approximately 4Kbp. upstream of one of the trehalose 

biosynthesis operons, TreZ-X, further supports this hypothesis. MmpL5, on the other hand, 

has been linked to iron uptake due to its transcriptional control by the iron dependent IdeR 

repressor (Rodriguez, et al., 2002). It is associated with a predicted smaller transmembrane 

protein MmpS5 which could function like the MFPs associated with RND proteins in gram 

negative organisms. The Mtb mmpL5 mutant also did not display any growth defects in vitro 

and in vivo (Domenech, et al., 2005). Up regulation of both MmpL5 and MmpS5 with 100µM 

of Ag85C-3 suggests modification of iron regulation by this compound. It could also be that 

modulation of cell envelope components, specifically mycolic acid lipids, by Ag85C-3 might 

be causing non-specific effects on the regulation of these tranmembrane proteins. 

Another interesting gene cluster regulated by Ag85C-3 is the mycobactin synthesis locus, 

mbt-1. Mtb like any other organism depends on external sources for its iron and synthesises 

specialized iron chelators or siderophores called mycobactins for acquiring iron from outside. 

They are of two main types, the water insoluble membrane associated mycobactins and the 

water soluble secreted carboxymycobactins (Rodriguez, 2006). The structural core of the two 
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molecules is identical composed of a hydroxyphenyloxazoline ring derived from salicylic 

acid, two lysine residues and a polyketide fragment. They differ in the nature of the N-linked 

acyl chain which is a short carbonyl group in the case of carboxy mycobactins while it is a 

long lipidic chain in mycobactins (Snow, 1970). The ten gene MbtA-J or mbt-1 cluster is be-

lieved to be essential for the production of the core motif while the mbt-2 locus is involved in 

attachment of the fatty acyl chain as well as transport (Krithika, et al., 2006; Quadri, et al., 

1998). The expression of these genes and thus mycobactin amounts is tightly coupled to iron 

availability and regulated by the IdeR repressor. IdeR is an iron dependent DNA binding pro-

tein and an essential gene (Rodriguez, et al., 2002). An Mtb strain lacking MbtB, a nonribo-

somal peptide synthase located in mbt-1 locus has reduced survival under iron limiting condi-

tions and shows marked reduction in mycobactin and carboxy mycobactin amounts. It also 

cannot replicate in the human macrophage cell line, THP-1(De Voss, et al., 2000). 

Ag85C-3 treatment led to increased expression of seven genes in the mbt-1 locus as detected 

by microarray analysis which was confirmed by quantitative PCR validation with three genes 

(Fig. 23 c). This is unexpected since under iron rich conditions of 7H9 medium these genes 

would be normally repressed. Quantification of carboxymycobactins and mycobactins under 

same conditions showed a marked increase in their amounts in the presence of Ag85C-3 (Fig. 

23 b). This could first be a stress response to outer membrane perturbations probably leading 

to lower association of membrane anchored mycobactins which results in reduced iron acqui-

sition. Low iron amounts are toxic due to its essential role in the activity of enzymes involved 

in key processes ranging from respiration to DNA replication. The second possibility is an 

artificial induction of mycobactin synthesis by Ag85C-3 which then leads to unwarranted ac-

cumulation of iron within Mtb. Iron in excess is also toxic to cells due to its ability to generate 

reactive oxygen radicals from normal products of aerobic metabolism by the Fenton’s reac-

tion. Thus, iron modulation could be an additional mechanism by which Ag85C-3 induces 

death. It is also not clear if this is an indirect effect of the block in mycolic acid transfer or 

whether Ag85C-3 directly interacts with iron regulatory pathways. It does not appear to be an 

inhibition of IdeR repression since the other mycobactin synthesis genes of the mbt-2 cluster 

are not affected by Ag85C-3. It thus seems to be a specific up regulation of the mycobactin 

core synthesis machinery. More detailed studies including measurement of iron amounts upon 

Ag85C-3 treatment need to be performed to obtain a clearer picture of the underlying mecha-

nism. Nevertheless, it is important to note that iron regulation in Mtb and thus mycobactin 

synthesis is considered an attractive target for intervention strategies due to its essentiality for 

survival in the host. 
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Ag85C-3 treatment also led to down regulation of some of the lipid synthesis genes like Fas, 

and Mas. Fas, AcpM and FabD are involved in the initial steps of fatty acid biosynthesis 

which gives rise to 16-18 carbon atom carrying lipids (Marrakchi, et al., 2008). A stress on the 

mycolic acid synthesis pathway by INH, for example, leads to upregulation of these genes 

(Wilson, et al., 1999). Mas, on the other hand, is a part of the PDIM/PGL locus involved in 

the synthesis of the mycocerosate carrying virulence lipids (Guilhot, et al., 2008). Quantita-

tive PCR experiments showed that the expression was down regulated but the degree of regu-

lation was lesser than the 1.5 fold change shown by microarray analysis suggesting that these 

pathways were not significantly modulated by the compound (Fig. 24 b). Other prominent 

groups of genes regulated by Ag85C-3 are the PE/PPE proteins which have been postulated to 

play a role in pathogenesis and virulence (Brennan and Delogu, 2002). Proteins involved in 

intermediary metabolism like GltA1, RubB and AlkB were found to be up regulated probably 

as a stress response to Ag85C-3 treatment. Additionally, ribosomal proteins like RpsR2, 

RpsN2 and RpmB2 were down regulated pointing to a repression of transcriptional activity 

and thus general metabolism in response to the compound induced stress. 

Therefore, whole genome expression studies proved invaluable for obtaining deeper insights 

into signalling pathways and molecules being modulated by Ag85C-3. This could either be 

indirect effects of the block in mycolyl transferase reaction catalysed by Ag85C or be other 

direct effects of the compound. It is important to note that an inhibitory molecule would be 

more effective if it targets more than one pathway since the probability of resistance devel-

opment is lower in these cases.  
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5 Conclusions and Outlook 
In summary, our findings show that small molecule mediated inhibition of Ag85C induces 

toxicity in Mtb growing in liquid medium, inside macrophages and in lungs of mice. A multi 

drug resistant Mtb clinical isolate was found to be susceptible to Ag85C-3, the most potent of 

these molecules, highlighting the relevance of Ag85C as a novel target. Ag85C-3 specifically 

blocked the mycolyl transferase reaction catalysed by Ag85 proteins as indicated by reduced 

TDM and increased TMM. It also induced an unexpected accumulation of free mycolic acids 

while cell wall linked mycolic acid (mAGP) amounts remained unchanged. This disruption of 

mycolic acid biogenesis is distinct from that of classical cell wall inhibitor and first line anti 

tubercular drug, INH which abrogated TDM, TMM, free mycolic acids and mAGP. The dis-

tinct mechanism could explain susceptibility of the INH resistant MDR strain to this com-

pound.  

As a consequence of mycolic acid perturbations by Ag85C-3, the permeability of Mtb cell 

wall is altered leading to death. But additional mechanisms could be underway as indicated by 

up regulation of siderophore synthesis and membrane transporter genes detected by whole 

genome expression analysis. Since iron acquisition and homeostasis is crucial in the survival 

of any organism, modification of mycobactin production by Ag85C-3 could be another reason 

for its toxic effect on Mtb. Moreover, this molecule is not specific to Ag85C alone and could 

be blocking all three Ag85 proteins since treatment of an Ag85C deficient mutant strain leads 

to TDM reduction and growth defect. 

Thus, Ag85C and its inhibitor, Ag85C-3 are promising starting points for development of fu-

ture intervention strategies against TB. The current long duration therapy needs to be modi-

fied to enhance patient compliance and prevent further emergence of resistance. Drug resis-

tant TB is another major concern and requires new molecules to be employed in the clinics at 

the earliest. Since Ag85C-3 blocks cell wall biosynthesis at an essential but distinct step from 

that of INH and EMB it could be extremely useful as a lead compound to counter strains re-

sistant against these 2 antibiotics. Further testing with MDR and XDR strains would help in 

establishing its activity in this scenario. Synergy with other anti-tubercular drugs needs to be 

ascertained to determine its utility in combination therapy. Also, optimisation of Ag85C-3 

structure is required to lower its MIC to nanomolar concentration ranges. These modifications 

should also enhance its aqueous solubility which would enable more physiologically relevant 

in vivo studies with higher concentrations administered via the oral route. Another important 

question is the efficacy of these compounds against non-replicating, dormant Mtb. Simplified 
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in vitro systems based on the Wayne hypoxia model and/or nutrient starvation can be used to 

address this aspect. 

Small molecule antagonists like Ag85C-3 are also useful tools to understand the regulatory 

role of Ag85 complex and thus the complex biology of Mtb. Though it has been established 

that Ag85C-3 does inhibit mycolyl transferase activity of Ag85C and probably the other Ag85 

complex proteins as well, a clear link between this and regulation of mycobactin biosynthesis 

or MmpL protein expression has not been elucidated. More detailed experiments like addition 

of exogenous TMM and/or free mycolic acids mimicking Ag85 complex block and subse-

quent analysis of mycobactin synthesis need to be performed. Further, comparison with a 

transient triple gene knockdown of Ag85A, B and C would also be essential for validation of 

the proposed regulatory role of Ag85 complex proteins. Thus Ag85C-3 also enables better 

understanding of pathways linked to and involved in cell wall biogenesis in Mtb. 
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6 Materials and methods 
6.1 Methods 

6.1.1 Alamar blue assay 

Mtb H37Rv was propagated in Middlebrook 7H9 broth supplemented with 10% ADC, 0.25 % 

glycerol, and 0.1 % Tween-80 to an OD of 1.0 at 580nm at 37°C. Stock solutions of the com-

pounds were made in DMSO and aliquots stored at -20°C, this was used in all the following 

experiments. The compounds were diluted with 7H9 medium lacking Tween-80 to various 

working concentrations ranging from 50µM to 250µM and distributed in 100µl aliquots into 

the wells of a 96-well plate. An aliquot (100μl) of bacterial culture diluted at 1:25 ratio in 7H9 

medium lacking Tween-80 and containing about 2*106 bacteria was added per well. The plates 

were sealed and incubated at 37°C for 96 hours after which 50μl of freshly prepared 1:1 mix-

ture of 10X Alamar Blue reagent containing resazurin and 20% Tween-80 were added to each 

well. Plates were incubated for additional 24 hours at 37° C. Hygromycin at a concentration 

of 100µg/ml was the positive control. Plates were read by visual inspection for colour change 

from blue (in wells containing no metabolic activity – dead Mtb) to pink in wells containing 

live Mtb. The images were captured with digital camera.  

6.1.2  [3H]-Uracil Incorporation Assay  

Mtb H37Rv bacteria from mid-exponential growth phase were collected by sedimentation and 

resuspended in phosphate buffer saline (PBS). Single cell suspension was made by five to six 

forced passages through a 0.40μm needle. Mtb cell density was measured by spectrophotome-

ter (OD580 0.1 =5*107 bacteria/ml) by diluting it at 1:10 ratio in 10% paraformaldehyde (PFA). 

Bacteria were then added at a density of 107bacteria/ml to 100μl of 7H9 medium without 

Tween-80, with or without the desired concentrations of compounds in a 96 well plate and 

incubated at 37°C. The time points for measurement were 24, 72 and 120 hours post-

treatment. 24 hours prior to each time point 1μCi of [3H]-Uracil was added to each well and 

the plate frozen at -80°C after the duration. The plates were fixed by adding 100µl of 10% 

paraformaldehyde to each well and harvested with Filtermate Harvester. The scintillation 

counts were then measured with TopCount scintillation counter. The average scintillation 

count from hex plicates was calculated for each treatment condition and plotted with standard 

deviation using Graphpad Prism 5.0.  

6.1.3 MTT toxicity assay  

Bone marrow cells were extracted from the tibia and femur of C57BL/6 female mice aged 8-

12 weeks and seeded in culture dishes (~5*106 cells per dish). The differentiation into macro-
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phages was performed as described. The macrophages were seeded in 48 well plate at a den-

sity of 3*105 cells/well in triplicate and incubated at 37°C with 5% CO2 overnight for com-

plete adhesion to the surface. The cells were washed once with PBS and fresh medium added 

with or without the desired concentration of compound and incubated at 37°C with 5% CO2. 

2-3 hours prior to each time point 50µg/ml MTT was added from a stock solution of 5mg/ml 

in 1X PBS. The supernatant was removed and adherent cells lysed in 100µl 100% DMSO and 

absorbance measured at 550nm with spectrophotometer. DMSO at concentrations present in 

the compound dilutions is used as control if necessary. The average absorbance from tripli-

cates was calculated for each treatment and plotted with standard deviation using Graphpad 

Prism 5.0. The untreated samples were taken as 100%.  

6.1.4  [3H]-Uracil Incorporation Assay during macrophage infection  

Primary bone marrow macrophages were obtained from C57BL/6 mice as described in 6.1.3. 

Cells were then seeded in 96-well plates at a density of 5*104 cells per well in DMEM me-

dium containing 10% fetal calf serum, 10 mM HEPES (pH from 6.5 to 7.5) 1 mM sodium 

pyruvate, and 1% L-glutamine, and incubated overnight at 37° C and 5% CO2 for adhesion. 

Mtb H37Rv bacteria from mid-exponential growth phase were collected and single cell sus-

pension prepared by five to six forced passages through a 0.40 μm needle. Mtb cell density 

was measured by spectrophotometer (OD580 0.1 =5  107 bacteria/ml) by diluting it at 1:10 

ratio in 10% PFA. Infection of macrophages was performed at 5 bacilli per macrophage (5:1) 

in hex plicate wells. Macrophages were incubated for 4 h at 37° C and then 10µl of fresh me-

dium with working concentrations of compound was added to each well. 24 hours before each 

time point (24, 72 and 120 hours post treatment) 1μCi of [3H]-Uracil was added to each well 

and incorporation allowed. Then the whole plate was frozen away at -80°C. The plates were 

fixed, harvested and scintillation counts measured. The average scintillation count from hex 

plicates was calculated for each treatment condition and plotted with standard deviation using 

Graphpad Prism 5.0. Significance, p, for treatment and across time points was calculated us-

ing 2-way ANNOVA analysis. 

6.1.5 Colony forming unit (CFU) assay  

Primary bone marrow macrophages were obtained from C57BL/6 mice as described in 6.1.3. 

Mtb H37Rv bacteria from mid-exponential growth phase were collected and single cell sus-

pension prepared by five to six forced passages through a 0.40 μm needle. Mtb cell density 

was measured by spectrophotometer (OD580 0.1 =5*107 bacteria/ml) by diluting it at 1:10 ratio 

in 10% PFA. Infection of macrophages was performed at 5 bacilli per macrophage (5:1) in 

triplicate wells. Macrophages were incubated with Mtb for 4 h at 37° C to allow complete 
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phagocytosis and washed twice with PBS to remove non-phagocytosed bacteria. 100µl of 

fresh medium with or without the desired dilution of compound was added to each well. The 

plates were incubated at 37°C for 24, 72 and 120 hours post treatment. At each time point the 

supernatant was removed and the cells lysed with 30 µl of PBS containing 0.5% TritonX-100. 

Dilutions were made in PBS containing 0.05% Tween-80 and 30 µl plated out on 7H11 agar 

plates. After 3-4 weeks of incubation at 37°C, CFU were counted. The average CFU value 

from triplicates was calculated and plotted with standard deviation using Graphpad Prism 5.0. 

6.1.6 In vivo experiments 

8-12 week old C57BL/6 female mice were distributed into 6 groups per time point with 5 

mice per group: Placebo, 0.5mM Ag85C-3 treated, 1mM Ag85C-3 treated, 0.1mM INH 

treated, 0.5mM Ag85C-3 with 0.1mM INH treated and 1mM Ag85C-3 with 0.1mM INH 

treated. A control group of 5 mice were included to verify initial dose of infection. Infection 

of mice was performed using a Glas-Col inhalation exposure system. An aliquot of frozen 

H37Rv Mtb stock culture was thawed and diluted (as determined in titration experiments per-

formed for every infection stock) with water such that each mouse would receive 50-100 

CFU. On day 1, control group were sacrificed, lungs removed and homogenized in PBST buf-

fer. Dilutions were prepared and plated out on 7H11 agar plates. Mice were anaesthetized and 

then compounds administered intranasal. 8 doses were given over a period of 2 weeks. Mice 

were sacrificed at day 28 and day 42 after infection by cervical dislocation. Lungs were trans-

ferred into sterile sample bags containing 1 ml PBS/Tween solution (PBST). Organs were 

homogenized in the sample bags by smashing and after serial dilution in PBST, 50 µl were 

plated on 7H11-agar plates containing ampicillin and cyclohexamide which were sealed with 

parafilm and wrapped in aluminum foil. After 3-4 weeks of incubation at 37°C, CFU were 

counted. The CFU value calculated as average of two dilutions for each mouse, plotted with 

Graphpad Prism v.5.0 and the significance, p, calculated using non-parametric Mann Whitney 

test. p<0.05 is denoted by `*´while p<0.01 is denoted by `**´ and p<0.001 is denoted by 

`***´. 

6.1.7 TDM and TMM synthesis assay 

Mtb H37Rv organisms were allowed to grow to mid-exponential growth phase in 7H9 com-

plete medium at 37°C with shaking and optical density measurements made at 580nm. The 

culture was diluted in 10ml of 7H9 medium without Tween-80 such that the OD was 0.01 and 

then allowed to grow at 37°C without shaking till the culture reached log phase (OD580=0.3-

0.4). Ag85C-3 was then added at the desired concentrations and incubated at 37°C without 

shaking while the control culture was not treated. After 48 hours [14C]-sodium acetate was 
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added to the medium at a concentration of 0.5μCi/ml and the cultures were grown for another 

24 hours with shaking at 37°C. The bacteria were then collected by sedimentation and lipid 

extraction initiated with CH3OH/CHCl3 (2:1) solvent for 12 hours. The supernatant was trans-

ferred to a fresh tube and evaporated with nitrogen to yield the lipid extractible. 

CHCl3/CH3OH (2:1) solvent was added to the bacterial residue for another 12 hours to extract 

remanant extractibe lipids and the supernatant transferred to the same lipid extractibe contain-

ing tube. This was repeated once more to completely delipidate the bacterial residue. 

For the analysis of TDM and TMM these lipid extractible samples were loaded on silica-gel 

coated plates and subjected to TLC with CHCl3/CH3OH/H2O (60:16:2) as solvent. The plates 

were exposed to phosphor plates and the band intensities measured with Typhoon image ana-

lyzer and ImageQuant software. For normalization the total lane intensity was used and then 

the values compared against the untreated sample taken as 100%. 

6.1.8 Detection and analysis of free mycolic acids 

Extractible lipids obtained as described in 6.1.7 were loaded on silica-gel coated plates and 

subjected to TLC with CHCl3/CH3OH (9:1) solvent. To ascertain the nature of the lipid band 

migrating close to the solvent front, purified glycerol monomycolate (GMM) was used as 

standard but the unknown band migrated higher. To resolve this issue, one lipid extractible 

sample was analysed in detail. It was split into three parts, one part left untreated and the sec-

ond part saponified with 800µl of 1:7 mixture of 40% KOH: 3-methoxyethanol (20ml for 

every 1g of starting material) at 110°C for 3 hours. The saponified product was then acidified 

with a few drops of 20% H2SO4 and washed with twice the volume of diethyl ether. The upper 

organic phase was collected in a fresh tube and the washes repeated twice more. This organic 

phase was then washed thrice with 1ml of water and the lower aqueous phase discarded each 

time. The organic phase was dried and then methylated with freshly prepared diazomethane. 

Briefly, prepare 3ml of 40% KOH in 15ml of diethyl ether in a stoppered flask. To this add 1g 

of N-nitroso-N-methyl urea very slowly in small quantities and allow the reaction to be com-

plete as visualized by yellow coloration. Carefully transfer the upper organic phase (contain-

ing diazomethane) to a fresh stoppered flask with a few pellets of KOH (water adsorbant). A 

few drops of this reactive species was added to the saponified products and allowed to sit on 

the bench for 15-20 minutes for complete methylation. The sample was dried and contained 

methyl esters of mycolic acids (MAME) and fatty acids (FAME). The third part was only me-

thylated as described above. 

The three parts were loaded on silica-gel coated plates and TLC with CHCl3/CH3OH (9:1) 

and dichloromethane as solvents separately. CHCl3/CH3OH (9:1) resolves the unknown band 
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and TDM while dichloromethane resolves MAME and FAME bands. For quantification of 

free mycolic acid in samples they were loaded on silica-gel coated plates and subjected to thin 

layer chromatography with CHCl3/CH3OH (9:1) as solvent, exposed to phosphor plates and 

bands analyzed with Typhoon image analyzer and ImageQuant software. For normalization 

the total lane intensity was used and then the values compared against the untreated sample 

taken as 100%. 

6.1.9 Time course analysis of TMM, TDM and free mycolic acids 

Mtb H37Rv organisms were allowed to grow to mid-exponential growth phase in 7H9 com-

plete medium at 37°C with shaking and optical density measurements made at 580nm. The 

culture was diluted in 50ml of 7H9 medium without Tween-80 such that the OD was 0.01 and 

then allowed to grow at 37°C without shaking till the culture reached log phase (OD580=0.3-

0.4). [14C]-sodium acetate was added to the medium at a concentration of 0.5μCi/ml and 10ml 

each of culture taken after 45 minutes, 1.5 hours, 3 hours, 6 hours and 24 hours after addition 

of radiolabel. The bacteria were then collected by sedimentation from each 10ml culture and 

lipid extraction initiated with CH3OH/CHCl3 (2:1), solvent for 12 hours. The supernatant was 

transferred to a fresh tube and evaporated with nitrogen to yield the lipid extractible. 

CHCl3/CH3OH (2:1) solvent was added to the bacterial residue for another 12 hours to extract 

remanant extractibe lipids and the supernatant transferred to the same lipid extractibe contain-

ing tube. This was repeated once more to completely delipidate the bacterial residue. 

The lipid extractible samples were then analysed for TMM, TDM and free mycolic acids. To 

resolve TDM and TMM, the samples whose volumes were normalised to scintillation counts, 

were loaded on silica-gel coated  plates and subjected to TLC with CHCl3/CH3OH/H2O 

(60:16:2) as solvent. To resolve TDM and free mycolic acids samples were loaded on silica-

gel coated plates and subjected to TLC with CHCl3/CH3OH (90:10) as solvent. The plates 

were exposed to phosphor plates and bands visualised with image analyzer. 

6.1.10 mAGP synthesis assay  

The delipidated cells obtained after lipid extraction in 6.1.6 were analysed to measure the 

amount of cell wall linked mycolic acids. The delipidated cells were dried and weighed. 

Saponification and methylation was performed on the cells as described in 5.1.7. Saponifica-

tion extracted the mycolic acids exposed at the outer surface of the delipidated cells while 

methylation converted them to TLC resolvable methyl esters. The dried samples containing 

MAMEs and FAMEs were run on silica gel coated plates with petroleum ether/ diethyl ether 

(9:1) four times to completely resolve the three types of MAMEs found in Mtb, namely α, 

methoxy and keto. The plate was exposed to phosphor plates and bands analyzed with Ty-
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phoon image analyzer and ImageQuant software. Normalisation was done to the weight of the 

delipidated cells and untreated sample was taken as 100%. 

6.1.11 Mycolic acid synthesis assay  

Mtb H37Rv organisms were grown and subjected to Ag85C-3 treatment as described in 6.1.6. 

The bacteria were then collected by sedimentation and the whole cell pellet autoclaved at 

120°C and high pressure. The pellet was saponified to extract all the mycolic acids from the 

cell and then methylated to obtain MAMEs as described in 5.1.7. The dried samples contain-

ing MAMEs and FAMEs were analysed with TLC with dichloromethane as solvent. The 

plates were exposed to phosphor plate and bands analyzed with Typhoon image analyzer and 

ImageQuant software. The FAME bands served as the normalisation control for quantification 

of the total MAMEs and the untreated sample was taken as 100%. 

6.1.12 Data analysis for lipid synthesis assays 

Average value of lipid amounts expressed in % from 3 independent experiments was calcu-

lated and plotted with standard deviation using Graphpad prism 5.0. Significance, p, was cal-

culated with paired two-tailed Student’s t-test where p<0.05 is denoted by `*´while p<0.01 is 

denoted by `**´ and p<0.001 is denoted by `***´. 

6.1.13 Purification of TDM, TMM and GMM  

Extractibel lipids from Mtb H37Rv were dissolved in methanol and the mycolic acid lipid 

enriched precipitate was collected and weighed. The precipitate was dissolved in minimal 

volume of chloroform and loaded on 50X weight of florisil packed in a glass column. Elution 

was performed with the following solvents in a step-wise manner: 1)CHCl3 2) CHCl3/CH3OH 

(99:1) 3) CHCl3/CH3OH (95:5) 4) CHCl3/CH3OH (90:10) 5) CHCl3/CH3OH (85:15) 6) 

CHCl3/CH3OH (80:20) 7) CHCl3/CH3OH/H2O (65:25:4). All the fractions were dried, run on 

silica gel plate and revealed with anthrone to visualize the glycolipids. Fraction 3, 5 and 7 

were used for purifying GMM, TDM and TMM, respectively. For this, the fractions were run 

on silica gel plate and the band corresponding to the lipid scrapped out, dissolved in 

CHCl3/CH3OH (2:1) and purified with florisil column using the same solvent as the elution 

step.  

6.1.14 Permeability of Mtb cell wall 

Mtb H37Rv organisms were allowed to grow to mid-exponential growth phase in 7H9 com-

plete medium at 37°C with shaking and optical density measurements made at 580nm. The 

culture was diluted in 10ml of 7H9 medium without Tween-80 such that the cell density was 

7.5*106 bacteria /ml. The cultures were incubated at 37°C without shaking overnight and then 
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Ag85C-3 added at 100µM while the control culture was not treated. Incubation was per-

formed at 37°C with mild shaking. After 48 hours of treatment 0.5µCi/ml of [3H]-Uracil was 

added and cultures incubated at 37°C with mild shaking for 24 hours. [3H]-Uracil incorpora-

tion is measured to normalise for total cell number. The culture was centrifuged at 4000 rpm 

for 10 minutes and the bacterial pellet resuspended in 10ml of PBS. 1ml of this suspension 

was collected separately in eppendorf tube, spun down at 13,000rpm for 10 minutes and the 

cell pellet fixed in 100µl of 10% paraformaldehyde overnight at 37°C. [3H]-Uracil incorpora-

tion in this fixed cell pellet was measured to normalise for total cell number. The remnant sus-

pension was centrifuged and cell pellet suspended in 600µl of PBS. This is the starting sus-

pension for [14C]-glycerol uptake measurements. 2µCi of [14C]-glycerol was added to each 

sample and 100µl immediately transferred to eppendorf tube. This is immediately spun down 

at 13,000 rpm for 2 minutes, supernatant discarded and snap frozen on dry ice. This is time-

point 0 and similar sample collection was performed after 2, 6, 10, 15 and 20 minutes of 

[14C]-glycerol addition. The frozen pellets were fixed in 100µl of 10% paraformaldehyde for 

24 hours at 37°C. The scintillations were measured by adding the fixed samples to 3ml of 

scintillation fluid and counted with Tri-Carb liquid scintillation analyzer. Normalisation was 

done to the [3H] counts and permeability expressed relative to the untreated sample. 

6.1.15 Gene expression analysis 

Mtb H37Rv organisms were allowed to grow to mid-exponential growth phase in 7H9 com-

plete medium at 37°C with shaking and optical density measurements made at 580nm. The 

culture was diluted in 10ml of 7H9 medium without Tween-80 such that the cell density was 

7.5*106 bacteria /ml. The cultures were incubated at 37°C without shaking overnight and then 

Ag85C-3 added at desired concentrations. Incubation was performed at 37°C with mild shak-

ing. At 48 hours post treatment 5ml of each sample was centrifuged at 4000rpm for 10 min-

utes to obtain the cell pellet. Supernatant was discarded and the pellet resuspended in remnant 

medium. 

1ml of trizol was added to each sample and total RNA isolated by the TRIZOL reagent RNA 

preparation method using glycogen as carrier. Briefly, cells were resuspended in 1 ml 

TRIZOL, shock frozen and stored at –80°C. Cells in TRIZOL were thawed and further proc-

essed for total RNA isolation as described by the manufacturer. The amount of RNA was de-

termined by OD260/280 measurement using a NanoDrop 1000 spectrophotometer. The RNA 

size, integrity and the amount of total RNA were measured with a Bioanalyzer 2100 with a 

RNA Nano 6000 microfluidics kit. Mtb microarrays were designed with eArray software in 

conjunction with OligoWiz  as 4x44K custom arrays including all open reading frames and 
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intergenic regions (IGR) from the whole genome of Mtb H37Rv 

(http://genolist.pasteur.fr/TubercuList/). Each ORF and IGR was covered at least by several 

specific oligonucleotides. 

Microarray experiments were performed as dual-color hybridizations. In order to compensate 

specific effects of the dyes and to ensure statistically relevant data analysis, a color-swap dye-

reversal was performed. RNA labeling was performed with the two color Quick Amp Label-

ing Kit using FullSpectrum MultiStart Primer for T7 IVT RNA amplification as random T7 

labeling. In brief, mRNA was reverse transcribed and amplified using a FullSpectrum 

MultiStart-T7-promotor primer and was labeled either with Cyanine 3-CTP or Cyanine 5-

CTP. Alternatively, the total RNA samples were amplified with the TransPlex Whole Tran-

scriptome Amplification Kit and labeled with BioPrime Plus Array CGH Indirect Genomic 

Labeling System as WTA BioPrime indirect. In brief, a library was generated by stand dis-

placement reaction using phi-29 polymerase and quasi-random primers followed by 17 PCR 

cycles. The resultant cDNA library was labeled with Klenow polymerase in an indirect reac-

tion using animoallyl nucleotides and subsequent chemical NHS-ester Cy-dye coupling. After 

precipitation, purification and quantification, of each labelled cRNA (random T7 labelling) or 

cDNA (WTA BioPrime indirect labelling) the samples were hybridized to custom 44k mi-

croarrays according to the supplier’s protocol. Scanning of microarrays was performed with 5 

µm resolution and extended mode using a DNA microarray laser scanner. Raw microarray 

image data were extracted and analyzed with the Image Analysis / Feature Extraction software 

G2567AA. The extracted MAGE-ML files were further analyzed on reporter level with the 

Rosetta Resolver Biosoftware, Build 7.1. Ratio profiles comprising single hybridizations were 

combined in an error-weighted fashion to create ratio experiments. A 2–fold change expres-

sion cut-off for ratio experiments was applied together with anti-correlation of ratio profiles 

rendering the microarray analysis highly significant (P-value > 0.01), robust and reproducible. 

Additionally, data derived from the different labelling procedures (random T7 labelling and 

WTA BioPrime indirect labelling) were compared and combined. Only results derived from 

both labelling methods were considered as relevant for further verification. The data presented 

in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number 

GSE17424. 

6.1.16 cDNA synthesis and quantitative PCR 

Mtb RNA samples obtained as described above in 6.1.15 were subjected to DNAse digestion 

with 1.5 units of DNAse enzyme and 1.5µg of RNA in 1X DNAse buffer at room temperature 
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for 15 minutes. The reaction was stopped by addition of 2.5mM EDTA and heating at 65°C 

for 10 minutes. 1µg of DNAse digested RNA was incubated with xxµM of Random hexamer 

mix and 0.5mM dNTP mix for 5 minutes at 65°C and immediately transferred on to ice. To 

this, 40 units of RNAeasyTM, 200 units of Superscript Reverse TranscriptaseTM and 0.05mM 

DTT was added in 1X cDNA synthesis buffer and incubated at 55°C for 60-75 minutes. The 

reaction was stopped by heat denaturation of samples at 70°C for 15 minutes. The resultant 

cDNA mix was diluted 1:10 times in distilled H2O and stored at -20°C. 

For quantitative PCR, 1:10 dilution of the cDNA mix was added to 1X Syber green mix with 

0.15µM forward and reverse primers specific for each gene separately and subjected to the 

FAST qPCR protocol installed in the AB Prism 7900H. SigA was used as the housekeeping 

gene and the fold change gene expression was calculated using the comparative ΔΔCt method. 

6.1.17 Mycobactin synthesis assay 

Mtb H37Rv organisms were allowed to grow to mid-exponential growth phase in 7H9 com-

plete medium at 37°C with shaking and optical density measurements made at 580nm. The 

culture was diluted in 10ml of 7H9 medium without Tween-80 such that the cell density was 

7.5*106 bacteria /ml. The cultures were incubated at 37°C without shaking overnight and then 

Ag85C-3 added at desired concentrations. Incubation was performed at 37°C with mild shak-

ing. After 48 hours of treatment 0.5µCi/ml of [14C]-salicylic acid and 0.5µCi/ml of [3H]-

Uracil were added and cultures incubated at 37°C with mild shaking for 24 hours. [3H]-Uracil 

incorporation is measured to normalise for total cell number. The culture was centrifuged at 

4000 rpm for 10 minutes and the supernatant filtered through 0.22µm filter. The cell pellet 

was resuspended in 10ml of PBS and 1ml transferred to an eppendorf tube for [3H]-Uracil 

counts. Cells from 1ml were fixed with 10% PFA overnight at 37°C and scintillation counts 

measured with TriCarb. Mycobactin extraction was initiated from the remnant 9ml suspension 

by centrifugation at 4000rpm for 10 minutes, resuspension in 10ml 100% ethanol and incuba-

tion overnight at room temperature. The supernatant was filtered through 0.22µm filter, satu-

rated with 2.2mM FeCl3 (Stock solution-20mg/ml in ethanol) and washed with 1 volume 

H2O. Mycobactins were then extracted in to 10ml of CHCl3 twice. Carboxymycobatins from 

FeCl3 saturated (incubation with 0.6mM FeCl3 overnight at room temperature) cell culture 

supernatant were extracted in to 1.5 volume chloroform. The organic extracts were dried, dis-

solved in 100-200µl of chloroform and equal volumes loaded on silica-gel coated TLC plate. 

TLC was run with petroleum ether/n-butanol/ethyl acetate (2:3:3) and exposed to phos-

phorimager screen. Band intensities were measured with AIDA Image analyzer and normal-

ised to [3H] counts. 
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6.2 Materials 

6.2.1 Mtb strains 

Strain Source 

H37Rv- lab strain American Type Culture Collection, USA 

Mt103- clinical isolate Prof. Brigitte Gicquel, Institute Pasteur, Pa-

ris, France. 

MYC1554- Ag85C mutant on Mt103 back-

ground 

Prof. Brigitte Gicquel, Institute Pasteur, Pa-

ris, France. 

 

6.2.2 Mice 

Mice were maintained under special pathogen free conditions with a 12 hour light cycle. 

C57BL/6 female mice, age 8-12 weeks obtained from Charles River Laboratories (Germany). 

Infected mice were kept in a biosafety level 3 facility under special pathogen free conditions 

in filter bonnet cages with food and water ad libidum. 

6.2.3 Buffers and media 

Buffer/Media Composition 

7H9 medium with Tween 4.7g 7H9 powder  

100ml of ADC  

5ml 20% Tween-80 

4ml 50% Glycerol 

add to 1000ml with H2O 
 

10% Paraformaldehyde (10% PFA) 

solution 

 

100g PFA 

add to 1000ml with 1x PBS 

stir O/N at 50°C, keep dark 
 

20% Tween-80 

 

20ml Tween 80                       

in 100ml 1X PBS 

stir at RT 
 

Mouse bone-marrow derived macrophage 

differentiation medium 

DMEM medium plus: 

0.2mM L-Glutamine 

10% L929 conditioned 
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medium 

10% heat inactivated (1h 

65°C) FCS 

5% heat inactivated horse 

serum 

10mM HEPES buffer 

1mM Sodium Pyruvate 
 

Macrophage infection medium 

 

DMEM medium plus: 

0.2mM L-Glutamine 

10% heat inactivated (1h 

65°C) FCS 

5% heat inactivated horse 

serum 

10mM HEPES buffer 

1mM Sodium Pyruvate 
 

MTT stock solution  5mg MTT powder 

in 1ml 1X PBS 

Cell lysis buffer/PBST (PBS/Triton 

X 100 solution) 

 

1ml Triton X 100 

add to 1000ml 1x PBS 
 

Dilution buffer/PBST (PBS/Tween 

solution) 

 

0.5ml Tween20 

add to 1000ml  1x PBS 
 

6.2.4 Reagents 

Reagents Supplier 

7H9 powder Difco 

Albumin-Dextrose-Catalase (ADC) BD Biosciences 

Dimethyl sulfoxide Fluka 

Hygromycin (50mg/ml) Roche 

Isonicotinic acid hydrazide/Isoniazid Sigma Aldrich 

Alamar blue (10X) Serotec  

Ferric chloride Sigma Aldrich 

Tween-80 Sigma Aldrich 
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Triton-X 100 Sigma Aldrich 

Glycerol Sigma Aldrich 

MTT Sigma Aldrich 

FCS Gibco 

1xPBS Gibco 

Dulbecco’s modified eagle medium (DMEM) Gibco 

L-Glutamine Gibco 

HEPES-1M PAA 

Sodium pyruvate-100mM Biochrom AG 

Deionised H20 Gibco 

TRIZOL Invitrogen 

Quick Amp Labeling Kit Agilent Technologies 

FullSpectrum MultiStart Primer for T7 IVT RNA Amplification BioCat GmBH 

TransPlex Whole Transcriptome Amplification Kit Sigma-Aldrich 

BioPrime Plus Array CGH Indirect Genomic Labeling System Invitrogen 

Sybergreen 2X Applied Biosystems 

Random hexamer primer mix (0.2 µg/µl) Fermentas 

DNase I Amplification Grade (1 U/µl) Invitrogen 

SuperScript III Reverse Transcriptase (200 U/µl) Invitrogen  

RNase OUT-Recombinant Ribonuclease inhibitor (40 U/µl) Invitrogen 

[5,6-3H]-Uracil-1mCi/ml, 31.9Ci/mmol Perkin Elmer 

[1,2-14C]-Sodium acetate-100µCi/ml, 53.9mCi/mmol Perkin Elmer 

[14C(U)]-Glycerol- 100µCi/ml, 142.7mCi/mmol Perkin Elmer 

[7-14C]-Salicylic acid-100µCi/ml, 47mCi/mmol Perkin Elmer 

Methanol Fluka/ Merck 

Chloroform Sigma-Aldrich/Merck 

3-methoxyethanol Merck 

Diethylether Merck 

Dichloromethane Merck 

Ethanol Merck 

6.2.5 Instruments/Softwares 

Instrument/Software Manufacturer 

Novaspec Spectrophotometer Pharmacia Biotech 
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Innova 4200 Incubator Shaker New Brunswick Scientific 

Steri-Cycle CO2 Incubator Thermo Forma 

Digital Camera-SP 350 Olympus 

Galaxy 6D centrifuge VWR 

Filtermate harvester Perkin Elmer 

TopCount NXT Microplate scintillation and luminescence 

counter 

Packard Biosciences 

Tri-Carb 2800TR Liquid scintillation anlyzer Perkin Elmer 

Typhoon 9400Imaging system GE Healthcare Lifesciences 

ImageQuant image analysis software GE Healthcare Lifesciences 

FLA 3000 Fluorescent image analyzer Fujifilm 

BAS Reader v. 3.14 Raytest 

Aida Image Analyzer v4.03 Raytest 

NanoDrop 1000 spectrophotometer  Kisker 

Bioanalyzer 2100 Agilent Technologies 

DNA microarray laser scanner Agilent Technologies 

Image Analysis / Feature Extraction software G2567AA 

v.A.9.5.1 

Agilent Technologies 

Rosetta Resolver Biosoftware, Build 7.1 Rosetta Biosoftware 

7900HT Fast Real-Time PCR system Applied Biosystems 

Sequence detection system (SDS) v.2.2.2 Applied Biosystems 

 

6.2.6 RT-PCR Primers 

Gene Primer pairs 

MbtG Fwd-5’-ggatgtcggttttccctacc-3’ 

Rev-5’-ggtggcgatcagatacgact-3’ 

MbtD Fwd-5’-gatctcggtgtcgattccat -3’ 

Rev-5’-agtttcgcgacaagtccatc -3’ 

MbtJ Fwd-5’-acatcctggctgtcgtcatt -3’ 

Rev-5’-atacgtgcgctaaccaatcc -3’ 

MmpL6 Fwd-5’-gcagcatcttctcggtatcc -3’ 

Rev-5’-tccttgaatcgggaaatcag -3’ 

MmpL5 Fwd-5’-cgacattcagtccaacatcg -3’ 



MATERIALS AND METHODS 85 

Rev-5’-aactcctcgacatcgaccac -3’ 

Fas Fwd-5’-atcgatgttccgttccactc -3’ 

Rev-5’-gcaccaggttgggaatgtag -3’ 

FabD Fwd-5’-ttccacaccgagttcatgg -3’ 

Rev-5’-ggagaccagggtgtccatc -3’ 

Mas Fwd-5’-catcaggtgcataacgttgc -3’ 

Rev-5’-tctgctcaaaggtgatgtcg -3’ 

Pks11 Fwd-5’-acatcatgggttgggatgtc -3’ 

Rev-5’-catcaagaaacgtggtgacg -3’ 

SigA Fwd-5’-cctccggtgatttcgtctgg -3’ 

Rev-5’-cagcgctaccttgccgatct -3’ 
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Anhang 

Chemical structures of compounds 

The chemical structures of the Ag85C inhibitors, Ag85C-1-4 is shown below. 

 
Figure 25: Structure of Ag85C antagonists.  

a) Ag85C-1 b) Ag85C-2 c) Ag85C-3 d) Ag85C-4. 

Abbreviations 

Abbreviation Expansion 

TB Tuberculosis 

Mtb Mycobacterium tuberculosis 

Ag85 Antigen 85 

Ag85C-1 Antigen85C inhibitor-1 

Ag85C-2 Antigen85C inhibitor-2 

Ag85C-3 Antigen85C inhibitor-3 

Ag85C-4 Antigen85C inhibitor-4 

NMR Nuclear magnetic resonance 

SAR Structure activity relation 

BCG Bacille Calmette-Guérin 
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HIV Human immunodeficiency virus 

SM Streptomycin 

PAS P-amino salicylic acid 

INH Isoniazid 

PZA Pyrazinamide 

RIF Rifampin 

EMB Ethambutol 

MDR Multidrug resistant 

XDR Extensively drug resistant 

WHO World Health Organisation 

AIDS Acquired immune deficiency syndrome 

IL-12 Interleukin-12 

TNF-α Tumour necrosis factor-α 

CCL5 Chemokines like (C-C) Ligand 5 

MIP-1α Macrophage inflammatory protein-1α 

FAS Fatty acid synthase 

Pks Polyketide synthase 

TMM Trehalose monomycolate 

TDM Trehalose dimycolate 

mAGP Mycolic acid linked to arabinogalactan peptidoglycan complex 

PG Peptidoglycan 

AG Arabinogalactan 

LM Lipomannan 

PIM Phosphatidyl-myo-inositol mannosides 

ManLAM Mannosylated lipoarabinomannan 

PGL Phenolic glycolipid 

PDIM Pthiocerol dimycocerosate 

SL Sulfolipid 

PAMP Pathogen associated molecular pattern 

DC-SIGN Dendritic cell-specific intercellular adhesion molecule 3 grabbing 

nonintegrin 

TLR-2 Toll-like receptor-2 

ETH Ethionamide 
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MIC Minimum inhibitory concentration 

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

MOI Multiplicity of infection 

CFU Colony forming unit 

TLC Thin layer chromatography 

MAME Mycolic acid methyl esters 

FAME Fatty acid methyl esters 

MBT/Mbt Mycobactin 

MmpL Mycobacterial membrane protein large 

RND Resistance, nodulation and division 

MprA Mycobacterial persistence regulator A 

Cyp132  Cytochrome P450 132 

AlkB Alkane 1-monoxygenase 

Cyp125 Cytochrome P450 125 

LldD1 Possible L-lactate dehydrogenase 1 

PPE Proline-proline-glutamic acid 

IniB Isoniazid inducible protein B 

AcpM Acyl carrier protein M 

Mas Multi-functional mycocerosic acid synthase 

MB mycobactin 

CMB Carboxy mycobactin 

FabD Malonyl CoA:AcpM acyltransferase 

SigA Sigma factor A 

ADT 6-azido-6-deoxy--trehalose 

PS-ODN Phosphorothioate-modified oligodeoxyribonucleotide 

SOCS-1 Suppressor of cytokine signalling-1 

MspA M. smegmatis porin A 

IdeR Iron dependent repressor 

GltA1 Probable citrate synthase 1 

RubB Rubredoxin B 

RNA Ribonucleic acid 

DNA Deoxyribonucleic acid 

RT-PCR Real time polymerase chain reaction 
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PBS Phosphate buffer saline 

PFA Paraformaldehyde 

OD Optical density 
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