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Abstract

Production planning has a fundamental role in any manufacturing operation.
The problem is to decide what type of, and how much, product should be produced
in future time periods. The decisions should be based on many factors, including
period machine capacity, pro¯t margins, holding costs, etc. Of primary importance
is the estimate of demand for manufacturer's products in upcoming periods.

Our focus is to address the production planning problem by including in our
models the randomness that exists in our estimates for future demands. We solve
the problem with two variants of Monte Carlo sampling based optimization tech-
niques, to which we refer as \simulation based optimization" methods. The ¯rst
variant assumes that we know the actual demand distribution (assumed to be con-
tinuous) with which we approximate the true optimal solution by averaging sample
estimates of the corresponding expected value function. The second approach is use-
ful when we have limited information about the demand distribution. We illustrate
the robustness of the approach by comparing a three mass-point approximation of
the continuous distribution to the results obtained using the continuous distribution.
This second approach is particularly appealing as it results in a solution that is close
to optimal while being much faster than the continuous distribution approach.



1. Introduction

We consider a multi-product (P products) make-to-stock manufacturing envi-
ronment. Products are manufactured in a single stage, on one of a variety (S) of
resources (tools). The products compete for these resources|since each resource has
a ¯nite capacity. Further, demand for each product is random, can have large vari-
ations, and cannot be forecasted accurately. When demand for a product exceeds
the available inventory for that product, the manufacturer will lose sales. Thus, a
production planner in such an environment must decide how much product to make
on which resource in each time period to satisfy that time period's|and future time
periods'|random demands.

The problem we address occurs after inventory has been netted from demand
(i.e., the net-demand output from a MRP module). In each period, we attempt
to meet this net-demand (henceforth referred to as simply \demand") while not
violating capacity constraints. We further assume that the planning cycle is longer
than the manufacturing cycle time (e.g., a month). We thus have a rolling time
horizon problem. The problem can be complicated when demand in future periods
exceeds capacity. Then inventory must be built ahead of time to satisfy this future
demand. In such a case, the decision maker is faced with a problem for which there
is little intuition. If she decides to produce too much, the manufacturer is left with
an uncomfortable amount of inventory|which may face obsolescence. If too little,
the manufacturer has missed a revenue opportunity.

Clearly, a deterministic schedule will be of limited use if forecast errors are
large. Having dimensions of product, resource, and time period causes dynamic
programming approaches to explode in size. Traditional simulation using a hill
climbing approach is very slow. Moreover, the cost parameters are not known in
this situation (i.e., the decision maker doesn't know the true cost of losing a sale or
even the true cost of carrying inventory).

This paper addresses these issues|and makes the following contributions:

1. Two approaches for which cost parameters do not have to be set a priori,

2. Accurate models of the stochastic nature of the problem,

3. Algorithms for optimizing the model which employ the demand randomness.

4. A demonstration of the e®ect of having (and then using) less information than
a completely de¯ned distribution function.

These results have been implemented with a local manufacturer.
Consider solving the production planning problem where future demands are

known. The optimal solution for such a problem can be achieved using linear pro-
gramming (LP). Here, the objective function would include the cost of holding
inventory and the \cost" of missing a sale. We minimize the overall cost subject
to capacity (and non-negativity) constraints. We refer to this as the deterministic
production scheduling procedure (DET).
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We provide two variants of a statistical sampling optimization algorithm for solv-
ing this production planning problem to which we refer as \simulation based opti-
mization". Both create production schedules over a T period rolling time horizon.
Thus, the problem has PST decision variables. SBO is an optimization procedure
that includes statistical sampling. We show that as our sample size N increases, the
SBO solution approaches optimality.

Due to the amount of sampling that takes place during the procedure, the SBO
method cannot practically solve problems with a large number of decision vari-
ables. The second variant uses a probability mass function to model the demand
of each product in each period of the horizon. The production planning problem is
then solved using a variation of the SBO procedure. This solution approaches op-
timality as sample size grows|much faster than that of the SBO solution working
with a continuous distributions. We refer to this procedure as \discrete simulation
based optimization", or DIS SBO. This approach is particularly useful when there
is insu±cient information to completely specify the probability density function for
demand.

We provide a variety of single-product/resource production planning cases, as
well as a multi-product/resource case, to demonstrate the relative e®ectiveness of
the procedures under a variety of conditions.

We provide a literature survey in section 2. Sections 3 and 4 develop the SBO
and DIS SBO procedures, respectively, including comparisons to the original DET
procedure and to each other. Section 5 addresses the procedures' relative e®ec-
tiveness when errors in choosing a demand trend occur. Section 6 summarizes the
procedures o®ering the pros and cons of each, along with the environmental appli-
cability of each.

2. Literature Review

Using simulation based optimization techniques to solve the production planning
problem subject to random demands is a new area of research. One of the relevant
works in the simulation based optimization area includes Homem-de-Mello, et al
(1999), where a simulation based optimization procedure is developed in order to
¯nd optimal material release times.

We structure our literature review in the following three areas:

1. In¯nitesimal perturbation analysis,

2. Deterministic demand production planning,

3. \Uncertain" demand production planning.

The ¯rst, in¯nitesimal perturbation analysis, is a technique that we use exten-
sivelyin our gradient estimations. The deterministic and uncertain demand pro-
duction planning areas survey production planning models when demand is either
known or unknown, respectively.
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In¯nitesimal Perturbation Analysis

We will make use of perturbation analysis (Glasserman, 1991, and Ho and Cao,
1991, and references therein) in both our SBO and DIS SBO techniques. This tech-
nique allows us to estimate gradients with one sample path. This yields a powerful
result, greatly reducing the \noise" which would exist in estimating the gradient by
other means.

Togzylowski, et al. (1986) used a solution procedure that mixes Lagrangian re-
laxation and perturbation search techniques to solve the lot-size scheduling problem
hierarchically. Hasan (1996) used perturbation analysis to determine optimal prod-
uct release times.

Deterministic Demand Production Planning

As previously noted, many production planning models assume that demands
are deterministic. Some models include multi-product, multi-resource, and multi-
echelon environments which can be quite complex.

Nagasawa, et al (1985) addressed the problem of ¯nding the proper length of
a planning horizon based on the unit time increments (week versus month) used
within the horizon and the cost structure of the manufacturer.

Homburg (1996) modeled a decentralized organization. Here, multiple depart-
ments, each with their own objectives and constraints, \compete" for company
production resources. He modeled the interaction as a linear programming problem
with multiple objectives.

Birewar, et al (1990) took advantage of the structure of a particular scheduling
problem and graph representation to achieve detailed production schedules derived
from their multi-period LP model's solution.

Das and Subhash (1994) modeled the master production scheduling problem as
a mixed integer programming problem|incorporating product families and demand
priorities.

Huang and Xu (1998) transformed the multi-stage, multi-item aggregate schedul-
ing problem into a static job-assignment problem. They used an adapted Frank
Wolfe algorithm to solve their modi¯ed problem.

Qiu and Burch (1997) modeled a hierarchical production planning problem for
a yarn-¯ber facility.

Uncertain Demand Production Planning

There have been a number of other approaches to production planning with
unknown demands. Zapfel (1996) proposed a hierarchical model that can be incor-
porated with MRP II to schedule production with uncertain demand. Demand is
only known for the ¯rst time period in the horizon. For the later time periods in
the horizon, only upper and lower bounds for demand are known.

Kelle, et al. (1994) considered randomness in demand for a single-product, single-
machine line with setups in the process industry. They formulated a model that
incorporates mean and standard deviation of demand in the planning horizon time
periods to set production runs. Though only one product was being made, start-ups
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after periods of idleness required signi¯cant setups.
Feiring and Sastri (1990) discussed a procedure for determining production levels

for a product with normally distributed demand during a rolling time horizon. They
did so by minimizing total costs (including production and holding costs) over the
horizon subject to a deterministic equivalent constraint for service level.

Glasserman and Tayur (1995, 1996) developed estimators of derivatives in multi-
echelon systems operating under base-stock polices and minimized holding and back-
order costs by approximating echelon inventory by a sum of exponentials. Kira, et
al (1997) used a hierarchical approach to solve the multi-period, multi-product fam-
ily production scheduling problem with a ¯nite set of possible demand realizations.
Martel et al (1995) used a piecewise linear approximate of a multi-item procure-
ment problem to reduce its form to that of the constrained multi-item deterministic
lot-sizing problem with backlogging.

Ierapetritou and Pistikopoulos (1994) proposed a two-stage stochastic program-
ming model for setting production levels for continuous products (chemicals) us-
ing upper and lower bounds on capacity, raw material availability, and demand.
Similarly, Clay and Grossman (1997) solved a two-stage ¯xed-recourse problem by
bounding RHS stochastic variables.

Kelle (1985) addressed the problem of determining safety stock levels for multiple
products in a multi-stage production environment subject to random demand and
failures. He formulated approximate solutions to the problem of minimizing safety
stock levels in order to maintain a predetermined probability of continuous supply.

Grubbstrom and Molinder (1996) developed a method for setting safety stocks
using Laplace transforms. Grubbstrom (1998) extended this method to incorporate
the net present value of the annuity streams.

3. The Model

Notation

We begin with the most general model and then modify it to make it easier to
obtain parameters.

The following are parameters for the problem:

P = the number of products

T = the number of periods

S = the number of stations (tools)

hit = holding cost of product i in period t

¼it = marginal pro¯t of product i in period t

cst = capacity constraint for station s in period t

ais = the amount of station s used for each unit of product i

We let Dit be a random variable representing the demand for product i in period
t. Our decision variable is xits representing the amount of product i made in period

4



t at station s. We denote xit :=
PS
s=1 xits. Finally, let Iit be the ending inventory

of product i in period t. Note the following recursive equation

Iit = [Ii;t¡1 + xit ¡Dit]+; t = 1; :::; T; (3.1)

for any i · P , where [a]+ := maxfa; 0g.
Since unmet demand is lost, the general pro¯t function is

Z :=
PX
i=1

TX
t=1

¼itminfIi;t¡1 + xit;Ditg ¡ hitIit; (3.2)

and the capacity constraints are

PX
i=1

aisxits · cst for all s · S and t · T: (3.3)

The demand Dit is not known and is considered as a random variable with
a known distribution. We assume that Dit are independent and have log-normal
distributions, i.e., log(Dit) » N(¹it; ¾

2
it). Log-normal distributions gave a good

¯t to available historical data of our local manufacturer. We then address the
problem of maximizing the pro¯t subject to the capacity constraints. Since the
pro¯t Z is a function of Dit, it is also random. Therefore, we maximize the expected
value IEfZg of the above pro¯t (i.e. we optimize on average), with respect to the
decision variables xits and subject to the capacity constraints (3.3). This leads to
the following optimization problem

maxx2IRPTS IEfZg
subject to

PP
i=1 aisxits · cst; s = 1; :::; S; t = 1; :::; T;

xits ¸ 0; i = 1; :::; P; t = 1; :::; T; s = 1; :::; S;
(3.4)

where x := (x111; :::; xPTS) is the vector of the decision variables.
Let us observe that

minfIi;t¡1 + xit; Ditg = Dit +minfIi;t¡1 + xit ¡Dit; 0g
= Dit + Ii;t¡1 + xit ¡Dit ¡ (Ii;t¡1 + xit ¡Dit)+
= Dit + Ii;t¡1 + xit ¡Dit ¡ Iit = Ii;t¡1 + xit ¡ Iit;

and hence

Z =
PP
i=1

PT
t=1 ¼it(Ii;t¡1 + xit ¡ Iit)¡

PT
t=1 hitIit =PP

i=1

hPT
t=1 ¼itxit +

PT¡1
t=1 (¼i;t+1 ¡ ¼it ¡ hit)Iit + ¼i1Ii0 ¡ (¼iT + hiT )IiT

i
:
(3.5)

We have, by the recursive equation (3.1), that Iit are convex functions of the
vector x of decision variables. It follows then by (3.5) that Z, and hence its expected
value IEfZg, is a concave function of x, provided ¼i;t+1¡¼it¡hit · 0, t = 1; :::; T ¡
1, i = 1; :::; P . Since hit are positive, this certainly holds if all ¼it are equal to
each other. Therefore, in that case, the optimization problem (3.4) is a convex
programming problem, subject to linear constraints.
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Obtaining Parameter Values

In working with our client, we found no managers who were comfortable with
setting, a priori, the value of ¼it or hit. However, one manager was emphatic that
missing sales is always bad, and thus each ¼it should be the same for each product
over the entire planning horizon. We believe the same should be true for the hit
values as well. Thus, we set

¼it = ¼ and hit = h; i = 1; :::; P; t = 1; :::; T; (3.6)

meaning that only the ratio ¼=h is relevant. We also have found that, in practice,
managers rarely know the true values ¼ and h. They can, however, decide on an
acceptable ratio, using trade-o® curves. The amount of lost sales as a function
of inventory is a convex function. After solving the problem with various ¼=h
ratios, we can build a graph of this function, as we have done in Figure 1. Using
their judgment, managers can ¯nd where they would like to be on such a graph|
describing a particular ¼=h ratio.

Figure 1: Average Inventory Versus Average Lost Sales (Balanced Trend, Cap=200)

We can now use the solution pertaining to the chosen ratio to schedule produc-
tion.

Perturbation Analysis

We estimate values of the ¯rst order partial derivatives of the objective function
with respect to the decision variables using perturbation analysis. For the sake of
notational simplicity we drop in this section the subscript i indicating a considered
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product and s indicating a considered tool. Consider the process It de¯ned by the
recursive equation (3.1).

Let ¿1 be the ¯rst period the process It hits zero, i.e., It > 0 for t = 1; :::; ¿1 ¡ 1
and I¿1¡1+x¿1 ¡D¿1 · 0 and hence I¿1 = 0. Let ¿2 be the second time It hits zero,
etc. Note that if I¿1+1 = 0, then ¿2 = ¿1 + 1, etc. Note also that if the distribution
of the random vector D := (D1; :::; DT ) is continuous and has a density (which is
certainly the case if random variables D1; :::;DT are independent and each has a
log-normal distribution), then the event: \It¡1 + xt ¡Dt = 0 given It¡1 > 0" does
not happen with probability one (for a given xt).

Let 0 < ¿1 < ::: < ¿n · T be the sequence of hitting times and let ¿0 = 0. For a
given time t 2 f1; :::; Tg, let ¿i¡1 · t < ¿i. We have then

@Is
@xt

=

(
1; if t · s < ¿i and t6= ¿i¡1;
0; otherwise:

(3.7)

It follows that
@Z

@xt
=

(
¼ ¡ h(¿i ¡ t); if t6= ¿i¡1;
¼; otherwise:

(3.8)

Similarly if ¿n < T and ¿n · t < T , we have
@Z

@xt
=

(
¡h(T ¡ t+ 1); if t6= ¿n;
¼; otherwise;

(3.9)

and
@Z

@xT
=

(
¡h; if ¿n < T;
¼; if ¿n = T:

(3.10)

The above formulas allow us to estimate ¯rst order partial derivatives, of the
expected value function IEfZg, by the method of Monte Carlo simulation. That is,
a random sample D1; :::;DN , of N independent realizations of the demand vector
D, is generated. The expected values of the above quantities are then estimated by
the corresponding sample averages. Let us make the following observations.

The partial derivative @Is=@xt exists as long as the event \It¡1 + xt ¡ Dt = 0
given It¡1 > 0" does not happen. Since we assume that the demand vector D
has independent components, each having a log-normal distribution, it follows that
the above event does not happen with probability one, and hence @Is=@xt exists
with probability one. Moreover, it follows that Is, and hence Z, are di®erentiable
functions of the vector x of decision variables with probability one. Since Is are
convex functions of x, for any realization of the demand vector D, this implies that
IEfIsg are di®erentiable functions of x and, moreover, partial derivatives can be
taken inside the expected value, that is @IEfIsg=@xt = IEf@Is=@xtg. This follows
easily from the Monotone Convergence Theorem.

By (3.7) we obtain then that

@IEfIsg
@xt

=

8><>:
0; if s < t;
±t; if s = t;
pst if s > t;

(3.11)
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where pst is the probability of the event \s < ¿i given ¿i¡1 · t < ¿i" and ±t is the
probability that t is not a hitting time. For s > t, the probability pst is estimated
by the corresponding sample proportion p̂st. Note that the variance of the estimator
p̂st is pst(1¡ pst)=N .

Numerical Optimization Methods

In order to solve the \true" (expected value) optimization problem (3.4) we
construct an approximate problem by using Monte Carlo simulation techniques.
That is, we generate a random sample D1i ; :::;D

N
i , of the demand vector Di of

product i, i = 1; :::; P , and estimate IEfZg by the corresponding sample average
ẐN . Note that ẐN depends on the generated sample, and hence is random. After
such a sample is ¯xed (generated), ẐN = ẐN(x) becomes a deterministic function of
the vector x of the decision variables. Consequently we approximate problem (3.4)
by the so-called \sample average approximation" problem:

maxx2IRPTS ẐN(x)

subject to
PP
i=1 aisxits · cst; s = 1; :::; S; t = 1; :::; T;

xits ¸ 0; i = 1; :::; P; t = 1; :::; T; s = 1; :::; S:
(3.12)

The above problem is \stochastic" in the sense that it depends on the generated
sample. However, the moment the sample is ¯xed (generated) it becomes a deter-
ministic optimization problem.

Let us make the following observations while again dropping the subscripts i
and s, for simplicity. The function ẐN(¢) is a piecewise linear concave function.
Therefore, since the constraints in the above problem are linear, in principle this
problem can be formulated as a linear programming problem. Note, however, that
such a linear programming problem will be subject to a large number of constraints,
and it is not obvious how to write it explicitly. Let us remark that at any given
point x we can calculate a gradient of ẐN(¢) (or rather supergradient if ẐN(¢) is
not di®erentiable at x). That is, the corresponding partial derivatives @ẐN (x)=@xt,
t = 1; :::; T , are obtained by using sample averages derived according to formulas
(3.8-10), and the corresponding gradient (or rather supergradient) is formed by
rẐN(x) = (@ẐN(x)=@x1; :::; @ẐN(x)=@xT ).

An approach to numerical solution of the above problem is to use a cutting plane
strategy by employing an outer linearization of ẐN(¢). That is, at each iteration
point xº , the new cut hº(x) := ẐN (x

º) + rẐN(xº)T (x ¡ xº) is added. Since the
function ẐN(¢) is concave, we have that ẐN (¢) · hº(¢). Based on accumulated cuts
the corresponding linear programming problem is solved, a new iteration point is
obtained, etc. This can be combined with the \trust-region method" by restricting
the possible move at each iteration to a \box" around the current iteration point.
Thus, the new value for each xits must be within the region xits § bits.
Algorithm

The algorithm for our procedure incorporates an embedded deterministic convex
programming routine for optimizing pro¯t over a particular sample of demands. This
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routine is then repeated over di®erent samples of increasing size until an overall
solution with acceptable con¯dence is found. The generated samples are indexed by
k and the individual \steps", taken in the algorithm within a particular sample, are
indexed by r.

Optimizing a Current Sample

We begin by solving our production scheduling problem with deterministic de-
mands given by the corresponding mean values. This deterministic problem can
be formulated as an LP. With these initial values of our production variables, we
generate an initial sample of demands. For each set of demand realizations in the
sample, we calculate corresponding inventories (3.1), pro¯t value (3.2), and gradient
estimates (3.8-10) for each sample point based on our current production variable
values. The gradient and pro¯t estimates are averaged over the sample in order to
obtain overall sample estimates for each.

By using the current gradient estimate rẐNk and employing the trust region
method, we adjust our production variables. Based on our new production variable
levels, we repeat the process with the same demand sample until an optimality
criterion over the sample is reached. We determine whether or not we are near
the current sample's optimum by performing the paired t-test between successive
objective function values, which is based on the test statistic

t :=
Ẑr ¡ Ẑr¡1
sp
q

2
Nk

; (3.13)

where s2p := (s
2
r + s

2
r¡1)=2 and s2i refers to the sample variance of the ith iterate.

Resampling

Once our algorithm stops for a given sample, a choice of resampling or ter-
minating the algorithm is made. Notice that we are at the peak of this sample's
pro¯t curve. Thus, the sample's average pro¯t estimate is denoted as Ẑr, where r
is the last step of the optimization algorithm for the current sample. We calculate
the 95% con¯dence interval around our pro¯t estimate Ẑr. If the half width of
this interval, denoted `k, is less than a predetermined percentage ®Ẑr of our pro¯t
estimate, we do not continue sampling. If the con¯dence region is wider than prede-
termined bounds, however, we must create a larger demand sample and repeat the
deterministic optimization procedure. The new sample size is chosen as follows:

Nk+1 := Nk

Ã
`k

®Ẑr

!2
: (3.14)

When we achieve a sample optimum, whose con¯dence region is within our pre-
determined bounds, we terminate the algorithm. The resulting production variable
values, which represent the optimum values found in the last sample, represent
our simulation based estimates of the corresponding optimal solution of the \true"
problem.
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Pseudo-Code

Let k and r denote the sample number and step number, respectively.
Initialize xits (Solve LP using mean demands)
Initialize values bits of the box size and sample size N1;
WHILE we are still sampling

FOR l = 1; :::;Nk, generate D
l
it

WHILE we are still optimizing a sample
Calculate I litr's
Calculate Zlitsr's
Calculate ¿ litr's

Calculate each @Zlr
@xitsr

Average the sample's partial derivative estimates

to obtain current estimates @Zr
@xits

Average the sample's individual objective function
components to obtain current estimates of each
component Zitsr

IF r > 2
Conduct a paired t-test between Zr and Zr¡1
Recalculate each bits as follows:

Litsr =
Zitsr¡Zits;r¡1

@Zitr
@xits

(xits;r¡1¡xits;r¡2)
IF Litsr < 0:25

bitsr =
bits;r¡1

4
ELSE IF Litsr > 0:75

bitsr = 2bits;r¡1
ELSE

bitsr = bits;r¡1
IF we have optimized this sample according to our paired t-test

Calculate con¯dence interval halfwidth `k
around pro¯t function estimate

IF `k < ®Zr
STOP SAMPLING

ELSE

Nk+1 = Nk
h
`k
®Zr

i2
ELSE

maxx2IRPTS [rẐNk(xitsr)]Txitsr
subject to

PP
i=1 aisxitsr · cst

j xitsr ¡ xits;r¡1 j· bitsr;
ẐNk(xitsr) · hº ;
xitsr ¸ 0;
º = 1; :::; r ¡ 1; i = 1; :::; P;
s = 1; :::; S; t = 1; :::; T;

10



Cases

Introduction to Method of Evaluation

We evaluate our model, comparing its performance to that of DET, by solving
a realistic multi-product/resource problem and various single-product/resource sce-
narios which are designed to test the procedure under a variety of general conditions.
The multi-product/resource and single-product/resource cases have 10 and 9 period
horizons, respectively. We evaluate each case by producing a production schedule
at time zero assuming zero initial inventory(ies).

Once production schedules are generated for each method at time 0, we obtain
IEfZg for each method by simulating the respective solutions subject to random
demands. We simulate the \rolling" e®ect by updating demands at each period
(when they are realized) and adjusting subsequent periods' productions based on
the updated demands. We evaluate the e®ects over the ¯rst 4 periods, enabling us
to see trend e®ects.

Multi-Product/Resource Case

We solve a realistic problem that is similar to our local manufacturer's, with 5
product classes produced on 5 tools during a 10 month time horizon. The man-
ufacturer does not know the actual marginal pro¯t or holding cost for any of the
products. We do know, however, that the holding cost to marginal pro¯t ratio is
the same for each product. The manufacturer believes that this ratio is close to
h
¼ = 1=36 (resulting in an annual holding cost of approximately 33.3% of marginal
pro¯t).

The capacities of the machines are given as follows:

c1t = 300; t = 1; :::; 10;
c2t = 300; t = 1; :::; 10;
c3t = 300; t = 1; :::; 10;
c4t = 300; t = 1; :::; 10;
c5t = 200; t = 1; :::; 10:

(3.15)

Product class 1 can only be made on machine 1. Products 2 and 4 can be
produced on machines 2 and 4. Product 3 can be produced on machines 3 and 5.
Product 5 can only be produced on machine 5.

The demand distributions for each product follow log-normal distributions with
the following means and standard deviations:

u1 = ¾1 = 200; t = 1; :::; 10;
u2 = ¾2 = 250; t = 1; :::; 10;
u3 = ¾3 = 275; t = 1; :::; 10;
u4 = ¾4 = 150; t = 1; :::; 10;
u5 = ¾5 = 75; t = 1; :::; 10:

(3.16)

Each product consumes the same amount of each resource.
There are in¯nitely many optimal solutions to the deterministic problem|so

long as the total production over all machines for each product in each period equals
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the expected demand for that product. One optimal solution for the deterministic
problem is as follows:

x1;t;1 = 200; t = 1; :::; 10;
x2;t;2 = 125; t = 1; :::; 10;
x2;t;4 = 125; t = 1; :::; 10;

x3;t;3 = 275; t = 1; :::; 10;
x3;t;5 = 0; t = 1; :::; 10;

x4;t;2 = 75; t = 1; :::; 10;
x4;t;4 = 75; t = 1; :::; 10;

x5;t;5 = 75; t = 1; :::; 10:

(3.17)

Notice that total facility monthly capacity is 1400, while the total deterministic
demand is 950. By using an LP (the deterministic method, DET) to schedule
production, only 950 total units are produced, and no machine is fully utilized|
regardless of the inventory holding expense to marginal pro¯t relationship.

This problem was then solved using the SBO method. The SBO solution allowed
for a higher machine utilization and improved upon the DET solution|with an
average pro¯t increase of approximately 8.9%.

Single-Product/Resource Cases

We test our algorithm over various scenarios of interest. In order to observe
general scenarios, we simplify our problem to observe the single-product/resource
case. All demands follow log-normal distributions, and the time horizon is nine
periods for each case. The four parameters we change are as follows:

1. Capacity,

2. Demand trend,

3. Variability,

4. ¼=h ratio.

We tested the cases with all periods' capacities equaling 100 and 200. Note that
ut denotes the demand mean for period t. The following are the tested demand
trends:

1. u = [100; 100; 100; 100; 100; 100; 100; 100; 100],

2. u = [60; 70; 80; 90; 100; 110; 120; 130; 140],

3. u = [140; 130; 120; 110; 100; 90; 80; 70; 60].

For each demand trend, two levels of variability were tested:
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1. Moderate Variability|CV = 1,

2. High Variability|CV = 2.

where CV refers to the coe±cient of variation, CV = ¾=¹.
For all combinations of capacity, demand trend, and variability, ¼=h = 1; 2; 4; 8; 16; 32;

and 64 were tested.
In the analysis of these scenarios, demand trend and capacity combinations make

up the six overall cases. Within each of these cases, CV and ¼=h are altered yielding
14 sub cases. For each case, we are able to observe the trade-o® of average inventory
versus average lost sales. We can conclude our comparison of the two production
scheduling methods by comparing the average pro¯ts generated by our simulation
based optimization method (SBO) to those of the linear programming solution with
deterministic demand estimates (DET).

The average pro¯t di®erences between SBO and DET depend heavily upon the
capacity. By design, we have chosen two values of capacity that test \boundary"
conditions. When capacity equals 100 in each period, it is equal to the average of
the demand means over the time horizon for each demand trend|modeling a highly
capacity constrained environment. When capacity equals 200 in each period, we have
a relatively large amount of \extra" capacity. Intuitively, the former provides little
room for our SBO procedure to outperform the DET procedure, unlike the latter.
When viewing the average pro¯t di®erences between SBO and DET, as functions of
¼=h, two general shapes are seen.

For the more tightly constrained capacity cases, the average pro¯t di®erence
between SBO and DET decreases with increasing ¼=h to a certain point after which
both methods achieve the same average pro¯t. Here, the SBO production schedule
converges to that of the DET method, as Figure 2 depicts.

Now, consider the less tightly constrained capacity. Again, as ¼=h increases, the
average pro¯t di®erence between SBO and DET decreases to zero until, at a certain
¼=h value around eight, the two procedures generate a similar production schedule.
At this point, however, unused capacity still exists. Thus, as ¼=h continues to
increase, the performance of SBO begins to again dominate that of DET, as Figure 3
depicts.

The decreasing demand trend case where capacity equals 100 di®ers. Unlike
the increasing and balanced trend cases, full resource utilization in all periods can
never be achieved under DET|for any ¼=h value. Thus, even though capacity
is tightly constrained, the average pro¯t di®erence between SBO and DET has the
high capacity shape, with the two methods achieving the same (statistically) average
pro¯t at only one ¼=h value (at ¼=h = 8 for CV = 1 and ¼=h = 16 for CV = 2).
At all other values of ¼=h, SBO achieves greater average pro¯ts than DET.

Discussion

We have developed a method by which optimal production schedules can be gen-
erated considering demand randomness. The method has been generally developed
for the multi-product/resource case.
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Figure 2: Average Pro¯t Di®erence Between SBO and DET (Balanced Trend,
Cap=100)

We solve a realistic multi-product/resource problem as well as various single-
product/resource cases of interest to demonstrate the e®ectiveness of the method
and its dominance over the deterministic counterpart.

The algorithm's executable time is a considerable restriction. For instance, the
realistic case we solved for the local manufacturer involved 5 product classes pro-
duced on 5 resources over a 10 month time horizon|thus, 250 decision variables.
In each optimization step within a sample, 250 values of pro¯t contribution and
partial derivatives for each replicate had to be calculated for the LP to be solved.
With su±cient values of Nk to achieve solutions with appropriate con¯dence, this
relatively small number of product classes takes a considerable amount of time to
solve.

In reality, the manufacturer produces several hundred products which have been
grouped into ¯ve families. Thus, demand distributions, resource consumption, etc.,
was aggregated for each product class. Once solutions have been obtained for the
production schedule of each product class, separating the production within a prod-
uct family must be made by production coordinators at the manufacturer. Obvi-
ously, such aggregation before the solution and disaggregation after the solution has
a negative impact on performance.

The current procedure can be modi¯ed to increase speed by using less infor-
mation than a completely speci¯ed probability distribution. Such a change would
mean that convergence to \true" optimality would be sacri¯ced for the sake of
speed. Increasing speed, however, would allow for more product family classes to
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Figure 3: Average Pro¯t Di®erence Between SBO and DET (Balanced Trend,
Cap=200)

be considered|which may be more bene¯cial in the long-run.
Furthermore, it is not clear that using less information is always less appropriate.

There are few instances (this one in particular) in which we have enough information
to completely specify a probability distribution. Thus, using a probability distri-
bution based on, say, the ¯rst two moments, is really less information than using a
discrete distribution with three points.

The next section describes the algorithm for the discrete version of the simulation
based optimization of production quantites.

4. Discrete Simulation Based Optimization

Introduction

We now propose a di®erent approach where we use a discrete distribution to
model demand. The SBO procedure then becomes simpler and faster to solve|
with a good chance that, even with moderate sample sizes, the true optimal solu-
tion will be exactly reached. We refer to this method as discrete simulation based
optimization (DIS SBO).

There are three important reasons for considering this new discrete demand
distribution method:
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1. The SBO procedure requires a relatively large amount of computational time,

2. The true distribution may actually be discrete.

3. We have insu±cient data to completely specify a continuous distribution.

Method

In the discrete case, the expected value function is a piecewise linear convex func-
tion and, therefore, is not everywhere di®erentiable. Nonetheless, equations (3.7)-
(3.10) can be used for calculation of a subgradient of the sample approximation and
subsequent solution of the obtained optimization problem.

To observe the e®ect of discretizing the demand distribution, we will choose
three charactistic points from the continuous distributions used in the previous
section. Recall that we assume that demands have log-normal distributions, hence
log(Dit) » N(¹it; ¾it). We approximate these lognormal distributions by discrete
distributions taking three values where each are equally probable. The values should
be such that the mean and standard deviation of the discrete distribution are the
same as the underlying log-normal distribution.

For the log-normal distribution with known mean and variance, the normal dis-
tribution's parameters, ¹ and ¾, can easily be found by the following relationships
(Law and Kelton, 1991):

¹ = ln( mean2

variance+mean2 )

¾ =
q
ln(variance+mean

2

mean2
)

(4.1)

We set one of the discrete points, x, in our distribution to ¹. If we choose the
other two values such that one is x ¡ a and the other is x + a, the resulting PMF
will have a mean of ¹. Further, we can select a such that the resulting standard
deviation of the PMF equals ¾ by setting:

a =
p
1:5¾2 (4.2)

Our ¯nal low, med, and high values of our PMF are ex¡a, ex,ex+a, respectively.
Once these values are chosen, the solution procedure is similar to the original

SBO procedure in section 3. Here, however, using a trust region is not necessary. Ini-
tial sample sizes are small, and subsequent and ¯nal sample sizes are much smaller,
in practice, than the sample sizes of the original SBO procedure.

Cases

Table 1 lists the PMF conversion values for the single-product/resource case and
multi-product/resource cases.

Multi-Product/Resource Case

The SBO solution, which approaches optimality, yielded an 8.9% increase in
average pro¯t over the initial deterministic solution. Our DIS SBO procedure's
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Table 1: PDF to 3-Level PMF Conversion

mean std dev ¹ ¾ a x¡ a x x+ a low medium high

60 60 3.7 0.8 1.0 2.7 3.7 4.8 15.3 42.4 117.6
70 70 3.9 0.8 1.0 2.9 3.9 4.9 17.9 49.5 137.2
80 80 4.0 0.8 1.0 3.0 4.0 5.1 20.4 56.6 156.8
90 90 4.2 0.8 1.0 3.1 4.2 5.2 23.0 63.6 176.4
100 100 4.3 0.8 1.0 3.2 4.3 5.3 25.5 70.7 196.0
110 110 4.4 0.8 1.0 3.3 4.4 5.4 28.1 77.8 215.6
120 120 4.4 0.8 1.0 3.4 4.4 5.5 30.6 84.9 235.2
130 130 4.5 0.8 1.0 3.5 4.5 5.5 33.2 91.9 254.8
140 140 4.6 0.8 1.0 3.6 4.6 5.6 35.7 99.0 274.4

60 120 3.3 1.3 1.6 1.7 3.3 4.8 5.7 26.8 126.9
70 140 3.4 1.3 1.6 1.9 3.4 5.0 6.6 31.3 148.0
80 160 3.6 1.3 1.6 2.0 3.6 5.1 7.6 35.8 169.2
90 180 3.7 1.3 1.6 2.1 3.7 5.2 8.5 40.2 190.3
100 200 3.8 1.3 1.6 2.2 3.8 5.4 9.5 44.7 211.5
110 220 3.9 1.3 1.6 2.3 3.9 5.4 10.4 49.2 232.6
120 240 4.0 1.3 1.6 2.4 4.0 5.5 11.3 53.7 253.8
130 260 4.1 1.3 1.6 2.5 4.1 5.6 12.3 58.1 274.9
140 280 4.1 1.3 1.6 2.6 4.1 5.7 13.2 62.6 296.1

200 200 5.0 0.8 1.0 3.9 5.0 6.0 51.0 141.4 392.1
250 250 5.2 0.8 1.0 4.2 5.2 6.2 63.8 176.8 490.1
275 275 5.3 0.8 1.0 4.3 5.3 6.3 70.1 194.5 539.1
150 150 4.7 0.8 1.0 3.6 4.7 5.7 38.3 106.1 294.0
75 75 4.0 0.8 1.0 3.0 4.0 5.0 19.1 53.0 147.0
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solution improvement over DET was 8.4% (94% of the total possible improvement
(seen using SBO) over DET).

Single-Product/Resource Cases

The DIS SBO provides for average pro¯ts (under the original demand PDF's),
for ¼=h ¸ 8, that approach those produced by the SBO procedure for balanced
and decreasing demand trends. For increasing demand trends, DIS SBO average
pro¯ts are considerably less than SBO, however, they achieve over 50% of the pos-
sible improvement over DET (based on SBO). Graphs 4 and 5 depict the methods'
performances.

Figure 4: Average Pro¯t (Balanced Trend, Cap=200, CV=1)

Discussion

Consider the true demands to be random variables with log-normal distribu-
tions. We have developed a procedure which uses estimates of such distributions in
the crudest fashion|3 discrete values, skewed (though not equal to the log-normal
skewness), with mean and standard deviation following the underlying normal distri-
bution. Besides these general similarities, the discrete distribution is quite di®erent
than its continuous counterpart. Yet, the quality of the solutions are almost identi-
cal, except when the demand trend is increasing and capacity is high. Even in this
case, DIS SBO signi¯cantly outperforms DET. Thus, we can reasonably conjecture
that our procedures are not highly sensitive to the demand distributions.

5. Production Planning Procedure Sensitivity to Errors In Predicting Demand Trends
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Figure 5: Average Pro¯t (Increasing Trend, Cap=200, CV=2)

We have shown the e®ectiveness of the two production scheduling techniques
(SBO and DIS SBO) for various capacities, variability levels, demand trends, and
¼=h ratios. We have compared each of the procedures' average pro¯ts to each other
and the DET procedure. In doing so, we assume that though the demands are
random, we know the trends and distributions. It is interesting to view the solution
e®ectiveness when an important planning assumption fails to be observed.

If the parameters altered, the demand trend is the easiest to misjudge. We con-
sider the increasing, balanced, and decreasing demand trends. These three basic
trends are commonly found in practice. The increasing trend is associated with
newer products whose demands are \ramping up" in their initial production and
introduction into the market. Balanced trends are associated with products after
their initial ramp-up, when they have achieved a steady, stable demand. The de-
creasing trend is associated with products at the end of their life-cycles|usually
being phased-out while new, increasing-trend products are taking their places.

The actual time-table for the life of a product is hard to judge. Further, man-
agement might intend to ramp up demand for a new product but not achieve their
goals. Thus, errors in the demand trend over the horizon should be addressed.

We denote two types of errors: primary and secondary. Though any combination
of errors may occur (with three trends there are six possible scenarios for error),
errors of demand trends which \border" each other in time are of the primary
focus|the primary errors. These include the following:
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1. Planned Increasing Trend|Observed Balanced Trend,

2. Planned Balanced Trend|Observed Increasing Trend,

3. Planned Balanced Trend|Observed Decreasing Trend,

4. Planned Decreasing Trend|Observed Balanced Trend.

The rarer (hopefully) secondary errors include:

1. Planned Increasing Trend|Observed Decreasing Trend,

2. Planned Decreasing Trend|Observed Increasing Trend.

Recall that for our single-product/resource cases, we have 4 capacity/variability
combinations. Within each combination, we observe the average pro¯t in the rolling
horizon when a particular error in predicting the demand trend takes place. We
compare the solutions for each production planning method and compare to the
original sets of solutions where the correct demand trend prediction took place.

Because the three procedures' production levels converge (except for DET with
decreasing demand trend) for the capacity of 100 cases with increasing ¼=h, their
pro¯ts with primary and secondary errors are the same (just as when the correct
demand trend was chosen).

For the capacity of 200 cases, we see that, when demand trends are correctly
predicted, the DIS SBO solution approaches the optimal SBO solution.

DIS SBO performed equally as well as SBO for the balanced and decreasing
demand trends. Again, just as when the demand trend was correctly predicted, DIS
SBO performed well under the SBO procedure when an increasing demand trend
was planned for and a balanced or decreasing trend was observed.

6. Conclusions and Recommendations

We have addressed a fundamental problem of nearly all make-to-stock manufacturers|
how to do production planning when future demands are random, and maybe highly
variable. We have proposed two methods for solving this problem.

The ¯rst method, simulation based optimization, allows us to solve the produc-
tion planning problem to achieve optimal average pro¯ts|assuming we know the
distributions which describe the products' demands.

Our second method, the discrete simulation based optimization method, per-
forms SBO after the continuous demand distributions have been estimated by dis-
crete distributions taking three di®erent values. If the demands are discrete, the
DIS SBO solutions will approach optimality|much faster than the SBO solutions
will approach optimality under continuous distributions. If, however, the demand
distributions are continuous, this approximation will allow us to greatly reduce the
original SBO procedure's computational time, while bene¯ting from good solutions.
The DIS SBO solution quality approached that of SBO for all cases|except ones
which included increasing demand trends.
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It is important to note the similarity between the SBO and DIS SBO produc-
tion values generated by each procedure. In practice, planners might not know the
actual distributions that describe demands. The SBO and DIS SBO probability dis-
tributions are skewed and have similar means and variances, however, they are very
di®erent distributions. Since the actual production schedules under our scenarios
were shown to be very similar, we can conclude that our methods are not highly
sensitive to distribution \misjudgments."

We also show that our methods are not highly sensitive to errors in predicting
demand trends.

Though we have considered the \lost sales" environment, an extension to this
research would be to alter the formulations to consider backorders. Though pro¯ts
will di®er under otherwise identical scenarios, the relative goodness of the procedures
should be the same.

Considering multi-level and multi-stage environments would also be of interest
and may be a subject of future research.
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