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Abstract

In this article we analyse the numerical approximation of incompressible miscible displacement prob-

lems with a combined mixed finite element and discontinuous Galerkin method under minimal regularity

assumptions. The main result is that sequences of discrete solutions weakly accumulate at weak solutions

of the continuous problem. In order to deal with the non-conformity of the method and to avoid over-

penalisation of jumps across interelement boundaries, the careful construction of a reflexive subspace of

the space of bounded variation, which compactly embeds into L2(Ω), and of a lifting operator, which is

compatible with the nonlinear diffusion coefficient, are required. An equivalent skew-symmetric formula-

tion of the convection and reaction terms of the nonlinear partial differential equation allows to avoid flux

limitation and nonetheless leads to an unconditionally stable and convergent numerical method. Numerical

experiments underline the robustness of the proposed algorithm.

1 Introduction

Mathematical models which describe the miscible displacement of fluids in a porous medium have attracted
considerable attention within the last two decades, motivated by the growing importance of the underlying
physical processes in a variety of applications. Of particular economical relevance is the displacement of oil
in underground reservoirs by fluids which mix with oil. Such enhanced displacement strategies improve the
recovery rate significantly compared to classical oil recovery by water injection where capillary forces lead to
a reduced sweep efficiency.

In this paper we study a system of nonlinear partial differential equations which models the single phase,
miscible displacement of one fluid by another in a porous medium. With the assumption of incompressibility
the system consists of an elliptic equation determining the pressure p and Darcy velocity u as well as of a
parabolic equation which describes the evolution of the concentration c of one fluid in the mixture. These two
equations are coupled nonlinearly through the diffusion-dispersion coefficient, which depends on the Darcy
velocity, through the viscosity of the fluid, which depends on the concentration, and through an advection
term, which depends on the Darcy velocity. More precisely, the strong formulation of the model problem on
the domain ΩT := (0, T )× Ω is

φ∂tc− div
(
D(u)∇c

)
+ u · ∇c + qIc = ĉqI , (1)

div u = qI − qP , (2)

u =− K

µ(c)
(
∇p− ρ(c) g

)
, (3)
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subject to the boundary conditions

u · n = 0,
(
D(u)∇c

)
· n = 0 on (0, T )× ∂Ω, (4)

and the initial condition
c(0, ·) = c0. (5)

Here, n is the outer unit normal vector on ∂Ω and T is the time horizon. The functions φ and K model
the porosity and the absolute permeability of the porous medium, respectively, µ and ρ are the mobility (or
viscosity) and the density of the fluid mixture, respectively, g is a constant vector modelling gravity, D is the
diffusion-dispersion coefficient, ĉ and c0 are the injected and the initial concentration, respectively. Finally, qI

and qP are non-negative functions which represent injection well sources and production sinks, respectively.

We refer the reader to [F94, CE99] and references therein for detailed discussions concerning existence, unique-
ness, and validity of a maximum principle for weak solutions of (1) to (5). While existence can be established
under slightly more general assumptions [CE99] than the ones we employ and specify in (A1) to (A8) below,
uniqueness of solutions is only known if u admits additional regularity, e.g., if u ∈ L∞(ΩT ), see [F94]. A
discussion of various generalisations of our mathematical model can be found in [F02].

The major goal of this paper is to contribute to closing the gap between analytical and numerical results for
the model problem. Popular methods for solving (1) to (5) numerically employ non-conforming discrete spaces
containing discontinuous functions and introduce additional terms to control jumps of numerical approxima-
tions, known as discontinuous Galerkin methods, see [SRW02, RW02]. These approaches are motivated by the
convection dominated character of the concentration equation (1). While error estimates are available in the
case of strong solutions [SRW02], whose existence is largely open, weak accumulation of approximations at
weak solutions under minimum regularity assumptions has not been investigated yet. Since the construction
of solutions in [F94, CE99] employs conforming spaces as well as approximation by regularised boundary value
problems, these techniques cannot be employed to identify limits of numerical approximations obtained with
the schemes mentioned above. We refer the reader to [AP98, EW80, DEW83] for other related numerical
schemes to solve (1) to (5).

Key elements of our analysis are:

Discontinuous coefficients and corners: All coefficients of the partial differential equation except µ and ρ

may have discontinuities. Moreover, the domain Ω may have re-entrant corners. In the vicinity of corners
and discontinuities the Darcy velocity typically exhibits singularities and is unbounded. Generally, it is not
possible to predict the characteristics of these singularities precisely as u is an unknown quantity and as D(u)
grows linearly with u.

No ‘cut-off’ functionals: While ‘cut-off’ functionals have been used successfully to verify the existence of
weak solutions [F94, CE99] they introduce a new, undefined parameter in numerical approximation schemes
[SRW02]. We propose an alternative, skew-symmetric scheme for the advection term which circumvents these
difficulties. A consequence of the skew-symmetric formulation is that the time discretisation is unconditionally
stable.

Aubin-Lions compactness on a non-conforming space: The treatment of the nonlinearity in the convergence
argument is based on an application of the Aubin-Lions lemma. We establish this compactness result on
a non-conforming space S instead of projecting the numerical solution onto the conforming space, thereby
minimising the conditions on the mesh regularity.

Accumulation points of bounded dG sequences: We demonstrate a number of regularity properties of accumu-
lation points of dG sequences. In particular, energy-norm bounded L2-limits of dG sequences have a gradient
in H1(Ω). The gradient can always be controlled without super-penalisation or similar techniques.

The article is organised as follows. In Section 2 we introduce the regularity assumptions and the weak formu-
lation of the initial value problem. In Section 3 we fix notation and approximation spaces. In Section 4 we
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introduce the finite element method. In Section 5 we establish existence of numerical solutions and stability.
In Section 6 we focus on general compactness properties of dG approximation spaces. This section can be read
independently of Sections 4 and 5. In Section 7 we carry out the convergence analysis and verify that the limit
of a subsequence is a weak solution. Finally, in Section 8 we investigate the behaviour of the scheme within
the relevant parameter range by means of numerical experiments.

2 The Initial Value Problem

The following assumptions on the initial value problem are essential to our analysis and the statement of the
weak formulation:

(A1) Ω ⊂ Rd, d ∈ {2, 3}, is a bounded Lipschitz domain.

(A2) K ∈ L∞(Ω;Rd×d) and there exist positive real numbers k◦, k
◦ such that

k◦|ξ|2 ≤ ξTK(x) ξ ≤ k◦|ξ|2

for all x ∈ Ω and ξ ∈ Rd. Moreover, K(x) is symmetric.

(A3) There exist positive real numbers µ◦, µ
◦ such that the Lipschitz continuous function µ : R→ R satisfies

µ◦ ≤ µ(c) ≤ µ◦

for all c ∈ R.

(A4) There exist positive real numbers d◦ ≤ 1 ≤ d◦ such that the function

D : Rd × Ω → Rd×d

satisfies the Carathéodory condition

D(u, ·) : x 7→ D(u, x) is measurable on Ω for all u ∈ Rd,

D(·, x) : u 7→ D(u, x) is continuous on Rd for almost all x ∈ Ω,

and the two-sided, u-dependent growth condition

d◦(1 + |u|)|ξ|2 ≤ ξTD(u, x) ξ ≤ d◦(1 + |u|)|ξ|2

for all u, ξ ∈ Rd and x ∈ Ω. Furthermore, D(u, x) is symmetric for (u, x) ∈ Rd × Ω.

(A5) φ ∈ L∞(Ω) and there exist positive real numbers φ◦, φ
◦ such that φ◦ ≤ φ(x) ≤ φ◦.

(A6) qI , qP ∈ L∞(0, T ;L2(Ω)) satisfy qI , qP ≥ 0 in ΩT and∫
Ω

qI(t, x)− qP (t, x) dx = 0

for t ∈ (0, T );

(A7) ĉ ∈ L∞((0, T )× Ω) and c0 ∈ L∞(Ω) satisfy 0 ≤ ĉ(t, x), c0(x) ≤ 1 in (0, T )× Ω and Ω, respectively.

(A8) There exist positive real numbers ρ◦, ρ
◦ such that the Lipschitz continuous function ρ : R→ R satisfies

ρ◦ ≤ ρ(c) ≤ ρ◦

for all c ∈ R. Furthermore, g is a constant vector in Rd.
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We denoted here, as throughout the text, the Euclidian norm in Rd by | · |. For the sake of simplicity we only
consider Neumann boundary conditions. For the formulation of the Dirichlet and the mixed Dirichlet-Neumann
problem see [CE99]. The analysis presented in this paper can directly be extended to this setting.

Given a Banach space X, let C i(0, T ;X) be the space of i-times continuously differentiable X-valued functions
on the closed interval [0, T ]. The space C i

c (0, T ;X) contains the functions which have a compact support
in (0, T ). Sometimes C∞

c (0, T ;X) is denoted as D(0, T ;X) and C 0(0, T ;X) by C (0, T ;X). The spaces
C i(0, T ;X) and C i

c (0, T ;X) are equipped with the norm of uniform convergence.

We use standard notation for Lebesgue and Sobolev spaces and denote the inner product of L2(U ;X) by
(v, w)U . The subscript U is skipped if U = Ω and we abbreviate ‖v‖ = ‖v‖L2(Ω). The duality pairing between
X and its dual space X∗ is written 〈·, ·〉. Throughout this paper, C denotes a generic constant which may
depend on the data but not on mesh size and time step. We often abbreviate a ≤ C b by a . b where a, b ∈ R.

We set

HN (div; Ω) :=
{
v ∈ L2(Ω;Rd) : div v ∈ L2(Ω), v · n = 0 in H−1/2(∂Ω)

}
,

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0
}
.

Definition 1 (Weak Formulation). A triple

(u, p, c) ∈ L∞(0, T ;HN (div; Ω))× L∞(0, T ;L2
0(Ω))×

(
L2(0, T ;H1(Ω)) ∩ C (0, T ;W 1,4(Ω)∗)

)
is called weak solution of the incompressible miscible flow problem (1) to (5) if

(W1) for t ∈ (0, T ), v ∈ HN (div; Ω) and q ∈ L2
0(Ω)(

µ(c)K−1u, v
)
−

(
p, div v

)
=

(
ρ(c) g, v

)(
q, div u

)
=

(
qI − qP , q

)
.

(W2) for all w ∈ D(0, T ;W 1,4(Ω))∫ T

0

−
(
φ c, ∂tw

)
+

(
D(u)∇c,∇w

)
+

(
u · ∇c, w

)
+

(
qIc, w

)
−

(
ĉqI , w

)
dt = 0.

(W3) c(0, ·) = c0 in W 1,4(Ω)∗.

Remark 1. We do not discuss the question whether weak solutions satisfy the maximum principle 0 ≤ c ≤ 1
almost everywhere in (0, T ) × Ω. The results in [F94, CE99] show that such solutions exist. Therefore, if
the weak solution is unique, which holds if p ∈ L∞(0, T ;W 1,∞(Ω)), then the maximum principle is satisfied.
Moreover, one can show directly that weak solutions satisfy the maximum principle if c ∈ L2(0, T ;W 1,4(Ω)) or
if D is uniformly bounded.

3 The Finite Element Spaces

Let 0 = t0 < t1 < . . . < tM = T be a partition of the time interval [0, T ]. We define kj := tj − tj−1 and
introduce the backward Euler operator dta

j := k−1
j

(
aj − aj−1

)
for j = 1, 2, . . . ,M and arbitrary sequences(

aj
)
j=0,1,...,M

. We set k : [0, T ] → R, t ∈ (tj−1, tj ] 7→ kj .

We consider partitions T of Ω which consist of convex, closed polyhedral elements K and set hK := diam(K).
We define hT : Ω → R in the interior of elements by

x ∈ interior(K) =⇒ hT (x) = hK (6)
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and fix that hT attains on internal element faces the diameter of the smaller adjacent element, cf. (M5) below.
In other words hT is the lower semi-continuous function which satisfies (6). The space of polynomials with
total degree p is denoted by Pp and the space of tensor polynomials with partial degree p is denoted by Qp.
The mapping between K ∈ T and its reference element K̂ is written FK : K̂ → K. For simplicity we assume
that FK is affine. Given p ∈ N, set

Sp(T ,R) := {w ∈ L2(Ω) : w ◦ FK ∈ Rp ∀K ∈ T }, R ∈ {P,Q}.

If unambiguous we sometimes write Sp(T ) instead of Sp(T ,R).

For wh ∈ Sp(T ) the function ∇h wh is defined through (∇h wh)|K = ∇(wh|K) for all K ∈ T , i.e. ∇h denotes
the elementwise application of the gradient operator. As usual the sets of interior and boundary faces are

EΩ(T ) := {K ∩K ′ : K, K ′ ∈ T ,K ∩K ′ is d− 1 dimensional},
E∂Ω(T ) := {K ∩ ∂Ω : K ∈ T ,K ∩ ∂Ω is d− 1 dimensional},

respectively. We set E(T ) = EΩ(T ) ∪ E∂Ω(T ) and assign to each E ∈ E(T ) its diameter hE . By abuse of
language we often also denote {x ∈ Ω : x ∈ E,E ∈ E(T )} by E(T ). Similarly, EΩ(T ) denotes the set of all
interior edges as well as the union of those. The unit outward normal vector of K ∈ T is nK . We assign to each
E ∈ E(T ) a unit normal vector nE . The functions hE ∈ L∞(E(T )) and nE ∈ L∞(E(T )) are defined through
hE |E = hE and nE |E = nE , respectively. Frequently, we denote two neighbouring elements by K+ and K−.
Given elementwise smooth functions vh : Ω → X, X ∈ {R,Rd,Rd×d}, we set for the edge E = K+ ∩K−

v+ := (vh|K+)|E , v− := (vh|K−)|E

and define the jump and the average of vh by

[vh]|E := v+ − v−, {vh}|E :=
v+ + v−

2
,

respectively. For E ∈ E∂Ω(T ) we define

[vh]|E := vh, {vh}|E := vh.

We use the mesh-dependent norm

‖v‖2T := ‖v‖2 + ‖∇h v‖2 + ‖h−
1/2

E [v]‖2Ej
Ω
.

The concentration c is discretised with a discontinuous Galerkin method and denote the mesh for c at time j

by T j
c or simply by T j . We assume that there are only finitely many reference elements underlying T j

c . The
approximation space for the variable c at time step j is denoted by Sj

c . Often we abbreviate Ej := E(T j
c ),

Ej
Ω := EΩ(T j

c ), Ej
∂Ω := E∂Ω(T j

c ).

hK

hE

K
K ′

hK′

Definition of hK and hE.
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The variables u and p are approximated with the mixed Raviart-Thomas finite element method. More specif-
ically, we assume that the mesh T j

u , discretising u and p at time tj , consists either entirely of triangles or
entirely of quadrilaterals if d = 2 and consists either entirely of tetrahedra or entirely of hexahedra if d = 3.
Moreover, T j

u has no hanging nodes. However, we remark that these assumptions on T j
u are not essential

and that the analysis remains valid for alternative discretisations of u and p as long as uh is conforming in
HN (div; Ω) and Strang’s lemma can be applied in the sense of Theorem 10. Alignment of T j

c and T j
u is not

necessary. We introduce

RT `(T j
u ) := {v ∈ H(div; Ω) : v ◦ FK ∈ (R`)d + xR` ∀K ∈ T j

u }.

Here ` is a non-negative integer, uniform at time tj . If T j
u consists of triangles or tetrahedra we set R` = P`,

otherwise R` = Q`. The approximation spaces of u and p are

Sj
u := RT `(T j

u ) ∩HN (div; Ω), Sj
p := S`(T j

u ) ∩ L2
0(Ω).

We frequently refer to the global mesh size and time step

hj := max
K∈T j

c ∪T j
u

hK , h̃ := max
0≤j≤M

hj , k̃ := max
0≤j≤M

kj .

as well as to

Su :=
M∏

j=1

Sj
u, Sp :=

M∏
j=1

Sj
p , Sc :=

M∏
j=0

Sj
c .

The finite element discretisation is based on the following main assumptions:

(M1) T j
c and T j

u are shape-regular.

(M2) There is a fixed p ∈ N such that S1(T j
c ,P) ⊂ Sj

c ⊂ Sp(T j
c ,Q).

(M3) There is a fixed `◦ ∈ N such that 0 ≤ ` ≤ `◦ for all T j
u .

(M4) ‖v‖L4(Ω) . ‖v‖T j
c

for all v ∈ Sp(T j
c ,Q).

(M5) hT j
c

. hE(T j
c ) on the restriction to E(T j

c ).

Condition (M2) allows non-uniform and anisotropic p. Condition (M4) is, for example, satisfied if there is a
recovery operator R : Sp(T ,Q) → H1(Ω) such that

‖h−1
T (v −Rv)‖+ ‖Rv‖H1(Ω) . ‖v‖T . (7)

For details on such recovery operators we refer, for instance, to [BO07], [KP03] and [BG88] and to the references
therein. The bound hj

Tc
. hj

E(Tc)
in (M5) is, together with (M4), the only restriction on the use of hanging

nodes in Tc.

In the course of the analysis another mesh condition, namely (21), will become apparent, which controls how
much the spaces Sj

c differ from each other for different time steps tj .

4 The Finite Element Method

In order to deal with discontinuous coefficients and to control the time derivative of ch we project D onto a
space of piecewise polynomial functions:

Dh : L2(Ω)d → Sp(Tc,R
d×d), v 7→ ΠT ◦D(v, ·) (8)
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where the ΠT : L2(Ω)d×d
sym → Sp(Tc,R

d×d
sym) are projections which map pointwise onto symmetric matrices such

that ‖ΠT D‖K . ‖D‖K for all D ∈ L2(Ω)d×d
sym and K ∈ T . If D is elementwise polynomial, as is often the

case if D is aligned with the mesh, then one may choose D = Dh. Otherwise, one can select Dh to be the
L2-projection of D, covering the case that the evaluation of the trace of D on element boundaries causes
computational or theoretical difficulties.

The diffusion term of the concentration equation is discretised by the symmetric interior penalty discontinuous
Galerkin method: Given a uh ∈ Sj

u, we set

Bd(ch, wh;uh) :=
(
Dh(uh)∇h ch,∇h wh

)
−

(
nE [ch], {Dh(uh)∇h wh}

)
Ej
Ω

−
(
nE [wh], {Dh(uh)∇h ch}

)
Ej
Ω
+

(
σ2[ch], [wh]

)
Ej
Ω

where

σ2 : Ej
Ω → R, x 7→ Cσ

max{nT
E Dh(u+

h , x) nE , nT
E Dh(u−h , x) nE}

hE

and Cσ is selected such that

Cσ ≥ sup
{

hK max
{‖wh‖2∂K

‖wh‖2K
,
‖D1/2 ∇wh‖2∂K

‖D1/2 ∇wh‖2K

}
: wh ∈ Pp, D ∈ [Pp]d×d,K shape-regular

}
. (9)

From a compactness and scaling argument it follows that Cσ is a finite number, depending on p, the degree of
shape-regularity and the type of the finite elements used. Because, in principle, the right-hand side of (9) can
be computed explicitly, Bd is from the theoretical point of view a parameter-free method.

Denoting edges with the letter E, we observe that∣∣(nE [ch], {Dh(uh)∇wh}
)
Ej
Ω

∣∣≤ 1/2

∑
K∈T

∑
E⊂∂K

∥∥Dh(u+
h )

1/2 · nE [ch]
∥∥

E

∥∥Dh(u+
h )

1/2 ∇w+
h

∥∥
E

≤ 1/2

∑
K∈T

∥∥Dh(u+
h )

1/2 · nE [ch]/
√

hK

∥∥
∂K

∥∥Dh(u+
h )

1/2 ∇w+
h

√
hK

∥∥
∂K

(10)

≤ ‖σ [ch]‖Ej
Ω

∥∥Dh(uh)
1/2 ∇wh

∥∥
Ω

With wh = ch one concludes that

Bd(ch, ch;uh)≥ 1/2

(
Dh(uh)∇h ch,∇h ch

)
+ 1/2

(
σ2[ch], [ch]

)
Ej
Ω
. (11)

The convection, injection and production terms are represented by

Bcq(ch, wh;uh) := 1/2

((
uh∇h ch, wh

)
−

(
uhch,∇h wh

)
+

(
(qI + qP )ch, wh

)
(12)

+
∑

K∈T j

(
c+
h , (uh · nK)+[wh]

)
∂K\∂Ω

−
(
(uh · nK)−[ch], w+

h

)
∂K\∂Ω

)
where (uh · n)+ := max{uh · n, 0} and (uh · n)− := min{uh · n, 0}. This formulation of Bcq differs from the
standard dG formulation in that it descretises first-order terms half in primal form and half in dual form.
Commonly, first order operators are approximated by dG methods of the type(

ũ∇h ch, wh

)
−

∑
K∈T j

(
(ũ · nK)−[ch], wh|K

)
∂K

, (13)

where ũ is a coefficient of the differential equation in consideration. One also finds formulations in fully dual
form in the literature. The definition of Bcq is based on a reformulation of the concentration equation before
discretisation:

u · ∇c = 1/2 u · ∇c + 1/2 div (uc)− 1/2 div (u) c = 1/2 u · ∇c + 1/2 div (uc)− 1/2 (qI − qP ) c,

7



using that div u = qI − qP is known. The advantage of (12) is that Bcq is semi-definite regardless of the
properties of div uh:

Bcq(ch, ch;uh) = 1/2

(
(qI + qP ) ch, ch

)
+

∑
K∈T j

(
c+
h , (uh · nK)+[ch]

)
∂K\∂Ω

−
(
(uh · nK)−[ch], c+

h

)
∂K\∂Ω

= 1/2

(
(qI + qP ) ch, ch

)
+

∑
K∈T j

(
c+
h , (uh · nK)+[ch]

)
∂K\∂Ω

−
(
(uh · nK)+[ch], c−h

)
∂K\∂Ω

= 1/2

(
(qI + qP ) ch, ch

)
+ 1/2

(
|uh · nEj | [ch], [ch]

)
Ej
Ω
, (14)

recalling that uh ∈ HN (div; Ω) and that therefore u+
h · nE = u−h · nE for E ∈ Ej

Ω. Due to (14) the numerical
method does not need a regularisation of uh as for example used in [SRW02].

We consider the following method to solve the boundary value problem:

Algorithm (AdG) Choose c0
h ∈ S0

c . For 1 ≤ j ≤ M and cj−1
h ∈ Sj−1

c find (uj
h, pj

h, cj
h) ∈ Sj

u × Sj
p × Sj

c such
that (

µ(cj
h)K−1uj

h, vh

)
−

(
pj

h,div vh

)
=

(
ρ(cj

h) g, vh

)
,(

qh,div uj
h

)
=

(
qI − qP , qh

) (15)

for all (vh, qh) ∈ Sj
u × Sj

p and(
φ dtc

j
h, wh

)
+ Bd(c

j
h, wh;uj

h) + Bcq(c
j
h, wh;uj

h) =
(
ĉqI , wh

)
(16)

for all wh ∈ Sj
c .

Algorithm (AdG) generates an element (uh, ph, ch) ∈ Su × Sp × Sc to approximate (u, p, c).

Remark 2. A delicate issue about the discretisation of the incompressible miscible flow problem is that the
natural choice of function spaces gives, in first instance, only H(div)-control on the Darcy velocity and therefore
provides direct access only to the scalar field u · nK on element boundaries. In contrast, the diffusive flux
D(u)|∂K is only meaningful if all components of u are known, defining D for example as in (39). Our analysis
shows that (M4) and (M5) as well as the projection onto Dh ensure sufficient control on the diffusive flux to
guarantee convergence to a weak solution.

Applying standard techniques [HSS02] [J05] and (15) one can rewrite Bcq to resemble the traditional, fully
primal formulation (13) more closely:

Bcq(ch, wh;uh) =
(
uh∇h ch, wh

)
+ 1/2

(
(qI + qI

h + qP − qP
h ) ch, wh

)
−

∑
K∈T j

(
(uh · nK)−[ch], w+

h

)
∂K\∂Ω

.

Here qI
h and qP

h are the L2-projections of qI and qP onto Sp, respectively. Clearly, if qI , qP ∈ Sp then Bcq

takes the form of (13) exactly.

5 Unconditional Well-posedness and Stability

The aim of this section is to prove that the solutions to Algorithm (AdG) exist and that they are bounded
independently of the discretisation parameters.

Theorem 1. Given cj−1
h ∈ Sj−1

c , there exists a solution (uj
h, pj

h, cj
h) ∈ Sj

u×Sj
p×Sj

c to the simultaneous system
of equations (15) and (16).
Proof. Given any ch ∈ Sj

c , let (uh, ph) be the unique pair in Sj
u × Sj

p which satisfies(
µ(ch)K−1uh, vh

)
−

(
ph,div vh

)
=

(
ρ(ch) g, vh

)
,(

qh,div uh

)
=

(
qI − qP , qh

) (17)

8



for all
(
vh, qh

)
∈ Sj

u × Sj
p . We define the mapping Φ : Sj

c →
(
Sj

c

)∗ as the residual of (16), i.e.

Φ
(
ch

)[
wh

]
:= k−1

j

(
φ(ch − cj−1

h ), wh

)
+ Bd(ch, wh;uh) + Bcq(ch, wh;uh)−

(
ĉqI , wh

)
.

Recalling (11) and (14), the choice wh = ch gives

Φ
(
ch

)[
ch

]
=
‖φ1/2ch‖2 − ‖φ1/2cj−1

h ‖2

2kj
+

kj

2

∥∥∥φ1/2

kj
(ch − cj−1

h )
∥∥∥2

+Bd(ch, ch;uh) + Bcq(ch, ch;uh)−
(
ĉqI , ch

)
≥ 1

2kj

(
‖φ1/2ch‖2 − ‖φ1/2cj−1

h ‖2
)
− 1/2 ‖(qI)1/2ĉh‖2.

Therefore, Φ
(
ch

)[
ch

]
≥ 0 for all ch ∈ Sj

c such that

‖φ1/2ch‖2 ≥ ‖φ1/2cj−1
h ‖2 + kj‖(qI)1/2ĉj

h‖
2.

The existence of cj
h ∈ Sj

c with Φ(cj
h) = 0 is now a corollary of Brouwer’s fixed point theorem, e.g. [Z1, p. 54].

This cj
h solves (16). 2

In the subsequent text we frequently use the piecewise linear interpolant of ch. For t ∈ [tj−1, tj ], let

c̃h(t, ·) :=
t− tj−1

kj
cj
h +

tj − t

kj
cj−1
h .

Observe that ∂tc̃h(t, ·) = dtc
j
h(·), t ∈ (tj−1, tj). We shall also interpret functions in Su, Sp and Sc as time-

dependent functions by assuming they attain on the intervals (tj−1, tj ] a constant value in Sj
u, Sj

p and Sj
c ,

respectively. We define the spatial semi-norm

|ch|2uh
:=

(
Dh(uh)∇h ch,∇h ch

)
+

(
σ2[ch], [ch]

)
Ej
Ω

+
(
|uh · nEj | [ch], [ch]

)
Ej
Ω
.

Theorem 2. There exists a constant C > 0 such that

‖uj
h‖+ ‖div uj

h‖+ ‖pj
h‖ .

(
‖ρ◦g‖+ ‖qI − qP ‖

)
(18)

holds for all j = 1, 2, . . . ,M . Equally we have

‖φ1/2cj
h‖

2 +
∫ tj

0

k ‖φ1/2∂tc̃h‖2 + |ch|2uj
h

dt ≤ ‖φ1/2c0
h‖2 +

∫ tj

0

‖
√

qI ĉ‖2 dt (19)

for all j = 1, 2, . . . ,M .
Proof. The first assertion is a consequence of the inf-sup condition, which is satisfied by the Raviart-Thomas
mixed finite element method for elliptic equations [BF91, p. 138]. To prove the second assertion we choose
wh = ci

h in (16) to verify that

dt‖φ1/2ci
h‖2 + ki‖φ1/2dtc

i
h‖2 + |ci

h|2ui
h

+ ‖
√

qI + qP ci
h‖2

≤ 2
(
φdtc

i
h, ci

h

)
+ 2Bd(ci

h, ci
h;ui

h) + 2Bcq(ci
h, ci

h;ui
h)

= 2
(
ĉqI , ci

h

)
≤ ‖

√
qI ĉ‖2 + ‖

√
qIci

h‖2.

Multiplication of the estimate by ki and summation over i = 1, 2, . . . , j give

‖φ1/2cj
h‖

2 +
j∑

i=1

ki

(
ki‖φ1/2dtc

i
h‖2 + |ci

h|2ui
h

)
≤ ‖φ1/2c0

h‖2 +
j∑

i=1

ki‖
√

qI ĉ‖2

for all j = 1, 2, . . . ,M . 2
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We record an approximation result of the weighted L2-projection PT : L2(Ω) → S1(T ,P) which is defined by

(φw, v) = (φPT w, v), v ∈ S1(T ,P).

We often abbreviate Pj := PT j
c
. Let q ∈ [2,∞] and w ∈ W r+1,q(Ω). Then ξ = w − PT w satisfies

‖h−r−1
T ξ‖Lq(Ω) + ‖h−r

T ∇h ξ‖Lq(Ω) +
( ∑

K∈T
h−2r−1

K ‖ξ‖2L2(∂K) + h−2r+1
K ‖∇h ξ‖2L2(∂K)

)1/2

. |w|W r+1,q(Ω). (20)

The bound follows from the properties of averaged Taylor polynomials, the Bramble-Hilbert lemma and the
trace inequality (28). We refer the reader for details to [BS02, ch. 4].

To analyse the stability in the time derivative we introduce a parameter which measures the effects of coarsening
in mesh T j with respect to T j−1:

τ := sup
{( M∑

j=1

∫ tj

tj−1

1
kj
‖Pj−1(Id− Pj) w(t, ·)‖2 dt

)1/2

: ‖w‖L2(0,T ;Wp+1,4(Ω)) ≤ 1
}

. (21)

The integer p was defined in (M2). If Sj
c is the same for all time steps then Pj−1(w−Pj w) = 0 and therefore

τ = 0. More generally the bound

τ . sup
j

sup {h2
K/kj : K ∈ T j

c , K 6∈ T j−1
c } (22)

is satisfied because
M∑

j=1

∫ tj

tj−1

‖Pj−1(w − Pjw)‖2

kj
dt .

M∑
j=1

∫ tj

tj−1

∑
K

‖w − Pjw‖2K
kj

dt

.
M∑

j=1

∫ tj

tj−1

∑
K

h2
K ‖w‖2H2(K)

kj
dt ≤

(
sup
j,K

h2
K/kj

)
‖w‖2L2(0,T ;H2(Ω)),

where K ranges over all elements in T j
c which are not contained in T j−1

c . The right-hand side in (22) can be
significantly refined by considering the polynomial degrees p(K) of elements K individually:

M∑
j=1

∫ tj

tj−1

‖Pj−1(w − Pjw)‖2

kj
dt .

(
sup
j,K

h
p(K)
K /kj

)
‖w‖2L2(0,T ;Wp+1,4(Ω)),

Theorem 3. The time derivative ∂tc̃h belongs to L2(0, T ;W p+1,4(Ω)∗) and

‖∂tc̃h‖L2(0,T ;Wp+1,4(Ω)∗) = ‖dtch‖L2(0,T ;Wp+1,4(Ω)∗) . 1 + τ,

independently of the mesh size, time step and polynomial degree.
Proof. Let wh ∈ Sj

c . It follows from (10) that

Bd(c
j
h, wh;uj

h) . ‖Dh(uj
h)

1/2 ∇h cj
h‖ ‖|u

j
h|

1/2 ‖L4(Ω) ‖∇h wh‖L4(Ω) + ‖∇h cj
h‖ ‖σ[wh]‖Ej

Ω

+ ‖σ[cj
h]‖Ej

Ω
‖∇h wh‖+ ‖σ[cj

h]‖Ej
Ω
‖σ[wh]‖Ej

Ω

. (1 + ‖uj
h‖

1/2 ) ‖cj
h‖T j (‖∇h wh‖L4(Ω) + ‖wh‖L4(Ω) + ‖σ[wh]‖Ej

Ω
).

Owing to (A4) and (M4) and∑
K∈T j

(
(cj

h)+, (uh · nK)+[wh]
)
∂K\∂Ω

.
∑

K∈T j

h
1/2
K ‖Dh(u+

h )
1/2 (cj

h)+‖∂K\∂Ω ‖σ[wh]‖∂K\∂Ω

.
∑

K∈T j

∥∥Dh(uh)
1/2 cj

h

∥∥
K
‖σ[wh]‖∂K\∂Ω

≤ ‖Dh(uh)‖
1/2 ‖cj

h‖L4(Ω) ‖σ[wh]‖Ej
Ω
,

10



one finds

2 Bcq(c
j
h, wh;uj

h)

. ‖Dh(uj
h)

1/2 ∇h cj
h‖ ‖|u

j
h|

1/2 ‖L4(Ω) ‖wh‖L4(Ω) + ‖uj
h‖L2(Ω) ‖cj

h‖L4(Ω) ‖∇h wh‖L4(Ω)

+ ‖(qI + qP )
1/2 cj

h‖ ‖(q
I + qP )

1/2 wh‖+ ‖cj
h‖L4(Ω) ‖σ[wh]‖Ej

Ω
+ ‖wh‖L4(Ω) ‖σ[cj

h]‖Ej
Ω

. (1 + ‖uj
h‖

1/2 ) ‖cj
h‖T j (‖∇h wh‖+ ‖wh‖L4(Ω) + ‖σ[wh]‖Ej

Ω
).

The Nemyckii trick [Z2, p. 39] and (A4) show that D and Dh = ΠT ◦D are uniformly bounded operators from
L2(K)d×d to L2(K)d×d for all K ∈ T j

c . We obtain for E ∈ Ej
c and an adjacent element K ∈ T j

c

‖Dh(uj
h)+‖L∞(E) ≤ ‖Dh(uj

h)‖L∞(K) . h
− d

2
K ‖Dh(uj

h)‖L2(K) . h
− d

2
K (1 + ‖uj

h‖K). (23)

Fix t ∈ (tj−1, tj ] and w ∈ C∞
c (0, T ;C∞(Ω)). We set wh(t, ·) := Pj w(t, ·) ∈ Sj

c . It follows from (M5) that

‖σ[wh]‖2Ej
Ω

= ‖σ[w − wh]‖2Ej
Ω

.
∑

E∈Ej
Ω

h−1
E (‖Dh(uj

h)+‖L∞(E) + ‖Dh(uj
h)−‖L∞(E)) ‖[w − wh]‖2E

. (1 + ‖uj
h‖)

∑
K∈T j

c

h
2−d/2
Tc

‖w‖2H2(K) . (1 + ‖uj
h‖) h̃

1/2 ‖w‖2H2(Ω). (24)

Note that, ∫ T

0

(
φ dtc

j
h, w

)
dt =

∫ T

0

(
φdtc

j
h, wh

)
dt +

∫ T

0

(
φdtc

j
h, w − wh

)
dt (25)

Using orthogonality and the previous theorem, one concludes∫ T

0

(
φdtc

j
h, w − wh

)
dt .

(∫ T

0

k ‖
√

φ∂tc̃h‖2 dt
)1/2

( M∑
j=1

∫ tj

tj−1

1
kj
‖
√

φPj−1(w − Pjw)‖2 dt
)1/2

. τ ‖w‖L2(0,T ;Wp+1,4(Ω)).

We now turn to the first term on the right-hand side of (25):∫ T

0

(
φdtc

j
h, wh

)
dt =

∫ T

0

−Bd(c
j
h, wh;uj

h)−Bcq(c
j
h, wh;uj

h) +
(
ĉqI , wh

)
dt (26)

.
∫ T

0

(1 + ‖uj
h‖)(1 + ‖uj

h‖
1/2

H(div;Ω)) ‖c
j
h‖T j ‖w‖Wp+1,4(Ω) dt . ‖w‖L2(0,T ;Wp+1,4(Ω)),

using (20). Finally,

‖dtc
j
h‖L2(0,T ;Wp+1,4(Ω)∗) = sup

w

∫ T

0

(
dtc

j
h, w

)
dt

‖w‖L2(0,T ;Wp+1,4(Ω))

. sup
w

∫ T

0

(
φ dtc

j
h, w

)
dt

‖w‖L2(0,T ;Wp+1,4(Ω))

completes the proof. 2

6 Properties of the Approximation Spaces

In this section we highlight general properties of discontinuous Galerkin approximation spaces. In particular,
the following assumptions are actively used: (M1), (M2) and via (M4) compact embedding into L2(Ω).

The first theorem shows that ‖ · ‖T -bounded sequences of dG functions have converging subsequences and
that the limits of those subsequences do not have jumps. The statement is independent of the underlying
differential equation and numerical method.
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Theorem 4. Consider a sequence (vi)i such that vi ∈ Sp(Ti) and ‖vi‖Ti < C∗ for some C∗ > 0. If h̃ → 0 as
i →∞ then every weak accumulation point of (vi)i in L2(Ω) belongs to H1(Ω). Moreover ‖v‖H1(Ω) . C∗ and
a subsequence of distributional gradients ∇v̄i converges weakly in H−1(Ω) to ∇v.
Proof. Note that the sequence (vi)i is bounded in L2(Ω) and therefore admits a weakly converging subsequence
in L2(Ω). For w ∈ C∞

c (Ω)d,

([vi], nEi
· w)Ei

≤ ‖h−
1/2

Ei
[vi]‖Ei

‖h
1/2
Ei

w‖Ei
≤ C∗‖h

1/2
E w‖Ei

≤ C∗

( ∑
K∈Ti

hK‖w‖2∂K

)1/2

(27)

. C∗

( ∑
K∈Ti

‖w‖2L2(K) + hK‖w‖L2(K) |w|H1(K)

)1/2

. C∗(‖w‖+ h̃ |w|H1(Ω)),

using [BS02, p. 39]

‖w‖2L2(∂K) ≤ h−1
K ‖w‖2L2(K) + ‖w‖L2(K) |w|H1(K). (28)

Therefore the distributional gradient of vi admits the bound

|(vi,div w)|=
∣∣(∇h vi, w)− ([vi], nE · w)Ei

∣∣ . C∗ (‖w‖+ h̃ |w|H1(Ω)) (29)

for w ∈ C∞
c (Ω)d. Let v be a weak limit of a subsequence (v̄i)i in L2(Ω). Then (29) implies that ∇vi is bounded

in H−1(Ω), giving the weak convergence of the gradient. Furthermore,

|(v,div w)| = lim
i→∞

|(vi,div w)| . C∗ ‖w‖+ ε (30)

for any ε > 0. Therefore ∇v ∈ L2(Ω)d with ‖v‖H1(Ω) . C∗. 2

The proof of Theorem 4 shows that ‖ · ‖T takes a special role among the norms

‖w‖2 + ‖∇h w‖2 + ‖hs
E [w]‖2Ej

Ω
, s ∈ R.

On the one hand weak accumulation points v of bounded sequences are only guaranteed to be in H1(Ω) if
s ≤ −1/2 . On the other hand the increased flexibility that the gradient ∇v is composed of limi(∇h vi, ·) and a
non-zero part limi

∑
E([vi] · nE , ·)E is only seen if s ≥ −1/2 . From that point of view it appears possible that

the larger approximation space of the dG method compared to a conforming space can play a qualitatively
more significant role in the limit if jumps are not stronger penalised than with order −1/2 .

Example 1. Consider the functions vi : (0, 1) → R which are equal to x 7→ x on (0, 1/i ) and which are
1/i -periodically extended to R. It is easily checked that ‖vi‖Ti is bounded independently of i.

1
4

1
4

1
1

3
4

1
2

The functions v3 (· · ·), v6 (−−) and v12 (—).

The sequence (vi)i converges to 0 in L2(0, 1). Furthermore, ∇h vi ≡ 1 for all i, meaning that limi∇h vi ≡ 1.
From Theorem 4 we know that the gradient of limi vi, which is 0, is the sum of limi∇h vi and limi−

∑
E([vi] ·

nE , ·)E, implying limi−
∑

E([vi]·nE , ·)E ≡ −1 in the sense of H−1. In one space dimension edges E correspond
to points in R.

12



The following theorem describes accumulation points of dG sequences in a time-dependent setting.

Theorem 5. Let
(
Sc,i

)
i
=

(∏
j S

j
c,i

)
i
be a sequence of dG approximation spaces and let vi ∈ Sc,i such that

M∑
j=1

∫ tj

tj−1

‖vi(t, ·)‖2T j
i

dt < C∗ (31)

for some C∗ > 0, i ∈ N. Then there exists a subsequence (v̄i)i which converges weakly in L2(ΩT ). If
h̃ → 0 as i → ∞ then every weak accumulation point in L2(ΩT ) belongs to L2(0, T ;H1(Ω)). Moreover
‖v‖L2(0,T ;H1(Ω)) . C∗ and a subsequence of distributional gradients ∇v̄i converges weakly in L2(0, T ;H−1(Ω))
to ∇v.
Proof. Observing that for w ∈ C∞

c (ΩT )∫ T

0

|(v,div w)|dt . lim
i→∞

M∑
j=1

∫ tj

tj−1

‖vi(t, ·)‖T j
i

(
‖w‖+ h̃ |w|H1(Ω)

)
dt ≤ C∗

∫ T

0

‖w‖2 dt + ε,

the proof is analogous to that of Theorem 4. 2

To verify the convergence of the finite element method to a weak solution we require a stronger limit of the
gradient than the weak convergence in H−1(Ω) provided by Theorems 4 and 5. We define the approximate
gradient

G : Sp(T ) → S2p(T )d, v 7→ Gv

by the condition

(∇h v, w)− ([v], nE · {w})E(T ) = (Gv,w), ∀w ∈ S2p(T )d. (32)

Theorem 6. Let
(
Sc,i

)
i
=

(∏
j S

j
c,i

)
i
be a sequence of dG approximation spaces and let vi ∈ Sc,i satisfy (31)

for some C∗ > 0. If h̃ → 0 as i →∞ then there exists a subsequence (v̄i)i which weakly converges in L2(ΩT )
to a function v ∈ L2(0, T ;H1(Ω)) such that Gv̄i converges weakly to ∇v in L2(ΩT )d.
Proof. Using the definition of G, an argument analogous to (27) and an elementwise inverse inequality we
obtain

‖Gvi‖2ΩT
=

∫ T

0

(∇h v,Gvi)− ([v], nEi · {Gvi})Ei dt

≤
∫ T

0

‖∇h v‖ ‖Gvi‖+ ‖h−
1/2

Ei
[vi]‖Ei

(
‖Gvi‖+

( ∑
T∈Ti

|hT Gvi|2H1(T )

)1/2
)

dt . C∗‖Gvi‖ΩT
.

Division by ‖Gvi‖ΩT
gives the boundedness of the sequence. Let w ∈ C∞

0 (Ω)d. Then, according to Theorem
4 and (20), there is a subsequence (v̄i)i such that∫ T

0

(∇v, w) dt = lim
i→∞

∫ T

0

(
(∇h v̄i, w)− ([v̄i], nE · w)E

)
dt

= lim
i→∞

∫ T

0

(
(∇h v̄i, PTiw)− ([v̄i], nE · {PTiw})E + (∇h v̄i, (w − PTiw))− ([v̄i], nE · {w − PTiw})E

)
dt

= lim
i→∞

∫ T

0

(
(Gv̄i, PTiw) + (∇h v̄i, (w − PTiw))− ([v̄i], nE · {w − PTiw})E

)
= lim

i→∞
(Gv̄i, PTiw) dt

= lim
i→∞

∫ T

0

(
(Gv̄i, w) + (Gv̄i, PTiw − w)

)
dt = lim

i→∞

∫ T

0

(Gv̄i, w) dt.

The weak convergence in L2(Ω)d follows from density of smooth functions, cf. [Y80, p. 121]. 2

A corresponding result holds for the approximate gradient in a stationary setting.

We now prepare the application of the Aubin-Lions lemma to dG approximation spaces. We construct a space
S with norm ‖ · ‖S which has the following properties:
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(S1) Sp(T ) embeds continuously into S with ‖v‖T & ‖v‖S for all v ∈ Sp(T ).

(S2) S embeds compactly into L2(Ω).

(S3) S is a reflexive space.

It is well-known that the dG approximation spaces belong to BV(Ω), e.g. [BO07]. For completeness we repeat
that, without affecting the use of hanging nodes, one finds

‖[v]‖L1(EΩ(T )) ≤
( ∑

K⊂T
‖hT ‖L1(∂K)

)1/2
(∫

EΩ(T )

h−1
E [v]2 dx

)1/2

.
(∫

EΩ(T )

h−1
E [v]2 dx

)1/2

.

Now Sp(T ,P) ⊂ BV(Ω) follows from

‖v‖BV(Ω) ≤ ‖v‖L1(Ω) + ‖∇h v‖L1(Ω) + ‖[v]‖L1(EΩ(T )) . ‖v‖T , v ∈ Sp(T ,P). (33)

Because BV(Ω) embeds compactly into L1(Ω) we may hope that (S2) can be established via (33). However,
BV(Ω) itself is not reflexive. In contrast, L4(Ω), which is available via (M4), has the reflexivity property.
Only, L4(Ω) does not provide a suitable compactness argument. These observations motivate to search for a
space which lies in an appropriate sense between BV(Ω) and L4(Ω).

Our starting point is that L2(Ω) is gained by interpolating L1(Ω) and L4(Ω) with the complex method of
Calderón and Lions. Two Banach spaces X0, X1 form a Banach couple (X0, X1) if they are linearly and
continuously embedded into a Hausdorff topological vector space. The space defined by complex interpolation
with exponent θ ∈ (0, 1) is denoted by [X0, X1]θ. We remark that if X1 is reflexive then also [X0, X1]θ is a
reflexive space for θ ∈ (0, 1), cf. [BL00, p. 449]. We shall make use of Theorem 11 from [CK95]:

Theorem 7. Consider the Banach couples (X0, X1) and (Y0, Y1) and a linear mapping L : X0 +X1 → Y0 +Y1

such that L|X0 : X0 → Y0 is compact and L|X1 : X1 → Y1 is continuous. Suppose there is a Banach space Z

such that (Z, Y1) is a Banach couple and such that Y0 = [Z, Y1]α for some α ∈ (0, 1). Then L : [X0, X1]θ →
[Y0, Y1]θ is compact.

We choose X1 = Y1 = L4(Ω). If there were a space Z such that L1(Ω) = [Z, Y1]α then L1(Ω) would be
reflexive. Hence we make the alternative selection Z = L1(Ω) and Y0 = L4/3(Ω), taking into account that
L2(Ω) = [L4/3(Ω), L4(Ω)]1/2 and that L4/3(Ω) = [L1(Ω), L4(Ω)]1/3. Every bounded sequence (vi)i in the space
BV(Ω) ∩ L4(Ω), which is equipped with the norm

v 7→ ‖v‖BV(Ω) + ‖v‖L4(Ω),

has a subsequence (v̄i)i which strongly converges in L1(Ω) to a function v as BV(Ω) ↪→ L1(Ω) is compact.
The boundedness of (v̄i)i in L4(Ω) entails the weak convergence of a subsequence (¯̄vi)i in L4(Ω), whose limit
also has to be v. Therefore v ∈ L4(Ω). Application of the interpolation inequality

‖w‖L4/3(Ω) ≤ ‖w‖2/3
L1(Ω) ‖w‖

1/3
L4(Ω) . ‖w‖2/3

BV(Ω) ‖w‖
1/3
L4(Ω) (34)

to w = v − ¯̄vi proves that ¯̄vi → v strongly in L4/3(Ω) as i → ∞. Therefore BV(Ω) ∩ L4(Ω) is embedded
compactly in L4/3(Ω). The reflexivity of L4(Ω) implies that

S := [BV(Ω) ∩ L4(Ω), L4(Ω)]1/2

is reflexive. Theorem 7 ensures that S = [X0, X1]1/2 with X0 = BV(Ω)∩L4(Ω) embeds compactly into L2(Ω)
and therefore S satisfies (S1), (S2) and (S3).
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L1(Ω) L4/3(Ω)
OO

compact

L2(Ω)
OO

compact

L4(Ω)
OO

BV(Ω) ∩ L4(Ω) [BV(Ω) ∩ L4(Ω), L4(Ω)]1/2 L4(Ω)

One benefit of S is that we may apply the subsequent lemma with B0 = S, B1 = L2(Ω) and B2 = W p+1,4(Ω)
without projecting discontinuous Galerkin solutions onto a conforming space, avoiding constraints which would
otherwise lead to more restrictive approximation spaces and meshes.

Theorem 8 (Aubin-Lions, in [Z2]). Consider Banach spaces B0, B1, B2 such that B0 ↪→ B1 is compact and
B1 ↪→ B2 is continuous. Assume that B0 and B2 are reflexive. Then W := {u ∈ L2(0, T ;B0) : ∂tu ∈
L2(0, T ;B2)} is compactly embedded into L2(0, T ;B1).

Alternative to the construction of S one can also apply the Aubin-Lions lemma in a conforming setting by
considering the recovered approximations Rch, cf. (7). However, changing meshes introduce a term dtR in
the proof corresponding to Theorem 3. Also Galerkin orthogonality cannot be used as in (26), leading to less
flexible meshes.

We note that for the construction of a space satisfying (S1) to (S3) a bound ‖v‖L2+ε(Ω) . ‖v‖T j
c
, ε > 0, is

sufficient. The stronger condition (M4) is needed for Theorem 3.

7 Convergence Analysis

The question arises which choice of function spaces for the concentration c should underly the convergence
proof. Various approaches have been considered in the literature. For example, in a slightly different context,
the spaces

{v ∈ L2(0, T ;W (u)) : ∂tv ∈ L2(0, T ;W (u)∗)}, W (u) = {v ∈ H1(Ω) : ‖D(u)
1/2 ∇v‖ < ∞} (35)

in [CE99]. We take a different route here, partially due to the issue whether smooth functions are dense in
(35), e.g. [PC94], partially to remain within the framework of Bochner spaces. In light of the previous section
and [F94], we select instead

W := {w ∈ L2(0, T ;S) : ∂tw ∈ L2(0, T ;W p+1,4(Ω)∗)}.

Theorem 9. Let (ui, pi, ci)i∈N be a sequence of numerical solutions with (h̃, k̃) → 0 as i → ∞. Then there
exists

c ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;W p+1,4(Ω)∗)

such that, possibly after passing to a subsequence,

ci → c in L2(ΩT ), ∂tc̃i ⇀ ∂tc in L2(0, T ;W p+1,4(Ω)∗), ∇ci ⇀ ∇c in L2(0, T ;H−1(Ω)).

If c0
i → c0 in W p+1,4(Ω)∗ at the initial time t = 0 then c satisfies (W3).

Proof. The weak convergence of ∂tc̃i in L2(0, T ;W p+1,4(Ω)∗) follows from the uniform bound on ∂tc̃i in
Theorem 3. According to (S1) the injections Sj

c ↪→ S are uniformly bounded with respect to the discretisation
parameters. By (S2), (S3) and the Aubin-Lions lemma, the space W embeds compactly into L2(ΩT ). According
to Theorems 2 and 3, (ci)i is bounded in W , ensuring the existence of a strongly converging subsequence. We
shall from now on denote this subsequence by (ci)i. Theorems 4 and 2 guarantee c ∈ L2(0, T ;H1(Ω)) and the
weak convergence of the gradient, noting that ∇ci is bounded in L2(0, T ;H−1(Ω)) by (19) and (29). According
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to [DL5, p. 483] functions in H1(0, T ;W p+1,4(Ω)∗) belong to C (0, T, W p+1,4(Ω)∗). Due to the continuity of
the trace operator in C (0, T, W p+1,4(Ω)∗) the function c has a trace in W p+1,4(Ω)∗ which is equal to the
L∞(Ω)-function c0. 2

The convergence of the Darcy velocity and the pressure is now a consequence of Strang’s lemma.

Theorem 10. Let (ui, pi, ci)i∈N be a sequence of numerical solutions with (h̃, k̃) → 0 and ci → c in L2(ΩT )
as i → ∞. Then there exists a unique pair of functions u ∈ L∞(0, T ;HN (div; Ω)) and p ∈ L∞(0, T ;L2

0(Ω))
such that, possibly after passing to a subsequence,

ui → u in L∞(0, T ;HN (div; Ω)), pi → p in L∞(0, T ;L2
0(Ω))

as (h̃, k̃) → 0. Furthermore, (u, p, c) satisfies (W1).
Proof. Given c ∈ L2(ΩT ) there is a unique pair (u, p) ∈ L∞(0, T ;HN (div; Ω)) × L∞(0, T ;L2

0(Ω)) solving, for
all v ∈ L∞(0, T ;HN (div; Ω)) and q ∈ L∞(0, T ;L2

0(Ω)),∫ T

0

(
µ(c)K−1u, v

)
dt−

∫ T

0

(
p, div v

)
dt =

∫ T

0

(
ρ(c) g, v

)
dt∫ T

0

(
q, div u

)
dt =

∫ T

0

(
qI − qP , q

)
dt,

(36)

because this system satisfies the same inf-sup condition as (W1). Understanding (15) as a perturbation of
(36), Strang’s lemma for mixed finite element methods [BF91, p. 67] gives

‖u− ui‖L∞(0,T ;H(div;Ω)) + ‖p− pi‖L∞(0,T ;L2(Ω)) . inf
vh∈Su

‖u− vh‖L∞(0,T ;H(div;Ω)) (37)

+ inf
qh∈Sp

‖p− qh‖L∞(0,T ;L2(Ω)) + sup
vh∈Su

|(µ(c)K−1u, vh)ΩT
− (µ(ci)K−1u, vh)ΩT

|
‖vh‖L∞(0,T ;H(div;Ω))

.

We remark that the terms M2h, M3h and M4h in [BF91] vanish in our setting and that the reformulation
(2.75) in [BF91] applies. Since pointwise ci → c as i →∞ and since µ is bounded, the dominated convergence
theorem implies that ‖(µ(c)−µ(ci))K−1u‖ → 0. Hence the right-hand side of (37) vanishes as (h̃, k̃) → 0 and
consequently (ui)i and (pi)i converge strongly. 2

We now show that the numerical solutions satisfy the concentration equation in the limit.

Theorem 11. Let (ui, pi, ci)i∈N be a sequence of numerical solutions with (h̃, k̃) → 0 as i →∞ and let

u ∈L∞(0, T ;HN (div ; Ω)), p ∈ L∞(0, T ;L2
0(Ω)), c ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;W p+1,4(Ω)∗)

be a limit of (ui, pi, ci)i in the sense of Theorems 9 and 10. Then (u, c) satisfies (W2).
Proof. Step I: Let v ∈ D(0, T ;C∞(ΩT )). Set vi(t) := Pj v(t) for t ∈ (tj−1, tj ], using the time steps and meshes
associated to ci. The strong convergence of (Dh(ui))i in L2(ΩT )d×d follows from the Nemyckii trick [Z2, p. 39]
and

lim
i→∞

(
D(u)−Dh(uh)

)
= lim

i→∞

(
(Id−ΠTi) + ΠTi

) (
D(u)−ΠT ◦D(uh)

)
= 0.

Using the strong convergence of (∇h vi)i in L∞(ΩT )d and the weak convergence of (Gci)i in L2(ΩT )d, we find∫ T

0

(
∇c,D(u)∇v

)
dt = lim

i→∞

∫ T

0

(
∇c,Dh(ui)∇h vi

)
dt = lim

i→∞

∫ T

0

(
Gci,Dh(ui)∇h vi

)
dt

= lim
i→∞

∫ T

0

(
∇h ci,Dh(ui)∇h vi

)
−

(
nE [ci], {Dh(ui)∇h vi}

)
EΩ

dt. (38)

From (10) and (24) it follows that∫ T

0

(
nE [vi], {Dh(ui)∇ci}

)
EΩ

dt ≤
∫ T

0

∥∥Dh(ui)
1/2 ∇ci

∥∥ (1 + ‖ui‖
1/2 ) h̃

1/2 ‖v‖2H2(Ω) dt → 0
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as i →∞. Similarly (24) implies that
∫ T

0
(σ2[ci], [vi])EΩ dt vanishes as i →∞. Hence Bd(ci, vi;ui) coincides in

the limit with
(
∇c,D(u)∇v

)
.

Step II: Let v and vi be as in Step I. Recalling the definition of qI
h and qP

h from page 8∫ T

0

(
u · ∇c, v

)
+

(
qIc, v

)
dt =

∫ T

0

−
(
c,div (u v)

)
+

(
qIc, v

)
dt = lim

i→∞

∫ T

0

−
(
c,div (ui v)

)
+

(
qIc, v

)
dt

= lim
i→∞

∫ T

0

−
(
ci,div (ui v)

)
+

(
qIci, v

)
+

∑
K

(
(ci)+, (ui · nK)+[v]

)
∂K

dt

= lim
i→∞

∫ T

0

(
ui · ∇h ci, v

)
+ 1/2

(
(qI + qI

h + qP − qP
h ) ci, v

)
−

∑
K

(
(ui · nK)−[ci], v+

)
∂K

dt

= lim
i→∞

∫ T

0

Bcq(ci, vi;ui) + Bcq(ci, v − vi;ui) dt.

The bound (20) ensures that |Bcq(ci, v − vi;ui)| . h̃
1/2 |v|H2(Ω), giving limi

∫ T

0
Bcq(ci, v − vi;ui) dt = 0 and∫ T

0

(
u · ∇c, v

)
+

(
qIc, v

)
dt = lim

i→∞

∫ T

0

Bcq(ci, vi;ui) dt.

Step III: From∫ T

0

(
φ c, ∂tv

)
dt = lim

i→∞

∫ T

0

(
φ c̃i, ∂tv

)
dt = − lim

i→∞

∫ T

0

(
φ∂tc̃i, v

)
dt = − lim

i→∞

∫ T

0

(
φdtci, vi

)
dt

we conclude that ∫ T

0

−
(
φ c, ∂tv

)
+

(
D(u)∇c,∇v

)
+

(
u · ∇c, v

)
+

(
qIc, v

)
−

(
ĉqI , v

)
dt

= lim
i→∞

∫ T

0

(
φ dtci, vi

)
+ Bd(ci, vi;ui) + Bcq(ci, vi;ui)−

(
ĉqI , vi

)
dt = 0.

Hence (W2) is satisfied for v ∈ D(0, T ;C∞(Ω)). The extension to v ∈ D(0, T ;W 1,4(Ω)) follows from bound-
edness and density of smooth functions. 2

8 Numerical Experiments

The numerical experiments are carried out in two space dimensions on a mesh which consists of shape regular
triangles without hanging nodes and which is not changed over time, that is T j

c = T j
u = T . We use the

lowest-order method, i.e. we have p = 1 in (M2) and ` = 0 in (M3).

We adopt the commonly used diffusion–dispersion tensor [F94, CE99]

D(x, u) = φ(x) (dmId + |u| d` E(u) + |u| dt (Id− E(u))) , (39)

where dm is the molecular diffusion coefficient and d` and dt are the longitudinal and the transversal dispersion
coefficients, respectively. The matrix E(u) = uTu/|u|2 is the projection in u direction. The concentration
dependent viscosity is described by µ(c) = µ(0)(1+(M1/4−1) c)−4, where µ(0) is the viscosity of oil and M =
µ(0)/µ(1) is the mobility ratio; the rescaled values for the parameters used below are taken from [WLELQ00].
The nonlinear system of equations arising in each time step is solved with a fixed-point iteration.

Numerical Example 1 (Qualitative Behaviour). The ‘Quarter of Five Spot’ benchmark [WLELQ00] models
a regular pattern of injection and production wells in a horizontal reservoir of small thickness. On the compu-
tational domain Ω = (0, 1)2 the injection well is located at (1, 1) and the production well is at (0, 0). The wells
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Figure 1: Contours of ch at time t = 2 and t = 8 for the linear, decoupled problem.

are represented by piecewise constant functions such that
∫
Ω

qI dx =
∫
Ω

qP dx = 0.018. Furthermore, ĉ ≡ 1,
K ≡ 0.0288 Id, φ ≡ 0.1, µ(0) = 1, dm = 3.6× 10−5 and g ≡ 0.

If the mobility ratio satisfies M = 1 and d` = dt = 0 then the problem reduces to a decoupled, linear system.
Figure 1 shows the contours of c at t = 2 and t = 8. Initially the contours of c evolve in nearly concentric
circles, which is consistent with the nearly radial Darcy velocity field u in the vicinity of the injection well and
the isotropic character of D. At later stages the effect of the no-flow boundary conditions and the production
well becomes more pronounced, leading to a faster fluid flow along the domain diagonal.
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Figure 2: The concentration at time t = 5 with anisotropic D. Due to fingering, large areas of the reservoir
are swept at a later time by the injected fluid.

If D is anisotropic, i.e. d` 6= dt, then c typically exhibits viscous fingering on the macroscopic scale. For the
computation depicted in Figure 2 we set dm = 1.8 × 10−6, d` = 1.8 × 10−4 and dt = 1.8 × 10−5. We use
for the initial value c0

h a radial front around the injection well which is resolved by the mesh. Due to the
large mobility ratio M = 41 the viscosity µ(c) changes rapidly across the concentration interfaces, leading
there to an increased change in the Darcy velocity u. Taking also the large difference between longitudinal
and transversal dispersion into account the fluid velocity is significantly increased along the domain diagonal
compared to the decoupled linear case.

Numerical Example 2 (Singular Velocities). In the second numerical example we examine the effect of
a singular velocity field, caused by a discontinuous permeability distribution and a re-entrant corner. The
computational domain is L-shaped. As in the previous example, the injection well is located at (1, 1) and
the production well is at (0, 0). The permeability is set to K ≡ 1.0 × 10−6 Id in the upper left quarter
(0, 1/2 ) × (1/2 , 1) of Ω and K ≡ 0.1 Id elsewhere. Thus the porous medium is almost impenetrable in the
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upper left quarter, forcing a high fluid velocity at the reentrant corner where the nearly impenetrable barrier
is thinnest.
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Figure 3: The concentration at t = 1.5 and t = 2.5.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
1

0.1

0.1

0.
1

0.3

0.3

0.
3

0.3

0.5

0.5

0.50.
5

0.
7

0.7

0.
7

0.7

0.9

0.9

0.9

0.9

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.1

0.1

0.1

0.1
0.1

0.3

0.3

0.3

0.3

0.
3

0.3

0.5

0.5

0.5

0.5 0.7

0.7

0.
7

0.
7

0.9

0.9

0.
9

0.
9

0.9

0.90.
9

0.
9

0.
9

Figure 4: The concentration at time t = 3 (left: dG solution; right: conforming solution).

The experiment demonstrates that flux limiting is not needed. Figure 3 shows the concentration before
and after the front passes the corner. The solution ch contains steep fronts but remarkably shows no more
oscillations than in the first experiment. For comparison, we also solved the problem with conforming P1-
Lagrangian elements for c combined with the Raviart-Thomas mixed method for u and p. In this case, the
oscillatory behaviour of the conforming approximation ccg is substantially larger than that of ch, cf. Figure 4.

While the paper is concerned with the convergence of the method, our numerical experiments verify in ac-
cordance with Theorems 2 and 3 that the proposed finite element method remains stable in the presence of
non-resolved singularities without the need for ‘cut-off’ functionals or super-penalisation.
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