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Introduction.

In this work we study local skew fields, which are natural generalisation of n-dimensional
local fields, and their applications to the theory of central division algebras over
henselian fields.

Local fields appear in a natural way in algebraic geometry and algebraic number
theory if anyone try to find a connection between local and global properties of such
objects like algebraic number fields, arithmetic schemes and algebraic varieties.

Historically the first examples of 1-dimensional local fields appeared in the 19 cen-
tury in complex analisys and in algebraic number theory. These examples are known
fields C((z)) and Q,,. Now we say that 1-dimensional local field is a quotient field of a
complete discrete valuated ring.

A little bit later the first examples of local skew fields were found. They were finite
dimensional division algebras over classical local fields, and they were completely stud-
ied by Hasse, Brauer, Noether and Albert. At the same time there were several works
of Witt ([34]) about skew fields over discrete valuated fields, which opened researching
of skew fields over henselian fields. Basic results about a structure of such skew fields
were recently got by Jacob and Wandsworth in ([9]).

In the middle of 70-th A.N.Parshin introduced a notion of a multidimensional local
field which generalised the notion of a usual local field ([19],[24], [7]).

n-dimensional local field is a complete discrete valuated field such that the residue
field is a n — 1-dimensional local field.

One of the typical examples of such a field is an iterated Laurent series field
k((21))((22)) ... ((2n)). Elements z1, ..., z, are called local parameters of this field.

Multidimensional local fields appears also as natural generalisations of local objects
on 1-dimensional scheme. As an example let us consider the following construction.

Consider an algebraic scheme X of dimension n. Let Yy D ... D Y, be a flag
of closed subschemes in X such that Yy, = X, Y,, = x is a closed point on X, Y;
is a codimension 1 subscheme in Y; ; (1 < i < n), x is a smooth point on all Y]
(0 < i < n). Then there exists a construction which assign in canonical way to any
given flag a n-dimensional local field. Moreover, let X be an algebraic variety over a
field k, = be a rational point over k, 21, 22, .. ., 2z, € k(X) be fixed local parameters such
that 2z, ;11 = 0 is an equation of Y; on Y,,_; in a neiborhood of the point z (1 < i < n).
Then our n-dimensional local field can be identified with k((21))((22)) ... ((zn)) ([24],
7).

Using this assignment a number of results known earlier only for the case of a curve
was generalised to a higher dimensional case. These are such well-known results as
multi-dimensional reciprocity lows of Parshin-Lomadze ([19], [15], [20], [7]).

During the last 25 years there was opened another direction in the theory of local
fields. This is an application to the theory of integrable systems connected with the
Krichever-Sato-Wilson correspondence on a curve (for more details on the Krichever



correspondence see [6], [29], [16], [27]).

Recently there were issued several papers [17], [18], [23], where the ideas of the
Krichever-Sato-Wilson correspondence on a curve were developed to the case of vari-
eties of higher dimension. In particular, A.N. Parshin pointed out one class of non-
commutative local fields arising in differential equations and showed that these skew
fields possesses many features of commutative fields. He defined a skew field of for-
mal pseudo-differential operators in n variables and studied some of their properties.
He raised a problem of classifying non-commutative local skew fields. It was the first
argument to begin to study such skew fields.

A generalisation of a notion ”local field” looks very natural:
n-dimensional local skew field is a complete discrete valuated skew field such that the
residue skew field is a n — 1-dimensional local skew field.

In this work we try to study n-dimensional local skew fields bearing in mind only the
definition. Unfortunately, there appear very hard obstructions already on the first steps
which leads us to some restrictions. So, we study only skew fields with commutative
residue skew field. By the way, a number of results valid in general case (see, for
example, proposition 0.7 and corollary 1) and a number of results can be generalised
to the case of skew fields with residue skew field finite dimensional over its centre (see,
for example, section 1.4).

Some applications of developed theory to the Krichever correspondence we get in
section 1.6. Namely, we get some generalisations of the classical KP-equations (hierar-
chy).

Surprisingly the studying of local skew fields leads to some new unexpected results
in the valuation theory on finite dimensional division algebras. Using general formulas
for splittable local skew fields (i.e. for skew fields such that the residue skew field can
be embedded into the valuation ring) we get a decomposition theorem for a class of
splittable wild division algebras over a Laurent series field with arbitrary residue field of
characteristic greater than two. This theorem is a generalisation of the decomposition
theorem for tame division algebras given by Jacob and Wadsworth in [9]. An extensive
analysis of the wild division algebras of degree p over a field F' with complete discrete
rank 1 valuation with char(F) = p was given by Saltman in [28] ( Tignol in [32]
analysed more general case of the defectless division algebras of degree p over a field F
with Henselian valuation). In his recent revue [33] Wadsworth pointed out that for most
of the specific examples and applications it is suffice to consider Henselian valued fields
like iterated Laurent series fields, that is n-dimensional local fields. So, we get in some
sense the complete picture of a local structure of the Brauer group over such fields. As
a corollary we get the positive answer on the following conjecture: the exponent of A
is equal to its index for any division algebra A over a Cy-field F' = Fi((t2)), where F}
is a C}-field (see [26], 3.4.5.).

From the other hand, the problem of classification of local skew fields leads to
the problem of classification of conjugacy classes in the automorphism group of an



n-dimensional local (commutative) field. We solve this problem for the group of con-
tinuous automorphisms.

We note that the automorphism group of a local field of positive characteristic is
intensively studied now in the algebraic number theory (we mean recent applications to
the problem of description the Galois group of an arithmetically profinite extension).
Moreover, the automorphism group of the field F,((¢)) (so called Nottingham group)
is now carefully studied in the group theory (for more details see papers [5], [3], [12],
8], [13], [14], [10], [11], [36]. We hope that our results on the automorphism group will
be applied in the future to obtain some useful results about the Galois group of an
arithmetically profinite extension.

Here is a brief overview of this thesis. It consists of two chapters.

The first chapter consists of five paragraphs. In §1 we give general definitions of a
local skew field, of a splitness and of an isomorphism of local skew fields. Also we study
some general properties of splittable skew fields.

Thereafter except §4 we study mostly two-dimensional local skew fields with com-
mutative residue skew field. In §2 we give a sufficient condition for a skew field to be
split. Namely, a local skew field splits if a canonical automorphism has infinite order.
The canonical automorphism can be defined as a restriction of an inner automorphism
ad(z) on the residue field, where z is any local parameter. We show that there exist
counterexamples when this condition does not hold. We note that this condition and
counterexamples are true even in more general situation when the skew field is not
two-dimensional skew field or the residue skew field is not commutative. We classify
all the skew fields which possess this condition up to isomorphism. The results of §2
don’t depend on the characteristic of a skew field.

In §3 we classify all the local splittable skew fields of characteristic 0 with commu-
tative residue skew field and with the canonical automorphism of finite order.

In §4 we study splittable local skew fields of characteristic p > 2 with commutative
residue skew field and with the canonical automorphism of finite order. We give a
criterium when such a skew field is finite dimensional over its centre. Then we prove that
every tame finite dimensional division algebra over a local complete field splits. Using
this fact we prove the decomposition theorem for splittable algebras. As a corollary we
get the proof of the conjecture mentioned above.

In §5 we study some properties of local skew fields described in §3. In particular,
we give a criterium when two elements from such a skew field conjugate. This is a
generalisation of analogous theorems from [23]. As a corollary we prove that almost
all such skew fields are infinite dimensional over their centre. Also we prove that the
Scolem-Noether theorem holds only in the case of the classical ring of pseudo-differential
operators.

In §6 we get new KP-hierarchies for every class of isomorphic two-dimensional local



skew fields, which were studied in section 3. We derive new equations of the KP-type
for some hierarchies.

In the second chapter we classify conjugacy classes in the group of continuous
automorphisms of a two-dimensional local field of characteristic zero with the residue
field of the same characteristic. Some facts about automorphisms of a local field of
characteristic p > 0 one can find in lemma 1.3. Also in this chapter we show how this
classification can be generalised to the case of a n-dimensional local field, n > 2.
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possible for me to stay here for a long time. I would also like to thank my wife Olga
for her help in preparing the final version of this thesis and her love, and I thank
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Chapter 0O

The structure of two-dimensional
local skew fields.

0.1 General.

Definition 0.1 Let K and k be arbitrary skew fields. A skew field K is called a com-
plete discrete valuation skew field if K is complete with respect to a discrete valua-
tion. A skew field K is called an n-dimensional local skew field if there are skew fields
K=K, K, 1,... Ky =k such that each K; for i > 0 is a complete discrete valuation
skew field with residue skew field K; 1.

The following properties are well known from the valuation theory of division alge-
bras (see for ex. [31]).

Lemma 0.2 Let K be a complete diskrete valuation skew field. Then the following
properties hold:
i) The valuation ring O is a topological group and a metric space under the natural

topology;

it) The ring O is a local ring and a principal ideal domain.

For every two-dimensional local skew field we have
K>O—-K>0—k
where O is a valuation ring in K. There are two filtrations
K>0D>pD¢*D...
K>0>pD2¢?D..
where ¢ is a maximal ideal in O, ¥ is a discrete valuation on K.
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Definition 0.3 Two two-dimensional local skew fields K and K' are isomorphic if
there is an i1somorphism which preserves the filtrations above, i.e. it maps Ok onto
Ok, p onto . and O onto O, pr onto Q.

Definition 0.4 A two-dimensional skew field K is said to split if there is a section of
the homomorphism O — K.

Elements z € O, v(z) =1 and u € O C K, v(u) = 1 are called local parameters
(or variables) in K.

Proposition 0.5 Suppose K splits. Fiz some local parameters z and u. Then K s
isomorphic to a two-dimensional local skew field K((z)) where

za =a% + a2t + a2 + ...
where a € K, a is an automorphism, 6; : K — K are linear maps.

Proof. Suppose a € K, v(a) = j. Then we have v(az™7) = 0 and az=7 =
az=7 mod g € K. We will assume that the last element lies in O, since there is
a section. Then we have v(az™7 —ﬁ) > 1. Continuing this line of reasonings, we get
a=737 a;2', a; € K.

Now define a® = zaz~™' mod @, where a € K. It’s clear that « is an automor-
phism. Since v(zaz™') = 0, the element zaz™' can be written as a series y = a;z",
where a; € K. Here we have ag = a®. Now put a’ := a; for i > 1. It is easy to see that
0; are linear maps.

O

1

In fact, the maps 9; satisfy some identities. To write them we need extra notation.
Consider the ring Z < «,0 > of noncommutative polynomials in two variables.
Define the map
oL <a,0>—7L<a,d0;i>1>,

o(a™ . a™etn) = a8y, ... 0, et

where ay,b, > 0, a;,b; > 1,7 > 1, j <n for every word in Z < a, 0 >.

For example
k

o) =«
o(aFd'a’) = oF6a' !
where k, [, are natural numbers, ¢, > 1.
Let S¥ € Z <a,6 >,i >k, i > 1 be polynomials given by the following formula:

k __
Sy = Z T(e...ad...0),
TESZ'/G i—k k
where S; is a permutation group and G is an isotropy subgroup.
Immediately from the definition we get the following lemma

7



Lemma 0.6 The polynomials S* satisfy the following property:-

Si=0o, Sl =a S =aS 465}

7
Now we can define the identities for the maps 9;:

Proposition 0.7 FEvery map 6;, i > 1 satisfy the identity
di(ab) =Y o(6" Fa)(a)a(Sfa)(b), a,be K

k=0
Proof. For any a,b € K. We have
(%) (ab)®z + (ab)™ 22 + ... = z(ab) = (a®z + a® 2> + .. )b

If we represent the right-hand side of (x) as a series with coefficients shifted to the
left and then compare the corresponding coefficients on the left-hand side and right-
hand side, we get some formulas for ¢;(ab). We have to prove that these formulas are
the same as in our proposition.

Let

Zz'-i—l—kb — az‘—f—l—k(b)zi—i-l—k 4.+ xkziﬂ 4.

and
(a(a)z + 01(a)2® + 52(a)2® + .. )b = a(ab)z + yo2* + ys2° + ...
Then we have

i—1 %

Yir1 = ala)x; + Z Sin(@)z, =Y o(6Fa)(a)wy
k=0 k=0

Note that x are polynomials which consist of monomials of the type
oz‘“ébl c. Oéanébnaan+1(b), ag,bp, € Z, ag, b, >0

(we put &y to be equal to 1). It is easy to see that these polynomials have integral
positive coefficients.

We claim that z, = o(SFa)(b).

To prove this fact it suffice to show that x; contains every monomial from

o(SFa)(b) and the sum of coefficients in x;, is equal to the sum of coefficients in
o(SFa)(b).

By definition every coefficient of o(SFa)(b) is equal to 1. It is easy to see that the
sum of coefficients is equal to CF =il /(i — k)!k!.



Let us show that z; contains every monomial from o(SFa)(b). By definition,
o(SFa)(b) consists of monomials o(7(av...ad...5)a)(b), where 7 € S;, i.e. it con-
N N =

i—k k
sists of monomials @ dy, ...a% 0, a*+ (b), where a; > 0, b; > 1, Z?Zl b; = k,
Z;‘;laj =i—k+1—n. We have

ZHIRp = piFImkmant gant1 () 2841 4 other terms,
Zr Ik mans qanta (p) pantt — pitlmhmanadlganatl(py g 45, %t (b)2bn T g ]2t =
Zi+1*k*an+1*1aan+1+1 (b)zan+1+1 4 Zi+1*k*an+1*15bn&an+1 (b)zbn+1+an+l N
Now put dy = d,,a®+'(b). Then we have

'i"l’l*k*anﬂ—l*ldlzbn‘i’l‘i’an-ﬁ»l — + Zi“l’l*k*anﬂ—l*1*an71d2zbn+1+an+l+an+b'n—1+1 +

z )

where dy = 05, a6, a1 (b). By induction we get
Zi+1—k—z aj=m a1 61)1 o aan(;bnaanﬂ (b)zz bji+n+d a; _ Oéa15b1 - Oga”(sbnozanﬂ (b)2i+1 +...,

that is x; contains any given monomial from o(SFa)(b).
Let us show that the sum of coefficients of zj, is equal to CF.
Denote by s the sum of coefficients in y;, where

o0
ZMazT" = g e, ae K
k=0

Then the sum of coefficients of zy is equal to s, ,. We claim that the following
relation holds

The proof is by induction on n. For n = 1 we have s¢ = 1 for all d > 0, s, = 0 for
[>0and s =1.

For arbitrary n put
n—1

2 laz M = yo iz,
where 79 € K. Then we have
Maz T =zyor Vb e b=yl e ) S Ry

Put

(o ¢]
ZtazT" = E w2
k=0

9



Then we have .
wa =Y 8;(ya—;) + (ya)
j=1

Since the sum of coefficients of y; is equal to s, we get

n—1»

Now let us show that s¥ ,_, = CFif k < i+ 1. The proof is by induction on i. For
i =0 we have s = 1 = C?. For arbitrary i we have

k
s z}k Cr+Ci +...+C)y =
=

(- ((CLp+ ) + Ol ) + Gl + -+ CF) =

(- ((Clpyn) + CF ) + G ) + ..+ CF) = CFy

This completes the proof.
O

Corollary 1 Suppose o« = Id. Then the following formula holds

6;(ab) = d;(a b4—:£:<2 k j{: Cl 10y 65, (D)

.....

where 6g = « and the second sum is taken over all the vectors (ji,...,7;) such that
O<i<min{i—k+ 1k}, ju>1,> Jm=kF.

In the sequel we will need the following definition.

Definition 0.8 Let (a, 3) be endomorphisms of a skew field L. A map § : L — L/,
where L C L' is a subalgebra, is called a (o, 3)-derivation if it is linear and satisfy the
following identity

5(ab) = d(a)b® + a5 (b)
where a,b € L.

We will say that (o, 1)-derivation is an a-derivation.

For example ¢; is an (a?, a)-derivation.
If a = Id, then 6, is an usual derivation; d, = 67 + d, where § is a derivation.

10



Corollary 2 If §; = ... =01 = 0, then 6y is an (a1 a)-derivation.
The following corollary will be used in §3 of this chapter.

Corollary 3 Let K be a field, K = k((u)), k C Z(K) and the maps &;, i > 1 be
continuous if chark = 0. Then

(51(2 ZEjUj) = ijé}(uj), l’j € k
=N j=N

So, for every i the map 0; is completely defined by elements 0;(u) and §;(u) for j < i.

Proof. If chark = p # 0 and o = id the maps ¢;, ¢ > 1 are continuous, since
5;(a?") = 0 for any a € K. Since a topology on a 1-dimensional local field is uniquely
defined by its local structure, the continuity does not depend on the choice of local pa-
rameters (for more information about a relation between a topology and a parametri-
sation see [35]). If a # id one can use lemma 1.29 to reduce this case to the previous
one.

Let us show that « is a continuous map. In our case it suffice to show that «
preserves the valuation. Our proof will not depend on a characteristic.

It suffice to show that v(a(u')) = 1 for any v/, (v') = 1. Consider the automorphism
o

d'(a) == z2"1az

where a € K (we use the notation from proposition 1.7). It’s clear that o/ = a~'.
/

Let w' be an arbitrary parameter. Put k = v(a(u')). We claim that |s] < 1 or
5| = p?, ¢ € N. Assume the converse. Then x = mp?, (m,p) = 1, [m| # 1 and there
exist ¢ € k, a € K such that a(u') = ca™. Therefore, we get

i.e.

a contradiction.

Let us show that £ > 0. Assume the converse. Consider the element v’ +u'? (v +u’
if chark = 2). Then v(a(u' + u?)) = 2k < —1. If chark # 2 we get a contradiction
with the assertion |v(a(u'))] = p? or |v(a(u))| < 1 for any parameter . If chark = 2
one can apply the same arguments to the element u' + u'3.

Similarly, for x" := v(a~*(u')) the property 0 < x’ <1 or &’ = p' holds.

Let us show that x # p?. Assume the converse. Consider the following two cases:

1) Suppose & < 1. There exist r € k, a; € k((u)) such that a(v') = cou?a?"
Therefore,

1= 25(a” W) + (0" — 250 @),

11



ie. (p?—2)1. It is possible only if p =3, g = 1. In this case one can use the same
arguments with a(u') = csu®a;?. Then we get 7(a~'(a;)) = 2, a contradiction (since
0<w <1lorw =ph.
2) Suppose k' = p'. Let a(u') = cu'a?* = for some ¢ € k, a € k((u)), ¥(a) = 1. Then
we have
v(u)=1=v(a () + (p? —1)v.

But this contradicts with z(a~(a)) > 0.

So, k =0 or k = 1, i.e. for any parameter u’ we have v(a(u')) =0 or v(a(u')) = 1.
Suppose x = 0. Consider the element x = v/ + ¢;u/? + co (U + c1u™)), where ¢; = —wy !
if a(u') = wp+ ... and ¢y is an element such that v(a(z)) > 1 (it always exists since
v(a(u + cju?)) > 0). But this contradicts with v(z) = 1. Therefore, £ = 1 and « is a
continuous map.

To complete the proof it suffice to show that the series Z;’i ~ £j0;(u?) converges,
because the topology on k((u)) is complete and separate. The proof is by induction
on i. For i = 0 we have (a(u’)) = j and the series converges. For i = 1 we have
v(61(u?)) = (j — 1)(61(u)) and again the series converges.

At last, by proposition 0.7 for j > 1 we have &;(w/) = & (u/ = )yo+> g 0n (W ") yis,
where 7(y;) does not depend on j.

By induction we have min{v(do(uv/ =" y;), ..., v(6_1 (v Hy)} >

min{v(o(w "2)y;), ..., (61 (v ?)y;)} and u(yo) = 1. So,

min{p(0;(w = )yo), 7(do (!~ )yi), ..., (0 (W) } >
mind (6 (1)), P(Bo(w )i, - 7051 (u)yn)1-
Therefore, the series converges.

O

0.2 Splittable skew fields.

In this section we will assume that K is a field.
For such a skew field one can define a notion of a canonical automorphism a.
By definition there exist the following exact sequences:

10" =K 571
where O is a valuation ring;
l—-1+p—-0" - K*—1

where @ is a maximal ideal.
Consider the map

¢: K* — Int(K), ¢(x)=ad(x), ad(z)(y)=2x'yx

12



where Int(K) is the group of inner automorphisms of the skew field K. Since inner
automorphisms preserve the valuation, this group acts on the ring O. Moreover, it
preserve the ideal p. Therefore, there exists a map ¢ : K* — Aut(O/p) = Aut(K). Let
us show that the action of ¢(0*) is trivial on K. To show it we use the second exact
sequence. Since (1+p)'z(1+p) =2 mod ¢ for any x € O, the action of ¢(1 + p)
on K is trivial. Therefore, there exists an action of K on K. Namely, an element @ € K
acts on 7 € K as a”'za mod ¢, where a,z are any lifts of @,z in O. Since K is a

commutative field, this action is trivial.
Definition 0.9 An automorphism a of the field K defined by the formula

a=¢(z)

where z € K* and v(z) =1, is called a canonical automorphism.

It does not depend on the choice of z.

We want to classify all splittable two-dimensional local skew fields which have iso-
morphic last residue fields up to isomorphism. Let K and K’ be two splittable skew
fields, K = K((z)), K' = K'((¢')). If K = K', then one can represent an isomor-
phism ¢ : K — K’ as a compositum of an isomorphism ¢ : K — K’ such that
o(u) = v/, ¢(z) = 2/, and of an automorphism 9 of the skew field K. Since every iso-
morphism in our paper preserve the local structure, every automorphism of a splittable
two-dimensional local skew field is defined by change of parameters

(2) ursu =cotezt e+, () =1

22 =apz+wm+..., ag#0

where a;,¢; € K.

It is easy to see that every change of parameters looks like above and can be
decomposed into a sequence of changes u +— u’, 2z +— z;u/ +— v/, 2 +— 2 = afz+a)2*+. ..
(or in a backward order). Also u +— u’ can be decomposed into a sequence of changes
Uy =g, uh o uh = U+ Az Ul Ul =l + 2L and 2 — 2/ can be
decomposed into a sequence of changes z — 2| = apz, 2} — zb = 2/ + @\ 2%, ... 2l —
2=z +aiZt

Remark. We must note that any change of parameters (z) defines a map f: K —
K which is not always an automorphism. Indeed, assume the converse. Consider a map
which is given by f(z) = 2/, f(u) = u, where 2’ is another parameter. Then we must
have

flzu) = f(2)f(u) = Zu=u®2 +u12% + ..

f(zu):f(uaz+u5122—|—._.):uaz’—l—u‘slz’g—k,”

13



Hence, o = o/; 9; = 6} and so on, i.e. §) = 0; Vi.
Consider the skew field ”((u))((z)) with the relation zu = (u + u?)z and consider a
change of parameters z — 2’ = z + 22. Then

du=(z+2u=(u+uv®)z+zutu?)z=(u+u)z+[(utu?)z+ (u+u®)?]z =

(u+u?)2 + [u+2u® + 2u® + ut —u — P2 = (u+u?) 2 + [+ 20+ ut]?

So, 91 # 67, a contradiction.

Proposition 0.10 Let K be a splittable two-dimensional local skew field. Suppose the
canonical automorphism o has infinite order. B
Then there exists a parameter z' such that z'a = a®z’ for any a € K.

Proof. We will show that there exists a sequence of parameters {z;} such that the
equality zpaz, ' =a® mod " holds and the sequence {2} converges in K.
We need some additional lemmas.

Lemma 0.11 Suppose the following relation holds:=
zaz b =a+a%d +ad N 4 ae K

where 01 = ... =06;_1 =0, §; #0. Then
(i) for 2/ = z + bz9"" we have

adtl

dar Tl =a% 4 .. a2 (0% 4 ba®T — b))

i.e. a% = a% + ba™""" — a®b.
(11) Suppose o™ =id, n > 1. Then for 2’ = z + bz, n|q we have

dar ™t =a® 4 .. 4 @ity

q Jj—1
(a5q+j + b(aﬁj)aq . aéjbaﬂ + bZ((aak)éj)oﬂ*k . a(Sj Z bak)zlq—i-j 4.
k=1 k=0

(iii) for 2/ = bz, b € K, b# 0 we have
daZ Tt =a a5 (b ()Y
Corollary 4 If a = Id, then

Z’azlil —a+ ...+ a6q+1712/q+j71 + (a5q+j + (q _ j)aajb>zlq+j 4
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Proof of lemma.
(i) We have

Zaz ™t = (1 + 029 zaz (1 +029) " = (zaz™ ' + bz9zaz 1) (1 — b2? + b2z — ...) =
(zaz™' — zaz'b29 4 .. 4+ b2lzaz"t — .. ) =
(zaz™' = [a® +a% 2 + .. Jb29 + b2%a® +a% 2 + .. ]+...) =
(zaz™t = [a%D+ @%b 27 + . ]2t 4 ba®" 24 ) =

adtl

(zaz" 4 (—a®b+ba®" )20 4. ) = a®+ ..+ a® T 4 (@% 4 ba® — a®D) 2+
(ii) We have
Zaz = (14 02%)zaz7 (14 029) 7" = (zaz7" + b2%2az7 ) (1 +027) 7 =

(a® 4+ a% 2 4+ .. 4 aP 2 4 b29(a® a2 4 ) (1 b)) =

a
(a®+ba®"" 204a% 4. Aadti A4 b Z((a“k)5j)aq7kzq+j—|—b(a5j)O‘qzq+j+. ) (1+b29)71

k=1

q
a®+(a% 27 4. . a1 b Z((ao‘k)aj)aqszq“—l—b(aéj)o‘qzq”—l—. ) (1=b204Dbz%b2—. . )

k=1

q
a®+a% 2 4. Aalri 4 b Z((ao‘k)‘sj)aq_kzq+j+b(a6j)o‘qzq+j+. L—a%b g =

k=1
, a j—1
L a3 S
k=1 k=0
: : 1ok o
because 2”7 = 2/ + Y 7 0¥ 29 4.
(iii) We have
daz ™t = braz b = a4 ba¥ (b)Y = e a0 L ()Y

O

Lemma 0.12 Let 6 be an (o, B)-derivation of a field I_{ and o #£ 3.
Then & is an inner derivation, i.e. there exists d € K such that

§(a) = da® — d’d

foralla € K.
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Proof. Put d = §(a)/(a* — a”), where a is any element such that a® # a”. Put
Oin(z) = dx® — 2°d. We claim that § = Oin- Indeed, consider the map § = ¢ — 0;,. It is
an (o, ()-derivation. Take arbitrary b € K. Then d(ab) = 6(ba). But we have

3(ab) = 5(a)b® + a’3(b) = a”3(b),

and
6(ba) = 6(b)a® + b°6(a) = a“5(b)
Therefore, §(b) = 0 for any b.
O
Proof of proposition.
Let
zaz b =a® 4 a2+ a2+
By proposition 1.7 and corollary 1, §; is an (a?, a)-derivation. Since a? # «, by lemma
0.12 it is an inner derivation, say d1(a) = dia® — a®dy. By lemma 0.11, (i) for a
parameter z = z — d, 2% we have

!
Vg% +a%22+ ...,

2907y
Note that 67 = 0. By corollary 1, &} is an (a®, a)-derivation. Since o # «, by lemma
0.12 it is an inner derivation. By lemma 0.11, (i) there exists a parameter z3 = 29 —dy23
such that zzaz; ' =a® mod ¢°.
By induction for arbitrary £ € N we have

_ /
zrazgt = a” a4

and 0} = 0 for j < k. By corollary 1, §, is an (a**!, a)-derivation. Since o**! # a, it
is an inner derivation. By lemma 0.11, (i) there exists a parameter 2z, = 2z — clk,z],;”Jrl
such that zjy1az;,, =a® mod EFHL.

It is clear that the sequence {z,}: 2,11 = 2, — dnz;hLl converges in K. Since K is a
complete and separate field, there exists a unique limit z. It is clear that zaz!
The proposition is proved.

O

= a®.

Theorem 0.13 Let K be a two-dimensional local skew field. If o™ # id for alln € N
then

(i) charK = charK

(ii) K splits.
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Proof.

If char K # charK then char K = p > 0. Hence v(p) = r > 0. Then for any element
t € K with v(t) = 0 we have ptp~! = a”(f) mod ¢ where { is the image of ¢ in K.
But on the other hand, pt = tp, a contradiction.

The proof of (ii) we will divide in three steps.

Step 1. Let m be the prime field in K. Since charK = charK the field 7 is a
subring of O.

Lemma 0.14 There exists an element ¢ € K such that ¢** # ¢ for all k € N.

Proof. We claim that there exists a sequence {c;, }, ji,i € N, ¢;, € O such that

(i) v(cj;) > v(cj,_,) Vi
(i) if £ = 0 mod jy...5 and k # 0 mod js...j41, then ozk(cjl) =
Cjyy - - 7ak(cjz—1) = Cj_y, Ozk(le) 7é Chi and

D[(ak - ]d) (Cjz)] < ﬂ(ch-l)

Let us construct it. Take an element ¢;, such that a(c;,) # ¢;,, and 7(c;j,) > 1. Such
an element always exists. Indeed, consider an element u with 7(u) = 1. If a(u) # u, then
one can put ¢j, = u. If a(u) = u, then take any element ¢}, such that a(cj,) # ¢j,. If
v(c;,) = 0, then put ¢;, = ¢j,u. Then we have v(cj,) = 1 and a(cj,u) = a(c}, )u # cj,u.
Put jl =1.

Let j» be a minimal positive integer such that (a/')2(c;,) = ¢j,, and let k; =
maz{il(a? )" (c;) — ;] m € {L,....js — 1},

Take any ¢, such that (a7)2(cj,) # ¢,. Put ¢, = ¢;,¢i ™. Then (a91)72(c;,) # ¢;, and
D[(a/jl)m(cjl) - le] < D(C]é) Vm < ja.
By induction we get a sequence which satisfy (i) and (ii).

Now put ¢ = Y 07 ¢j;. Then for all k& we have o(c) # c. Indeed, let k
0 mod ja...jzand k # 0 mod ja...ji41. By (ii), af(c) — ¢ = af(c;,) — ¢,
O‘k(zzl-H Cjz) - Z;ﬁl—i—l Cjy- But D(Ozk(le) - le) < D(Cjzﬂ) < ﬂ(ak<2ioil+1 Cjz) -
>t i41Ci)- Therefore, a*(c) — ¢ # 0.

O

Consider the field F' = 7(c) C K. Let us show that this field can be embedded in
0.

Take any lift ¢ € O of the element ¢: ¢ mod p = c. It is clear that ¢ commute
with any element from 7. It is easy to see that ¢ is a transcendental element over 7.
Indeed, assume the converse. Then its equation modulo g must have infinite number
of solutions, because ¢** # ¢ Vk, a contradiction. Therefore, 7[¢] (g = 0. So, the field
of fractions F' can be embedded in O.

Let L be a maximal field extension of ' which can be embedded in O. Denote by
L its image in O. Take a € K, a ¢ L. We claim that there exists a lifting a € O of a
such that a commutes with every element in L.

+
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Step 2. Take any lifting a in O of a. For every element x € L we have

ara”! mod = x. If zis a parameter of K we can write

-1 _ 5
ara - =T+ 2z,

where 2% € O. The map &, : 2 € L — §;(x) € K is an a-derivation. Indeed,
a(r) +x0)at = (21 + 29) + (21 + 1132)612’
a(ry + )0 = azia" +azpat = 2y + 20z + 10 + 2z = (11 + 32) + (2 + 21)2
Therefore, (1 + mg)éi = mfi + xgi. Then, we have
-1 _ -1 -1
a(xixe)a™ = (ax1a™ ) (azxsa ")

Hence

! ! /

5 5 5 5 5 55
T1x9 + (1122)% 2 = (21 + 27" 2) (X2 + 251 2) = T1X0 + T125' 2 + 21 229 + 2 225" 2

5 5 5 5
=212y + 112y 2 + 2725z mod @ = 20 + (225 + 1125 )z mod o7

Therefore, o - o
(w122)" = 2'75 + Ty = oaf + a)’

By lemma 0.12, ¢} is an inner a-derivation, say &) (z) = d(z* — z). Put @ =
(14+ay2)a, where a3 mod ¢ = —d. Using the same calculations as in lemma 0.11 we
have

(14 a12)aza™ (1 4+ a12) "t =z + (2% + a12% — zay)z mod

Since % + a;2* — za; = 0 mod ©, we get dired, " = x + %222, Using the same
arguments as above one can check that ¢} : L — K is an a?-derivation. By induction
we can find an an element @; = (1 + a;2") ... (1 4+ a;2)a such that

ara; =1+ x5§+lzi+1,
and 6, , : L — K is an o'*!-derivation. By lemma 0.12, &/ ; is an inner a/*!-derivation.
So there exists an element a; 11 = (1 + a;412°71)d; such that

~ ~ / '
Qi1 T4 1— T + Q3§Z+2Z’L+2

for any x € L. It is clear that the sequence {d;} converges in K. Since @, mod p = a,
the limit of this sequence is a needed lifting.

Step 3. Now suppose @ is a transcendental over K. Then by step 2 there exists a
lifting a € O such that a commutes with every element in L. Then Lla] ()¢ = 0 and
the field of fractions L(a) can be embedded in O, which contradicts the maximality
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of L. So we can assume that K is algebraic over L. Suppose a is an algebraic and
separable element over L. Using a generalisation of Hensel’s lemma, (see below) we can
find a lifting @’ of a such that @’ commutes with elements of L and o’ is algebraic over
L, which again leads to a contradiction.

Finally, let @ be purely inseparable over L, ar = Z,x € L. Let d’ be its lifting which
commutes with every element of L. Then a'” " _ 2 commutes with every element of L.

If v(a” f x) = r # oo then similarly to the beginning of this proof we deduce that

k . r . .
7" —2)7Vin K is equal to " (c), where ¢ is an element from

the image of (a’pk —z)c(a
lemma 0.14. Since o' (c) # ¢, we get a contradiction. Therefore, a” " = 2 and the field
L(a") can be embedded in O, which contradicts the maximality of L. Thus, L = K.
The theorem is proved.

O

Proposition 0.15 (Hensel’s lemma) ' Let O be a complete valuation ring in K, I
be the valuation ideal, () I™ =0, and let F' be a subfield in O. Let A € O be such that
Vie F Al=1A. Let f(X) € F[X], f'(A) ¢ I and f(A) € I.
Then there exists an element A € O such that
a) A commutes with A,
b) A—Ael,
c) f(A)=0
d) Al=1AVIl € F

Proof. If A commutes with A, then
fA+A) = f(A) + f/(A)A+ PA?

where P € F[A, A]. We use Teilor’s formula here. Put A = —(f"(A))~'f(A). It’s clear
that A € I and A commutes with A. Moreover, A commutes with every element in F.
Thus, f(A+ A) = PA2 € I? and f'(A+ A) = f/(A) + XA ¢ I, where X € F[A, A].
Similarly we can find the element Ay, = —(f/(A+A))~"' f(A+A) € I?, which commutes
with A, A and with every clement in F and such that

fIA+ A+ A) el

Continuing this line of reason we can find the element A=A+A+ Ay+.... The sum
is converge because of completeness of O.
O

Remark. If o = Id, then the theorem is not true (see an example in §3).

Lthe idea of the proof of this lemma was offered by N.I.Dubrovin
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Corollary 5 Proposition 0.10 is true for any two-dimensional local skew field with
a™ #£4d for all n € N.

Theorem 0.16 Let K, {(’ be two-dimensional local skew fields such that o™ #+ Id,
" # 1d for allm € N, K, K" are commutative fields. Then

(i) K is isomorphic to a two-dimensional local skew field K((z)) where za = a®z,
a€K.

(ii) K is isomorphic to K' iff k = k' and there is an isomorphism f : K — K’ such
that o = f~a/ f.

Proof. The proof follows from corollary 5 and from the known classification of one-
dimensional local fields (see for example [30]).
O

Definition 0.17 Let K be a one-dimensional local field with residue field k, charK =
chark, let o be an automorphism of the field K. Put a; = o(u)u™" mod ¢ € k.
Define i, € N|J oo as follows:

io = 1 if a1 is not a root of unity in k else

io = ((a" = Id)(w)), wheren > 1:a} =1, a* # 1 ¥Ym < n.

Lemma 0.18 Let k be a field of characteristic 0. Any k-automorphism « of a field
k((u)) with a(u) = u+agu®+. .., where E* =1, n > 1, ™ # 1 if m < n, is conjugate
with an automorphism (3: B(u) = &u + zu' + yu*=~' where x € k*, y € k, x and y
depend on «.

Moreover, i, = igs.

Proof. First we prove that a = f3'f~! where
B/(u) — fu + ZL’Um+1 + yu2in+1

for some natural 7. Then we prove that i, = ig.
Consider a set {«; : i € N} where a; = fiai_lfi_l, fi(u) = u+ z;u’ for some x; € k,
a1 = «. Write
ai(u) = Eu+ agu® +azu’ + . ..

One can check that as = 1o(E%2 =€) + as 1 and hence there exists an element z, € k
such that aso = 0. Since a; ;11 = a;;, we have ay; = 0 for all j > 2. Further, ag3 =
23(&% — &) + a3 and hence there exists an element z3 € k such that az3 = 0. Then
as; = 0 for all j > 3. Thus, any element a;;, can be made equal to zero if n f(k — 1)
and so a = faf~! where

~ ~ intl | ~ ‘ 1
a(u) = &u+ ajp ™ + Qi pu™ T 4L
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for some i, a; € k. Notice that @;,+1 does not depend on z;. Put = = z(a) = Gjp41-
Now we replace a by &. One can check that if n|(k — 1) then

ajr = ajr—1 for 2<j<k+in
and
Qrink = Trpx(k — in — 1) 4+ ag1s, + some polynomial which does not depend on wy,

From this fact it immediately follows that agiy1,in+1 does not depend on z; and for all
k # in + 1 ajtink can be made equal to zero. Then y = y(a) = a9int1,int1-
Now we prove that i, = ig. Using the formula

B (u) = u+ nz(a) w4

we get ig = in+1. Since flaf = 3, [~ (a"—1Id)f = "™ — Id. Therefore, v(f~'(a" —
Id)f(u)) = v((8™ — Id)(u)) = ig. Suppose f(u) = v = fiu+ fou®> +..., fi # 0. Let
us show that vf~'(a" — Id)(u') = i,. It suffice to check that v(a™ — Id)(u') = i,. We

have
(@™ —Id)(u) = [filu+agu™+..)+ folu+a,u+.. )% +..] = [fiut+ fou*+..] =

[(fiu+ frg u™ 4. w”) + (fou? +. w”e) 4 (faud +. u”ie) +.. ]
—[fiu+ four +..] = figiu 4. ule

The lemma is proved.
O

Proposition 0.19 Let bar K be a one-dimensional local field with the residue field k
and charK = chark. Suppose k is algebraically closed and chark = 0. Let o, 3 be
automorphisms of the field K .

Then K = k((u)) and o = f718f (where f is an automorphism of K) iff
(alviavy(a)) = (blviﬁvy(ﬁ))'

Proof. The ”only if” part is clear. We prove the ”if” part.

It is easy to see that a; = b, if « = f13f.

If £ is not a root of unity, then by lemma 0.18 « is conjugate with 3: f(u) = &u.
Therefore, the ”if” part is proved for the case i, =i = 1.

Suppose now i, = ig # 1 and a; = by are roots of unity.

Lemma 0.20 Let 3, (' be k-automorphisms of the field k((u)): B(u) = £u+ zum 4
yu?™ T B (u) = Eu + Tut + gutnt ) where T/x € (K*)™, 5 = (T/2)%y

Then (3 and (3 are conjugate.
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Proof. Put 2y = (z/x)™ ", Let f be an automorphism such that f(u) = zqu.
Then we have

fﬁ(u) _ fl‘ou + $($0u)in+1 + y(l,ou)%n-i-l _ :Eofu + .’L’()fum-H + xogu%n—&-l — ﬁ,f(U)

O

From this and previous lemmas we get the proof of the proposition.
O

Corollary 6 In the conditions of the proposition suppose k is not algebraically closed
field. Suppose o = Id. Then there exists a parameter u' in k((u)) such that a(u') =
aju’.

Proof. The proof follows from lemma 0.18.

From the proposition we get also the following result:

Theorem 0.21 Let K, K' be two-dimensional local skew fields with the last residue
fields k and k' and with canonical automorphisms o, o . Suppose charK = chark,
charK' = chark’, o™ # Id, o™ # Id for all n € N, the fields k, k" are algebraically
closed of characteristic 0.

K is isomorphic to K' iff k =2 k' and (a1, 14, y(@)) = (a},iq, y(d')).

Now let us study skew fields with canonical automorphisms of finite order.

0.3 Classification of two-dimensional local split-
table skew fields of characteristic O.

In this part we assume that

a two-dimensional local skew field K splits,

kCK,kCK,kcC Z(K),

char(K) = char(k) =0,

a" =1id for somen > 1,

for any convergent sequence (a;) in K the sequence (za;z~') converges in K (i.e. the
maps 0;, 1 > 1 are continuous, see corollary 3).

We note that the continuity of the maps ¢;, ¢ > 1 does not depend on the choice of
parameters, as it follows from lemma 0.11 and corollary 3.
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0.3.1 The case o = Id.
Definition 0.22 Define

i= (6.~ () eN|Joo

r=v[((¢. —1)(u)z™" mod ] mod i €ZJiZ
where w, z are arbitrary local parameters of K, ¢, : K — K, ¢.(a) = ad(z)(a).

Proposition 0.23 i and r do not depend on the choice of parameters u and z.

Proof. We fix some parameters u, z: K = k((u))((2)). Let v/, 2’ be other parameters.
Then

u' = (zou+au®+..) +crz+ct ... where 2, €k, ¢ €k((u), ,10#0;

d=apzta 2t +..., a; €k((u), ag#0

Put 2" = ag'2’. It’s clear that v((¢.» — 1)(u)) = v((¢. — 1)(u)). From the other hand
by corollary 4, v((¢., — 1)(u)) = v((¢. — 1)(u)). So, i does not depend on the choice of
parameter z.

Now we prove that v((¢, — 1)(v')) = v((¢, — 1)(u)). One can obtain this property
from the following lemma.

Lemma 0.24 Suppose the following relation in K holds:

ruzt = w4 ki

where 0y = ... =0;_1 =0, §; #0. Then
(1) for v = u+ bz? we have

2wl = e 4 e Pt

where u'% = u’ + b~ — 9/Ou(u®)b.

(ii) Suppose a(u) = &Eu, £ € k, " =1 for some natural n. Then for u' = u + bz9,
n|q we have

a2z = 4 4 (U0 DY — Eb)2 L i 0T gkt

where u'%+i = ule+i + 0% — 9 /Ou(u’)b
(iii) If o = id, then for u' = rou + x1u® + ..., where x, € k, xo # 0, we have

/-1

0 .
27 = 4 (W =)+

ou

23



Proof. (i) We have

wlz = 2(u b)) = e (D4 )2 =
U Fut A A (W0 D)2 =Y L (0 4 0% — 0)0u(u®)b)2 ..
because 1/ = (u+ b29)°" = xo(u + bzq) + 1 (u+ bzq) +. = w4+ 0/ou(u’ )bz + . ..

if U = zou + U + . ...
(ii) We have

'zt = 2(u+ b2zt = Cududi b (D ) =
Cudud 2 4 (W0 DY) 2l T Pt T (g 0T =

T € e g P e A S R VL e A A (7N L ag(u‘sj)b)zqﬂ
u

(iii) We have

2u')zj +...

wlz V= ag(u+udd ) b (u w4 ) :u’+(u5ja
u

Remark. Note that this lemma works also in characteristic p > 0.

So, 7 does not depend on the choice of parameters u and z.
Now we prove it for r. Recall that in our proposition a = id (because ¢ and r were
defined only for av = id). By lemma 0.24 for any parameter v’ we have

Therefore, 7[((¢. — 1)(w))2™"] = v(u®) = 7[((¢- — 1)(u))= ]

If we change z by 2’ we get

~
=
—_

Zuz' = zuz”t! mod @'
Hence
7[((¢o — )(w)2"™ mod ] = 7[((¢. — 1)(u))z™" mod p] =

P[((¢: = D(w)z™" mod p] +(ay") = v[((¢ — 1)(u)z"" mod ] mod i
O

Definition 0.25 Define



Proposition 0.26 ¢ = a(u’+,...,u%-1), di.e a depends only on the maps
u5i+1, .. ,u‘;?i*l,

Proof. We comment on the statement first. The maps d; are uniquely defined by
parameters u, z and they depend on the choice of these parameters. So it suffice to show
that a does not depend on the on the choice of parameters which preserve the maps
Oit1,---,091. We can assume that 6,1 = 0,...,d9,_1 = 0, because we can change the
parameters to make this maps to be equal to zero (see lemma 0.11).

First we show that any change of the type u — u' = u+c 1z +...+¢;2" is equivalent
to a change of parameters as follows: z +— 2/ = 2 + @12 + ..., u— v =u+cz' + ...,
i.e. we get the same maps 9, in both cases. The proof is by induction.

One can decompose the change u +— u' = u + ;2 + ...+ ¢;2* in a finite number of
changes u — u; = u + ¢; 2%, Uy — Uy = Uy + 12, L iy Uy = Ui + ¢z, So it
suffice to prove our assertion for any change of the type u; +— w41 = uj + ¢;_j2" 7.

For j = 1 the assertion is trivial. Consider an arbitrary case. By lemma 0.24, dy;_; is
the first map which is not invariant under this change. By lemma 0.11,(ii) there exists
a parameter 2’ = z+a;_;2" "7 such that the compositum of u; — w41 = u;+c¢; ;277
and z — 2’ = z+a;_;2'77"" does not change this map. To use the induction hypothesis
and complete the proof we have to show that there exists a parameter v’ = u + bz
such that the compositum of u; — wji1 = u; + ¢;_;2"9, 2 — 2/ = z + a;_;z" 7 and
u— u' = u + bz does not change the map dy;. Denote by &4, the map which is given
by the compositum u; +— w11 = uj+¢;_;2"7, 2 — 2 = z+a;_;z 7+, By lemma 0.24
there exists such a parameter v’ iff

T€Suji (u(si )2 J+L — 0
j+1
We have uji1 = ¢;_j2"7 + .. -+ ¢;z". One can decompose the phange U = Ujiy in
W n U U =U+ Gz and U — U = U Ci_ 112 R G VAN
two changes ! + ;29 and v/ "=+ ¢_j127 T 4+ ¢zl The

second change does not change the map ds;_;, so by the induction hypothesis it suffice
to prove that the residue is equal to zero for the compositum of u — v’ = u+ ¢;_;2"7
and 2z — 2/ = 2z +a;_;j2"7 T

Using lemma 0.24, we can calculate a;_j: a;—; = 2((ju’) '¢;_;)u’. Note that if
v(c;—j) = r is big enough then the residue is equal to zero. One can show it with help
of lemmas 0.11 and 0.24. We denote by r the minimal positive integer which satisfy
this property.

Let ¢;j = > _yanul + ) zpu”. Then we can decompose the change u
v = u+ ¢;_;z"7 in finite number of changes u — u} = u+ zyu™ 2", o ul Ny —
Uy = Uy g Dope g "z Tt s clear that it suffice to prove our assertion for
each change. So we have to prove it for an arbitrary change u — u + zu”2/, x € k.
We have to check that the compositum of u — u + zu2/ and 2z — 2 — (j — i)} (h —

25



r)zuh~127T! does not change the map s, i.e. the residue above is equal to zero. Put
—(j— i)"Y h—r)auht = b, 2ul =V,

Let us show that such a compositum change only the maps d;4;, ¢ € N. Moreover,
we claim that &;y,(u) = const - w+h= TIndeed, if ' = u + b'27 we have

2t =ty P (0 U Y ) =

W b VT it =

o 0 0 e 102 , io: 10 , Y
Ul + U/(SZZ + (%(b/)uél — %(u‘;’)b/)z i 5@('&51) 12,42 _ §%<u51>b/32 3 _ c.
1 0° ,
—{—(u62i . gaue (ud")b'e)zz’
where ej =i if jli. If j /i, u®® does not change.
Therefore,
u/diﬂ- _ ag(b/)uéi _ g(uai)b/7
U U
and v(u%+i) =1+ (h —1).
Then 5 L o
ul§i+2j — __(uléi_'.j)b/ . __(uéz)bIQ
ou 2! Qu?
and p(u+2) =+ 2(h — 1),
1 02 1 07
ul§i+qj — _%<u/6i+(q_l)j)b/ . 5%(1/6“@_2”-)6/2 — = a%(lﬂsl)b/q

and v(u/%+w) =14 q(h —1).
If z— 2 = 2+ bz we have
Zu= (2 + b2 u = uz + w2 gl
Fuf2 22 bu T (G D)% T 4 (4 Dbufr i 4 m withe” T =
w i O IR Sl
w(z 4 b2 ) % (2 4 b Y i (2 b2 PN % (o b2

Hence,

witi = 0 4 b(j — z’)u‘s"

and 7(u’+1) =1+ (h — 1),

8 Sivoj 2 12,65 1 " : Oitj
w2 = utt — CF b7u® — Cpy bu® s + ( + )b’

26



and p(u’i+2) = r +2(h — 1),

u% 8 1 1,0 1 s _ . So
itqj = q i+qj __ Cq bq Czq+]+1bq i+ — = i+(q—1)j+1bu i+(g—1)j +(]+1)bu i+(q—1)j

and p(u’i+u) = r + q(h — 1).

So if j } i, u®* does not change. If j|i but e(h — 1) — r # —1, then the residue is
equal to zero ( note that e(h—1)—r # —1if (r—1,i) = 1). At last, ife(h—1)—r = —1,
then one can check the assertion by direct calculations.

So we have shown that the change v — o = u 4 c;2 + ... + ¢;2% is equivalent to
the change z +— 2/ = z + @22 + ..., u — v = u+ cz' +.... By lemma 0.24 the
change u — v = u+ 2" + ... does not change a. By lemma 0.11 the change z +— 2/ =
2+ a2+ ... does not change &;41,...,09_1 only if a; = ay = ... = a;_; = 0. But then
it does not change also a. Therefore, any change of the type z +— 2/ = 2 +a;2> + .. .,
u— u' =u+ciz+ ..., which does not change d;,1,...,0d2_1, does not change also a.

To complete the proof we only have to show that changes of the type u — u' =
rou+ zu + ..., x; €k and z — 2/ = apz, ag # 0 € k((u)) don’t change a. It is clear
for the first change. For the second change we have

u® = q u’? +1ap(ag )% u’ — agt(al a4+ ... + aolad =
% = ag ' u” (ag")?u — ag*(af " ay (a5 1)™)]
ag [ + (i + 1) /205 gy u™]

N2 _9i 82 i )
u(&ﬁ) = a 22U61 —ZCLO 2 laglu&

Therefore,
u¥ — (i 4 1)/2u” o — (i + 1)/2u%

(up ()

The proposition is proved.
O

Remark. If a two-dimensional skew field K does not split, then the numbers 7, r, a
can not be defined as the following example shows (cf. also the remark after theorem
0.13).

Example.? Let ”((u)) < x1,25 > be a free associative algebra over ”((u)) with
generators xy, Te. Let [ =< [[x1, xa], 21], [[x1, X2], x2] >. It is easy to see that the quo-
tient

S="((u) <xy,m9 > /I

is a ”-algebra which has no non-trivial zero divisors, and in which z = [z1,25] + I is a
central element. The elements z, u; = z; + I (i = 1,2) are algebraically independent.
Any element of S can be uniquely represented in the form

fot+ fiz+ fo22 + .o 4 fn2™

2T thank N.I. Dubrovin for showing me this example
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where fy, ... f,, are polynomials in the variables uy, us:
a + buy + cus + dlu% + dyuqug + d3u§ + ...

S is an Ore domain (see [4]), and the quotient skew field K has a discrete valuation v
such that v(u;) =0, v("((u))) = 0, v(z) = 1. The completion of K with respect to v is
a two-dimensional local skew field which does not split as the following lemma shows.

Lemma 0.27 Suppose there exist elements uy,us in the valuation ring O of a two-

dimensional local skew field K such that the element z = ujus — usuy s a parameter

and for any m € 2O\ 220 the elements [u;, m| = u;m — mu; (i = 1,2) belong to z*O.
Then K does not split.

Proof. Assume the converse. Let 7 : K +— K be an embedding. Consider elements
fen(u), g €m(uz). Then my = f —uy, my =g —ug € 20 and

0 = [ug + my, ug + me| = [uy, us] + [ma, us] + [ur, ma] + [my, mao] =

Z+ [thQ] + [Uhmg] + [m1,m2]

Note that the second and the third summands belong to 220 and [my,ms] € 220,
because mims, mem, € z°O. But then

0o =v(0) = v(z + [my, ug] + [ur, ma] + [my,ms)) = v(z) =1,

a contradiction.
O

In this skew field we have ¢ = 0o, and r, a are not defined. From the other hand, if
we consider the change z +— w2, then ¢ become equal to 1, r =0, a = 0.

So these numbers depend on the choice of parameters in this unsplittable skew field.

Proposition 0.28 Let K be a skew field which satisfy the conditions in the beginning
of this paragraph. Let char k =0, a« =1 and i > 1. Then K is isomorphic to a skew
field k((w))((2)) with zuz™" = u+u® 2 +u®i 2% where &/(u) = cu’, ¢ € k*/(k*)¢, where
e=(r—1,4); 8 (u) = (a(0,...,0) +r(i+1)/2)u”"(6}(u))* and §j(u) = 0 for j # i, 2.

Proof. Consider the change z — 2’ = agz. By lemma 0.11, (iii) we have u% = ag‘u’.

So, u% can be made to be equal to

/ (2,94 1
uéi _ Couy(u i)  mod z,

where ¢y € k*/(k*)". By lemmas 0.24 and 0.11, ¢y depend only on changes of the type
z — 2 = apz, u — u' = xou, where ag,z9 € k. So, ¢y can be made to be equal to
¢ = coay 'zy "t Therefore, ¢ € k*/(k*)¢, where e = (r — 1,14).
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Let us show that there exists a change z +— 2’ = 2z + a,2° + ... such that ¢%(u) = 0
for 2 > 7 > 4. Indeed, it can be done by a sequence of changes of the type z +— 2’ =
2 4 bz/TL. By corollary 4, for any such j there exists b such that 0% (u) = 0.

Let us show that there exists a change such that it changes the map d9; as follows:
Sh;(u') = (a+r(i+1)/2)u/ "1 (u%)% To show it we use lemma 0.24, (ii). By this lemma
it suffice to show that there exists an element b such that

w? — (a+7(i+1)/2)uH(w’)? + b — (u®)b =0

, where the prime ’ denote the derivation by w. By corollary 2, 9; is a derivation.
Therefore, we can rewrite the equation above as follows

w2 (a+r(i+ 1)/2)u—1(u5i)2 Ll — (uéi)/b =0

One can find a solution of this equation in the form b = u%b. The equation has a
solution if &' + u%% (u%)~2 — (a + r(i + 1)/2)u~! = 0. The last equation holds, because

82 (u

Tesumdu =r.

Using now the same arguments as in the previous paragraph, we can complete the
proof.
O

0.3.2 The general case.
Consider now the case o™ = Id for some natural n > 1.

Lemma 0.29 Suppose the canonical automorphism o of a local skew field K satisfy the
property o™ = 1 for some naturaln > 1. Then there exists a parameter 2’ = z+a,2°+. . .
such that

Z/uzlfl = u® + uéjlzln + uﬁénZIQn 4.

Here 05 =0 if n fj.

Proof. Let
cuz b = u® w4+ w2+

By corollary 2, d; is a (a?, a)-derivation.
Since n > 1, a? # «. Therefore, by lemma 0.12, §; is an inner derivation and
01 (u) = du®® — u®d. Put 2/ = z — dz2. By lemma 0.11, (i) we have
Fud N = w22 4

By corollary 2, 8, is a (a®, a)-derivation. If n # 2 then it is inner and we can apply
lemma 0.11. By induction we get that there exists a parameter z’ such that

_ / ’
Zu 7t = u ol e
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where 0/ is a (a1, a) = (o, a)-derivation, i.e. §/,a~! is a derivation.

Note that d],,; is a (?, «)-derivation. Indeed, by proposition 0.7 we have

n+1
(@b Z5n+1 k n+1a)(b) a,be K
But 0% = 0 if j < n. Therefore,
O 1(ab) = 0y, (a)a" 2 (b) 40, (a Z@k‘sl ") (b)+a(a)dy . (b) = 6,14 (a)a? (b)+a(a)d), ., (b)

and by lemma 0.12, §_, is an inner derivation. Using lemma 0.11 with 2’ — 2" =
2" + bz™*2 for an appropriate b, we have

/ /— i 4 1"
"l =y ot 2 2

with 0;,,; = 0. By induction we can assume that there exists a parameter 2’ such that
/-1

! ! !
Zu 7l = u® w4l ke R

Then if n fk+ 1, &}, is a (@*2, a)-derivation. Indeed,

k+1
k1 (ab) = ZU( ;c+1—la)(a)0(sllc+1a)<b> =
1=0
ke (@)a™(b Z )o(Spfi ™) (b) + afa)dy (0)

where z e N:an <k +1, (x+1)n>k‘+1 because 9; = 0 if j <k +1 and n fj.
Every monomial o(S;{] ™" a) contain an element 0; with j < k+1 and n [} j.
It follows from the definition of Sj,, together Wlth nfk + 1 — mn. Therefore,
oSyt a)(b) = 0 Vm and d); is a (a"+?, a)-derivation.
If n|k + 1, we can apply the same arguments and conclude that 0, is a (o™, a)-
derivation. Therefore, by lemma 0.11 there exists a parameter 2” = 2/+bz"**2 (2/ b2k +3

if n|k + 1) such that

k+2

Z/luzll—l — u® + U%Z”n + uéénzuzn .+ u6§c+22//k+2 + ...

/ / .
(01" u6k+121/k+1 + u5k+3z”k+3 N if n|k + 1)

Since 2,11 = (1+2})2;, the sequence {2 };°, converges in K. Therefore, we get the proof
of the lemma.
O
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Lemma 0.30 There exists a parameter u € K such that a(u) = {u, where " = 1,
and for all j 0}, (u) = w(}, ypu™) € uk((u")), where y; € k, and for k not divisible
by n ;. = 0.

Proof We can assume that the relation from lemma 0.29 holds. We will do changes
of the form u — v = u + b;,2’". We have seen in the proof of lemma 0.24 that the
maps 0, n [ k don’t change under such substitutions. By lemma 0.24, (i) we can see
that u%n = u%n 4+ b* — 3/du(u®)b. By corollary 6 we can assume a(u) = £u, where
&" = 1. Therefore, u/%n = ulin + b — &b and we can find an element b to satisfy the
conditions of the lemma.

O
As in the case a = Id we can define i,, 7, and a,.

Definition 0.31 Put
in = v((¢n — 1)(u)) €N Joo

rn:D[((gbzn—l)(u))z_i" mod | mod i, € Z[i,Z

ud2in =50,
Qp = T€Sy A —————du ck

()P
where w, z are arbitrary local parameters in K, ¢, : K — K, ¢,(a) = ad(z)(a).

From the previous two lemmas we can derive that if z is a local parameter from
lemma 0.29 then 7, € nN and r, =1 mod n. It is easy to see that the number i,
is the number of the first non-zero map 9;, in lemma 0.30. In the same way as in the
proof of proposition 0.26 we can get the following result:

Proposition 0.32 We have i, = i,(u%,j ¢ nN), r, = 1,(in), an =
ap (udin+1 . uf2in—1),

Proposition 0.33 Let K be a two-dimensional local skew field which satisfy the con-
ditions in the beginning of this paragraph.

Let chark =0 and o™ = Id for some natural n.

Then K is isomorphic to a skew field k((u))((z)) with the relation

Uz —_— fu u LZZn Uu 27‘”2 Zn,
’LUht??@ fn —_— 1; Z’I'L — ’ln<0, . e 70>7

0 (u) =cu™, ce k*/(k*), e = (r, — 1,4),
Oh; () = (an(0,...,0) + 1y (i + 1)/2)u™" (8] (u))?.
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Proof. We can assume that the conditions of lemma 0.30 hold. Then, because of
special choice of the element u%» it suffice to repeat the proof of proposition 0.28.
O

Combining all these results we get:

Theorem 0.34 Let K and K’ be local skew fields of characteristic zero. Suppose they
satisfy the conditions in the beginning of this chapter. Then K is isomorphic K' iff
k =k and the sets (n,&, iy, n,cC an), (0',& 40 1! al) coinside.

YUy "o

Remark. If n = 1 and 7, = oo, then K is a commutative two-dimensional local

field k((u))((2)).

Let us now summarise all the classification results we have got above.

Theorem 0.35 (1) Let K be a two-dimensional local skew field with a commutative
residue skew field.

It splits if the canonical automorphism « satisfy the condition o™ # Id for all n. If
this condition does not hold, there are examples of non-splittable skew fields.

(1I) Let K, K" be skew fields as in (I). Assume o™ # Id, o' # Id for all n. Then
(a) K is isomorphic to a two-dimensional local skew field K((2)) where za = a®z,
a € K and K is a one-dimensional local field with the residue field k.

Cb) K and K’ are isomorphic iff k = k' and there exists an isomorphism
f: K K' such that o = f~ 1o/ f.

(¢) If charK = chark, charK' = chark’ and k,k' are algebraically
closed fields of characteristic 0, then K is isomorphic to K' iff k = kK and

(a1,i0,y(@)) = (a},ia, y(a')).

(111) Let K, K' be two-dimensional splittable local skew fields of characteristic 0,
kc Z(K), ¥ c Z(K'), and o™ = Id, o/ = Id for some natural n,n’ > 1. Then (a)
K is isomorphic to a two-dimensional local skew field k((u))((z)) where

zuz”l = Eu+ udin 2 4 2 20
where £ =1, i, = i,(0,...,0),
0 (u) =cu™, ce k*/(k*), e = (r, — 1,7),
03;, (1) = (an(0, ..., 0) + ru(in +1)/2)u" (6] (u))?
(i, Tn, an were defined in 0.31).
Ifn=1, i, = oo, then K is commutative.

(b) K is isomorphic to K' iff k = k' and the sets

(N, &, in, Tnycyan), (W, &, 0,7, al,) coinside.
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Corollary 7 FEvery two-dimensional local skew field K with the ordered set

(na 57 i’m T'n, C, an)

is a finite-dimensional extension of a skew field with the ordered set (1,1,1,0,1,a) if
iy < OQ.

Remark. It’s easy to see from the corollary that skew fields in the theorem above
are almost always infinite dimensional over the centre. Namely, the only finite dimen-
sional skew fields are the skew fields with 7,, = co. In the case of skew fields of positive
characteristic the situation is much more complicated.

0.4 Splittable skew fields of characteristic p > 0.

It is difficult to classify all splittable two-dimensional skew fields with the canonical
automorphism of finite order in positive characteristic even if we consider only skew
fields with a = ud, at least because there are infinitely many maps d; which can not
be removed by any change of parameters. Nevertheless, our methods give some useful
tools for studying splittable skew fields finite dimensional over their centre.

For splittable skew fields in positive characteristic one can define an invariant which
is in some sense a replacement of the invariant a, for skew fields of characteristic 0.
Certainly, there are infinitely many of other invariants.

Namely, if K is a splittable two-dimensional local skew field of positive characteristic
with K commutative, k = K C K, k C K, k C Z(K), « of finite order we define

dg = maxv(zuz ' — a(u) — (51.(:)(u)zi”),

U,z

where 55? is a map defined by a parameter z, and 7, is a number defined in 0.31.

In the case of a skew field of characteristic 0 we have dx = 2i,(0,...,0) or dx = oo,
that is why it is in some sense a replacement of a,: in characteristic 0 it reflects the
property of a,, to be zero or not.

In this section we will prove the following theorem:

Theorem 0.36 Suppose that a two-dimensional local skew field K splits, K is a field,

k=K C Z(K), char(K) = char(K) = p > 2, a = id, and dgx < 2i = 2iy or dg = 00.
Then K is a finite dimensional vector space over its centre if and only if K is
isomorphic to a two-dimensional local skew field k((u))((2)), where

2 uz=u+ 2t

with x € K?, (i,p) = 1.
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To prove this theorem we prove more general result about finite dimensional
algebras, which generalises some known results of Jacob and Wadsworth in [9] and
Saltman [28]. As a corollary we get the positive answer on the conjecture about
exponent and index of a finite dimensional division algebra over a Cs-field for some
types of Cs-fields. These results will be proved in the subsection below. Now we prove
only the "if” part. Indeed, since z € K?, we have 62(u) = 0. Hence, by corollary 1 we
have 0; = cég/i, c € kif i|j, and §; = 0 if i /j. But then za?z~! = a? for any a € K, so
K is a finite dimensional skew field over its centre and the index indK = p.

To prove the "only if” part we need results from the following subsection:

0.4.1 Wild division algebras over Laurent series fields

In this subsection we prove a decomposition theorem for some class of wild division
algebras over a Laurent series field with arbitrary residue field of characteristic greater
than two. Namely, we prove this theorem for wild division algebras which satisfy the fol-
lowing condition: there exists a section D < D of the residue homomorphism D — D,
where D is a central division algebra. This theorem is a generalisation of the decom-
position theorems for tame division algebras given by Jacob and Wadsworth in [9]. An
extensive analysis of the wild division algebras of degree p over a field F' with complete
discrete rank 1 valuation with char(F) = p was given by Saltman in [28] ( Tignol in
[32] analysed more general case of the defectless division algebras of degree p over a
field F' with Henselian valuation).

The main result of this subsection is Theorem 0.55; it is a corollary of Theorem 0.43
and propositions 0.51-0.54. Theorem 0.43 is a key tool in the proof of Theorem 0.55.
As a corollary we get the positive answer on the following conjecture: the exponent of
A is equal to its index for any division algebra A over a Cy-field F' = Fy((t2)) (corollary
8) (see also [37], corollary 4, §8.3.2.), where F} is a C}-field. We note that the proof of
the conjecture does not depend on the statement of theorem 0.55, but uses only several
lemmas from it’s proof. In fact, these lemmas are most important technical statements
about the maps ¢,, and their generalisations.

We change the notation in this subsection and use the notation of [9], because it is
more convenient for applications in the valuation theory. We always denote here by D a
division algebra finite dimensional over its centre F' = Z (D). Recall that any Henselian
valuation on F' has a unique extension to a valuation on D.

Given a valuation v on D, we denote by I'p its value group, by Vp its valuation
ring, by Mp its maximal ideal and by D = Vj/Mp its residue division ring.

By [31], p.21 one has the fundamental inequality

[D:F|>|Tp:Tg|-[D:F].
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D is called defectless over F' if equality holds and defective otherwise. It is known that
D is defectless if it has a discrete valuation of rank 1.
Jacob and Wadsworth in [9] introduced the basic homomorphism

induced by conjugation by elements of D. They showed that 6 is surjective and Z(D)
is the compositum of an Abelian Galois and a purely inseparable extension of F.

We say D is tame division algebra if char(F) = 0 or char(F) = q # 0, D is defectless
over F', Z(D) is separable over F', and ¢ f|ker(fp)|. We say D is wild division algebra
if it is non tame.

We call a division algebra D inertially split if Z(D) is separable over F', the map
Op is an isomorphism, and D is defectless over F.

0.4.2 Cohen’s theorem

There is a natural question if there exists a generalisation of Cohen’s theorem, i.e. is
any central division algebra splittable or not. It is not true if a division algebra is not
finite dimensional over its centre, as Dubrovin’s example shows. It is not true also for
finite dimensional division algebras, as we will see in Wadsworth’s example below. But
it is true for tame division algebras over complete discrete valued fields. This easily
follows from results of Jacob and Wadsworth [9].

Theorem 0.37 Let (F,v) be a valued field which is complete with respect to a discrete
rank 1 valuation v. Suppose charF = charF. Let D be a tame division algebra with
Z(D)=F and [D: F] < oc.

Then there exists a section D — D of the residue homomorphism D — D.

Proof. Since F' is a complete field, F is a Henselian field and v extends uniquely to
a valuation w on D. Since D is tame, Z(D)/Z(D) is a cyclic Galois extension. There
exists an inertial lift Z of Z(D) over F, Z is Galois over F, and by classical Cohen’s
theorem there exists a section Z(D) < Z.

Consider the centraliser C' = Cp(Z) of Z in D. Then we have C' =

Indeed, by Double Centraliser Theorem we have [D : F| = [ Fl|Z : F]
and [Z : F] = |Gal(Z(D)/F)|. By [9], prop.1.7 a homomorphism 6p : T'p/Tr —

Gal(Z(D)/F) is surjective, so for any parameter z we have Op(w(z)) = o, where
< o0 >= Gal(Z(D)/F). 1t is clear that z ¢ C. Now let w, ..., ujc.;) be a F-basis of
C. It is easy to see that the elements u;, zu;,...,2" tu;, j = 1,...,[C : F], where

n = ord(c), the order of o, are linearly independent, so form a basis for D over F.
Since
w(F < zuj, ..., 2" 'y j=1,...,]C: F]>)NTg =0,
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where F' < zuj,...,2" tu;,j = 1,...,[C : F] > denote a vector space in D over F
generated by elements u;z*, this implies that for any element 2 € D with w(z) = 0 we
can find elements ry,...7rc.p) € F such that © = ryuy + ... +rc.puc:ry mod  Mp.
Hence C' = D.

Fix an embedding F' — F and consider the algebra A = C ®@p Z(C). It is easy to
see that A is an unramified division algebra with A = C' = D. Therefore by [2], Th.31,
A = (; so there exists a section D — C.

The theorem is proved.

O

Example (Wadsworth). Let p be any prime number, let k = Z/pZ, the field with
p elements, and let r, s be independent indeterminates over k. Let F' = k(r, s)((t)), the
formal Laurent series field in ¢ over the rational function field k(r, s). F has its complete
discrete t-adic valuation with residue field F' = k(r,s). Let f = 2P + tz — r in F[z].
The derivative test shows that f has no repeated roots. Let 6 be a root of f, and let
K = F(0), which is separable over F.

Let M be the separable closure of K over F. So, the Galois group Gal(M/F) is
isomorphic to a subgroup of the symmetric group S,. Let L be the fixed field of a
p-Sylow subgroup of Gal(M/F), and let o be a generator of Gal(M /L), a cyclic group
of order p. The valuation on F' extends uniquely to complete discrete valuations on L
and on M. Note that L doesn’t contain r'/?, since [L : F|] divides [L : F], which is
prime to p. (For the same reason, L doesn’t contain a p-th root of s.) But M contains
, which is a p-th root of 7. So, [M : L] = [M : L] = p, and M = L(r'/?), which is purely
inseparable over L. Since ¢ acts trivially on M, the norm map from M to L induces
the p-th power map from M to L. So, s is not in the image of the norm from M to L.
Therefore, the cyclic algebra D = (M/L, 0, s) is nonsplit of degree p, so it is a division
algebra. With respect to the unique extension of the valuation on L to D, we have D
contains a pth root of 7 and also of s, so p?> = [D : L] > [D : L] > [L(r'/?, s'/?)] = p?.

This shows that D is the field E(Tl/”, sl/p), which is purely inseparable over L.
Hence also, the ramification index of D over L must be 1.

0.4.3 Decomposition theorem

In this part we prove a generalisation of Jacob-Wadsworth’s decomposition theorem
([9], Th.6.3., lemma 6.2) for finite dimensional splittable division algebras over a Lau-
rent series field k((t)), chark > 2.

So, in this section we consider only splittable division algebras. Moreover, we will need
more strong condition:

Definition 0.38 A division algebra D s called good splittable if there exists a section
D — D compatible with an embedding Z (D) — Z (D), i.e. Z(D) D Z(D) C D.
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It’s easy to see that all tame division algebras are good splittable, because by
Cohen’s theorem any embedding W — Z(D) can be uniquely extended to any
separable extension of Z(D).

We note that the skew field K from theorem 0.36 is good splittable if K is a finite
dimensional division algebra over its center. Indeed, because of the condition of the
theorem, we can assume k is an algebraically closed field. Then the center of K is a
Cy-field by Tsen’s theorem (see the definition and the properties of Cy-fields below,
at the end of this subsection). Then it will be shown in corollary 8 that all division
algebras over Cy-fields are good splittable.

For division algebras of index p over a Laurent series field the condition to be split-
table is equivalent to the condition to be good splittable, see the end of this subsection.

Let D be a finite dimensional division algebra over a complete valued field F' =
k((t)). Let w be a unique extension of the valuation v to D. We will denote by z any
parameter of D, i.e. any element with < w(z) >=I'p.

Proposition 0.39 D is isomorphic to a local skew-field D((2)), where
zaz ' = ala) + 01(a)z + 0x(a)2* + ..., a€D;

here o : D — D is an automorphism and §; : D — D are linear maps such that the
map 6; satisfy the identity

di(ab) = o (8" *a)(a)a(SFa)(b), abeD

k=0

The proof is an easy combination of the proofs of propositions in section 1 and
Cohen’s theorem 0.37.

Definition 0.40 Let us define maps ,0; : D — D, m € Z, i € N as follows.

2Maz"™ = a™(a) + méy(a)z + mos(a)z* + ..., a€D.
If m =0, put ,,0; = 0.

Note that if a@ = id, then ,,0; = 0 for m = p*, where k is sufficiently large, k
depends on i. Moreover, ,,0; = ,,.,#0; for k sufficiently large. We will use also the
following notation:

Proposition 0.41 (i) The maps ,,0; satisfy the following identities:

i—1

n0i(ab) = mdi(@)a™ ™ (b) + ™ (@) 6i(D) + > mOik(@)i—prmOi(b)

k=1
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(ii) Suppose o« = id. Then the maps ,,0; satisfy the following identities:

i—1

m0i(ab) = mdi(@)b + amdi(b) + Y mbiok(a) Y Cl 65 ... 6;,(b)
k=1 (J15e501)
where the second sum is taken over all the vectors (jy, ..., j1) such that 0 < I < min{i—

k+m,k}, jm =1, 3 jm =k; Cf =0if j =0, and C} = CF, , for ¢ >>0if j <0.
Proof. For any a,b € D we have

a™(ab)z™ + 01 (ab) 2™ 4 02 (ab) 2™ L = 2™ (ab) =

(%) (@™(a)z™ + mo1(a)2™ ™ + ,6a(a)z™ 2 + .. )b

If we represent the right-hand side of (x) as a series with coefficients shifted to the left
and then compare the corresponding coefficients on the left-hand side and right-hand
side, we get some formulas for ,,,0;(ab). We have to prove that these formulas are the
same as in our proposition.
Let
2Ry = oTR(p) R T

and
(@™(a)2™ 4 o1 (a) 2™+ .02(a) 2™ T2 4. )b = a™(ab) 2™ + Yma1 2™+ Ymga2" T4
Then we have
Yirm = ™ (a)x; + Z mOi_(a)),
In the proof of prop. 0.7 we have shown that
TRy = @R (D) TR 4 o(SFa) ()2

Hence z}, = o(SF,,,_,a)(b) for k < i. It is easy to see that 2} = ,,0;(b), zf, = o™ (D)
and o (SF,,,_ ) = iym—10), which proves (i).

For a = id, by corollary 1,

0(Stm10)B) = Y Ol - 8 (D),

where [, j1, ..., j, were defined in our proposition. This proves (ii).
The proposition is proved.
O
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Definition 0.42 Let D be a splittable division algebra. For any element a € D define
the numbers
ia) = r?a)txw(zaz_l —a(a)) e NU oo,
jla),z

where j: D — D, z — parameter in D;
dp(a) = 11(1&;xw(zaz_1 —afa) — 5ffga)zij(“)) € NU oo,
jla),z

where ij(a) = w(zaz™t — a(a)) for a given embedding j. It does not depend on the
choice of z as lemma 0.11 shows.

The following theorem is a main technical result of this subsection.

Theorem 0.43 Let D be a good splittable division algebra. Let uw € Z(D) be a purely
inseparable element over Z(D) and charF' > 2. Then dp(u) = 2i(u)+np, wheren > 0,
and uP € F only if dp(u) = 0.

Proof. By proposition 0.39 we can assume that u € D C D. Without loss of
generality we can assume that Z (D)/F is a purely inseparable extension. Moreover, it

can be assumed that Z(D) = F'(u). Then by Scolem-Noether theorem we can choose
a parameter z such that a = id. Suppose

ruzt = w4 Gi(u)2 + .

ie. 61|F(u) = ...= 52—1|F(u) = 0, (SZ(U) 7é 0. Suppose Upk e F.

Without loss of generality it can be assumed that the following property holds:

1Y) let 6;, j > 7 be the first map such that 6; # 0 if j is not divisible by ¢ and
0; # cj/i(Sf/i for some c¢;,; € D otherwise; then j = 2i mod p.

Indeed, let 9, be the first map such that §; # 0 and ¢ /j, j # 2 mod p. Then by
lemma 0.11, (ii) there exists a parameter 2’ such that d%(u) = 0. Therefore by corollary
1, |y = 0. By Scolem-Noether theorem, ¢’ is an inner derivation. Therefore by
lemma 0.11 (ii) there exists a parameter z such that ¢, = 0.

If 6; is the first map such that i|7, ;| p) # cj/iéf/i|p(u) and j # 2 mod p, then by
lemma 0.11, (ii) there exists a parameter 2’ such that d%(u) = cj/i(ﬂ-j/i(u) = cj/iég/i(u),

where
o (t+1)...((j/i—1)+1)
o /) .

One can easily show that 0%|pw) = cj/iéij/i|p(u). By Scolem-Noether theorem, (&} —

c; /i5§/ Z) is an inner derivation. Therefore by lemma 0.11 (ii) there exists a parameter z
such that 5]' = C]/Z(;i/Z
Let’s divide our proof in two steps.
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Step 1. First we prove that (i,p) = 1.
In this Step we don’t use the condition D is a good splittable algebra. We use only
a condition that D is splittable.

Lemma 0.44 Let j be the minimal positive integer such that (5j]F(upz) #0,1>0. Then
the maps n0m, kj <m < (k+1)j, k € {1,...,p — 1} satisfy the following properties:
i) there exist elements ¢, € D such that

(n0m — €m0 — ... — cm7k5k) =0,

|F(upl)

where § : D — D is any F-linear map such that 5|F(upz) is a derivation, §(u’) = 0 for
JE PN, 8(u) =1, eyjp = c(6;(u"))F, ¢ € F,.
i) ki 0 iff nyn+74,...,n+ (k=17 #40 mod p.

Proof. i) The proof is by induction on k. Let a,b € F(u?'). Put t = u” . For k = 1,
by proposition 0.41, (ii) we have

nOm(ab) = 0 (a)b + a,0,, ()

because all the maps d,, ¢ < j are equal to zero on F' (upl). Hence, ,,0,, is a derivation
on F(u') and ¢;1 = ,0;(t) = nd;(t).
For arbitrary k, by proposition 0.41, (i) and by the induction hypothesis we have

(%) . .

nOm (1) = quOm (O 400, () O (104 . Aerma 6" )T+ 408 (O (a6 (7,

s}

Il
=)

where ¢j,g; € D, s > m — 2j. Therefore, ,6,,(t?) = 0, because k < p — 1 and
f:g ¢; 00t = 0 for j < p — 2. Hence, n0m|r) = cmid + ... 4 Cpp10P7"
and we only have to show that ¢, , = 0 for ¢ > &.
Using (**) we can calculate ¢, ;. We have

Cm,1 = n(sm (t) ;

Cm2 = %ném(tz) — 2t = %nfsj (t)(c10(t)) + ... + n0s(t)(926(t))

1 q—2 B L q—2 - o
Cmyq = a(néj(t)(z Cq10T (1 DY+ ndm—qﬂ@)(Z 7T (e i)
’ 1=0 1=0
1
= 5(715]‘(75)0(1—1 + ...+ n5m—q+1(t)9q—1)
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Hence, ¢ppi1 = ... = Cmp-1 = 0 and ¢ = cd;(t)cr—1 = &(5,(¢))¥, ¢, ¢ € F,. Note that
Co-1)5p = (30;())P 7.

ii) Suppose n =0 mod p. For k =1 we have ,0,|pu) = nd;|p) = 0. For arbitrary
k we have

q—2 kj—1 q—2
w0k () = @O (D 4005 (8) Y 0oy (BT I+ D w08 (BT
r=0 I=j+1 r=0

Since ,,0;(t) = 0 and ,,,04]p@) = 16 + ... + ¢x_26"2 for h < (k — 1)j, the same
arguments as in i) show that ¢, = 0.

Suppose n+1rj #0 mod p,r < k—1. The same arguments as above show that in
this case cpjk(ndr;) = 0 HF cp_1)jr—1(n10k—-1);) = 0. So, by induction, cg;x(dx;) =0
iff cr)jk—r(n4rjOk—r);) = 0, which proves ii).

The lemma is proved.

O

Lemma 0.45 If p|i, then there exists a map d; such that (5j(upk) #0.

Proof. We claim that d,q; is the first map such that d,4;| ey 7 0. The proof is by

induction on ¢q. For ¢ = 0, there is nothing to prove. For arbitrary ¢, put ¢ = """ By
proposition 0.41 we have

p—2 pli—1 p—2
Spai(") = 6p0-1i(£) Y tipr1i0prioeny T A Y 61() Y 1wl (T
r=0 l=p?=ti+1 r=0

By induction and lemma 0.44, 11;0p0i|p@) = €10 + ... 4 ¢p—20P72 for | > p?71i.
Therefore, Zf;g 1410pai— (P71 = 0. By lemma 0.44, (ii), 14pa-10p—1i0p—1)|p(t) =
€10 + ...+ ¢p_10P7F with ¢,_1 # 0. Hence, 0pe;(t) = —cp_10p0-1:(t) # 0.

The same arguments show that 0,(¢?) = 0 for j < p%i. So, d,e; is the first non-zero
map on F(u?").
O

Step 2.
From now on (i,p) = 1. Note that §;(u) € Z(D). Indeed, for any a € D we have

di(au) = d;(a)u + ad;(u) = 0;(ua) = ud;(a) + §;(u)a

Therefore, ad;(u) = d;(u)a. Since (i,p) = 1, there exists k; € N such that p* divides
1 + kyi. Therefore by lemma 0.11 (iii) there exists a parameter z’ such that J}(u) =
(6:(w)) i e Z(D).

So we can assume that &;(u) € Z(D) and ) holds.
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Assume that dp(u) < 2i(u).

Then to prove our theorem it is sufficient to show that there exists a parameter z
such that the maps 0, satisfy the following property:

(x)  If j is not divisible by 7, then 0;|pw) = 0. If j is divisible by 7, then 0,|pw) =
cj/iég/i|p(u) with some ¢;/; € D.

To show it we prove that if property () does not hold, then there exists a map 9,
such that &;(u?") # 0.

Suppose (x) does not hold and o;1my s the first map which does not satisfy (x). So,
O2i+mp(w) # 0. Note that §,(u) =0 fori < q < 2i + mp.

Note that dg;4mp(u), SgHmp( ) € Z(D) Indeed, by proposition 0.41, i52i+mp|p(u) is a
derivation. Therefore, ;89;4mp(1) € Z(D). Since 6;(u) € Z(D) and §,(u) = 0 fori < q <
2i + mp, i6~2i+mp(u) = iSQHmp( ) and (52Hmp( ) € Z(D). Therefore, da; 1 mp(u) € Z(D).

First we prove that there exists a parameter z such that (S_q = 04 for ¢ < 2 +mp
and 2 4mp+(p—1)i 0,(u) =0 for ¢ #2i mod p, g > 2i + mp; here §, are maps given by
the parameter z. Put j(1) = 2i + mp + (p — 1)i.

Suppose j1)dq(u) # 0, ¢ > 2i + mp and ¢ # 2i mod p. By definition,

(1)0q(u) = )+ Oy (u
where k; < ¢. By lemma 0.11, (ii) for any a € D there exists a parameter z, such that
Zuz, = u+ 6wz 4.+ 1 (w)z T +azl 4

Therefore, there exists an element a € D such that j(l)gq(u) = 0. It is easy to see that
the sequence {Zz,} converges in D. So, z = limZ,.

Lemma 0.46 Put k = j(1) = 2i + mp + (p — 1)i. Then there exists a parameter z
such that the following properties hold:

(i) Hg2i+mp+(p71)i is the first map such that 552i+mp+(pfl)i|F(up) # 0.
(i1) 102 trmpt(p1yiritmp(U?) # 0 and O, pury = 0 for j(1) < r < j(1) +i+mp.

(”Z) ng2i+mp+(p—1)i( ) S Z( )7 H522+mp+(p 1)z+z+mp(up) S Z(D)

Proof.

i) Put w := 2i + mp + (p — 1)i. By proposition 0.41 we have
p—2 p—2

n(sw(up) = néz(u) Z i—n5w—i (up—l—q)uq + n62i+mp(u) Z 2i+mp—f$5(p71)i(up_l_q)uq+
q=0 q=0
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w—1

p—2
Z H$k<u> Z k—fc(sw—k<up_1_q)uq
k=2i+mp+1 q=0
By lemma 0.44, j_0p—k|rws = 10 + ... + 26?72 for w — k < (p — 1)i and
2i+mp—55(p—1)i|F(up) = 615 + ...+ Cp_l(;p_l with Cp—1 = (i5i(u))p_1 7£ 0.

By proposition 0.41 we have

q—2
i—n(sw—i(uq) - Qi—n(sw—i(u)uq_l + i—nai (U) Z mi 5w_2i(uq—l—r)ur+
r=0

w—i—1 q—2

Z i—nds(u) Z s—l—i—fi(sw—i—s(uq_l_r)ur
s=2i+mp r=0
By lemma 0.4, o1 x0w—i—s|pu) = c10+. . .4cp_30P % for w—i—s < (p—2)i. Since i—k =
0 mod D, i_ﬁ(si(U,) =0 and i—n52i+mp(u> = 0. SO, i_ﬁ(sw_i|p(u) =c0+...+ Cp_25p72.
Hence, 3 } 3
k0w (UP) = = 0aimp () (i0; (W))P ™" = =024y (1) (103 (w) P # 0

and ,.0,(u?) € Z(D). . )

The same arguments show that .d,, is the first map such that .0, Flur) 7 0.

ii) For j(1) <w <2i+mp+ (p— 1)i + i + mp, by proposition 0.41 we have

p—2 p—2
wOw(uP) = «6i(u) Z i—néw—i(up_l_q)uq+n52i+mp(u) Z 2i+mp—m5w—2i—mp(up_l_q)uq+~ .ot
q=0 q=0
~ p—2 w—1 _ p—2
wOuw—p-1i(1) D we(p1)icwOp-ni (WU + Y wOk(w) D> ke eOuk(uP T
4=0 k=w—(p—1)i+1 q=0

By lemma 0.4, y_.0w—k|pu) = €10 + ... + ¢p20? 2 for w — k < (p — 1)i.

Let us prove that o mp—rn0¢|p) = 10+ ... +cpad? 2 for (p—1)i < < (p—1)i+
1+ mp.

If (p—1)i < < 2i+ mp, then it is clear that s mp—rdc|rpw) = 0. By proposition
0.41, for ¢ > 2i +mp and ¢ < p we have

9itmp—r0c(U!) = Q2itmp—rOc (U)Uq_1+

q—2 q—2
2i+mp7/i6i (U) Z mégfi (uqflfr)ur + 2i+mp71{62i+mp (’LL) Z mi 5(—2i—mp(uqilir)ur + ...
r=0 r=0

Since ¢ — 2i —mp < (p — 2)i, m,0s|pu) = 10 + ... + 30?3 for s < ¢ — 2 — mp.
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To show that ,,0¢—|p) = c10+. . .+ ¢p—30P~% we use induction on r, where i+mp <
(—(p—2—r1)i < 2i+ mp+ ri. For arbitrary r we can use the same calculations, so
we only have to prove that ,,0¢_(p—2-r)i|p) = 0 for some r > 0.

There exists r > 0 such that i+mp < (—(p—2—7r)i < 2i+mp. If 2i+mp > 2i, then
m(sg_(p_g_r)i = 055, k> P if Z|< and m6§—(p—2—7‘)i = 0 otherwise. SO, m6§—(p—2—7‘)i|F(u) = 0.
If 2i+mp < 2i, then (p—1)i < ¢ < pi. So, i < (—(p—2)i < 2i+mp and ,,0¢—(p—2); = 0.

Let us prove that o;mp—r(p—2)it2itmp|F) = 10+ . .+¢p_10P7 " with ¢,y # 0. Note
that zi+mpfﬁggi+mp+rilp(u) =10+ ...+ 0" with ¢,y 0 forany 0 <r < p— 2.

Indeed, by proposition 0.41 we have

[\

q—

2i+mp—n52i+mp+ri(uq) = QZi+mp—ng2i+mp+ri(u)uq_l + 2i+mp—n(5i(u)
t

Il
o

()

q—
Z C’,i_i_mp(Sjl e 5jl (qulit)ut + 2’L’+mp7,‘€527,'+mp(u) H(Sri(uqflft)ut + ...
(jly~~~,jl)lep

<~+
Il
=)

By lemma 0.44, ,.0,:| pu) = c10+. . .4 ¢,0" with ¢, # 0 and ,, 04|y = c10+. . .+ 071
for s < ri.

If there exists j, > 2i+mp, then jy +. ..+, +...4j; < 7i; so there exists j; < i and
8j, ... 0; = 0. If there are no ji > 2i +mp, then §;, = ¢dF, c € 7 and ¢, ... 0}, pw) =0,
because [ > p.

Hence by lemma 044, 2i+mp7f<52i+mp+ri’F(u) = 015 + ...+ CT+15T+1 with Cri1 =
L 2itmp—rO2i4mp (1) (10:(1))" = 7021 4mp (1) (i05(u))" # 0.
We have

2itmp—rO(p—2)i+2i+mp T 2itmp—rO(p—2)i+2itmp T 2itmp—r0i * 2itmp—rO(p—3)it2itmp T - - -+

2i+mp—55(p—2)i . 2i+mp—/~c§2i+mp + 2i+mp—n6(p—3)i+2i+mp . 2i+mp—55i =0

We haye 2i+mpf/i5ri : 2i+mpfn(§(p—2—r)i+2i+mp|F(u) = Clé + ...+ Cpfl(sp_1 with Cp—1 =
S0 (1) (103 (w) )P 2.

Since (2i4mp—r0i)?|p) = 0, and using induction, we get 2; mp—rd(p—2)i+2itmp|Fu) =
10+ ...+ Cp_15p71 with
1

Cpo1 = —(1+...+ Zfl)z’gzwmp(u)(i(si(u))p%_

I« _ < _ < _
(1+.. .+m)i52i+mp(u)(i6i(u))p 2 =020 (1) (103 (W))P 2 = —i0aipamp (w) (103 ()72 # 0
Note that ng_(p_l)i(u) Zé’;g w—(p—1)i—xO(p—1)i (WP u? # Oonly if w =i mod p.
Indeed, suppose w — (p — 1)i — kK # @ mod p. Therefore by lemma 0.44, (ii),
w—(p-1i—rOp—1)il ) = €10 + ... 4 ¢p2dP 72
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Let us prove that Zp o i—rOw—i(WP~1")ud = 0. By proposition 0.41 we have

q—2
—iOu—i(UT) = @i Opi (W uI™ " + 0 (u) Z 9i—rOu—i (U U+
r=0
w—i—1 q—2
Z i*f{és('u’) Z s+ifn5w7ifs(uqilir)ur
s=2i+mp r=0

Sincei—k =0 mod p,;—x0s(u) = 0for s < 2i+mp+(p—1)i. For s > 2i+mp+(p—1)i
we have w — i — s < mp and s1; . 0p_js = 6(55, c €”7. But m < 0 by our assumption
in the beginning of Step 2, s0 44; x0w_i_s = 0.

So, we have ng(up) #0onlyifw =4 mod porw=2i+mp+(p—1)i+i+mp. By
lemma 0.11, (ii),(see the same arguments before this lemma, for example) there exists a
parameter z such that the map ,igw(up) becomes equal to zero on u? if w =7 mod p.
Since 2i + mp + (p — 1)1 + i+ mp — w < i by our assumption, the change from lemma
0.11 does not change the map 552i+mp+(p_1i+i+mp. So, we get the proof of (ii).

Now we have «0oipmpr(p-tititmp(U?) = —x02ipmp(w)(—i02iymp(u)(:0:i(u))P~?) €
Z(D), which proves (iii).

The lemma is proved.
O
Consider the following two cases.
Case 1. 6;(0gmp(u )) = 0 or i+ mp < i In this case we have shown that

0 (1051 (w?)) = 0 and 6;(:0(1) 4imp(u?)) = 0.

Lemma 0.47 Let 0j,41) be the first map such that 5j(n+1)|F(upn+1) # 0. Suppose the
following conditions hold:

Z) ](n n+1)+z+mp( n+1)|F n+l # O and TL)5 |F n+1) — 0 fOT j(n + 1) < T <
J(n +1)+@+mp,

1) 8 S50y (")) = 0 and 8,58 iy (7)) = 0,

Then there exists a parameter z such that the following conditions hold:

i) nﬂ)é (n+1)+itmp+(p—1)j(n+1) @S the first map such that

Hn+ D)0 (nD)-+ickmpe- (p—1)j(n+1) | prurnt2y # 0

n 2
“) n+1 n+1)+z+mp+(p 1)j(n+1)+z+mp( ' ) # 0 and j(n+1) 6 |F(up"+2 = 0 for
j(n+1)+z+mp+(p Djn+1)<r <j(n~|—1)+z~|—mp+(p Dj(n+1)+i+mp;
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i11) 6;(jns1)0itnr2y (W )) = 0 and &(jmsn)0jmro)ritmp(u?" ")) = 0, where j(n +
2)—j(n+1)+z+mp+(p 1)jn+1).

Proof. First we prove that there exists a parameter z such that 5[1\ Pty =
Oq| oy for ¢ < j(n+1) +i+mp and j(nﬂ)gq(u”nH) # 0onlyif ¢ =2i mod p for
q > j(n+ 1) + i+ mp; here §, are the maps given by the parameter 2.

Suppose ]n+1)6 (up VA0, ¢g>jn+1)+i+mpand ¢ # 2 mod p. By
definition, j(nﬂ)é (") = —j(n+ D)6, (u?”" ™) 4+ 3 6y -+ Op, (uP"), where k; < . By
lemma 0.11, (ii), for any a € D there exists a parameter z, such that

_ n+1l __
ZguP z, L=

n—+1 n+1)

+ Sy (@)D 4 G (P ET fazd
Therefore there exists an element a € D such that | n+1)5q(u”"+1) = 0. It is easy to see
that the sequence {Z,} converges in D. So, z = l@mzq

Now we prove that j(n+1)5j(n+l)+l+mp( ) # 0 and j(n41) o, | (wntty =0 for j(n +
1) <r<jn+1)+i+mpand 6;(jmn 5J(n+1)+z+mp(upn+1)) = 0.

We have j(n+ 1) = j(n) mod p. Therefore,

e e C T e (T St TN (VA EE L

Ly G(n1)+itm, ko __
im)0; n+1)+i+mp(up )Zj( ) Pt ) =

—pk, p"t1 _pk T _pk j(n+1 N L _j(n+1)+itm
2Ry PRy Rk 5(n+1( )2PE 2T 4 bima ) piemp(uP )27 (D) Py .. =

n+1
j(n 5 (n+1)+i+mp

u” j(n>5j<n+1)(up RRELSEE (ur" )P

because ii’) provide & (8, (u?""")) = 0 for j(n +1) < r < j(n + 1) + i 4+ mp. So,
ok ol _pk  pnl j(n+1)+2i+mp
i) Put w=jn+1)+i+mp+ (p—1)jn+1),t =u"" . By proposition 0.41 we

have
p—2

J)0uw() = )ity pitmp(t) D itmpdip-1)insn) (7 T+
q=0

w—1 p—2
Z j(nt1)0k Z kfj(n+1)(5wfk(tp_1_q)tq
k=j(n+1)+i+mp+1 q=0
By lemma 0.44, _jmi1)0w—k|F@) = €10 + ... + ¢p20?7% for w — k < (p —1)j(n + 1)
and j4mp0(p—1)jn+) | Py = 10 + ... 4+ 16771 with ¢,y # 0. Therefore, j(,11)0, () =
= j(n11)0j(n+1)+i+mp(t)cp—1 # 0. ) )
The same arguments show that j,41)0, is the first map such that j,41)6.,(t?) # 0.
ii) Put t = " Using the same arguments as above, we can find a parameter Z
such that 6, = d, for ¢ < j(n+ 1) +i+mp+ (p— 1)j(n + 1) and j41)0,(t) = 0
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for g > jin+1)+i+mp+ (p—1)j(n+1), ¢ # 20 mod p. Since jui1)0r|pr),
jn+1)+itmp+(p—1)jn+1) <r <jn+1)+it+mp+(p—1)jn+1)+i+mp are
derivations (see lemma 0.44), j(u41)0,|p@w) = 0 for j(n+1)+i+mp+(p—1)j(n+1) <
r<jn+1)+i+mp+(p—1)jn+1)+i+mp.

For j(n+1)+i+mp+(p—1)j(n+1) <w < j(n+1)+i+mp+(p—1)j(n+1)+i+mp,
w=2i mod p, by proposition 0.41 we have

p—2

jori 0w () = 10041 i tmp(8) D itmpdip1)ituin) pitmp (P T L+
q=0

p—2
j1) == 1)in+) (D) Y w—(p=1)j(ns ) 1) S (p—1) 1) ()0
q=0

w—1 p—2
2 S0k (E) D ki Bk (7)1
k=w—(p—1)j(n+1)+1 =0

By lemma 0.4, _j(ns+1)0w—k|pe) = 10 + ... + 2?2 if w —k < (p—1)j(n +1).
Therefore, Zz;g k_J;(nH)éw_k(tp_l_q)tq = 0.

Note that jiu41)0u-p-1)j(n+1) (£) 2f— w-p-1)i(41)-n+1)0p-1yj(as1) (7717 = 0.

Indeed, w—(p—1)j(n+1)—j(n+1) =2 mod p. Therefore by lemma 0.44 (ii),
w—(p-1)j(n+1)~j(n+1) O p-1)i(n+1) [ F(t) = €10 + .. + Cpad? 2.

Let us prove that y_jm11)0¢|lpe = 16 + ... + 0" for (r +1)j(n +1) < ¢ <
(r+1)jn+1)+i+mp, r<p—2.

The proof is by induction on r. By ii’) and i’), d5(t) = 0 for j(n +1) < s <
Jj(n+ 1) + i+ mp. Therefore for r =0, y_jm11)0¢|r@) = 0.

For arbitrary r we have

q—2

k—j(n+1)0¢ (1) = Qr—jnr1)0¢ () + k—j(n+1)0j(n+1)(t) Z kO j () (B T+
r=0

¢—1 q—2

Do reiuOs(t) Y setemjnrnyde—s (T

s=j(n+1)+i+mp r=0

By lemma 0.4, o (4—jmt1)0c—s|pe) = 10+ ...+ 10" for ( —s < rj(n+1).
For any m ,,0¢—jmi1)|ry = 0 if =1, and 1,0¢—jni1)| riy = €10 + ...+ ;16" by
induction and lemma 0.44, because

q—2

(1) (%) = @mOc—jnsn) (E ™"+ mOina1)(£) D Oy (177t
=0
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¢—j(n+1)—1

q—2
Do e D m et
s=j(n+1)+i+mp =0
and by lemma 0.44, ,,,.0¢—j(ni+1)—s|pr) = 10 + ...+ ¢,20" 2 for s > j(n+1) + i+ mp.
The same arguments show that k_j(n+1)g<|F(t) =c0+...+¢0" for (r+1)j(n+1) <
(< (r+1)jn+1)+i+mp.
Let us show that ;impdp—1)jnit)+itmplr@) = 10 + ... + 10?71, o1 # 0. Put
¢(=({p—-1)jn+1)+i+mp. We have

w—k—1

i+mp5C + i+mp(5C + Z i+mp(5§fs 'i+mp(55 =
s=1

o

First we prove that Z’+mp5rj(n+1)+i+mp|p(t) =0+ ...+ 0" with
cr = l+mp5 (1) 4itmp () Gns1) 051y (£))7 71 # 0. We use the same arguments as above.
The proof is by induction on r. For r = 0, since i + mp < j(n+ 1), i+mp5i+mp|p(t) =0.
Put w =rj(n+ 1) + i + mp. For arbitrary r we have

q—2

i—l—mpgw(tq) - Qi—l—mpgw(t)tq_l + i—l—mp n+1 Z] n+1)—i—mp w g(n—i—l)(tq_l_r)tr‘f‘
r=0

w—1

q—2
Z i+mp55<t) Z s—i—mp(sw—s(tq_l_r)tr
r=0

s=j(n+1)+i+mp

By lemma 0.4, s_;_np0u—s|r@) = 10 + ... + ¢, 20" 2 for w — s < (r —1)j(n+ 1) and
§+)0-1jm+| Py = €10 + . 4 61" with ¢y = (jmen i (8)7F # 0.
By proposition 0.41 we have

j(n+1)—i—mp6w—j(n+1) (tq) - Qj(n+1)—i—mp5w—j(n+1) (t)tq_1+

j(n+1)—i—mp j(n—l—l) Zml w— 2j(n+1 7T)tr+
w—j(n+1)—1 q—2
Z j(n—&—l)—i—mpfsg (t) Z s+j(n+1)—i—mp6w—j(n+1)—5(tq_l_rﬂr
s=j(n+1)+i+mp r=0

By lemma 0. 44, sj(nt1)—i—mpOw—j(ni1)—s| Pty = C10+. ..+ ¢,_30" 2 for w—j(n+1)—s <
(r—2)j(n+1). Since j(n+1) —i—mp =0 mod p, jmt1)—i—mpdjns+1)(t) = 0 and
(1) —i—mpOj(nt1)+itmp(t) =0 (here we use also i) and ii’)). Therefore,
j(n41)—i—mpOw—j(mn+1) | ) = €10 + ...+ ¢pgd” 2 and lemma 0.44 completes the proof.
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The same arguments show that i+mp57nj(n+1)|F(t) =0+ ... 4+ c,_10" 1. Therefore,
itmpOc—s * itmpOs|F@) = 10 + ...+ 0Pt only if s = j(n+ 1) or s > j(n+ 1)
and s = rj(n+ 1) + i + mp. Note that ¢, = %igj(n+1)+i+mp(t)(iéj(nﬂ)(t))p_2 if s =
rj(n+1) + i+ mp.

Using the same arguments for the maps ;i mpd¢c—rjmns1), We get iymplc|p) = €10 +

..+ ¢p_10P71, where

1 1 = _
1 =—(1+ gt Tt E)i5j(n+1)+i+mp(t)(z‘5j(n+1)(t))p =
I _ N _
(I+...+ m)iéj(n+1)+i+mp(t)(iéj(n+1)(t»p - iéj(n+1)+i+mp(t)(iéj(nﬂ)(t))p 2=

—i0j(ns1)+imp(t) (i0j(ns1) ()P # 0.

This completes the proof of ii) and iii).
The lemma is proved.
O

Case 2. 51(521+mp(u)) 7é 0.

Lemma 0.48 Suppose t +mp > 1. Putt = uP. Then there exists a parameter z such
that the following properties hold:

1) §(1)0(1)+itmpt(p—1)j(1) 1S the first map such that j(1)0;(1)+itmp+p—1)i(1) | Fry 7 0.

i) jyorrey = 0 for j(2) < r < §(2) +i and ju)d;24i(t?) # 0, where
3(2) =) +i+mp+(p—1)j(1).

i1i) j(1)0j2)+:i(t") € Z(D), j1)0;2) () € Z(D).

Proof. To prove i) one can repeat the proof of i) in lemma 0.47. Note that

00 () = =840 (1)P~* € Z(D). )
ii) As in the case 1 we can find a parameter Z such that &,/py) = 0q|p@) for ¢ <

J(1) + 1+ mp, gq(tp) =0forq#2i mod p,q>j2).
For r =2 mod p, by proposition 0.41 we have

p—2

W0r(t) = 000y 4i4mp(t) D impOr—ji()—izmp(t? )t
q=0

r—1

p—2
Z i)k (t) Z b (1) O (P92
q=0

k=j(1)+i+mp+1
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By lemma 0.4, 1_;1)0r—k|p) = 10 + ... + 20?2 if r —k < (p—1)5(1).

Note that ji1)dr—- 1(ﬂﬂElgﬁwmuﬁwawu%ﬁ_kﬂﬁ:=0

Indeed, r—pj(1) = 2i mod p. Therefore by lemma 0.44 (i), »—p;1)0(p—1)1)| Pty =
01(5 + ...+ Cp_25p_2

The same arguments as in lemma 0.47 (ii) show that ,,0s|pp) = 10 +. .. +¢p0d?™?
for (p—1)7(1) <s < (p—1)j(1)+1.

Let us prove that ;4mp0e-1)5( ()il Pty = €10 + ...+ ¢p_1 0P~ with ¢,_; # 0.

First let us show that ;40| r) = 015—1— oot c . for (= (r+1)j(1)+i,r <p-—2.
For r = 0, Z-+mp5<|p(t) is a derivation. Since j(l)gg( ) =0 for ( = j(1)+iand j(1) =
i+mp mod pandp > 2, we have Hmpgg(t) =0 and Z+mp5<|p = 0.

For arbitrary r we have

V]

q—

itmpOc (1) = GiempOc (1 + i mp050) (1) D ) —immpOc—jry (197 )+

r=0
¢—1 q—2
> im0k D kimmpOe k(1)
k=j(1)+i+1 r=0

By lemma 044, kfifmpfscfk’F(t) = 01(5 + ...+ CT,1(5T_1 for C— k < T](l), ie. k >
G(1) +i+1.
By definition,

J)—i—mpdc—j1) = Z Clt)—i—mpOsn - - - Ot

because j(1) —i—mp =0 mod yz Since [ > p, there exist ji, jx, such that jk < j(1)
and ji, < j(1). Thus, j; + ...+ jr 4+ ... + g + ... + 5 < rj(1) and §;, . Silrey =
10+ ...+ ¢c—10"'. Hence by lemma 0.44, Z-+mp5<|F(t) =c0+...+co".

Now we have

(p-1)5(1)
rmpOo-1)i1)ti + itmpO- i+ D irmpOk  itmpOp1)i(1) ik = O
k=i

With 4 p0g - i+mp(§(p_1)j(1)+i—k|p(t) =c10+ ...+ ¢y a0 2 for k# (p—2)5(1) +i.
Therefore,

z+mp5(p 1)5( +Z‘F = CI(S +...+ Cp725p72 - z+mp6(p 2)j(1)+1 ° z+mp ‘F

So by induction,
itmpOp—1)j(D+il ) = C10+. . A28 iy mp0i(iemp0i1) )P Py = 10+ . ACp_ad? 2+
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i+mp5i((i5j(1) (t))p—l)(;p—l

Since 101 (1) = —1)0j1)(t) = Daismp(w) (:6:(w))*™", We have iy (:0;01) (1)) # 0,
which completes the proof of ii).

Finally, j1)0;@+:(t") = —ja)d; (V)itmp (D)imp0i (10500 (1)) (0500 (1))P~2 € Z(D),
because ;ym,p0; is a derivation and ;6;1y(t) € Z(D) . This proves iii).
O

The following lemma completes the proof of Case 2 and of Theorem.

Lemma 0.49 Suppose the following conditions hold:

i) 50)05m+il Py # 0 and j1y0, oy = 0 for j(n) <7 < j(n) +i, n>1;

i) 50 ("), j0)0jmy4i(uP") € Z(D).

Then there exists a parameter z such that

i) )0j(m)+i+(p-1)j(n) @ the first map such that j1)0;m)+it+p-1)jm)| pean+ty 7 0;

i) )05ty (uan) # 0 and ;) r|F(upn+1 =0 forjin+1) <r < jn+1)+i,
where j(n + ) j(n) +i+(p— )()

i) 50051y (W), 50y 4a(u?” ) € Z(D).

Proof. By induction, j(n) =¢ mod p.Puta= ( )Sj(n)( P"). We have q7(m+1 =
a? € Z(D) for some k € Z. Put 2/ = (¢~ %M zW)1/i0) We claim that i’), ii’) hold for
j(l)d (n )+Z,1e ()5~ )il Fmy 7 0, and w0 |F )—OfOI‘]( n) <r < j(n)+1i, and
S0 )i (1P ) 10 iy (W) € Z(D). Moreover, ;)00 (u?") € Z(D).

Note that o = id, because a € Z(D). We have

Z Wy I = i Oy IO = " a2 8 (W) O 4

Let us show that

) gk 00 rod it

We have

L) i (m)=5(1) [, —kj(1) L5 (1)

It is easy to see that 2’ = a %z + 22! + ..., x € D. Since j(n) — j(1) =0 mod p,
M=) — (k)i =i med I+ Now we have

(@ F2)i =30 g ki) — =Ri() LW =3() | g3+

ey
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. —k(j(n) — 1)]a=*™=15,(a) = 0. Therefore,

where z = [—kj(1) — k(j(1) + 1) —
(up”>ak(j(n)+i)zlj(")+i 4.

=i o i) _ " +aplz,j(n) +j(1)5j(n)+i

and j1)0"jm) i (0P") = j1)0j(mi (P )aF I € Z(D), 18 i (u?") = ¥ € Z(D). So
i’), ii") hold.

Now to prove i) one can repeat the proof of i) in lemma 0.47. Note that

051 () = 1) 05+ (105 (£)P 2 € Z(D).
ii) We use the same arguments as in ii) of lemma 0.48. Put ¢ = u?

For r =2 mod p, by proposition 0.41 we have

p—2 p—2
W0 (") = 5005 () D sm=i0)Fr—im) (45000545 (8) D sm)=g )0 —i (7 )0+
q=0 q=0
r—1 ~ p—2
i()0k(t) Z b j(1) Ok (P
k=j(n)+i+1 q=0

By lemma 0. 44, ke ] Srklry =10+ ...+ a2 ifr —k < (p—1)j(n).
—|— ¢p—20P~2. Indeed, by proposition 0.41 we

r 3( n)|F(t - 015+

Note that ; —i()
have
q—2
=300 (1) = @m0 Oy O )= 0T (1) D 25—y Or—2j(m (197 )
s=0
q—2

2j(m)—j (1) +i0r—2j(m)—i (BT ) + .+

(]

i —i()0jm)+i(?)

I
=)

S

-2

£y

j(”)—j(l)(sj(n)+2i(t) 2j(n)—j(1)+2i5r_2j(n)_2i(tqflfs)ts + ...

Recall that r < pj(n) + 2i. By lemma 0.44, ,,04|p@) = 10 + ... 4+ ¢p36P 72 if
s < (p—2)j(n). Since j1)djwm)(t) € Z(D), we have d;,)(t) € Z(D). Since j(n) —j(1) =
0 mod p and §;)(t) € Z(D) and charF > 2, we have j)—j1)0jm)+ei(t) = 0 for

Il
o

e < p—1, which completes the proof.
N —2 1
Note that j(1)0r—(p-1);(m) () 22920 r— -1t ~3(1)Op-1)i(m) (71~ 9)27 = 0.
Indeed, r — (p — 1)j(n) — j(1) = 2i mod p Therefore by lemma 0.44 (ii),
r—(p—1)4( 5(;0 1) |F —015+... +Cp_25p72.
The same arguments as in lemma 0.47 (ii) show that ,,0|p@) = €10+ . .. 4 ¢p_20P 2
for (p—1)j(n) <s < (p—1)j(n)+i.
Let us prove that j()—j(1)+id(- Diy+il Py = 10 + ... 4 ¢po1 6P~ with ¢, # 0.
Note that ; J(l)ﬂ&a] Vrilp@ =0+ + 60" with ¢, #0 forany 1 <r <p—1.
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Indeed, by proposition 0.41 we have

q—2
. . . .
i) =i+ (m)+i () = @) i) +i0rjm)+i (LT + jm)—j)+i0j(n) (£)
s=0
q—2
5(7‘ 1)j +z(tq - 8)t8+ J(n)=j(1)+ 5 +1 ZJ 5(7‘ 1)j (tq - S)ts_l_"'
=0

By lemma 0.44, ;)0¢—1)jn)|re) = €16 + ... + cr_lé“l with ¢,_1 # 0 and 05| p) =
10+ ...+ 90" 2f01r$<(7“—1)j( ).

Let us prove that j1y—i0p—1)jm)+ilF@) = 10 + ... 4+ ¢,_20" 2. By proposition 0.41
we have

q—2
J(0=i0(r—1)j(m)+i(t?) = @)= (r—1)j(n)+i(£)TT +g —i0 Z] )+3(1)=i0(r—2)j(n )+i(tq_1_s)ts+
s=0
q—2
05+ (8) Y i Or—2imy (ET TN+
s=0

Since ](1)5( y(t) € Z(D), we have 6;¢,(t) € Z(D). Since j(1) —i = 0 mod p,
j(l)—iéj( )( ) =0 and ; J(1)— 2(5 i(n )-H( ) = 0. By lemma 0.44, m55|p(t) =c0+...+ CT_35T73
for s < (T‘ — 2)]( ) SO, §(1)— 26(1" 1)j( +z|F =10+ ...+ g2

Hence by lemma 0.44, j(n)—j(1 )+z +z’F(t) = c15 + ...+ ¢ 0" with

€ = Litm=i(a 40+ (8) (05m) (1)) 7145] (m+i (1) (i0(n) ( )£ 0.
The same arguments show that ju)_j)+i0¢c|r@y = €10 + ... 4+ ¢,10"* for ¢ <
rj(n) +i.

Therefore we have

i) =3 () +i0p—1)j(m)+i T (n)—3 1)+ (p—1)j(m)+i T

(p—1)j(n)+i—1

i) —=i()+i%w * ()= (V)+i0p-1)j(n)+i—w = 0,
w=1
where j(n)_j(l)H(Sw 'j(n)—j(1)+i5(p—1)j(n)+i—w|F(t) = 61(5 +...+ Cp,ldp_l only ifw = T](TI,)
In this case ¢,_; = ﬁﬁ ()41 (1) (:05(m) (1))P 2.
Since jn)—j1)+:0;(n) (£) € Z(D), we have jm)—j1)+i8i (jm)—j()+id5n) )P~ = 0. So using
induction, we get j(n),j(l)Jri(S(p,l)j(n)H|F(t) =c0+...+ Cp_ltsp*l with
1 -

po1=—(14+...+ = 1) 10(n)+i (1) (05m) (£))P 2=
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+i() (18 (1)) # 0.

Therefore, j(l)gj(n+1)+,;(t ) = —i1)0;(n)+i(t)cp—1 € Z(D). This proves ii) and iii).
The lemma is proved.
O

The theorem is proved.
O

Lemma 0.50 Let D be a splittable division algebra. Let n = |Gal(Z(D)/F)|.
There exists a parameter z such that

zaz~t = afa) + 6,(a)z" + 62p(a)z® + ..., a€D
So, 0; =0 if nfj.
One can repeat the proof of lemma 0.29 to prove the lemma.

Proposition 0.51 Let D be a good splittable division algebra. Suppose Z(D)/F is not
a separable extension.

Then p does not divide |Gal(Z(D)/F)|.

Proof. Suppose p divides |Gal(Z(D)/F)|. By lemma 0.50 there exists a parameter
z such that B
zaz™' = ala) + 8,(a)z" + 620(a)z® + ..., a€ D,

where n = |Gal(Z(D)/F)|.

Since Z(D)/F is a compositum of a purely inseparable extension and Abelian Galois
extension, there exists an element u € Z(D) such that a(u) = u, i.e. u is a purely
inseparable element; so by theorem 0.43 u? € Z(D).

In this case lemma 0.44 holds for [ = 0 and we can repeat the arguments in the
proof of lemma 0.45 to show that 6,,(u?) # 0, which is a contradiction.

O

Proposition 0.52 Let D be a good splittable division algebra. Then we have D =
Dy ®p Dy, where Dy, Dy are division algebras such that Dy is an inertially split algebra,
Z(Dy)/F is a purely inseparable extension and Dy is a good splittable algebra (Dy or
Dy may be trivial).

So, D ~ A®pr B®p Do, where A is a cyclic division algebra and B is an unramified
division algebra.
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Proof. By [25], p.261, D = Dy ®p ... ®p Dy, where [D : F| = p*...p;* and
[D; : F] = p". Let p, = p. By proposition 0.51, Z(D,)/F is a purely inseparable
extension. Since D; are defectless over F', Dy, D3, ... Dy are inertially split. Therefore,
by theorem 0.37 the algebra D; ® D3 ® ... ® Dy is good splittable.

Let L be an inertial lift of a Galois part of the extension Z(D)/Z(D). Consider the
centraliser D' = Cp(L). It’s clear that D' = Dy ®; B, where B is a division algebra
similar to the algebra D; ® D3 ® ... ® D, ® L. The algebra B is inertial, because

Z(B)/Z(B) is trivial and B is 1nert1ally split. Since D' 2 Dy ® B and D' — D' is a
good embedding, D’ contain a subalgebra B C B®; L = B C D'. Now the centraliser
Cp/(B) = Dy ®p L and it is good splittable, so Dy is good splittable.

Decomposition theorems [9], Thm. 5.6-5.15 complete the proof.

O

Proposition 0.53 Let Dy be a good splittable division algebra such that Z(Ds)/Z(Dy)
is a purely inseparable extension. Then Dy = D3 ®z(p,) D4, where D3 is an unramified
division algebra and Dy is a good splittable division algebra such that Dy is a field,
D/ Z(D,) is a purely inseparable extension, Dy : Z(Ds)] = [p, : Tz(py))-

Proof. For a good embedding there exists a subfield Z(D,) C K C Z(D,) such
that the extension Z(D,)/K has degree p. Then by theorem 0.37 and 0.43 there exists
alift K of K in Dy, ie. K = K, T = Iyn,), K C K.

Consider the centraliser C; = Cp,(K). We have C; = Dy, Z(C,)/Z(C}) is a purely
inseparable extension of degree p, say Z(C)) = Z(C1)(u). Using similar arguments as
in the proof of theorem 0.43 one can show that there exists a parameter z such that
C) = 01((2)) as a vector space with the relation

zaz ' =a+ 5i(a)2i + 021'51'2(@)/2% o €l

and zuz™! = u + xz°, where x € Z(C}). Therefore, 6! is a derivation trivial on the
centre Z(C)), hence by Scolem-Noether theorem it is an inner derivation.

We claim that zP € Z(C}). To prove it, consider a subalgebra W = Cy((2%)) C C}
(note that Z(W') # Z(C4)). It exists because of the type of the relation in Ci.

We have

v az' = a—id(a)', a€C)
in W. Therefore,
2P =a—iP6P(a)”, a€Cy
and
Plaz P = a+8(a) + 67 (a) 2 + ...,

where §] = ??. So,
1 < 1 <
PazP =a+ 251(@)2’” + 622,—2512(@22’” +..,
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where ¢, are given by (1) in theorem 0.43. So, 2z € Z(C4) iff 6” = 0. Suppose 07 # 0.
Consider an element Y € Z(Cy), w(Y) > 0. Let

Y =a; 2V + ...

First note that
Y =a122 + a2z + a3z + ..., a; € C)

Indeed, Y must satisfy [Y,u] = 0. Since u € Z(C}), we then have [z%,u] = 0 for every

k, where
[o.¢]
Y = g a2
k=1

Therefore, pliy. ) B
Then, Y must satisfy Ya = aY for any a € Cy. Therefore, ay,...a; € Z(C}) and
we must have

aait1 — aip1a = a6y (a)/i
and
2
aagi+1 — A2i4+10 = ai(Si(a) + a1025/1 (‘1)~

Since A(a) = aagiy1 — azi+1a is an inner derivation, we get 5{2 = 0, where J is a
derivation, which is a contradiction. Therefore, 8> = § = 0 and &, = 0, and 2* € Z(C}).

Consider the centraliser Cy = Cg, (K(2)). It's clear that [Cy : Z(Ch)] = [C) :
Z(Cy)] = indC, and there exists a subalgebra Cy C Cy, Cy C D,. Consider now
the centraliser O3 = Cp,(Z(Ds)(2)). We have Cy C Cs, Cs =2 Cy, because [Z(Cs) :
Z(Ds)] = [Tey : Tzpy] = [Z2(Cs) : Z(Ds)] = [K : Z(D5)]. By induction on dimension
of Dy we get the existence of a subalgebra Cy C Dy such that [Cy : Z(Cy)] = [Cy :
Z(Cy)], Z(Cy) = Z(Ds). Therefore there exists an unramified subalgebra Cy C D, such
that [Cy : Z(Dy)] = [Cy : Z(Dy)] = [Cy : Z(Cy)] = [Dy : Z(Dy)]. By Double Centraliser
Theorem, Dy = Cy @z (p,) D4, where Dy is a division algebra with D, = Z(D,). Since

Dy < Dy is a good embedding, [D, : Z(D,)] must be equal to [['p, : T'z(py)]. It is easy
to see that Dy is also a good splittable division algebra.

The proposition is proved.

O

Proposition 0.54 Let Dy be a good splittable division algebra such that Do is a field,
Do/ Z(Ds) is a purely inseparable extension and dp,(uy) < 2i(uy) or dp,(uy) = co for
all generators uy, of the extension Do/ Z(Ds).

Then Dy = Ay @z(py) - - - @z(Dy) Am, where A; are cyclic division algebras of degree

P, [Ai 1 Z(Ds)] = [Ca, : Tz(py))-
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Proof. The proof immediately follows from theorem 0.43 and [26], Thm.3, §2.8.(
see [1] for the proof of this theorem).
O

So, we get the following decomposition theorem.

Theorem 0.55 Let D be a finite dimensional good splittable central division algebra
over a field F with a discrete complete rank 1 valuation, char(F) = p > 2, such that
dp,(ug) < 2i(uy) or dp,(uy) = oo for all generators uy, of the extension Z(D)/Z(D).
Then D = Dy @p Dy Qp A1 Qp ... Qp A, where A; are cyclic division algebras
of degree p, [4; : Z(D)] = [T, : Dzpy)), D1 is an inertially split division algebra,
(ind(D3),p) = 1, Dy is an unramified division algebra (Dy, Do, A; may be trivial).

Recall that a field F' is called a C;-field if any homogeneous form f(xq,...,x,) of
degree d in n > d' variables with coefficients in F has a non-trivial zero.

Corollary 8 The following conjecture: the exponent of A is equal to its index for any
division algebra A (here we don’t demand that A is splittable) over a Cy-field F' (see for
example [26], 3.4.5.) has the positive answer for F' = Fy((t)), where Fy is a C-field.

Proof. 1) Let’s prove that A is splittable. Since F is a Ci-field, A is a field. We
can assume A/F is a purely inseparable extension. We claim that A = F(u) for some
u € A, so by classical Cohen’s theorem, A is splittable.

Indeed, suppose A = F(uy, ..., u,). Consider the field K = F(u}, ..., u?). By Tsen’s
theorem, K and A are C}-fields. So, the form 2} +x5u;+. . .+x§u’1’_1 +7,uy has a non-
trivial zero in A. But 2% € K and elements 1, uy, ... ,uf_l, uo are linearly independent
over K, a contradiction.

2) Assume the corollary is known in the prime exponent case. We deduce the corol-
lary by ascending induction on e = expA. If e is not a prime number, then write e = Im.
By assumption A®™ can be split by a field extension F' C F”’ of degree [. This implies
that Az has exponent dividing m. Note that F” is also a Laurent series field. By the
induction hypothesis applied to the pair (F’, Agr), there exists a field extension F’ C L
of degree dividing m splitting Ag. Therefore A is split by the extension F C L of
degree dividing Im and we conclude the corollary.

3) So, let expA = [ be a prime number. By the basic properties of the exponent
and the index (see, e.g. [26]) we have then indA = [* for some natural k.

Suppose (I,p = charF') = 1.

It is known that the conjecture is true for all division algebras of index indA = 223°
(see, e.g. [26]), so we can assume charF # 2,3. Then we can assume F' contains the
group 1y of [-roots of unity, because [F(1;) : F|] < | and we can reduce the problem
to the algebra A @p F'(1;). Then by the Merkuriev-Suslin theorem A is similar to the
tensor product of symbol-algebras of index [.
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Every symbol-algebra of index [ over F'is good splittable and cyclic and its residue
field is a cyclic Kummer extension of F. To conclude the statement of the corollary
it is sufficient to prove that every two symbol algebras A;, A contain F-isomorphic
maximal subfields.

Since A;, i = 1,2 is cyclic, it contains an element z;, 2! € F. Since 4; is a good
splittable algebra and by lemma 0.50 (which is true also if charF' = 0), we can assume
v(z}) =1 (v is the valuation on F).

To prove it we show that A; contains any [-root of elements v in F' with v(u) # 0.
Since for any element 1 + b, v(b) > 0 there exists an element (1 + b)Y/ € F, it is
sufficient to prove that A; contains any l-root of elements ct, ¢ € F', where we fix some
embedding i : F < F.

Indeed, since A; is a good splittable algebra and by lemma 0.50 (which is true also
if charF' = 0) we can assume there exists an element z such that v(z!) = 1, 2! = ¢t,
c € F, ad(z) acts on A;, where A; is embedded in A; by a good embedding with
respect to i. Note that for any element b € A; we have (bz)' = Ny, ,#(b)z". But the
norm map N4, /r is surjective because I is a Ci-field (see, e.g. [26], 3.4.2), so for any
c there exists b such that (bz)! = ct.

4) Suppose now expA = p. Then indA = p*.

By Albert’s theorem (in [1]) there exists a field F' = F(u}/p, e u,lg/p) which splits A.
Using the same arguments as in 1) one can show that every such a field has maximum
two generators, say F' = F(u\/?,u}/?). Therefore, indA < p?. If indA = p, there is
nothing to prove, so we assume indA = p? and F’ is a maximal subfield in A.

5) Suppose F} is a perfect field.

By Albert’s theorem, A = A; ®pr Ay, where A;, Ay are cyclic algebras of degree
p, Ay = (L1/F,01,u1), Ay = (Ly/F,09,uy). Since Fy is perfect, A,/F, Ay/F are Ga-
lois extensions. So, A;, Ay are good splittable. Let us show that A;, Ay have common
splitting field of degree p over F. This leads to a contradiction.

By lemma 0.50 there exist parameters z; € Ay, 25 € Ay such that they act on A,
Ay as Galois automorphisms. Note that then 27, 25 € F. Let us show that F(z;) splits
AQ.

Consider the centralizer D = C4(F(21)). Consider the element ¢; = 2,2, *. We have
th € F, w(t;) = 0, where w denote the unique extension of the valuation v on F. Since
D/Z (D) is a Galois extension, there exists an element b; € F' such that w(t, —b;) > 0.
Since (t; — by)? € F, there exists natural k; such that w((t; — by)z;*) = 0. Denote
to = (t; — bl)zl_kl. We have again t5 € F. Repeating this arguments and using the
completeness of D C A we get
29 =tz = (2522{Cl +b)z=...=bz + b22f1+1 + ...,

80, 29 € F(z1) = Z(D).
6) Suppose F} is not perfect.
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Since I is generated by two elements over [, it contains all p-roots of F. Then,
every two elements u,z € F such that z'/? ¢ F(u'/P), where z'/?,u'? € F' also
generate F’ over F. This follows from the same arguments as in 1), 4).

Now take u € Fi\F}, z = u + t. It’s clear that p-roots of these elements generate
F' over F. Moreover, the fields F'(u'/?), F(z2'/?) are "unramified” over F, i.e. [F(ul/?) :
F] = p = [F(u!?) : F], [F(z'/r) : F] = p. Denote u; = u'/?, uy = 2%/ in F'. Then
by Albert’s theorem, A = A; ®p Ay, where A;, Ay are cyclic algebras of degree p,
Ay = (L1/F,01,u), Ay = (Ly/ F, 09, 2).

Since the fields F(u'/?) C Ay, F(2'/?) C Ay are "unramified” and purely inseparable
of degree p over F, the algebras A;, Ay are good splittable. Moreover, there exist
embeddings A; — Ay, Ay — A, such that uy € Ay, us € A,. Then by theorem
0.43 there exist parameters z; € Ay, 2o € Ay such that 27,25 € F and

z2u2z§1 = Ug + 25,

1

where ¢ € F, v(c) = 0. So, for the element u), = ¢~ 'uy we have

/7 _—1 / 3
ZolUnZy = = Uy + 25,

and vy ¢ F, u'h € F.

Since F is a C;-field, we have A; = A, and therefore there exist an element b €
F(uy) € Ay C A such that w(ub —b) > 0, where w is the unique extension of v on
A. Since b commutes with u}, we have (ul, — b)? € F. Therefore w(ul, — b) € 1/pZ (we
assume the value groups of w and v lie in a common divisible hull I', ®7 ”). Hence
w((uh — b)zz_pw(ué_b)) = 0. Put us = (u) — b)z;pw(ué_b).

Note that

a(uy = b)zyt = (uy = b) + 23,

1 ; . .
29Uz = Uz + 25", 1 <1

So, the elements (u}, — b), 2o generate a division algebra C' of degree p over F' and
ug € C. Then, uf commutes with 2 if 9; > 0. Therefore, in this case v} € F' and C'is a
good splittable division algebra. Note that u; € C4(C), so A = A ®p C with u; € Aj.
Using the same arguments we get that there exists an element uy with w(uy) = 0 and

-1 ; .
ZoUyZzy = Uy + 257, 19 <0

So, i3 must be equal to 0 and therefore uy, 2o generate a division algebra C” of degree
p over F such that C"/F is a Galois extension and u; € C4(C"). So, A = D ®y C' with
Uy € D.

Therefore, A contains the maximal subfield F'(u;)F(u4), which is a compositum of
a purely inseparable and Galois extension. Moreover, this field is "unramified” over
F, so it is good splittable field and A is a good splittable algebra with p dividing
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|Gal(A/F)|. But this is a contradiction with proposition 0.51.

O

Corollary 9 Let A be a central division p-algebra over a Cy-field F' = Fy((t)), Fy is
a Cy-field. Then A contains a maximal purely inseparable over F subfield, i.e. A is a
cyclic algebra.

Moreover, A is a good splittable algebra.

Proof. The proof of the first statement is by induction on degree of A. If indA = p,
then by Tignol’s theorem in [32] A is cyclic, so it contains such a maximal subfield.

If indA = p*, k > 1, then by assumption a division algebra similar to A®P has the
exponent and index p*~! and so can be split by a field extension F' C F” of degree p*~!.
By corollary 8, the exponent and the index of A is p, so there exists an extension
L/F of degree p* such that L splits A.

To prove the second statement note that it is sufficient to prove it only for algebras
A with A/F — purely inseparable. Now to prove the assertion we use lemma 0.24.
Note that, using a similar induction, it is sufficient to prove the statement for algebras
A of degree p.

Let z be a purely inseparable element in A, indA = p. If F(z) is an ”unramified”
over F, there is nothing to prove. So, we may assume F'(z) is totally ramified over F
and z is a parameter of A.

Choose an element a € A such that @ generates A over F. Suppose a € A for some
embedding A < A. Suppose

zaz"' = a+0;(a)z" + Sipa(a)2 T+
Then we have

Paz"? =a+ Z Z 8iy - .- 0;,(a)z" = a, (2)
k=pi (i1,...ip)
where ) i; = k and the second sum is taken over all such nonrepeating sets (i1, ..., 1,).
Therefore, 67 (a) must be equal to zero. Since §; is a derivation, it is trivial on F(aP).

Every element in F'(a) can be written as a polynomial ¢; + cpa + . .. c,aP~!, where
¢; € F(a?). Therefore, we can write 6; = 6;(a)/d(a). So, 6 (a) = 6;(a)d/d(a)(8" " (a)).
Hence 0/9(a)(6" " (a)) = 0 and 6" '(a) € F(a?).

If 6" '(a) = 0, then let j be the maximal natural such that 67(a) # 0, 6 (a)
F(a?). Now put a; = 6/ '(a)(6! (a))~". Note that a;, generates A over F Since d7(a)
d/0(a) (6" (a))d;(a), we have 6;(ay) = 1.

So we can put a := a; and assume 6; = 9/9(a). Now the proof is by induction on
k in the formula 2. For k = ip + 1 we have
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By lemma 0.44, 6,41 = 6, + ¢d;, 50 0;, ... 0;, (a) = 0 if i, = i. Therefore, we have
51' c. 51'5“_1 (CL) =0

Therefore, there exists an element b € A such that 6;(b) = ;1(a) and by lemma 0.24
there exists an element a; = a + byz such that

zagz P =ag+ 2+ 5;+2,z’+2 +...

Note that here the coeffitients on the right hand side belong to another embedding
of A given by element ay. Since A is a C}-field, A is generated by ay over F. So, the
p-basis of A consists of 1 element. So, by classical Cohen’s theorem, any lifting of this
element gives an embedding of A. Now using induction and completeness of A we get
that there exists an element as such that

zasz t =ag+ 2

and dz generates A over F. Therefore, a commutes with 2, from here follows that as
is a purely inseparable element and F'(a3) is an "unramified” extension.
The corollary is proved.
O
This corollary concludes the proof of theorem 0.36.

0.5 Classes of conjugate elements

Let K be a splittable local skew field of characteristic 0 whose first residue skew field
is commutative and whose last residue skew field £ is contained in its centre. We have
classified these skew fields in the preceding section. In this section we give necessary
and sufficient conditions for two elements of K to be conjugate.

We fix a representation of K in the form k((u))((z)).

Definition 0.56 Let a = Id. A residue res;, on K is defined to be a map res;, :

k(w)((2)) — k

T
s du

res;,(X) = res 5

where X =Y, 1,2

Proposition 0.57 Let a = Id. Let Ly,M € K, v(L) =v(M) = —1,
M=b_ 1z +by+bz+...,

L=a 2" 4+ag+a1z+....

The following assumptions are equivalent:
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(1) there is an S € K, v(S) =0, such that M = S7'LS

(ZZ) a1 = b—l; ap = bO; ceey Q2 = bi—2;
a;_1— b;_ a,—1 — b
res———due Z and u———"" ¢ k[[u]
wdia_4 wdia_y

res;,(M7) = resi,T(Lg) for all j > 1, where L; = gj_le_lgj, Ly = L, Sj =
S;(M,Lj_y).

Proof K has the form k((u))((z)) with the relation zuz~' = u + u%z* + .... Thus
we have:

i—2 i—1
SM = 801)71271 + (Sobo + 51b71> +...+ (Z bj8i727j>zi72 + (Z bjSi,1,j>Zi71 + ...
j=—1 j=—1
i—2 i—1
LS = 5061,712714-(800/04-81@,1)—'—. . +( Z CLjSi,Q,j)2172+<—CL,188i—|— Z CL]'Sl',lfj)ZZil—l-. ..
j=—1 j=—1
It follows that the condition a_; = b_1, ag = by, ..., a;_s = b;_5 is necessary for M

and L to be conjugate. Another necessary condition is given by the following equation
for sq:
S_gi _ aj—1 — b1

So a_q
Since d; is a differentiation, we have

9
20250 Qi1 — bi—1

S0 udia_,
Thus we obtain the second necessary condition:

resiai_l&_ bi_ldu €Z and u—ai_l&_ bi-1 € kl[u]]
ura—q ura—_q
Conversely, if these two conditions hold, then there is an sy € k((u)) such that the
first 7 + 1 summands in L; = s, Lsg are the same as those in M. It is clear that L
and M are conjugate if and only if L; and M are conjugate. The conjugating element
S has the form 1+4--- (S can be written as (1+s;2)(1 +s22%) .. ..) Note that for every
212"V + 29+ 212+ ... € K holds:

(1+s;2) Nz +mo+aiz+.. ) (1+s;27) = v 127 " +mo+ a2+ .+xi+j_2zi+j_2+
(i1 + j2% s, + x_lsj")ziﬂ_l +...
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since the proof of lemma 0.11, (ii) implies that
(I+s;2) Nz +zez+m22 +.. )L +s2)) =2+ 202+ ...+ Tiyj 0271+

(@opjo + jalysy)z 4,
and

(14s;27) 127 (14s;27) = (1+szj>_1(Z_1+szj_1—5§izi+j_1+. L) = z_l—s?zi“_l%-. .
It follows that

(Sla—l)éi =0; —a (j = 1)>
if M = S~'L,S, where a; is the coefficient of L. This equation is soluble if and only if

bz‘ — a;

udi

res du =0,
that is, res; (M) = res; .(L1).
Conversely, if the residues are equal then there is an s; € k((u)) such that the first
i 4 2 summands in Ly = (1 4 s12) 7' Li(1 4 512) are the same as those in M.
Proceeding by induction, we obtain at the kth step that if M = S~1L,S, then

8i Si
kSkCL_l + 18, = bi+k71 — Qi f—1-
To solve this equation, we substitute s = a:’fs into it and obtain the equation

/ k—1 bith—1 — Qitk—1
s =a’ 3 ,
u 7

k-1 —r k—1
. . . . a” | Qi u"Tal ] bk
which is solvable if and only if res——5— u;j L= 7“687;51, k=1 On the other hand, the

coefficient of z* in M* has the form
ka* T + fur

where fj; is a polynomial in b;15_2,...,b_1 and the values of 0; at these points. The
corresponding coefficient in L¥ has the form

k—1
kaZ " aiyk—1 + fr,

and fr, = fu, since a; = b; for j < i+ k— 2. It follows that res; L} = res; . M" if and
k—1_ k—1p

only if resa*;fﬁk_l = 7’68%. which completes the proof of the proposition.

O
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Definition 0.58 Let o # Id. We say that the residue res, ofX =Y, z2" is equal to
zero, if
zo € im(a — Id)

We say that two elements have the same residue if the residue of their difference is
equal to zero.

We define ¢ : k((u)) — k((u)), o(z) = = /x.

Proposition 0.59 Let a # Id. Let LM € K, v(L) =v(M) = —1,
M=0b_127 ' +by+biz+...,

L=a 1z 4ap+a1z+....

The following conditions are equivalent:

(1) there exists an S € K, v(S) =0, such that M = S™'LS
(1) b1 /a1 € imp;

resqo(M7) = resa(L;:) for all j > 1, where L; = S~j_1Lj_15~j, Ly =L, S; =
S;j(M,L;_q).

Proof is similar to that of the preceding proposition. We have
SM = Sob_lz_l + (Sobo + Slbil) + ...

LS = a,_lsg_lz_l + (CL(]S() + a_lsi"_l) —+ ...

Therefore, sob_1 = a,lsg‘fl, that is b_1/a_; € ime. If this condition holds, then we put
Ly =s, 'Lsy. The first coefficients in Ly and M are equal.
Now we observe that

(1 + Sj)_l(x—lz_l + x() + xlz ‘l— . )(]_ + Sij) — gj_lz_l _|_ L

a0 2 4 (g + 552 — x,lsjo-‘_l)zj’l + ...
for any x_127 ' + 29+ 212 +... € K, which follows from the calculation in the proof of
Lemma 0.11, (i).
The arguments used in the proof of the preceding proposition yield at the first step
the following condition that is necessary for conjugacy:

1 —

s10% —a_158 = a(sd ay) — (58 aly) = by — ao

This equation is soluble if and only if (by — ap) € im(aw — Id). which is equivalent to
the equality res,M = res, L.
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At the jth step we have the condition

—1

ol a”t
Sj_q1 — a_lsj = Q-1 — bj—l

Hence,

(oﬁlac_yz1 o aﬁjfl)(aj_l —bj1) = (aflale .. .afjl)sj —(a_y...a% )s

-1

a((a_y ... aﬁj{l)sjo-‘f )—(a_q... cﬁj{l)s?

This equation is soluble if and only if (a_;...a%, )(aj_1 — b;_1) € im(a — Id), which
is equivalent to the equality res,(M7) = resa(L;:), since the first (j — 1) coefficients
in L, are equal to the corresponding coefficients in M, and the coefficient of the Oth
power of z in M/ is

a—i+2, q—i+1 a ai—1

a sum of monomials with indices < j — 1

The corresponding coefficient in L; is

a—i+2 i+l a i1
A—y...a_y Gy + a0 ;...0_; +

a sum of monomials with indices < j — 1

Hence,
(-1 ac—qmb?—_iﬂ —a-1... aﬂwa?__iﬂ F b qa®, . 0% —a;qa%, .. 0™ =
(la—y.. .a21j+2b]°-‘:i+l —a_1+... aﬁ?+2a?ji+1]_
ol J+al..]=?[. ]+ ].. .+ ]+
bj—lagl c. (Zg];l — aj_la‘fl c. afjfl) =
(2[a%, ... 0% (a1 — b))
O

Remark It was shown in [18], that for the residue res;o in the skew field of
pseudodifferential operators holds res; o[X, Y] = 0, where [X, Y] is the commutator of
two pseudodifferential operators. The next statements provide other examples of skew
fields with this property.

Lemma 0.60 Let K be a skew field such that o™ # Id or " = Id, i, = oco. Let
X, Y € K. Then res,[X,Y] = 0.
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Proof It is sufficient to prove the assertion for X = u!z*, Y = u™z9.
If k+q#0, then res,(XY) =res,(YX) = 0. In the case k 4+ ¢ = 0 we have:

k

XY —YX = (™)™ —u™(u)”

= dF W) — ()" € im(a — Id)
O
In this case our propositions can be stated as follows:

Corollary 10 Let K be a skew field such that « = Id, i = 1, r = 0, a = 0 ((In
this case K is the ring k((u))((07Y)) of pseudodifferential operators.) Let L, M € K,
v(L)=v(M)= -1,

M=b_ 1z +by+bz+...,

L=a_z"'4ay+a1z+....

The following conditions are equivalent:

(i) there is an S € K, v(S) =0, such that M = S™'LS

(ZZ) a_1 = b_l,'

ag — bo U(&o - bO)

du€e?Z and
a_q a_q

resyo(M7) = resyo(L7) for all j > 1.

€ kl[ul]

res

Corollary 11 Assume that o™ # Id for alln € N. Let LM € K, v(L) =v(M) = —1,
M:b_lz*1+bo+b1z+...,

L=a 1z 4ag+a1z+....

The following conditions are equivalent:

(1) there is an S € K, v(S) =0, such that M = S7'LS
(ii) b-r/a-1 € imip;
resq,(M7) = res,(L7) for all j > 1.

The following examples show that the identity res_([X,Y]) = 0 does not hold in
other cases.

Example (i) Let K be a skew field with o = 1, a(0,...,0) # 0, r # 1. We assume
that K has the form specified in Theorem 0.35. Let M = 271 L=2"1+2" € k((2)) C
K. If res; . ([X,Y]) = 0 holds, then M and L are conjugate by Proposition 0.57. Let
S=1+s1z+.... We have

SM=z'4s+sz4+...=LS=(""+2)1+s2+...)=
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(27 sy 4s024. . )+ (21 =80 2 4+ (5127 — s 2 ) L A (s542% —l—sl 521221—321122’)—# .

Hence, 1 — 5% = 0. Since r # 1, this equation is soluble, and s; = (1 — r) e T,

Solving the next equations, we obtain so, s3,.... Each of these elements consists of a
single monomial whose valuation is different from r — 1.

Further, we have s;2% —i—si’?_dz"z% — 5%, 2% = 0. By Theorem 0.35, if a(0, ..., 0) # 0,

then si’z_@i contains a monomial whose valuation is equal to r —1. Therefore, the equa-
tion is insoluble with respect to s;1, and M is not conjugate to L. This contradiction
completes the proof of the assertion.

(ii) Let K be a skew field with o = 1, a(0,...,0) = 0. In this case i > 1, since r = 0
for © = 1, and we obtain the ring of pseudodifferential operators. We assume that K
has the form specified in Theorem 0.35. Then zuz ™' = u+cu"z' +r(i + 1) /2c?u* 1 2%.
Therefore, dy; = 67. Then for any = € k((u)) holds:

lrz=x— 2% . 7%
We put X = w1271 Y = 2 Then
XY =u""2 .+ CuT ., Cer,C#0

Hence res; .([X,Y]) # 0.
An example with a(0,...,0) # 0, r =1 can be obtained likewise. (iii) Let K be a
skew field with o™ =1, i, # oo. We put X = u ™27 and Y = u. Then

XY = ¢ inylmmmymin L O 4L

where C' = —i,£ Tl #£ 0. Hence, res,([X,Y]) # 0.
Remark These examples show that the Scolem-Noether theorem does not hold for
skew fields defined here.

Let K be the ring k((u))((9;')) of pseudodifferential operators. We have shown
that this is the only slew field such that res; o([X,Y]) = 0. Let us deduce a criterion
for two elements of this skew field to be conjugate.

Let n € N be a certain number. Consider the skew field K’ = k((¢))((9; ")), where

t" = u. Then 0, = nt"~'9,, and K C K'.

Lemma 0.61 Let L = [_,,0" + ...+ 1o +1L0; ' +... € K' -be an arbitrary element
of K'.
L € K if and only if I; € t'k((t™)).

Proof Assume that L € K. Then L = b_,,0" + ..., where b; € k((u)) = k((t")).
Let 7 € N. We have:
0l = (n~1' 9,7, 07 = (0] 'ntn 1),

67



We prove first the assertion of the lemma for [_; (i > 0). For i = 1 we have
9. = n 179, and b_10, = l_;n ''7"9;. The assertion of the lemma holds, since
e th((t)).

For an arbitrary ¢ we have

g = o

| = a(nfltlfn)(nfltlfnat)ifl 4 (nfltlfn)Qaf(nfltlfnat>i72 —
t

(1 o n) (nfltfn)(nfltlfnaty‘fl T (nfltlfn)2at2(nfltlfnat)z#Q

Since the coefficients in the expression for L in K belong to k((t")), it is sufficient to
show that the lemma holds for 9.

We prove by induction that the assumption of the lemma holds for all the coefficients
in (n=''="9,)"~". The same is true for (n~1t'7"0;)""2. Let (n='t17"9,)" "2 = 31 [, 0F
(Let us note that there are no negative powers of d; in the expansion of 9, i > 0, and
the minimal power ofd; is equal to 1). We have:

i—2 i—2 i—2 i—2
(PR (3 B0k) = (A3 BOEE 4 S ROk + S k)
k=0 k=0 k=0 k=0

Therefore,  (n='t'"")2l, € tF2E((t7)), (n~ "2 € tRTE((t7)), (nTi )2 €
tER((")).

For i = 0 we have ly = by € k((t")).

Let us prove that the assertion of the lemma holds for 0%, i > 0. For i = 1 we
have:
0, = n k()W

Assume that for k < i it is proved 9, % = > im0 ;0,57 1 e tTRIR((1).

3
—

au—z — (at—lntn—l)i — (TL Ck—l(tn—l)(k)at—l—k)(at—lntn—l)i—l —
0

B
Il

S
—

() G HWa (o)
7=0

0

e
Il

For every k € {0,...,n—1} 8; "I, = > o Cgl_kl;(p)ﬁflfkfp. This yields the follow-
ing conditions on the coefficients for fixed k and j:
at 0, 'FPTI ) >0, the coefficient belongs to ¢RI (1)),

Conversely, assume that the assumptions of the lemma on the coefficients hold. We
have obtained that

0, =500 7, and ¢; € t7k((t")) for any i € Z.
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Consider the highest monomial in L:

O = g 00 — (Y 5107

j>1

We have |_,,co' € k((t")), l_mcjcy’ € t™Ik((t")). Hence, L = [_,,cy 'O™ + Ly, where
v(Ly) > v(L), and the the assumptions of the lemma hold for the coeflicients in Lj.

We complete the proof by induction.
O

Lemma 0.62 Let L, M € K C K’ and v(L) = v(M) = —n. Let M = SLS™', where
S e K'. Then S € K if and only if

lu —my ll/ —my
res-ZHH OO o apd  ¢42H (M)+1

lu(r) bu(r)

e k[[t])

Proof is similar to that of Proposition 0.57.
O

Theorem 0.63 Let L, M € K = k((u))((9,1)), v(L) =v(M) <0,
M = mV(M)@_”(M) +..
L= ZZ,(L)GQV(L) + ...

The following assumptions are equivalent:

°)

(1) there is an S € K, v(S) =0, such that M = S~'LS

(ZZ) V(L) = I/(M)7 mymy = ll/(L)?

lu(L)+1 — My(M)+1

lV - v
=0 and ¢ " TODH g
lu(r) lur)

res(MI/ (Y)Y = res( LI/ VDY for all j > 1 in K.

Proof follows immediately from Corollary 10, Lemmas 0.61, 0.62 and the fact that
L (and M) has precisely one nth root in K.
O

Theorem 0.64 Assume that L, M € K = k((u))((9,')) and v(L) = v(M) = 0. Then
(i) If ly = mo # const and l; = my, then M = SLS™.

(ii) If ly = mqy = const, then M = SLS™' if and only if (M —mg)™" = S(L — 1)~ 'S~
(see Theorem 0.63)

Proof is obvious.
O
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0.6 New equations of KP-type on skew fields

In this section we give an answer on a question given in [22]. Namely, the classical
KP-hierarchy is constructed by means of the ring of pseudo-differential operators P =
k((z))((0~1)). This ring is a skew field. The point is to consider other skew fields instead
of this one. We will study if there exist some new non-trivial generalisations of the KP-
hierarchy for a list of two-dimensional skew fields. In particular, we give a number of
new partial differential equations of the KP-type.

For every two-dimensional skew field from the list of theorem 1.5 we can write down
a decomposition K = K+ K_, where K_ = {L € K : ord(L) < 0} and K consists of
the operators containing only > 0 powers of z, and a ”KP-hierarchy” in the Lax form:

oL

o (L"), L],

where L € 27 '+ K_ Q@ k[[...,tm,...]]. Let L = 271 + uyz + upz?® + ..., where u,, =
U (u, t1, to, . . .). Further we will denote 0/0t,, as 0,,.

One can check that if the canonical automorphism « in the classification theorem
1.5 is not trivial, then our ” KP-hierarchy” became trivial, i.e. it can be easily linearised
and solvable. We omit calculations here. So, it can be assumed that o = ¢d. The same
is true if i > 1, because [(L"),, L] = —[(L")_,L] =0 mod ' in this case, where p
is a maximal ideal of the first valuation in K. So, our " KP-hierarchy” again is linear
and easily solvable in this case.

So, we assume ¢ = 1, hence, r = 0 and ¢ = 1, and there is only only one non-trivial
parameter a. If a = 0, K is isomorphic to the ring P of pseudo-differential operators.
Denote by u/,u”, ... the subsequent derivatives by x.

First for n = 1, we get

alul = Ull

This means that we can take ¢; = x for u;.
Now we write down the first two equations for n = 2 and the first equation for

n=3.
82u1 = U,Hl + 2U/2

3)
"

(93U1 = Uml + 3UH2 —+ 3U§, —+ 6u1u/1 + Ba(xflu//1 . .Tizull) (5)

(
(

/ / " —1_7
Ootig = 2us + 2uguy +u's + 2ax™ Uy

Let us introduce the new notation: u = wuy(z,y,t) with y = t, t = t3. Also we use the
standart notation g, u,, ty,, . .. for derivatives.
We can eliminate uj from equations 4 and 5 and then we get

By, — 2u; = —6uu’ — 3u"y — 2u"” + 6ax " uy — 6ax U + 6ax (6)
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From 3 we find
u”y = 1/2(u"y —u"), uy, = 1/2(uy, —u"y)

Differentiating equation 6 by x and inserting these expressions we finally get new KP-
equation

(du, — u" — 12uw’) = Buy, + 6a(52 0" — 2 %u, — 3z~ " + 27 '), — 4 77u)

One can see that if a = 0, we get the usual KP-equation (see also explicite calculations
in [21]).
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Chapter 1

Classification of automorphisms of
a two-dimensional local field.

1.1 Basic results.

In this chapter let K be a two-dimensional local field, K = k((u))((z)); Auty(K)
be a group of continuous k-automorphisms of a field K with respect to the topology
given by fixed parametrisation, i.e. by the parameters u and z (see [35] concerning the
connection between a topology and a parametrisation).

Introduce the following notation. By Greece letters «, 3, we will denote automor-
phisms of a field K. An overline will denote the residue homomorphism. As before,
v denote a valuation on the field K, 7 denote a valuation on the field K, ¢, ¢ are
valuation ideals of the valuations v, 7, u(k) is the group of roots of the unity, Auty(K)
is a group of continuous k-automorphisms of the field K.

Recall some results from chapter 1, section 3.

Definition 1.1 Let K be a one-dimensional local field with the residue field k,
charK = chark, a € Auty,(K). Put

@) =aluwut mod €k and define i(a) € NU oo by the following:

i(a) = 1if (@) & p(k), else

i(a) =v((a"—Id)(u)), wheren > 1, (@) is a primitive root of degree n, ord(§(a)) = n.

Proposition 1.2 Let k be an arbitrary field, chark = 0. Any automorphism a €
Autyp(k((w))) with a(u) = £(@)u + agu? + ... is conjugate with the automorphism (3:
B(u) = &(@)u + 2u?® + 22yu? D71 where x € k* /D7D gy € k.

Two automorphisms 3, 3 are conjugate iff

(&(8),i(B),=(B),y(8)) = (£(8),i(5), (), y(3))-

Corollary 12 1) i(a) = 1 iff @ is an automorphism of infinite order and &(a) has
infinite order;
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2) 1 <i(@) < oo iff @ has infinite order and (&) has finite order;
3) i(a) = oo iff @ has finite order.

Remark. i) In the notation of proposition we have n|(i(@) — 1).
ii) if k£ is a field of characteristic p > 0, then the following fact remains true: the
automorphism & € Auty(k((u))) with a(u) = £(@)u + azu® + . .. is conjugate with the
automorphism 3: B(u) = &(@)u + zu’® + ... where x € k*/k*((@~1),

Lemma 1.3 Let ag € K, & € Autp(K). The linear map T = & — ag : K — K has the
following property:
if @™ = Id for some n, then dim(kerT) = dim(cokerT) = d, where d =0 or oo;
if @™ # Id and chark = 0, then dim(kerT) = dim(cokerT) = d, where d =0 or 1;
if @" # Id and chark = p, then one of the following cases holds:
1) dim(kerT) = dim(cokerT) =0 or
2) dim(kerT) = 0, dim(cokerT) = oo or
3) dim(kerT) = 1, dim(cokerT) = oo.

Proof. By proposition 1.2 we can assume a(u) = fu + zu® + ... where ¢ is a
primitive n-th root of unity.
If a(u) = &u, & = 1, then the first claim of lemma is clear, so from now on

a(u) # &u (note that we have proved the first claim in the case chark = 0, because,
by corollary 12, any automorphism of a finite order looks like this).

Suppose the element aq satisfy one of the following properties:
(ap) # 0 or
(ag) = 0 but ag # & for all j € Z. Let’s study values of the valuation 7 on elements
(u) for different . We have:

AN

S

a(ul) — apu! = (fu+ 2u'@ + ) — agul = €Wl (1 + e et 4 ) — qpul

Therefore:
v(T(u')) =1 or | + v(ag) if v(ag) < 0.

So, we can solve any equation a(y) — apy = Y, and the map T is surjective. It is
injective, because the values 7(T'(u!)) are finite and v(T'(u!)) # v(T (u")) if I # ;.

Suppose now ay = &7. Since the injectivity and the projectivity of the map a—aq are
defined by the existence and the uniqueness of a solution of the equation a(y) —apy =Y
for any Y € K, we can replace y by yu/ and assume that @ = 1. Then ag can be written
as the product ag = []}2,(1 + ag;w’), ag; € k.

Put ¢ = v(ap — 1). There are two possible case: ¢ < i(@) — 1 and ¢ > i(a@) — 1.

Let ¢ < i(a) — 1. Then we can assume n|q. To prove it we have to prove that ag

a

can be written as the product aé% for some z, where v(a}) = ¢1 > ¢, nlq.

Note that a(lljcifl) = 1J1riisl‘l) =1+ c(a(u) —u')(1 + cu)L, where c is a constant.

a(u) —ul = (Eu+ 2@ 4+ ) =l = (1 + e 4 ) = (1.1)
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From this formula we get the following property:
- I
if n Jl, then p(a(u') —u') = 1 and %) — 1 4 (¢ — 1)eul + .. .. Hence, ag can be

1+cul
represented as the product above, because there exists a constant ¢ such that the value
v(a M) increases
0 1 cul :

So, let we now have: ¢ < i(a@) — 1 and n|q. Let’s study values of the valuation 7 on
elements T'(u') for different . By formula (1.1) we have:
v(T(uh)) =1ifn JI
v(T(uh) =1+qif (I,n) # 1.

Therefore, we can solve any equation a(y) — apy =Y, and the map 7' is surjective.
It is injective, because all the values (T (u')) are finite and v(T'(u')) # v(T(u™)) if
I #1.

Consider now the case ¢ > i(@) — 1. As in the first case we can assume that n|q.
We divide this case into three cases:
q=1(a)—1,
q > i(a) — 1 and q is finite
q is infinite, i.e. ag = 1.

Let ¢ =i(a) — 1. Let ap = 1 + wu? + . ... Note that

alcu™)  (fu+ xu'@ )

— _ —1,. i(a)-1
i o =14+nl& au + ...

Hence, if w # nlé 'z for all [, we can apply the same arguments as in the first case
and get that T is injective and surjective, i.e. d = 0. Otherwise, we can write ay =
aja(u™) /ul", where v(al — 1) > g, and reduce this case to the case ¢ > i(a) — 1.

Let chark = 0. We claim that the case ¢ > i(@) — 1 can be reduced to the case
q = oo. In this connection it is necessary to show that ag = %. We know, that

and a(u') — u! has the valuation equal to [ if (I,n) = 1, and to (i(a) — 1) + [ if n]l,
(I,chark) =1 and [ # 0.

From here we get the necessary result, because we can multiply ag sequentially by
suitable elements of the form 1+ cu? + ..., each of which can be got from a certain
element of the form 1 + c;u? or 1+ ¢;u/~0@=D Tt is clear that the product A =
[152,(1 + cju? =@ =1) converges.

Let now chark = 0 and ¢ = o0, i.e. a9 = 1. Then we claim that d = 1. Let us first
find the dimension of the kernel of the map 7. To do that we investigate the values of
the valuation ¥ of the elements T'(u') by different . We have:
p(Th) =1ifn fl
p(TWh)) =1+ (i(a) —1)ifn[l and I £ 0
v(T(1)) =00 if I =0,1e. T(1) =0.

74



From this follows that the kernel is one-dimensional and consists of the elements of
the field k, because all 7(T'(u')) are finite if [ # 0 and (T (u!)) # v(T(uh)) if | # 1.

On the other hand, we get also that the cokernel is one-dimensional, because we can
get an element with any value of valuation except an element with the value (i(a) —1),
and there exists a pullback of any convergent (to zero) sequence, which is also converge
to zero.

Now we must examine the cases, when chark = p. Let us first consider the case
chark = p and ¢ = o©

We prove that @" = 1 if and only if dimy(ker(a —1)) =

Let a" = 1, n = p*m, (p,m) = 1. It is obvious that if exists an element z € K,
x ¢ k such that (& —1)(z) = 0, then dimy(ker(a — 1)) = co. Suppose, that there is no
such an element. Therefore:
a™(u) =u+ay, a; € K, v(a;) > 1, a; # 0,
a?m(u) = u + 2a;y + ag, az € K, v(ay) > v(a1), ag # 0,

O_zpkm(u) =UA ...+ Ay, Ak € K, ﬂ(apk) > D(apk_l), Qe #0,
and we get a contradiction.

Conversely, let dimy(ker(a—1)) = infty. Assume F = ker(a™—1), m = ord(&(a)).

It’s clear that F'is a field.

Let n € N be a minimal positive value of the valuation v on this field.

Then n = p*, k € Z. For, if n = p¥l, (I,p) = 1, then there exists an element x € F
with such a value and, moreover, r = d', d € K. But then d € F, because £(a™) = 1,
a contradiction.

So, K/ F is a finite algebraic extension of degree p*, therefore @™ is an automorphism
of a finite order. It is easy to see that the order is equal to n, i.e. & is a generator of
the cyclic Galois group Gal(K /(kerT)).

Remark. In particular, we have got a description of a subgroup of elements of
finite order in the so-called ”Nottingham” group. See (3], [12], [5] for further details
about this group (i.e. the group Auty(K), charK = p).

Let & be an automorphism of infinite order. Then kerT = k, dimy(kerT) = 1. Let
(i(a) — 1,p) = 1. We claim that for any integer N > 0 there exist numbers h(N) € N,
h(N) > h(N —1) and x, h(N — 1) < < h(N) such that the maximal value of the
valuation on a preimage of arbitrary element with the value = less than —N (or the
preimage is empty). From this follows that one can construct infinitely many elements,
which are not in the image of the map T

For N = 1 it’s clear — h(1) = = = i(@) — 1. For arbitrary N consider the vector
space < T'(u'), =N <1 < s(k) >, where s(k) = (i(a)—1)+p(i(a)—1)+...+p"(i(a)—1).
It’s clear that dzmk < T(ul), —N <1 <s(k) >< (s(k)+ N). From the other hand side,
D00 ) — 1) > o)
DT D D)) — 5 () — 1) + (i) — 1) > s(b)
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p(T (u?" (@ =D+-Fp((@-1))) > (k).

So, our property holds for k > N. Indeed, assume the converse. Then < u!, h(N —
1) <1< s(k)>c<T(u),—N <1< s(k)>forall k, and s(k)—h(N—1) < s(k)+N—k
for all k£, a contradiction.

In the case (i(a) — 1,p) # 1 we have: (T (u')) # (T (u")) if | # ;. Therefore, the

cokernel of the map T has infinite dimension.

Let now chark = p, ¢ > (i(a@) — 1) and ¢ is finite. Note that T is not injective if
and only if ag = &(A)/A. Therefore, if T is not injective, this case is equivalent to the
case ¢ = 00.

Let T be injective.

Here two cases are possible:

1) there exists an integer i > (ag — 1) such that for some sy, 5, € K ag = s2a(s1)/s1,
where (s — 1) =i and there are no elements s/, s, such that ag = sha(s})/s], where
v(sh—1) > 1.

2) for any integer i such that i > ©(ag — 1) there exist s;,s5 € K such that ay =
So(s1)/s1, where v(se — 1) > i.

For example, the first case takes the place when v(7T'(ag — 1
second — when 7(T'(ap — 1)) > (i(a) — 1). If (T (ag — 1)) = (i(a)
place either the first or the second case.

Indeed, we have seen that

) < (i(@) = 1), the
— 1), then may take

(cu™)

Qi

=1+ nl¢ e @ (1.2)
cu'™

1 l
O‘(l :ijj) = 1+ c(@(w)) — ud)(1 + cul)™? (1.3)

Hence, if #(T(ap—1)) < (i(a)—1) or (T (ag—1)) = (i(@)—1), but ag = 1+wu @14, ..
and w # nlé~x for all [, then 1) holds. If the rest inequalities hold, then one can see
that 2) may take place.

Let the case 1) holds. Let’s show that T is surjective.

Indeed, this case is equivalent to the property v(a(y) —aopy) < i+v(y), y € K. But
this means that
<T(u),N <I< N, >c<u,N+min{i(a)—1,i} <1< Ny +mazx{i(a)—1,i} > for
all integers N, Ny, N < Nj.

From this follows that the cokernel of the map T cannot have infinite dimension.
Suppose it has finite dimension, i.e. it is not equal to zero. Choose an element of the
minimal value x of the valuation in the cokernel and choose a number Ny: Ni +i < k.
Complete a basis of the vector space < T'(u'), N <1 < N; > with respect to the basis
of the vector space < u', N +min{i(a) —1,i} <1< Ny +max{i(a) —1,i} >. Denote
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these elements by ¢, j € {1,...,]i —i(@) + 1|}. Then for any integer N, > N; we will
have

< T(u),e;, N <1< Ny,je{l,....Ji—i@) +1|} >=< u', N +min{i(a) - 1,i} <
I < Ny +maz{i(@) — 1,i} >, but this contradicts to the existence of elements of the
cokernel.

Let the case 2) holds. This case is a negation of the case 1); so, for any natural i
there exists N; € N such that < T'(u!), N <1 < Ny >¢< u', N + min{i(a) — 1,i} <
I < Ny + maz{i(a) — 1,i} >. Repeating the arguments of the case ag = 1 we get that
there exists a converge sequence in K such that the maximal values of the valuation on
preimages of elements of this sequence tend to —oo. From this we get that the cokernel
has infinite dimension.

The lemma is proved.

(]

Corollary 13 In the notation of lemma let chark = 0. Then d =1 if and only if &
has infinite order and ag = a(x)/x for some x € K; d = oo iff & has finite order and
ap =&, j €Z; d=0 in the rest cases.

Let a € Auty(K). Then the automorphism & € Auty(K) and its invariants (@) €
k*,i(a), x(a) € k*/(k*) @1 y(a) € k are defined (see def. and prop. 1.2 ). Put
ap = a(z)z~! € k((u)). Note that the number v(ag) does not depend on the choice of
the parameter z.

Theorem 1.4 (Theorem I) Let chark = 0. Let v(ag) # 0 or v(ag) = 0, but ag ¢
{&(@)™,m e Z}. Then

1) The automorphism « is conjugate with an automorphism [ given by the formula
B(2) = u”ag(1 + au™ + agau®™ + . .. ai@y_ 10" @)z

where § = {(a), = x(a), y = y(@), ang € k, ¢ € {1,...,(i(a) — 1)/n}, aia)-1 ¢
né(a) " 'w(a)Z', Z' = Z\{0}, n = ord(¢(a)).

2) v(ap), ao, agl(a)fl)/x(d)j, (@), x(@), y(a), i(a) is the complete system of invariants
with respect to the conjugation.

Assume
au) =cy+ ezt +..., ¢ €k((u))
afz) =apz + a1 +..., a; €k((u))

Let us denote the additional notation:
i € NU{oo} — such a minimal positive integer that a) = @(Y")/Y for some Y € k((u)),

J= minq{iq - Cig A 0}7 q=>0,
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i(a) = ming{ig + 1 : a;y # 0},

f € Auty(K) — such an automorphism that f~'af(u) = &(a@)u+ zu'® + yu2(-1
{ — such a solution of the equation @(Y)/Y = &(a)+i(a)zzi® " +(2i(a)—1)ya2 @
1o = f(u) that (fou—"#)) =1,
g1 — such a solution of the equation &(Y)/Y = @ that (gyu—"@)) = 1,
B, = 0@ V/ig,
By = gl—Q(i(a)—l)

?

/idOa
Ay =g T @),
Note that B;, By, A, are defined uniquely.

Theorem 1.5 (Theorem II) Assume chark = 0 and let v(ag) = 0 and ay €
{&(@)™, m € Z} and & be of infinite order.

Then « is conjugate to (3, that is defined according to the next four possible cases:
a)i(a) —1 =7, i(a) < oo, so

o) (& 2 2(a)—1 (a1
ﬁ(U) {(a)u + xuz(a) + 2 yu i(a) +r Aluz(a) .
_ - i(@)—1 i) i(@)—12i(a)—1
— 40
6('2) apz + s1B1u z + s9Bou 5

where 1y € K (k) 55 € ke, s]0@D 6@ -2 i0)-1) 1, i bar) 1)) ¢
b)i(a) —1< 7, i(a) < oo

Bu) = &(@)u + zu'® 4 g2y ? @1

B(z) = aoz + 51 B1uf @711 gy Byy @)1 @)1

where s, € k* /k*U@)~Li@)-1) ") ¢
¢)i(a) —1>j,i(a) < oo

Bu) = (@) u+zu’® +22yu? @ fry Ay @ 4 a1 Aiey 1 u @@

B(2) = Goz + 51 B1ut @712 g, Byy (@120~

where r; € k* k¥, s{(i(d)_l)x(i(d)*m(i(o‘)*l)/ry(a)_l)(i(a)_l) €k, ry,s2€k, q#1.
d)i(a) =00 (j < o0 )

Bu) = &(@)u + xu'® 4+ z2yu? @1 g A @150

B(z) = aoz

where 11 € k*/k*.
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We denote j(«) := j in the cases a), c¢), d), and j(a) := oo in the case b). Then
v(agp), agi(a)_l)/j/x(@), E(@), x(@), y(a), i(a), i(a), jla), i, and the elements 1, s1, So
with the relations defined in the items a)-d) are complete system of invariants with
respect to the conjugation.

Moreover, i|j(«), i|(i(a) — 1) (we accept that in the case i = oo i|j means, that
j = o0, i(a) = 00, i.e. there are no elements with 27, 2/ ). i # oo if and only if
ao = 1+ aja)—1u" @1, where aay-1 = q¢€ ', g € 7.

Let us introduce the additional notation:

¢o = —0(c;) mod j,ie 0>gq, > —j;
@ = qo + min{v(a;) — qa; —1};
in the case of ¢, — ¢, = —1 we denote

cp/cq = {res,(cj/a;) if a; # 0,
p/cq := 1 otherwise };

in the case of ¢,/c, €7 we denote
q:=1ife/c, €Z,
¢1 is a denominator of the fraction ¢,/c, = p1/q1, where (p1,q1) = 1, ¢ > 0 otherwise;

in the last case let us denote by p; € Z' the numerator of this fraction;
in the case ¢; < j(a), ¢1 fj(a) we denote by
ny; € N a number that satisfies the properties ny < q1, ¢1](j(a) — ny);
in the case, when the equation (z + 1)/j = p1/q is solvable, we denote by
1y € N such a number that i, — g, + 1 is a solution of this equation.
Consider the equations

0=—(14+w)nip +nijw— (¢g—1)(2+w)gns + q (=2 + (1 +w)ge)+

lp1(j(g—1)(w+2)+j— (q_1)2(]1+(q_1)Q1+2Q1)+2j(Qa_1)‘{'((]_1)(]1((1"'“])%(_2);
1.4

(p1(—1+q—q1 (—14+q—2¢*+qq1)) —qq7 (¢a—1)+p11 (1 —3¢— (¢—1)gq1 +9q.)) = 0 (1.5)

Theorem 1.6 (Theorem III) Let chark = 0 and let v(ag) = 0 and ag € {{(@)™, m €
Z} and &™ = Id.

Then « is conjugate to B defined in one of the following ways, depending on the
possible cases:

0O) i =o00. Then
Blu) = Eu
B(z) = Byz
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where By € k((u™)), that is, B has a form of a canonical automorphism of one-
dimensional local field F((z)), where F' = k((u™)) in the appropriate case.

O’) i < oco. Then i =1 and this case is divided into two ones:
I)j>ila)—1, e jla) =00
Blu) = u
B(z) =z + B2 4 B12B222i(a)_1
where By, By € k((u™)), B € k((u™)*/k((u™))* =Y e B has the form of a
canonical automorphism of one-dimensional local field F((2)), where F = k((u™)).
II) j <i(a) — 1 (and in this case j = i(a) — 1). This case has two subsections:
A) gy —qo < —1. Then A
B(u) = &u + rutaz?
ﬁ(z> =2+ sluqszﬂ 4 823222j+1
where By = u®™! if g, # 0, and 0 otherwise,
the numbers r = s1(cy/cq) ™" € k*/(k*)0:%) | 55, sj(qa_l)/r(i(a)—l)% c k.
B) qy — qo = —1. This case has two possibilities:
1) cyfca ¢ 7. Then '
B(u) = &u+ ruez’
B(z) = z + syule 1zt
where numbers r € k* /(k*)a) s{(q“_l)/r(i(“)_l)qb €k.
2) cp/cq €7. This case has three possibilities:
a) g1 =j. Then '
B(u) = &u+ ruez’
B(2) = 2z + 51 B1 27T 4 sou PG 2L g g TP 20am2 354

where By = u% ™' if (x +1—q4)/7 # p1/q1 for all x € N,
and By = ude™! 4+, u', 4, > q, — 1 otherwise,
Sg, 83,73, € k, 7 € k*)(k*)0:9) | J0e= D) jp(il@)=Day ¢ .
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b) ¢1 < j. Here we have two sub-cases:

i) q1|j. Then '
Blu) = &u + ruez’
B(z) = Z+81Blszrl+<S271u*pl(I;l(fIl*j)+2¢Za*2+52’2u*p1*1+Qa)zj+1+q1+83u*2p1*1+qﬂzj+1+2q1+
Sj/qlU—qul_l((j/Q1+1)Q1—j)+2‘Za—22j+1+(1+j/Q1)Q1 + SQ2Bq22j+1+Q1(1+Q2)
where By = u®™ ' if (x +1—q4)/7 # p1/q1 for all z € N and
By = w4+, u, iy, > q, — 1 otherwise,
By, = u a1t if g 41 — (g — 1)p; = 0, and 0 otherwise,
52,53, /q1:5q € K, T € k*/(k*)(da), sjl(q“_l)/r(i("‘)’l)qb €k.

it) q1 fj. Then we again have two cases:

i) ni|lqn and —qinyt(pigy (1 — ) + ¢u) = —p1 + 1. Then
B(u) = Eu + rutez?

. —1 . . .
6(2) =2+ Sluqa—IZHl + Sou P (n1=5)+2¢a=2 _j+1+n1 + SquZJ+1+lq17

where By, = u P 1 4f (1.4) is fulfilled and 0 otherwise,
[ is a solution of an equation (1.4);
S9,84 € ki, 7 € k*/(k*)04a) s{(q“_l)/r(i(a)*l)qb € k.

. -1 -1 :
i) nifq or —qiny (prqy (na —J) + qa) # —p1 + 1. Then
B(u) = &u + ruez’
_ . _ —1 A o - _ _ .
B(2) = z + spule ™ 2T 4 gpu P (MR i g P e ity
S4u7p171+Qa SIH1+2q1 + SquZj+1+lq1

where By = u P19 if —q, +1 — (¢ — 1)p1 = 0 and 0 otherwise,
[ is a solution of the equation —q, +1 — (¢ — 1)p; =0,
52, Sq7 53,54 S k, re k*/(k;*)(j,lh)’ Sjl(qa_l)/r(i(a)*l)% c k.

c) q1 > j. There are two possibilities:

i) j fq1. Then
B(u) = Eu+ rutes?

ﬁ(z) =24 sluq‘l_lel + S2u—p1—1+QaZJ+1+Q1 + Sgu—p1—2+2qaz2j+1+q1+

S4u—2p1—1+Qa2J+1+2q1 + SquZJ+1+lq1
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where By = u P 4f —q, +1— (¢—1)p1 =0, and 0 otherwise,
[ is a solution of the equation —q, +1 — (¢ — 1)p; =0,
S9, 8q, 83,54 € k, 7 € k*/(k*)\04a) s{(q“_l)/r(i(a)*l)qb €k.

it) jlg1. It also has two possible cases:

i) —p1+qu—2# q1(qa — 1)/j. Then
B(u) = Eu + rutez!
ﬁ(Z) = Z+31Uqa_12j+l+82U_p1_1+qazj+1+ql +83u—P1—2+2qa22j+1+q1 +S4u—2pl—1+%zj+1+2q1+
SquZj+1+lq1
where B, = u P14 4f —q. +1— (¢—1)py =0, and 0 otherwise,

[ is a solution of an equation —q, +1 — (¢ — 1)p; =0,
59,54, 53,54 €k, r € k*/(k*)(j,%)) S{(qail)/r(i(a)—l)% ck.

i) —p1+qa —2=qi(qa — 1)/j. Then
B(u) = Eu+ rutes?

ﬁ(z) — Z+81uq“_lz]+1 +82u—p1—1+l]azj+1+q1 +8qn,qun,lz2j+1+llql +8qﬂ,,23qn,222j+1+l2q1+

j+1+1] 141,
81 B 12”7 A A 80w By w2 TN

qm,

where By, ; = u P22 4f (1.5) is satisfied, and 0 otherwise,

B, ; = u Pt gf I, are defined, and 0 otherwise,

l1,ly are the solutions of equation (1.5), i, ... I\ are solutions of some equation of
degree w = q1/],

89y Sqniis Sqm.j € k, 7 € K* [ (k*)Ute) s{(q“_l)/r(i(a)*l)q” €k.

v(ag), &(@), i(a), i(a), j(a), i, Ga, @b, q1, N1, B, and those elements with relations

that were defined in all items are the complete system of invariants with respect to the
conjugation.
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Classification of conjugacy classes

Theorem 1 Theorem 11 Theorem 111

T ™

a b c d O O’

Corollary 14 For given v(ag), n, i(@), i(«a), j(a), i, qa, @, q1, N1, i, the set of conju-
gacy classes of the automorphism « is parametrised by only finite number of parameters,
except the cases Th.III O), O’)(I), Th.li(&) = 0.

Proof of theorems (and of corollary) Recall that @ is an automorphism on
the field K, @ =a mod .

It is clear that if two automorphisms «, 3 are conjugate, then the automorphisms
@, 3 are conjugate in the group Aut(K). To prove the theorem we must prove the
existence of an automorphism f such that a = f3f~! and 3 is an automorphism, as
defined in the formulation of the theorem. Thereto it would be also proved, that the
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automorphism [ can be uniquely reconstructed by the automorphism « and any (-like
automorphism gives its own conjugacy class.
Assume
flu) =20+ 212+ 292° + . ..

f(Z) = yoz+ylz2 + ...

We choose the parameter zy € K in such a way that @(z¢) has a canonical form, that
is &) = Emotart @ +yrd ! Recall that « is a representative of a class k* /k*((®-1).

1.2 Proof of the theorems I and 11

Let ag fulfil the assumptions of the theorem. We prove, that there exists an auto-
morphism f such that af(u) = fB(u); af(z) = fB(z), where 8 is an automor-
phism, as defined in the theorem. To do that, we prove by induction that af(u) =
fBu) mod ™ and af(z) = fB(z) mod @™ for all m € N.

From (1.2), (1.1), (1.3) (which remain true also in the case of finite order au-
tomorphism @ ) follows, that the set of representatives of classes of the elements
f Y (aoao " a(yo)/yo) can be described as the set of the elements {u”®)(1 + a,u™ +
a2 U™ + . iy DY) 4y € Ky aia)—1 # nlé x, where € is a primitive root from
1 of a degree n, [ € Z\{0}}. From the definition of the element a, follows that the
elements a,, are uniquely defined by automorphism c, that is, they don’t depend on
the choice of parameter z, and dg is defined up to multiplication by an element £,
m € 2.

Assume dy = aou” @) (1+apu” +ag,u®* +. . . j(a)—1u" 1), Then we have for m = 1
that o

of(W) = alzy) = alxe) = &xo + z2” + ... = fBu); af(z) = a(yo)a(z) =
a(yo)aoz = fao)yoz = f(ao)f(z) = fB(2) mod .

For an arbitrary m we replace a by f.1,af,,_o for a suitable automorphism f,,_»

(that is, for any automorphism with suitable coefficients g, ..., Zy_2, Yo, ... ,ym_g),
and now can consider that ¢y = &u + zul® ciy €1 = ... = Cpm_o = 0, a9 = ay,
a1 =...=apo=0,x0=u,21=...=Tp2=0,9=1,1y1=... =¥yYn2 =0. Then

af(u) = a(w)+a(Tm_r)a(z™ ) = Cutazu’ @+, 412" Ha(Tpo)ar 2™ mod ™

) = E(u+am1 2™ )+ 2(ut2pm12m )@ 4 = ut '@yt a2

(@) Ty u @ =

fu+ @y .+ xml(%(d(u)))zml mod "
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Hence,

@(mm_l)agz—l +Cm-1= mm—l(

3y G0)) (16)
And in the same way,

0f(2) = a2)+a(m 1) (™) = do2-+Ham 12" +(@(ym 1)+ )(Foz+.. )™ mod

FB(2) = F(@0)(2) = (0 + = (G0) 1™ ) (2 + Y 2™) =

O(u)
aoz + i(& V1 2™ 4 AoYm_12™ mod ™!
0 8(U) 0)4tm—1 0Ym—1
Hence,
N N o
A(Ym—-1)ay" + Q-1 = QoYm—1 + %(ao)xm_l. (1.7)

By Corollary 12, if the conditions of the theorem are fulfilled, the equations (1.6),
(1.7) have the unique solution with any ¢,,_1, a,,—1 and with any m, whence follows
the proof of the case 1). By Proposition 1.2 the proof of the case 2) is evident.

Proof of the Theorem II

If ©+ = oo, we can apply entirely the same arguments as in the Theorem I, and
get that « is conjugate to the automorphism (3, where 5 has the same form as in the
Theorem I (i.e. this case corresponds to the case d), when j = 0o). In order that these
arguments remain true, we must only show that the element a := {+i(a)zzy ™' +. .. in
(1.6) can be represented in the form a(y)/y. But it follows directly from the relations
(1.2), (1.3), (1.1).

Let i < co. We prove that there exists such an automorphism f that af(u) = f3(u),
af(z) = fB(z), where automorphism [ is as defined in the theorem. The proof is the
same as in the Theorem I.

The case m = 1 coincides with the case m = 1 from the Theorem I. Applying the
same arguments as there, we get equations of the form (1.6) and (1.7). By Corollary
2, these equations are solvable if i f/(m — 1). They may be unsolvable if i|(m — 1). Since
chark = 0, the kernel and the cokernel of the maps

T-11 = (T )ag " — (€ + au @7 4 VTm—1, Tm—12=0(Ym-1)a) — GYm—1

are one-dimensional if i|(m — 1).

We put ) = g’f/igglxk, Y = gf/iyk for k =iq, g € N . Then

— s ~k/i o~
i Q@) alR) ki kg

a(zp)ag—(E+au O e Yy = a(y, garl) Ty, a(f2)gy " (alay) —a},),

~k/i
yl/
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_~k/i

_ - _—kfi \O\YL )~ ~ o —kfi ~—k/i

()l — o = a0 B a, — aoaf g = ai (alh) — oh)
1

Now we can write down the kernel and cokernel of these maps in the expllclt form.
For Ty the kernel is §; "/ "§(x})o, where (2})o € k, cokernel — cu@® =15,/ a(g,),

¢ € k; in the same way, for T} o the kernel is g;’“/"(y;)o, where (y;.)o € k, cokernel —
Clui(&)ilg;k/idod.

Step 1 We show that « is conjugate to an automorphism o', which has all the
coefficients ¢ and a;, ¢ > 1, satisfying the property:

if i [g, then a;, = ¢, = 0; if i|q, then ( ;y(f/ a(jg ) >i(a) -1, ﬂ(a’qgf/idal) > i(a)

We even show that in (1.8) we have either equalities or ¢, = 0 (a, = 0).

In fact, let o/ be such an automorphism that ¢ = ¢y = fu + 2u® + ... al = ao.
Let us find the rest coefficients satisfying these properties. Applying induction on m,
we have for arbitrary m that

af(u) = a(u) + a(zmn-1)a(z"") =
au) +ciz+...c 2" P12 (@) + . ) (Goz +..)™ mod ™

fol () = f(a(w) + f()f(2) + o4 fena) f(Z"77) + fleo) f(Z"T) =

9]
au) + =—(a(u))rp1z2™ P e+ A+, 2"

90 mod ™

Hence, 5
5‘<xmfl)&6n71 + Cn1 = xmﬂ(%(@(u))) + C;n—l (1.9)

If 7 f(m —1), then ¢/, ; = 0 and by Corollary 2 the solution of this equation exists
1

m
and is unique. If i|(m — 1), then for solvability of this equation it is enough to select

¢, in the form cu'® =15 "V ia(5), ie. v(c,_ "V algh) > ila) — 1.

Further,

af(z) = a(z) + a(ym-1)a(z")
Aoz +ay2® + .ot al, 02" a1 2"+ (@ Ymer) + ) (@™ +...) mod ™!
fo'(2) = f(ao) f(2) + fla) f(z°) + ..+ flap,_) f(2™) =

0 0
oz + %(doﬂm—ﬂm + AoYm_12™ + (a] + %(al)xm_lzm Dz + Ymo12™)* +
9]
+(al,_4 au( L )T 12" Y (2 ymo12™)™ = Aozt = 50 (80) T 12"+ a0Ym_12"+a, 2%+ ..

+a,, 2™ mod o



Hence

_ o _ 0 .
A(Ym-1)ag" + am—1 = oYm-1 + %(ag)mm,l +a, 4, (1.10)

and in the same to the previous case way we get the desired result.

Step 2 Here two cases are possible:
1) j = i(a);
2) j < i(a).

Case 1). We show that a = f~13'f, where '(u) = a(u).

To do that we find the sequential conjugations o' = frafm, where f,i(u) =
U+ T 2™ frni(2) = 2, m > 1, Ty = Gy "G2(2,)0. Em = (5 —i(a) + 1)/i, we have
for the coefficients ¢ that:

af(u) = a(u) + a(vm)a(z™) = a(u) + ¢/ + ...+

) A i , A
(@(zim) + a(=—xim)2” + ... ) (@02 + ai(a),lzz(o‘) +.)T =

ou
j+1

au) + cjzj + a(zim)ag 2™ + Oz(:vm)aom’lai(a)_lzj mod

fa(u) = f(@(u))+f(c’(m+1)iz(m“)i)+. o= c‘z(u)%—ximg(o‘z(u))zim—h . .—|—f(c’(m+1)iz(m“)i)—|—. .

ou
+ f(c;»zj) mod @'t (1.11)
Since T, = §; "2 (2, )0, the equation at z™ has the form
=~ ~im a —
Umi)ag" = Tmi(5-(a(u)) =0 (1.12)

We show that all the coefficients ¢ in (1.11) can be chosen so that V(yf/ alg,; He cy) >
i(a) — 1.

In order to do that if ¢ < j, we prove, applying induction on ¢/i, that all the
coefficients at z in degrees higher than im in f(a(u)), f(c};2") satisfy this property,
supposing that ¢}, satisfies this property at | < g/i.

For f(u!), I > 1 we have by Newton’s binomial formula that

l

f(ul) _ Ul + Zul k k zmkcl 7

k=1

whence

p(uraf, grta(gy ) = =k+(k+1)o(g:) = I=k+(k—1)i(a) = I-k+(k—1)(i(a)-1) >
(i(a) = 1) for k > 1,
what proves our assertion for f(a(u)). For f(c};z") we have f(c);2") = f(c],)2", and,
using Newton’s binomial formula again, we get
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[ >i(a)—1— V(yl)—l—i/(yg) =i(a)—1—v(g})+i(a), where from | —1+(k—1)(i(a)—1) >
i(a) — 1 — u(gh) for all k, what proves our assertion in this case also.
At 27 we have the equation

im—1

(Tim)ag" ™ Gia)—1 + ¢; = ¢}, (1.13)

and we must only solve the equation

~j/i

7 a3 e + gl

~im—1

a(Ja Maiwy 18" (i) =0 mod G (1.14)
in order to finish the induction step for the coefficients ;. We have:

i/

3/1 (yz )CJ +y/

~im—1

(yz )ai(a) 105" (i) =

7 s ey + 71 a3 )i ™ () (€ )ottie) 1 =

(e + 5" aiwa(@,)o mod G
Since (7" )=/t Uiay-1) = i(a) =1 = o7 a(g; '¢;), there exists a unique constant

(x).;)0, with which the equation (1.14) is solvable.

Let us show that the coefficients ¢, ¢ > j, a;, ¢ > 1 satisfy the properties (1.8).

As for coefficients ¢, it is remained to prove, that the coefficients at 2 in
a(zim)a(2"™) for d > j satisfy (1.8) . It’s clear that (1.8) remains true if i fq. But if
ilg, then a(2™) = 2™ D, where D is a series with coefficients of the same behaviour
as a,. It follows from the Newton’s binomial formula. Applying the same arguments
as for f(c);)z", we get that (1.8) holds for a(w;,)z™, where from (1.8) also holds
for the product a(z;,)z"D, because (1.8) holds for each series a(z;,,)2"™d, 29, where
D=3 g>0,1q 0"

For the coefficients ag we have

af(z) = a(z)
fa(2) = flao)z + f(a;(a)—ﬂzi(a) +.. (1.15)
where from, using calculations for f(u'), we get that (1.8) holds for a}. Therefore,

since g =1 mod  @'®~! we have v(a flyf/ ag') > i(a) — 1 for all ¢ < z( ) — 1.

To complete the induction, let’s show that o/ = f~'a”f, where the coefficients
cy,ay of the automorphism o satisfy (1.8) and ¢; = 0,1 < ¢ < j, a =0, 1 <
q < i(a) — 1. The proof is again by induction on m (p™). Let’s use the Calculatlons

before the formulas (1.9) and (1.10). The equation (1.9) is solvable with ¢, ; = 0,
D(ema g™ a(g ") > i(@) — 1, m — 1 < i(a) — 1, and to complete the proof we
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l
¢ U
conjugation f ' o f,_1. But this follows from the same arguments as in the case,

only have to check that the properties of the coefficients ¢/ remain true by the

when f,,_1(u) = u+ 2y 12" fro1(2) = 2, V(T 1y§m 1)”@2_1) = 0, because we used
only the inequation v(x,,_ 1y§m 1)/1,@2_ ') > 0, which is true also in our case, because
Zm—1 18 a solution of an equation of the type (1.9). In the same way one can prove this
fact in the case f,_1(u) = u, fr_1(2) = 2 + Ym-12", V(Ym_ 1y§m 1)/1) > (. From the
other hand side, one can see from the equation (1.9) that the conjugation f,,_1(u) = u,
fm-1(2) = z+ym_12™ does not change the coefficient ¢, ,, so any conjugation f,,_; can
be decomposed into composition of two conjugations f/._,, f” | such that f/ ,(z) = z,
" () = u.

Thus, we have proved that « is conjugate to o, where j” > j, i’ = i(«). Since our
arguments do not depend on j, we get the required assertion by induction.

In the same way with Proposition 1.2 it is proved now that o = f~!3f, where
Blu) = alu), B(z) = Goz + aia)-12"“ + asgi(a)-1)22 @71, where U(a()- L=y =
i(a) — 1, U(asgi(a)- 1)91( ie)=1/iy - i(a) — 1 (i.e it is the case b) of the theorem).

Case 2). This case is divided into two ones:

a) j =i(a) — 1,
b) j < i(a) — 1.

Let us look first at the case a). We show that o = f3 1, where [ is defined in the
case a) of the theorem.

To do that we make sequential substitutions a +— o' = f,lafmi, fmi(u) = u +
Tni2™, fmi(2) = 2+ Y™, where ;= §; " Go(20,)0, Yoi = 1" (Umao- 1t s
enough to show that for every m a corresponding automorphism o' has coefficients

Cy» @y, Which satisfy the propert)//
a/i

7(@11/ (yQ )Cq) > 7/07 - 17 V(yl q) > Z(d) - 17 Z‘Qa im S q < mi +]a q 7é j72j7
c = a =0, q <im,

because then o’ can be reduced to the case, when the appropriate coefficients ¢, a;,
are equal to zero. That is done using the same substitutions, as by deriving equations
(1.9), (1.10), and with the help of result from the case 1). Since for every m the number
of necessary conjugations is finite, the desired automorphism f: o = f3f~! exists.

Let us write down the calculations for an arbitrary m:

af(z) — Oz(Z)+Oé(ymi)Oé(Zmi+l) — doz_i_Blui(d)flzi(a)_i_BQui(o?)flZQi(a)fl+ami+i(a)_1zmi+i(a)+

0
a(ymi)ag" "'z m2+1+04(3 Yumi) A/ (@)L
(mi + 1)@ By @ &y ) 2@ mod  gmitile)
(2

fol(2) = f(ao) f(2) + (@) FE™ ) 4 oA F @iyt [ (2T =

02+ = (0) T i 2™ G0 Ymi 2™ @, 2 +azm+z(a) lzzm+i(a)+i(a>ymia;(a)*1zim+i(a)+

ou
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J .,
%(ai(a)—
Because of the special form of Y, @(Ymi)ay™™" = Goymi- The coefficients Ay, q <

im+i(a) — 1 can be chosen so that they have the pointed properties, in the same way,
as in the case 1). For ¢ = im +i(a) — 1 it is necessary to show, that there exists (y/,,;)o:

]_)xmizieri(a) mod p’rTLi+’i(oz)+l (116)

~m~+(i(a)—1)/i 9 mi ia—lg ]
i@/ o (i) Attia) 1+ (mi+ 1) a5 Bru'™ ™ (ymi)—1(0)Ymith )1~

Amiti(a)—1 +04(

)-1)Tmi) =0 mod ') (1.17)

Since

D(ngr( 1)/11405((9 ymz) (a)—l) > Z(@) o 1’ 7 . >
—/~m a)—1)/t i(&@)— - — ¢ ~m+4(i(a)—1) /1 -
P By a0 Y) = i(8) — 1 (G (a2 i(a) 1 -
1+i(a) >i(a) — 1,

the element (y/ .)o exists and is defined uniquely if (¢zm+1) # i(«), i.e. ¢ # 2j. Further,

af(u) = a(u) + a(@m)a(z™) = alu) + Au @727 + coiie)12™ T + a(wm)ag 2™+

8 y . .
d( l’mz)AuZ -1 mZ+] + mlamz lB uza 1a<xmi)zmz+z(a)—1 mod pmz_ﬂ(a)

ou
fo/(u) = f(a(u)+f () F (") A f () F(ZTT) = alu)+ By alu )T 2" Ay 2

u

zm+] +

1+ T2 ™ Ymicyz™ (1.18)

5, ()

whence we get similarly that we must solve an equation over (z,,)o:

zm—i—]

g§n+y/zg2—1<cmi+j + midgm_lBlui@_lo_c(a:mi)—
g(/) o ',+ (a )Aza) 1)_0 d —i(a) (119>
5y, (C)Tmi = JYmiC; a g Lmi) AU mod :
Since (y.,,;)o was already deﬁned (if mi = j, we can take (y/,.)o equal to a constant),

P G (R ) AU @ > (@) — 1,

7(§T+]/1?32_138u(0j)$m1) >i(a) — 1, V(?/Tﬂ/ G Bru' @ ta () = i(a) — 1,
so an element (z! .)o does exist.

Let us now examine the case b). Now by the similar arguments as in a), we get that
« is conjugate to (3,
Blu) = a(u) + 4127 + Azt + L 4 Ajay-1-;21 071
B(z) = oz + By 2" 4 hyz?(@)—1 _(Aqgj‘f/ a(gy!)) =i(a)—1or A, =0, v(B, aalyf/z) =
i(a) — 1 if i(«) is finite, and
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Blu) = alu) + A2,
B(z) = agz if i(a) = oo (see cases ¢) and d) correspondingly).

In fact, let us use formulas 1.16 and (1.18). Since
I?(Aqd(a%ymi)gj?wj/iﬂfl) > i(a) — 1, the arguments from deriving the formula (1.17)
remain true for all coefficients a,, ¢ > i+i(o) — 1, ¢ # 2i(a) — 1, and the property from
the case a) is realized. Similarly, since ﬁ(d(%xmi)AqijH/Hq_lg;l) > i(a@) — 1, we can
apply formula (1.19) for the coeflicients ¢,, ¢ > i +i(a) — 1 and get the desired result.

Remark. In the case b) of theorem, if a9 # 1 or ap = 1 but y # 0, where y
is a second parameter of the canonical representation of &, one can show by direct
calculations that « is conjugate with 3: B(u) = a(u) + Az?, 3(z) = apz + B2,
where A satisfies (1.8) and B does not. But, if ag = 1 and y = 0, then for any £ > 1
2(B)j € Im(a — Id), where B = cjjy ' ™*17®) whence, by formulas (1.17) and
(1.19), one can derive that # does not exist and the number of parameters can not be
decreased.

Remark. 1. In the case of characteristic p > 0 we have in general dim(kerT) #
dim(cokerT), as it was shown in lemma 1.3. From this follows that automorphisms
can not be parameterised by finite number of parameters in more cases than in the
case of chark = 0. For example, « can not be always redused to (3, where [(u) =
a(u) + A127 + ...+ Apu™*: k may be equal to the infinity.

2. The classification can be easily generalised to the case of n-dimensional local
field, because we used only the property dim(kerT) = dim(cokerT) and arguments
with valuations. In the case of multidimensional equal characteristics local fields of
characteristic 0 all our arguments can be carried over to the case of higher dimension
if we assume that the value group of 7 is Z & ... B Z.

Now we only have to prove that the automorphisms 3, 3’ are conjugate if and only
if 3 = /', where 3,3 are automorphisms from the formulation of theorem. It’s clear
that if 8 is conjugate with #, then ay = a/y and G(u) = F(u) = a(u) is a nesessary
condition, whence (3 is defined up to the change u — xq : @(zg) has the canonical view
and z — cz, c € k*.

Then, # and (' must have the same numbers j, ;" and i(«), . Indeed, if 5 and
3 are conjugate, then 3 = f~!f'f, and f can be decomposed in a composition
of automorphisms f = fifa... fm, where fy(u) = u + 2,29, f,,(2) = 2z + yg, 27"
Then from (1.9), (1.10) follows that for ¢ < min{j,j'} we have z, € kerl,, for
¢ < min{i(a) —1,i, — 1} we have y,, € kerT,». From the proof of the case a) follows
that the conjugations f, with this numbers preserve properties (1.8) of the coefficients
Cq, ag, for ¢ <min{y, j'}, ¢ < min{i(a) — 1,4, — 1}. Therefore, if j # j" or i(a) # .,
then the first nonzero coefficient of 3(u) or #'(u) or 3(z) or #'(z) must lie in the kernel
of the map Tjjn1 (Tia),),2), but this contradicts to the choice of these coefficients.
Therefore, j = j' and i(a) = i/,. So, § and [ are in the same class defined by the
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pair (j,i(«)). In this case the equality follows from the special choice of coefficients of
27, 2@ and the proves of the corresponding cases.

1.3 Proof of the theorem III

Let @™ = 1. Then, by Proposition 1.2, there exists z such that a(z) = £xg, where &
is a primitive root of 1. As in the theorem II, we consider that a(u) = fu+ ¢;j27 +. . .,
a(z) = apz + aia)-12" + . . ..

a(y)

At first we note that i = 1 or oo. Indeed, if a} = = then, as it was shown in the
theorem II, we may suppose ap = 1 + cu? 4 .... But in this case aj = 1 + tcu® + .. ..
Further,
aha(al)...a" ah) = #5;2((;3) o ,ffi(%) = 1. So we have that:
apa(ab)...a" al) = (I+icu®™+...)...(1+icu®™+...) = 1 +nciu®™+... # 1, where
from ag = 1 or i = co. Thus, a(u) = Eu+ cju? + ..., a(2) = 2 + aia)-12"“ + ... (in

this case dim(kerTy 1) = oo = dim(kerTys) = dim(cokerTy2)).

Further let us consider that ¢, € uk((u")), a, € k((u")), because by going over to
conjugations as in (1.9) and (1.10), we can solve all the equations
a(y) — &y =c, mod  uk((u")), a(y) —y =a, mod k((u"))
(in theorem 2 we have reduced general case to a case a,, ¢, € cokerT, 1, T, - in the same
way).

As in Proposition 1, it is proved that if ¢ = oo, then takes place the case O) of the
theorem.

Let i = 1. The case j > i(«) coincide with the case j > i(«) of the theorem 2:
by writing over the formula (1.11), we get that holds (1.12) and there from holds
¢, =0, ¢ < j, and the equation (1.13) always has a solution z,, € uk((u")) , when
aq € k((u")), ¢, ¢, € uk((u™)). It holds from (1.15) that by conjugation the coefficients
ag =0, q< i(a) — 1. All other arguments from the theorem 2 should be applied here
also, and in the same way as with the case O), we get the case O’) I).

Let now j + 1 =i(a) and let f(2) = oz, yo € k((u")). Then we have:

0 , .
() = alu)a() = (o + e ()es? + .. )z + a2 + ..
fo(z) = f(2) + f(dy2?) + ... = yoz + f(a)ye2* + . .. (1.20)
So we get from here that a; = 0, ¢ < j, f(oz})y{frl = %(yo)cj + Yoti(a)—1. 1f the
equation a%(yo)cj + YoGi(a)-1 = 0 isn’t solvable, then dlog(yo) # —ai)-1/cj, where
from ﬂ(ai(a)_l/cj) < —1 or ﬂ(ai(a)_l/cj) = —1, but TQS(—CLi(a)_l/Cj) ¢ Z. If it is
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solvable, then we can consider that v(aj, ,/c;) = —1, res(aj,, ,/c;) € 7, setting
Yo = u.

The case j + 1 < i(«) is reduced to a case j + 1 = i(«): indeed, by setting yo = u,
we get that a; # 0, and it’s the first non equal to zero coefficient in the decomposition
o/(2), while v(a}/c}) = —1, res(a);/c}) €

The next part of the proof is following the proof of the theorem 2: in order to
prove the rest items of the theorem, we shall go over to conjugations, and as a result
get formulas of the kind (1.17) and (1.19). However, we cannot completely repeat the
arguments from the previous case, because the kernel and cokernel of corresponding
maps 71 and T} » are infinite-dimensional in our case. The formulas (1.17) and (1.19)
are now written down as

0 .
%(ym)A +(m+1—i(a))Bym — %(B)xm =a (1.21)
B — (At — jgmA + () A = b (1.22)
mBzx,, M Tm — JYm EY Tm)A = .

where A = ¢j, B = aj(a)-1, @ and b — arbitrary elements from uk((u")) and k((u"))
correspondingly, z,, € uk((u")), ym € k((u™)). It turns out that the solutions
of this system strongly depend on the properties of the numbers, defined before
the formulation of the theorem 3. From now on in the proof we are going to inves-
tigate the solvability of this system in dependence from the behaviour of these numbers.

First of all we note that we can put A = cyu*, k <0, |k| < j, ¢; € k. Indeed, we
write down the conjugation f~laf, f(z) = voz, yo = uf, where ¢ > 0 is a minimal
positive integer such that qi > v(A), f(u) = zo, 7(xg) = 1. Then

af(u) = a(xg) = Exg + %(JJO)Cij +...

fol(u) = f(&u) + f(c2) + ... = Exo + F(ge + ...,

u) +
where from we get i f(cj) = 2 (x0). We consider i =A=cub k= —(y}/c;). Then
). Wi

(=k + Dewp/ej = £ (g™ ‘ ,
solvable. And here also a; = FUE W)y e+ yo” ay).

e can choose ¢; € k so, that the equation would be

We show that in all the cases (except the cases 2) a), 2) b) i) of the theorem) such
a conjugation could be found, that it holds A = c;u*, B = cou*'. By that it appears,
that the coefficients Ay, By in all the cases of the theorem have the form, as mentioned
above.

Let 7(B/A) = —1, res(B/A) =pi/q1 €7, (p1,q1) = 1.
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We note that ¢; doesn’t depend on conjugation. Indeed, A and B change only by
conjugation flaf, f(u) = xo, v(zo) = 1, f(2) = yoz. But then from the (1.20) follows,
that res(B’/A") —res(B/A) € Z, hence we get that ¢; doesn’t depend on conjugations.

Let us now show that there is such a conjugation, that B/A = res(B/A)u™!, if
q1 fj or res(B/A) < 0. Therefore we look for a conjugation f, f(u) = xg, f(2) = yoz,
so that the automorphism o = f~'af would have A’ = c;u”, k < 0, B’ = couf~!. For
that, considering (1.20), we must solve a system

0 P
Fh = o wder, B = 5 (e + oo,

2 (yo)+yoB/A

Dividing the first equation by the second, we get: f(B'/A")y, = 2% , where

E(IO)
from
C2 —1& (?JO) . d -k _ (1 _ —1£ 1-k
o %0 au(flfo)— m +B/A, ayAT! = 5, @o)z” = (1= k)" o (zo) (1.23)

We look for zq, 4o in a form of zg = u(l+eju+eau+...), yo = v (1 +wiu+...). Let
c=cy/c1, BJA=cpu' +7 +yu+.... Then from the first equation (1.23) we get:

cu ™t +e(ey + 2equ+3esu® + . ) (1 +eu+eu® +..) =

Mt (W 2wou 4 )T+ wiu+ )T (e o L)

Suppose ¢ = A+ ¢y, # 0 (we can always find such A > 0). By comparing the coefficients
in the left and right sides, we get linear equations of the form

1 1
cei =wi+1i Yo +i Y,

where 1; — certain polynomial from ¢,, w,, ¢ < i (they are determined from the
previous equations). From the second equation we get:

cuM(14+wu+.. Y u™ =u ™+ (2 - ke P+ (B k) (e . )P4

(where A = c,u*). Suppose ¢; = ¢,, —k = A\j — ko. Then k < 0. Because of ¢, # 0, we
can put A = 0. Hence k = k, > —7j. Comparing the coefficients, we get linear equations
of the form

jwi=(i+1—k)ei+U; = (i+ 14 \j — ko)ei + ¥ (1.24)

For every i the system has a solution, if (i + 1 — k,)/j # ¢ba = p1/q1, what holds true
always under the condition that ¢; fj or ¢, = res(B/A) < 0. If these conditions are
not fulfilled, then B’ can have the form B’ = cou*~! + ¢;,u®, what is evident from the
arguments, mentioned above.

If res(B/A) ¢ 7, then applying the same thoughts, we also get the same result.
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Let v(B/A) < —1.
Then we look for B’ in the form B’ = cyu**7(B/4) . System (1.23) will now have the
form 2 (o)
w(B/A) O 52 (Yo o L0
cxo( / )%(aco) = Ju T m + B/A, ayAt=(1-k) 1%@6 ")

Hence
cu” B 4B o) 4 2epu+ . )14 qu+ .. ) =

Mt 4 (wr 4 2w 4 ) (L +wiu+ )7 (epau” B + VD(B/A)HUE(B/A)H +..)

whence ¢ = ¢, and equation i looks like following:
cig; = Wivp(B/a)1 (1 +U(BJ/A) + 1) + 1

where wiipp/ay41 = 0 if (i + 7(B/A) + 1) < 0. Equations (1.24) are written over
without changes, where from we get that every system i is solvable, and our proposition
is proved.

Let us now go back to a system (1.21), (1.22). We show, that system of the equations
(1.21), (1.22) is solvable, if m # j. It holds:

= (mBJGA) ~ (A GA) e+ oo/ F =04 (125)
Hence
) o) (2m — §)BJA ~ O (4)/4) + () -(B)B/(BA)~
(9m = ) A (AVBJA® — (- (A) - (A)/(S-(4) A+
(A4 4 (m— §)mB/A%) — <L(b/A) — (m — j)Bb/A* ~ ja/A =0 (1.20)

We set ¢ = v(B/A). From this: ¢ < —1, if ¢ = —1, then res(B/A) ¢ Z.
Let us show that the equation

)+ A n)(@m — §)BJA ~ S-(4)/4) + w((m — ) -(B)B/(BA)~
(2m = ) o (A)B/A® — (55 (A) - (A)/(S-(A4) A)+
(%(A))2/A2 + (m — j)mB?*/A?) = cu® mod "™ (1.27)
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is solvable, if ¢ < —1 or ¢ = —1, but res(B/A) ¢ 7, for all k € Z and every constant
¢ € k. From here we immediately get the solvability of the equation (1.26) for all b and
a, and also of a system (1.21), (1.22). From here will follow the proof of the items A),
B) 1).

If g < —1, then
((2m — j)BJA — 2(A)/A) = B(BJA) (if 2m # j) and > —1 (if 2m = j),
— . 2
o((m — §)2(B >B/u14> Cm — DEZABIA — (Z(A)2A)/(Z(A)A) +
(L (A))?/A% + (m — j)mB?/A?) = (B?/A?), because m # j. Thus,

02 0

it * B

N

() (2m — §)BJA ~ 2-(4)/4) + w((m — ) - (B)B/(BA)~

(3m ) - (AVBJA* — (5 (A) S (A /(S (A)A) 4 (2
D(%(xm) + %(mm)(Zm — feru? + zp(m — j)megu®?) = v(x,, (m — j)meyu®)

(A))*/A* +(m—j)mB*|A?) =

where from immediately follows solvability of the equation (1.27).

If g=-1,
then we put ¢, = v(A), o = v(B), k = v(x,), v = res(B/A). And now for the
solvability of the equation (1.27) is necessary to show that the equation

k(k—1) +k(2m—j)z — kga+ ((m = 5)ap — (2m = j)ga)x + ga + (m — j)ma* = 0 (1.28)

doesn’t have a solution.

This quadratic equation has the critical points —%, —&1 (and if m = j, then one
J m
of the points is —*=1) so if res(B/A) ¢ 7, then our assertion is proved. Moreover, in the

case when ¢ = —1, res(B/A) ¢ ” we have proved the solvability of the equation (1.26),
and through that also of a system (1.21), (1.22) for all m, by this proving the case B) 1).

If m=j,q<—1, q, =0, then the equation (1.27) has the form

0? ) 0 0 ,
o) + (o) (MB/A = 5 (A)/A) + (B (4) A
0? 0 0 0

(A S AN/SAVA) + (o (AP/A? = cu mod
that is always solvable, because (2, B2 (A)/A?) < v(x],B/A) < ( ”).

If g, # 0, then this equation 1snt solvable with k£ = — 1 + ¢g. Thus,
if ¢ < —1, «a is the conjugation to automorphism g3: ﬁ(u) = fu + Aw,

B(z) = z + B2 4 cy?(A=1Ha,20@) =1 (gee case A)).
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The case res(B/A) € 7 should be studied precisely. Recall that in this case
v(BJA) = —

Let res(B/A) = pi/q1 (= ¢&/ca), (p1,q1) = 1. The following proof of the theorem
would be divided into three cases (which do not coincide with the corresponding cases
from the formulation of the theorem), in order to make the proof easier:

a) qilj, ¢ #J
b) a1 [
¢)qi = J.
a) (see the case B) 2) b) 1))
Here —]:rlll—f; = k’; 1 — q . Then there exist c¢;,co € k such that the equation

(1.26) + cyuf1 72 + cyuf2=2 = ( has solutions with m = my, what follows from the solv-
ability of the equation (1.27) for all k, except of k = k1 —2, k = ko — 2, and m; — is the
first index, when the system (1.21), (1.22) isn’t solveable in a general case. Also in this
case the space of solutions of the homogeneous equation (1.26) is generated by z; and
T, V(1) = ki, U(x9) = ko. Thus, automorphism « is conjugate to the automorphism o/,

o (u) = Eu+ A2l 4 ¢jyiqpam 2 TR 4L
A/ (2) = 2+ B2/ 4 BozdTHm 4 where By = cuft 2t ee 4 ey e,

Now let us investigate behaviour of the values ki, , k2, for different my, for which
the equation (1.26) has no solutions, where E1mys kom, are solutions of the equation
(1.28).

Obviously, m, = qql, g € N. Note that (1{31 mq — Kom,) doesn’t depend on m,

(¢ # j/q1). Indeed, M, ’"q_]qa = kz’:;l_l = —5. Hence kypm, = —p1g + 1, kim, =
—p1(q = j/@1) + Ga, and (ki m, — kom,) = P17/ + ga — 1. We observe, that
k27mq = k2,mq_1 + k?,m1 - 17 kl,mq = kl,mq_1 + k?,ml —1= k2,mq_1 + kl,ml - 1.
We write down the formula (13) for the case, when

Ymy = W1lYmi,1 + W2lYmy 2y Tmy = W1Tmy,1 + Walimy 2,
where wi,ws € k, Xy, Ym, are solutions of the homogeneous system (1.21), (1.22)
for m = m;. Because of U(2, 1) = k1, (T, 2) = Kkomy, We have U(yp, 1(2m, 1)) =
k1 — 1, U(Ymy 2(Tmy 2)) = koam, —1. Indeed, from the formula (1.25), 7(y,,) = v(xp,)—1,
if mp1/q1 — qo + k # 0, where k = v(z,,). Let be mp1/¢1 — g, +k = 0. Then p; /¢y =

__kimy—4a

— , whence j = 0. It’s a contradiction. Analogously for ks ,,, ¢, = 1, but ¢, <0,
also a contrad1ct10n So we have:

o/ f(2) = 2+ B2 4 By O™ a1 22T g 2

9 | | |
%(yml)Azmlﬂ(a) + (M + 1) By, 2™ 4 (my + 1) Bogn, 22™ T4
; ; - 0 .

fCMH(Z) =2+ Ym, zm1+1 + le(a) + B2Zl(a)+m1 + Bgzmz-H(a) + %(B)xml zmﬁ-z(a)_'_
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& o D |

5 (B).CEQ 2m1 +i(a) +C" (a)ym1322m1+z(a)+%(BQ)mml Zl(a)+2m1+
) mi1+i(a a . i il e i

(Z(Oé) + m1>ym1BQZ2 1) + %(B) (a)xm1ym122 1+i(e) + a/2,m1+i(a)7122 1+i(e) —+ ...

i(Q) iy, B2 (@) 1271

0 .
Az +7
£y (T, ) Az +

my By, 2™ + mlngmlz2m1+J + ...

o f(u) = Eu+ A2 + ¢y 22 4 a2+

82

5 (At 2t

0
Az, m1+]+jy Azm1+3+2_

fo (u) = Eu-t Ewm, 2™ + Az 4+

C’]nymAz2 14 %<A)jl‘m1yml 22t 02m1+]z2 EREAET

As my < j, in the expression for o/ f(2), o/ f(u) there is the only term at z2m1+i(@),
For Ym, = WilYmg1 + Wolmy2y Ty = W1Tm,,1 + Wolm, 2 the formula 1.16 should have
the form

o/f(z) _ Z—i—BZi(a)—f-BQZi(a)erl +B3Z i(a )+m2+amq+m1+z(a) 1Z’,mq-i-rm-i-i(oz)_|_. ) .+mezm‘1+1—|—

@ mq+i(a mg+i(a M1 i (o
%Q/mq)Az atile) + (mq + 1>Bqu2 ati(a) + (mq + 1)32qu2 g+mi+i( )+
(mq + 1) Byy, 2™t
fO!”(Z) =z + quzmq-f—l + Bzi(a) + BQZi(a)-‘rml + BgZi(a)+2m1—|—
0

ou (B)%m, M) ()Y, Bzt
U

(Bg)xqu i(a)+mitmg (i(o) + ml)qu32zm1+mq+i(a) + amq+m1+z(a) 1Zm1+mq+i(a)_|_

0
ou

j 0 .
a/f( ) =&u+ Azl + cm +]+m1zmq+]+m1 tot gxqumq t %(xmq)Aquﬂ—F

matmity 4o

0
ou

——(B3) 2y, 2™ Me 4 (@) 4 M)y, Bz ™ T (1.29)

quxqumqﬂ + mgBoxy, 2

matmitiy

fo'(u) = GutExp 2"+ A2 —— (A) 2, 2" 4 Yy, A2 1) 2

ou
Whence follows:
32

71 7
2 (8u2

(B)zz,) = C2 _j(cpu™ + .. )(wiz] + 2wiwea1 22 + wia3)

(@(A)xfnl) = C'q2a(cau‘5"‘_2 4. ) (wiz? + 2wiwem T + wiTS) (1.30)
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yfnlB = (cpui™ + .. ) ((Wiy} + 2wiwayys + W3Y3)
Y2 A = (cqu® + . ) (W3R + 2wiwaynys + wiy3)

0 ) ) _
%(B)z(a)wmlyml = (¢a — i) (cput®™2 + .. )(wiz1y1 + waToys + wiwa (2192 + Toy1))

0 ‘ . _
%(A)]xmlyml = qoJ(cqui® Ly .)(w%xlyl + w%xgyg + wiwe (1Y + woy1))  (1.31)

k -2 k -2 k -2 k -2
quBQ — chlqu,lu 1,mq +Qa+w102qu7lu 2,mgq +qa+ClW2qu72u 1,mq +Qa+02w2qu72u 2,mgq +qa

—2 —2 —2 —2
gj‘mq B2 — wlcll‘mq’lukl,mq +Qa+w162xmq7luk2,mq +Qa_‘_clw2xmq72ukl,mq +Qa+02w2wmq72uk2,mq +qa

(1.32)
%,

—(B2))xm, = (ki,m, —2+qa)wlclxmq71uk1»mﬂz _3+q‘l+(k‘27mq —2+qa)wlcg$mq71uk2’mq —3+da

(Gu
(Kt my — 2 4 Ga)C1wom, 2u™ma 379 (ko — 2+ g, ) Cown Ty, guf>ma 3 H9e (1.33)

Let (kim, — k2,m,) < 0. We shall show, that in formulas (1.30)- (1.33) monomials
with valuation (K1 m, + F1,m, +¢a — 3), belong to the image of the map (1.27), it means
that the equation (1.27) with the right side in a form of these monomials is solvable.

Indeed, in a case of (ki m, —k2,m,) < 0 we have p1/¢1 < (—ga+1)/7 < (—ga+141)/7,
if > 1. But then A = ciu%, B = cou® = cou?e~!, and Ymg = wiuktma =l g kzme =1
T, = wiuFtma 4wouk2ma  because all the coefficients of the homogeneous system (1.21),
(1.22) have the monomial form. Since (K1 m, +kim; —1) < ki, +Fom, —1 = ki, <
k2m,.., the equation (1.27) has monomial solutions of a form, mentioned above.

If (kl,mq — k?,mq) > 0, so (lﬁ}mq + kl,ml — ]_) > ]{flqu + k2,m1 —1= k17mq+1 > kQ,qurl?
where from follows the same result.

If (kim, — k2m,) = 0, then y,, and z,,, consist of the only monomial, i.e. w; = 0
and expressions in (1.30)-(1.33) are simplified to the one monomial, which is in the
general case not in the image of the map (1.27).

Now we show that for all ¢ except ¢ =1, ¢ = j/q1, ¢ = (1 — qa)/p1 + 1 there exist
the coeflicients wy,w; (coefficient wy, if k1, = ka.m,) are such that
a;anrmlH(a)q + %(C/r;zq+M1+j)/j - C/r/n1+mq+ja%(A)/(jA) + (Mg —
P 3/ Gt) + (1~ i(0) Botin, — £(B)m,
belongs to the image of the map (1.27), i.e. the equation (1.27) with the right side in
the form of these expressions is solvable.

According to (1.32), (1.33), we need to show that

. _ _ 0 .0 :
(1=(0) 41y 1)y 20— Ry 0= 2) o 2540+ ()b (4) [ A)

+(mgs1 — Hpru b/ (jar) =0 mod  @Hmeri Tt
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where b = mgCows Ty, su™>m1 24 only if (¢ — 1)q1(1 — g, — (¢ — 1)p1) = 0 and

. _ _ 0 .0 :
(1=(0) 41 2) €2 10520~ Ry =20 ) 0 1540+ (1) b (4) [ A)

*kl,mq+1 +Qa_1

(Mg — Hp1u”'0/(jg) =0 mod §
where b = mq02w1xmwluk27m1*2+qa only if —(¢ — 1)?qp1 + (¢ — 1)(qa — D)gn + (1 —
J/q1)(gp1 + ¢1(qa — 1)) = 0 (we remark that ws does not depend on wy).

P1—qa+ki,2,mg

; T, 12u "+ ..., it is necessary to show that

Since qu71’2 =

P1 —4a + kQ,mq . mq(k2,mq+1 -1 + qa) .

—(1—i(a) +mg1) (F2m =2+ ¢a) +

J J
Myda (Mmgs1 fj)plq 40
J J
if (¢—1)q1(1 —gqa— (g —1)p1) #0,
P1 —4a + kl,mq N mq(kl,mq_H - 1 + Qa) .

(kQ,ml - 2 + Qa) +

—(1 —i(a) +my_1) ; ;

Mga
J
if —(q—1)%qp1+ (¢ —1)(qa — D1 + (1 —5/q0)(ip1 + ¢1(ga — 1)) # 0. But

(mq+1 — j)qu 7& 0

+

(i) )P gy e 21 H )Mot (Mg — g
‘ j m j j j
_ @ =D)a( =g —(g—1)p)
j )
! J e J J J
_ (e =1?apr 4 (= D)0 — Do + (L = j/a1)(Gp1 + a1(ga — 1))
J

We observe here, that —(¢—1)?¢ip1+(¢—1)(¢a —1)ar +(1—35/q1) (ip1 + @1 (qa — 1)) # 0.
In fact, if —(¢ —1)*qip1 + (¢ — 1)(¢a — Va1 + (1 = j/@1)(ip1 + ¢1(¢a — 1)) has solutions
in integers, then its discriminant must be equal to ¢?l?, where [ € Z. But D = (q, —
1)%q} +4(ga — 1)ipr (1 — J) + 4p3j (@1 — j), whence follows, that j(¢ — j) = (1 — j)?,
what is wrong.

So, we have shown that « is conjugated to o:
o’ (u) = &u+ Az,
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O//(Z) — 2+ Bzile) BQZi(a)Jrql + Bgzi(@H?ql + Bj/qlzi(a)Jr(lﬂ'/m)ql + BqQZi(Ot)Jrql(lJrqz)7
where Bj/,, = cu™mija e By, = cu e "2t if g (1 — g, — (¢ — 1)p1) = 0 and
B, = 0 otherwise.

Let’s show now, that Bz can be taken as cy,uf2m272T4 In order to do that, we
exhibit that in formulas (1.30)-(1.33) monomials with w? belong to the image of the
map (1.27). Then the case ¢ = 1 is equivalent to a general case, and since ¢ = 1 is one
of the solutions of (¢ — 1)¢1(1 — go — (¢ — 1)p1) = 0, Bs is defined in the same way as
B,. For that, according to (1.30)-(1.33), we must show that

0 _ 0 . . _ .

S (B)/ = b (A))GA) + (g1 — i b/ (jas) +a = 0
where b = CFwiys ., coqr /pru*m =270 + CF cyqy /prwiuam =70 + qgjeyqr /p1ws (pr —
qa + k27m1)/j’ a = Cga—l + Of(a)(lh — (a + kQ,m1)2/j2 + (Qa - 1)i(&)(p1 — (a + k2,m1)/j'
In fact,

2k2,m,

CQ (pl — (a + kQ,ml)ZQI (2k2,m1 — 2 + qa)

q1
j ,]3]71 ( 2,m1 ) qa 'Y
1(p1 — o + Komy) Qo | 2 (D1 — Qo + K2m,) @ 0
G > Y (2kom, — 2+ qa) — —(0]2 - - + Cga——i-
p1J J J°P1 D1
. - Ya + k' m mo — ) - Ya _'_ k m 2 . - Ya + k m
G q1(p1 ;Lj 2, 1))+ 2j J (ng (1 —q = 9,m1) +C§a+qa1p1 q ' 2,m1 )+C§a—1+

CiQ(a)(pl —qa T k2,m1)2/j2 + (qa - 1)2(04)(171 — ot k2,m1)/j = 07

and it proves our assumption.
The case ki ,,, = ko, is more simple, and all the arguments remain true.

b)

In this case the system _% = %, —% = % is incompatible, that is why for
all m the ”cokernel” of the map (1.27) is one-dimensional, A = cju%, B = cyuf1.

Let denote as kj,, the solution of the equation —]jllq;_qj‘? = %, and as ky,, the

solution of the equation —% = %. It is clear that m, = ¢m; = qq, as in the case a),
q

and ng41 = ng+my only if n,+my # j. But in this case the next value of ng44 is ng+2my,
so we consider this recurrence relation to be true always. Further, (/{:an — k‘Q,mq) doesn’t
depend on ¢, as in a), and kym,,, = k2m, + komy — 1, king, = King + kom, — 1.

The proof, that follows, would be divided into three cases:
1) ¢1 < j (see case B) 2) b) ii)),
2) 1 > j,J fqu (see case B) 2) ¢) 1)),
3) jlq1 (see case B) 2) ¢) ii)).

We put By = cyuftmi =244 By = couf2mi=244a if ny < my, and By = cyuf2mi —2Hda
By = couftmi =t otherwise.
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In the case 1)
ny,mp < j, ny < my. The idea of the following proof is the following: we look for
the sequentional conjugations f,, and f,, , where f, (u) = u + z,, 2", f, (2) = 2z +
Yn, 2", and @, , Y, are solutions of the homogeneous system (1.21), (1.22) with m =
Ngs Jmg () = U+ 2 2", frn (2) = 2 + Y, 2™, Where 2y, , Y, are solutions of the
homogeneous system (1.21), (1.22) with m = m,. We choose ,,_, ¥n,, Tm,, Ym, 50 that
with these conjugations the equation (1.26) become solvable with m = ng11, m = mgy1.
For the automorphism f,, we can use the results from the case a), because x,,,
and ¥,,, here have the form wyy,, 2, WaYmgy.2, 7(Ymg2) = komg — L, 7(Tmg2) = K2mys
and my = q1 < j, j # mq. We rewrite for f,, the formula (1.29):
if ¢ > 1, then

Oé/fnq( ) Eu + A+ Cn +j+m12nq+j+ml 4.+ ganznq + %(CL’”Q)AZ”Q_‘_J—F

ngBiy, 2" 4+ ngBoxy, 2" g By, 2MTM 4

0 . .
—(A)xy, 2" + jyn, A"+

fnqoz "(u) = §u+ &y, 2 24+ A+ 50

C// an+n1+j + C

ng+mi+j
ng+ni+j —|— e

n +m1+jz

(since n, > myq, there are no more terms with z"otm1+7),
O/fnq (Z) _ Z+BZ —i—BgZ a)+n ™4 By i (c)+my +an +m1+l(g)flznq+m1+i(a)+' ) .+ynqznq+1+

0

ou (ynq)Aznq-‘rz(a _|_(nq—|—1)Bynqznq+i(a)+(nq+1)BQynqan+n1+i(a)+(nq+1>33ynqznq+m1+i(a)

0 .
fan//< ) = 24y, an+1+BZZ(a)+B22 +m1+B Z +n1+a (B)an anrz(a)_i_Z( )yananJrl(a)—l—
u
0
ou

_(B2)anzz(a)+n1+nq + (Z(Oé) + nl)yanQan'F”q'H(a) + 8_(33)an21(04)+7711+”<1+
u

( ( ) + m1>yn Bgzm1+nq+z(a) + anq_’_nl_ﬂ(a) znq+n1+z(a) + an +m1+z(a)_1znq+m1+i(a) + ..

The formula remains true for ¢ = 1 also, as it is seen from the calculations, similar to
g =11n case a).

If nifmy and ki, + (ma/ny — Dkin, = ko, i.e. my/nikin, = kam,, then the
coefficient @y . i1 (€ 1nytiay—1 ) depends on ap oy (€0 L ige)—1) 1D @
general case. fn this situation for almost all ¢ the ConJugatlon Jn, can be chosen so that
the equation (1.26) is solvable for m = m,, and f,,, so that equation (1.26) is solvable
for m = ngq1.

Thus, the arguments, similar to the case a), tell us that « is conjugated to [3:
Bu) = §u+ A,

B(2) = 2z + B2"® 4 By @)+m 4 B ie)tme 4 B i(a)+ne
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where B, = cuf2ma =2+ or equals to zero. It depends on that, if at least one expression
from
0

S = o (A)/GA) + (g — o b/ (Gar) +a

equals to zero or not, with b = u*tma kL =2%aay g = (ky,, —24-q, )uMtma TR T3
(1—i()+mgq)urtmatwkim =3+ (p, — g, +ky , )/j, w has the values from 1 to ¢; /nq —1,
in other words, if equals to zero at least one of expressions

—(1+ w)nfpl +njw—(¢—1)2+w)gn + (=2 + (1 + w)q,)+

@[ ((g—1)(w+2)+j—(g—1)*q+(g— 1)1 +2¢1) +25 (o — 1)+ (¢—1)q1 (1 +w) o —2)]

(1.34)
Further, B,, = cuftma2 =3 o1 gero, in accordance with equality to zero of the expres-
sion 5 p
5 O/7 = by (A)/(FA) + (ng, — pub/(jar) + a

: k m "Fk n _2+ a k m +k3 n _3+ a N
with b = an,lqu’ gp—1 T 4 , a4 = (kLTLl -2+ qa)u 2mgg—1 T Fling 4 + (1 — z(a) +
+ 1,n _3+Qa ..
! ! (pl —4a + k2,mq271)/]> L.e.

k2,m _
mQ2*2>u 2

— (g2 = 2)%@p1 + (g2 — 2)quipr + p1i(G — ) + (3 +n1)qu(ga — 1) (1.35)

We note, that this equation doesn’t have solutions in integers, i.e. By, = 0. Really,
its discriminant must be equal to ¢ip?l?, | € Z. But D = ¢35?p? + 4¢ipij(j — ny) +
4¢3p1(qa — 1)(37 + my), hence 0 < p2¢?(j — n1)? = ¢Epi(ga — 1)(3j +ny) < 0, a

contradiction. Thus we have proved the case B) 2) b) ii) 1').

If ny /lmy or (mi/n1)kin, # kom,, then the solvability of the equation (1.26)
for m = ngq, a = agﬁmﬁi(a)fl, b = Cgﬁmlﬂ'(a)q doesn’t depend on coefficients
a;;qumH(a)_l (C;;q-l—nl—i-i(a)—l)' In this case for almost all ¢ f,,, can be chosen so that the
equation (1.26) is solvable for m = ng41, and f,,, so that equation (1.26) is solvable
for m = my11. Not very complicated modification of all arguments, mentioned before,
leads us to the conclusion, that « is conjugated to j3:

Blu) = Eu+ Az,

B(2) = 2z + B2"(®) 4 Byzi@)Fm  Byyil@tm 4 pi@t2m 4 g i@tm g ai@)tng
where B, = cufzma=2t4 or equals to zero in accordance with equality to zero of the
expression

@1(1 —qa — (¢ — 1)p1),

By=B,forq=1, B, = cufrma 7219 or equals to zero in accordance with equality to
zero of the expression

0 9,

(0 = b (A)/(GA) + (g, = f)pru~ b/ (Gar) +a =0
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. k k -2 k k -3 .
Wlth b — nq2_1u 1,nq271+ 2,mq +Q(z’ a = (kQ,ml - 2 + qa)u l,nq271+ 2,mq +qa + (1 o Z(Oé) +

nq2_2)uk1,nq2,1+k2,m1*3+qa(pl — 4 ]{:1’71(1271)/‘]'7 ie.

—nip1—q (p1(27+q1(2—3)*) =+ (2—2)) (ga—1) ) +n1¢1 (—1—2p1(q2—3) +¢a) (1.36)

This equation has no solutions in integers by the same reasons as (1.35), where
from By, =0 (see case B) 2) b) ii) ii’) ).

In the case 2)
my < nq, and since j fqi, we can apply here the arguments from the case 1). Then the
result would coincide with the result of the previous paragraph.

In the case 3)
my < nq, but jlgi, so we rewrite the formula (1.29) for the conjugation f,,, , ¢ > 1 in
the following way:

Oz/fmq(u) = fu+ A2 + C;nq+m1+jzmq+m1+J + ..+ gxqumq + %(l’mq)Azmq—H"‘
mq+j 10 A2 ymat2] 2 P2 mq+23 0 Amat2i
Mg By, 2 + S (T, ) A2 + Cy, B, 2 + qu%(xmq) z +

qugxqumq+m1+J + qugxqumq+"1+] + ...

fng@" (1) = Eu+ €y 2™ 4 A2™0 4 A2? + g(A)xmqu“ij
u

jquAqu+j + C;:q+jznq+j + ..+ C;;Lq+m1+jzmq+m1+j + ...
O/fmq(z) — Z+Bzi(a)+B2zi(a)+m1+Bszi(a)+m_i_a;anrml+i(a)712mq+m1+i(a)_'_. _ .+quZmQ+1+
a mqg+i(a mg+i(a 1 82 m, (o) — m, (o) —
%(qu)/lz a+i( )+(mq+1)BquZ g+i( )+§W(qu)A2Z q+2i(e) 1+072nq+132quz qt+2i(e)=1
0 , .
(mq + 1)Ba(qu)Azmq+2z(a)—l + .+ (mq + l)B B 2quzmq+m1+z(a) 4+
fmqo/l(z) — 5 +quzmq+1 + Bzi(a) + B2Zi(a)+m1 + B3Zi(a)+n1+
a ; . mg+i(a a i(a)+mi1+m,
%(B)xqumqﬂ(a) +i(c)ym, Bz ati(a) 4 %(Bg)l'qu( )+mitmg 4
o1 2T Al i) 2T 4 (i (@) + ma )y BaZ )

Hence follows, that two cases are possible:
a’) the solvability of the equation (1.26) for m = m, + m; doesn’t depend on

: ! /! 1 " : : !
coefficients ¢ c a that is it depends only on ¢, ., 1,

ng+j7 " Tmg+my) aanrj""’ ni+msy’

aglﬁml“(a)fl (and it is equal to —p1 + ¢ — 2 # q1(qa — 1) /7).
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b’) the solvability of the equation (1.26) for m = m, + m; depends on coefficients

/! /! 1 " : . -
Cytgs s Cmgmas Qmggo -+ -2 Gy oy s 1€ =1+ Gq — 2 = G1(qa —1)/7.

In the case a’), repeating the proof as in the previous cases, we get the same result
as in the case 2) (it corresponds to a case B) 2) ¢) ii) 1')).

In the case b’) the conjugations f,,, determine the solvability of the equation (1.26)
for m = ng, and conjugations f,, — for m = m, ;. Here, in this case of m = n,, as seen
from the formula above, can exist not more than two ¢ — solutions of the equation

0 0

5o (0)/F = b (A)/(A) + (g, = Db (jar) +a = 0

2

: __o—-10 2 2 .290—2,-2 /2, k2,m 2qq,—1 0 ko,m
with b = 27195 (up, ,,, Ju™® + CF, u2pt /qiu™ma + mgpr /qrue™" 5 (u™ma),

a =212 (w,,, 1)U (pr—athom,)/+C2, 02 =2p} jubzma ™ (py—qotkom, ) [ 5+
(my + 1)p1/q1u2qa_1%(quvmq_l)(pl — Qo + kom,)/J, L.

(P (—1+q—a1 (= 149—2¢"+qq1)) —qqi (qa—1)+p1g1 (1—3¢— (¢—1)qq1 +qqa)) = 0 (1.37)

and in the case m = m,4; not more than (my41 —n,)/j +1=q/j = w g — solutions
of the appropriate equation

01— b2 (A)/GA) + (g, — Db/ ) Fa=0 (139

Thus, « is conjugated to [3:

B(u) = Eu+ Az,

B(2) = 2+ B2 4 Byl @+tm 4 B 2i@tna 4 B i@+ e 4 B i@ tme 4
qu’wzi(a)Jquw ,

where B, ; = ciuMme ~2 B,.; = ¢ or 0 depending on solvability of
corresponding equations (it is the case B) 2) ¢) ii) ii’)).

qu,'mqj *2+Qa

In the case c),
when ¢; = j, we use arguments from both: the previous case and the case a), and get
from there, that « is conjugated to :

Blu) = §u+ A,

B(z) = z 4 Bz(®) 4 Byz%(@)71 4 Byp3ie)=2 4 g ile)ton 4 B
qu’173zi(a)+q3ql + qu’%lzi(a)ﬂiql + qu’%gzi(a)ﬂéql + qu’273zi(a)+ng1,
where By = ¢pu P10 By = g u P22 B, = cqu’mu*pwfl(qnqrrj)+2qa—27
—p1gj+qa—1

2Zi(a)+q2q1 +

m,1,

Boj = Cb, 25U or 0 depending on solvability of corresponding equations
2(b)/j — ba%l(A)/(jA) + (ng, — J)p1u'0/(jq1) + a = 0. If we denote as bsg, azo b and
a in (1.37), then the appropriate b, a, ', a’ for two equations are equal to

b — b50 + c;2mqukmq,lu_p1+1_2+Qa
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a = as+ ¢, (1 —i(a) +my — my)u P2 ey Fmar =g — g+ Ky ) /5 (1.39)
b/ — b50 + C;2mqukmq,2u_pl+1_2+Qu
a = asy + ¢, 2 (1 — i(@) + mg — my)u P ey Fma 2= (g — g 4 ko )/ (1.40)

where ¢, is a constant for the coefficient A, and the rest notations are taken from the
case a). By direct calculations it is not difficult to show, that these equations are not
solvable.

The proof of the last statement in the theorem is similar to the proof of the state-
ment in the theorem 2.

The theorem is proved.
O
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