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Abstract

Over the last decade, scientific workflows have been gaining an increasing
amount of attention as a valuable tool for scientists to create reproducible
in-silico experiments. For design and execution of such workflows, scientific
workflow management systems have been developed, such as Taverna, Kepler,
Galaxy, and several others. These enable the user to (often visually) create
pipelines of tasks to be carried out on the data, including local scripts and
applications and web-service calls. Yet, creating scientific workflows is still a
laborious task and complex enough to prevent many non computer-savvy re-
searchers from using these tools. As a consequence, there has recently been
growing interest in sharing, reusing and repurposing existing workflows. This is
reflected by the emergence of online repositories for scientific workflows, which
allow workflows to be uploaded, searched, and downloaded by the scientific
community. With increasing size of such repositories, methods to compare the
scientific workflows stored in them regarding their functional similarity become
a necessity. For instance, to allow duplicate detection, similarity search, or
grouping of workflows into functional clusters, similarity measures for scientific
workflows are an essential prerequisite.

This thesis investigates similarity measures for scientific workflows. We carry
out four consecutive research tasks: First, we closely investigate the relevant
properties of scientific workflows and their components regarding their simi-
larity and identify characteristics of their re-use. Second, we review and dis-
sect existing approaches to scientific workflow comparison into a defined set of
subtasks necessary in the process of workflow comparison, and re-implement
previous approaches to each subtask. We create a large gold-standard corpus
of expert-ratings on workflow similarity, with more than 2400 ratings provided
for 485 pairs of workflows by 15 workflow experts from 6 institutions. For
the first time, this allows comprehensive, comparative evaluation of different
scientific workflow similarity measures, confirming some previous findings, but
rejecting others. Third, we propose and evaluate a novel method for scientific
workflow comparison. We show that this novel method provides results of both
higher quality and higher consistency than previous approaches, and can easily
be stacked and ensembled with other approaches for still better performance
and higher speed. Fourth, we show how our findings from the previous steps
can be leveraged to implement a search engine using off-the-shelf tools. This
search engine performs fast, high quality similarity search for scientific work-
flows at repository-scale, addressing a premier area of application for similarity
measures for scientific workflows.
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Zusammenfassung

In Laufe der letzten zehn Jahre haben Scientific Workflows als nützliches
Werkzeug für Wissenschaftler zur Erstellung von reproduzierbaren in-silico Ex-
perimenten in zunehmendem Maße an Aufmerksamkeit gewonnen. Für die Er-
stellung, Ausführung und Verwaltung solcher Workflows wurden spezielle Sys-
teme entwickelt wie etwa Taverna, Kepler, Galaxy und einige andere. Diese
ermöglichen es dem Nutzer, (oft visuell) Piplines von datenverarbeitenden Ak-
tivitäten zu erstellen, die sowohl lokale Skripte und Anwendungen, als auch
Aufrufe von Web-Services beinhalten können. Trotzdem ist das Erstellen eines
Scientific Workflows aufwendig und hinreichend komplex, um computeruner-
fahrene Nutzer am Gebrauch dieser Systeme zu hindern. In jüngerer Zeit
wächst daher das Interesse daran, bereits existierende Workflows weiterzugeben,
wiederzuverwenden und zu modifizieren. Dies drückt sich im Entstehen von
Online-Bibliotheken, sogenannten Repositories, aus, die speziell dafür entwick-
elt wurden, Workflows zu veröffentlichen, zu suchen, und herunterzuladen. Mit
zunehmender Größe dieser Repositories werden Methoden zur Notwendigkeit,
die einen Verleich von Scientific Workflows hinsichtlich ihrer funtionalen Ähn-
lichkeit erlauben. Um etwa die Erkennung von Duplikaten, Ähnlichkeitssuche
oder die Gruppierung von Workflows in funktionale Cluster zu ermöglichen, sind
Ähnlichkeitsmaße für Scientific Workflows eine unabdingbare Voraussetzung.

Die vorliegende Arbeit untersucht Ähnlichkeitsmaße für Scientific Workflows.
Wir leisten dabei vier aufeinanderfolgende Forschungsbeiträge: Als erstes unter-
suchen wir eingehend ähnlichkeitsrelevante Eigenschaften von Scientific Work-
flows und ihrer Komponenten und identifizieren Charakteristika für die Wieder-
verwendung dieser Komponenten über mehrere Workflows hinweg. Als zweites
analysieren wir existierende Lösungen für das Vergleichen von Scientific Work-
flows, zerlegen diese in eine definierte Anzahl von Unterschritten, die für das
Vergleichen von Workflows notwendig sind, und reimplementieren existierende
Anzätze für jeden dieser Unterschritte. Wir erstellen einen großen Gold-Stan-
dard Corpus mit von Experten bewerteten Workflowähnlichkeiten, der über
2400 Bewertungen für 485 Workflowpaare enthält, die von 15 Workflowexperten
aus 6 Institutionen beigetragen wurden. Zum ersten Mal erlauben diese Vorar-
beiten eine umfassende, vergleichende Evaluation verschiedener Ähnlichkeits-
maße für Scientific Workflows, in der wir einige vorige Ergebnisse bestätigen,
andere aber revidieren. Als drittes stellen wir ein neue Methode für das Ver-
gleichen von Scientific Workflows vor. Unsere Evaluation zeigt, dass diese neue
Methode sowohl bessere als auch konsistentere Ergebnisse liefert und darüber
hinaus leicht mit anderen Ansätzen kombiniert werden kann, um eine weitere
Qualitätssteigerung bei gleichzeitiger Beschleunigung zu erreichen. Als viertes
zweigen wir, wie die Resultate aus den vorangegangenen Schritten genutzt wer-
den können, um mit Hilfe von Standardkomponenten eine Suchmaschine zu
implementieren. Diese Suchmaschine erlaubt schnelle, qualitativ hochwertige
Ähnlichkeitssuche im Repositorymaßstab und adressiert damit ein vorrangiges
Anwendungsfeld von Ähnlichkeitsmaßen für Scientific Workflows.
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1 Introduction

1.1 Motivation
Over the last decades, the role of computers in natural sciences’ research has steadily
grown, and has shifted from a merely supporting to a fundamentally necessary one.
This is reflected by the notion of in-silico experiments: computer-aided methods
of data processing have become a major part of the experimental setup in many
sciences [48]. Traditionally, these methods have been implemented in the form of
custom scripts and applications, created by computer-savvy scientists to cope with
their specific data processing needs. Such scripts are usually hard to maintain and
reuse, which hinders both reproducibility and sharing of methods. Also, the hur-
dle of learning - and mastering - a programming language to conduct research, is
counterproductive to scientific advances in many fields.

To overcome these obstacles, scientific workflows have been introduced [7]. The
term scientific workflow refers to the intended target audience of such workflows,
the scientists, rather than these workflows being an interesting research object in
their own right, or even a possible requirement of being a scientist to create such
workflows. Scientific workflows strive to replace the legacy of scripting and com-
mand line based approaches to data extraction, processing, and analysis currently
still prevalent in many fields of data-intensive scientific research by enabling the user
to declaratively, and often visually create pipelines of tasks to be carried out on the
data, including both local scripts and applications, and web-service calls. As such,
scientific workflows have gained an increasing amount of attention as a valuable tool
for scientists to create reproducible in-silico experiments [41] and, today, are used in
a variety of domains, including biology, chemistry, geosciences, medicine, or physics
[41]. Recently, interest in scientific workflows has further been fueled by the incent
of new scientific paradigms: Both processing of very large scientific datasets, i.e.,
’Big Data’, and sharing of computational methods to ease scientific collaboration in
the age of e-Science, are forthcoming necessities scientific workflows lend themselves
to [91].

For design and execution of scientific workflows, specialized applications, termed
scientific workflow management systems (SWFM), are available. Examples of these
SWFMs include Taverna [68], Kepler [14], VisTrails [38], or Galaxy [45]. Yet, while
easier than traditional programming, creating scientific workflows using an SWFM
is still a laborious task and complex enough to prevent many non computer-savvy
researchers from using these tools [90]. Especially for the primary target audience
of scientific workflows, the scientists, this hurdle is often still too high. As a con-

1



1 Introduction

sequence, the increasing use of scientific workflows themselves has come with great
interest in sharing, reusing and repurposing such workflows: Once designed, a scien-
tific workflow is a valuable piece of knowledge, encoding a (usually proven) method
for analyzing a given data set (much like an executable Methods part of a paper).
Sharing such workflows between different authors and research groups is a natural
next step towards increasing collaboration in research which may have a large im-
pact on research, in the same manner as the increased sharing of data sets across
the Internet was important for advancing science [10]. This is reflected by the emer-
gence of online repositories for scientific workflows, such as CrowdLabs [64], SHIWA
[3], the repositories offered with Kepler [14] and Galaxy [45], or myExperiment
[74], currently containing more than 2500 workflows from various disciplines. Such
repositories, together with the increasing number of workflows uploaded to them,
raise several new research questions to address the challenges of managing large
collections of scientific workflows and for using them as a source of expert-supplied
knowledge [21, 44].

One such question is how to best enable both manual and automatic discovery
of the workflows in a repository to support the user in finding the appropriate
workflow for a given task or dataset. Here, challenges include the detection of func-
tionally equivalent workflows, grouping of workflows into functional clusters, the
use of existing workflows in the design of novel workflows, or similarity-based work-
flow retrieval [82, 78, 76, 8, 43]. For instance, arranging workflows into (possibly
hierarchical) clusters of equivalent or highly similar functionality, would enable the
user to browse the repository along functional categories to discover workflows of
interest. Similarly, applying such clustering to the - sometimes extensive - lists of
results retrieved from large repositories in response to an initial, keyword driven
search for suitable workflows, could greatly benefit the user in selecting the best
workflow from amongst those results. Or, given a workflow they have used before,
similar (or complementary) workflows could be suggested which would be instantly
executable on the data at hand. The ultimate goal is to allow scientists to use
scientific workflows without detailed knowledge of the process of their creation, by
providing them with optimal methods of searching - and finding - relevant workflows.

The core operation necessary for meeting any of these challenges of workflow dis-
covery and enabling their use cases is the algorithmic comparison of two workflows
regarding their functional similarity, i.e., similarity measures for scientific work-
flows [21]. Only when algorithms of sufficient quality are available to automatically
assess whether two workflows do the same, similar or even related things, can these
workflows be clustered or recommended. Such assessment is inherently difficult: On
the one hand, scientific workflows in public repositories can be richly annotated, and
such annotations may be used to assess their function and similarity. Yet, quality
and availability of annotations vary greatly between repositories and, more generi-
cally, may not be available on a sample workflow a user is searching with. Scientific
workflows themselves, on the other hand, represent graphs, and an enormous body
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1.1 Motivation

Figure 1.1: Two scientific workflows from myExperiment: (a) ID: 1189, Title: KEGG
pathway analysis, (b) ID: 2805, Title: Get Pathway-Genes by Entrez gene
id.

of research exists on graph comparison. Yet, it is not clear to what extent func-
tional similarity of workflows is linked to them being structurally similar. The two
workflows shown in Figure 1.1, for instance, arguably offer similar functionality (pro-
viding information on relevant metabolic pathways for an input gene or protein),
but their structures exhibit a number of differences. Furthermore, each node of such
a workflow graph is a distinct data processing task and thus represents a distinct
functional element in its own right. From the workflow perspective, each such ele-
ment is a blackbox, only exposing a limited set of information for assessment of its
functionality. How to best identify and compare elements between workflows given
this information is still an open question.

This thesis investigates similarity measures for scientific workflows and develops
algorithms that deliver high quality results in functional comparison of scientific
workflows. In the following sections, we give an overview of our specific contributions
and achievements, followed by an outline of the thesis’ structure, and an account of
own prior work in preparation of this thesis.

3



1 Introduction

1.2 Contribution
The central goal of this thesis is to study methods for the automatic assessment of
similarity between scientific workflows, especially in the context of large scientific
workflow repositories. In summary, we start at a detailed analysis of workflows and
their components in the to-date largest such repository, and continue with an evalua-
tion of existing approaches to scientific workflow comparison. Based on our findings,
we propose a novel approach to structure-based comparison of scientific workflows
which outperforms previous approaches, and show how it can be effectively stacked
and ensembled with other approaches and state-of-the-art information retrieval tech-
nology to achieve fast, high quality results.

We make the following main contributions:

Re-use characteristics of workflows and their elements

To compare scientific workflows, the first step is to investigate which elements are
shared between workflows, and how these elements can be identified and charac-
terized. Looking closely at almost 900 workflows contained in the largest public
scientific workflow repository to-date, we make a number of contributions:

• We explore different methods to identify workflows and their components and
determine the most suitable method for detecting re-use.

• We characterize workflow elements not only by the quantity, but especially by
the quality of their re-use. Following a functional categorization of workflow
elements, we are able to distinguish trivial elements from functionally specific
ones. We show that the appearance of single workflow elements in multiple
workflows is not per se an indication of functional similarity, and that not
all elements are equally well suited for deriving information about functional
workflow similarity.

• For the first time, we consider not only sharing of elements across workflows,
but also between authors. This allows us to observe that while overall 36% of
workflow elements are re-used, only 11% are used by more than one author.
This finding greatly supports our motivation of improving workflow discovery
through respective similarity measures.

A Framework and Gold-Standard Corpus for Benchmarking Scientific Workflow
Similarity Measures

The process of (especially structure-based) comparison of scientific workflows en-
tails several steps. These range from comparison of single workflow elements, to
the assessment of the overall similarity value for two entire workflows. Approaches
to scientific workflow comparison proposed in previous work have addressed these
steps rather heterogeneously and sometimes only implicitly, focusing on the most

4



1.2 Contribution

prominent aspect of workflow topology. This heterogeneity greatly hinders compar-
ative evaluation of different methods. Additionally, previous evaluations have been
carried out either by manual inspection of an algorithm’s output, on small corpora
which are not publicly available, or by mere comparison to a baseline derived from
another computational approach – without consideration of human judgment. A
major goal of this thesis is to allow full systematic comparison of different methods
for which we make the following specific contributions:

• We carefully analyze previous approaches to measuring scientific workflow sim-
ilarity and identify a set of necessary steps in the process of workflow compari-
son. Dissecting previous work along this process, we comprehensively enumer-
ate different approaches taken at each step.

• We set up a framework implementing the workflow comparison process and
various methods for each step as adopted from previous work. This framework
allows to separate and combine each such method at each step for thorough
evaluation. In the framework, we further extend the process of workflow com-
parison to (optionally) include external knowledge derived from a scientific
workflow repository to investigate how such knowledge may benefit workflow
comparison quality. Altogether, 288 different setups for the process as a whole
are available.

• We collect the to date largest corpus of human workflow similarity ratings,
contributed by 15 workflow experts from 6 institutions in 4 countries, which
contains more than 2400 similarity ratings for 485 pairs of scientific workflows
over a repository of almost 1500 workflows from the Taverna scientific work-
flow management system. The corpus consists of two sets of ratings: The first
set of 1900 similarity ratings over 24 query workflows and ranked lists of 10
workflows compared to each query workflow is independent of any concrete
algorithm. It is thus suitable for evaluation both of large sets of algorithms,
and of new algorithms to be developed in the future. The second set of ratings
was specifically collected for pairs of workflows from the result lists returned
by selected, promising algorithms for similarity search over a given repository
to determine retrieval quality. For cross-repository evaluation, the corpus ad-
ditionally contains 181 ratings over a dataset of 139 workflows from the Galaxy
system. We make the whole corpus publicly available.

• For the first time, framework and corpus together allow for a comprehensive
and systematic, comparative evaluation of different settings and approaches
used for each step of the workflow comparison process. We pinpoint different
options at each such step, investigate how they influence the quality of the
resulting similarity measures as a whole, and combine different measures into
ensembles to further improve result quality. Finally, we trace our findings back
to the properties of scientific workflows in a number of online repositories.
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1 Introduction

Layer Decomposition: a Novel Structure-Based Approach for Scientific
Workflow Similarity and its Application to Fast Similarity Search at
Repository-Scale

Our observations from the differentiated evaluation of existing approaches to mea-
suring scientific workflow similarity indicate potential for improvement with respect
to how the workflows’ topology is compared: On the one end, approaches that only
consider the data processing tasks contained in the compared workflows, and disre-
gard the way they are connected with each other, deliver results of satisfying quality
only when other steps of the comparison process are tuned to match the specific
properties of a given repository - which limits their applicability to off-the-shelf
deployment. On the other end, comparing workflow topologies by substructures
greatly reduces the amount of tuning necessary, but is too slow for application at
repository-scale. Targeting this apparent trade-off between speed and stability, we
make the following contributions:

• We propose a novel approach to the assessment of scientific workflow similar-
ity. This approach is based on a concise representation of the partial order of a
workflow’s modules, which we term Layer Decomposition. This approach not
only provides best results in comparison to previous measures, but requires as
little tuning as previously found for substructure-based comparison. At the
same time, while naturally still being outrun by fully structure-agnostic algo-
rithms, our approach is much faster than other structure-aware approaches.

• Specifically targeting the use case of similarity search over a large scientific
workflow repository, we investigate how multiple different comparison methods
can be stacked and ensembled to maximize both speed and quality. We imple-
ment a system that uses state-of-the-art document indexing for fast structure-
agnostic retrieval of candidate workflows, which are reranked by our Layer
Decomposition approach. Evaluation shows that this system not only deliv-
ers high quality results, but is faster than the fastest standalone approach to
structure-based workflow comparison by several orders of magnitude.

1.3 Outline of this Thesis
Chapter 2 introduces the necessary concepts and applications, including scientific
workflows and online repositories for publishing and reusing them, and gives an
overview of related work in the field of workflow comparison.

Chapter 3 presents our analysis of the workflows contained in the to-date largest
publicly accessible scientific workflow repository, myExperiment [74], investigating
how workflows and their elements are used and re-used across workflows and their
authors, and identifying characteristics of most commonly used elements.

6



1.4 Own Prior Work

Chapter 4 closely inspects the process of scientific workflow comparison and gives
a detailed review of previous work, describing how each aspects of the comparison
process has been treated. The collection of a human-annotated corpus of similarity
ratings is described, on which a rich set of previous approaches is comprehensively
evaluated.

Chapter 5 proposes a novel approach to structure-based assessment of scientific
workflow similarity, designed to balance the amount of structural information taken
into account against runtime considerations. We observe how this approach follows
from our findings in the previous chapters and provide a comparative evaluation
of its quality in similarity search, and of its runtime properties. We also explore
options for further speedup of repository-scale retrieval.

Chapter 6 makes direct use of these findings, presenting a proof-of-concept imple-
mentation of structure-aware similarity search for scientific workflows at repository-
scale which we show to provide high quality results at high speed.

Chapter 7 concludes the thesis with a summary of its findings, and an outlook on
future work.

1.4 Own Prior Work
Chapter 3 presents an analysis of (re)use of workflows and their elements in a large
public repository, which has been published by Starlinger et al [81] with multiple
authors. The authors’ roles can be assigned as follows: Leser supervised the work.
All analysis work was done by Starlinger. Starlinger wrote the the manuscript which
was critically revised by Leser and Cohen-Boulakia.
Chapter 4 presents a framework for and evaluation of similarity measures for sci-
entific workflows, which has been published by Starlinger et al [79] with multiple
authors. The authors’ roles can be assigned as follows: The work was conceived
by Leser and Starlinger. Leser and Cohen-Boulakia supervised the work. Bran-
cotte provided methods for consensus ranking of expert ratings. All implementation
(apart from consensus ranking) and evaluation was done by Starlinger. Starlinger
wrote the manuscript, which was critically revised by Leser and Cohen-Boulakia.
Chapter 5 presents a novel approach to scientific workflow comparison which has
been published by Starlinger et al [80] with multiple authors. The authors’ roles
can be assigned as follows: Davidson, Khanna, and Starlinger conceived the Layer
Decomposition idea. The work was supervised by Leser and Davidson. Implemen-
tation and evaluation was done by Starlinger. Starlinger wrote to the manuscript,
which was critically revised by Leser, Davidson, Khanna, and Cohen-Boulakia.
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2 Scientific Workflows and Workflow
Similarity

In this chapter, we introduce the core concepts of scientific workflows and review how
they compare to other types of workflows, including the well studied area of business
workflows and processes. In Section 2.2 we provide an overview of existing systems
for the creation, management, and storage of scientific workflows, and target the
properties of current scientific workflow repositories. In Section 2.3 we then give a
comprehensive account of previous work on workflow comparison both for scientific
workflows and for other types of workflows.

2.1 Scientific Workflows
Scientific workflows have been introduced as a means to ease the creation of data
processing and analysis pipelines for in-silico experiments [7]. These workflows not
only lend themselves to the automated processing of large volumes of data, but also
facilitate sharing, reuse, and re-purposing of computational methods. Therefore,
it is not surprising that both deployment of, and research in scientific workflows
have lately gained additional momentum in the context of the e-Science and Big
Data movements. Nowadays, scientific workflows are used in a variety of domains,
including physics, chemistry, geosciences and the life sciences, in particular, biology
and biomedicine [41]. Prominent examples of scientific workflows thus exist in several
of these domains: The Montage [11] astrophysics workflow generates mosaic images
from telescope surveillance photographs of the sky; CyberShake [47] is a workflow to
compute a specific geographical site’s earthquake hazard estimate from a variety of
sources of information; and in biology, workflows for the processing and analysis of
Next Generation Sequencing (NGS) data are establishing themselves as an invaluable
tool for processing the large quantities of input data these experiments produce
[86]. An abstract example of such an NGS-workflow is shown in Figure 2.1 where
the short nucleotide sequences read by the sequencing machine are automatically
aligned and mapped to a given reference genome, to assess information on genetic
variations discovered in consecutively executed analysis steps. Note that we contrast
the abstract workflow shown in Figure 2.1 to concrete workflows in Section 2.1.1
(page 15).

The overall tasks these three workflows carry out, while being rather different in
the intended area of application, share the same anatomy: Scientific workflows follow
a modular design, where a variety of tools, or modules, are composed to create the
workflow’s overall functionality. These modules are connected into a DAG-structure

9



2 Scientific Workflows and Workflow Similarity

GA GA G
G C AA

AC C A
G GGG G
C A T AA
C G CG

CGGC
T A A

G C CT

reads

reference alignment 

A CG TA GG
0 1 2 3 4 5 6

G T C A T A A
7 8 9 10 11 12 13

C
14

G
15

C
16

C
17

C
18

A T
19 20

GA GA G AC C A

T A A

G GGG G

CGGC

C A T AA

G C AA

G C CT

C G CG

variant calling

A CG TA GG
0 1 2 3 4 5 6

G T C A T A A
7 8 9 10 11 12 13

C
14

G
15

C
16

C
17

C
18

A T
19 20

GA GA G AC C A

T A A

G GGG G

CGGC

C A T AA

G C AA

G C CT

C G CG

variant characteriza�on

Alice took up the fan and gloves, and,
as the hall was very hot, she kept

fanning herself all the time she went
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Her first idea was that
she had somehow fallen
into the sea, 'and in that

case I can go back by
railway,' she said to herself.

'Perhaps it doesn't understand English,'
thought Alice; 'I daresay it's a French

mouse, come over with William the
Conqueror.' (For, with all her knowledge

of history, Alice had no very clear notion
how long ago anything had happened.)

'I'm sure those are not the right words,'
said poor Alice, and her eyes filled with

tears again as she went on, 'I must be
Mabel after all, and I shall have to go
and live in that poky little house, and
have next to no toys to play with, and

oh! ever so many lessons to learn!
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Presently the Rabbit came up to
the door, and tried to open it;

but, as the door opened inwards,
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say to itself 'Then I'll go round

and get in at the window.'

Alice noticed with some
surprise that the pebbles
were all turning into little
cakes as they lay on the
floor, and a bright idea

came into her head.

The first question of course was,
how to get dry again: they had a
consultation about this, and after

a few minutes it seemed quite
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talking familiarly with them, as
if she had known them all her life. 

'Ahem!' said the Mouse with an
important air, 'are you all ready?
This is the driest thing I know.
Silence all round, if you please!
"William the Conqueror, whose
cause was favoured by the pope,
was soon submitted to by the English,
who wanted leaders, and had been of
late much accustomed to usurpation
and conquest.

'But who is to give
the prizes?' quite
a chorus of voices
asked.

It did so indeed, and much
sooner than she had expected:
before she had drunk half the
bottle, she found her head
pressing against the ceiling,
and had to stoop to save her
neck from being broken.
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Figure 2.1: Abstract sample workflow for the processing and analysis of experimental
data from next generation sequencing. Courtesy of Marc Bux, [17]

by datalinks, where each module automatically passes its output to the successive
one. While this conceptual anatomy of scientific workflows is rather generic, a vast
number of different implementations of this concept exist. These implementations
come in the form of so called Scientific Workflow Management Systems (SWFM),
each of which has its own set of features, and typically uses its own syntactic format
for storing the workflows created in it.

Before we turn to a review of the features of popular SWFM in Section 2.2.1,
we here give a more detailed description of the core concepts of scientific workflows
common to most of these systems - especially those relevant in the light of this thesis.
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2.1 Scientific Workflows

We also formally define the notion of scientific workflows considered, and introduce
the nomenclature used throughout this thesis. Again, in the broad landscape of
scientific workflow systems, not all systems strictly adhere to the concepts described
here but provide extensions or adaptions. For instance, it is not uncommon for
scientific workflows systems to provide means to the user to explicitly manipulate
the underlying flow of execution control within the workflow. We make note of these
variations, and provide real world examples from existing SWFM were necessary.

2.1.1 Modules, Datalinks and Dataflows
Data Processing Modules in Scientific Workflows

A scientific workflow consists of a number of distinct subtasks, and each of these sub-
tasks usually represents a full data processing step in its own right. For instance, the
subtask of reference alignment in the NGS workflow example of Figure 2.1 compares
each of the plenitude of short read sequences output by the sequencing machine to
a given genome, chromosome, or other nucleotide sequence to act as a reference,
and maps it to the most appropriate genetic location. Often, more than one im-
plementation of such a (sub)task exists, e.g., Bowtie [55], BWA [57], or Perm [18]
for reference alignment. Such implementations are used as modules within a given
workflow, and are treated as blackbox components, i.e., no information about their
internal working is available.

Technically, each task is usually wrapped into a container to provide a uniform
interface within the workflow, regardless of how the task is invoked. Thus, strictly
speaking, when we say module, we refer to such a container – which is parameterized
by the type of operation to carry out (e.g., web-service call or local executable), and
the operation’s concrete configuration (e.g., the web-service’s url or the executable’s
path in the filesystem). Which types of operations are available and which config-
uration parameters these expose, depends on the concrete SWFM, just as much as
schema and syntax of their storage in an SWFM-specific workflow file format do.
Listings 2.1 and 2.2 contrast the module representation in the Scufl workflow format
supported by Taverna [68], to the format used by Galaxy [45].

While type and configuration parameters are carefully encoded in the XML schema
of the Scufl workflow, containing only the necessary information, the module’s def-
inition in the Galaxy workflow contains an extensive set of attributes, including
positional information for where the module was laid out in the graphical repre-
sentation in the SWFM, whereas the specific configuration of the wrapped tool is
stringified in the tool_state parameter. Despite the apparent heterogeneity, for any
given module independent of its type, the configuration most typically includes a
descriptive label or name reflecting the module’s functionality (which is often pro-
vided by the workflow author), but it does not include any semantic annotations.
To formally capture this diversity, we represent the configuration of a module as a
set A of pairs of attributes a and values v:

A = {(a1, v1), . . . , (a|A|, v|A|)}

11



2 Scientific Workflows and Workflow Similarity

Listing 2.1: Module definition in Taverna’s Scufl XML format
<s : p r o c e s s o r name=" getP53MutationsByIds ">

<s : d e s c r i p t i o n>
Get tp53 gene mutations by i d s from TP53 IARC database
( s ee h t t p : // s r s . o2 i . i t / s r s 7 1 /)

</ s : d e s c r i p t i o n>
<s : s o a p l a b w s d l>

h t t p : // b i o i n f o r m a t i c s . i s t g e . i t : 8 0 8 0 / a x i s / s e r v i c e s / o2 i . getP53MutationsByIds
</ s : s o a p l a b w s d l>

</ s : p r o c e s s o r>

Listing 2.2: Module definition in Galaxy’s workflow format
" 5 " : {

" annotat ion " : " " ,
" id " : 5 ,
" input_connect ions " : {

" input " : {
" id " : 4 ,
" output_name " : " o u t _ f i l e 1 "

}
} ,
" inputs " : [ ] ,
"name " : " Cut " ,
" outputs " : [

{
"name " : " o u t _ f i l e 1 " ,
" type " : " tabu la r "

}
] ,
" p o s i t i o n " : {

" l e f t " : 282.38333129882812 ,
" top " : 381

} ,
" post_job_actions " : {} ,
" t o o l _ e r r o r s " : nu l l ,
" too l_id " : " Cut1 " ,
" t o o l _ s t a t e " : "{\ " columnList \ " : \"\\\" c1 , c5 , c5 \\\"\ " , \" input \ " : \" n u l l \ " ,

\" d e l i m i t e r \ " : \ "\\\"T\\\"\ " , \"__page__ \ " : 0}" ,
" too l_ver s i on " : " 1 . 0 . 1 " ,
" type " : " t o o l " ,
" user_outputs " : [ ]

}
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2.1 Scientific Workflows

Each attribute thus refers to an SWFM- and type-specific parameter, including
aforementioned label (where available), and the type of operation itself.

Each module has input and output ports which interface the tool it wraps to the
other modules of the workflow. The attentive reader will have noticed that in the
sample Galaxy module from Listing 2.2, these ports are included in the module’s
definition. For Scufl, on the other hand, a module’s ports are only referenced by the
datalinks that connect it to other modules (see Listing 2.3). These ports commonly
have both a name to identify them, and a syntactic type describing the expected
structure of the input, such as string, or tabular. Semantic typing, or even more
fine grained syntactic typing of inputs and outputs, on the other hand, is far less
common than would be desirable. The type string, for instance, is usually used even
for inputs requiring data in specific formats like fasta (used for DNA-Sequences) or
XML, or data of a very specific type such as a protein id. We define

I = {(ni1 , ti1), . . . , (ni|I| , ti|I|)} and O = {(no1 , to1), . . . , (no|O| , to|O|)}

as sets of a module’s input ports I and output ports O, where nil
and nok

are the
ports’ names, and til

and tok
are their type.

Altogether, from a syntactic point of view, a module can thus be defined by its
set A of configuration attributes and their values, and its sets I and 0 of input and
output ports:

m = (I, O, A)

We refer to specific attributes or ports of a modules as m : ai, m : nil
, and m : nok

,
respectively. Note that this definition explicitly does not require a module to carry
a distinctive name or label, as not all SWFM provide these. Where available, such
names are included in the modules’ attributes.

The set of modules used in a workflow is thus

M = {m1, ..., m|M |}.

Datalinks linking Modules by Data

How different modules are combined and connected in a given workflow is defined by
the data they produce or consume: When the output of one subtask serves as input
for the successive one, they are connected by a datalink. In Figure 2.1, the genetic
mapping information from reference alignment serves as input for variant calling to
find differences in the read and the reference sequences - the datalink between these
two modules is represented by an arrow connecting them.

Datalinks are typically defined on specific output and input ports of the modules
they connect. Listing 2.3, for instance, shows an excerpt of a Scufl workflow linking
the input port named id of the getP53MutationsByIds module from Listing 2.1 to the
filteredlist output port of its preceding module. Each such port may have multiple
datalinks connected to it.
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2 Scientific Workflows and Workflow Similarity

Listing 2.3: Datalink definition in Taverna’s Scufl XML format
<s : l i n k source=" F i l t e r L i s t O f S t r i n g s E x t r a c t i n g M a t c h T o A R e g e x : f i l t e r e d l i s t "

s ink=" getP53Mutat ionsByIds : id " />

D ⊂ {(m : nok
, m′ : nil

) | (m, m′) ∈ M × M}

is the set of (directed) datalinks of a workflow, where each datalink connects a pair
of modules from one module’s output to the next module’s input port. Note that
where a single port has multiple datalinks connected to it, the underlying semantics
are always AND: All datalinks sourcing a given output port receive the same data,
and module’s receiving data on a single input port through multiple datalinks will be
executed on each of the inputs in turn. As such, datalinks do not provide branching,
and do not carry a state for the data they transport.

Scientific Workflows as Dataflows

The overall functionality of a workflow is thus defined by the entirety of the sub-
tasks it is comprised of (its modules), and how these are orchestrated within the
workflow (by datalinks). That is, scientific workflows typically don’t explicitly con-
tain elements to control execution of the data processing modules they contain, but
represent dataflows. Visually speaking, the datalinks define how the data flows
from one module to the next through the entire workflow. Once constructed, such
workflows are invoked with a set of (user provided) input data and parameters on
which they operate in a fully automated manner to produce one or more final out-
puts which are then returned to the user. The intermediate reference alignment data
is passed to the step of variant calling without user intervention, and execution of
modules is triggered by the availability of their respective input data. Note that
the term dataflow is also frequently used to specifically refer to declarative data
processing languages such as Pig [69] or Dryad [50] which follow the same model of
computation. Here, we use the term to reflect that this model of computation is
used by most SWFM for the scientific workflows created in them [7].

Formally, dataflows represent directed acyclic graphs (DAG), with modules and
datalinks as nodes and edges, respectively. A scientific workflow W can thus be
defined as

W = (M, D)

where M and D are the sets of modules and datalinks as defined above. Note
that this dataflow-oriented definition explicitly does not distinguish between differ-
ent classes of modules, such as modules for controlling and manipulating workflow
execution, or modules for data processing. Nor does it distinguish between different
types of modules within its module set M . As stated above, which types of modules
are available depends on a given SWFM. While the respective SWFM, of course,
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2.1 Scientific Workflows

Figure 2.2: Instantiation of a Montage workflow, [52].

distinguishes these types very well, for the sake of generality we, formally, treat
each module as a blackbox component. The only exception we make here are mod-
ules which contain complete workflows themselves: some SWFM allow to include
nested dataflows, or subworkflows, by wrapping these in modules of an appropriate
type. For the most part of this thesis, we extract such such nested dataflows from
their containing modules and inline their elements with the surrounding top-level
dataflow. We make note of exceptions, where this is not the case.

Workflow Definition vs Workflow Instance vs Abstract Workflow

In the scientific literature and discourse, the term scientific workflow is frequently
used to refer to different representations of these workflows. Reflecting the dataflow
paradigm and the absence of explicit control-flow modeling, the workflow defined
by the user in an SWFM represents the intent of the computational experiment.
The example workflows shown so far depict this user-view on the workflow, i.e., the
workflow definition. This workflow definition typically specifies which tasks are to
be carried out on all independent instances of the data passed to the workflow or
its modules, without the need for the user to explicitly allocate a dedicated module
to each data instance. Such allocation is usually handled by the underlying SWFM,
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2 Scientific Workflows and Workflow Similarity

Figure 2.3: Sample concrete workflow definition from the Taverna SWFM to
retrieve information about a genetic sequence using several dif-
ferent types of modules (blue: input or string constant; pink:
local string operation; beige: web-service call). See also
http://www.myexperiment.org/workflows/1013.

before or while the workflow is executed, and inflates the workflow into a concrete
workflow instance. The amount of inflation typically depends on the number of
independent data items present, and the physical resources available for execution.
Contrasting our previous examples, Figure 2.2 shows the workflow instance in a
specific execution of a Montage workflow for processing telescope images of the sky.
Here, each (colored) row holds thousands of instances of a specific module defined
for one processing step in the workflow, which is instantiated multiple times for par-
allel processing of data. Each module instance operates on a separate instance of
(intermediate) data. In the corresponding workflow definition, on the other hand,
each row will be represented by only a single module.

On the other end of the scale of representation, the intent specified by the user
may not even go as far as the concrete workflow definition ready for execution, where
each module contains information about the concrete task to be carried out and its
execution parameters, but is only specified by a description of what is to be done
(as opposed to the how). Such abstract workflows again range from rather informal
illustrations (such as the one shown in Figure 2.1) to formal plans of which tasks
are to be executed, yet without assigning concrete executables to them. It is the
responsibility of either the users themselves, or of the SWFM to assign concrete
executables or services to each task before workflow execution. For example, in the
abstract workflow shown in Figure 2.1, the task of reference alignment would thus
need to be mapped to a concrete tool, such as Bowtie, BWA, or Shrimp. Making
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2.1 Scientific Workflows

such assignments automatically, is a line of research in its own right [29, 59], and –
depending on the degree of formal planning expressed in a given abstract workflow
– may, for instance, require modification of the workflow to include additional steps
of data transformation [71]

Throughout the remainder of this thesis, when we use the term scientific workflow,
we refer to a concrete workflow definition, where a workflow’s modules are assigned
concrete tools to operate on the data. Not only is this the user’s view on the work-
flow most frequently supported by current SWFM, but it is also the representation
typically found in scientific workflow repositories. Figure 2.3 shows the concrete
workflow from the Taverna SWFM, from which the excerpts from Listings 2.1 and
2.3 were taken.

2.1.2 Other Workflow Concepts
The concept of using distinct interconnected components to form a workflow or
process with a composite, overall functionality is, of course, not new or limited
to scientific workflows. Here we compare the conceptual and technical aspects of
scientific workflows to related technologies. Often enough, there is no clear cut
distinction, but only specific aspects of the underlying concepts differ.

Scripted Data Analysis

Scripting languages, such as Perl, Python, or Bash, are often used to glue differ-
ent external tools together and to implement the necessary data-transformation
between one tool’s output and the next tool’s input. These scripts represent the
conceptual predecessor of scientific workflows as they are used in a similar way to
pipeline data through a number of consecutive processing tasks. Yet, such scripts
are usually rather tedious to create, require the knowledge of (at least one) program-
ming language to write or even understand, and often require substantial effort to
be amended when new tools for particular subtasks are to be used, or even slight
changes to the overall functionality are required. Additionally, more technical as-
pects such as parallelized execution of single tasks on multiple independent sets of
data, or the inclusion of dedicated code for logging and debugging have to be taken
care of explicitly by the script’s author - distracting focus from the original experi-
mental intent. Scientific workflows have been introduced to target these issues and
simplify the creation of data processing applications, and, in doing so, promise a
number of inherent benefits:

• Creation of workflows is (often) visual, and thus more accessible to non-
programmers than traditional scripting.

• The dataflow paradigm of scientific workflows abstracts the technical details
of execution, allowing the user to focus on the core aspects of the computa-
tional experiment. Of course, this abstraction comes at the price of being less
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expressive than traditional programming: Turing-complete languages can not
be fully resembled by scientific workflows without conditionals or loops.

• Currently SWFM typically provide additional features, such as provenance
tracking and execution monitoring - removing the need for the user to include
such functionality themselves (see below).

Business Workflows and Processes

Business workflows are a well established concept and research area [85]. In these
workflows, compound processes are modeled as a series of relevant activities which
are connected in a similar way as the modules in scientific workflows. Even though
scientific workflows and business workflows differ already by their intended areas of
application – as implied by their names – the actual differences in functionality are
not as sharp as one might expect [90, 61]. In the light of the research target of this
thesis, the most important distinctions are:

• Scientific workflows are typically dataflow-oriented DAGs whereas business
workflows include rich control-flow structures, such as conditionals, branches,
and loops. This results in a clear definition of the behavior of a better part
of the elements contained in a business workflow, in contrast to the uniform,
blackbox view on modules used in scientific workflows.

• The focus of scientific workflows lies in automated data processing. As such,
most of their modules represent computational activities. The activities in
business workflows, on the other hand, may be either computational or oper-
ated by a human. Here, the workflow models how the work is to be distributed
to the respective human actors by the system enacting the workflow.

• In contrast to in-company repositories of business workflows, scientific work-
flow repositories are often open, leading to plenty of authors creating workflows,
with the result of cross-author differences in workflow design and naming of
workflow components.

• The variety of languages scientific workflows are described in is greater than
with business workflows, not only, but also due to the absence of a widely
accepted standard, such as BPMN or BPEL for business workflows.

Mashups

Mashups were introduced as a means of ad hoc integration of structured data on
the web [5]. A typical use case is the cross-source interlinking of (possibly filtered)
articles from a news feed with pictures from public libraries of tagged photographs,
and their geographical display in an online maps application. Yahoo Pipes [70],
for instance, is a system that allows graphical composition of such mashups in a
very similar way to how SWFM allow the visual creation of scientific workflows.
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While thus very similar to scientific workflows at first sight, a number of important
differences exist:

• Mashups almost exclusively work on structured data in the form of RSS, JSON,
or related types of web-feeds.

• The intended area of application is specifically that of online data integration
- as implied by the term mashup. Scientific workflows can be used for data
integration, too, but are not limited to this type of usage.

• As opposed to scientific workflows, mashups explicitly allow the modeling of
control-flow elements such as loops or conditionals.

Declarative Data Processing Languages

Declarative data processing languages such as Pig [69] or Dryad [50] can be seen as
a close relative of scientific workflows. These languages provide high level operators
to support analysis processes over distributed infrastructures, abstracting from the
underlying computational paradigms (such as Map-Reduce[28]). The differences to
scientific workflows are sparse and include:

• The application area of data processing languages is set on data analytics
with a focus on relational operations. While scientific workflows can be used
for such tasks as well, they don’t explicitly support them.

• Declarative data processing languages typically focus on providing predefined
operators, e.g., for selecting or joining data. User-defined functions, on the
other hand are a corner case. In scientific workflows, every module corresponds
to a user-defined function (even when it is provided by the SWFM itself).

• Usually no visual composition is provided with such languages.

Service-oriented Architectures

The concept of service-oriented architectures (SOA) describes the provision of self-
contained applications as programmatic services which can be combined in a manual,
semi-automated, or automated manner to deliver a composite functionality [37].
Which services a required functionality is provided by is registered with a service
broker, that can - in theory - be used to select the best service for a given task [36].
SOA is more of a paradigm than a concrete technology and is orthogonal to the
concept of scientific workflows: Scientific workflows can be used as a modeling and
execution layer on top of an underlying service-oriented architecture to orchestrate
available services. And indeed, many scientific workflows access services (either
locally or on the web) to include their specific functionality in the in-silico experiment
executed by the workflow. The role of a service broker is typically taken by the
workflow’s author, who manually chooses the services to include in the workflow.
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2.2 Infrastructure for Scientific Workflows
For scientists to make best use of scientific workflows, infrastructure has been devel-
oped. This infrastructure targets scientific workflow creation, execution, and stor-
age, and is responsible for providing many of the benefits of scientific workflows to
the scientist: For authoring of scientific workflows, Scientific Workflow Management
Systems (SWFM) are available, which typically also manage workflow execution.
For sharing and re-using workflows, Scientific Workflow Repositories have emerged.
In the following, we introduce this infrastructure and give an overview of the benefits
scientific workflows provide through it.

2.2.1 Scientific Workflow Management Systems
For the design and execution of scientific workflows, specialized systems are available,
called Scientific Workflow Management Systems (SWFM). Today, numerous SWFM
exist, including Taverna, Kepler, VisTrails, Galaxy, Pegasus, Knime, e-BioFlow, e-
Science Central, or Askalon (e.g., [68, 14, 38, 45, 31]). These systems act as a central
access point for the user to create, run, and monitor the execution of scientific work-
flows, and sometimes even directly interface with public or local scientific workflow
repositories. A comprehensive review of existing systems and their respective capa-
bilities is out of the scope of this thesis. Surveys can be found in [91], [7] or [30].
Here, we give an overview of some of the most prominent features of SWFM.

Graphical Workflow Editing. Most typically, SWFM provide a graphical user in-
terface for accessing their functionality, including the ability to visually assemble
and modify workflows. As an example, Figure 2.4 shows the user interface of the
Taverna SWFM, where the workflow from Figure 2.3 is opened for editing. Next to
the workflow canvas on the right, the lower left pane lists details about the modules
used in the workflow. The upper left pane holds the library of available modules.

Libraries of Modules. Most SWFM provide libraries of predefined modules ready
to be used in workflows. As many SWFM have defined domains of application, the
modules offered often include domain-specific applications, next to generic opera-
tions on string, tabular, or XML data. For defining modules not included in the
library, wrappers are provided. Depending on the underlying SWFM, various kinds
of modules are supported, which may run either locally or on the web. These include
command line tools, web-services, or user-provided scripts defined directly within
the SWFM. For example, the workflow shown in Figure 2.4 includes web-service
calls (beige, grayed out), locally executed string modifiers from the built-in library
(pink), and string constants (blue). This great flexibility in including components
from a variety of technical pedigrees caters to the frequent need in scientific applica-
tions to use both state-of-the-art web-service tools and data, and at the same time
include pre-existing local data and scripts, carefully tailored to a specific aspect of
the intended analysis, or tools not available as a web-service or inconvenient to use

20



2.2 Infrastructure for Scientific Workflows

Figure 2.4: SWFM user interface example: Taverna workbench with workflow
opened for editing.

as such due to, for instance, the high volume of data to be processed (e.g., when
mapping the DNA sequences from a NGS experiment to a reference genome). How
unlike the representation of modules is in different SWFM has been reviewed in
Section 2.1.1.

Workflow Verification. Comparing Figures 2.3 and 2.4, the modules invoking web-
services are grayed out in the workbench view of the workflow, indicating that the
services are currently not reachable and the workflow can not be executed properly.
Such verification is not only done on complete workflows, but may also be used
during authoring of the workflow already.

Workflow Execution, Monitoring, and Recovery. Once a workflow is created, it
can usually be executed directly in or from within the SWFM itself. Where actual
execution takes place - locally or on a cluster - depends on the SWFM. Some SWFM
provide monitoring capabilities, showing the user which modules of a workflow are
running at a given point in time, how many parallel instances of each module exist,
and where errors occur. In cases of errors, SWFM often allow recovery of workflow
exection on the data collected prior to the error, without the need of recomputing
intermediate results. This is especially useful for workflows executed on large data
sets.
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Provenance Tracking. As the data input by the user passes through each module,
it is modified, enriched, or transformed. The record of how the data was subse-
quently changed by the workflow’s modules is referred to as provenance, which some
SWFM allow to record. Using provenance, the user is able to trace each piece of
output data back to the input data it originates from, observing exactly how the
output was derived.

To what extent each of these features is supported, depends on the concrete
SWFM. And, despite the comfort these features offer to workflow authors, cre-
ating a scientific workflow is still a laborious task, that requires deep knowledge of
the data processing steps and tools involved in the computational experiment to
be run. The data one tool produces often has to be transformed for consumption
by the successive one - a task for which sometimes predefined modules from the
library provided by the SWFM may be available (as in the example workflow of
Fig. 2.4), other times scripts still have to be written for. As such, while much more
accessible to domain scientists not trained in programming than traditional, pure
scripting approaches, mastering scientific workflow creation is still challenging. For
such users it is much more straightforward to re-use existing workflows found in
scientific workflow repositories.

2.2.2 Scientific Workflow Repositories
Scientific workflow repositories allow upload of workflows created in an SWFM to
store and share them with others. Once published in a repository, these workflows
can then be searched, downloaded and executed by other scientists. This not only
facilitates reproducibility of the underlying in-silico experiment, but also allows easy
re-use of (usually) proven computational methods, or repurposing of a workflow for
a different, but similar experiment by applying slight modifications.

Next to the uploaded workflow definition itself, scientific workflows in online repos-
itories may have several types of user-provided annotations associated with them.
Which types of annotations are supported greatly varies by repository: While, for
instance, myExperiment [74] provides user ratings, download statistics, attributions
to workflow co-authors, and features of a social (scientific) network, many other
repositories provide far less options for workflow annotation. The most common
types of annotations are exemplified in Figure 2.5:

• A title ideally summarizes the workflow’s function.

• A description gives a more or less detailed explanation of the workflow’s func-
tionality as free-form text.

• Keyword tags assign categories of specific functionality or areas of application
to the workflow.

To what extent these annotations are available strongly depends on the concrete
repository. Table 2.1 gives an overview of some popular public scientific workflow
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Figure 2.5: Example of a scientific workflow and its annotations from an online repos-
itory. Adapted from http://www.myexperiment.org/workflows/752.

repositories and repositories associated with popular SWFM, listing their size in
terms of the number of workflows they contain and their respective workflow for-
mats - and (roughly) indicating for how many workflows each type of annotation is
available. For some repositories annotations are well available. Other repositories,
while offering the functionality to add annotations, hardly contain any. Currently,
this greatly impedes their potential for supporting users in discovery of the workflows
they contain.

Scientific Workflow Discovery

Scientific workflow discovery is the process of finding that or those workflows in an
online repository that match a user’s data processing needs. Providing adequate
means for such discovery to a repository’s users is of vital importance for scientific
workflows to reach their target audience, the scientist [21]. Comprehensive support
for the discovery of scientific workflows has also been identified as a bottleneck for
their re-use in [44].

The observations on the availability of annotations in existing online repositories
presented in Table 2.1 are all the more interesting as the prevalent means currently
offered by repositories for discovering the workflows they store - apart from browsing
lists of hundreds of workflows - critically depends on such annotations: keyword
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Repository App. no. of Workflow Annotations
Workflows Format title description tags

CrowdLabs [64] 200 VisTrails + - -
Galaxy [45] 225 Galaxy + ~ -

public repository
Kepler [14] 25 Kepler + ~ n.a.

component library
myExperiment [74] 2600 any, + + +

mostly Taverna
SHIWA [3] 250 any, mostly + + ~

WS-PGRADE
& Taverna

Table 2.1: Overview of sizes and workflow formats of public scientific workflow repos-
itories, together with annotation frequency (+: always/often available ,
~: balanced availability, -: seldom available, n.a: option not provided;
data as of Nov 2014).

search. The definition, modules, and graph structure of the scientific workflows
themselves are typically not exploited to further facilitate access to a repository’s
contents, or to manage the workflows they contain, even while scientists themselves
have identified the structure of a scientific workflow to play an important role in
discovering and selecting appropriate workflows [43].

This greatly limits discoverability of scientific workflows. In keyword search, a
user enters a number of keywords which are then matched against the annotations
stored with the workflows to retrieve suitable ones. Of course, this only works if
workflows have annotations, and if the user’s keywords match the keywords used by
the workflow author to describe the workflow’s functionality. Often enough, only
few workflows are returned, possibly missing the most suitable workflows due to a
mismatch of the keywords used. Or, when the used keywords are too generic and the
repository is large enough, long lists of workflows are presented to the user - again
leaving him or her to manual inspection of each workflow returned by browsing
through the list.

Clearly, this current state of scientific workflow discovery needs to be improved for
users to make best use of scientific workflows, their repositories, and the promises
they convey for the exchange of scientific knowledge. For instance, the status of
keyword search could greatly be improved, if, for the case of using wrong keywords,
those workflows matching the query would be used to automatically find other work-
flows in the repository, which provide similar functionality, but don’t contain the
respective keywords. In the case of long lists of workflows resulting from a search,
workflows in the list providing equivalent or closely related functionality could be
grouped to reduce the number of workflows (or groups thereof) the user would need
to inspect, or even to suggest refinements of the initial query.
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Other possible improvements could include (possibly hierarchical) clustering of
scientific workflows by their functionality to provide a catalog for easy browsing; the
suggestion of workflows providing similar analyses when viewing a specific workflow
in a repository; or even the suggestion of such similar workflows in the scientific
workflow management system itself, based on the workflow a user is executing,
authoring or merely planning. Any such improvements, of course, first require a
method to identify whether two given workflows are similar at all.

2.3 Similarity of (Scientific) Workflows
2.3.1 Functional Similarity of Scientific Workflows
Building on the fundamental properties of scientific workflows described in the pre-
vious section, and the properties of the repositories these workflows are stored in,
this thesis targets the investigation of scientific workflow comparison with respect
to their functional similarity. That is, we are interested in automated ways of mea-
suring whether the overall functionality offered by two workflows is similar or not,
and, ideally, to what degree it is similar. Capturing such functional similarity is not
quite straighforward, even for human judgement. Are two workflows functionally
similar only if they accept the same types of input data, but provide different, yet,
again, similar analyses over them? Or may two workflows be regarded as function-
ally similar if the analyses they provide are indeed similar, but operate on different
types of input data? Do similar outputs indicate similar functionality? Or do they
only do so when the workflows’ inputs are similar as well?

Whether two workflows are functionally similar will depend on the domain of
workflow application, the user searching for functionally similar workflows, and the
specific problem a given workflow addresses. For algorithmic accessibility of the
problem of defining functional similarity of scientific workflows, we here focus on
their measurable functionality - using the information provided by workflows in
online repositories. Whether algorithms relying on this measurable information pro-
vide satisfying results will have to be subjected to evaluation by human judgement.
In the following, we give a overview of existing approaches trying to measure the
functional similarity of scientific workflows. While evaluations provided with these
measures range from manual inspection of a methods output (e.g., [25]) to compar-
ison against a baseline provided by another method (e.g., [39]), no human curated
gold standard corpus of sufficient size is available for comprehensive evaluation of
different methods. For the purposes of this thesis, acquiring such a corpus will be
indispensible.

2.3.2 Approaches to Workflow Similarity
As explicated in Section 2.1, scientific workflows are typically modeled as dataflows.
These contain global input and output ports, modules which operate on the data,
and datalinks which connect the former three amongst each other and define the flow
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of data from one module to the next along the processing pipeline. Each module
has attributes associated with it, such as a label the workflow author has assigned
to it, the type of operation to be carried out on the data, and, if applicable, a
set of static, data independent parameters. Upon upload to a repository, scientific
workflows may receive a title, a description, or keyword tags, and are associated
with their uploading author.

These annotations, along with the graph structure of scientific workflows itself, can
be exploited to compare scientific workflows and establish a similarity measure for
them. Depending on which properties of workflows they use, existing approaches to
assessing scientific workflow similarity can be classified as being either annotation-
based only or based on workflow structure. In the following, we briefly survey
existing approaches along this classification, and discuss options for approaches that
use other kinds of data. In addition to approaches targetted at scientific workflows,
we also look at work in the related fields of business process models. While there
exist differences between the two models [90, 61], methods established for the latter
offer inspiration or might even be directly applicable to scientific workflows as well.

Annotation-based Approaches

The textual attributes of scientific workflows can be exploited for clustering scien-
tific workflows. The authors of [25] applied text mining methods (mutual terms
in descriptions) to cluster scientific workflows based on their descriptions. The au-
thors argue that using solely the textual descriptions allows workflow comparison
across different workflow environments, including different SWFM, where the differ-
ent workflow formats limit the potential for structure based comparison. Yet, the
study fails to provide a comprehensive evaluation of the used method.

[82] explores the use of tags assigned to workflows for workflow clustering and
compares the results to the use of features derived from the modules present in
workflows. Their application scenario targets the use of workflow clustering into
categories for easier browsing of scientific workflow repositories. They conclude that
both tag and modules-feature based clustering methods perform better on reposito-
ries with a fairly limited range of tasks. For repositories with workflows targeting a
broader range of tasks, and using a more diverse set of modules, such as myExper-
iment, they find the tag based clustering approach superior to the module-feature
based method.

A general drawback to annotation based methods is, of course, that they have
to rely on such annotations to be available. As we have seen in Section 2.2.2,
often enough this is not the case. Furthermore, using annotations for assessment
of workflow similarity, ultimately depends on users to use common terms (or even
languages) to describe and tag workflow functionality. For workflows where this is
not the case, or annotations are not available, other sources of information have to
be resorted to.
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Structure-based Approaches

The functionality of a workflow is determined by which type of input data it ac-
cepts, which modules operate on the data in which order, and what type of result
it produces. Following this enumeration, two workflows may be functionally similar
if they accept similar types of inputs, use similar modules to operate on the data,
or produce similar types of outputs. As described in Section 2.1.1, workflows cre-
ated by current SWFM most often don’t use semantic typing of inputs or outputs
- greatly limiting their use to the assessment of functional similarity. Of course,
the same applies to the workflows’ modules themselves, for which mostly technical
and syntactic attributes are available. As such, previous work on assessing scientific
workflow similarity from their structure has focussed on distilling such similarity
from the topology of the workflows’ modules. A number of different approaches
have been tried for various use cases of workflow discovery:

In [43], subgraph isomorphism is used for scientific workflow matching. A query
workflow is matched against a repository of workflows to find the most similar ones.
The authors exploit the graph matcher presented in [66] which is originally target-
ted at matching a large query graph against a repository of smaller graphs. While
this original intention is not followed in [43], the authors note that the use of com-
mon subgraphs for workflow indexing, and subsequent matching against the in-
dex rather than against the workflows themselves might yield further improvements
in the matching process, especially regarding performance. Subgraph-isomorphism
has also been investigated to compare BPEL workflows [24] using error correcting
subgraph-isomorphism based on graph edit operations.

Graph kernels are used in [39]. The authors first extract frequent subgraphs
from a set of scientific workflows and use these as features to form graph kernels.
These kernels are used to classify workflows and a) make workflow recommendations
given an input workflow, b) derive workflow tags from workflows containing similar
substructures, and c) extract meaningful common patterns from a set of workflows.
The results are evaluated against workflow clusters derived from the tags assigned
to the workflows on myExperiment. It is found that a metadata based approach
based on workflow descriptions, tags, and authors outperforms the proposed graph
matching method.

The authors of [88] use the SUBDUE package [66] to compute scientific work-
flow similarity using graph-edit-distance. An evaluation of matching results is not
provided. [78] presents a method for clustering of workflows based on cumulative
similarity values of the module sets they are comprised of, not considering the graph
nature of the workflow as a whole. [76] investigates the use of maximum common
isomorphic subgraphs in comparison to module label vector similarity, i.e. the col-
lection of labels of the modules used in a workflow. They find that for the set
of workflows studied, both methods deliver similar results in the task of workflow
clustering.

All structural approaches for workflow similarity greatly depend on matchings
between workflow modules. Mapping modules of different scientific workflows onto
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each other is not trivial, and will need to be a core issue of scientific workflow sim-
ilarity. Yet, of the aforementioned publications, none but [78] fully describes the
process of node identification, i.e., matching one workflow’s modules to the mod-
ules of another workflow. From the figures provided in [39] we conclude that node
identification is based solely on the type of module the node represents, e.g., local,
script, or web-service. For the others, it seems only module labels were used.

Similarity of business process models has been studied much more in detail, so
far, when compared to scientific workflows. [34] surveys several matching approaches
for BPM similarity. In [32], the authors directly compare three different methods
of computing similarity. The first exploits only the labels of workflow elements.
The second uses the labels and the structure of the model by computing the graph-
edit-distance between the labeled graph representations of the models. The third
computes the behavioural similarity derived from the causal relationships between
elements of two business process models. The experimental evaluation shows that
the structural similarity metric slightly outperforms the other two methods. This
work is continued in [33] where the authors explore different graph matching algo-
rithms for BPM comparison.

Abstracting from scientific workflows, more generally, much research exists on
graph matching. While scientific workflows typically do not show all possible graph
constellations, but are limited to a subset of those [13], general graph matching
algorithms which have not yet been exploited for the concrete scenario of scien-
tific workflow comparison, may well be applicable. [4] and [22] give comprehensive
overviews of different graph matching algorithms.

Other Approaches

So far, we have looked at approaches for comparing scientific workflows which use
the properties of the workflows themselves or annotations available from some cur-
rent scientific workflow repositories. Additionally, external sources of information
can be used to augment the amount of available metadata. For instance [42] pro-
poses an approach to use annotations derived from external component catalogs to
augment the workflow descriptions. While the concrete method relies on a well an-
notated component catalog which is, as such, not available for arbitrary components
of scientific workflows, the general idea of using external information about workflow
elements is interesting.

A similarity flooding strategy is used in [77] to determine workflow similarity
based on module correspondences between VisTrails workflows, where the semantic
information of a module’s operation underlying the module’s mapping is well de-
fined - which is most typically not the case for scientific workflows found in online
repositories. Similarly, [8] use manually added semantic annotations on modules
and datalinks to compare workflows.

Another possibility for comparing scientific workflows is the use of provenance
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information recorded from their execution. Research on information discovery from
provenance traces has recently received much attention [26], as it enables the user
of the workflow to understand how data is processed and modified by the workflow
during execution. [6] explores the problem of comparing of different provenance
traces from the same workflow. Using such traces from different workflows might be
a very powerful method to determine whether two modules share the same or similar
functionality - not relying on their technical attributes or annotations, but deriving
information from their behaviour on observed input and output data. Next to the
difficulties entailed in such data-wise comparison itself, a current obstacle is that
provenance traces are generally not available. Specialised repositories for storing
provenance traces are just starting to emerge [2, 49, 67]. In this thesis, we focus
on similarity measures for scientific workflows using the data available in current
repositories.
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Similarity measures between scientific workflows, first require a method for identi-
fying shared elements, e.g., shared analysis tools [84]. Only then we can identify
similar workflows in a repository, making similarity search worth while. Therefore,
an important step towards the investigation of workflow similarity searching is the
analysis of the workflows contained in a repository, in particular to find elements
that are shared across workflows. For web-services such an analysis is presented
in [83], who found that only few web-services are used in more than one workflow.
Yet, another analysis of modules contained in the workflows stored in myExperiment
[87], revealed that the majority of basic tasks are locally executed modules and not
web services. In [82], functional properties of several types of modules, including
local ones, are used as features to classify workflows. Yet, no differentiation is made
between single types of modules after extraction, hindering fine-grained analysis of
shared elements. Module labels are used for identification in [43] in order to match
a very limited set of workflows using subgraph-isomorphism. From our experience,
this label-based approach is not generally applicable to large public collections of
scientific workflows: The broad author base results in substantially heterogeneous
labels.

We believe that all the above studies failed to give a comprehensive account on
the degree of sharing between workflows in a repository. In particular, three key
aspects were not adequately considered.

1. To determine elements shared by different workflows, one needs to establish
a method to test the identity of (or similarity between) two elements from
different workflows. While the identity of web-services is determined by service
name and operation, this approach is not generalizable to arbitrary modules.
In [82], the authors build such a method by extracting features from modules,
yet omit important information; for instance, local modules are only identified
by their respective class, disregarding their actual instantiation parameters.

2. From a structural perspective, workflows can be described at three levels of
functionality: single modules (typically treated as black boxes), groups of mod-
ules organized as dataflows, and whole workflows. As defined in Section 2.1.1,
a workflow always consists of one top-level dataflow which contains modules
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and potentially includes subworkflows, that is, further, nested dataflows. How-
ever, previous work only considered sharing at the level of modules, although
sharing of more coarse-grained functional units such as dataflows is equally
important.

3. Another important aspect of studying workflow connectivity is authorship.
We argue that true sharing of workflow elements is only achieved if elements
(modules or dataflows) are shared between workflows authored by different
persons; however, authorship has, to the best of our knowledge, not been
considered in any of the prior repository analyses. Mere statistics for web-
service usage across workflows, for instance, leave the question unanswered,
whether preferences in service usage vary between authors, or which services
are used by the broadest author base.

This chapter investigates and presents results on all of these three issues. We
describe the results of a comprehensive study on reuse in the largest open scientific
workflow repository to-date, myExperiment.org. We discuss and evaluate different
methods to establish element identity at all three levels of workflows, i.e., at the
modules level, the dataflow level, and the workflow level, and further refine the re-
sults based on classes of modules. Overall, we find that elements are shared at all
levels, but that most sharing only affects "trivial" elements, e.g., modules for pro-
viding input parameters or type conversions. Furthermore, we provide a detailed
analysis of cross-author reuse and show that much of the previously identified reuse
is by single authors. Still, a significant number of non-trivial elements are shared
cross-author, and we present first results on how these can be used to identify clus-
ters of related workflows.

The remainder of this chapter is structured as follows. We first describe in Sec-
tion 3.1 the data sets and the methods used for identifying workflow elements. In
Section 3.2 we present the results of our analysis on each of the aforementioned lev-
els. Section 3.3 discusses our findings, and provides an outlook on future research.

This work appeared in [81].

3.1 Materials and Methods
3.1.1 Data Sets
We study the reuse of elements in myExperiment.org, which, to our knowledge, is
the public scientific workflow repository containing the highest number of publicly
available workflows (see Table 2.1). myExperiment allows upload of workflows from
several systems, but approximately 85% of its content are workflows for Taverna [68].
Taverna workflows can appear in two different formats, namely scufl (used by Tav-
erna 1) and t2flow (used by Taverna 2). In this work, we only consider Taverna
workflows, yet, in either format.
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Figure 3.1: Taverna workflows uploaded to myExperiment by month (left hand
scale), and the numbers of overall and distinct workflows in the my-
Experiment repository the uploads amount to (right hand scale).

For these two types, Figure 3.1 shows the number of workflows submitted to
myExperiment per month. The first Taverna 2 workflows appeared in January 2009
when the new version of Taverna was released. But, even in recent times, still a
sizable number of Taverna 1 workflows are being uploaded. Note that Taverna 2
can load and process both scufl and t2flow. Figure 3.1 also shows a steady overall
growth in total available workflows. This growth of the repository is accompanied by
an increase in duplicate workflows. Most but not all of these apparent redundancies
are caused by the format change (the same workflow uploaded once as a scufl and
once as a t2flow workflow). We get back to this point in section 3.2.3.

498 workflows in scufl format, and 449 in t2flow format were downloaded from
myExperiment.org, which, at the time of download in December 2011, were all
Taverna workflows available in this repository. Of the 498 scufl files, 449 could
be converted to t2flow by manually loading them into the Taverna 2 Workbench
and storing them in the new format. 49 files showed format inconsistencies and
were removed from further analysis. Altogether, our analysis is comprised of 898
workflows.

Objects of study

Figure 3.2 provides an example workflow from our study set, illustrating the three
functional levels we are studying. This workflow has two global inputs and four
global outputs; it is composed of one top-level dataflow and one nested dataflow
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Figure 3.2: Example of workflow (myExperiment id 204)

named EBI_InterProScan_poll_job. In accordance with our definition of scientific
workflows in Section 2.1.1, a Taverna workflow is generally defined by one top-level
dataflow and may contain nested dataflows. Each dataflow has its own main inputs
and outputs and consists of one or more modules representing activities operating
on data. Modules are connected by datalinks, describing the flow of data from one
module’s output(s) to the next module’s input(s). Each module has a type and
a configuration, where the type denotes the executable class and the configuration
contains the parameters passed to the class for instantiation. For example, the
configuration of a WSDLActivity module denotes the url of the WSDL document
to enact and the operation to call with each piece of data received by the module
via its input ports. The specifics of Taverna’s workflow model are presented in more
detail in [68].

The 898 workflows used in our analysis contain a total of 1,431 dataflows, in-
cluding both 898 top-level and 533 nested dataflows, and a total of 10,242 modules.
On average, each workflow uses 1.6 dataflows and 11.4 modules, where the largest
workflow has 455 modules and the smallest has 1 module. In terms of dataflows,
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the largest workflow contains 19 nested dataflows.
In myExperiment, each workflow is further accompanied by metadata provided

in RDF-format including title, description, author and version information, and
creation and modification dates. For each workflow in our set, we downloaded its
accompanying metadata and specifically extracted the workflows author.

3.1.2 Identifying Shared Workflow Elements
Investigating interconnections between (parts of) workflows and cross-author reuse
necessitates precise methods for identifying elements. At first glance, elements can
be deemed identical if they are functionally equivalent, i.e, if they, for every possible
input, always produce the same output. However, such a stringent definition is
not helpful as it is fundamentally undecidable if two programs are identical in this
sense. Also, this definition of identity is not advisable for our setting because we
ultimately work in a retrieval setting: Imagine a user has chosen a workflow X for
analyzing her data set and is interested in exploring workflows that perform similar
analyses to learn about alternatives; such a user is naturally interested in elements
(and workflows) implementing a similar method, not an identical one [21]. In the
following, we discuss various methods to account for this fuzzyness in comparing
workflow elements at each of the three levels, i.e., at module level, at dataflow level,
and at workflow level.

Identifying modules

The configuration of each module specified in the t2flow workflow definition file
contains both the type of module and the code it is to be instantiated with. After
having cleansed from whitespace all the configurations, we used them as the way
to identify identical modules. We thus assume modules to be identical if their
cleansed configurations match exactly. Clearly, this is a very strict definition of
identity: however, please note that it still leads to a meaningful definition of workflow
similarity as workflows typically contain multiple (identical or not) modules. We
shall explore the impact of relaxing this definition in Section 3.3.

Identifying dataflows

Both myExperiment and Taverna provide identifiers for dataflows: while myExper-
iment assigns an integer to each workflow uploaded, Taverna assigns a 36 character,
alphanumeric string value to each dataflow created. When a dataflow is included
in a workflow as a subworkflow, the Taverna id is used to reference the dataflow.
The way this id is determined is not defined by Taverna; although it seems to be
meant to be able to uniquely identify a dataflow across systems (like a checksum),
we found this id to be not sufficient for this task. We both found the same Taverna
id to be assigned to different dataflows (e.g., workflows 1702 and 1703) as well as
identical dataflows having different Taverna ids (e.g., workflows 359 and 506). Fur-
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Figure 3.3: Occurrences of distinct dataflows in the analysis set for several methods
of identification

thermore, using an id would restrict our analysis to identity of dataflows. Therefore,
we devised three alternative ways to compare two dataflows:

• Method 1: We consider two dataflows as shared if the sets of modules are
identical;

• Method 2: We consider two dataflows as shared if the sets of modules and the
numbers of datalinks are identical;

• Method 3: We consider two dataflows as shared if their sets of modules, the
numbers of datalinks, and the numbers of global inputs and global outputs are
identical.

Note that we use multisets here: if two modules contained in a dataflow’s module
set have identical cleansed configurations, they are still both included in the set.
Figure 3.3 gives an overview of the dataflow occurrences found using Taverna ids
and each of our three methods. A first observation is that the number of dataflows
occurring (i.e. used) only once is just above 80% of the total number of distinct
dataflows when identification is based on method 1, 2, or 3 while it is 95% when the
identification is based on Taverna ids. Assuming that two dataflows must be highly
similar already if they consist of the same set of modules, we conclude that any
of the three methods appear more suitable than Taverna ids to study reuse across
workflows. Second, while method 1 assimilates several dataflows which do not share
a Taverna id, the addition of datalinks by method 2 - not surprisingly - re-adds
some distinction. However, the fact that the total number of distinct dataflows only
increases slightly (from 1,071 to 1,081) when going from method 1 to method 2
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shows that almost every identical set of modules is connected by the same number
of datalinks.

To gain more insight into this finding, we looked more closely into the dataflows
which had the same set of modules but were connected by different numbers of links.
We found that those only differ in the way they deal with outputs (use of additional
module outputs to propagate results to the final output). We further studied the
difference in results between methods 2 and 3 which affect only a group of three
dataflows (contained in workflows 1214, 1512 and 1513) which method 3 splits into
two groups of one and two dataflows, respectively. However, the differences in these
dataflows, again, only affects the number of inputs and outputs, but not the analysis
performed by the workflow itself.

Based on these observations, we decided to continue our study using only method
1. In the following, when we speak of ’distinct’ dataflows, we thus mean them to
differ by their respective sets of modules.

Identifying workflows

We follow the same thoughts for comparing workflows as for comparing dataflows.
We consider two workflows as identical if they are build from the exact same set of
dataflows and modules.

Note that we did not include the textual descriptions of modules and dataflows in
the process of identification. We did find workflows that are deemed related when
using the identification scheme established above but differ in the names assigned
to some of their modules. This difference does, however, not cause any structural
or functional divergence.

3.2 Results
Using method 1 outlined before, we found 3,598 of 10,242 modules, 1,071 of 1,431
dataflows and 792 of 898 workflows to be distinct. In the following, we look at
workflow interconnections and cross-author reuse on each of these structural levels
separately and also break up our analysis by different module categories.

3.2.1 Modules
We first looked at the general usage of modules by comparing the total numbers
of module occurrences with the number of distinct modules, and their use across
workflows and authors. On average, each module is used 2.85 times in 2.24 workflows
by 1.31 authors. Figure 3.4 shows the relative usage frequencies for all modules in our
set. Overall reuse of modules and cross-workflow reuse of modules closely correlate
(Pearson Correlation Coefficient > 0.99, p-value ≪ 0.01). The slight difference is
caused by single modules being used more than once in single workflows. Cross-
author reuse, on the other hand, is much lower, indicating that workflow authors
reuse their own workflow components more often than those created by others.
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Figure 3.4: Usage of modules overall, in workflows and by authors.

Maxima1 of 314 usages, 177 workflows and 39 authors and minima of 1 for sin-
gle module usage call for a more detailed investigation. To this end, we used the
categorization established in [87], organizing Taverna modules into the four main
categories local, script, subworkflow, and web-service. Note that subworkflows are
nested dataflows which will be discussed in more detail in Section 3.2.2. Within
these categories, modules are further divided into subcategories based on functional
or technological characteristics. The authors of [87] showed that overall usage of
modules varies greatly between these categories and subcategories. Here, we extend
their analysis by considering the reuse frequencies of modules within each category.

Usage statistics by category and by subcategory are shown in Table 3.1, listing
total and distinct numbers of modules for each subcategory, together with the num-
bers of workflows and authors using modules from these subcategories. Figure 3.5
exemplifies total, workflow-based, and author-based relative usage distributions in
subcategories beanshell and data conversion.

For the local category 27% of modules are distinct with a reuse rate of 44%. Mod-
ules from this category access functionality provided and executed by the SWFM.
This category is particularly interesting for workflow interconnections, as all of its
subcategories show comparably high reuse rates, overall as well as across workflows
and authors. This is especially true for conditional, user interaction, operation,
database access, testing and util: While for most module subcategories usage distri-
butions are similar to those shown in Figure 3.5, the former exhibit a much broader
distribution. The reason for this fact is that many of the respective modules are from

1Usage maxima not shown in Figure 3.4 for better visualization
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3 Component (Re)Use in Public Scientific Workflow Repositories

Figure 3.5: Exemplary usage distributions for beanshell and data conversion mod-
ules showing relative overall, cross-workflow and cross-author usage fre-
quencies.

the standard set that Taverna provides for building workflows, and used without fur-
ther modification by the author. Table 3.2, listing the top five most frequently used
modules, underpins this finding: These modules provide very common functionality
which is likely to be widely used.

54% of all script modules are distinct, of which 30% are reused. Within this cate-
groy, R scripts are far less often used than beanshell scripts and hardly used more
than once. Beanshell scripts, on the other hand, are the third most popular type
of modules with only 53% of its instances being distinct. 31% of them are reused.
This seems remarkable, as we would expect these modules to contain user-created
functionality for data processing. Yet, looking at the author-based distribution of
these modules reveals that almost 96% of them are used only by single authors. It
appears that users of beanshell modules have personal libraries of such custom-made
tools which they reuse quite frequently, while usage of others’ tools is rare.

Web-service modules show 39% distinctiveness, and 44% reuse. By far the most
popular types of web-service invocations are soaplab and wsdl modules. 24% of
soaploab modules and 39% of wsdl modules are distinct, and reuse is at 57% and
48%, respectively. As for scripts, reuse across authors is low, with single author usage
rates of 78% and 87%, respectively. This gap between overall and cross-author reuse
shows quite clearly that authors use and reuse certain web-services preferentially,
while these preferences are not too widely shared between workflow authors. An
exception to this are some rather popular, well-known web-services, such as Blasts
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3.2 Results

Category Subcategory Description T W A
local data conversion Regular expression splitter taking an optional

regex as input (default ’,’) and splitting an in-
put string into a list of strings.

314 177 39

local data conversion String list merger taking an optional string sep-
arator (default newline character) and merging
an input list of strings into one new string with
the original strings separated by the given sep-
arator

309 87 25

local string constant string constant newline character 173 114 28
local string constant string constant ’1’ 157 82 22
local data conversion string concatenator for two input strings 118 66 28

Table 3.2: Top 5 most used modules (T: times used; W: workflows used in; A: authors
used by).

SimpleSearch.

Returning from the categorized to the global view, Figure 3.6 shows the 300 most
frequently used modules and their cross-workflow and cross-author reuse. Overall
usage counts clearly follow a Zipf-like distribution. Zipf’s law [93] states that when
ranking words in some corpus of natural language by their frequency, the rank of
any word in the resulting frequency table is inversely proportional to its frequency.
Carrying over this distribution to modules in scientific workflows, it means that only
few modules are used very often, while usage of the vast majority of modules is very
sparse. The corresponding counts for reuse across workflows and authors exhibit the
same trend. Yet, they show peaks of increased reuse which mostly are synchronized
between the two. These peaks are caused by the aforementioned Taverna built-in
modules.

3.2.2 Dataflows
As shown in Figure 3.7, the pattern of usage for dataflows closely follows that of
single modules. In contrast, overall reuse is lower by 20%: Over 80% of dataflows
are used only once, and only 5% used more than twice. Usage across workflows
is slightly lower, implying that some workflows use single dataflows multiple times.
1,038 dataflows are used by single authors, 29 by two authors, and 1 each by 3,4,6
and 7 authors, resulting in an overall of only 3% cross-author reuse for dataflows.

As described in section 3.1.1, dataflows can be either top-level or nested. A
top-level dataflow is the same as the entire workflow, while a nested dataflow is a
subworkflow. Due to this dual nature of dataflows, three different cases of reuse may
occur: (a) Reuse of whole workflows as whole workflows; (b) Reuse of subworkflows
as subworkflows; (c) Reuse of whole workflows as subworkflows and vice versa.

Case (a) can be deemed undetectable when looking only at a repository, as re-
using a workflow does not mean re-uploading it (the reason why myExperiment still
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3 Component (Re)Use in Public Scientific Workflow Repositories

Figure 3.6: Usage counts of the 300 most used modules showing a Zipf-like distribu-
tion.

Figure 3.7: Dataflow occurrences in total, in workflows and by authors.

contains duplicates is investigated in the next section). To distinguish cases (b) and
(c), we grouped all dataflows in our analysis by their appearance as workflows or
subworkflows. 380 (75% distinct) dataflows are only present as nested, but not as
top-level dataflows. 153 (55%) nested dataflows are also published as standalone
top-level dataflows. For the second group we identified a total of 86 standalone
workflows which are used as subworkflows in these 153 cases. Numbers of reuse for
the two groups are also shown in Table 3.1.
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3.3 Discussion

We did not find significant differences in cross-author reuse between these groups.
For cross-workflow and overall reuse, on the other hand, major differences exist:
Numbers are as high as 40% for those subworkflows which have a corresponding
standalone workflow published2, while for those that don’t they are at only 19%.
This can be interpreted in two ways. First, it indicates that authors publish the
dataflows they use most often as standalone workflows. This eases their inclusion
as nested, functional components inside other workflows. On the other hand, the
finding that such dataflows are, for the most part, not used by different authors
in derivative work shows that modular extension of existing workflows created by
others is still uncommon.

3.2.3 Workflows (Top-Level Dataflows)
Of the 898 workflows, 83 appear more than once in the repository, 19 of which where
uploaded by more than one user. This indicates that there are users which upload
workflows which are equal (by our definition of identity) to already existing ones.
Figure 3.8 shows author contributions of workflows and their dataflows, both total
and distinct. It reveals that a single user (the one with the highest overall number
of workflows uploaded) is responsible for the majority of the cases of duplicate work-
flows. By looking into this in more detail, we found that all of this user’s duplicates
are caused by equivalent workflows being uploaded in both scufl and t2flow for-
mats. Figure 3.8 also shows that this user alone has authored 23% of all workflows
analyzed. Communication with the respective author, who is part of the Taverna de-
velopment team, revealed that most of his workflows serve the purpose of testing the
functionality of Taverna-provided modules and giving examples for their usage. The
remainder of duplicate workflows is largely due to users following tutorials including
uploads of workflows to myExperiment: They upload an unmodified workflow.

As another interesting finding, the top 10 single authors (groups 14 through 23)
have created 554 worfklows, i.e., app. 62% of all workflows in our analysis set.
Conversely, 43% of all 124 authors have only created one workflow.

3.3 Discussion
We studied reuse of elements in scientific workflows using the to-date largest public
scientific workflow repository. In contrast to previous work, our analysis covers all
types of modules and looks into reuse not only at the general level, but also by
author and by module category. In this section, we discuss our results and some of
the decisions we took when defining our methods. We also point to how our findings
should influence next steps towards meaningful similarity measures for scientific
workflows.

2The standalone workflow itself was not included in reuse computation.
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Figure 3.8: Authors grouped by the total number of workflows they have created.
Total amounts of workflows, and averages of distinct workflows, and total
and distinct dataflows shown for each group.

Module identification. We used exact matching of the modules’ configurations to
determine module identity. Thus, we only identify verbatim syntactic reuse. To
assess the impact of this limitation, we computed pairwise Levenshtein edit distance
between all modules3. We compared the level of reuse using our strict definition of
module identity with one that assumes modules as identical if their edit distance
is below a given threshold. Results are shown in Figure 3.9. Clearly, relaxing the
threshold even until 20% difference does not have a significant impact on the number
of distinct modules. On the other hand, relaxing syntactic similarity comes with the
risk of assimilating modules with different functionality, and thus, different usage
intent; a problem also present in [82].

Of course, string similarity is a purely syntactic measure, while modules identity
in reality is a semantic issue. Thus, more differentiated solutions could be explored.
[78] additionally compares the numbers and types of input/output ports, while [42]
suggested to use semantic or functional information provided by catalogues of tools.
However, both approaches have their problems. Regarding the former, one must
consider that the majority of modules in our data set only have a single input and
a single output port, mostly of type String. On the other hand, the latter depends
on the existence of well-curated ontologies for describing the function of a module,
and on authors using these ontologies to tag their modules4. Another option would

315 modules with configurations longer that 20,000 characters were excluded from computation.
Results were normalized using the lengths of the compared module configurations. Only modules
from equal functional subcategories where compared.

4Note that myExperiment allows tagging of workflows, but does not enforce a fixed vocabulary
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3.3 Discussion

Figure 3.9: Change in overall usage frequencies for modules when matched by 95, 90,
85, and 80 percent similarity regarding their Levenshtein edit distance.

be to exploit provenance traces to infer functional similarity between modules. If
two sets of provenance data can be mapped onto each other, so might the modules
responsible for the corresponding changes in the data. Unfortunately, repositories
specifically targeted at collecting provenance are just starting to emerge [67], and
provenance data is currently not available for large groups of workflows.

Reuse characteristics. As we have shown, the most commonly used modules are
generic string operations and string constants. More generally, the main glue points
of workflows are modules with non-specific functionality, provided by the system and
used as-is. As such, these modules provide neither specialized, nor author-created
functionality, limiting their usefulness for detecting both cross-workflow and cross-
author reuse. Other types of modules are most often only used across workflows
created by single authors, and their reuse frequencies are lower than those of unspe-
cific ones. Yet, these modules are especially interesting: The custom-made nature of
modules from the script category differentiates them from other modules in terms of
their highly user-provided functionality. Thus, if such a module is found more than
once, it is an indication of non-trivial reuse. The case is similar for web-services. On
the other hand, even apparently trivial operations should not be ignored completely.
For instance, a string constant containing a complex XML configuration file is highly
specific and its reuse a strong indicator for functional similarity.

Thus, the suitability of modules or groups of modules to determine functional
reuse needs further investigation. For scalability and practicability, a general and
automated approach has to be found to distinguish such cases. One solution could
use TF/IDF scores [75] to assign weights to modules based on their usage frequencies.
The Zipf-like distribution of module frequencies suggests such an approach.

Workflow Interconnections. Our analysis focussed on characterizing modules that
are re-used. An equally valid view is to ask how large the overlap in modules is

for this purpose.
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between two workflows. 769 of our 898 workflows share one or more modules with
at least one other workflow. On average, each workflow is thus connected to 92.12
other workflows by the use of at least one common module, averaging at 7.23 distinct
modules being shared between two workflows. This is remarkable given the findings
from Section 3.2.1, as the majority of modules is shown to only be present in single
workflows. Apparently, the remaining one third of modules interconnect workflows
quite densely.

Figure 3.10 shows how workflows cluster by shared modules. In the figure, two
workflows are connected if they share at least three modules. The figure clearly
shows clusters of highly interconnected workflows. We manually studied a sample
of these clusters and found them to be highly similar in function.

User assistance. The fact that module reuse is uncommon across authors could be
interpreted in several ways. One explanation could be that authors are simply not
aware (enough) of other people’s dataflows and workflows. This situation could be
alleviated by using the repository for providing better support for designing scien-
tific workflows [21]. Some work has started already in this direction; for instance,
[92] presents a system which recommends web-services for use during workflow de-
sign. Accomplishing such functionality for other types of modules and even for
subworkflows is highly desirable.

3.4 Summary
This chapter introduced the first study performed on reuse of scientific workflows
which has considered reuse at various levels of granularity (module, dataflows, and
workflows), at various categories of modules, and also differentiated by workflow
authorship. Thereby, we provided three major contributions.

First, we introduced and compared different methods to identify modules,
dataflows, and whole workflows which we deem suitable for detection of reuse. Our
methods allows us to provide fine-grained analyses, and to distinguish functionally
important cases of reuse from trivial ones.

Second, our study is the first to consider authorship. This allowed us to char-
acterize different kinds of users depending on their usage of the repository, ranging
from single time ’authors’ uploading duplicate workflows when following a tutorial,
to advanced authors creating many functionally interlinked workflows. An important
observation obtained by entering this level of detail is that while 36% of workflow
elements are reused, only 11% of workflow elements are used by more than one au-
thor. Cross-author reuse for dataflows is even lower at 3%. This calls for actions to
make authors more aware of the repository contributions by others.

Third, our study investigated reuse and duplication of workflow elements
in more detail than ever before. Using a categorization of modules helped to better
characterize re-use in terms of the types of modules that are reused. Furthermore, it
showed that the appearance of single modules in multiple workflows is not per se an
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3.4 Summary

Figure 3.10: Excerpt of a network of workflow-workflow interconnections by at least
3 mutual modules. Labels are myExperiment workflow ids.

indication of functional similarity, and that not all modules are equally well suited
for deriving information about functional workflow similarity.

We believe that our findings are important for future work in scientific workflow
similarity.
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4 A Benchmark for Scientific Workflow
Similarity Search

In this chapter, we comparatively investigate and comprehensively evaluate various
existing methods for scientific workflow comparison. To do so, we first define a set
of interconnected subtasks of which the process of scientific workflow comparison is
comprised, and dissect each of the investigated approaches wrt these subtasks. We
base our evaluation on an extensive, manually collected gold-standard of similarity
ratings over almost 1500 workflows from the myExperiment repository.

Figure 4.1 shows two exemplary scientific workflows from the myExperiment
repository. Recall that scientific workflows typically model a dataflow with a struc-
ture resembling a directed acyclic graph (DAG) (see Section 2.1.1). They have
global inputs and outputs, data processing modules which operate on the data, and
datalinks which connect the former and thereby define the flow of data from one
module to the next. Each module has attributes associated with it, such as a label,
input and output signatures, the type of operation to be carried out, and, if appli-
cable, a set of static, data independent parameters, such as the url of a web-service
to be invoked. Upon upload to a repository, workflows typically are further anno-
tated with a title, a general description of their functionality, keyword tags, and the
uploading author.

As outlined in Section 2.3.2, existing approaches to similarity measures for these
scientific workflows can be classified as being either annotation-based or structure-
based, depending on which of the information described above they use. Each of
these classes of algorithms has its particular strengths and weaknesses: Annotation-
based approaches are independent of the workflows’ formats and can be used to
compare workflows both across different SWFM, and across multiple repositories
[25]. Yet, they only work if the workflows under comparison have annotations,
which may or may not be the case for a workflow stored in a public repository by an
arbitrary user. Approaches for structural workflow comparison, on the other hand,
can be applied without such backing human-provided textual knowledge. Yet, they
have to assess a workflow’s functionality from the information contained in its DAG
structure and the modules it is composed of. As another source of data, provenance
represents concrete execution traces of workflows. Such traces would allow, for in-
stance, to take execution parameters and runtime information into account as an
additional means of comparison. However, specialized provenance databases have
just started to emerge (e.g., in the ProvBench initiative [2]), and we are not aware
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Figure 4.1: Sample scientific workflows from myExperiment: (a) ID: 1189, Title:
KEGG pathway analysis, (b) ID: 2805, Title: Get Pathway-Genes by
Entrez gene id.

of any workflow repository also containing real execution traces.

Which approach to scientific workflow comparison provides best results, and how
different aspects of workflows contribute to their functional similarity is still an
open question. There have been numerous studies investigating both annotational
[25, 82, 39] and structural [78, 76, 82, 8, 43, 39, 88] approaches, but their com-
parison is hindered by a number of factors. Firstly, as shown in Chapter 3, the
process of scientific workflow comparison entails several steps from comparison of
single modules to comparison of whole workflows [8] - each of which may be treated
differently in the methods considered. This makes it hard to determine how single
aspects contribute to workflow similarity, and which approach to a specific step of
the comparison process provides best results. Secondly, the evaluation of a proposed
method is often done by manual inspection of the methods concrete output, or on
a proprietary dataset, both hampering repeatability. To compare multiple meth-
ods and configurations it is necessary to have a method-independent, gold-standard
corpus to evaluate on. To the best of our knowledge, for scientific workflow simi-
larity a gold-standard corpus of decent size does not exist, yet. Reference corpora
exist for business process models [33, 34, 32] but these cannot be used easily be-
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cause (1) they often come without gold standard ratings and (2) business workflows
typically contain rich control structures calling for other similarity measures than
purely data-driven scientific workflows [61, 90]. Other work uses synthetic workflows
to test similarity measures (e.g.,[51]), while we focus on real-life workflows. Thirdly,
the presented evaluations vary with the underlying use case. For instance, similarity
measures are a requirement for both clustering and similarity search. The results
derived from the corresponding evaluations are difficult to compare.

Addressing these issues, we here present the results of a comprehensive re-imple-
mentation and evaluation effort for similarity ranking and retrieval of scientific work-
flows. Specifically, we make the following contributions:

1. We introduce a conceptual framework that clearly separates the various tasks
of workflow comparison, and use it to re-implement a comprehensive set of
existing similarity measures.

2. We present an expert-generated corpus of over 2000 similarity ratings for sci-
entific workflows contributed by 15 scientific workflow experts from four inter-
national groups - an effort which, to the best of our knowledge, has not been
made public before at this extent.

3. We evaluate several algorithms, both annotational and structural ones, on the
collected corpus of similarity ratings, showing how each of their steps con-
tributes to the algorithms’ quality, and repeat previous experiments where
possible. We also investigate how different similarity measures can be success-
fully combined in ensembles.

4. We additionally investigate how knowledge derived from the repository as a
whole can be applied to structural workflow comparison, and show that these
modifications benefit result quality or reduce computational complexity, or
even both.

In the following, we first introduce our framework for workflow comparison and,
reviewing different published methods in detail, show how they were implemented
in this framework. In Section 4.2 we give an overview of previous findings on as-
sessing workflow similarity measures. Our experimental setup, including creation of
the gold standard corpus, is described in Section 4.3, followed by presentation of our
evaluation results in Section 4.4. We conclude in Section 4.5.

This work appeared in [79].

4.1 A Framework for Scientific Workflow Similarity
The functionality of a scientific workflow is determined by the data processing mod-
ules it is composed of, and how these modules are connected by datalinks. While
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we are ultimately interested in comparing whole workflows, each module represents
a distinct functional entity in its own right. As all previous work, we make the
reasonable assumption that modules are deterministic and two identical instances
of a module are functionally equivalent. Yet, any two different modules may carry
the same or very similar functionality. For instance, two different web-services, or a
web-service and a locally invoked script, may be functionally equivalent. Thus, to
compare scientific workflows wrt their functionality, similarity has to be established
on two levels: the level of single modules and the level of whole workflows.

Following this dichotomy, the process of workflow comparison can be conceptually
divided into a series of interdependent subtasks: First, the similarity of each pair of
modules from two workflows has to be determined by pairwise module comparison.
Second, using these pairwise module similarities, a mapping of modules onto each
other needs to be established. Third, the established mapping is used for topolog-
ical comparison of the two entire workflows. Finally, normalization of the derived
similarity value wrt the sizes of the compared workflows may be desirable.

Note that this setup is not unrelated to that of relational schema matching [72],
where mappings between attributes and relations are established. Yet, the elements
compared and the underlying intention are quite different: While schema matching
compares attributes and relations to establish (mostly) one-to-one equivalences, we
here use mappings between modules based on their attributes to derive similarity
of entire workflows. Workflow modules are also much richer objects compared to
attributes in a schema. Finally, in contrast to schemas workflows have a direction
(from source to sink) that is functionally important and that could be exploited for
similarity assessment.

Figure 4.2 drafts the comparison process in the context of our similarity frame-
work. This framework implements the identified steps and allows to uniformly ap-
ply and combine them. When two workflows are submitted to the framework, their
structure and annotations are separated and made available to the corresponding
methods of comparison. Before the actual comparison is done, preprocessing of the
underlying data may be applied. For annotations, such preprocessing includes the
removal of stop words from the workflow descriptions. Using external knowledge
derived from the repository, the workflows’ structure can be preprocessed in a sim-
ilar manner. We will explore the application of such repository-derived knowledge
more closely in Section 4.1.1. As for the structural comparison process, we refine the
task of topological comparison by preceding it by a step of topological decomposition
of the workflows suitable for the intended comparison. This is useful, for instance,
when topological comparison is based on substructures of workflows, e.g., subgraphs
or paths. The workflows will then first be decomposed into the respective substruc-
tures, on which the module mapping is performed. The framework is completed by
the option of using either a single similarity measure or an ensemble of two or more
measures to derive the overall workflow similarity.

In the following, we look at each of the proposed steps of workflow comparison and
how they are approached in previous work more closely. An overview on previous
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Figure 4.2: Scientific workflow similarity framework

work reflecting the diversity of approaches taken so far can be found in Table 4.1. We
restrict our study to methods targeting the modules, structure and/or annotations of
workflows as this is the type of data that can be found in current repositories. While
approaches making use of workflow provenance or rich semantic annotations on
workflows and modules have been studied in related areas, e.g., [6, 12, 15], workflows
currently found in public repositories are typically not associated with such data.

4.1.1 Structure-based Measures
Pairwise Module Comparison

In order to apply any of the structural methods for comparing whole workflows, a
way of comparing the workflows’ elements is needed. Previous work largely relied
on module identification by matching of labels [76, 43, 88], i.e., the names given
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to a specific instance of a module by a workflows author. In workflow repositories
with a heterogeneous author base, however, modules are bound to be labeled non-
uniformly. One way of dealing with this heterogeneity is to resort to the matching of
other, less varying attributes, such as the modules’ types [39]. Another option is to
compare labels by their Levenshtein edit distance [8]. To take full advantage of the
information contained in a modules specification, however, it seems advantageous
to compute module similarity based on a variety of attributes associated with each
module, as done in [78]. Which attributes are present in a given module largely
depends on the type of operation it provides. For instance, the uri of a web-service
to be invoked will only be present in modules designed to invoke a web-service but
not in modules performing local operations. Thus, for maximum flexibility, both the
set of attributes to compare and the methods to compare them by are configurable
in our framework, together with the weight each attribute has in computation of
overall module similarity. This approach subsumes all previously proposed meth-
ods for module comparison by using appropriate configurations. In our evaluation
(see Section 4.4), we shall investigate the following configurations pX for module
comparison:

pw0, used as a default, assigns uniform weights to all attributes, and compares
module type, and the web-service related properties authority name, service name,
and service uri using exact string matching. Module labels, descriptions, and scripts
in scripted modules are compared using Levenshtein edit distance [56].

pw3 compares single attributes in the same way as pw0 but uses higher, but
not uniform weights for labels, script and service uri, followed by service name and
service authority in the order listed, similar to [78].

pll disregards all attributes but the labels, and compares them using the Leven-
shtein edit distance, resembling the approach taken in [8].

plm disregards all attributes but the labels, and compares them using strict string
matching as done in [76, 43, 88].

Module Mapping

After generating all pairwise module similarities, a mapping of the modules has to be
established. Such a mapping selects the best similarity match between the modules
from the two compared workflows. When using strict matching of singular module
attributes to derive module similarity [76, 43, 88, 39], such as the labels, the module
mapping is implicitly given as the set of matching modules. When module com-
parison is based on more complex similarity assessment, the best similarity match
between the modules of the two compared workflows has to be found explicitly.
Previous approaches to this task include greedy selection of mapped modules [78]
and computation of the mapping of maximum overall weight [8], both of which have
been included in our framework. For clarity of presentation, in the following we only
refer to the latter approach of maximum weight matching (mw). We compare both
approaches in Section 4.4.1.

Additionally, when an order of the modules to be mapped is given by the topolog-
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ical decomposition of the workflows, their maximum weight non-crossing matching
(mwnc) [63] can be determined to take the given order of modules into account.
That is, given two orderings of modules (m1, ..mi, ..mk) and (m′

1, ..m′
j , ..m′

l), a map-
ping of maximum weight is computed where the result cannot contain two mappings
(mi, m′

j) and (mi+x, m′
j−y) with x, y ≥ 1.

Topological Workflow Comparison

Regarding topological comparison of scientific workflows, existing approaches can
be classified as either a) structure agnostic, i.e., based only on the sets of modules
present in two workflows, [78, 76, 82, 8]; b) based on substructures of workflows, such
as maximum common subgraphs [76, 43, 39] or graph kernels derived from frequent
subgraphs [39]; or c) using the full structure of the compared workflows [88]. We
include an approach to topological comparison for each of these classes. We denote
the DAG of a workflow as Gwf = (Vwf , Ewf ).

Sets of Modules. Analogous to the similarity measure described in [78, 76, 82, 8],
two workflows wf1 and wf2 are treated as sets of modules. The additive similarity
score of the module pairs mapped by maximum weight matching (mw) is used as the
non-normalized workflow similarity nnsimMS , with sim(m, m′) denoting a module
pairs similarity value:

nnsimMS =
∑

sim(m, m′) | (m, m′) ∈ mw(Vwf1, Vwf2)

Sets of Paths. As a slightly relaxed version of using the maximum isomorphic
subgraph for workflow comparison [76, 43, 39], the sets of all paths two DAGs are
comprised of can be used to compare them by their maximum similar subgraph [54].
We follow this notion and topologically decompose each workflow into its set of paths:
Starting from each node without inbound datalinks (the DAGs source nodes), all
possible paths ending in a node without further outbound links (the DAGs sink
nodes) are computed. All pairs (P, P ′) from the so collected sets of paths PSwf1
and PSwf2 are compared using the maximum weight non crossing matching scheme
(mwnc) to determine the additive similarity score for each pair of paths:

sim(P, P ′) =
∑

sim(m, m′) | (m, m′) ∈ mwnc(Vwf1, Vwf2)

To determine the maximum non-normalized similarity of the two workflows wrt
their so compared sets of paths, a maximum weight matching (mw) of the paths is
computed on the basis of these pairwise path similarity scores:

nnsimP S =
∑

sim(P, P ′) | (P, P ′) ∈ mw(PSwf1, PSwf2)
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Graph Edit Distance. Analogous to the work presented in [88], the full DAG struc-
tures of two workflows are compared by computing the graph edit distance using the
SUBDUE [66] package. SUBDUE allows labels to identify nodes in a graph, which
it uses during the graph matching process. To transform similarity of modules to
identifiers, we set the labels of nodes in the two graphs to be compared to reflect
the module mapping derived from maximum weight matching of the modules during
conversion of the workflows to SUBDUEs input format.

The workflows’ non-normalized similarity is then computed as

nnsimGED = −costGED

For computing graph edit distance, we keep SUBDUEs default configuration which
defines equal costs of 1 for any of the possible edit operations (as in [32]). Testing
several different weighting schemes did not produce significantly different results.

Normalization

Whether or not to normalize the similarity values derived from topological workflow
comparison and how it is to be done strongly depends on the intended use case.
When, as in our study, the interest is to determine overall workflow similarity, the
goal of the normalization step will be to maximize the information about how well
two workflows match globally. As an example, consider two sets of two workflows
each, containing 2 and 3 modules, and 98 and 99 modules, respectively, compared
by graph edit distance. If in both cases the workflows match perfectly, with the
exception of 1 module and 1 edge, the graph edit distance will be 2 in both cases.
Yet, intuitively, the similarity of the workflows in the second set would be deemed
higher. Indeed, experimental evaluation showed that normalization wrt workflow
size provides significantly better results (see Section 4.4.1).

The step of normalization has been approached rather heterogeneously in previous
work (see Table 4.1). Next to the consideration of workflow size taken therein,
our general intention is to acquire similarity values in the range of [0,1]. For set
based topological comparisons we resort to a variation of the Jaccard index for set
similarity: The Jaccard index is used to express the similarity of two sets A and B
by their relative overlap |A∩B|

|A∪B| which is equivalent to |A∩B|
|A|+|B|−|A∩B| . Our modification

reflects the fact that mapped elements of our sets of modules or paths are mapped
by similarity, not identity. Thus, the size |Vwf1 ∩ Vwf2| of the overlap between the
two module sets, for instance, is replaced by the overlaps maximum similarity score
captured by nnsimMS to derive the overall module set similarity of two workflows:

simMS = nnsimMS

|Vwf1| + |Vwf2| − nnsimMS

The rational here is that where the classical Jaccard index compares the number
of mutual elements in the sets with their overall number of (distinct) elements, our
modification compares the amount of similarity of similar elements from the sets
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with the non-similar remainder. If two workflows are identical, each module has
a mapping with a similarity value of 1. Then nnsimMS = |mw(Vwf1, Vwf2)| =
|Vwf1| = |Vwf2|, and simMS = 1.

For path sets, the normalization is analogous with |PSwf | and nnsimP S .

For graph edit distance, we normalize the obtained edit cost by the maximum cost
possible. This maximum cost depends on the costs assigned to each edit operation.
For our configuration of uniform costs of 1, we thus use the following normalization:

simGED = 1 − costGED

max(|Vwf1|, |Vwf2|) + |Ewf1| + |Ewf2|
.

The rational here is that in the worst case, each node in the bigger set of nodes is
either substituted or deleted, while for the edges a complete set of insertions and
deletions may be necessary.

Including Repository Knowledge

Knowledge derived from a repository of scientific workflows [87, 81], can be used in
the structural comparison process. We investigate two possible applications of such
knowledge.

Module Pair Preselection. When comparing sets of modules Vwf1 and Vwf2 from
two scientific workflows, the general approach is to compare each pair of modules
from the Cartesian product Vwf1×Vwf2 of the workflows’ module sets. To reduce the
amount of module pair comparisons, restrictions can be imposed on candidate pairs
by requiring certain module attributes to match in a certain sense. As modules of
the same type are more likely to carry similar functionality, a first strategy for can-
didate selection requires module types to match. As a second, less strict selection
strategy, we cast module types to equivalence classes based on the categorization
proposed in [87]. For instance, one such class holds all web-service related module
types. Modules within each such class may be compared and mapped onto each
other. This introduction of type equivalences was motivated by the observation that
in the used dataset of Taverna workflows, especially web-service modules are typed
with a variety of identifiers, such as ’arbitrarywsdl’, ’wsdl’, or ’soaplabwsdl’.

Importance Projection Preprocessing. Not all modules in a scientific workflow
contribute equally to the workflows specific functionality: Modules used most fre-
quently across different workflows often provide trivial, rather unspecific functional-
ity, such as splitting a string into a list of strings (see Section 3.2.1). To account for
this, we assign a score to each module indicating the importance of the module for
a workflows specific functionality. Only modules with a score above a configurable
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(a) (b)

Figure 4.3: Sample importance projection of scientific workflow 1189 (a) and 2805
(b) (see also Fig. 4.1).

threshold are kept for further use in module and workflow similarity computation.
The workflow is thus projected onto its most relevant modules. In order to make
full use of this projection in all our structural similarity measures, all paths between
important modules are preserved as edges in terms of the transitive reduction of the
resulting DAG. That is, if two important modules are connected by one or more
paths along non-important modules in the original workflow, they are connected by
one edge in the Importance Projection (ip). Figure 4.3 shows the resulting projec-
tion of our example workflows 1189 and 2805. The selection of important modules is
currently done manually based on module types. Modules that perform predefined,
trivial local operations are removed.

4.1.2 Annotation-based Measures
Purely annotation-based methods use only textual information recorded with the
workflows in a repository. Such information includes the workflow’s title, a free form
text description, and assigned keyword tags. Two approaches to annotational sim-
ilarity of scientific workflows have been proposed which we include in our framework:

Bag of Words. Following the work of [25], workflows are compared by their titles
and descriptions using a bag-of-words approach. Both title and description are
tokenized using whitespace and underscores as separators. The resulting tokens are
converted to lowercase and cleansed from any non alphanumeric characters. Tokens
are filtered for stopwords. The workflows’ similarity is then computed as

simBW = #matches

#matches + #mismatches

where #matches is the number of tokens found in both workflows’ title or descrip-
tion, and #mismatches is the number of tokens present only in either one workflow.
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This quotient again corresponds to the Jaccard index for set similarity. Please note
that our algorithm presented here does not account for multiple occurrences of single
tokens. We did try variants that do so, but evaluation showed that these variants
performed slightly worse than the one described here (data not shown).

Bag of Tags. The keyword tags assigned to scientific workflows in a repository
can also be used for similarity assessment, as done in [82]. The tags assigned to a
workflow are treated as a bag of tags and calculate workflow similarity in the same
way as in the Bag of Words approach described above. Following the approach of
[82], no stopword removal or other preprocessing of the tags is performed. This also
aligns with our expectation of tags to be specifically preselected by the workflow
author.

4.2 Previous Findings
After the in depth review of existing approaches to the various steps of scientific
workflow comparison in the previous section, we here summarize results of all pre-
vious evaluations we are aware of. The concrete type of evaluation the proposed
methods were subjected to varies with the intended use case, e.g., clustering or sim-
ilarity search. Additionally, evaluation settings vary greatly from manual inspection
of a methods output [25, 82, 78, 43] to systematic evaluation against a small (and not
publicly available) set of expert provided truth [8] or against ground truth derived
from another method [39]. The following findings have been reported:

Module Comparison. [8] found that similarity based on semantic annotations of
workflow modules provides better results in workflow retrieval than using module
similarity based on edit distance of their labels. Note that in this work, semantic an-
notations were manually assigned to modules, whereas scientific workflows in public
repositories usually don’t contain such semantic information. Comparing modules
by matching of labels, [43] found the lowercasing of labels to slightly improve ranked
retrieval on the example of a single query workflow.

Topological Comparison. [78] found workflows regarded similar by comparison
of their sets of modules to also be structurally similar upon manual inspection,
indicating a correlation between the modules used in a workflow and its topology.
Similarly, comparing the use of maximum common isomorphic subgraphs (MCS)
and module label vectors for workflow comparison, [76] found that both methods
deliver similar results. Conversely, [39] found MCS to perform better than bags of
modules, and both of them to be slightly outperformed by graph kernels.

Normalization. [43], as the only study we are aware of to provide comparative in-
formation about this aspect, suggests that normalization wrt workflow size improves
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results of scientific workflow comparison.

Annotational Comparison. Approaches based on workflow annotations have been
generally reported to deliver satisfying results [25, 82, 39]. They have been found
to perform either as good as or better than structural approaches in workflow com-
parison [82, 39].

4.3 Experimental Setup
The goal of this work is an unbiased and comprehensive benchmark of different
methods for similarity search in a corpus of scientific workflows. To this end, we re-
implemented all methods described in Section 3, structured according to the steps of
our comparison framework. We collected a quite comprehensive corpus of similarity
ratings for a set of Taverna workflows from the myExperiment scientific workflow
repository [74]. A second set of workflows was assembled from the Galaxy online
repository [45]. Gold standard ratings were obtained from 15 field experts and
aggregated using median ranking. We compare all algorithms regarding ranking
correctness and retrieval precision. These topics are discussed in more detail in the
following. Note that all data are made publicly available.1

4.3.1 Workflow Dataset
myExperiment provides a download of all workflows publicly available in its repos-
itory. For Taverna workflows, which make up approx. 85% of myExperiment [81],
this dataset contains an RDF representation of the workflow structure, along with at-
tributes of the modules used and annotations provided by authors. We transformed
all workflows into a custom graph format for easier handling. During this transfor-
mation, subworkflows are inlined and input and output ports were removed. The
complete dataset contains 1483 workflows. myExperiment - and thus our dataset -
is generally domain agnostic. To match the expertise of our expert curators, we fo-
cussed on workflows from the life sciences domain in the evaluation. We will discuss
possible implications of this decision in Section 4.5.

To investigate transferability of findings to other workflow formats, we also created
a secondary eval data set of 139 Galaxy workflows from the public Galaxy repository.
These workflows were transformed into the same internal format as described above
and processed using the exact same methods. We performed most experiments with
the larger myExperiment data and used the Galaxy data set as independent vali-
dation and to study data set specific properties and their implications on algorithm
performance (see Section 4.4.3).

1https://www.informatik.hu-berlin.de/forschung/gebiete/wbi/resources/flowalike.
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4.3.2 Expert Ratings
We conducted a user study to collect manually assigned similarity ratings for se-
lected pairs of scientific workflows. Overall, 15 domain experts from six different
institutions participated. Ratings were obtained in two phases:

In a first experiment, the goal was to generate a corpus of ratings independent of
a concrete similarity measure to make it suitable for evaluation of large numbers of
different measures, and measures to be developed in the future. 24 life science work-
flows, randomly selected from our dataset, (called query workflows in the following)
were presented to the users, each accompanied by a list of 10 other workflows to
compare it to. To obtain these 10 workflows, we ranked all workflows in the reposi-
tory wrt a given query workflow using a naive annotation based similarity measure
and draw workflows at random from the top-10, the middle, and the lower 30. The
ratings were to be given along a four step Likert scale [58] with the options very sim-
ilar, similar, related, and dissimilar plus an additional option unsure. Unsure user
ratings were not further considered in the evaluation. The ratings collected in this
first experiment were used to rank the 10 workflows for each of the query workflows.
The individual experts’ rankings were aggregated into consensus rankings using the
BioConsert algorithm [20], extended to allow incomplete rankings with unsure rat-
ings. On the basis of the generated consensus rankings, we evaluate the algorithms’
ranking correctness in Section 4.4.1. Figure 4.4 inspects inter-annotator agreement,
comparing each single expert’s rankings to the generated consensus using the ranking
correctness and completeness measures described below in section 4.3.3. While we do
see a few outliers, most experts are rather d’accord about how workflows are ranked.

In a second experiment, the selected algorithms were run to each retrieve the
top-10 similar workflows from our complete dataset of 1483 Taverna workflows for
eight of the 24 query workflows from the first experiment. The results returned
by each tested algorithm were merged into single lists between 21 and 68 elements
long (depending on the overlap in the algorithm’s top-10). Naturally, these lists did
contain workflows already rated in the first experiment. Experts were now asked
to complete the ratings using the same scale as before. The ratings provided in
this second experiment qualify each workflow in the search results of each of the
used algorithms wrt their user-perceived similarity. Using these completed ratings
we evaluate the algorithms’ retrieval precision in Section 4.4.2 (definition below).
Different experts’ opinions were aggregated as the median rating for each pair of
query and result workflow.

Altogether, we presented 485 workflow pairs (24 x 10 from the first experiment
and 255 non-overlapping pairs from the second) to the 15 experts and received a
total of 2424 ratings.
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Figure 4.4: Mean ranking correctness (bars) with upper and lower stddev (error-
bars), and mean ranking completeness (black squares) for single experts’
rankings compared to the ranking derived as BioConsert expert consen-
sus.

4.3.3 Evaluation Metrics
As proposed in previous work [8], we use the measures of ranking correctness and
completeness [19] to compare the algorithms’ rankings against the experts’ consensus
rankings in our first experiment. To evaluate the algorithms’ retrieval performance
on the ratings from our second experiment, we compute precision at k of the algo-
rithmic search results.

Ranking Correctness. For ranking correctness, the order of each pair of elements
in the rankings is compared. If in both rankings the elements are not tied and their
order is the same, the pairs order is called concordant. If their orders differ, the pair
is discordant. Pairs tied in either of the two rankings do not count for correctness,
which is computed as

correctness = #concordant − #discordant

#concordant + #discordant

where #concordant and #discordant are the numbers of concordant and discordant
pairs, respectively. Correctness values range from -1 to 1, where 1 indicates full
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correlation of the rankings, 0 indicates that there is no correlation, and negative
values are given to negatively correlated rankings.

Ranking Completeness. Ranking completeness, on the other hand, measures the
number of pairs of ranked elements that are not tied in the expert ranking, but tied
in the evaluated algorithmic ranking.

completeness = #concordant + #discordant

#pairs_ranked_by_experts

The objective here is to penalize the tying of elements by the algorithm when the
user distinguishes their ranking order.

Retrieval Precision at k. The algorithms’ retrieval precision at k is calculated as

P@k(result list) = 1
k

k∑
i=1

rel(ri)

at each rank position 0 < k ≤ 10, with rel(ri) ∈ 0, 1 being the relevance of the
result at rank i. As the expert ratings on whether a workflow is a relevant result
for similarity search with a given query workflow are quaternary by the Likert scale
used, we consider different relevance thresholds: very similar, similar or related. For
instance, only workflows with a median rating of similar are regarded to be relevant.

4.4 Results
We now present the results obtained from the two experiments on algorithmic work-
flow ranking and workflow retrieval. We start with a baseline evaluation, focussing
on the methods of comparing workflows proposed in previous work: Sets of Modules
[78, 76, 82], workflow substructures [76, 43, 39] in terms of their Sets of Paths [54],
Graph Edit Distance [88], Bags of Words [25], and tag-based workflow comparison
[82, 39] as Bags of Tags. We then investigate each step of workflow comparison in
detail, from different approaches to module comparison to the inclusion of external
knowledge in the comparison process. As we will see, each of these steps plays a
defining role for result quality, and using the right settings can significantly improve
result quality.

4.4.1 Workflow Ranking
Baseline Evaluation

Figure 4.5 shows mean ranking correctness and completeness over all query workflows
for each of the similarity algorithms under investigation. Note that for Graph Edit
Distance, we allowed match cost computation of each of the 240 pairs of scien-
tific workflows to take a maximum of 5 minutes. 23 pairs not computable in this
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Figure 4.5: Mean ranking correctness (bars) with upper and lower stddev (error-
bars), and mean ranking completeness (black squares) for similarity al-
gorithms against BioConsert expert consensus. Numerical values denote
mean average correctness.

timeframe were disregarded in the evaluation. All algorithms are used in their ba-
sic, normalized configurations with uniform weights on all module attributes. The
simBW algorithm has the best results in terms of ranking correctness. simBT and
the structural similarity measure simP S almost tie, followed by simMS . simGE

delivers worst performance and is the only algorithm in this set with a statisti-
cally significant (p<0.05, paired ttest) difference to simBW . These findings largely
confirm those of previous work (see Section 4.2) that annotational measures outper-
form structural workflow similarity — in certain settings. The good performance
of simBW is not surprising: Well written titles and descriptions capture the main
functional aspects of a workflow, and provide a strong means for judging workflow
similarity.

Interestingly, while most structural similarity measures are complete in their rank-
ing, both annotational measures tie some of the compared workflows where experts
see them differently ranked. This is especially true for simBT , which, additionally,
is not able to provide rankings for four of the given query workflows due to lack
of tags. These workflows were not considered for computation of simBT ranking
performance. Note that around 15% of the workflows in our complete dataset lack
tags.

As for the different structural comparison methods, simGE is clearly outperformed
by the other two. This indicates that many functionally similar workflows, while
sharing common modules and substructures, do differ in their overall graph layout.
We will see this observation confirmed in Section 4.4.1, when workflows are prepro-
cessed to remove structural noise.

With these initial evaluation results as a baseline, we inspect several aspects of
workflow comparison for their impact on ranking performance.
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Table 4.2: Algorithm shorthand notation overview
Notation Description

MS Module Sets topological comparison
PS Path Sets topological comparison
GE Graph Edit Distance topological comparison
BW Bag of Words annotation based comparison
BT Bag of Tags annotation based comparison
np No structural preprocessing of workflows
ip Importance projection workflow preprocessing
ta No module pair preselection for comparison
te Type equivalence based module pair preselection

pw0 Module comparison with uniform attribute weights
pw3 Module comparison on tuned attribute weights
pll Module comparison by edit distance of labels only
plm Module comparison by matching of labels only

Module Comparison (pX)

Figure 4.6a shows the impact of the different module similarity schemes (see Sec-
tion 4.1.1 and Table 4.2 for an overview of the used notation) on ranking correctness
by the example of the simMS algorithm. Trends are similar for the other measures
(data not shown). Clearly, the uniform weighting scheme pw0 used in the baseline
evaluation of Figure 4.5 performs worst (p<0.05). Using only the edit distance of
labels for module comparison (pll) is on par with the more complex scheme pw3
(using refined weights on various attributes) in terms of mean ranking correctness.
Note that there is a minimal reduction in ranking completeness for pll, resulting
from the less fine grained similarity assessment. This reduction in completeness is
much more pronounced when using label matching (plm) for assessing module simi-
larity. Further investigation showed that the striking increase in ranking correctness
plm achieves is in fact due to this reduction in ranking completeness, as pairs of
workflows tied by the algorithmic ranking are not accounted for when determining
ranking correctness: while the most similar workflows are ranked high, less similar
ones are not distinguished in terms of their similarity any more.
The (to us) surprisingly good performance of the label only approaches, especially
pll, shows that while the author base of the workflows in our dataset is heteroge-
neous, the labels given to modules mostly do reflect their function and thus convey
measurable information about their similarity. Yet, the strict matching of labels,
as used in many previous studies, offers too little fine grained similarity for differ-
entiated assessment of workflow similarity. We will see how this observation affects
workflow retrieval in Section 4.4.2.

The change in the algorithms’ ranking performance induced by both the pw3 and
pll weighting schemes (see Fig. 4.6a and b) puts these algorithms ahead of simBW ,
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(a)

(b)

Figure 4.6: Mean ranking correctness for (a) simMS with various module attribute
weightings, and (b) simP S and simGE with pw3.

if yet not significantly. The exception here is simGE , where the impact of different
weighting schemes is less pronounced. The reason for this most probably lies in the
specific type of structural comparison applied: The more overall workflow topology
is taken into account, the less do differences in similarity assessment of single pairs
of modules matter.

From here on, we denote the module weighting scheme used with an algorithm
by specifying the corresponding pX in its name (e.g., GE_pw3 refers to the simGE

using the pw3 module attribute weighting scheme for module comparison).

Module Mapping and Normalization

We investigated the impact of different module mapping strategies and of using
normalization or not. Figure 4.7 exemplifies our findings on two settings that have
been used in previous approaches: (1) Greedy mapping of modules in the Module
Sets measure [78] has no impact on ranking quality when compared to using max-
imum weight matching (see Fig. 4.5). Remarkably, this indicates that in the set of
workflows studied, the mappings of modules are rather nonambiguous, i.e. modules
mostly have a single best mapping partner in the respective other workflow. (2)
The omission of normalization of similarity values with Graph Edit Distance [88], on
the other hand, significantly reduces ranking correctness (p<0.05) when compared
to results for normalized simGE (see Fig. 4.5). This data confirms the results from
[43], but on a much larger data base.
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Figure 4.7: Mean ranking correctness for simMS with greedy mapping of modules
and simGE without normalization of edit distance.

Including Repository Knowledge

Module Pair Preselection (tX). For simMS , Figure 4.8a (first bar) shows the
impact of the type equivalence (te) module pair preselection strategy proposed in
Section 4.1.1. The trends of these changes are similar for all algorithms: While strict
type matching significantly decreases the algorithms’ ranking correctness (data not
shown), the use of equivalence classes results in correctness values comparable to
those without any restrictions on module pair selection. This is remarkable, as it
shows that a) the technical classes of modules (web-service, script, local operation)
do play an important role in determining a modules function; and b) this technical
distinction of modules is also detected when comparing all pairs of modules - even
when using only labels.

While te doesn’t lead to an improvement of user perceivable ranking quality, the
exclusion of certain module pairs from comparison yields a reduction of such pair-
wise module comparisons by a factor of 2.3 (172k/74k on the evaluation dataset of
experiment 1) and thus a notable runtime reduction. From here on, we denote the
module pair selection used with an algorithm by specifying ’te’ for equivalence class
based selection and ’ta’ for selection of all pairs of modules in the algorithms name.

Importance Projection (Xp). As shown in Figure 4.8a and b, most algorithms
benefit from adding Importance Projection (ip) preprocessing (Section 4.1.1), with
the exception of simP S showing stable results. The reduction in structural noise is
especially visible in simGE : As different ways of transforming intermediate results
within the workflow are removed, similarities in the constellations of the most specific
functional modules become more pronounced. This positive impact of ip on the
correlation of algorithm rankings with expert rankings confirms our intention of
removing presumably unimportant modules, and confirms our selection of modules
to keep. Yet, such manual selection is only possible with both in depth understanding
of the types of modules used in a dataset of scientific workflows, and knowledge
about their specific relevance to a workflow’s functionality. An interesting line of
research to be explored in future work are methods to perform such a preselection
automatically, for instance based on module usage frequencies.
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(a)

(b)

Figure 4.8: Mean ranking correctness for (a) simMS , and (b) simP S and simGE

when including external knowledge.

As a side effect, ip leads to a decrease in the average number of modules per
workflow from 11.3 to 4.7 in our dataset, resulting in a significant increase in com-
putational performance of all structural algorithms. This effect is especially relevant
for Graph Edit Distance computation: where simGE was able to compute the simi-
larities of only 217 of the 240 workflow pairs of our ranking experiment within the
per-pair timeout of 5 minutes without using ip, it can now compute all pairs but
one. From here on, we denote the use of importance projection with an algorithm
by specifying ’ip’ in its name, and ’np’ for its omission.

Best Configurations

The three modifications pX (module comparison scheme), tX (module pair preselec-
tion), and Xp (importance projection preprocessing) can be used in all combinations
with each of the algorithms, resulting in a total of 72 different configurations (not
considering different methods for module mapping and normalization). For each
algorithm, Figure 4.9a shows the configuration with its best standalone ranking per-
formance in direct comparison to the annotation-based approaches: When tuned
appropriately, algorithms based on workflow structure outperform annotation based
approaches, except when very strict graph comparison is applied as in simGE . Note
that the differences between pw3 and pll are minimal and not significant.
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(a)

(b)

Figure 4.9: Mean ranking correctness for a) single algorithms’ best configurations
(shaded: baseline evaluation, see Fig. 4.5), and b) the best ensembles of
two (see text).

Ensembles of Algorithms

Just as consensus can be generated by aggregating expert rankings, the rankings
produced by the similarity algorithms can be combined into a single ranking. We
tested such ensembles by simply taking the average of the scores of selected individ-
ual ranking algorithms. This especially allows to integrate the different perspectives
of annotational and structural workflow similarity. We ran experiments for all com-
binations of two algorithms and indeed found the best performing ensembles to
aggregate simBW and either simMS or simP S with ip, te and pll. The resulting
improvement of ranking performance of these ensembles over any algorithm used on
its own is both significant (p < 0.05) and substantial (see Fig. 4.9b). As implied by
the reduction of standard deviation, results are also much more stable.

4.4.2 Workflow Retrieval
We investigate the algorithms’ retrieval performance over a whole repository in terms
of retrieval precision over the top 10 search results. We found the results of the first
experiment mostly confirmed and only report the most interesting findings here. We
first inspect results for different module similarity schemes, followed by a comparison
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Figure 4.10: Mean retrieval precision at k against the median expert rating for
simMS in various configurations of module similarity assessment (pX),
with and without ip and te for relevance threshold (a) related, (b) sim-
ilar, and (c) very similar.

71



4 A Benchmark for Scientific Workflow Similarity Search

k

pr
ec
is
io
n

User: median, Workflow: mean, Relevance: >=related

BW BT
MS_np_ta_pll MS_ip_te_pll
PS_np_ta_pll PS_ip_te_pll
GE_ip_te_pll

_____________

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

(a)

k

pr
ec
is
io
n

User: median, Workflow: mean, Relevance: >=similar

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

(b)

k

pr
ec
is
io
n

User: median, Workflow: mean, Relevance: >=very_similar

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

(c)

Figure 4.11: Mean retrieval precision at k of structural and annotational similarity
algorithms for median expert rated relevance of (a) related, (b) similar,
and (c) very similar.
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of results on the level of whole workflows. The use of external knowledge is taken
into account on both levels.

Module Comparison

Figure 4.10 graphs retrieval precision at k for simMS with various module similar-
ity schemes pX, with and without ip and te. Three different relevance thresholds
related, similar, and very similar are considered. Interestingly, the differences in
retrieval quality decrease with the increase in relevance level up to the point where
all configurations deliver similar performance for retrieval of very similar workflows.
Apparently, finding the most similar results is independent of the module similarity
scheme used. For the retrieval of related workflows, on the other hand, where more
fine grained assessment of similarity is required, differences between the schemes
become visible. The strict label matching approach of plm performs worst, confirm-
ing our observations from the previous experiment. pw3 and pll tie when not using
external knowledge. The inclusion of such knowledge improves performance of all
configurations, and puts pll ahead of pw3, both in terms of mean precision and in
terms of standard deviation, which is substantially smaller (not shown).

Workflow Similarity

Figure 4.11 shows retrieval precision for the structural and annotational workflow
comparison approaches under evaluation. The structural approaches are used with
the pll module similarity scheme of edit distance comparison of labels, and have been
applied with and without ip and te. Note that for simGE we only include results
for preprocessed workflow graphs (ip). The strict topological comparison applied by
simGE does find the most similar workflows equally well as its structural contenders,
but provides much worse results when looking for similar or related workflows: As
simGE puts a strong emphasis on workflow structure, it also retrieves workflows from
other domains than the query workflow, which happen to be similar to the query
workflow in terms of their graph structure. simMS and simP S provide equivalent
result quality and provide best results for both related and similar workflows. Notice
that the difference between configurations with ip and te and those without is most
pronounced for retrieval of related workflows, where the inclusion of external knowl-
edge improves both mean precision and stability of the algorithms’ performance in
terms of standard deviation from the mean. simBW , while less precise in retrieval
than simMS and simP S is best at retrieving related and similar workflows, while
it fails to deliver workflows with a median expert rating of very similar within the
very top of its search results for the set of workflows studied.

4.4.3 Evaluation on Second Data Set
Figure 4.12 shows ranking results on our second dataset of Galaxy workflows, for
which we repeated our first experiment on workflow ranking using 8 query workflows.
The module comparison schemes used are gw1, comparing a selection of attributes
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Figure 4.12: Mean ranking correctness for algorithms with different module compar-
ison schemes (see text) on Galaxy workflows.

with uniform weights, and gll, comparing only module labels by their edit distance.
The most striking observation is that simBW doesn’t provide satisfying results on
this data set, as the Galaxy workflows carry less annotations. While, overall, results
for the structural algorithms are less convincing than on Taverna workflows, our
observations are generally confirmed: structure agnostic comparison by simMS and
comparison respecting substructures by simP S outperform the strict comparison of
full workflow structure performed by simGE . Interestingly, here label-only compar-
ison of modules offers less correct results than comparison of multiple attributes.
As previously observed, simP S provides more stable results.

4.5 Conclusion
In this study, we compared a multitude of existing approaches to scientific workflow
comparison on the to-date largest human-curated corpus of similarity ratings for sci-
entific workflows. We paid special attention to deconstruct every method into their
most important conceptual steps and to align these to a common framework, with
the goal to increase comparability and to be able to pinpoint observed differences in
result quality to their precise cause. Our evaluation clearly showed that each step in
the process of workflow comparison makes an important contribution to the overall
result quality. While, for practical reasons, our evaluation did focus on workflows
from the life sciences domain, the used algorithms are domain agnostic and do not
make use of any domain specific knowledge. We do, however, believe that the life
sciences are a particularly difficult domain for workflow comparison, due to the large
number of different groups developing different tools (and workflows), even for sim-
ilar tasks, leading to difficult task-matching issues. Our most important findings are:

1. For module comparison, the edit distance of module labels seems to be the
best approach: It provides best results in retrieval and does not require refinement

74



4.5 Conclusion

of multiple attribute weights; and it provides a more fine grained assessment of
similarity than label matching, which, in turn, can only be recommended for retrieval
of the few most similar results. Of course, these findings are only valid if labels are
telling, i.e., are indicative for the functionality of the labeled module. Such workflows
include the studied Taverna workflows from the myExperiment repository, but also
the majority of workflows found in the SHIWA repository [3].

2. We have shown that structural approaches can outperform annotational ones
when configured appropriately. Especially in repositories where workflows are not
well annotated by descriptions or tags, such as the Galaxy repository [45] inspected
here, or the CrowdLabs repository of VisTrails workflows [64], structural approaches
are indispensible. While full structural comparison by Graph Edit Distance appears
to be to strict - similar to label matching on the module level -, comparing workflows
either by substructures such as paths or by the sets of modules they contain provide
comparably convincing results. This is good news, as module set comparison is com-
putationally far less complex than comparing substructures. Yet, the fact that Path
Sets comparison is more stable in its results across different configurations indicates
room for further research to include topological information with less computational
complexity.

3. Normalization of the similarity values derived from workflow comparison wrt
workflow size is, as clearly shown, indispensable for similarity search of scientific
workflows.

4. Next to the intrinsic steps of workflow comparison, we have also looked at
several options for further tuning. The use of external knowledge, potentially de-
rived from the workflow repository itself, reduces computational complexity and
often improves result quality. Yet, manual acquisition of such knowledge as done
in this study, requires extra work to be invested prior to comparisons; furthermore,
properties derived from a given repository usually are not transferable to other repos-
itories. Finding suitable ways to automatically derive the required knowledge from
the repository, is an interesting area of future research.

5. Another line of future work is to further investigate ensembles of different
algorithms: we have shown that such ensembles can significantly improve result
quality when compared to single algorithms. The approach of using the algorithms’
mean similarity presented here provides a starting ground, leaving room for testing
advanced methods such as boosting or stacking [62].
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Scientific Workflows

The results of the comprehensive evaluation of existing approaches to scientific work-
flow comparision presented in the previous chapter indicate that a) structure-based
methods are indispensable for some current repositories which lack rich annotations,
b) structure-based methods, once properly configured, outperform annotation-based
methods even when such rich annotations are available, and c) any such standalone
approach is further beaten by ensembles of annotation-based and structure-based
methods. We also discovered that both the amount of configuration required and
runtime considerations were drawbacks to such methods: Fast workflow compari-
son using annotations on the workflows’ modules provides best results only when
ubiquitous, functionally unspecific modules are removed from the workflows in a pre-
processing step. The configuration of which modules are to be removed is specific
to a given dataset, and is non-trivial. Methods based on workflow substructures,
on the other hand, provide rather stable results across different configurations, but
have prohibitive runtimes.

In this chapter, we present a novel technique for measuring workflow similarity
that accounts for the directed dataflow underlying scientific workflows. The cen-
tral idea is the derivation of a Layer Decomposition for each workflow, which is a
compact, ordered representation of its modules, suitable for effective and efficient
workflow comparison. We show that the algorithm a) delivers the best results in
terms of retrieval quality when used stand-alone, b) is faster than other algorithms
that account for the workflows’ structure, and c) can be combined with other mea-
sures to yield better retrieval at even higher speed. Furthermore, the method is
essentially configuration free, which makes it applicable off-the-shelf to any work-
flow repository.

In the remainder of this chapter, we first review direct contenders from related
work on similarity measures for scientific workflows in Section 5.1. In Section 5.2,
we briefly summarize those results and settings from the evaluation performed in
Chapter 4, which our new algorithm founds on. Section 5.3 introduces our Layer De-
composition algorithm for scientific workflow comparison, which we comparatively
evaluate in Section 5.4. We conclude in Section 5.5.

This work appeared in [80].
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5.1 Related Work
We here recapitulate a number of prominent approaches to scientific workflow com-
parison in increasing order of using topological information; a detailed review and
comparison of these approaches has been presented in Section 4.1.

Using only workflow annotations, Costa et al. [25] derived bags of words from the
descriptions of workflows to determine workflow similarity. Keyword tags assigned
to workflows are explored by Stoyanovich et al. [82]. The sets of modules contained
in workflows have been used by Silva et al. [78], Santos et al. [76], and Friesen et
al. [39]. Bergman et al. [8] extended this idea by additionally comparing the work-
flows’ datalinks based on semantic annotations; however, such semantic annotations
are not generally available in publicly available workflow repositories. Considering
workflow substructure, the use of Maximum Common Isomorphic Subgraphs (MCS)
has been investigated by Goderis et al. [43], Santos et al. [76], and Friesen et al.
[39]: the latter also proposed using Graph Kernels derived from frequent subgraphs
in a repository. Subgraph comparison has also been applied in similar domains, e.g.,
by Corrales et al. [24] to compare BPEL workflows or by Krinke [54] to compare
program dependence graphs. Finally, using the full graph structure, Xiang et al.
[88] compute scientific workflow similarity from their Graph Edit Distance.

5.2 Preliminaries
In the previous chapter, we reported on a comprehensive evaluation of previous ap-
proaches to workflow similarity search. In addition to comparing retrieval quality
quantitatively, we also introduced a framework for qualitatively comparing different
systems (the relevant part of which is shown in Figure 5.1). This is an important
tool, as the process of workflow comparison entails many steps, of which a concrete
topology-comparison algorithm is just one. First, the similarity of each pair of mod-
ules from two workflows is determined using pairwise module comparison. Second,
using these pairwise module similarities, a mapping of modules onto each other is
established. This mapping may be influenced by the topological decomposition of
the workflows imposed by the third step of topological comparison, which in turn
uses the established mapping to assess the similarity of the two workflows. Finally,
normalization of the derived similarity value wrt the sizes of the compared workflows
may be desirable. This process of scientific workflow comparison is preceded by an
(optional) additional preprocessing step. Such preprocessing may, for instance, alter
the workflows’ structure based on externally supplied knowledge about the elements
it contains (see Section 5.2.4).

Each of these steps has a notable impact on the concrete values computed and
thus the assessment of different algorithms. While we evaluated a number of possible
options for each step in the previous chapter, we here recall the settings we will focus
evaluation of our novel algorithm on. Note that our novel Layer Decomposition
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Figure 5.1: Workflow comparison process, see also Figure 4.2

method (described in the next section) is a contribution dedicated to the step of
topological decomposition and comparison; in Section 5.4, we will compare different
approaches to this step while keeping all other steps constant.

5.2.1 Module Comparison
Structure-based approaches to workflow similarity perform some type of comparison
of the two workflow graphs. To this end, they must be able to measure the similarity
of two nodes in the graphs, which represent two modules in the to-be-compared
workflows. Module comparison is typically approached by comparing the values of
their attributes. These range from identifiers for the type of operation to be carried
out, to the descriptive label of the module given to it by the workflow’s author,
to rather specific attributes such as the url of a web-service to be invoked. In
Chapter 4 we compared several combinations of attributes with different weightings
and showed that choosing a suitable configuration is most crucial for result quality
of structural workflow comparison. Here, we will use the following three schemes to
test the impact of module comparison on the topological comparison provided by
our new algorithm:

• pw0 assigns uniform weights to all attributes and compares module type, and
the web-service related properties authority name, service name, and service
uri using exact string matching. Module labels, descriptions, and scripts in
scripted modules are compared using Levenshtein edit distance.

• pw3 compares single attributes in the same way as pw0 but uses higher weights
for labels, script and service uri, followed by service name and service authority
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in the order listed. This weighting resembles the proposal of [78].

• pll disregards all attributes but the labels and compares them using the Lev-
enshtein edit distance, which is the approach taken in [8].

5.2.2 Module Mapping
Structural comparison of two graphs may be carried out by comparing all nodes of
one graph to all nodes of the other graph, or by first computing a node mapping
which defines the set of allowed node associations (often one-to-one). Only then do
graph operations such as node deletion or node insertion make sense. We here use
two strategies to obtain such a mapping, depending on the amount of topological
information available:

• maximum weight matching (mw) chooses the set of one-to-one mappings that
maximizes the sum of similarity values for unordered sets of nodes.

• maximum weight non-crossing matching (mwnc) [63] requires an order on each
of the two sets to be mapped to be given by the graphs’ topological decomposi-
tions. Given two ordered lists of modules (m1, ..mi, ..mk) and (m′

1, ..m′
j , ..m′

l),
a mapping of maximum weight between the sets is computed with the addi-
tional constraints no pair of mappings (mi, m′

j) and (mi+x, m′
j−y) may exist

with x, y ≥ 1.

5.2.3 Normalization
A difficult problem in topological comparison of workflows is how to deal with differ-
ences in workflow size. In particular, given a pair V , W of workflows where V ⊂ W
and |W | >> |V |, what is their similarity? This decision typically is encoded in a
normalization of similarity values wrt the sizes of the two workflows [79]. In this
work, we use a variation of the Jaccard similarity coefficient, which measures the
similarity of two sets A and B by their relative overlap: |A∩B|

|A|+|B|−|A∩B| . We mod-
ify this formula because the methods for comparing modules do not create binary
decisions but instead return a similarity score; details can be found in Section 4.1.

5.2.4 External Knowledge
When comparing two workflows, knowledge derived from the entire workflow repos-
itory or even from external sources may be taken into account. While this idea
in theory could be implemented by complex inferencing processes over process on-
tologies and formal semantic annotations, our results in Chapter 4 showed that the
following two simple and efficiently computable options are already quite effective:

• Importance Projection Preprocessing. Many modules in real-world workflows
actually convey little information about workflow function, but only provide
parameter settings, perform simple format conversions, or unnest structured
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data objects [81]. Importance projection is the process of removing such mod-
ules from a workflow prior to its comparison, where the connectivity of the
graph structure is retained by transitive reduction of removed paths between
the remaining modules. Note that this method requires external knowledge
given in the form of a method to assess the contribution of a given module to
the workflow’s function, which is a rather strong requirement. The implemen-
tation provided here relies on manual assignments of importance based on the
type of operation carried out by a given module.

• Module Pair Preselection. Instead of computing all pairwise module similar-
ities for two workflows prior to further topological comparisons, this method
first classifies modules by their type and then compares modules within the
same class. This reduces the number of (costly) module comparisons and may
even improve mapping quality due to the removal of false mappings across
types. Here, external knowledge must be given in the form of a method as-
signing a predefined class to each module.

5.3 Layer Decomposition Workflow Similarity
In this section, we present a novel approach, called Layer Decomposition (LD), for
the structurally comparing two workflows. The fundamental idea behind LD is to
focus on the order in which modules are executed in both workflows by only per-
mitting mappings of modules to be used for similarity assessment which respect
this order (in a sense to be explained below). Two observations led us to consider
execution order as a fundamental ingredient to workflow similarity. First, it is in-
tuitive: The function of a workflow obviously critically depends on the execution
order of its tasks as determined by the direction of data links; even two workflows
consisting of exactly the same modules might compute very different things if these
modules are executed in a different order. Nevertheless, most structural comparison
methods downplay execution order. For instance, it is completely lost when only
module sets are compared, and a few graph edits can lead to workflows with very
different execution orders (like swapping the first and last of a long sequence of mod-
ules). Second, we observed in our previous evaluation (Chapter 3) that approaches
to topological workflow comparison which put some focus on execution order are
much more stable across different configurations of the remaining steps of the work-
flow comparison process. In particular, comparing two graphs using their path sets,
i.e., the set of all paths from a source to a sink, produced remarkably stable results
both with and without the use of external knowledge. Inclusion of such knowledge
in workflow comparison had among the largest impact on the overall performance of
methods, but requires corpus-specific expert intervention. Based on these findings,
developing methods that achieve retrieval results of high quality without requiring
external knowledge seemed like a promising next step.

In the following, we first explain how LD extracts an ordering of workflow modules
from the workflow DAG. We then show in Section 5.3.2 how two workflows can be
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Figure 5.2: Sample layer decomposition and layer mapping of scientific workflows
(a) 1189, (b) 2805; see also Fig. 4.1).

effectively compared using this partial ordering. Finally, we explain in Section 5.3.3
how normalization is performed.

5.3.1 Topological Decomposition
The linearization (or topological sort) of a DAG is an ordering of its nodes V such
that node u precedes node v in the ordering, if an edge (u, v) exists. Obviously,
a DAGs linearization can be computed in linear time using topological sorting;
however, it is generally not unique. As the quality of the subsequent mapping (see
below) depends on the concrete linearizations chosen for the two workflows under
consideration, it is important to find a good pair of linearizations, i.e., linearizations
such that highly similar modules will later get mapped onto each other. Since the
number of possible linearizations is Ω(n!) (where n is the number of modules in a
workflow), assessing all possible pairs is generally infeasible; it is also infeasible in
practice, as many real life workflows have many different linearizations (for instance,
23.5% of the 1485 Taverna workflows in our evaluation set have more than 100
different linearizations).

We tackle this problem by representing all possible linearizations of a given work-
flow in a concise data structure. Observe that a DAG has more than one linearization
iff between two consecutive nodes in one of its linearizations no direct datalink ex-
ists, because in this case swapping the two nodes creates another linearization. In
all such cases, we tie the two nodes in question into a single position in the order-
ing. We call such a tie at position i a layer Li. Compacting all sequences of two
or more swappable nodes of a linearization in this way yields a layered ordering of
the DAG which we call its layer decomposition LD = (L1, .., Li, .., Lk). Note that
the layer decomposition of a DAG is unique, as a) layers themselves are orderless
sets of modules, and b) following from the definition of the underlying linearization,
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Figure 5.3: Overview of workflow comparison applied by LD

for any Li and Lj such that i < j, for every v ∈ Lj , there is some u ∈ Li which
precedes v in every linearization, which c) uniquely defines the positions of Li and
Lj within the decomposition. To compute a workflow’s layer decomposition, we use
a simple iterative algorithm. First, all modules with in-degree 0 (the DAGs source
nodes) form the top layer L1. These modules and all their outbound data links are
removed from the workflow; this process is repeated until no more modules remain.
Figure 5.2 shows the layer decompositions of the sample workflows introduced in
Figure 4.1 on page 50. In Figure 5.2, the different layers are visually aligned to
reflect their mapping, as it is derived in the following step.

5.3.2 Topological Comparison
The layer decomposition of a workflow partitions its module set by execution order
creating an ordered list of module subsets. To compare the layer decompositions
LD and LD′ of two workflows wf and wf ′, respectively, we take a two-phase ap-
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proach, sketched in Figure 5.3. First, pairwise similarity scores for each pair of
layers (L, L′) ∈ LD × LD′ are computed from the modules they contain using the
maximum weight matching (mw), based on the similarity values p(m, m′) derived
by a given module comparison scheme as introduced in Section 5.2.2:

layersim(L, L′) =
∑

p(m, m′) | (m, m′) ∈ mw(L, L′)

In the second phase, the ordering of the layers - and thus of the modules they are
comprised of - is exploited to compute the decompositions’ maximum weight non-
crossing matching (mwnc) with the pairwise similarities of layers from phase one.
The resulting layer-mapping serves as the basis for the overall (yet non-normalized)
similarity score of the compared workflows using LD:

nnsimLD(wf, wf ′) =

∑
layersim(L, L′) | (L, L′) ∈ mwnc(LD, LD′)

5.3.3 Normalization
As done for all other methods we shall compare to, we normalize the similarity values
computed by LD using the Jaccard variation described in Section 5.2.3. Thus, the
final, normalized LD-similarity is computed as:

simLD(wf, wf ′) = nnsimLD

|LD| + |LD′| − nnsimLD
.

We analogously normalize layersim(L, L′) by |L| and |L′|. This way, if two workflows
are identical, each layer has a mapping with a similarity value of 1. Then nnsimLD =
|mwnc(LD, LD′)| = |LD| = |LD′|, and simLD = 1.

5.4 Evaluation
We evaluate our novel Layer Decomposition algorithm on the gold standard cor-
pus of workflow similarity ratings given by workflow experts, which we assembled
in Chapter 4. The corpus contains 2424 similarity ratings from 15 experts from
four countries for 485 workflow pairs from a set of 1485 Taverna workflows, given
along a four step Likert scale [58] with the options very similar, similar, related, and
dissimilar plus an additional option unsure. The ratings are grouped by 24 query
workflows. Each query workflow has a list of 10 workflows compared to it, which are
ranked by a consensus computed from the experts rankings using BioConsert Me-
dian Ranking [20]. These rankings are used to evaluate the algorithms performance
in workflow ranking. For 8 of the query workflows, additional expert ratings are
available covering all workflows which were ranked among the top-10 most similar
workflows by a selection of algorithms to be further evaluated, when run against
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Table 5.1: Algorithm shorthand notation overview
Notation Description

A
lg

or
it

hm
s LD Layer Decomposition topological compari-

son
MS Module Sets topological comparison
PS Path Sets topological comparison
GE Graph Edit Distance topological compari-

son
BW Bag of Words annotation based comparison
BT Bag of Tags annotation based comparison

C
on

fig
ur

at
io

ns

np No structural preprocessing of workflows
ip Importance projection workflow prepro-

cessing
ta No module pair preselection for comparison
te Type equivalence based module pair prese-

lection
pw0 Module comparison with uniform attribute

weights
pw3 Module comparison on tuned attribute

weights
pll Module comparison by edit distance of la-

bels only

the entire workflow corpus. These are used to assess the performance in workflow
retrieval.

Using this corpus, we compare the LD algorithm against approaches based on
Module Sets, Path Sets, Graph Edit Distance, Bags of Words, and Bags of Tags
(as presented in Section 5.1). First, we investigate the algorithms’ performance in
the tasks of workflow ranking (Section 5.4.1) and workflow retrieval (5.4.2). Second,
we compare the runtimes of the different topological comparison methods (5.4.3).
Third, we evaluate whether the successive application of multiple algorithms in
retrieval can improve result quality and its implications on runtime (5.4.4). Finally,
in Section 5.4.5 we shall confirm the previous results on ranking performance using
a second data set, from the Galaxy repository.

5.4.1 Workflow Ranking
To evaluate ranking performance, we use the measures of ranking correctness and
completeness [8, 19]. For ranking correctness, the order of each pair of elements in
the experts’ consensus ranking and the algorithmic ranking is compared, counting
pairs sharing the same order and pairs that don’t, to determine the correlation of the
compared rankings. Values range from -1 to 1, where 1 indicates full correlation of
the rankings, 0 indicates that there is no correlation, and negative values are given to
negatively correlated rankings. Ranking completeness, on the other hand, measures
the number of pairs of ranked elements that are not tied in the expert ranking, but
tied in the evaluated algorithmic ranking. The objective here is to penalize the tying
of elements by the algorithm when the user distinguishes their ranking position.

Figure 5.4 shows ranking performance for simLD in direct comparison to simMS ,
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al
go

rit
hm

s

ranking correctness

User: BioConsert5, Workflow: mean

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
GE_np_ta_pw0: 0.631
GE_np_ta_pll: 0.67

GE_np_ta_pw3: 0.693

MS_np_ta_pw0: 0.705

GE_ip_te_pw0: 0.705

GE_ip_te_pll: 0.722

GE_ip_te_pw3: 0.732

PS_np_ta_pw0: 0.744
LD_np_ta_pw0: 0.759

BT: 0.765

MS_ip_te_pw0: 0.766

LD_ip_te_pw0: 0.81

BW: 0.819

PS_np_ta_pll: 0.821
PS_ip_te_pw0: 0.822

PS_ip_te_pll: 0.827

MS_np_ta_pw3: 0.829

PS_np_ta_pw3: 0.835

MS_np_ta_pll: 0.84

PS_ip_te_pw3: 0.844

LD_ip_te_pll: 0.856
MS_ip_te_pll: 0.869

LD_ip_te_pw3: 0.869

MS_ip_te_pw3: 0.871

LD_np_ta_pll: 0.88

LD_np_ta_pw3: 0.889

Figure 5.4: Mean ranking correctness (bars) with upper and lower stddev (error-
bars), and mean ranking completeness (black squares) over 24 lists of 10
workflows for different algorithms and configurations (see Table 5.1 for
notation).
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simP S , simGE , and the annotation based measures simBW and simBT . Results
are sorted by mean ranking correctness. Each algorithm is applied in a variety of
different configurations (see Chapter III for options; see Table 5.1 for notation).
Regarding ranking correctness, several observations can be made: Firstly, simLD

provides best results. Secondly, both simLD and simP S provide most stable results
across different configurations. Performance of simMS , on the other hand, varies
with the quality of the module comparison scheme used, and especially with the
use of external knowledge in terms of ip. Thirdly, while simMS , when configured
properly, can achieve ranking correctness values comparable to the best results of
simLD, simP S is generally slightly behind simLD. In contrast, simGE , putting a
high emphasis on overall workflow structure, does not provide competitive results; we
therefore omit it in all further evaluations. As for ranking completeness, we see that
both simLD and simP S fully distinguish all workflows in terms of their similarity to
the query workflows where users make a distinction as well. The ranking provided
by simMS , on the other hand, is often only near-complete.

Figure 5.5 shows the results of selected ensembles of different base methods us-
ing mean similarity values. Generally, result quality improves considerably. For
instance, the top performing standalone configuration of simLD achieves a ranking
correctness of 0.889, and is not only outperformed by its combination with simBW

by 2.5 %-points, but especially in terms of stability of results across different query
workflows, as apparent from the standard deviations from the mean. The ensembles
including simLD deliver best results, outperforming other ensembles especially when
no external knowledge is used.

5.4.2 Workflow Retrieval
Figure 5.6 shows precision at k [65] for each position in the top-10 results returned
by each of the algorithms. We focus our presentation on configurations using the
pll module comparison scheme. Comparing simMS , simLD, and simP S , Figure 5.6a
shows that when treating results as relevant with a median expert rating of at least
related, all algorithms deliver results of similar (very high) quality. The usage of
ip and te improves results for all algorithms. While this may seem a contradiction
to the more distinguished results of the workflow ranking experiment at first, it
has to be kept in mind that differences in ratings between the results retrieved are
not considered for evaluation of retrieval precision. This becomes more clear when
inspecting algorithmic retrieval performance for a relevance threshold of similar
(Fig. 5.6b). Here, the improved ranking results of simLD are reflected both by a
slight advantage in the very top results returned, especially when ip is used, and by
a more pronounced improvement of mean retrieval performance for the second half
of the top-10 results.

Detailed inspection of the workflows retrieved by each of the algorithms revealed
that the nature of simLD’s topological comparision favours retrieval of perfectly
matching substructures over global workflow matches with slightly reduced pair-
wise layer similarities, due to the way the structural complexity of the workflows
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(a)
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User: BioConsert5, Workflow: mean
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ensmbl(BW,GE): 0.742

ensmbl(BW,PS): 0.923

ensmbl(BW,MS): 0.906

ensmbl(BW,LD): 0.934

(b)

Figure 5.5: Mean ranking correctness for ensembles of Bag of Words workflow com-
parision and each structural algorithms (a) without and (b) with ip and
te, each using pll module comparison.

is reduced to a more ’fuzzy’ representation in the layers. This behaviour results in
some false positive retrievals for a small fraction of the query workflows used. To
account for this, we extended the original algorithm by adding a penalty for layers
not matched in the maximum weight non crossing matching, when the number of
such mismatched layers exceeds a configurable percentage of the layers in the larger
of the compared workflows (i.e., the maximum number of layers that could possibly
be matched). Setting this allowance to 25% notably improves retrieval performance
of the simLD algorithm, as shown in Figure 5.7. Yet, selection of the right mismatch
allowance to be used does depend on the concrete dataset, and, as such, requires
prior, in depth knowledge about the repository to be queried. We thus refrain from
applying this extension in the remainder of this evaluation.

5.4.3 Runtime
It can be expected that the topological comparison performed by the Layer Decom-
position algorithm entails a penalty in runtime when compared to the topology-
agnostic Module Set approach. Here, we investigate how big this penalty is, how it
compares to other algorithms, and how much it depends on the sizes of the com-
pared workflows by measuring runtimes for simLD, simMS , and simP S . For runtime
measurement, each of the 1485 workflows in our dataset was compared against itself
by each of the algorithms to obtain a unbiased sample wrt typical workflow sizes.
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Figure 5.6: Mean retrieval precision at k against the median expert rating for struc-
tural similarity algorithms for relevance threshold (a) related, and (b)
similar. Algorithms used with module similarity by edit distance of la-
bels (pll), with and without ip and te.
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Figure 5.7: Mean retrieval precision at k for similarity algorithms MS and LD and
refined LD penalizing mismatched layers exceeding 25% of the larger
workflows layers (LDpml25) for relevance thresholds by median expert
rating of (a) related, and (b) similar.
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Figure 5.8: Algorithm runtimes by workflow size.

Each comparison was done 5 times and results were averaged.
Figure 5.8 shows average runtimes, grouped by workflow sizes ranging from 1 to

437 modules. The average number of modules per workflow in our dataset is 11.4
(see also Chapter 3 and [87]). Note that the figure only shows the time taken for
the actual topological comparison. Steps that can be performed offline or only have
to be performed once per query execution, such as decomposition of the workflows
into the sets of paths or layers, are not considered; module similarities have been
precomputed and cached. While runtimes of all algorithms are comparably low for
workflow sizes up to around 15 modules, clearly, the only algorithm with acceptable
runtimes also for larger workflows is simMS . simP S runtimes vary greatly, as these
are dominated by the number of different paths the compared workflows contain.
This variance is reduced for simLD, which only needs to compare one pair of de-
compositions per workflow, resulting in a substantial speedup. Yet, with increasing
workflow size and increasing numbers of multi-module layers, runtimes are much
higher than with simple Module Set comparison.

5.4.4 Reranked Retrieval Results
Given the findings regarding the deterred runtime of simLD and the fact that ex-
ternal knowledge to be used in workflow comparison such as ip and te incurs a
severe data acquisition bottleneck, we speculated whether the results of the (fast)
Module Set comparison algorithm can be improved - without external knowledge -
by merging them with the high-quality ranking performance of simLD. We there-
fore performed an experiment where we reranked the top retrieval results of simMS

by the ensemble of simBW and simLD. Figure 5.9 shows retrieval precision for
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Figure 5.9: Mean retrieval precision at k against the median expert rating for simi-
larity algorithms MS, LD and BW, and the top 24 results of MS reranked
by the ensemble of BW and LD, for relevance threshold (a) related, and
(b) similar.
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Figure 5.10: Mean ranking results on Galaxy workflows (see text).

simMS , simLD, and simBW on their own, and for the reranked top 24 search re-
sults of simMS . Especially for the relevance threshold of related, reranking the
results clearly improves performance and makes it comparable to that of algorithm
configurations including external knowledge. For a threshold of similar, the benefit
is less pronounced, yet still observable. We believe that studying in more detail such
reranking methods, especially focussing on the trade-off between runtime and result
quality, are a prospective venue for further research.

5.4.5 Applicability to Other Datasets
Our gold standard corpus also includes a second set of workflows from another
workflow repository, namely the public Galaxy workflow repository. For 8 query
workflows, rated lists of compared workflows are available to evaluate ranking per-
formance. This dataset differs from the previous one in various respects: Galaxy
workflows are exclusive to the Bioinformatics area, the repository is smaller and
curated by a smaller group of people, the annotation is generally more sparse (no
tags etc.), and the modules used are only local executables (no web services as fre-
quently in used in Taverna). Looking at such diverse data sets is important to show
robustness of any evaluation results.

Figure 5.10 shows ranking correctness for simMS , simLD, and simP S on this sec-
ond dataset. The module comparison schemes used are gw1, comparing a selection of
attributes with uniform weights, and gll, comparing only module labels by their edit
distance. While results are generally less good than on the myExperiment data set,
simLD here even more clearly outperforms the other algorithms. We are currently
looking to extend this dataset to be able to perform a more complete evaluation and
to trace back the observed differences in ranking performance to properties of the
data set.
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5.5 Conclusion
We introduced Layer Decompositon (LD), a novel approach for workflow comparison
specifically tailored to measuring the similarity of scientific workflows. We compar-
atively evaluated this algorithm against a set of state-of-the art contenders in terms
of workflow ranking and retrieval. We showed that LD provides the best results in
both tasks, and that it does so across a variety of different configurations - even those
not requiring extensive external knowledge. Results in ranking could be confirmed
using a second data set. Considering runtime, we not only showed our algorithm to
be faster than other structure-aware approaches, but demonstrated how different al-
gorithms can be combined to reduce the overall runtime while achieving comparable,
or even improved, result quality.

Though we did consider runtimes, our evaluation clearly focusses on the quality
of ranking and retrieval. Real time similarity search at repository-scale will require
further efforts in terms of properly indexing workflows. Such indexing of workflows
is straightforward when considering only their modules (like in simMS), but requires
more sophisticated methods when also topology should be indexed. Therefore, our
approach of stacking Layer Decomposition-based ranking onto workflow retrieval
by modules provides a good starting place for applying structure-based workflow
similarity to scientific workflow discovery to scale.
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Scientific Workflow Repositories

In the previous chapters, we have shown that structure-based similarity search for
scientific workflows can substantially outperform annotation-based approaches with
respect to result quality. A drawback to such structure-based methods is that they
are comparatively slow to compute. This consideration of speed becomes impor-
tant when translating our previous results into a real-world system for similarity
search over whole repositories: To be accepted by users, search results have to be
presented fast, if not near instantly - making indexing a non-optional requirement.
Yet, structure-aware indexing of workflows is not straightforward. For instance, the
system proposed in [43] uses subgraph matching for similarity search in a scientific
workflow repository. Their use of an existing graph indexing library requires sig-
nificant workarounds for the intended purpose which cause a substantial slowdown
of the resulting system. Not resorting to such existing libraries, [9] introduce a
system for workflow similarity search using a two-phase retrieval: After an initial,
rough preselection of (potentially) suitable workflows from a fast search over the
whole repository, only some candidate workflows are subjected to a more complex
graph-based comparison.

In this respect, our previous results are encouraging: Next to retrieval quality of
single similarity algorithms, we also investigated how multiple structure-based and
annotation-based measures can be stacked and ensembled into combined similarity
measures to benefit both result quality and retrieval speed. In particular, we have
shown:

1. On the level of whole workflows, combining the use of a (structure-agnostic)
Module Set approach for retrieval with a (structure-aware) Layer Decomposi-
tion step for reranking of the initial retrieval results maintains result quality
in comparison to purely structure-based retrieval (Section 5.4.4)

2. For single module comparison, the edit distance of their labels can be effectively
used to assess their functional similarity - for workflows where module labels
are telling (4.4.1).

3. External knowledge derived from the repository not only improves result qual-
ity, but also reduces the sizes of the compared workflows, which leads to a
speedup of the comparison process (4.4.1).

Inspired by these findings, we here present an approach for fast similarity search
in scientific workflow repositories that takes the workflows’ structure into account.

95



6 Accelerating Similarity Search in Scientific Workflow Repositories

Figure 6.1: Schematic overview of scientific workflow similarity search using
structure-based reranking.

The main goal is to demonstrate the feasibility of such a system, and to investi-
gate transferability of our previous retrieval results to a repository-scale real-world
scenario. In this chapter, we show how our previous findings can be leveraged to,
a) efficiently index scientific workflows for fast similarity search using off-the-shelf
technology, b) improve retrieval precision within the top-x results by reranking the
initial structure-agnostic search results with the structure-aware Layer Decompo-
sition algorithm, and c) further speed up the overall retrieval process by tweaking
specific subtasks of the reranking algorithm.

In the following, we first give an account of our proposed architecture and how
it indexes workflows. In Section 6.3 we evaluate the system for its retrieval quality
and runtime. We conclude in Section 6.4.

6.1 Two-phase Retrieval Architecture
Taking from our findings on reranked retrieval of scientific workflows described in
the previous chapter, we constructed a fast method for scientific workflow similarity
search. We use a two-phased approach consisting of an initial, structure-agnostic
retrieval step using off-the-shelf indexing technology, and a subsequent step of result
reranking using more complex structure-based workflow comparison. An overview
of the system as a whole is given in Figure 6.1. In the following, we describe the
index, and the steps of retrieval and reranking in detail.

6.1.1 Workflow Indexing and Retrieval
The first step is to index workflow properties and modules for fast initial retrieval.
As we have shown that module-based retrieval provides a very good preselection of
search results, it is a natural target for indexing. Thus, we hypothesize that it is
not necessary to apply more complex graph indexing databases and datastructures
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such as neo4j [1], or the subgraph indexing system used in [43], but sufficient to use
fast and simple approaches that capture the necessary details of the workflows we
want to index: their modules. A search over such an index would specify a number
of modules the query workflow contains, which would then be matched onto the sets
of modules stored with each workflow in the index. The fundamental operation re-
quired from such an index is the ability to compare single modules. In Section 4.4.1,
we found that module comparison can be effectively done based on the edit-distance
of the modules’ labels. This consideration of representing modules by their labels
only, yet with the constraint of being able to search within these labels (i.e., strings)
using approximate matching, suggests the use of well established document indexing
systems for our purposes. A very renowned such system is Lucene [46].

Indexing Workflows in Lucene

Lucene is a Java-based document indexing and search engine that includes options
for analyzing the documents prior to indexing (e.g., stop word removal), and for
sophisticated ranking of search results by their (document-centric) relevance to the
respective keyword query. In Lucene, documents fed to the index are composed of
fields, where each field contains a sequence of terms. For full text documents, the
words in the text naturally represent these terms; the text as a whole makes up one
field; and the document as a whole may, next to the field representing its full text
body, contain additional fields to hold, for instance, its title or the date of publica-
tion. From the terms stored, Lucene creates an inverted index linking each term to
the documents and fields it is contained in. For searching, a given keyword query
(i.e., one or more search terms) is matched in the index to find the corresponding
documents. Lucene then ranks the matching documents by their relevance to the
query. Next to strict matching of terms in the index, fuzzy searching is also sup-
ported. When performing a fuzzy search, Lucene uses the edit distance between
terms in the query and terms in the index to find matching documents, which per-
fectly maps to our requirements for comparing module labels.

Following Lucene’s document structure, we represent a workflow as a set of fields.
One field holds the set of modules the workflow contains, with the modules’ labels
being the respective terms. This approach is the most straightforward setting for
both indexing and search and, as we will see, provides surprisingly satisfying results
(see Section 6.3.1). We discuss other options for representing workflows in Lucene
in Section 6.4.

Apart from its apparent suitability for indexing of workflows by modules, using
Lucene for workflow indexing provides an inherent benefit to our overall purpose of
serving similarity search over scientific workflow repositories: Such a search often
starts with an initial keyword query that roughly specifies the user’s needs in terms
of workflow functionality (see step (1) in Figure 6.1). Users then select one candidate
workflow and let the system retrieve functionally similar workflows, i.e., the system
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Figure 6.2: Document representation of myExperiment workflow 2805 in Lucene.
See also Figure 4.1 on page 50.

performs a workflow similarity search. As such, next to our primary interest of
making the workflows searchable by the modules they contain, for practical reasons
such an index would also contain a workflow’s title, description, and tags associated
to it - in which a user’s keyword queries would be matched.

Figure 6.2 shows how a workflow is stored in the index using these fields. Next
to the aforementioned fields for the workflow’s modules, its title, description, and
tags, we also store the workflow’s id and url in the original repository (here my-
Experiment), the filename of the workflow definition file in our system, and the
number of modules the workflow contains. Note that these additional fields are
merely informative, and are currently not used for searching. The tabular view
of fields and values in Figure 6.2 is taken from Luke1, an index analysis tool for
Lucene. Using this tool, Figure 6.3 gives a global view on the index, summarizing
some of its properties: The right, lower hand pane shows the most frequent single
terms contained in the index together with the fields these are stored in. This re-
veals that 186 of 1483 workflows in our dataset have a single module only, and (not
shown in the figure at position 28) that the most frequently used module label is
split_string_into_string_list_by_regular_expression with 140 occurrences - which
well aligns with our findings from the repository analysis performed in Chapter 3
(see Table 3.2).
The left, lower hand pane shows the fields our workflow documents contain, how
many distinct terms are indexed for each of them, and what their relative share of
the index is. Note that in terms of size, the index uses only 1.7MB on disk. Cre-
ating the index for our repository of 1483 Taverna workflows takes approximately 4
minutes.

Searching the Index

Lucene provides its own query syntax for searching the index. Most important to
us is the ability to specify over which fields a search is to be carried out, and what
the maximum edit distance is at which Lucene will consider terms to match. In
Lucene’s terminology this distance is given by the minimum similarity at which its

1http://code.google.com/p/luke/
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Figure 6.3: Overview of Lucene workflow index in Luke index diagnosis tool.
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Listing 6.1: Example fuzzy query to the Lucene index constructed from the modules
of myExperiment workflow 1189 (see also Fig. 4.1, page 50).

( module s :F i l t e r_l i s t_of_str ings_by_regex ~ 0 . 7 )
( modules:Get_image_from_url ~ 0 . 7 )
( modu le s :Sp l i t_st r ing_into_st r ing_l i s t_by_regu la r_expres s ion ~ 0 . 7 )
( modules:bconv_2 ~ 0 . 7 )
( modules:get_pathways_by_genes ~ 0 . 7 )
( modules:mark_pathway_by_objects ~ 0 . 7 )
( modules :regex_value ~ 0 . 7 )
( modules:regex_value_1 ~ 0 . 7 )

fuzzy query processing may consider a pair of terms to match. It takes values be-
tween 0 and 1, and corresponds to the number of allowed edit operations wrt terms’
length. In the following, we refer to this minimum similarity as fuzzyness.

To perform a workflow similarity search by modules, we construct a query from
the labels of the modules of a given query workflow. An example query is shown in
Listing 6.1. For each module the modules field is specified to be searched in, and
the desired fuzzyness is appended to the module’s label (separated by a ~). This
example query returns a total of 289 results.

6.1.2 Structure-based Result Reranking
After fast structure-agnostic retrieval of candidate results, we rerank these results
by the structure-aware Layer Decomposition algorithm. In our previous evaluation
(see Section 5.4), this algorithm has not only shown to provide best results in the
task of workflow ranking, but to also be comparatively fast.

Layer Decomposition Configurations

In the qualitative evaluation provided in the previous chapter, our focus was on
using the Layer Decomposition algorithm with those settings that require as little
background knowledge about the repository it was to be deployed in as possible -
even when the inclusion of such knowledge provided better results. When creat-
ing a search engine for one specific repository of scientific workflows, on the other
hand, extensive background information and tuning will be used to deliver a bet-
ter user experience. To contrast these perspectives of off-the-shelf applicability and
customizability, we here use the Layer Decomposition approach in two settings:

• LD_np_ta_pll does not use any knowledge of the repository and its work-
flows, apart from the assumption that the modules’ labels are telling of their
functionality - a reasonable assumption in our setting given the way our index
is constructed.

• LDpml25_ip_te_pll uses the maximum amount of knowledge we have, in-
cluding importance projection to filter out unspecific modules, type equivalence
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Table 6.1: Configurations of the Layer Decomposition algorithm used for reranking,
and the impact the corresponding tweaks have on algorithm quality (Q)
and speed (S). (+: improved, o: unchanged)

Comparison step LD_np_ta_pll LDpml25_ip_te_pll Benefit
Q S

Workflow
Preprocessing

np: no projection ip: importance projection filter-
ing out unspecific modules.

+ +

Module Comparison ta: no preselection of pairs for
comparison, all module pairs are
compared.

te: preselection of modules pairs
for detailed comparison by type
equivalence.

o +

pll: only the labels are compared
by edit distance

pll: only the labels are compared
by edit distance

Module Mapping maximum weight matching maximum weight matching
Topological
Comparison

LD: Layer Decomposition LDpml25: Layer Decomposition,
penalizing layer mismatch ex-
ceeding 25% of the layers in the
larger workflow

+ o

Normalization Jaccard variation Jaccard variation

module pair preselection to reduce the number of detailed module comparisons
made (see Section 4.1.1), and penalties for mismatching layers in the Layer
Decomposition topological comparison itself (see Section 5.4.2).

Table 6.1 lists each step of the workflow comparison process and how it is treated
in these two configurations (and decodes the intricate notation). It also shows how
tuning at each step affects quality and speed of the algorithms, as shown in the
corresponding evaluations in Sections 4.4.1 and 5.4.2. We will see how this translates
to concrete runtimes of workflow comparison subtasks in Section 6.3.2.

Ensembles of Structure and Annotation

Next to the performance of single algorithms, we have also investigated how multi-
ple algorithms can be combined into ensembles (see Section 4.4.1). These ensembles
allow to integrate different perspectives on workflow similarity, especially those pro-
vided by structure-based and annotation-based comparison. How applicable such
ensembles are to any given repository depends on the amount of annotations it pro-
vides. In Section 2.2.2, we illustrated that current repositories greatly differ in this
respect, and in Section 4.4.3 we found that the lack of textual descriptions of work-
flows greatly affects the applicability of annotation-based measures to the Galaxy
public workflow repository. When annotations are available, on the other hand, we
have shown the use of ensembles to greatly benefit result quality in similarity search.
We thus include an option of using the ensemble of Bag of Words similarity (over
the workflows’ titles and descriptions, see Section 4.1.2) and Layer Decomposition
in either of the configurations listed above. Ensemble similarity values are derived
as mean average of the values computed by its constituting algorithms.
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6.2 Related Work
While previous work has investigated several options to determine similarity of sci-
entific workflows, e.g, [78, 76, 82, 8, 43, 39, 88] (see Chapter 4), only litte work
exists that targets their application to fast similarity search over whole repositories.
A system using subgraph matching to search a repository of scientific workflows
using a given query workflow is proposed in [43]. The authors report runtimes of 15
seconds over a repository of 89 workflows and manually evaluate retrieval quality on
an example workflow (explicitly rejecting to derive generic claims). In [9], a system
for similarity search over workflow repositories is proposed that uses manually added
semantic annotations on cooking workflows and their components for comparision.
While such annotations are not found on workflows in current scientific workflow
repositories, the architecture of the proposed system is analogous to the two-phased
approach introduced in the previous section: An initial set of candidate results is re-
trieved by a fast search using an index over the semantic annotations the workflows
contain. These candidates are then reranked by a graph-based approach that deter-
mines workflow similarity as the maximum aggretage similarity of the nodes (i.e.,
modules) contained in a respective mapping between two workflows – similar to the
Module Sets approach introduced in 4.1. While runtime is shown to clearly benefit
from the two-step approach, retrieval quality of the compound system is evaluated
against the results retrieved by the standalone graph-based approach only, limit-
ing general interpretability of results. For business workflows, [89] target a similar,
two-step approach, specifically addressing the first step of candidate retrieval: A
selection of features derived from the graph structure of the workflows is used to
index the workflows in a repository. For a given query workflow this index is used to
provide and estimate of whether a workflow from the repository is ’irrelevant’ to a
search or ’potentially relevant’. The candidates from the latter class are then be pro-
cess by more complex similarity measures for business workflows, e.g., [34, 32, 33].
Analogously, the results returned by the initial search over the Lucene index used
by our system could be reranked using any available similarity measure for scientific
workflows (see above). We use Layer Decomposition for its superiority in previous
evaluations.

6.3 Evaluation
We evaluate our system for scientific workflow similarity search on the corpus of
scientific workflows introduced in Chapter 4, Section 4.3. While the myExperiment
repository the corpus originates from has grown in size since the corpus was created,
for comparability of results to our previous findings we explicitly limit our evaluation
to the workflows contained in this corpus. The corpus consists of 1483 Taverna
workflows from the myExperiment repository. For 485 pairs of scientific workflows
from this corpus, a total of 2424 similarity ratings were provided by 15 human
experts. This includes a set of 8 (query) workflows, for which similarity ratings are
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available which cover all workflows returned by a similarity search over the whole
corpus by a selection of similarity algorithms. We use and extend these ratings for
evaluation of retrieval quality by the system proposed here.

In the following, we first comparatively investigate how different settings and
ensembles of algorithms affect the quality of the retrieved results, both confirming
our previous findings, and even improving on them. In Section 6.3.1 we then measure
how runtime of similarity search over the whole dataset (i.e., a whole repository) is
affected by indexing and different settings discussed in the previous section.

6.3.1 Retrieval Quality
Analogous to the evaluations performed in previous chapters (Sections 4.4.2 and
5.4.2), we measure retrieval quality as the precision at k over the top 10 results
retrieved by a similarity search over the whole repository. Relevance of a search
result is determined by the median expert similarity rating assigned to each pair
of query and result workflow in the corpus. Recall that expert ratings where given
along a five step Likert scale (very similar, similar, related, dissimilar, unsure). We
thus evaluate precision at k with the relevance thresholds of similar and related. very
similar results are found by all presented algorithms at near equal quality (data not
shown).

In our system, retrieval quality is influenced by three factors: (i) the minimum
similarity of labels (fuzzyness) set for module label matching in the index, (ii) the
number of results retrieved and fed to the reranking step, and (iii) the algorithm(s)
and their configurations used for reranking.

Minimum Similarity of Module Labels

Figure 6.4 shows precision at k for the top 10 results retrieved by Lucene with
various settings of fuzzyness, in direct comparison to the Module Set algorithm used
in a comparable configuration: all of the workflows’ modules are used for similarity
assessment (no ip or te) and module labels are compared by edit distance (pll).
Retrieval quality of Lucene is clearly on par with Module Sets. Most obviously,
different fuzzyness values greatly influence the results returned. Observe that for
a relevance threshold of similar (Fig. 6.4b) there is an apparent trend of higher
values to deliver better results: While values of 0.2 and 0.3 are clear outliers for
the negative, values of 0.4 and above provide comparable results over the first 5
positions. For the second half of the top 10, values above 0.7 appear too strict, and
are outperformed by more fuzzy matching of lower minimum similarity values. This
observation of strict versus fuzzy matching is confirmed at a relevance threshold of
related (Fig. 6.4a), where especially values of 0.3 and 0.4 provide convincing results.

As we are ultimately interested in reranking the results retrieved by Lucene with
any such setting, another aspect to consider is the number of results Lucene retrieves
for each value. We searched our index with each of its 1483 workflows in turn, using
different settings for fuzzyness of label matching. Table 6.2 reveals that values
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(a)

(b)

Figure 6.4: Mean retrieval precision at k against the median expert rating for Lucene
with various settings for the minimum similarity of module labels, and
Module Sets workflow comparison for relevance threshold (a) related, and
(b) similar. Module Sets used with module similarity by edit distance of
labels (pll), without ip and te.
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Table 6.2: Numbers of query workflows out of 1483 for which less than 10, 25, and 50
results could be retrieved using the respective minimum similarity values.

Lucene No of query workflows yielding
minimum similarity < 10 results < 25 results < 50 results

0.2 1 12 27
0.3 21 59 114
0.4 90 185 313
0.5 208 356 556
0.6 298 506 687
0.7 382 624 809
0.8 472 683 891
0.9 498 713 908

above 0.4 result in difficulties in retrieving sufficient numbers of workflows. As a
consequence, we focus further evaluation on minimum similarity values of 0.2, 0.3
and 0.4.

Limiting reranking candidates

While for some workflows only limited lists of candidates are available, the major-
ity of query workflows yields large lists of candidate results. For instance, with a
minimum similarity value of 0.3, about half of the workflows in the repository have
more than 300 candidates (one third for 0.4). We are thus interested in reducing
the number of candidates for the reranking phase to only the top-x, i.e., a specific
ranking cutoff. For a fuzzyness of 0.3, Figure 6.5 shows retrieval precision at k for
reranking at different such cutoffs. We use the reranking algorithm which has, so far,
proven to provide best results (to be comparatively evaluated in the next section).
While all cutoffs provide rather similar performance, reranking of the 25 topmost
candidates seems to deliver slightly higher result quality. First and foremost, these
findings show that quality of reranked retrieval does not necessarily increase with
the number of candidate results used for reranking. Apparently there is a synergetic
effect of the candidate preselection done by Lucene (i.e., workflow comparison by
modules only), and the more complex reranking.

For fuzzyness values of 0.2 and 0.4 results are equivalent, only that their peaks in
performance are not at cutoffs of 25, but 35 and 15, respectively (data not shown).
This shows that the differences in retrieval quality observed for different fuzzyness
values in Lucene-only retrieval in the previous section, are evened out by the applied
reranking. Together with the observations on the numbers of results returned by
Lucene in the first place (see Table 6.2), it also indicates a trade-off between result
quality, the amount of reranking required to achieve it, and the overall number of
results available to the user: While with less fuzzy retrieval only the top 15 results
have to be reranked to provide best results amongst the top-10, a significant portion
of query workflows will not see 10 results at all. The more fuzzy initial retrieval is,
on the other hand, the more query workflows will yield larger result sets, but the
more reranking has to be applied. Which settings to use depends on the resources
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Figure 6.5: Mean retrieval precision at k against the median expert rating for rerank-
ing of different numbers of top-x candidates retried by Lucene with fuzzy-
ness 0.3. Lucene standalone retrieval included as baseline. Relevance
threshold similar.

available for reranking.

Based on these considerations, all further evaluations use reranking of the top 24
results retrieved using Lucene with a fuzzyness of 0.3, best matching the resources
used for runtime evaluation in Section 6.3.2.

Reranking algorithms

Figure 6.6 shows how result quality is affected by the two contrary configurations
of Layer Decomposition introduced in Section 6.1.2. The figure also includes the
ensembles of these two configurations with the annotation-based measure of Bag of
Words (BW). Results correlate at both relevance thresholds of related and similar
(Fig. 6.6a and b, respectively). Clearly, both the amount of repository knowledge
included and the use of ensembles benefit overall retrieval precision: The best rerank-
ing approach is the ensemble of fully tuned Layer Decomposition and Bag of Words.
The ensemble including the naive configuration of Layer Decomposition is still out-
performed by the standalone, tuned Layer Decomposition when it comes to the very
top of the result list, and performs equally well as the standalone naive version.
Most importantly, all reranking methods deliver better results than non-reranked
retrieval by Lucene only.
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(a)

(b)

Figure 6.6: Mean retrieval precision at k against the median expert rating for
Lucene’s top 24 results reranked by different (ensembles of) algorithms
for relevance threshold (a) related, and (b) similar.
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Figure 6.7: Average runtime (left logarithmic y-axis) of similarity search over repos-
itory of 1483 workflows using Module Set workflow comparison (MS) or
Lucene, by number of modules in query workflow. Areas (right, linear
y-axis): No of workflows in repository with the corresponding number of
modules; No of modules (as per value on x-axis)

6.3.2 Runtime
We measure the time taken for retrieval of the top 10 most similar workflows from
the whole repository using a given query workflow. For Lucene, we use the default
configuration of single threaded search over its index. For structure-based workflow
comparison, e.g., retrieval by Module Set comparison or reranking by Layer Decom-
position, a setup of 24 parallel processes is used, each handling the comparison of
one pair of query workflow and workflow from the repository at a time. While this
is a reasonable setup in a server-based environment, it has to be kept in mind that
fully sequential comparison of all pairs of workflows would take substantially longer.
Yet, again, when less resources are available, a different setting of initial retrieval
fuzzyness and reranking cutoff might be used.

Search Phase

Figure 6.7 plots runtimes of similarity search over the whole repository for the Mod-
ule Sets similarity algorithm and Lucene against the number of modules in the
query workflow (again, note that Module Set comparisons are parallelized 24-fold).
For small workflows, Module Sets is in fact respectably fast, given the fact that it
does not make use of any index structures but has to compare each pair of query
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Figure 6.8: Average runtime (left logarithmic y-axis) of similarity search over repos-
itory of 1483 workflows using Lucene and reranking of top 24 candidates
by either of two configurations of Layer Decomposition (see text); plotted
by number of modules in query workflow. Areas (right, linear y-axis): No
of workflows in repository with the corresponding number of modules;
No of modules (as per value on x-axis)

workflow and repository workflow separately. With only 5 modules in the query
workflow, search times average at one minute already, and double once more at 8
modules. Not surprisingly, Lucene, one the other hand, is faster by several orders
of magnitude, most probably not only due to its indexing, but also due to its im-
plementation. Only for very large workflows do retrieval times reach or exceed one
second. Observe that workflow sizes on the x-axis don’t increase linearly - for a
better visual grasp, we also plot the x-values themselves, showing a steep increase
of workflow sizes towards the right end of the plot. Furthermore, for a better feel of
how the retrieval times translate to the repository’s contents, the darker area graphs
the number of workflows contained in the repository which have the corresponding
number of modules. Clearly, most workflows in this specific repository are rather
small, which corresponds to the average workflow size of 11.4 modules reported on
in Chapter 3, Section 3.1.1.

Reranking Phase

After retrieval of candidates from the index we rerank the top 24 results. Figure 6.8
shows runtimes of both configurations of Layer Decomposition. The tuned config-
uration is faster by an order of magnitude. Note that for clarity’s sake we don’t
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(a)

(b)

Figure 6.9: Runtimes of subtasks of Layer Decomposition workflow comparison in
dependence of workflow size; (a) with maximum weight matching of
modules for assessing similarity of single pairs of layers, and (b) with
greedy mapping.

show runtimes of ensembles - including Bag of Words in reranking has practically
no effect on runtimes.

The advantage of the tuned algorithm over the naive one is a consequence of the
speedups listed in Table 6.1. While these speedups already lead to overall similarity
search times of less than 10 seconds for the vast majority of workflows in the reposi-
tory (reranking only the top 24 results), our interest is to see exactly which portion
of the Layer Decomposition algorithm is taking how long, and if further speedup is
possible that does not include repository knowledge. Dissecting the workflow com-
parison of Layer Decomposition, Figure 6.9a reveals that the major part of time is
spent comparing all pairs of modules (per edit distance), and comparing all pairs of
layers. The times taken for decomposing a workflow into its layers in the first place,
and for computing the maximum weight non-crossing matching of those layers after
their pairwise comparison are much lower.
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Figure 6.10: Average runtime (left logarithmic y-axis) of similarity search over repos-
itory of 1483 workflows using Lucene and reranking of top 24 candidates
by either of two configurations of Layer Decomposition (see text); plot-
ted by number of modules in query workflow. Areas (right, linear y-
axis): No of workflows in repository with the corresponding number of
modules; No of modules (as per value on x-axis)
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Recall from Section 5.3 that Layer Decomposition uses the maximum weight
matching of the sets of modules two layers are composed of to determine layer-
wise similarity. The algorithmic complexity of computing such a matching of two
layers L1 and L2 is O((L1 ∪ L2))2L1L2). Most interestingly in this respect, we have
shown in Section 4.4.1 that for workflow comparison by Module Sets, using greedy
mapping of modules instead of maximum weight matching provides equivalent re-
sults. Applying this finding to the layer comparison step of Layer Decomposition
yields a significant speedup both of the time taken for this specific step, apparent
from Figure 6.9b, and of the time taken for similarity search as a whole: Figure 6.10
reiterates our previous illustration with additional runtimes plotted for the greedy
versions of the reranking algorithms. Especially for the zero-knowledge configura-
tion, the improvement is substantial. And, while less accentuated, the fully tuned
version of Layer Decomposition benefits from the shift in complexity as well, now
yielding overall search times under 5 seconds for most workflow sizes. Most impor-
tantly, retrieval quality remains unchanged.

6.4 Conclusion
In this chapter we introduced a system for structure-aware similarity search in sci-
entific workflow repositories. Relying on off-the-shelf indexing technology in form
of Lucene and using a two-phase approach of candidate retrieval and reranking, we
were able to apply the high quality structure-based Layer Decomposition workflow
similarity measure at repository-scale with acceptable speed. We distinguished two
cases of application, where knowledge about the repository and its workflows is avail-
able for fine-tuning of structure-based comparison - or not. For both of these cases
we showed that reranking of results clearly improves retrieval quality of similarity
search, and closely investigated their runtime properties. The speedup achieved
by greedy assessment of layer similarity in workflow comparison even for the naive
version of Layer Decomposition is promising for the application of this method to
repositories where external knowledge such as for importance projection or layer
mismatch penalty are not available.

Still there is room for further improvement: our evaluation showed that the most
costly step for Layer Decomposition runtime is now single module comparison, which
is currently based on the Levenshtein edit distance of the modules’ labels. While
Lucene is very fast at computing this distance over its index for the query terms, our
implementation clearly lacks speed. Next to improving on this implementation itself,
a more twisted option might be to delegate layer-wise comparison to Lucene just as
well, indexing not only whole workflows but their layers. Taking this consideration
one step further, recent versions of Lucene (starting at version 3.4) also provide the
ability to model interrelations between documents. As such, both the workflow with
its global properties, and each single one of its modules could be indexed separately,
and then be linked in a search to potentially express structural constraints in the
initial query already. We leave further thought on this issue to future work.
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On the more conceptual level, regarding the three parameters of fuzzyness of ini-
tial candidate retrieval, top-x cutoff of candidates fed to the reranking step, and
reranking method to set for optimizing retrieval quality, we found that for the first
two, no single best setting exists for best result quality, but the most appropriate
setting depends on available computational resources. In this respect, another in-
teresting option may be to not select a fixed number of candidates to rerank, but
to use a dynamic cutoff based on the similarity values found during reranking. For
the last parameter, the reranking method to apply, a clear trend can be observed:
The more knowledge about a repository and its workflows is available, and the more
different perspectives on workflow similarity can be applied, the better. Especially
the latter point of different perspectives puts a hard eye on future research to access
other sources of workflow meta-data for similarity assessment, one such source being
provenance.
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7 Summary and Outlook
In this chapter we conclude the thesis. The summary of our main contributions and
findings in Section 7.1 is followed by an outlook on future directions of research in
Section 7.2.

7.1 Summary
In this work we presented a comprehensive investigation of similarity measures for
scientific workflows, motivated by the wish to advance discoverability of workflows in
scientific workflow repositories. While scientific workflow management systems have
gone a long way in supporting workflow authors in the creation of these workflows,
providing proper tools and mechanisms for the discovery of existing workflows in
public repositories, may make these workflows accessible to an even broader audi-
ence. The current state-of-the art in supporting the discovery of scientific workflows
relies on annotations to be provided for these workflows by their authors, and for the
potential re-users of these workflows to use the right keywords when searching for
them - both of which is often not the case. To improve this situation, our research
followed four consecutive steps, starting from a detailed analysis of workflows in pub-
lic scientific workflow repositories, and ending at the implementation of a system for
fast similarity search in these repositories, making use of the workflows’ structure.
We made a number of contributions, which we summarize in the following.

The first contribution were the findings derived from said analysis of workflows and
their elements in public repositories. We carefully identified single modules across
different workflows (and authors), and, following an existing classification of module
types into (rather technical) functional categories, we were able to characterize which
modules are used most frequently across workflows, and which are more distinctive
of workflow functionality.

We made direct use of this knowledge in our second step, where we introduced a
framework for deeply comparing existing approaches to structure-based comparison
of scientific workflows. Next to dissecting and re-implementing a number of existing
approaches following the workflow comparison process set up in the framework, we
also included options for preprocessing the workflows before comparison, based on
the knowledge taken from the repository. For the evaluation of the methods so im-
plemented, one of the most important contributions of this thesis is the collection
of a sizable gold-standard corpus of human-provided workflow similarity ratings.
For the first time, corpus and framework allowed a systematic, comparative evalu-
ation of various scientific workflow similarity measures, both annotation-based and
structure-based. In this evaluation, we pinpointed each step of workflow comparison
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and found that a) for module comparison, the label given to the module by its au-
thor conveys enough information about the module’s functionality to assess module
similarity from the edit distance of these labels - whereas strict matching of these
labels used in previous work was not sufficient; b) for topological comparison, there
is a gradient of tunability and quality being highest for comparison based only on
sets of modules, and lowest for comparison of full structure by graph-edit-distance
- with a stable (but computationally slow) balance at the level of substructures;
and d) while structure-based comparison tuned with repository derived knowledge
clearly outperforms annotation-based measures, ensembles of both of these types of
comparison provide best quality results.

Taking directly from these findings, and targeting a sweet-spot between sub-
structure-based and module-only comparison of whole workflows, we proposed Layer
Decomposition as a novel structure-aware scientific workflow similarity measure.
Evaluation within our framework showed that this approach provided best results
at higher speeds than traditional structure-aware methods - yet still being too slow
for user-friendly application to similarity search over whole repositories. Addressing
this issue, we first extended our findings on combining different algorithms into en-
sembles by additionally stacking them for initial retrieval and following reranking of
workflows in similarity search. We then translated our findings into a fast, working
search engine for structure-based similarity search at repository-scale.

In this final contribution, we used off-the-shelf document indexing technology to
provide fast candidate retrieval from module-based similarity search. These can-
didates are then reranked by the Layer Decomposition algorithm, or, better yet,
by its ensemble with annotation based comparison. Evaluation showed that this
system provides very high quality results at high speed - not only, but also due
to the inclusion of the knowledge derived from our starting contribution. We thus
hope to integrate our system with a public online scientific workflow repository to
continuously improve scientific workflow discovery.

7.2 Future Directions
Our results point to various future directions. Starting with the most immanent
potential for future work, several options exist for further improving or extending
our similarity search system. These options include the exploration of more complex
indexing schemes to delegate subtasks of the structural comparison process to proven
libraries (e.g., indexing of workflows’ layers extracted by the Layer Decomposition
algorithm, next to whole workflows), or the evaluation of strategies to dynamically
determine the cutoff of candidates used for reranking.

More interestingly, other types of scientific workflow discovery will need to be
targeted. For instance, similarity search using partial workflows could greatly ben-
efit workflow authors by providing suggestions for extensions or completions of the
(partial) workflows they are designing. Or, using similarity between workflow sub-
structures, frequent patterns could be mined from the repository to provide both
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functional subunits to be used in workflow design, and best-practice patterns to
guide workflow authors [40]. In this thesis, our focus was drawn to similarity search
for whole workflows - as one possible application of similarity measures for scientific
workflows [21]. While we started to explore such measures in a rather unbiased fash-
ion, the construction of our corpus of similarity ratings determined a certain type
of setting for evaluation. Creating such extensive corpora for other types of discov-
ery tasks, such as clustering, matching of partial workflows, or the identification of
functional sub-units, is an important step towards the evaluation of corresponding
algorithms - including our own. Potentially, the corpus collected in this thesis could
even be re-used for creating, or bootstrapping others.

As we have investigated similarity measures for scientific workflows using annota-
tions and structure, other sources of information are becoming available, which could
be useful to assist workflow comparison. The possibility of using provenance for this
purpose has already been discussed in Section 2.3.2. To include measures based on
such new sources in the discovery process, investigation of ensembles such as the ones
touched in this thesis will be necessary to explore more elaborate techniques [62].

Along the same lines, another area of important future work it the investigation
of automatically derived knowledge from a repository about the workflows it con-
tains. We have seen that such knowledge can greatly benefit the performance of
functional comparison of scientific workflows, but is specific to repository and breed
of workflows, and time-consuming to collect manually. How such knowledge can be
transferred to other workflow formats and repositories, or how it can be collected in
an automated way for a given repository, will have to be explored to provide optimal
results in scientific workflow discovery.

Ultimately, the vision is to provide best possible support for users in discovering
the workflows they need at any given point of data analysis and data processing.
Ideally, a scientist user would load their data into an in-silico research tool (say,
a SWFM) and immediately be provided with options for analyzing, augmenting,
and transforming this data based on its type - matched against the workflows in a
large repository. Selecting one such analysis option (or multiple to run in parallel in
a cloud environment), the scientist would iteratively explore and analyze the data,
always stepping from one data item to the next, transformed by scientific workflows,
executed at only the click of a button. Whenever more than a handful of workflows
exist for a next step, clustering of workflows would provide an easily browsable, drill-
down interface for selecting the desired analysis. The resulting complete, iteratively
designed in-silico experiment (read: scientific workflow) could then be stored and
published online for re-use by the scientist him- or herself or by others. When
uploading the workflow to a repository, annotations such as keyword tags would
automatically be suggested based on the tags assigned to similar (as a whole or
partially) workflows in the repository, to further facilitate the workflow’s discovery.

A system as the one envisioned here, has more to it than similarity measures for
scientific workflows, of course, but to make it possible, each of the research directions
outlined above will have to be explored.
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