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Abstract

Background: The clinical relevance of chromogranin
A (CgA) concentrations depends on the analytical
performance of the assay. The goal of the present
study was to define the clinical involvements in CgA
calibration models by evaluating the confidence inter-
vals (Cls) for values from patients who were under-
going monitoring for disease.

Methods: Thirty calibration curves for the CgA assay
[immunoradiometric assay (IRMA), (CIS-BIO)] were
built using linear regression (LR), and four-parameter
logistic models were used to estimate Cls for patient
concentrations.

Results: We reported the inadequacy of the LR curve
estimation procedure. We showed: 1) no evidence
that the straight calibration line could fit the average
responses, 2) non-constant and non-uniform variance
of the replicated calibration responses. All tests per-
formed in the analysis of variance and Cl calculation
for the calibration curve should be invalidated. The
four-parameter logistic function yielded results for 16
curves only; this result could be due to the low num-
ber and inappropriate concentration of calibrators.
This suggests that some aspects of the assay design
should be reviewed. However, using the variance
function estimated in this model, we could assess the
Cl for calibration curves and patient samples.
Conclusions: We showed that the four-parameter
logistic calibration model with estimated variance
function should better support clinical interpretation
of marker concentration changes in patients serially
tested.
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Introduction

Increased concentrations of circulating chromogranin
A (CgA) are characteristic of neuroendocrine tumors
(NETs), although the diagnostic and prognostic use-
fulness of this marker is widely debated (1, 2). Some
studies reported low sensitivity and specificity of CgA
concentrations for the diagnosis of NET. Concentra-
tions may be dependent on tumor features, such as:
type, secretory activity, neuroendocrine differentia-
tion degree and total burden (1, 2). However, several
lines of evidence show that the diagnostic accuracy is
affected primarily by the type of assay used to meas-
ure CgA (1, 3-5). As a matter of fact, it has been
reported that in healthy subjects, there is a discor-
dance rate of ~20% between CgA concentrations
measured using the two commercially available
methods: immunoradiometric assay (IRMA) and
enzyme-linked immunosorbent assay (ELISA) (1). The
discordance has been ascribed to the different anti-
bodies that are used to measure CgA-derived pep-
tides (1). In addition, the Italian program for CgA
external quality control described the pattern of
differences between marker concentrations measured
by these assays. There was a five-fold increase in the
coefficient of variation (CV) between the IRMA and
ELISA methods (6). Besides poor standardization of
the assays that are clinically available, it is difficult to
define the normal reference values for diagnosis of
NET due to the high variability in CgA concentrations
measured in healthy population (1). The main utility
of CgA measurements appears to lie in the monitor-
ing of therapeutic strategies for NET (1, 7, 8).

Considering CgA as a marker of sympathetic acti-
vation, recent studies reported its prognostic value in
both chronic heart failure and in the setting of acute
coronary syndromes (9, 10). These findings revealed
new potential clinical applications with respect to
cardiovascular disease.

As previously suggested, there is a need to evaluate
and potentially improve assay performance due to the
dependence of the diagnostic value of CgA with
respect to the analytical method employed. The poor
results reported from external quality control for the
IRMA CgA assay could be partially linked to inappro-
priate quantitative setup of the assay calibration,
which represents a common problem in many clinical
assays.

The CgA IRMA method recommends that the stan-
dard curve be produced by linear interpolation of the
standard tubes vs. the fixed standard concentrations
and fitting a straight line regression model. The esti-
mation of parameter models usually involves the
ordinary least squares (OLS) method which implies
assumptions about the variability of the responses
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from the calibration tubes (11-14). The distribution of
the response variable should be defined in order to
assess the precision of the measured dose (15). To
utilize OLS, response errors are assumed to be inde-
pendent, with a constant variance and following a
normal distribution to allow standard statistical infer-
ence procedures (14). These assumptions could be
applied to an ideal assay system in which: 1) the
response from one calibration tube is not affected by
other tubes; 2) no systematic effects are present, such
as carrier position; 3) no misleading responses are
produced by some tubes; 4) the variability of
response for fixed standard levels is independent of
concentration (13). Any departure from such assump-
tions could lead to incorrect results (12).

It is widely known that the relationship between
concentration and the response [measured as counts
per minute (cpm)] is usually not linear, and different
models, such as the “four-parameter logistic’” model
have been shown to be more suitable than simple
linear regression (LR) in the assessment of the cali-
bration curve (12-19). This model was proposed by
Rodbard for two site IRMA and radioreceptor assays
(20).

Evaluation of the relationship between variability in
the response and the level of response [response-
error relationship (RER)], provides a framework for
assessing calibration/prediction intervals, and meas-
ures of assay performances (21). The original IRMA
non-linear calibration approach was integrated to
allow for modeling of variability in the assay
response, according to a power of mean (POM) func-
tion law (12, 14, 22, 23). A critical step in this proce-
dure is the choice of variance function used for
calculation of the confidence interval (Cl) of the cali-
bration curve and for patient samples (23).

Since CgA is used for monitoring therapy and pro-
gression disease, there is a need to investigate the
clinical relevance of changing marker concentrations.
This evaluation could be performed only after the
assessment of measurement imprecision of patient
samples.

The goal of the present study was to assess the
potential clinical impact of CgA calibration fitting
models by evaluating interval estimates for samples
from patients submitted to predict development of
disease.

Materials and methods

The CgA IRMA assay [(CGA-RIACT, CIS-BIO; Cis-Bio, France)]
is a non-competitive two-site immunometric assay, where
capture and tracer antibodies are in excess (11). We selected
30 calibration curves from assays performed consecutively
over 15 months. These curves were produced using four dif-
ferent batches of five standards, each containing different
concentrations of lyophilized recombinant human CgA sup-
plied by the manufacturer. According to the laboratory prac-
tice, the standard tubes were measured in duplicate for each
standard concentrations and radioactivity was detected with
use of a gamma scintillation counter calibrated for measure-
ment of iodine 125. We excluded the first standard, 0 con-
centration, from computation of the calibration curve models
since its measurement should be made for quality control

reasons in order to assess reagent or equipment contami-
nation or high background. The 0 concentration standard
should not be used for data processing unless high back-
ground counts are present. Patient serum was obtained from
venous blood via venipuncture. After centrifugation (15 min,
1500x g at 4°C), serum were stored at —40°C until analysis,
within 2 weeks.

Study design

Our study design consisted of the following steps:

1. Use of LR curve model to build a calibration curve
according to standard practice. We checked the adequacy
of linear interpolation of standard tube activity vs. fixed
standard concentrations, and verified that the responses
were consistent with the assumptions for a OLS
estimation.

2. Adoption of four-parameter logistic model as an alter-
native approach in interpolation of dose-response curve.
This is described in literature for radioimmunometric
assays (RIAs), but it is seldom employed in laboratory
practice.

3. Comparison of the results from two models and estima-
tion of Cls for unknown samples.

4. Sampling, from routine laboratory measurements of
CgA from patients submitted to monitor the development
of disease in order to evaluate the clinical impact of the
Cl for unknowns. Intra- and inter-run evaluation was
performed.

Statistical models and analysis

First, we described dose-response curves and performed
dose interpolation using a LR model through OLS, and then
by parameterization of the four-parameter logistic model
(23, 24). Model (1) accounts for B, that is the asymptote, as
the concentration x tends to 0 with 3,>0, and B, is the
asymptote for x tending to «, B; is the predicted concentra-
tion at the response halfway between the two asymptotes
and B, is related to the slope (23). In addition, we could mod-
el the variability in the response if the results were not con-
stant. In this model, we included the estimation of variance
function as POM according to the parameter 6. Previous data
indicate that for immunoassays, 0 generally falls in the range
of 0.6-0.9 (23). This last step allows for the evaluation of the
Cl for calibration curves, and for means of unknown sam-
ples. For unknown samples, we chose to report Wald type
Cls. Furthermore, in order to define test performances, we
constructed an imprecision profile by plotting the estimated
CV of the calibrated concentrations vs. concentrations (23).
The CV was estimated by inverting the four-parameter logis-
tic function and expressing the variability of concentration
(x) as a bi-variate Taylor series expansion in y and 8 (23). In
addition, we calculated the working range of the assay from
the imprecision profile.

From the computation of the four-parameter logistic mode
we reported:

a. minimal detection concentration (MDC) defined as the
lowest concentration where the curve is increasing
(decreasing) resulting in an expected response that is
significantly greater (less) than the expected response at
0 concentration (20, 23);

b. reliable detection limit (RDL) defined as an increasing
(decreasing) curve where the lowest concentration has a
high probability of producing a response that is signifi-
cantly greater (less) than the response at 0 concentration
(23);
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c. limit of quantitation (LOQ) defined as the lowest concen-
tration where the CV of the dose is less than a threshold
value, which was fixed at 20% (23).

We used a statistical tool for calibration of the plate based
bioassay, “The Calib Package” was designed by Haaland
et al. for the software R-library (25).

Bi—B2
1+ (exp{BJlog(x) — Bs]}

Y=Ff(x, B)+p’oe= +B,+uloe

n="f(x, B)=E(Y)

Var(Y) =o?f(x, B)* [1

Results

LR model

Considering all the curves from different assay batch-
es, graphical examination of the calibration points
showed most to exhibit overlapping patterns. Since
duplicate measurements of each standard tube has
very close values, we had no evidence that a straight
calibration line could fit the average responses
(Figure 1A, C, E). We assumed that the variability of
the calibration responses did not represent true
random error only, as the pattern of the fitted regres-
sion straight line was systematically reproduced in

almost all calibrations from all batches. Moreover, we
had evidence that the variance of the replicated cali-
bration responses is not uniform but increases with
the standard concentrations of the calibration points.
The patterns of residuals showed a peculiar plot for
every batch; from this we assessed heteroscedasticity
(non-constant variance) and inadequacy of the
conventional model estimation procedure. Also,
systematic deviation ascertained by residual analysis
showed the need for more complex models. We
confirmed the non-normal distribution of errors (14).
As a consequence, tests, such as the t and F tests,
performed in the analysis of variance and Cl calcula-
tion for the calibration curve, should be invalidated.

The four-parameters logistic model

This model yielded results for only 16 curves from 30
calibration curves (Table 1, Figure 1B, D, F). From
these results, we could argue that in order to compute
the dose-response curves, we should review some
statistical aspects of the assay design which would
not be evident and result in an empirical linear
approach without variance estimation (19). Particular-
ly, we should increase the number of standards and
the midpoint concentration should be greater than
the concentration related to the B; parameter (19). In
addition, replicates should reflect true experimental
error. The estimates of the parameters B,, B, (inter-
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Figure 1 Various regression calibration curves.

(A) Linear regression calibration curve 1, Batch 1; (B) four-parameter regression model calibration curve 1; (C) linear regression
calibration curve 18, Batch 3; (D) four-parameter regression model 18 calibration curve; (E) linear regression calibration curve
22, Batch 4; (F) four-parameter regression model calibration curve 22. MDC, minimal detection concentration; cpm, counts
per minute; RDL, reliable detection limit; LOQ, limit of quantitation; POM, power of mean.
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Table 1 Four-parameter regression model on 16 curves from 3 batches: evaluation of model parameters and related CI.

Curve  Batch®  B1(Cl) B2 (CI)x 10° B3 (C) B4 (CI) 0

c1 1 ~389.1 (~1530.5, 752.4) 287.6 (~162.9, 738.1) 8.6(6.4,108)  1.0(08,12) 061
c2 1 ~114.4 (-1117.6, 888.8) 307.4 (-542.2, 1156.9) 88(5.3,12.3)  1.0(08,13)  0.72
c3 1 23.3 (-335.2, 381.7) 145.5 (12.5, 278.6) 8.0 (6.8, 9.1) 11(1.0,13) 110
C4 1 -227.8 (-681.3, 225.8) 644.6 (~278.0, 1567.1) 95(7.7,11.2)  1.0(09,1.1)  0.56
c5 1 727.8 (~295.3, 1751.0) 188.6 (86.3, 290.9) 7.6 (6.8, 8.3) 12(1.0,1.4) 065
ce 1 644.3 (68.3, 1220.3) 118.2 (44.8, 191.5) 7.6 (6.7, 8.5) 12(1.0,1.4) 083
c18 3 799.1 (-391.1, 1989.3) 479.2 (-1077.4,2035.8) 85 (48,12.2)  1.1(0.8 1.4 126
c19 3 648.4 (292.0, 1004.8) 130.0 (86.7, 173.3) 7.6 (7.2,8.1) 12(1.1,13) 055
€20 4 521.4 (~119.1, 1161.9) 230.9 (~7.6, 469.5) 8.2 (6.8, 9.5) 11(09,13) 093
C22 4 383.9 (-361.6, 1129.4) 166.6 (20.2, 312.9) 7.9 (6.7, 9.1) 1.1(09,1.3)  0.86
c23 4 895.9 (142.9, 1648.9) 70.4 (46.5, 94.4) 6.9 (6.4, 7.5) 13(1.0,15)  0.66
Cc24 4 -540.7 (-2132.5, 1051.1)  559.6 (-2211.9,3331.1) 9.6 (3.1, 16.00 0.9 (0.6, 1.2)  0.48
c27 4 500.3 (56.1, 944.4) 328.4 (142.3, 514.6) 8.4 (7.6, 9.1) 11(1.0,12) 073
c28 4 1076.8 (261.1, 1892.4) 137.4 (70.1, 204.6) 7.3 (6.6, 8.0) 12(1.0,15) 074
C29 3 1444.3 (51.9, 2836.7) 333.1 (-121.5, 787.7) 7.9 (6.1, 9.6) 12(09,1.4) 123
C30 3 1425.3 (593.9, 2256.7) 125.3 (50.1, 200.5) 7.1(6.3,7.9) 1.4 (1.1,1.7) 105

2Calibrator levels for batch: 47,120,280,590,1200 (Batch 1); 45,115,292,560,1200 (Batch 3); 45,115,275,560,1200 (Batch 4). ClI,

confidence interval.

cept) and B3, describing the shape of the estimated
curve are reported in Table 1. Comparing these esti-
mates, for all the available intra- and inter-batches
curves, we showed stability, particularly for the esti-
mated B; and B, parameters, independently from a
supposed radio-ligand decay. The parameter 3,
(slope), should be related to the rate of change of
counts with increasing dose (13). In our curves, esti-
mates of B, seemed to not be greatly affected by
radioligand quenching.

Setting the intra-batch curves ranking by radio-
ligand quenching, the 6 parameter seemed to be
affected by radioligand decay: lower radioligand
activity seemed to be associated with a higher 6 val-
ue. The Cls for the calibration curves and MDC, RDL
and LOQ are reported in Figure 1B, D, F.

From the imprecision profiles, defined only for 12
curves (with B, parameter estimate with a positive
value), we could define the intra-run working range of
the assay. However, the upper and the lower limits of
the calculated range should not be considered
because they exceed the upper and the lower concen-
trations of the calibrators.

Laboratory data

To assess the clinical value of interval estimation for
unknowns, we compared the Cl from overlapping
sample concentrations, obtained experimentally,
across the calibration curves fitted with the four-
parameter logistic model (Table 2).

We selected samples at the lowest and highest con-
centrations, as well as around the normal limit value
reported for 95% of healthy population using this
method. We observed wider variability for the Cl from
comparable levels, across all curves, independently
from the batch. For instance, we showed different Cls
for overlapping levels, from the 27th and 28th calibra-
tion curves, despite these curves belonged to the
same batch and overlapping 6. Taking these results
together, we could argue that:

1. the Cl for unknown levels is strictly associated with
the run, not only to 6 but also for all B parameters;

2. owing to the wide inter-run variability of Cls for
overlapping patient measures, the CV reported by
the assay manufacturer at defined concentrations
cannot provide a suitable estimation of the varia-
bility of CgA concentrations on calibrated samples
from patients. This implies different approaches to
assay method development, validation and quality
control.

Assessment of changing in marker levels

Previous evaluations on laboratory results should
have a great impact on the monitoring of marker con-
centrations from a single patient during different
times and across different runs. Taking into account
the variability of the CI for overlapping marker con-
centrations from unknown samples across all runs,
only by its evaluation, we could assess significant
changes in marker concentrations. To further illus-
trate the need for Cl for unknowns in order to assess
intra-patient changes in marker concentrations, we
followed CgA, evaluated in five patients with a diag-
nosis of myocardial infarction and 15 patients with
cancer during follow-up.

Serum CgA from patients with myocardial infarc-
tion were measured in the same run (intra-run eval-
uation) using samples obtained at admission and in
the following 6, 24 and 48 h. We showed that only
by the interval estimate, could we assess for each
patient the relevant changes in serum concentrations
of CgA across the 4 time frames (Table 3).

From our experience, the problem of assessing sig-
nificant increases/decreases in marker concentrations
should be more complex when monitoring patient
CgA values across different runs (inter-run evalua-
tion). Consequently, we selected 100 CgA measure-
ments from 15 patients being monitored serially for
cancer. By assuming that these concentrations could
come from the 16 different calibration curves com-
puted using the four-parameter logistic model report-
ed above, we assessed the Cl at each level across all
calibration curves and compared their inter-run vari-
ability. In Table 4, we reported the variability of Cl for
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Table 2 Laboratory CgA concentrations (median, range) estimated by linear regression model and then computed by four-

parameter logistic model (4PL) with related CI (A).

Level Laboratory levels by Estimates by 4PL, n? A CI for estimates by 4PL
LR, polk nolk Level  C2 c3 c4 cs5 c6
1 52.2 (50.2, 56.2) 52.6 (50.1, 56.5) 15 1 23.9 8.8 9.3 22.6 18.3
2 107.7 (100.7, 121.4) 107.3 (100.3, 122.9) 15 2 41.4 18.9 14.0 33.8 29.3
3 319.9 (289.2, 363.9) 319.1 (296.7, 358.9) 12 3 87.8 56.2 26.1 NA 66.0
4 506.8 (420.6, 580.7) 512.4 (418.6, 594.7) 9 4 NAP 108.3 39.1 NA 101.4
5 753.8 (615.6, 991.2) 747.1 (611.0, 968.4) 5 5 NA 172.4 NA NA 208.4
C18 C19 C20 C29 C30
1 15.4 17.1 13.7 15.1 25.6
2 37.4 23.1 24.3 30.2 41.9
3 NA NA 68.8 100.4 123.0
4 NA NA 123.3 199.3 NA
5 NA 59.1 NA 324.9 NA
C22 C23 C24 C27 C28
1 16.7 29.0 31.7 8.6 24.4
2 27.9 38.2 50.3 13.9 33.9
3 69.0 88.6 92.3 28.6 71.2
4 111.1 243.9 121.7 36.3 117.5
5 NA NA NA NA NA

aNumber of concentrations evaluated across the 9 curves; Pno available concentration for this curve; LR, linear regression; Cl,

confidence interval.

Table 3 Intra-run CgA concentrations (ig/L) obtained serially from patients with myocardial infarction.
Patient Time, Laboratory Estimates Cl on estimates by 4PL
h levels by 4PL Lower Upper
1 0 78.5 80.1 68.8 91.5
6 119.8 121.5 104.9 138.1
24 162.9 163.4 142.4 184.5
48 106.7 108.5 93.5 123.6
2 0 136.9 138.3 119.8 156.7
6 329.1 325.4 286.5 364.3
24 218.3 215.9 189.6 242.2
48 312.5 308.2 271.5 345.0
3 0 46.1 45.5 37.4 53.6
6 60.0 60.7 51.8 69.6
48 92.5 94.5 81.2 107.7
4 0 301.5 296.8 261.5 332.1
6 308.6 304.2 268.0 340.4
24 181.2 180.6 157.9 203.4
48 363.9 361.4 317.9 404.9
5 0 145.4 146.5 127.2 165.8
6 298.0 293.3 258.3 328.2
24 181.2 180.9 158.1 203.6°
48 209.1 207.3 181.9 232.7%

20verlapping Cl (confidence interval); CgA, chromogranin A; 4PL, four-parameter logistic model.

two concentrations obtained from patients with can-
cer. We confirmed further that the strong variability
in Cl would affect the intra-patient changes in marker
concentrations from the same sample across the dif-
ferent. Such results are dependent on assay design
and sampling variability across runs.

Discussion
The serial measurement of circulating CgA concentra-

tions was reported to have value for both prognosis
and monitoring response to treatment for several

diseases, from cancer to cardiovascular settings, due
to its pleiotropic effects as a pro-hormone (9, 10, 26).
However, the clinical value of CgA is dependent on
the features of the commercially available assays
which showed poor measurement agreement due to
poor standardization (1, 6). Concerning assay per-
formance, calibration curve fitting is a critical issue
that should be carefully evaluated to assess the reli-
ability of CJA measurements. Marker concentrations
are affected by measurement error, whose magnitude
could exert a significant clinical impact, particularly
markers such as CgA that need to be measured seri-
ally for monitoring. Thus, we reported the clinical
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Table 4 Evaluation of changing CgA concentrations for two sequential measurements used for monitoring patients with

cancer.
Patient Number of total CgA first CgA Lower—upper Lower—upper
measurements level, pg/L second Cl of the Cl of the
for patient level, wg/L first level, second level,
across all runs across all runs

1 8 668.0 748.0 44.6-323.1 47.9-374.2

2 5 339.0 277.0 27.2-133.3 24.1-101.9

3 6 602.5 645.0 41.5-283.3 43.6-309.0

4 8 43.6 97.6 7.4-30.8 12.8-46.5

5 6 70.6 91.7 10.1-37.6 12.3-44.7

6 4 140.0 115.8 16.5-58.0 14.5-51.9

7 5 199.0 152.0 20.3-69.3 17.3-60.6

8 9 234.0 246.0 22.0-82.0 22.6-87.4

9 6 335.8 370.0 27.0-131.6 28.8-149.8
10 7 118.0 139.0 14.7-52.5 16.4-57.7
1 5 168.0 104.0 18.5-63.8 13.4-48.5
12 5 291.0 342.0 24.8-108.7 27.3-134.8
13 7 334.4 366.0 26.9-130.8 28.6-147.7
14 8 188.0 144.4 19.7-67.4 16.8-59.0
15 11 89.0 118.8 12.0-43.8 14.8-52.7

Cl, confidence interval; CgA, chromogranin A.

impact of interval estimation of CgA concentrations in
patients being monitored with serial measurements
of the marker. Our data showed that the reliability of
estimations for unknown samples, and consequently
the clinical value of the laboratory results, was affect-
ed by the statistical model used for the calibration
curve.

First, we confirmed data from the literature con-
cerning the inadequacy of the straight line regression
model, commonly used in laboratory practice to fit
calibration curves (11-23, 27). Moreover, in its stan-
dard use, this approach did not yield any information
about the variance of the dose-response curve. Even
in situations of a good straight line fit, adoption of
OLS would be suboptimal if the assumption of homo-
geneity of error variances is not tenable (24). Such a
situation, coupled with possible non-normal distribu-
tion of errors, prevents the correct application of stan-
dard inference procedures for statistical testing and
interval estimation (24). Accounting for the non-linear
dose-response relationship, suitable statistical meth-
ods were required to estimate the variance function
parameter 6 (27). Furthermore, the use of an assay
design with a geometric progression in calibrator con-
centrations is unsuitable for building a straight line
calibration model (28). Consequently, in the assay
current application there are no minimal require-
ments to check performance characteristics, such as
accuracy, precision, analytical sensitivity or interval
estimation of unknown sample values. Under these
conditions, a warning should given in the instructions
of the assay methodology because of the possible
clinical consequences.

In the second step of our investigation we used a
four-parameter logistic model to interpolate immu-
nometric calibration curves, since this model is
reported to be the most flexible and reliable model in
IRMA, RIA and ELISA calibration framework. How-
ever, the attempt failed to provide results from all
curves, confirming our suspicion on the suitability of

the IRMA assay design (12-14). The assay design
involves a reduced number of standards with a
narrow range of concentrations. This results in too
few calibrator points for reliable estimation when
using the four-parameter logistic model. This could
greatly affect calibration performance, preventing
optimal estimation of the model parameters and
imprecision of unknowns (19), even when using cor-
rect model assumptions. We did not consider addi-
tional interpolating functions as, for example,
polynomials or splines for two major reasons: their
lack of biological mechanistic interpretation, unlike
the logistic model, and the unavailability of standard
software for non-constant variance estimation.
Finally, we provided the assessment of Cls for CgA
concentrations from patient samples submitted for
serial measurement of the marker. These provided
relevant information for the interpretation of chang-
ing concentrations during monitoring of disease.
From our experience, monitoring the effects of drug
therapy on cancer patients, relying on the estimation
of serially obtained values, is difficult without ClI esti-
mation. We could not provide the magnitude of vari-
ability around laboratory data. Previous data reported
0 as the critical parameter to define the Cls of the cal-
ibration curve, and consequently of unknown sample
concentrations (23). We showed that overlapping 6
parameters produced very different Cls on overlap-
ping sample levels across the runs. This suggests that
this variability is linked directly to all parameters of
the calibration curve. Accounting for the wide varia-
bility of Cl for the overlapping values across different
runs, we could not provide the magnitude of error
around the CgA measurement by relying on the CV
reported by the manufacturer. As a consequence, we
showed that for clinical interpretation of variations in
marker concentrations in patient samples submitted
for serial measurement of CgA, we should provide
interval estimation for the samples, owing to the
dependence of imprecision from the runs.
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In conclusion, the usefulness of this marker could
be increased by using a suitable calibration statistical
model and improving assay design. Further work is
needed for alternative assay development and vali-
dation for utilizing reliable interval estimation.
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