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Summary

This collection of a book and 44 articles revolves around my book Inconsistent

Mathematics, Kluwer Mathematics and Its Applications Series (1995). Inconsistent

mathematics is an emerging new field. To date, it is principally interesting as pure

mathematics, and for its philosophical implications on the nature of mathematics.

However, as we see, physical applications cannot be ruled out. I claim to be the first
person to use the phrase "inconsistent mathematics" (Ml987b,p5l2), and to have

written the only book on the subject. I was invited to write the entry on inconsistent

mathematics for the prestigious Stanþrd Encyclopedia of Philosophy, and for the

forthcomingHandbook of the Philosophy of Science.

Inconsistent mathematics is the mathematical part of a broader theoretical

enterprise, The Theory of Inconsistency. This has a number of sources: (l) theories of
motiõn and change, (2) semantic paradoxes, (3) paradoxes in the foundations of
mathematics, especially in set theory and category theory, (4) anomalies in physical

theories, such as QM and black holes, (5) semantic theories of relevance, (6) cognitive

and informational studies of inconsistency-tolerance in reasoning, (7) geometry,

including impossible images (Penrose triangle, Schuster's Fork, M.C.Escher etc). All
these sources are taken up in the works that follow.

But the theory of inconsistency, and in particular inconsistent mathematics,

must meet a challenge, from inside logic itself from where it seemed to originate. The

challenge is the bold claim that the inconsistent has no structure. This is a highly

apriori claim, since it flies in the face of the evidence presented herein. The logical

principle underpinning this challenge is Ex Contradictione Quodlibet,ECQ,from a

àontãd¡ct¡on every proposition can be deduced. ECQ in turn is supported by the

logical principle Disjunctive Syllogism. Both these principles hold in classical two-

vJued iogic; but they fail in a large class of logics, paraconsistent ("inconsistency-

toleranf') logics. Paraconsistent logics thus become of technical interest in their own

right, as well as representing differing approaches to reasoning about the inconsistent.

Inconsistency should not be conflated with impossibility, of course. Paraconsistent

logics can be described as logics where it is possible for inconsistent premisses to

hold wittrout every proposition holding. This is exactly what one wants it one is to

study inconsistent structure.
These considerations lead into methodological and ontological questions about

mathematics and physics. Of particular interest are the various forms of realism

versus itealism, and their implications over how much of the anomalous can be

believed in a literal way. So we have discussions of realism/irrealism over: the very

small, QM, space, spacetime, the first instant of time, sets' numbers, quantities,

infinitesimali, and limits. These all have at least methodological implications for The

Theory of Inconsistency, if not direct applications.

The phenomenon of impossible images gives rise to the geometrical aspect of
inconsistent mathematics. Computer applications have not been ignored. There are

three computer studies, the most recent being around the theme of drawing impossible

images and animating them, which can be seen on the website-

The inconsistent does indeed have a complex and interesting structure.
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Account of Research

philosophers have hitherto attempted to understand the nature of contradiction' the point

however is to change it.

1. Introduction: The Theory of Inconsistency.

In what follows I use the following referencing conventions. For my

publications included in this submission and referenced in this essay' I use the date

preceded by an "M", for example (M1995a). These are referenced in the contents of

this DSc submission, and also in a separate part of the bibliography at the end of this

essay. For other authors, I use the date alone, and these are referenced at the end of

this essay. Further references can be found in the bibliographies of all these papers.

Contributions to joint publications are all 50%.

Sfudies of the nature of inconsistency and inconsistent theories have a long

history. The ancient pre-Socratic Greek thinker Herakleitos (6ú-5ú Century BC) in his

Fragments postulated the "unity of opposites". Herakleitos did not really argue for his

position, so much as put it forward in rather delphic utterances. \ilhile he was earlier

than Plato and Aristotle (4tr Century BC), he was taken by both of them to be

intentionally asserting contradictions, that is asserting as true va¡ious propositions he

believed to be contradictions. Someone who contends that thçre ale true

contradictions is known as a dialetheist, alate-20û Century term due to Routley and

Priest. Plato and especially Aristotle argued against Herakleitos using the Law of Non-

contradiction which says that no contradiction is true. Anstotle went frrther and

offered an even stronger rebuttal using the principle now known as Ex Contrqdictione

Quodlibet (ECQ for short), namely from a contradiction, every proposition follows.

Latet Ancient Greek logicians such as Chrysippus and Sextus Empiricus took

Herakleitos seriously enough. However, perhaps because of Plato and Aristotle, the

theory did not attract much support until more than two thousand years later, when

Hegel (19ú Century AD) defended an inconsistent theory of motion, and cited

Herakleitos as one of his sources. This in turn was taken up by Mam and Engels, who

were much influenced by Hegel. Unfortunately, their argumentation left much to be

desired, and could as well be construed as symptomatic of little more than confusion.
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ln confast, the Hegelian thesis that change especially motion is real inconsistency,

contradiction in action, has been rigorously developed and defended in the last two

decades of the 20ft Century by the logician Graharn Priest (1987). I criticised Priest's

theory of motion in (M19954 Chap 6), arguing that the orthodox mathematical

account of velocity and acceleration is adequate. However, I retracted some of that

criticism in "Change" (M2002c), defending a version of Zeno's Pa¡adox of the Anow

as modified by Priest. We return to the theme of change in a later section.

In the second hatf of the 20û Century, the Theory of Inconsistency as a

rigorous study began to emerge and consolidate from several sources. We have just

seen one source with a long lineage: a modemised and rigorous account of change and

motion. Another source was the paradoxes. The Ancient Greeks had also been much

taken with paradox. I just mentioned Zeno, but there is also Eubulides (4ú Century

BC), who proposed The Liar Paradox (in modern dtess "This sentence is false"), and

The Sorites Paradox ("If I am hairy and I remove just one hair, I am still hairy. Hence

if all my hairs are removed I am still hairy.") Interest in these and other paradoxes

persisted throughout the ancient period, the middle ages and the modern period.

lndeed, in my view reasonable solutions to The Liar and The Sorites were not

forthcoming, ild they remain under contention even today. Thus we find the

memorable epitaph of the ancient logician Philetas of Cos (cited in Mates 1965,206):

Philetas of Cos am I,

'Twas The Liar that made me die,

And the bad nights caused thereby

How sad. I know exactly how he felt.

4 similar paradox of more recent orign is Grelling's paradox: some words

apply to themselves ("short", "English", 'þolysyllabic"), others do not ("long",

"French", "monosyllabic". So let *autologlcal" mean "applies to itself' and let

"heterological" mean "does not apply to itself'. Now ask: is heterological a

hererological word? A short argument should convince that heterological is

heterological if and only if it is not heterological. Yet another paradox is The Truth

Teller ("This sentence is true'). This has not seemed paradoxical to most writers,

however in Mortensen and Priest (M1981) it was argued that there is a genuine

paradox here: the truth teller sentence appeils to be neither true nor false, but there is
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a general argument to the conclusion that it must be one or the other though we can

never say which.

One response that people have to the paradoxes is that they are somehow

logical tricks, with no more serious content than a parlour game. The problem with

this response is that if there is a simple trick here, then it ought to be simple to say

what it is. But it proves to be very dfficult to do so in any way that is not blatantly ad

hoc. Of course, to support this assessment requires detailed analysis of an extensive

literature which will not be undertaken here as my aims are otherwise. One example

will suffrce: the 20ú Century Polish logician Alfred Tarski attempted to solve The

Liar by declaring self-referential statements, of which the Liar is an instance, to be

mearringless. He supported this by an elegant construction which divided fonnal

languages into strata of object language, metaJanguage, meta-meta-language etc,

where reference to sentences of any level needed to be in the next level up.

Unfortunately, English and other natural languages are not so stratified, and indeed

English supports true self-referential statements, such as "This sentence has five

words" or "This sentence is in English". So, while The Liar does not a¡ise in Tarski's

construction, this shows little about its properties in natr¡ral language.

The ad hocery of such solutions to The Liar led some late 20û Centtrry

logicians, Richard Routley and Gratrarn Priest among them, to bite the bullet and

propose the dialetheist solution: that the Liar sentence is both true and false,'a true

contradiction. So we have a second ingredient in The Theory of Inconsistency,

namely the paradoxes of language, or at least some of them. It should be stressed that

not all paradoxes suggest a dialetheist solution so readily. For instance, The Sorites

does not obviously do so (though, in the absence of anything more plausible, this has

been contended by Dominic Hyde 1997).

The Liar, The Sorites, Grelling's Pa¡adox, and other paradoxes to do with

language are sometimes called semantic paradoxes, and contrast with sef theoretic

paradoxes, which have to do with sets. The best known set theoretic paradox is

Russell's Paradox. In 1902 Russell defined what we now call the Russell set R, as the

set of all self-membered sets. It is a short argument to show that R is a member if
itself iff R is not a member if itself. A pttzz.le of similar structu¡e is the Barber of
Seville, who shaves all and only those in Seville who do not shave themselves. The

contradiction so generated by The Barber is easily solved: there is no such barber,

because it is a contradictory concept, and that is an end to it. If there is any interest in
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The Barber, it is in explaining why it is not immediately obvious that it is a

contradictory story. However, it is not so easy to take this line with the Russell set,

because an independently plausible principle implies that the Russell set exists. This

principle is known as Naïve Comprehension, and says that to every description (such

as "red" or "not being a member of itself') there exists a set of all elements satisfying

that description. This principle, unrestricted set fonnation, is exEemely useful for

mathematics. Frege founded his logical construction of the foundations of
mathematics on it, and regarded Russell's discovery of its inconsistency with

consternation. @rege's theory is known as logicism, on which see later sections.)

Indeed, Russell's paradox, exploding out of the clem blue sþ and threatening our

most natural principles of mathematical reasoning, led to an ouþouring of frrrther

paradoxes and attempts to solve them by weakening Narve Comprehension, resulting

in set theories such as Zermelo-Frankel ZF,YonNeumann-Bernays-Godel NBG, and

many others. An alternative "foundation" for mathematics, namely category theory, is

similarly bedevilled with contradictions, as is usefully described by Hatcher 1982.It

is fair to describe these paradoxes, together with related later discoveries such as the

Godel incompleteness theorems, as the drivers of 20ú Century symbolic logic and

mathematical for¡ndation studies.

From the vantage point of the late 20ú Century, these set theories all had the

appearance of being ad hoc and ugly. To take just one example, ZF needs deveral

independent arioms to be able to present a set theory of reasonable power, where

narVe set theory needs just one, NarVe Comprehension (or two, if we count the

definition of identity of sets). So, to retain the full ability to abstract sets from their

corresponding descriptions, theorists such as Da Costa Brady, Routley and Priest all

proposed acceptance of naïve comprehension and the Russell set. With that, of course,

comes contradiction in the foundations of mathematics. This then is a third source of
the Theory of Inconsistency, namely inconsistencies in the þundations of
mathematics.

2. Paraconsistent Logic

It can hardly have escaped the reader's attention that acceptance of true

contradictions is no easy thing. Apart from the counterintuitiveness of the claim that

some contradictions are true, there is hanging over all the threat of Ex Contradictione



5

Quodlibet.If every proposition follows from a contradiction, then any contradictory

theory contains every proposition, which renders it useless as an arbiter of truth as

opposed to falsity. That is, for the Theory of Inconsistency to have any chance, ECQ

must be incorrect. For there to be theories whose deductive base is natural logic or

informal logic, ECQ must fail to be a valid principle of deduction in natural logic.

Now ECQ is certainly a valid principle in various/ormallogicq particularly including

classical (two-valued) logic, and one if its principal rivals, intuitioníst (open set)

logic. The argument fbr ECQ in classical logic appeals to the following typical

definition of validity: an argurnent is (classically) valid if there is no model (row of
the truth table) with all true premisses and a false conclusion. Since a contradictory

set of premisses cannot be true together, there is no model where the premisses are all

trllre, a fortiori no model where the premisses are all true and the conclusion false.

This vacuous satisfaction might seem like a bit of a cheat, and so it has seemed to

many non-classical logicians. Of course, the argument for rejecting ECQ will have to

do better than this vague intuition.

There is no disputing that ECQ is formally valid in classical and intuitionist

logics. One central question, however, is whether ECQ holds for natural logic. Of

course, the methods of formal logic are certainly relevant to this question, just as

formal methods are relevant elsewhere in science. Hence there has grown up in

approximately the last 40 years the formal study of paraconsistent logics.

Paraconsistent (or "inconsistency-toleranf') logics are logics in which ECQ fails. It

has proved to be relatively easy to construct such logics, and many thousands have

been defined and studied, both by proof theory and semantics, by now. These logics

fall into a number of broad categories. TmFortant among these are: (a) the Brazilian-

style logics of Da Costa and collaborators, also (b) Belgian-style adaptive logics of
Batens and co-workers, (c) discussive logics of the Polish school, (d) relevant logics

as originating with Anderson and Belnap and their students in Pittsburgh, (e) non-

adjunctive logics as with the Canadian logicians Jennings, Schotch and Brown, as

well as (Ð the Australian school of non-classical logicians, including among others

Routley, Meyer, Priest, Slaney, Brady, Bunder, and the author. All sha¡e the insight

that reasoning sometimes has to deal with inconsistent dat4 and therefore cannot

afford collapse into structurelessness.

One way to state ECQ which highlights its shortcomings is as follows. Logic

is fundamentally the study of validity, that is the distinction between valid and invalid
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deductions or arguments. This can be made precise by defining a logic L to be a set of

propositions closed under a deductive relation, written l- l, as well as under a rule of

uniform substitution. The rule of uniform substitution specifies that all deductions of

the sarne form are valid together, which captures the idea that valid argument ought to

be independent of subject matter. A theory (of a logic L) is any set of propositions

closed under the deductive relation of L, but not necessarily closed under uniform

substitution. Thus the shrdy of the theories of L is in effect the study of what follows

from various subject matters, various collections of axioms, by using the deductive

resonrces of L. A theory is said to be trivial if it contains every proposition (of the

language in which it is writteÐ. Thus, ECQ can be expressed as the thesis that every

inconsistent theory is trivial. This means that if inconsistent theories with interesting

structural properties can be shown to exist, then ECQ must be regarded as incorrect.

In essence, then, ECQ is the thesis that the inconsistent hss no structure. One of the

principal aims of the present study is and has been the rebuttal of this thesis, by

argument and by example, to display the rich and varied structures available in the

Theory of Inconsistency.

We noted above one argument for ECQ from the semantics of classical logic,

an argument which begs the question against semantics which do allow models in

which contradictions hold. Another well-known argument for ECQ is more proof-

theoretic in character. It uses two principles of ¡s¿5sning which are valid in classical

two-valued logic, narnely Addition 1n þevn) and Disiunctive Syllogism

(AvB,-A þU¡. Assume inconsistent premisses:

1. A (assumption)

2. -A (assumption)

3. AvB (1, Addition)

4.8 (2,3, Disjunctive Syllogism)

This is known as "The Lewis Argumenf', after its inventor, C.I.Lewis. It shows that

ECQ follows from just the two reasonable-sounding rules of Addition and Disjunctive

Syllogism (DS). It follows that it is essential for there to be a richly-structured Theory

of Inconsistency, that one or both of these two rules be invalid. Paraconsistent

logicians have largely rejected DS (though a small number reject Addition). But
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rejecting DS is not so easy, as it appears very natural: "Today is Wednesday or

Thwsday, it is not Wednesday, therefore it is Thursday''. In the early 1980s in "The

Validity of Disjunctive Syllogism Is Not So Easily Pfoved" (Ml983b) and "Reply To

Burgess and To Read" (Ml986a), I undertook to explain why DS has a false air of

reasonableness, by showing that the areas where it breaks down themselves involve

deparh¡e from everyday reasoning into conceptual regions where paradox is

threatened. This generated a considerable literature in which several contrasting

positions were staked out by Burgess (1981, 1983), Read (1983), and Lavers (1988)'

An important and early application of paraconsistent logic was the

demonstration that narVe set theory including the Russell Set does not trivialise in

various paraconsistent background logics. The pioneers here were the Brazilian

mathematician Da Costa (eg. 1974), and independently the Australian logician Brady

(lg7l,l9S9). This result is summarised in my Inconsistent Mathematics (M1995a) in

C}glp 14 sections 3-4 which were co-authored with Joshua Cole). ln the same place

we showed by applying Brady's fixed point technique that The Liar paradox can be

similarly tolerated in semantic theory as both true and false vnthout deductive

collapse. These results were important as the lust moves in applying paraconsistency

to mathematical structües; they indicate that inconsistent set theory might not be so

useless after all. Such a result in naive set theory gives a life-line to re-instate logic as

a foundation for mathematics, along the lines of Frege's logicism, though the situation

is complicated by the fact that other paradoxes such as Curry's Pa¡adox threaten narVe

set theory for reasons other than ECQ (see Slaney l9S9). rù/e develop this point about

logicism in a later section. In the spirit of altematives to set theory, Cole and I

extended the technique to the case of large categoríes in category theory, which has

similar problems with a tade-off between consistency and generality (see 'oFixed

Point Theorems for Inconsistent and Incomplete Formation of Large Categories",

Ml992).

In the late 1970s however, there was a technical problem with Brazilian-style

paraconsistent logics, namely how to algebraise them. Another of Da Costa's deep

insights was to attempt to dualise Brouwer's intuitionist logic, which admits

incomplete theories, with his family of C-systems, which admit inconsistent theories.

However, the outstanding problem for two decades was to provide them with an

algebraic semantics. Eventually I proved in "Every Quotient Algebra for Cr is

Trivial" (M19S0) that there is no non-trivial algebraic semantics for Da Costa's
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principal systems Cb Cz, .... This in part required a definition of "non-trivial" for a

Lindenbaum algebr4 which is the basic construction for algebraic semantics- At the

time, it seemed that this result was a substantial criticism of the C-systems- This

criticism was further developed in my "Pataconsistency and C1" (Ml987a), where it

is argued on this basis that none of Da Costa's systems could express a reasonable

implication connective/operator. This was written at a time when I was in the gnp of

the picture that the nature of implication ('if..then") is the central issue for logic, and

was seeking to defend Anderson'Belnap relevant implication against its perceived

Brazilian rival. This picture of logic now seems to me to be wrong, and the question

of implication to be less significant. fþe important virtue of the C-systems, apart from

their paraconsistency, is their abilþ to sustain inconsistent mathematical theories,

including narve set theory as described above.

Moreover, in recent years a very natural logic called closed set logic has

emerged. Closed set logic is topologically dual to open-set (intuitionist) logic. I

studied it in "Topological Separation Principles and Logical Theories" (M2000a)

where it is linked with topological separation principles, also in "The Leibniz

Continuity Condition, Inconsistency and Quantum Dynamics" (Ml997a) and "Closed

Set Logic" (M2003a). A computing study co-authored with Steve Leishman

..Computing Dual Intuitionist and Paraconsistent Logics" (Ml989c) computed all

such logics and their duals up to size 5 (there are finite-valued logics of all sizes in

this class). Significantþ, closed-set logic is Brazilian-style and so vindicates Da

Costa's dualising aims, since Ttis the most natural dual of intuitionism.

Studies in the semantics of Pittsburgh-style relevant logics led to another

sonrce of justifications for inconsistency. A logic is relevant if an argument is valid

only when there is a conceptual connection between premisses and conclusion, and

Anderson and Belnap proposed a formal definition of "concepfual connection".

Plainly no logic in which ECQ is valid can be relevan! since there is in ECQ no

general connection between premisses and conclusion. So televant logics are all

paraconsistent. Here Routley and Routley (1972) were fust to intoduce the Routley

star operaror (which I renamed the Routley functor in (M2002b). If S is any set of

sentences, then S* is defined as {A: -A Ê S}. Here it is necessary to refine the notion

of a theory. A set of sentences Th is called a semi-theory @f a logic L) if it is closed

under the one-premiss consequence relation of L, ie. if AeTh and A þ n then BeTh.
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A semitheory Th is atheory if it is additionally closed under conjunctions, and prime

iff a disjunction AvB is belongs to the theory only if at least one of its disjuncts A,B

is. A set of sentences is said to be inconsistent if both A and -A are members, for

some A; and incomplete ifit lacks both A and -4, for some A. It can then be shown,

on minimal assumptions about the background logic, that (l) Th* is a semitheory iff

Th is a semitheory, (2) Th* is a theory itrTh is a prime semitheory (3) Th* is a prime

theory iffTh is a prime theory. Importantly, Routley and Routley showed that (4) Th*

is inconsistent iffTh is incomplete. This enabled the Routleys to introduce for the fust

time into the semantics of relevant logics setups (worlds) which are inconsistent or

incomplete or both. That in tum is necessary if ECQ is to be made to fail: one wants

semantic setups in which the premisses of ECQ (namely A, -A) hold nontrivially

without every proposition holding. In short, the Routleys had provided a semantics

sufiFrcient to explain how the suspect semantic argument for ECQ in classical logic

fails. These results were summarised and extended in my (M1995a) Chap 13.

Paraconsistent logics can be studied for their own technical interest. For

example, in "Model Structures and Set Algebras for Sugihara Matrices" (M1982), I

showed how to convert a class of semantic algebras known as Sugihara chains or

Sugihara matrices, into world-lyle model structwes. The outcome was a world-style

semantics for a class of many-valued logics which had hitherto only had set-algebra

semantics, and a general method for doing the sa¡ne inter-conversion between

algebras and model structures in general. In *Aristotle's Thesis in Consistent and

Inconsistent Logies" (M19S4b) I addressed the problem of connexive logics.

Connexive logics are logics containing Aristotle's thesis -(A+-A). This is not a

theorem of classical logic, and cannot be added to classical logic without triviality.

Moreover, connexive logics have an air of plausibility about them, but as yet a nice

semantics has proved elusive. However, there are logics in the Anderson-Belnap

family of relevant logics (specifrcatly E and weaker systems) which admit the

addition of Aristotle's thesis inconsistently but not trivially. Note what this means:

almost all of the structures in inconsistent mathematics are inconsistent theories,

while ttrese are inconsistent but non-trivial logics. This is ha¡der to achieve since

logics are more constrained than their theories, and tend to collapse into triviality

independently of ECQ. In this paper I proved that result, then provided a more natural

semantics than hitherto. In "Prior and Rennie on Times and Tenses" (M1995b) I
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looked at the relation between tense logic and its relational semantics, which can be

written as a formal fnst-order theory that Arthur Prior called the U-calculus. I

criticised Prior's construction of the U-calculus within tense logic, and provided a

construction which escapes that criticism, The paper then describes a paraconsistent

tense-logic that is capable of assessing the consequences of inconsistent doctrines

about time (in line with Prior's view of logic as a frarnework for conducting

metaphysical disputes), and then illustrates the point by displaying an inconsistent

theory which combines without collapse into triviality two well-known rival doctrines

about time, relationalism (Leibniz, Mach) and absolufisn (Newton, Nerlich). Finally I

returned to semantical studies in the fashion of (M1982), looking further into the

relation between algebraic semantics and world-style semantics in "Algebraic

Analysis of Relevant Affixing Systems" (2003b, co-authored with Sylvan, Brady et.

al.).

Paraconsistent logics can also be studied as exemplars of various philosophical

approaches to contadiction-containment. But by themselves they cry out for work to

be done with them, that is applications. One area of application of paraconsistent

logic has been in the philosophy of science. To take an important example, realism

about micro-entities is the thesis that the very small is real. It contrasts with

instrumentallsm, which is the thesis that scientific theories about the very small are no

more than instruments for prediction of human-sized events, including particularly

observations which are events in human minds. Insffument¿lism has seemed athactive

to many scientists, especially those influenced by early 20ü Century logical

positivism. But it has largely been abandoned by philosophers, substantially because

of arguments by Karl Popper (1936) and J.J.C.Smart (1963). Popper and Smart both

argued in favour of realism that our theories of the very small (rnicroplrysical realism)

must be at least approximately trlue, since otherwise ow ability successfully to predict

otherwise unlikely events would be miraculous. This is a very plausible argument.

Unfortunately, it raises the question of a satisfactory analysis of "approximate truth".

Popper himself suggested a set-theoretic verisimilitude ordering (a partial order,

"nearer to the truth than") on sets of propositions. But this was shown independently

by Miller (1974) and Tichy (1974) to have a serious defect, namely that on Popper's

definition the only way Theor|1 could be closer to the truth than Theory2, is if
Theory1 is entirely true, that is contains no false statements. This is an intolerable

limiøtion on Popper's definition of verisimilitude, since partially false theories are the
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nofin for science, and it is unquestionable that some false theories represent progress

over others. But if there is no good defrnition of verisimilitude, then the Popper-Smart

argUment for realism is left to langUish, an trndesirable situation.

I analysed the situation in "A Theorem on Verisimilitude" (Ml978a), and

proved that the Miller-Tichy result depends on the assunrption of classical logic, and

that when that assumption is relæred, their result fails in all the usual relevant logics in

the Anderson-Belnap family. Thus it seemed at the time that the Popper-Smart

argument is vindicated as long as classical logic is abandoned in favour of the

independently-motivated relevant logics. However, in "Relevance and Verisimilitude"

(Ml9S3a) I proved a weaker variant of the Miller-Tichy result \ryithin all the relevant

logics, which still amounted to significant limitation on Popper's verisimilitude. This

result, proceeding from weaker assumptions than Miller-Tichy, kills Popper's theory

much more thoroughly, since it fails in large classes of reasonable logics, not just

classical logic. At the present, ys¡isimilitude is stitl being studied by others, though it

seems clear to me that Popper's set theoretic account has no chance, and that the right

place to look for verisimititude orderings is in the metaphysics of science, where

preferred classes of primitive predicates are utilised. At the same time, the Popper-

Smart argument for microphysical realism must be right, it seems to me, and this

should act as a spur to find a reasonable statement of approximate truth. The

significance of the results in Ml983a" then, is that they should alert us at the very least

to the possibility that a good theory of neamess to the truth, or any other construction

in the philosophy of science, ought not to depend on specifically classical

assumptions like DS and ECQ. Conversely, the existence of useful applications on

paraconsistent logic weakens the case for classical logic, which appears to be

"simple" and "natural" only if its applications are ignored.

So far, we have seen several sources of the Theory of Inconsistency: theories

of change and motion, the semantic paradoxes, the set-theoretic paradoxes, and

paraconsistent logics and their applications. These kinds ofjustifications of the study

of inconsistency have been classifred in more than one way (see Ml995a Chapl).

First, there is strong paraconsistency versus weak paraconsistency. Strong

paraconsistency is what was also called dialetheism above, namely the thesis that

there are true contradictions. Weak paraconsistency is the weaker claim that

inconsistent setups have to be allowed in the semantics of natural logic. It is apparent

that this is a weaker thesis: one can reject ECQ and accept relevant or other
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paraconsistent logic without going so far as to believe in true contradictions. One way

to state weak paraconsistency (not the only way) is to assert that contradictions are

possible without necessarily being actual.If contradictions are possible, then one can

say that ECQ fails because it is possible for there to be contradictory premisses

without every conclusion fotlowing. A limited, intermediate thesis here would be that

there are true contradictions, but they are limited to the logico-semantic realm, and do

not threaten to produce contradictions in physicat systems, for example. I was inclined

for many years to take the more cautious view here (except when the moon is fuIl)'

and have defended the thesis that contradictions are possible in three papers

"Anything Is Possible" (M1989a), "On Logical Strength and V/eakness (M1989b, co-

authored with Tim Burgess) and *It Isn't So But Could It Be?" (M2006). I return to

this presentþ in this section.

One more useflrl distinction between styles of justification of the Theory of

Inconsistency is between ontological motivations and epistemological motivations

(again see my (Ml995a), Chap l). Ontological motivations are again essentially

dialetheist, that is they aim to show that the mind-independent world, construed

broadly to include logic and mathematics, is or at least migtrt be inconsistent. Most of

what we have been discussing so far falls r¡nder this. But there are also

epistemological arguments (having to do witlì knowledge or cog¡ition) for

paraconsistent logic. These appeal to the evident capacity ef þ1¡¡ans and other

information-sensitive systems to contain contadictions without deductive collapse. If

humans can do this, then any halfivay-decent AI ought to be able to do the sa¡ne. In

this regard, one early and persuasive case was made out by Belnap (1977). He pointed

out that any information system with more than one input must allow for conflict

between its inputs without everything being deducible. An exarnple is tracking an

aircraft by both radar and infra-red, which must allow for the possibility of conflict

between these inputs. A different kind of example is when the FBI's data file on you

is told by one of its agents that your birthday is a certain date, and by another agent

that it is a different date. When both dates are entered, You would not like the

computer to apply the classical principle that from these conflicting pieces of

information everything follows, to deduce that you are a communist. In my

experience, computer scientists are much concerned with such reasoning rimong

anomalies, and generally greet with favour logicians' attempts to construct more

co gnitively-sensitive logics.



t3

At the same time, it might seem that such a weakening of the paraconsistent

enterprise to a merely cognitive or inforrration-theoretic project allows the criticism

that paraconsistent logic cannot be the logic of what is real, only of what is believed

or thought or cognised. If that is so, then so be it. It is a sufficient justification of

paraconsistent logic: it takes nothing away from paraconsistency studies nor from the

need for reasoning devices to navigate in anomalous cognitive environments. Even so,

the rejection of dialetheism about the real still would need to be accompanied by a

det¿iled refutation of all the ontological arguments outlined above. But these are

showing all the signs of continued robustness under the extensive application of

pressure. Moreover, the epistemological tends to collapse into the ontological

anyway. Physics certainly does contain anomalies on occasion: current examples are

the centre of black holes, the first instant of time and quantum nonlocality (these are

taken up later in sections 4 and 6). Now if an inconsistent theory of the world or a part

of it contains anomalies which persist under attempts to dissolve the contradictions,

then honest theorists have to ask themselves what f they are right? The rational

course is surely to believe the results of our best long-term theories, and if these

persist with anomalies in various places, then in the long run the rational course might

well be to believe that the universe itself is indeed anomalous-

The Theory of Inconsistency, the project of taking contradictions seriously,

suggests a general thesis to the ef[ect that anything is possìál¿. Such a theory is called

"possibilism". One can be a paraconsistentist or even a dialetheist without going as far

as possibilism, but still they shake resistance to possibilism, I would say. In three

papers mentioned above I defended aspects of this thesis in natural semantics arid

methodologt. In "Anything is Possible" (M1989a), I argued for possibilism by

attacking the sources of its opposite, necessitarianism, the thesis that there is at least

one necessary truth, then followed possibilism into defending the possibility of such

propositions as that every proposition is true and that no proposition is true. ln

another paper at the same time "On Logical Strength and \üeakness" (M1989b, co-

authored with Tim Btrgess) I utilised the tradition of fallibilism (Petce, Popper) to

offer a methodological fall-back position: if you don't want to go as far as possibilism

then at least prefer the weaker logic. Necessities or conceptual ties are bad

methodology, they bind rather than,líberate.ln a recent piece "It Isn't So, But Could

It Be?" (M2006) I again took up the extreme possibilþ (not the actuality) that every
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proposition be true, that is the possibility that the world is trivial. One result in this

paper is that this is a consistent position, it does not reduce to a contradiction.

For the fust two decades or so of its life, paraconsistency was exclusively

concerned with construction of logics, and mostþ propositional logics at that. This

trend remains predominant even today. But it must be conceded that if that were the

best that paraconsistent logic could do, then it would forwer remain a pimple on the

co{pus of classical mathematics. What is needed is a rich and distinctive inconsistent

perspective on mathematics. Conversely, if this can be demonstrateù then the theory

of inconsistency is conclusively vindicated. Thus, the theory of inconsistency and

inconsistent mathematics need each other (This argument is developed at greatet

length in "Prospects for Inconsistency" (M2000b)).

In consequence, having so far outlined the sources of the theory of

inconsistency and paraconsistent logic, we now must furn to mathematics.

3. Inconsistent Mathematics

In(1976),Robert K.Meyer produced the first inconsistent arithmetic. This was

significant in being a number tr*ry, and as sucb, unlike set theory or category

theory, is not a candidate for a foundation of mathematics. It was obtained by

constructing an inconsistent theory which was at once an extension of the natural

numbers, the integers and the integers mod 2. Inevit¿bly, this would be inconsistent,

the wonder is that it was not trivial. Now Meyer at the time was not a dialetheist, nor

even a relevantist (he later wrote a paper with the title "Why I am not a Relevantist").

His aim was somewhat foundationalist: to show that relevant Peano arithmetic R#

can escape the restrictions which Godel's second incompleteness theorem imposed on

Hilbert's Progrom. Hilbert had hoped to show all mathematics to be consistent using

finitary methods (methods expressible within Peano arithmetic: basically,

mathematical induction). Godel's second theorem dashed his hopes. It showed that in

Peano arithmetic with a base of classical logic, consistency cannot be proved if the

theory is consistent at all. Note that for the theories of logics ob.eyrng ECQ, there is no

distinction between inconsistency and triviality, whereas this intuitively reasonable

distinction can be maintained for theories of paraconsistent logics. Hence, Godel's

second theorem, which uses classical logic, can as well bc stated as saying that the

non-triviality of classical Peano arithmetic cannot be proved within itself, if it is
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indeed non-trivial. However, Meyer formulated relevant Peano arithmetic R# with

the same axioms but on a different logical base, namely Anderson and Belnap's

relevant logic R. He then produced an inconsistent model which extended R# to an

inconsistent arithmetic which he cotild prove by frnitary means (expressible in R#

itself) to be an extension of R#, and which was easily seen to be non-trivial. On this

basis, he argued that the Hilbert program was far from being buried since R is a better

candidate for natural logic than classical logic-

Meyer's construction was a brilliant result for relevant arithmetic. Two points

should be noted, however. Firs! Meyer had proved the non-trivialþ of R# by

methods available within R# itself, but he had not proved the (negation-) consistency

of R#. Indeed, since every primitive recursive frmction is representable in R#, Godel's

second incompleteness continues to apply and so the consistency of R# is unprovable

in R# if it is indeed consistent. Second" in his model 0:2, 0:4,0:6,.. . and -0:2,

-0:4, -0:6, . . . al! hold. What makes it non-trivial is that lf x + y (mod 2) then x:y

does not hold in his theory. Hence Meyer's construction does not rule out the

possibility that 0:2 might be provable back in R#. However, Meyer claimed in

passing and without proof that no classically false arithmetical equøtion can be

proved inR#.If true, this definitely strengthens the revival of Hilbert, since it imFlies

that if there is inconsistency anywhere in R#, it is far away and contained, and does

not disrupt ordinary calculations (as would certainly happen in the classical case)' I

stared at this for two days in 1982, until I realised that Meyer had seen all along that

his construction could be carried out using Z mod n for any n: for we can reduce any

false equation to a false equation x : y between integers x and y, then select a

modulus gfeater than the maximqm of these, in which x : y must fail.

From this point, many things rapidly dropped into place. There is an infinite

class of inconsistent extensions of R#, one for each nafural number modulus. These

can be intersected to form an arithmetic RMar in which all false equations fail

simultaneously (an outstanding question ¡spains about RMto, namely whether it is

decidable). The prime inconsistent mods are fields (as are the prime consistent mods

Zn), ,o there are non-trivial inconsistent theories which simultaneously extend all of

natural number arithmetic, integers, rational and real number theories. The

background logic can also be varied. All these results were displayed in "Inconsistent

Models for Relevant Arithmetics" (MI984a" co-authored with Meyer, written by me).
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Much more followed quickly. Dunn (1979) had begun the study of non-classical

model theory. The above results indicate the existence of a general approach to model

theory which, unlike previously, is not confined to the case of classical logic, and

which therefore can be expected to have different properties from the classical case.

This was investigated in my "Inconsistent Nurrber Systems" (M1988). One thing to

emerge from that paper is that after the restrictions of classical logic are relæred,

many of the properties of inconsistent theories tunn out to be invariant with respect to

change of background logics. This suggests that there is a certain dividing line

between logic and mathematics, which means that the logicist reduction of

mathematics to logic is misplaced.

Non-standard extensions of natural number and integer arithmetic are well-

known. These allow for inconsistent collapse. Inconsistent non-standard arithmetic

was investigated in "Inconsistent Nonstandard Arithmetic" (M1987b). In this paper

the phrase "inconsistent mathematics" appears for the first time (p512). Of interest is

the existence of infinite primes. Inconsistent collapse modulo an infnite prime allows

the frnite numbers to be quarantined off from inconsistency after a fashion.

Importantly, this provides a'þseudo-zero" ( which is a counter-example to Ferrnat's

Last Theorem, that is we have in this model ("+63', ilY n. Notwithstanding

Andrew Wiles' later proof, it looked to me at the time as if the detour through non-

standard inconsistent models might provide an explanation of why FLT was so hard

to prove, namely that it requires non-finitary (non-inductive) methods. This remains

inconclusive at present. Another paper "Alien Intruders in Relevant Arithmetic"

(M1987c, co-authored \¡rith Meyer and written by him) also addresses inconsistent

non-standa¡d models of the natural numbers, and shows that even the complex

numbers can be mapped homomorphically into the models.

Also at this time, the thought occurred to me that differential and integral

calculus might well have inconsistent versions. The history of the calculus is replete

with debates about infinitesimals, ever since Newton used them, divided by them, but

declared them to be zero when it suited him. Later mathematicians such as de

l'Hospital and the Bemoullis took varying stances on their reality. It is widely held by

currently-working mathematicians that the Cauchy-\tr/eierstrass method of (e,ô)

settled the matter by abolishing infinitesimals. However, they were revived in the

twentieth century by Robinson (1969), who demonsttated their consistency relative to
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the (e,ô) technique. One major advantage of Robinson's theory was that it reduces the

nurnber of quantifrers needed in the definition of a limit from three in the (e,õ) version

of calculus to just one, which makes for much simpler calculations. In my opinion,

mathematics departrnents ought to make more of this in their first-year calculus

courses (one could still be suitably irrealist about infinitesimals, as Robinson himself

was, treating them as useful fictions).

Unfortunately, there was a ba¡rier to inconsistent calcultts, with or without

infinitesimals. J.Michael Dunn seems to have been the first to notice that if any false

equation x: y is added to real or hyperreal number theory and the result closed under

the operations of the real or hyperreal numbers, the,n a trivial theory results (every

number equals every other number). For a proof, see my "Prospects for

lnconsistency''(M2000b), where I introduced the concept of mathematical triviolity

(triviality in the mathematical part of a theory). It is important to see that Dunn

showed that mathematical triviality followed using mathematical principles

irrespective of ECQ. Hence, it is not enough simply to dispense with ECQ if one

wants a rich inconsistent mathematics: one has to take further theoretical precautions.

It is no use for a theory to identiff atl its objects, so an inconsistent calculus had better

relax some mathematical laws. I did this in "Models for Inconsistent and Incomplete

Differential Calculus" (M1990), by constructing a nilpotent ring of hyperreals,

containing the real field as a substructure. Certain infinitesimals could be

inconsistently set to zero without triviality resulting, and limited but controlled

division by these can be done. The theory has all the calculatory advantages of

Robinson's. [rterestingly, this construction does not seem to have the snme

simpliffing consequences for integration.

The above results were all summarised in the fust five chapters of Inconsistent

Mathematics (M1995a). That volume caried the range of topics ñlrther. It tums out

that there are many branches of mathematics with an inconsistent aspect. To

summarise briefly, first there is the issue of inconsistent continuous functions. A law

of a dynamic system can be described by a function from time to other dimensions of

a phase space, and so in certain dynamical systems the function may not be C',

indeed may even be discontinuous. These can be described inconsistently by

instantaneously "rolling up" the appropriate dimension of the phase space so as to

identiff the distinct values. This was flrther developed in "The Leibtnz Continuity
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Condition,Inconsistency and Quantum Dynamics" (Ml997a), where it was applied to

describing quantum measurement. The problem is that causality seems to be carried

classically by continuous ñtnctions, quantum measurement is prima facie

discontinuous, and yet quanfum measurement is in some sense a causal process (the

possible outcomes, the eigenvalues, are generally limited and have probabilities

attached). The answer proposed in (M1997a) was that the function is inconsistently

continuous. That paper also concludes with the tentative suggestion that "quantum

nonJocality is inconsistent locality". This further possible development remains not

worked out at this time.

Then there is the problem of differentiating such frmctions. Classically, one

differentiates the Heaviside function to get Dirac's delta "function", with the

properries (1) ô(x) : 0 (for all x +0), and (2) J A(*)¿* : I (on the whole real line).

These are anomalous properties since there is no such fi¡nction. And yet, the delta

function proves particularly useful in quantum mechanics, ffid that application

romped along in physics for several decades. However, the situation was in

theoretical hiatus until Schwartz' theory of distributions "solved'o the problem by

treating it as a functional, not a function. From the inconsistent point of view,

differentiating an inconsistent continuous function ought to produce an inconsistent

delta function, and this turns out to be an inconsistent function rather than a

fi¡nctional.

The case of inconsistent systems of linear equations has been known for a long

time, but little attempt was made to probe it, since it seemed that Gaussian reduction

reduced all such systems of equations to 0:1. However, restricting the operations in

Gaussian reduction allows inconsistent solutions in terms of inconsistent equations,

for exarrple 0:2n, which can be achieved on the surface of a cylinder with

circumference 2n. The use of inconsistency here is particularly pleasing since the

existence of classes (subspaces) of solutions to systems of linear equations is well-

known. These can be described as incomplefe solutions, ild incompleteness is a

natural dual of inconsistency tmder the Routley functor. h (M19954 Chap 8) this was

adapted to the description of a malfunctioning control system. The idea was to

produce an inconsistent picture of the situation by superimposing the "expected"

control matrix onto the "observed" stream of ouþuts. In general this has no consistent

solution; however, it has inconsistent solutions. It was shown in software simulations
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that such systems can be "fault toleranf in that they can remain operating in restricted

circumstances without complete shut-down. These results were written up in

"Inconsistent Control Systems" (1997d, co-authored witlì Steve Leishman), but it

must be stressed that they are limited and at best suggestive, and so remain something

to be followed up one daY.

The practice of "identifting" subspaces is ubiquitous throughout geometry. In

(Ml995a Chaps 9 and 10) this was analysed as inconsistent identificatíon. Projective

spaces and topology were studied. This differs from the usual classical treaûnent in

that the identification x : y is the same in both the consistent and the inconsistent

cases; however, the remaining disidentity -(x : y) in the inconsistent case tracks the

origin of the identification in the space from which the projection was rnade.

Geometrical structures turn out to be somewhat easier to deal with inconsistentþ than

are numerical structures, which seems to be due to the absence of the full

functionality of fields such as the reals and hyperreals.

Earlier, closed set logic and category theory were mentioned. Closed set logic

has been known to be paraconsistent and topologically dual to intuitionist (open set)

logic since Nicholas Goodman's paper (1981). Now there is a widespread claim that a

well-known branch of category theory, namely topos theory, has a "natural" logic

which is intuitionist. This seemed suspicious to me: there ought to be structures which

stand to closed set logic exactly as toposes stand to open set logic. This was addressed

in (M19954 Chap 11 which was jointþ written with Peter Lavers). It was shown

there that toposes themselves are enough to do the job, as long as the interpretation

functor is dualised. Thus the usual intuitionist Public Relations exercise is incorrect:

there are two equally natural logics for topos theory. At the same time, this result

represented the first paraconsistent logic to be given a categorical semantics.

Goodman's paper was critical of closed set logic on the grounds that it lacks an

implication operator definable in terns of (&,v,-). But it is apparent that any lattice

(including the closed sets of some topological space) with maximum element T and

minimgm element F has a natural implication operator defined by the condition: if x <

y then x+y: T, else x-+y: F. In (M1995 Chap 1l) this was shown to have a

categorial description. Thus, not only does closed set logic have a reasonable

implication but it too has a categorial semantics. Further investigations of closed set

logic are in (M1992), (M2000a), (M20034). In (Ml989c), co-authored \Mith Steve
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Leishman (who did the prograrrming), the finite (many-valued) closed and open set

logics were computed up to size 5. Finally, the topological duality between closed and

open set logics interacts with the Routley functor (Routley-*-duality), as described in

(M1995, Chap 13, see also Chap 12 written by V/illiam James).

4. Inconsistency in Geometry

The book (M1995) had a significant bias toward algebra and number theory.

Of geometry there was not a lot, and pictures were even fewer. But there are salient

examples of inconsistent images, which cry out for a treahent in terms of the Theory

of Inconsistency.

Consider, for exarnple, the following picture:

Of this picture, it can be said that it is a picture of an impossible object or situation,

and that it is importaritly a geometrical thing. It is a geometrical contadiction, not

something verbal or numerical. (On the distinction between geometrical and verbal

contradictions, see Mortensen 2002a). The doyen of artists of impossible pictures is

Oscar Reutersvaard, who drew the above pictwe in Stockúrolm in 1934 at the age of

17. This began a brilliant career in which he drew over 4,000 impossible fictures, and

was honoured by the Swedish government in the 1980s with several stamps of his

work.There a¡e in fact very many visual paradoxes or impossibilities (see Emst 1986,

1989). Just a few are:
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I have been able to trace examples of paradoxical pictures back to the walls of

pompeii. There ate examples to be found as medieval altarpieces, and in Piranesi's

Carceri.Later,there carne the well-loved masterpieces of M.C.Escher (Ascending and

Descending, Waterfall, Belvedere and the like), who was tmdoubtedly influenced by

Reutersvaard. In the last few years at Adelaide frirther images have been constructed

by me and my students. For examPle:

v

So there is an important area to be addressed by the Theory of Inconsistency,

namely to make sense of the inconsistency, to make sense of the reaction I see it but I
don't believeit. Until very recently there were but three papers on this problem, all

by classical mathematicians: Cowan (1974), Francis (1987) and Penrose (1991)- I

addressed the problem in a series of papers "Peeking at the Impossible" (Ml997c),

"Paradoxes Inside and Outside Language" (M20A2a), and "Towards a Mathematics of

Impossible Pictures" (M2002b). I argued that the contributions of Cowan, Francis and

Penrose, worthy though they are, fall short because they do no answer the question of

how it seems when it seems to be an impossible object. My proposal is that the mind

encodes an inconsistent theory, which stands to the two-dimensional images in

)
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something the same way that a theory describing a 3-dimensional object stands to its

2-dimensional projection in projective geometry. The aim is then to write inconsistent

theories in which the contradiction is apparent. This has also led to a series of

computer studies by me and my students in which these objects ¿¡s animated

(M2005b, co-authored with Quigley, Leishman and Mercier). It was conjectured by

Emst (1986, 1989) that an impossible image cannot be rotated. This is shown to be

false, see my website:

http://www.orts.adelaide.edu.aúhumanities/philosopþ/inconsístent-images/index-ht

ml.

One direction in which this is leading is towards buitding a virh¡al reality environment

(the ability to rotate such images is obviously a necessary part of being able to walk

around them).

5. Geometry, Groups and Logic

Logicians have tlpically steered clear of linking their subject with geometry

(contrary to the slogan over the doorway of Plato's Academy), and with all due

respect geometers are generally not well-informed about logic. Yet there are obvious

bridges between the two. One is the mathematical concept of a group, an associative

operation with an identity and inverses. On the one hand, the application of goup

theory to the description of geometrical structures is ubiquitous. On the other hand,

there is a significant body of literature on goup logics, as we will see.

Indeed, the basic intuitive understanding of the group operation calls out for

logical application. First, there is the idea that that the elements of a goup can be

transþrmations,that is actions of a certain sort. This lends itself to the thought that a

group is a space of propositions, namely the propositions describing the result of

carrying out the actions. Relations between propositions are, of course, the subject

matter of logic. Second, the basic goup operation for combining transformations is

readily understood as "fhst do this and then do that", which is undoubtedly a kind of

conjunction. More than that, it is a conjunction which is associative but not

necessarily commutative. Many interesting non-Abelian groups a.re known in

geometry, which thus ought to tanslate itself into many interesting non-commutative

logical conjunctions, with built-in applications. Thfud, the idea of the inverse of an

element of a group is an obvious candidate for a kind of negation, one which obeys
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the Law of Double Negation -(-a):a. These three ingredients suggest that there ought

to be various rich classes of logical structures forthcoming from group theory and

associated geometrical objects.

There are in the literature three approaches to logics arising from groups. First

there is the construction of MV-algebras by Chang, eg. (1958) and many others

(usefirlly surveyed in Cignoli, D'Ottaviano and Mr¡ndici 2000). It is well known that

this produces the class of Lukasiewicz Logics. Second, there is Abelian Logic, due to

Meyer-Slaney (1989, 2002). Thfud, there is the Lewin-Sagastume approach, which is

closer to Abelian logic; see Lewin-Sagastume (2002), Galli-Lewin-Sagastume Q004).

Now all of these derive from structures which are not simply groups btfi lattice'

ordered groups (groups with an additional structure which is a lattice). Lattices are

well-known as part of the semantics of most (non-group-based) logics. ln the context

of groups, the lattices supply what can be described as the extensional structure of the

togic (conjunction, disjunction and the quantifiers), while the groups supply the

intensional structure (fusion, fission, implication and negation). Strictþ, negation is a

hybrid concept.

An important connection between geometry and paraconsistency is aflorded

by Ulam games. Twenty Questions is a trivially decidable game where the aim is to

deduce an unknown number less than a million in no more than twenty questions.

Ulam games are games similar to Twenty Questions, save that a stipulated maiimum

number of lies are permitted in answer to the questions. Ularn games are

paraconsistent because (since lies are permitted) opposite answers to the same

question may be given, without a deductive log-jam ensuing. Three things were

known in the literature about Ulam games (eg. Cignolí et al2000, Mundici 2002): (l)

as long as the marimtrm number of lies is known to the questioner, the answer may be

deduced using Lukasiewicz Logics of more than two values; (2) the maximum

number of lies determines the number of values of the corresponding (many-valued)

logic; and (3) the case of one lie has a natural geometrical modelling in tenns of the

vertices, edges and faces of an n-dimensional cube. These elements of cubes have

natural union, intersection and negation operations, and these operations are called

cubic togíc by Mundici (2002). The direct connection between geometry and logic is

apparent in this case. What was not known was how to extend the geometrical

modelling beyond one lie and its associated (3-valued) Lukasiewiczlogic. However,

in "Cubic Logic, Ulam Games and Paraconsistency''(M20054 co-authored with Peter
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Quigley), it was shown how to extend the result to the general case, which involves

arrays of n-dimensional cubes. This result supports the contention that geometry and

logic have much in common that is unexplored.

6. Philosophy of Physics and Mathematics

Among the topics taken up in previous sections were applications to

ønomalies in physìcs, particularly discontinuity in quantum measurement, the Dirac

delta function, and inconsistent systems of linear equations. Running in tandem with

these studies, I addressed other issues in the philosophy of mathematics and physics.

These all revolve in various ways around the theme of realism, though most of them

also touch in one way or another on the theory of inconsistency. Earlier we noted the

debate over realism versus instrumentalism about the entities described in

microphysics, namely that there is a plausible argument for microphysical realism

which employs the notion of nearness to the truth, and that r¡nforn¡nately this notion

proves elusive to capture in a rigorous way, though I also indicated that a different

approach had better prospects. However, there is a more general argument, due to

Quine and Pubram, which takes realism about physical entities (electons, quarks and

the like) for granted, ffid rrgues that it applies equally well to realism about the

mothematical entities appearing in physics (eg. groups, sets, topological spaces,

numbers, categories, phase spaces). This essentially throws down the challenge: sets

and the like are indispensable to physics because they are essential for the formulation

of the mathematics necessary to express physics, and if sets are indispensable to

physics then they should be treated realistically as much as electrons are. Conclusion:

sets, numbers and the like are every bit as physically real as electrons and quarks.

I have always been suspicious of realism about sets. Sets of any kind, naiïe,

ZFC-ish or whatever, strike me as a clear case of a formalism which is overly

structured and as such builds more into physical reality than is in fact there. The most

objectionable featu¡e of sets is the package deal that you get with set theory, because

the package deal includes the null set {}, and null entities of any sort are ontologically

unfounded. ln a slogan, nothingness does not exist. Of course it is one thing to have

such methodological intuitions, and quite another to support them with rigorous

argument. One way to develop the argument with appropriate theoretical caution was

to approach the problem with a selective realism, realism about some
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mathematicaVphysical entities but not others. Th:us some physics and mathematics can

be taken instrumentally, but not necessanly all.In my experience, such selectiveness

is well received by physicists and mathematicians as preserving the intuition that

instrumentalism has a reasonable core: theorists try on various formalisms, which

should therefore not be taken too literally and credulously. So in an early paper

..physical Topology" (M1978b, co-authored with Graham Nerlicþ I argued that the

apparent indispensability of sets from the usual definition of a topological space,

while unquestionable for mathematics, was misleading when apptied to the physics of

spacetime. In the briefest of terrns, the argument is that mathematical set theory

supplies too manytopological spaces, all such set-theoretic constructions equally exist

as mattrematics (all the ingredients exist in Platonic Heaven). So there must be

something real but non-set-theoretic about space that supplies the principle to choose

between the equally existing mathematical alternatives. A construction using

mereologt, the theory of the part-whole relation, was offered as a replacement- This

is not irealism about topological structure, of course, but it is irrealist about any mode

of presenting this structure which is set-theoretic. In Pâssing, this also suggests that

the more ontologically perspicuous formalism for topology may be category-theoretic.

In another early paper "spacetime and Handedness" (M1983c, also co-

authored with Graham Nerlicþ, I took up realism about physical geometry. Newton

had been realist about physical space, while Leibniz had denied it, preferring relations

between physical bodies. Nerlich had argued in his book The Shape of Space (1976)

that realism for physical geometry, specifically metical geometry, was supported by

the phenomenon of handedness: since locally handed objects may or may not be

globally handed, their handedness must be due to their relation to a container space,

which perforce must exist. Now that argument was stated in terms of classical

physics, but it is not immediately apparent that it goes over easily to relativistic

spacetime, since spatiøl handedness is not relativisticatly invariant. The aim of the

paper M1983c was to make the necessary distinctions to carry the argurrent over to

the spacetime case. Note the selective realism: physical geometry and set theory yield

diflerent conclusions over realism.

In another paper around the same time "The Limits of Change" (M1985) I

addressed an old problem of change. A chariot moves off from stop at noon. What is

its state of motion at noon exactly? If it is in motion, when did it start; and if it is at

rÊst, how can it ever start? I explored several different answers, including
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inconsistency and incompleteness, that are appropriate under different background

conditions. The theme of change was also developed in a much later paper "Changeo'

(M2002c). By this time I wrls more sympathetic to dialetheism, as is evidenced by the

theme of the paper: Priest's inconsistent account of change was expounded and

supported with cautious qualifications. In an even later paper I endeavoured to work

out what sort of accotrnt of change a Buddhist should give. Buddhist thought is a

strong tradition of interesting philosophical issues, and their view on change is among

the most interesting, having considerable resemblance to the spacetime realism of

relativity theory. So in "Dharmakirti and Priest on Change" (M2004) I contrasted

priest's inconsistent view with that of the 8ft century Buddhist logician Dharmakirti,

ultimately siding with Dhannakirti, again with qualifications.

Realism about numbers was addressed in a paper in the 1980s and two papers

in the 1990s. In "Arguing for Universals" (M19S7D) I argued for an ontology of

universals, the best exemplars being the quantities of physics. As a blproduct, there is

a smooth account of (dimensionless) numbers as "comparison ratios", that is (real)

second-order relations between r¡niversals. This was an idea in the atr at the time, as

several Australasian philosophers (Forrest, Armstrong, Bigelow, Pigden and others)

put it forward, so that it seems to have come to be an official part of "Australian

realism". In "On the Possibility of Science WithoutNumbers" (M1998), I addressed a

general instrumentalist argument against Quine and Putram which is due to Hartry

Field in his well-known book Science Ílithout Numbers (19S0). I argued that Field's

construction was mote complex than is needed for his general irrealist argument.

However I also argued that when properly understood there needs to be a premiss in

Field's argument which may hold for certain mathematical concepts but not others.

Thus Field cannot avoid the hard metaphysical work of defending a position which is

agatnselectively realist. As an example, I again sided with realism about numbers as

being supported by an analysis of the role of quantities in physics.

Finally, I took up two specific issues in the philosophy of physics, both

concerning the ideal of "explaining" everything, and how realist we should be about

proposals about the fust instant of time. An ancient question is: why is there

something rather than nothing? ln "Explaining Existence" (Ml986b) I took up the

physicist Edward Tryon's suggestion that the universe began as a quantum fluctuation

out of "nothing". This leads to some interesting speculations as to the ways the

universe might be for there to be an explanation of everything . Later, as discussed in
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A Brief History of Time (1988), Stephen Hawking (with Hartle) sought to avoid the

singularity at the first instant of time by multiplying the time variable f by the square

root of minus 1, i. However Hawking also evinced a thorough instrumentalism about

the ontological commiünents of theoretical physics, along with making some

discourteous remarks about the technical abilities of philosophers. Hawking's

irealism invites the Popper-Smart objection noted above, of how his suggestion could

be regarded as explaining anything at all, if it wasn't to be taken as at least

approximately right. In "In the Beginning" (M2003c, co-authored with Julianna

Csavas), I made this realist point, then canvassed several interpretations of key

r¡nclarities in Hawking's position that various philosophers and physicists @avies,

Gribbin) subsequentþ made. I argued that these interpretations all had their problems,

then offered an interpretation different from those in the literature, which avoids those

problems.

In the late 90s, I was endeavouring to work out a general view of the role of

mathematical forrnalism. The mathematician Brian Rotman had published several

books and papers which aimed to push semiotics, the general theory of signs, as a

useful tool for understanding the function of mathematics (1987, 1993).In "Semiotics

and the Foundations of Mathematics" Qvll997b, co-authored with Lesley Roberts), I

argued that the details of Rotrnan's arguments were very weak, but that nonetheless

the general thrust of his position was along the right lines. Orn broad argument was

supported by the observation made by my student Edwin Coleman of the very many

different styles of symbol codes that mathematics has found to be useful. Hilbert had

taken the revisionist view that canonical mathematics should be written in abstract

axiomatised systems written in a formal language. But, like other revisionist positions,

this fails to account for the efficacy of the varieties of mathematical texts, pictures gnd

diagrams. This leads to firther anti-þundationalist and antí-essentialist conclusions:

the heterogeneity wthwhich mathematics skilfully utilises symbol systems is crucial

to the nature of mathematics, and is to be explained as more like Wittgenstein'sfamily

resemblance thesis than like reduction to a single essential foundation. It also leads in

the direction of explaining mathematics as efficacious kinds of text. One of the virtues

of this position is that, unlike Platonism, it brings with it a plausible epistemologt: the

varieties of text and our abilities to exploit them are surely natural phenomena. The

dominos tumble even further here, for the premiss that mathematics is primarily text
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leads to the antïPlatonist conclusion that mathematics is not primarily a window onto

an abstract realm. I take these points up again in the final section.

In sum, these studies have as their major theme the varieties of mathematical

and physical realism. Realism in physics is to be treated sympathetically but not

uncritically, ffid ultimately selectively; while realism for mathematics, particularly

pure mathematics, is regarded as not generally true. This seems to be in accord with

the relative diflerences in experimental practice between these two disciplines.

7. Significance of Inconsistent Mathematics for the Nature of Mathematics.

The funda¡nental question for the philosophy of mathematics is: what is

mathematics? A second question is: what is true mathematics? Recognising this

distinction alone permits progress in the philosophy of mathematics. To apply it,

consider firstfoundationqlism. Foundationalism in the philosophy of mathematics was

mentioned earlier, and I now retum to it. Fotmdationalism is the general thesis that

mathematics has a foundation. An example of a foundationalist program is that of

Frege and Russell, who took the view that mathematics is no more than logic, suitably

augmented with appropriate definitions, ie. that mathematics l's logic. The logicist

foundational program has the virtue of stressing the apriori nature of mathematics, by

aiming to account for it in terms of the apriori nature of logic. (We recall in passing

that the apriori nature of logic is nonetheless questionable, as discussed at the end of

Section 2.) Now logicism had, a chance while it looked as if the necessary set theory

could be obtained just by naïïe comprehension together with identity of sets, since

these might with some plausibility be viewed as definitional for sets. When Russell's

Paradox caused a flight to find a consistent set theory, the candidates (eg. ZFC, or

Russell's own Theory of Types) unfortunately looked like anything but definitions or

principles of logic, and it was appreciation of this fact that historically spelled the

death-knell of logicism.

Now a common reaction by mathematicians to such foundationalist claims is

that a foundation is certainly not needed to practice their craft. That is surely correct.

Thus foundationalism gives the impression to mathematicians of a take-over attempt

by logicians. So let it be made clear once more that it is emphatically not my view that
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mathematics should be reducible to a foundation, for reasons given at the end of the

last section.

Even so, a sufficiently determined logicist might reasonably feel that their

progtam can be rehabilitated by the non-triviality results for narVe set theory stated

above, namely that inconsistent narVe set theory with a suit¿ble base logic which is

paraconsistent, has all the deductive power sufEcient to express any mathematical

theory. To date, defenders of this re-habilitated logicism have not emerged. But there

does emerge from inconsistent mathematics a different reason to reject logicism. This

is the observation made earlier thal inconsistent mathematics is invariant over a large

class of paraconsistent background logics. Let us call this the irwariance thesìs.Herc

is behoves us to ask: what is the domain of interest of logicians and what is the

domain of interest of mathematicians? Logic is often defined as the study of the

validity relation: the difference between the validrty and invalidity of argurnents. As

we see modem symbolic logic presented in logic books, logic begins by studying the

behaviour of the operators (&,v,-,-+,ë,f,V,:), then proceeds to a variety of topics

such as modality (!,0) and tense (F,P,G,H). Set theory, the behaviour of the

membership relation e, is certainly studied by logicians, as are the natural numbers

and other number systems, but these are intermediate cases between logic and

mathematics whose interest for logicians flows out of a concern for the semantics and

expressive po\Mer of logic. Algebra is likewise studied for its application to semantics,

which explains why logicians know a fair amount about lattices, but little or nothing

about groups, rings and fields, let alone analysis and geometry. Another intermediate

case, between logic and computer science this time, is recursion theory.

My point here is that logic concerns itself centrally with the general properties

of the deducibility relation, while mathematics is restricted to only certain contents,

and these require calculations that are required by the nature of the contents

expressed. Calculation consists in the systematic application of functionality: one

calculates the value of a fi¡nction (for example +(x,y) for inputs x,y) and substitutes

the outcome into a ñrther equation. Addition + is typical of the frrnctional operations

that mathematics distinctively concerns itself with. This, then, is why logicism falls

short: any deduction is a matter of logic plus definitions, whereas an understanding of

the nature of mathematics demands an accotrnt of the contents that a¡e distinctive to

mathematics, and this is what logicism leaves out.
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At the same time, it is might be mistakenly thought that inconsistent

mathematics proposes itself as somehow better than the original. This impression

might be obtained from an analogy with intuitionist mathematics. Intuitionism, fust

proposed by the mathematician Brouwer, is another foundationalist program which is

revisionist in that it contends that there is mathematics proper, which is constructivist,

while all non-constructive methods (such as those of classical analysis) yield inconect

results. It is important then to correct any misapprehension: inconsistent mathematics

does not require truncation of mathematics in the name of the constructivist ideal nor

any ottrer. Indeed, the diffrculty for revisionist philosophies of mathematics is that

they answer one important question, namely what is true mathematics; but fail to

address the prior question, namely what is mathematics, for they fail to say what is

mathematical about proscribed (non-constructive) mathematics. Inconsistent

mathematics is, in fact, the opposite of revisionism, in that it aims to expand ot]I.

conception of mathematics, not reduce it. It proposes that we have here a new

,.branch,, or area of mathematics, an "extension" of the obviously excellent corpus of

traditional mathematics. It is not in any way intended as "better" than classical

mathematics, only different. It aims to expand our conception of what is possible for

mathematics.

8. Conclusion

Let us summarise these implications of inconsistent mathematics for the

faditional philosophies of mathematics: Frege's logicism, Brouwer's intuitionism,

Hilbef's formalism and Platonism. (The theses of this section are ñ¡rther discussed in

Ml995a Chap 1.) lnconsistent mathematics holds out an olive branch to logicism in

that narve set theory can be rehabilitated as inconsistent without any obvious threat to

calculations, as long as a paraconsistent background logic is employed. Nevertheless,

logicism has other failings. It does not identiff what is distinctive for mathematics,

namely functionality and calculation. Intuitionism is to be rejected because, as a

revisionist doctrine, it can at best provide an answer to the question of what is true

mathematics, and not the prior question of what is mathematics. Hilbert's program,

like logicism, gains some support from the Theory of Inconsistency, n¿tmely in the

escape it aftords from the strictures that the Godel incompleteness theorems impose.

However, Hilbert's formalism, in proposing a canonical type of text, falls down in its
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inability to provide an analysis of the many styles and uses of real mathematical

textuality. Finally, this emphasis on text locates the epistemological problem for

mathematics in an accessible place, in contrast to Platonism which would see it

banished to epistemologically inaccessible realms'

These negative conclusions lead me to propose three positive theses that arise

from inconsistent mathematics. They are an essence thesis, an invariance thesis, and a

special case thesis.

The essence thesis is twofold. In answer to the primary question "What Is

Mathematics?", we can say that mathematics is distinctive varieties of text,

particularly symbol, picture and diagram. The use of the plural "varieties" is intended

to convey a sense of family resemblance not universal essence. ln answer to the

secondary question "What Is True Mathematics?", we can say that while logic is

obviously used in drawing mathematical conclusions, it is the role of functionality in

making calculations that is distinctive of mathematics, and in this the logical operators

(other than identity) play little or no role-

The invariance thesis is that inconsistent mathematics has proved to be

invariant over a large class of background paraconsistent logics. This re-inforces the

rejection of logicism: once inconsistency-tolerance is secured, different doctrines of

the nature of implication, deducibility and the logical operators have little effect on

the principles govenning inconsistent structures. \What does govern them is, again, the

ability to calculate the values of fimctions for various inputs, including variable

inputs, and then use the results in frrther calculations by substituting into other

contexts. This hardly means that all there is to inconsistent mathematical theories has

already been determined by classical mathematics: there is certainly much noveþ in

inconsistent mathematics. The explanation, in the end, is that weaker logics permit

more meanings to be distinguished than a stronger logic which binds with more

conceptual connections, but the noveþ is rather independent of logic itself.

The special case thesis is that classical mathematics is a special case of general

mathematics, under the asstunption of consistency. In this, it follows the relation

between two-valued logic and logics in general: classical logic is a special case of

general logic, under the assumption of consistency. In fum, we can see that this

accords with the rejection of revisionism. Nothing of classical mathematics is

rejected. It seems that this amounts to a new freld of mathematics, and that our view
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of what is possible for mathematics is thereby expanded. In sum, The Theory of

lnconsistency is vindicated; the inconsistent has rich and interesting structure.
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CHAPTER 1: MOTIVATIONS

1. Paraconsistency

The following idea has recently been gaining support: that the world is or

might be inconsistent. In its modern manifestation it has been the province of rig-

orous symbolic logic, with motivations from logic, semantics and the foundations

of mathematics. However, the idea finds roots in an older view, that change espe-

cially motion is contradictory, which can be traced back through Engels and Hegel

to Zeno and Heraclitus, and has recently been revived, e.g. by Priest [46].

Two recent convergent motivations have been the paradoxes of logic, semantics

and set theory, and the semantics of relevant logic. A theory is a set of sentences

closed under a deductive relation (but cf. Definition 2.8). A logic (Def 2.7) is

then a theory with the extra property of being closed under the rule of uniform

substitution (relative to a specified set of connectives, such as 'and', 'or', 'not',

'if..then', 'for all', 'there exists', 'equals'). This expresses the idea that the logic

of a collection of connectives ought to be neutral as to subject matter. The point

stressed here is that deductive theories come with a logic in the background, albeit

one which is perhaps tacitly presupposed as natural.

Let us consider set theory first. The most natural set theory to adopt is un-

doubtedly one which has unrestricted set abstraction (also known as naive compre-

hension). This is the natural principle which declares that to every property there

is a unique set of things having the property. But, as Russell showed, this leads

rapidly to the contradiction that the Russell set (the set of all non-self-membered

sets) both is and is not a member of itself. The overwhelming majority of logicians

took the view that this contradiction required a weakening of unrestricted abstrac-

tion in order to ensure a consistent set theory, which was in turn seen as necessary

to provide a consistent foundation for mathematics. But all ensuing attempts at

weakening set abstraction proved to be in various ways ad-hoc. Da Costa [10]

and Routley [51] both suggested instead that the Russell set might be dealt with
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more naturally in an inconsistent but nontrivial set theory (where triviality means

that every sentence is provable, see Definit\on2.4). Since the triviality of a theory

undoubtedly makes it uninteresting, this means that the background logic of any

inconsistent theory should not validate the rule ez contradictione quodliáeú (trCQ:

from A and not-A to deduce any B), which two valued Boolean logic validates. Da

Costa proposed C1 as one such iogic, and demonstrated some C1-independence re-

sults for set theories containing the Russell set. Graham Priest argued persuasively

that semantic paradoxes such as The Liar, and set-theoretic paradoxes such as Rus-

sell's, are best solved by accepting that there are some true contradictions; rather

than sacriflcing the generality and naturalness of principles like an unrestricted

truth predicate or unrestricted set abstraction (e.g. [45],[46]). The need follows

for a logic in which ECQ fails. Such logics are known as inconsistency-tolerant, or

paraconsistent.

A second motivation came from Anderson and Belnap's investigations o1 rele-

aance or conceptual connection. The idea was that correct natural entailment rests

on conceptual connection; so that ECQ could not be a universally valid princi-

ple, because its premises can evidently be irrelevant to its conclusion (B may have

no connection to A and not-A). However, subsequent discoveries in the seman-

tics of sentential relevant logics by Belnap-Dunn-Fine-Meyer-Plumwood-Routley-

Urquhart made it clear that the existence of inconsistent theories was necessary

for relevance (though not sufficient). On this point theIgT2 paper by Routley and

Routley [52] was one of the earliest and most telling.

One can distinguish two strands of doctrine here: strong paraconsistentism is

the acceptance of true contradictions, while weak paraconsistentisrn is the thesis

that contradictory possibilities or structures have to be considered in the semantics

of natural logic. Within strong paraconsistentism one can locate the two views we

began with. First there is the modern motivation that true contradictions arise

by a priori argument from various paradoxes; (for example, the argument that the

Liar sentence 'This sentence is false' is demonstrably both true and false; or the
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argument that the Russell set is demonstrably both a member of itself and not

a member of itself.) Second there is the older motivation that a philosophically

correct account of change forces true contradictions on us. Within weak para-

consistentism, on the other hand, one can distinguish the thesis that inconsistent

semantic structures represent genuine possibilities; so that while no contradictions

are true, some contradictions are possible.

Two further distinctions are worth making here. First, we began by noting the

thesis that the world is or might be inconsistent. But inconsistency is, strictly,

a property of linguistic things like propositions or theories: the'not-A'and the

'A' of a contradiction are the kinds of things capable of being true or false, that is

propositions or sentences. So one can instead have a linguistic version of the central

thesis: that the one true and exhaustive theory of the universe is inconsistent.

The universe would be inconsistent, then, just to the extent that its true and

exhaustive theory was inconsistent. We will not really need to make anything of

this distinction in this book, though it can be said that the approach is certainly

to study theories and other language-like items. A second distinction which has

been made, is between viewing contradictions as propositions which are both true

and false, and viewing them as true propositions of the form A and not-,A (see

e.9. Meyer and Martin [26]). Again, we will not be making much of this possible

difference in this book. But it should be noted that to facilitate formal study, the

mark of inconsistency in a theory is taken to be the presence among its consequences

of the propositions A and not-Á.

The attraction of the Russell set is that of providing a foundation of mathe-

matics on a simple principle such as the naive principle of comprehension. An al-

ternative contradictory foundation might be found in category theory, which looks

interestingly close to inconsistency in places (see Chapter 11), as any broad abstrac-

tion principle will. Mathematicians undoubtedly flirt with such principles. There

are, it should be noted, technical problems with inconsistent naive comprehension:

while the Russell set can be tolerated, a stronger paradox, Curry's paradox, threat-

3
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ens triviality for deeper reasons (Meyer-Dunn-Routley [29], Slaney [53]) Brady has

done important work demonstrating that the ordinal structure in such a set theory

does not collapse in [5].

These ideas are foundationalist in spirit, while this book is not foundationalist.

Many working mathematicians (though by no means all) are suspicious of logicians'

apparent attempt to take over their subject by stressing its foundations. Surely

one can reasonably feel that contradiction in set theory or category theory could

not remotely threaten the immense corpus of mathematical results and applications

discovered over more than two millenia. That alone is an argument for the natural-

ness of limiting the spread of contradictions. I do not mean that no foundationalist

program for mathematics could succeed, however. A foundationalist program might

succeed, and the inconsistent versions look the most promising. Indeed if the spe-

cial case thesis defended later is true (that consistent complete mathematics is a

special case of general mathematics), then any successful foundationalist program

should be inconsistent or paraconsistent in some sense. But I have been persuaded

by Edwin Coleman [8] that foundationalism in mathematics should be regarded

with considerable suspicion; or at least that proper 'foundations', arguably both

formalist and conventionalist in broad senses, would be much more complex and

semiotical than twentieth century mathematical logic has attempted. In which case

it would be arguable whether 'foundations' is an appropriate term.

The first consciously inconsistent number-theoretic structure seems to have been

Meyer's inconsistent arithmetic modulo two (see below Chapter 2); though it is fair

to say that his main concern was with demonstrating the consistency of the rele-

vant arithmeLic Rff, rather than with inconsistency for its own sake [23],[24],1251.

Routley replicated the result using a different nonclassical background logic [51].

Dunn's admirable paper [11] considered three-valued paraconsistent model theory

with applications to arithmetic and type theory. Priest and Routley called for in-

consistent infinitesimals [a7] on the grounds that inconsistent claims abound in the

pre-Weierstrassian history of the calculus. See also Asenjo [6]. It is argued here that
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without a properly developed inconsistent calculus based on infinitesimals, then in-

consistent claims from the history of the calculus might well simply be symptoms

of confusion. This is addressed in Chapter 5. It is further argued that mathematics

has a certain primacy over logic, in that paraconsistent or relevant logics have to

be based on inconsistent mathematics. If the latter turns out to be reasonably rich

then paraconsistentism is vindicated; while if inconsistent mathematics has seri-

ous restrictions then the case for being interested in inconsistency-tolerant logics is

weakened. (On such restrictions) see this chapter, section 3.) It must be conceded

that fault-tolerant computer programming (e.g. Chapter 8) finds a substantial and

important use for paraconsistent logics, albeit with an epistemological motivation

(see this chapter, section 3). But even here it should be noted that if inconsistent

mathematics turned out to be functionally impoverished then so would inconsistent

databases.

2. Summary

In Chapter 2, Meyer's results on relevant arithmetic are set out, and his view

that they have a bearing on Gódel's incompleteness theorems is discussed. Model

theory for nonclassical logics is also set out so as to be able to show that the

inconsistency of inconsistent theories can be controlled or limited, but in this book

model theory is kept in the background as much as possible. This is then used to

study the functional properties of various equational number theories.

Chapter 3 considers equational theories constructed from inconsistent models

modulo an infinite prime. Chapter 4 introduces order. In the first section it is

shown that the result of classical model theory that the theory of dense order

without endpoints is Ns-categorical, breaks down in the inconsistent case. In the

second section arithmetical functions are added and results about ordered rings

and fields are summarised.

5

In Chapter 5, a congruence relation on the ring of noninfinite hyperreal numbers
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is defined; leading to an inconsistent theory in which reasonable notions of limits,

continuity, differentiation and integration can be defined, and Taylor's formula and

polynomial differentiation proved. A simple change to this theory produces an

incomplete differential calculus. In both theories every function is continuous. The

latter theory is shown to have some similarity with synthetic differential geometry,

a well-known incomplete theory in the language of categories due to Lawvere, Kock

and others.

In Chapter 6 we begin by considering Priest's use of the Leibniz Continuity

Condition (LCC) to produce an inconsistent theory of motion. The LCC is seen to

have further implications. It is then shown that inconsistent functions are definable

which can be regarded as everywhere continuous derivatives of certain classical

functions which are úot everywhere differentiable from the classical point of view.

Chapter 7 puts together the previous two chapters to produce a structure in which

functionality fails though in a controlled way; and uses this for an account of

delta functions, which can in turn be regarded as inconsistent derivatives of the

inconsistent continuous functions of Chapter 6.

Chapter 8 applies the additive group ideas of Chapter 6 to the solution of

inconsistent systems of linear equations, and implications for control theory are

outlined. Chapter 9 briefly considers the case of inconsistent vector spaces which

suffer similar limitations to inconsistent fields. However inconsistent projective

spaces over these vector fields do not suffer the same limitations. In inconsistent

projective geometry modulo an infinite prime, it is shown that the usual projective

duality theorem can be extended to a stronger language.

In Chapter 10, inconsistent quotient topologies are studied. It is shown that

there is an interaction between classical topological concepts and the functionality

of certain inconsistent topological spaces.

In Chapter 11, consistency problems for category theory are briefly surveyed.

Then an important type of category, namely toposes, are studied. It is shown that
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a simple dualising operation gives rise to topos-like structures whose natural logic

is not the usual intuitionist open-set logic, but rather its topological dual closed-set

logic, which is paraconsistent. In Chapter 12, this open-closed duality is pursued

further into the theories of presheaves and sheaves. In Chapter 13 extra dualising

operations are considered, and it is shown that again inconsistent and incomplete

theories can be regarded as duals. In the light of these dualities, it is argued that

inconsistent and incomplete theories are deserving of equal respect.

Finally, in Chapter 14 we look briefly at the foundations as they are traditionally

conceived. First, looking at the concept of provability, the fate of the Gödel sentence

in the setting of inconsistent arithmetic is studied. Then, turning to the concept

of the truth predicate, Kripke's nontriviality result using an incomplete theory is

surveyed. It turns out that it is easily adapted to produce an inconsistent theory

which represents the Liar sentence as a true inconsistency. Finally, turning to

set theory containing unrestricted abstraction, we survey Brady's use of a fixed

point method similar to Kripke's to produce an inconsistent set theory in which

the Russell set is inconsistently self-membered. Here, the duality is seen to work

in reverse, in that an incomplete set theory which does not decide on the self-

membered status of the Russell set and other non-well-founded sets, can readily be

constructed.

3. Philosophical Implications

To paraphrase Marx: philosophers have hitherto attempted to understand the

nature of contradiction, the point however is to change it. Recent debates on the

rule Disjunctive Syllogism (DS: from (A or B) and not-A to deduce B) have centered

on whether according to the natural logic of mathematicians that rule is valid. In

most of the structures of this book, DS fails. In view of the well known Lewis

arguments, paraconsistentists are committed to denying that DS is valid since it

leads quickly to the validity of trCQ. (Proof: take as premisses A and not-4. From

A deduce (A or B) bV the Principle of Addition. Then using (A or B) and not-A

7
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deduce B by Disjunctive Syllogism.) However, giving up DS does not seem to be

such a heavy burden, as argued in [31] and [32] (see also [6],[7],[20],[49]). In any

case, if reasonable mathematics can be developed without DS and ECQ, then the

claim that they are universally logically valid is weakened.

The question of the validity of DS and ECQ has not always been distinguished

from the question of whether mathematicians are habitual consistentisers. Now it

seems to me that mathematicians are indeed habitual consistentisers, at least in

regarding inconsistency as implying something wrong with the premisses. However,

this needs some qualification: mathematical practice is not absolutely univocal on

the matter. For example, consider the history of infinitesimals in pre-Weierstrass

calculus, or the old quantum theory (Bohr theory of the atom), or delta functions

both before and after Schwartz, or the terminology of identification' in quotient

constructions (see later chapters). As well, as noted earlier, there are persistent

tendencies among mathematicians to use very general abstraction principles for

both sets and categories, which can lead to inconsistency in short order. And of

course there is the semantical thinking about self reference which has mostly been

the province of logicians. But it is argued here that consistency can be relaxed

without complete disorder resulting. In turn this casts doubt on any attempt to

argue back from habitual consistency to the logical validity of DS and ECQ.

These claims apply to inconsistent mathematics considered as pure mathemat-

ics. There are, I suggest, at least three justifications for studying inconsistent

mathematical theories. The first justification might be called the argurnent from
pure mathematics. The argument from pure mathematics for studying inconsis-

tency is the best of reasons: because it is there. In other words, nothing in this

book relies on the thesis that contradictions are true. Nor is it claimed that the

mathematics needed to describe existing physical systems is inconsistent. But then,

how could you be perfectìy sure? Just possibly a physical reason might be found,

or perhaps some pleasing metaphysical reason (for example, the thesis that incon-

sistent calculus gives a better theory of motion). It is always dangerous to think
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that a physical use will neuer be found for a given piece of mathematics. Nor is

present-day mathematical physics anomaly-free: witness the singularities at the

beginning of time or in black holes, delta functions in elementary quantum theory,

or renormalisation in quantum field theory.

These observations amount to a second reason for studying inconsistent theories,

what can be called the ontological justification. This is, essentiallg the paracon-

sistentist claim that a contradiction is true or might be true, backed up by one's

favourite arguments from semantics or physics. Ontology here means having to do

with how things are; and contrasts with epistemology, which has to do with how

things are known.

Thus there is also a third reason for studying inconsistent theories, what can be

called the epistemological justifi,cation. This is the argument that any information

system with more than one source of information must permit the possibility of

conflict between its sources. Here it can be conceded that the world is consistent,

so that an inconsistent database would inevitably be incorrect somehow. But it
is not always easy to produce a consistent cut-down of one's information base, at

Ieast one which is not arbitrary in its selection of what to discard. Yet humans

display the ability to operate in an anomalous data environment. This is plainly

because evolving creatures face real-time difficulties; it might just take too long

to solve the problem of what is the truth about one's environment. Evidently,

informationally-sensitive machines face similar problems. For example, an aircraft

aloft might be receiving contradictory data from its sensors but be unable to take

the luxury of shutting down before solving the problem of what is the nature of

the physìcal environment. Thus, rules for operating deductively in an inconsistent

data environment are necessary, and the rule ECQ which permits the deduction

of everything from an inconsistency ìs unhelpful. At the very least, a study of

inconsistent theories in which such a rule is broken is indicated as part of the long-

term goal of artificial intelligence. Thus, even if the world is consistent, and having

to deal with inconsistencies turns out to be because of the epistemic limitations of

9
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finite humans or computers, inconsistency-tolerance might well remain a permanent

part of a good expert system.

A special case thesis was mentioned earlier. No claim is being made that in-

consistent or incomplete mathematics is better than classical mathematics. Still,

classical mathematics is a special case in two ways. To the extent that the logic of

classical mathematics is classical two-valued logic, then classical logic is a special

case of paraconsistent logic, holding over a restricted domain in which the assump-

tion of the truth-preservingness of DS holds. Further, general mathematics can be

consistent or inconsistent, complete or incomplete, prime or nonprim". (A theory

is nonprime when it contains some disjunction without containing the disjuncts:

Meyer's l?f interestingly turned out to be nonprime, and there is nonprime quan-

tum arithmetic, on both of which see Chapter 2; as well, classical Peano arithmetic

is nonprime by Gódel's theorem.) Nontrivial classical theories satisfy the special

assumption of DS, so nothing is lost because it is all there in the classical special

case. The aim of the present work is to expand conceptions of mathematics, not to

deny the obviously excellent corpus of classical mathematics.

Intuitionist mathematics is the home of incomplete theories (but note that any

consistent axiomatisable classical theory containing arithmetic is also incomplete by

Gódel's theorem). The present point of view is firmly in favour of intuitionist and/or

incomplete mathematics (see especially Chapters 5, 6 and 11). Let a thousand

theories bloom. However the main concern in this book is with inconsistency,

if for no other reason than that incompleteness has seemed easier to swallow than

inconsistency, something not so easy to justify given the duality results of Chapters

11-13. Those results turn on the topological duality between open sets and closed

sets. It is well-known that intuitionist logic is also the logic of open sets; that is, that

intuitionist logic stands to open sets as classical two valued Boolean logic stands to

sets in general. It is less well-known that the logic of closed sets is paraconsistent,

and this is considered especially in Chapter 11. Intuitionist theories have sometimes

been very complicated. The three-valued approach to incomplete theories (below,
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Chapter 5) can often illustrate many of their features in a simple and natural way.

But conversely the complex brilliancy of incomplete theories in, say, the theory

of sheaves, or synthetic differential geometry, is highly admirable. A three-valued

incomplete approach to the truth predicate was taken by Kripke in his excellent

paper 'Outline of a Theory of Truth' [19], which is discussed in Chapter 14. Kripke's

approach has been nicely generalised to the inconsistent incomplete case by Fitting

[12].

It can also be said that the use of closed-set logics for various theories below

contributes to the re-vindication of the point of view of Brazilian logic. Brazilian

logic studied paraconsistent logics partly with the aim of dualising intuitionism

(see Da Costa [10]). For a time, however, it looked as if these logics suffered a

serious limitation, because they do not admit a reasonable implication operator

(see [30] and [36]). However, closed-set logic can fairly be described as Brazilian-

style. Also, a somewhat cavalier attitude is taken to implication in later chapters:

to the extent that implication is the converse of deductibility, the latter is usually

preferred below. Mathematics, unlike logic, seems not very interested in nested

implications, and even less interested in nesting of depth three or more (perhaps

it should be). This is in line with the position defended later in this section and

elsewhere, that mathematics is functional rather than logical. And needless to say,

existing theories based on Brazilian logics (see above first section) are as legitimate

and interesting as any other.

I would further argue that the only way to establish validity of the paraconsistent

point of view is to demonstrate the existence of a rich and interesting inconsistent

mathematics. Without that, the paraconsistent position would seem to rest on

a motivation at best epistemic and computational, and functionally impoverished

at that. That is why frnding a distinctive inconsistent perspective on analysis, the

crown jewel of classical mathematics, is desirable. The present book falls somewhat

short of that; again for functional reasons the real numbers look to be essentially

consistent (see especially Chapters 2-5 below). It is to be hoped that the situation
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with inconsistent analysis will ultimately improve. Combining inconsistency with

incompleteness would seem to be the right way to go here. For an example of this

combination, see Chapter 6.

Fortunately or unfortunately, the methods and results in this book indicate

that the 'essence' of mathematics is deeper than paraconsistentists have thought,

though it is also argued here that this is no vindication of any classical consistent

limitation. Definitions are necessary to explain this point. A theory is functional
iff, if an equatior f1 : ú2 holds then Ff1 holds itr Ft2 holds, where f' is any

atomic context (roughly, F is any 'logic-free' context lacking &, V, -, -,V,3); and

a theory is transparenú iff the same is true except that .F is any context, including

possibly the logical operations as well. (See Definition 2.11.) Now in the following

chapters it is clear that being at least functional, if not transparent, is a good

constraint to have on a theory. Without it, control over identity seems to be lost

and one wonders what equality stands for, especially in the equational subtheory

(though in a few theories later there is a controlled relaxation of functionality, see

e.g. Chapter 7). But a method of proving inconsistent theories to be functional is

commonly to find existing consistent theories which are invariably functional, add

appropriate denials of atomic sentences using a paraconsistent background logic,

and let the functionality of the latter ride in on the back of the consistent theory.

Indeed it is not hard to show that any inconsistent complete functional theory

has a consistent complete functional subtheory, which one might expect millenia

of classical mathematics to have encountered. So one might say that classical

mathematics, interested in functionality, concentrated on the consistent functional

subtheory, naturally failing to notice related inconsistent supertheories.

At its strongest this might be the criticism that inconsistent mathematics leads

to no new functional insights, a typical mathematician's complaint. But I do not

want to concede too much here: the situation is nowhere near as bad as that. For

one thing, one can say that inconsistency is functionally no worse than consistency.

The consistency constraint is unnecessary and binding, and full functionality is
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available without it. One might further argue that this shows that functionality is

deeper than consistency, completeness, or primeness. The question of the validity

of DS and ECQ is irrelevant to the essence of mathematics, one might say. This

also gives the prospect of searches for partly functional structures, where the failure

of functionality is controlled by a combination of incompleteness and inconsistency.

But also, it is not true that there are no interactions between functionality and

inconsistency or incompleteness. The down side of this is the difficulty of incon-

sistentising real number theory, the essential consistency of the real and hyperreal

number fields which was just mentioned. But the up side is that this can lead to

interesting insights about functionality; for example Chapter 10 on topology, and

any other time a quotient construction is done by thinking of identifying' distinct

elements (Chapters 9,10 and elsewhere).

The essentialist talk above about the essence of mathematics should not be

taken too literally. It is only intended to claim that abandoning functionality is a

bigger departure from mathematics as it is practised, than abandoning consistency

or completeness is. If anything, inconsistent mathematics suggests antiessentialism

and antinecessitarianism about mathematical truth. By necessitarianism is meant

here the claim that there is a special unshakeable status for the truths of mathe-

matics and logic, that true mathematics and Iogic cannot have been false. I think

the argument here against necessitarianism proceeds by attempting to whiteant

the necessitarian's resolve, rather than knockdown refutation. But if consistency is

not a necessary constraint on rigorous mathematical reasoning, then surely noth-

ing is sacred. For further argument in favour of antinecessitarianism, also called

possibilism, see [35] or [38].

In place of necessitarianism, it seems right to put conventionalism about math-

ematical truth. By this is meant the idea that mathematics, particularly pure

mathematics, is more like a decision than a discovery of a pre-existing truth. I do

not mean the kind of conventionalism that confers a mystical power on conven-

tions or decisions to inaugurate or sustain necessary or logical truth. The old game
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analogy does seem the right one: the 'truths' of pure mathematics are internal to

mathematical theories in a way like rules are internal to games, and quite unlike

the way empirical claims about the physical world are true or false.

There are of course some interesting disanalogies: mathematics seeks unity

between its branches, while games seem quite huppy to be isolated from one another.

Also, certain mathematical propositions have a preferred status (accepted) over

others (denied), whereas preferred strategies can be reversed in different games.

But whatever the explanation here, it presumably lies in the social. The question

wherein lies rigor presumably has an explanation in terms of mathematical society

and its relations to the rest of society and to the physical world and its properties

(forms). Certainly an explanation in terms of the necessity of certain propositions,

as opposed to their mere truth, would add nothing.

Another conclusion to draw, perhaps more speculatively, is antiplatonism about

the abstract objects of pure mathematics. Of course, the relationships between the

propositions of mathematics and the forms (properties) of objects in the physical

world, are very complex. Still there seems to be no difficulty in principle in denying

timelessly existing abstract mathematical objects as truthmakers. One can be

gripped by the picture of eternal objects, if one thinks of theories as necessarily

consistent. Freeing up consistency suggests ultimate freedom from any constraint.

But the absence of external constraints is the mark of fiction, not of fixed existing

truthmakers. Convention cannot create what is not there to begin with.
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CHAPTER 2: AR.ITHMETIC

1. Relevant Arithrnetic

The first consciously inconsistent arithmetical structure can fairly be dated at

Robert K. Meyer's 1975 nontriviality proof for the consistent relevant arithmetic

Rff. In deference to history and to whet the reader's appetite, this chapter begins

with a simplified version of his argument. We will see that it has considerable

significance for the understanding of Gódel's incompleteness theorems. Later in

the chapter, the style of argument used by Meyer will be extended so as to study

a broader range of number systems. First we need a formal language. This is

the standard type of first order language used for studying formalised arithmetic

theories, save that for technical reasons a distinction is made between two impli-

cation operators I and --+. The language has names for all the natural numbers,

0, 0', 0', . . . , the arithmetical operations * and x, and the usual logical apparatus.

Definition 2.1. The language L contains a single binary relation symbol :,
a single constant 0, term-forming operators *, X, ', (the latter is read 'the suc-

cessor of'). 0(") is defined as 0'"'' with n superscripted dashes. That is, 0(') is

a name for the natural number n. In addition, there is logical apparatus con-

sisting of variables rru,z¡..., a unary propositional operator -, binary propo-

sitional operators &, V, J, f , r, <-+, and quantifiers V and l. The number of

primitive operators can be reduced by defining AV B :df - (- Ak - B),

A: B :df (A ) B)k(B ) A), A <--+ B :df (A --+ B)U(B -+ .4), and

(l ) :dÍ - (V ) -. The connective --+ is not material implication ). The latter

can be defined Ïty A > B :dT - AV B; the former is intentional and not definable

from &,V, and -. 0 is a term, and if ú1 and t2 are terms, so are t\, (t, f ú2), and

(t1 x t2); and ú1 : tz is an atomic sentence. AII atomic sentences are sentences,

and if A and -B are sentences, so are - A, AkB, AV B, A) B, A: B, A-+ B,

O *- B, (Vr)Ar, and (lr)Ar, where r is a variable not occurring in A and Ar is

the result of replacing some term in A wherever it occurs by z.
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We study theories of various logics. Theories are deductively closed sets of

sentences (of the above language in the present case). Different deduction relations

are thus possible, which are described by the axioms and rules of different logics.

Meyer used .RQ, a quantified version of the well-known relevant logic ,8.

Definition 2.2. The releuant logic RQ is given by all universal closures of the

following axiom schemata and rules.

Axioms:

(1) (A - B) - ((B - C) - (A--+ C))

(2) A--+ ((A -- B) -- B)

(3) (AkB) -- A
(4) (AkB)-- B

(5) ((A , B)k(A-- c)) .- (A.- @Aq)
(6) A--+ (Av B)

(7) B --+ (Av B)

(8) ((A - C)k(B-- c)) -- ((A v B) --+ c)
( e) (Ak(B v c)) --+ ((Ak,B) v (A&c))

(10) -- A --+ A

(11) (A --- A) --+- ¡
(r2) (Vr)Ax--+ At (ú any term)

(13) (vx)(A-- B)--+ ((Vø)A + (Vr)B)

(14) A --+ (Vr)A (r not free in A)

(15) (Vu )(A v B) --, (Av (Vr)B) (r nor free in A)

(16) ((v,')A&(vr) B) --. (vr)(AkB)
Rules:

(i7) If A and B are theorems so is A&,8

(18) If A and A --+ B are theorems so is B.

To obtain the logic RMq add the axiom scheme A --+ (A --- A).

The logic r? (the sentential fragment of RQ) is an important relevant logic. A

logic is said to l¡e releuanú iff, whenever A -- B is a theorem of the logic then A and
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B share an atomic sentence in common. Relevant logics were studied extensively

by Anderson and Belnap in [1] as well as by many others; and were proposed as

serious rivals to classical (two-valued) logic as a logic of natural reasoning, which is

arguably relevant at least in its sentential fragment. Every valid argument of .r? is

a valid argument of classical logic, but not vice-versa. With a language and a logic,

we can now specify arithmetical theories, in this case Meyer's relevant arithmetic

R#. Rff is similar to classical Peano arithmetic, called here Pff, save that in
several places material implication ) is replaced by the strong implication -r used

by all the usual relevant logics.

Definition 2.3. The arithrnetic Rff is given by:

logical axioms and rules are those of RQ,

arithmetical axioms:

(#1) (Yr,y)(r : a ë *' : a')

(#2) (Vr,A,z)(x:y --+ (r: z --+y: z))

(#3) (V")(- z':0)
(#4) (V')(z*0:r)
(#5) (Vr,y)(x * y' : (r I u)')

(#6) (Vr)(r x 0:0)
(ff7) (Vr,a)@ x u' : (r x y) + r)
Arithmetical rule of mathematical induction (RMI): If f'0 and (Vz)(Fr --+ Fr,)

are theorems, so is (Vø)Fr.

For the arithmetic RM#, add the logical axiom scheme A ---+ (A --- A). For the

arithrnetic" R## and RMfff , add to Rff and RMff respectively Hilbert's rule

0: if F0, FI,F2... are all theorems, so is (Yr)Fr. For classical Peano arithmetic

Pff, take as logical axioms and rules those of classical quantification theory, and

replace ---+ and e' in (f 1) , (#2) and (RMI) by ) and : respectively. For classical

standard arithmetic P##, add rule Q to Pff.

To the extent that ,R captures a more plausible account of implication than

classical logic does, as argued by Anderson, Belnap and many others, then it is
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arguable that Rft gives a closer account of 'natural' arithmetic than classical Peano

arithmetic Pff does. This does not 'deny' Pff: it is an interesting system like many

another, not the least because the Gódel incompleteness theorems can be proved

of it (see below).

Definition 2.4. An arithmetical theory is (negation) consistent tf for no sen-

tence A is both A anà - A provable, else (negation) inconsistenú; and nontriuial iÎ

not every sentence is provable, else triuial.

Proposition 2.5. (Meyer) Rff is nontrivial.

Proof. The argument uses the three-valued logic ,RM3 with values {F,B,T},
the two element domain {0,1} of arithmetic modulo two, and an interpretation

function 1 assigning terms to elements of {0,1} and sentences to elements of RM3.

Set 1(0(")) : n mod z, I(+) - * mod 2, I(x) : x mod 2. For any terms

tt.,tz,, set 1(r1 +tz) :1(+X1(ú1),,1(tr)),1(ú1 x tr) : I(x)(1(ú1), I(t")), and r(ti) :
(1 +/(¿1)) mod 2. Set 1(t1 -tr): Bif l(tr): I(tz),else 1: r'. For nonatomic

sentences, set 1(- A) : T, B or f' as I(A) : F, B or ? respectively. Order

{F,B,T} bv F < B ( ?; and then set I(AS¿B): min{1(,4),/(B)}; set 1(,4v8) :
max{I(A) ,1(B)}; set I(A -, B) - 1(- Av B) fi IØ) < I(B),, else 1(A ---+ B):
I(- AkB); and set I((Vz)Fr): min{y: for someterm ú, I(Ft):y}. It is now

a straightforward, if lengthy, argument to verify that all theorems of R# take one

of thevalues {B,f}, Butsince0mod2+Lmod2, 1(0:1) :F. Hence Rff\s

nontrivial. !

Meyer makes the point that this argument relies only on methods which are fini-

tistic in Hilbert's sense. In particular, the quantifiers can be treated by establishing

that I((Vr)Fr):I(F0&F1), which is a standard argument in the metalanguage.

Thus r?f enjoys an advantage over classical Peano arithmetic Pff : that its non-

triviality can be established by finitistic methods. Yet as Meyer pointed out, all

primitive recursive functions are representable in Rff, which is thus subject to the

Gódel incompleteness theorems also. But this is not really a puzzle. The explana-
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tion is that relevant and other paraconsistent logics turn on making a distinction

between negation inconsistency and triviality, the former being weaker than the

latter; whereas classical logic cannot make this distinction. For what the present

author's intuitions are worth, these do seem to be different concepts. Thus for

Rff, negation consistency cannot be proved by finitistic means by Gódel's second

theorem, whereas nontriviality can be shown. Since Pff collapses this distinction,

both kinds of consistency are infected by the same unprovability.

Indeed Rff can do even better; for consider any 'false' equation tt : tz, i.e.

one which reduces by calculation to 3(") - 0(-) where these are classically dis-

tinct natural numbers. Then a simple modification of the above proof using

modulo(max{m,n} + 1) instead of modulo 2, shows that ú1 : úz is not a theo-

rem of Æf. ,Rf has thus greater security of calculation than Pf. If there is

negation inconsistency in Rft, it is along way away, contained. Meyer uses these

conclusions to call for a revived Hilbert program based on relevant rather than clas-

sical logic: since there exist finitistic proofs that various undesirable conclusions do

not follow in relevant arithmetic, mathematics based on relevant logic cah escape

the limitations of Gódel. The Hilbertian point of view is not, however, taken in the

present work.

One might also wonder whether there is the prospect of the nontriviality o1 Pff,
and hence its negation consistency, via a proof that Pff c R#. Needless to say

such an argument would be nonfinitistic by Gódel 2, but it might be interesting

nonetheless. This is the golrlmn problem for Rff. It turns out that if R# were closed

w.r.t. the rule: if A and A ) B are theorems so is B, then P# C r?f . Recently

however Meyer has shown ihat this rule fails for Rff. Meyer has expressed some

dissatisfaction with -Rf because of this result, but it seems that it makes Rff aII

the more interesting.

This is not a book about relevance, however. The point of view might be

described as paraconsistent, insofar as that implies an interest in nontrivial incon-

sistent theories.
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2. Nonclassical Logics and Their Theories

We proceed to a more systematic approach to inconsistent theories. In order

to show that inconsistency can be contained in a deductively rigorous way, it is

necessary to set out some of the theory of models. In this section we define theories

and the semantical notion of an assignment. In the next section we bring in the

notion of a domain and thus a model. Models are best thought of as devices for

controlling the mernbership of theories; only secondly are they what theories are

about. Theories define their own 'aboutness', regardless of domains of interpreta-

tion. An analogy is with the values of a many-valued logic, which are in the first

place devices for controlling membership of theories. We begin by extending the

Ianguage of tire previous section, so as to deal with a broader range of applications.

Definition 2.6. The language.C has the following components:

(1) a collection of names or atomic terrns, for example names for some or all

the rational numbers, or integers, or rational numbers, or real numbers, or

hyperreal numbers or other mathematical entities. Normally these names

are taken from the entities themselves, i.e. self-naming. For each theory the

collection of names must be specified.

(2) a collection of n-ary term-forming operators, for example from among

*, X, -,1,-t,',( , , ), and possibly others. If. t1,...,ú,, are terms and o

is an n-ary term forming operator, then oúr, . . . , ú,, is a term. Term-forming

operators are also called function symbols.

(3) a collection of n-ary primitiue predicates, for example from among :, (, e and

possibly others. If ¿r,. ..,tn ale terms and F is an n-ary primitive predicate

then Fú1 . . . ú, is an atomic sentence.

(4) a collection of n-ary sentential operators. The general purpose negation sym-

bol is -, but -r (open set intuitionist negation) and r (closed paraconsistent

negation) are sometimes used; also sentential operators &, V, l,:, --+) €.
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(5) uariables r,U,z¡ and possibly others; and quantifi,ers (V ) also written ( ),
and (i ). These form nonatomic or complex sentences in the usual way. It is
stipulated that no term is a variable and that only theories containing just

closed sentences are considered.

Definition 2.7. A logic,L is a set of sentences closed under uniform substi-

tution and under a consequence relation l-¿, sometimes written F¿ if the logic is

semantically specified. The subscript is dropped if it is clear what logic is intended.

Definition 2.8. An L-semitheory (of logic .[) is a set Th of closed sentences

satisfying: if A € Th and AIL B then.B eTh. An L-theoryis an -L-semitheory

also satisfying: fi A e Th and B e Th then AkB e Th. If Th is an -L-theory

and A €Th then we write lrn A, dropping theTh when no confusion will result.

An tr-semitheory Th is --inconsistent if for some A both A e Th and - A e Th

(similarly for r and r, inconsistent for short); else Th is --consistent (consistent

for short). This prime if, whenever a disjunction AV -B is inTh at least one of

the disjuncts is too. Th is incomplete if for some sentence A neither A nor - A

is in ?å, else ?å is complete; and Th is triuial iÎ Th: f , else nontriuial. Th js

zero-degreeor ertensionalif none of its members contains occurrences of --- or <--+.

Most of the theories in this book are extensional. If Th ÇThz, ïve say Lhat Th2

extends or is an extension of Th.1.

Logics and theories in this book are determined by specifying (1) u lattice,

complete in the lattice-theoretic sense) (2) a definition of the operats¡ - (or -r or

r-), and a definition of the relation F or the operator ---+ or both, on the lattice,

(3) a subset V of designated values, closed upward under the order on the lattice,

(a) an assignment function 1 : language L ---+ the lattice.

In more detail
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Definition 2.9. An RM3-theory is determined by

(1) The lattice whose Hasse diagram is

That is, AU B : lub{Á, B} and An B : glb{A, B}
(2) For --+ and -,

TBF

Set of designated values V : {B,T}.
I : L --+ {F,B.,T} is a partial function satisfying

(4.1) If A is an atomic sentence and 1(A) is defined, then 1(A) € {4 B,,T}

(4.2) r(AkB) : r(A) À r(B)

(4.3) r(Av B): r(A)u r(B)

(4.4) I(-A):-r(A)
(4.5) I(A---+ B): I(A)-- r(B)

(4.6) /((Vr)F'c) : glb{y : for some term t, I(Ft) : A}

(47) I((=r)Fr): lub{the same set}

T

B

F

---+

F
B
T

TFF
TBF
TTT

T
B
F

(3)

(4)

Such a function 1 is called an RM3-assignment. A semitheory Th is then

determined by the condition Th :df {A: I(A) € v}; and if V is afilteron RMJ

then 7l¿ is a theory. One says that I determines Tl¿. If Th is the RM3-theory

determined by 1, then A holdsinTh and I if I(A) € V. The logic RMJ is the set

of sentences which hold in all such I (".g.all instances of A -- A), together with

the definition: A I B :df for all I,if I(A) € V rhen 1(B) e V.

For P3-theories, make only two changes (") B -- B : T, (b) -B : ?. This

is often signalled by changing - to r. Such theories are complete and generally
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inconsistent and nontrivial. The logic P3 is defined in the same way as RMJ above

For J3-theories, (a) change the letter 'B' in PJ to 'ly'' (for 'neither'), (b)

change - to -r, (c) r1ú : f', (d) v : {?}. These theories are consistent and

generally incomplete. The logic J3 is generated as above.

For PJL-theories, use the lattice

N

F

Also, (u) -?:--ly' : F, -F:-B :T (- is used for negation here since it is

'neutral', but note that P3 and J3 are sublogics), (b) A -r B :df T if A < B
else A -, B: F, (") v : {B,T}. This generates theories which are in general

both inconsistent and incomplete. The logic PJ4is defined as above.

For the next few chapters RM3-theories are mostly used. While theories of

other logics are interesting and have different properties from RM3-theories, many

of the interesting functional questions are invariant w.r.t. changes between the

logics. P3 and J3 theories are used in the chapter on differential calculus. PJ4-

theories are used in the chapters on inconsistent continuous functions and on linear

equations.

A simple result is the following

Proposition 2.10. (Extendability lemma) Let fi and Izbe RM3-assignments

in the same language, and 7å1 and Th2 be the extensional theories generated. If
the atomic sentences holding in I are a subset of those holding in 12, and the

negations of atomic sentences holding in 11 are a subset of those holding in 12, then

Th2 is an extension of Th1, i.e. Th C Thz.

Proof. By induction on the number of occurrences of {-,&,v}. Note first

that the hypothesis of the proposition is equivalent to the following: If ,4 is any

23

T



24 Arithmetic

atomic sentence then (a) if It(A): ? then Ir(A) € {B,T}, (b) if I{A): B

then I2(A): B, (c) if Ir(A): f' then Ir(A) € {48}. The inductive argumenr

shows that (a)- (c) hold of all sentences. (Base clause:) Already defined to be

true. (-clause:)(a) If Ir(- A): T then Ir(A): F, so by inductive hypothesis

(c), Ir(A) € {f,B}; whence Ir(-¡¡e{8,?}. The cases (b) and (c) are similar.

(&clause:) (a) If I{Ak,B): T then Ir(A): Ir(B):7; when ce I2(AÇB) e {8, T}.
The cases (b) and (c) are similar. (Vclause:) (a) If I{(Vx)Fr) : T then for all

terms t, I{Ft):T; so by inductive hypothesis (a) for all terms t, I2(Ft)e{B,T};
whence I2((Vr)Fx)e {B,T}. The cases (b) and (c) are similar. !

Note that the proposition fails for theories containing --+. The result is applied in

many places in what follows. A frequent strategy is to take a consistent complete

classical extensional (zero-degree) theory and extend it by adding extra atomic

sentences which were assigned ,F in the old theory. This amounts to choosing a

new RM3-assignment in which the extra atomic sentences and their negations are

all assigned B. The Extendability lemma then ensures that the new theory loses

none of the sentences of the old.

Definition 2.1L. A theory is functional iff,1or all terms t1,t2, if tt : tz holds

then for any atomic sentence Fú1 containing ú1, Fú1 holds itr Ft2 holds, where Ft2is

like Fúr except for replacing f1 in one or more places by ú2. A theory is transparent

if the same condition holds except that f'ú1 can be any sentence (not restricted to

atomic).

Now notice that the Extendability lemma does not ensure that an inconsis-

tent extension of a functional theory must itself be functional, and similarly for

transparency. One cannot add classically false sentences to a theory willy-nilly and

expect to remain functional. For example, if 0 : 2 is added to classical natural

number theory without also adding 0*1 -- 2+I, i.e. 1 : 3, then functionality fails.

And even if functionality were ensured, if - 0 : 0 is not also added then trans-

parency fails (since l- 0:2 and l- -0:2 but not F -0:0). Functionality and

transparency coincide for classical consistent complete theories, but not for RMJ,
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P3, etc- It is a desirable characteristic for mathematical theories to be at least func-

tional if not transparent, for then equality means something so to speak. In some

later chapters it is seen that transparency is not as important as functionality, but

also that even the latter can be relaxed in a controlled and reasonably-motivated

way' From now on for several chapters, unless otherwise stipulated, we deal with

.RM3-assignments and their associated theories.

Definition 2.L2. An assignment is prerefl,exiae iff for all terms ú1 there is some

term ú2 such that tt : tz holds; and reflexiae iff for all terms t, t : ú holds. An

assignment is norrnal iff (i) reflexive, and (ii) h : tz holds iff t, : ú1 holds, and

(iii) if tt: tz and t2: ús hold so does tt:ts.

Proposition 2.13. (1) An assignment 1is transparent ifffor all terms t1,t2,if
tt: tz holds then for all atomic F, I(Ft): I(Ftz).
(2) If 1 is functional and prereflexive then I is normal.

(3) If l is prereflexive andTh is an equational theory, then 1is transparent ifi 1is
functional and for tt,tz, if F ¿1 : úz then for all t, I(h - t) I(tr: ¿¡.

Proof. (1) ,? to -L is a straightforward induction on the number of occurrences

of {-,&,v} in sentences. tr to,R: suppose for some tt,tz, and atomic F,I(Ft) I
I(Ft2). If one of Ffi and Ft2 does not hold then the other does so that f is not

functional and thus not transparent. Otherwise, if both Fú1 and Fú2 hold then one

of -Ftt and -Ftz does not hold and the other does, and again 1is not transparent.

(2) Let Ú be any term. By prereflexivity, there is a term 11 such that l- t : tr.
Byfunctionality, t:t holds iffú: ú1 holds, so l- ú: ú. Alsobyfunctionality,
tr:tz holds \fftr: ú2 holds and f2: úr holds \fftr: ú2 holds. Hence if tr: ¡,
holds then ú2 : úr holds. Finally, again by functionality, if tt : tzholds then ú1 : l,
holds \ff tr: ú3 holds; so if ú1 : úz and tz: tz hold then tt: tz holds. Hence 1 is

normal.

(3) Let I be prereflexive and Th an equational theory. If 1is transparent then

certainly 1is functional, and bV (1) if l- ¿r : tz Lhen for all t,, I(h - t) I(tr: ¡¡.
conversely, from (1) it suffices to prove that if F h - ú2 then for all atomic -F,



26 Arithmetic

I(Ftr) -- I(Ft2). Clearly it suffices to prove for just one replacement of fi l:y t2

since an obvious induction then proves it for more replacements. Thus Fl1 has

one of two forms, t(tt) -- t or t : t(tt), and Ft2 has the corresponding forms

t(t2): t or t: t(tz). That is it has to be proved that 1(t(t1) : ú) : I(t(tz): t)

and /(f : ú(¿r)) : I(t : t(tr)). Now by functionality, prereflexivity and (2),

l- ¿(¿1) : ú(úr)i hence if l- ¿r : úz then by functionality l- ¿(¿r) :t(tz).Hence by the

condition of the theorem, 1(ú(ú1) -t):I(t(t2):¿). The other case is similar. tr

A simple result is the following

Proposition 2.14. (Term elimination) Let Th be a transparent extensional

theory determined by 1. For any terms tlrt2in L,let \ N t2 iff ú, : f2 holds inTh
or f 1 and t2 are the same term, and let L' be any sublanguage of 4 containing just

one term from each =-equivalence class and agreeing with / on function symbols

and primitive predicates. Let Th' be the theory determined by the assignment 1'

which is the restriction of 1 to L'. Ther- the restriction of Th to L' : Th'.

Proof. By induction on the number of occurrences of {-,&,V}.
(Base:) The atomic sentences of ?å in the weaker language have the exact values

they have in 1'.

(- and & clauses:) Straightforward.

(V clause:) (V1.1 :) If I((Vz)Fr) : T then /(f'f) : T for alt t in L. Hence

I(Ft): ? for all ú in L', so I'(Ft): ? for every t in L,, so I'((V')Fr):7.
(V1.2 :) Conversely, if I'((Vr)Fr) :7 then I'(Ft): ? for every t in L,. Since ?/¿,

is transparent, for every t in L, I(Ft): ?; so I((Vr)Fr): T.

(V2.1 :) If /((Vz)f r): B, then 1(Fú) € {8,7} for every tin L, and for some ú1,

I(Ftt): -8. Hence I(Ft) : I'(Ft) e {8,?i for every t in L'. But also t1 x fu for

some 12 in L', and I'(Ft2) -- I(Ftr): I(Ftt): B; so I'((Vr)Fr): B.

(V2.2:) If I'((Vr)Fx): B, then for all I in L',1'(Ft) e {8,?}; and for some t1

in L',I(Ftr): B. But for all t2in L there is some fuin L'such that ú2 = ú3 and

I(Ft2): I(Fts): I'(Ftt) € {B,T} with also /(Fú1) : B; so rhar 1((Vr)Fr): B.

The cases (V3.1) and (V3.2), when 1((Vr)Fr) : F, are similar. !
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Note that the last proposition fails if 'transparent' is weakened to 'functional':

suppose that while h --tz holds, for some atomic F I(Ftù: T but I(Ftr): p.

Then the choice of f1 rather than t2lor L' affects whether (1r) -p, holds in 1,

and Th', but the restriction of Th to L' is unaffected.

3. Models for Number Systems rvith Arithmetical
Operations

We proceed to the notion of a model, and then study various arithmetical

operations.

Definition 2.L5. A model is a pair (D,I) where D is a set and 1is an as-

signment which also (1) assigns to every name a member of D, and is onto D so

that every member of D is named; (2) 1 assigns to every n-ary function symbol

an n-ary partial function on D; (3) the assignment to complex terms is given by

I(ftt. . .tn) : IU)Q(|I) . . .I(t")); (4) 1 satisfies: f1 : Íz holds iff I(¿1) and I(r2)

are defined and equal. These have the effects that 1 is normal and functional. A
model (D,I) is transparent iff I is transparent, inconsistent (incornplete) itr the

associated theory is inconsistent (incomplete). A model is an extension of another

if the associated theory of the first is an extension of that of the second; and infi,nite

iff D has an infinite cardìnal, else f,nite.

For example, consider the class of finite transparent models described in the

first section of this chapter, in which all (extensional) sentences of the classical

standard model for the {+, r.} arithmetic of the naturaì numbers hold (see [22]).

Take names for all the natural numbers {0,r,2,...} (". usual we can let these be

the natural numbers themselves); function symbols are {*, x}. The domain is the

integers modulo nt, i.e. {0, 1,. ..,rn - l}. For every name ú, set 1(l): ú mod zn;

and set 1(+) :1 mod r¿ and 1(x): x mod m. This determines 1(t) for every

term ú. Finally set 1(ú1 :tz): B \f l(tr): I(tz), else 1(ú1 :tz): F. In [27] these

are called RM3^ and it is proved that they determine theories which are inconsis-

tent, complete, nontrivial, c.,,-inconsistent, cu-complete and decidable. It is also well
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known that the classical integers mod rn permit a definition of additive inverse,

minus n, as (-n) mod rn :df m-n mod milnmod rn I 0 and 0 otherwise; and

thus subtraction as n1(-modm)n2 :df nr(*mod m)((-n2)mod rn). So adding

to the model names for all negative integers and setting /(-):-mod zn deter-

mines 1(ú) mod m for all integer terms ú in the {:, -, x } language. If as before

I(tt:tz): B if 1(ú1) : I(tz) else 1(ú1 - tz): F, then the Extendability lemma

can be applied to conclude that every sentence of the classical consistent complete

(zero-degree) theory of the ring Z of integers holds. Also clearly the conditions of

Proposition 2.13 are satisfied so the model is transparent.

Summarising,

Proposition 2.16. There are finite irrconsistent complete transparent models

in which every sentence of the classical consistent complete theory of the ring of

integers Z holds. ¡

It is worth noting that in these models it is not in general true that if A holds

and A f B holds then B holds. In particular, (A& -A)k((Ak, -A) ) B) might

hold while B does not, e.g. if A is 0 : 0 and B is 0 : 1. Thus, as is characteristic

of inconsistent nontrivial theories of paraconsistent logics, the rule D,9 in the form

(if A holds and -A V B holds then B holds) fails in these models. But this does not

irnply any loss of classical information; since clearly for any A and B, if Ak(A) B)

holds, and also holds back in the classical standard model of the integers, then B

holds (because by a well known argument DS hotds for any consistent complete

theory).

An application of the term elimination lemma (Proposition 2.14) is that since

these inconsistent models for Z are transparent, their simple terms can be cut down

to {0, 1,..., m - I}; and then the assignment I(h - tr) : B \tr I(t) : 1(úz) else

I : F, has exactly the same sentences true as the assignment with names for all

integers, in their common language.

Moving to division and the theory of fields, it is well known that finite clas-
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sical arithmetic modulo a prime p allows a definition of the unique multiplicative

inverse n-r of every number n + 0 in {0,1,..., p - Li, and thus division via

ntlnz :df nt(x mod *)(";t). These can be described by the classical transpar-

ent assignment with I(l): /mod p, and I(tt:tz):T if l(tr): I(tz) else 1: F;

and all the classical postulates and consequences of the theory of flelds hold. For

example, the following postulates, which axiomatise the classical theory of fields,

all hold (see [50], p.130).

(1) (r,y,z)(x + (a + z): (r + a) + z)

(2) (*,a)@la:y*r)
(3) (")("+0:r)
(4) (")("-u:0)
(5) (r,y,z)(r x (a x z) : (r x y) x z)

(6) (*,y)("xa:yxr)
(7) (tXtx1:z)
(8) ("X-x:0)rx"-1 :i)
(9) (r,y,z)(x x (y + z) : (r x y) + (x x z))

(10) -0 : I

Changing to 1(ú1 - tz): B tf I(tL): I(tz) and applying the Extendability lemma

gives:

Proposition 2.L7. There are finite inconsistent transparent models in which

every sentence of the classical theory of fields holds. !

This cannot be strengthened to the conclusion that all the theory of the field

Q of rationals with names for all of them holds: not every integer has an inverse

defined, those with /(l) : 0 do not whereas all but 0 itself do in classical Ç. This

suggests a general difficulty in inconsistently extending fields, which proves to be

the case. In the next chapter it is seen that this can be achieved in infinite fields

modulo an infinite prime.

These structures give a solution to the following problem, raised by Graham
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Priest. One wants postulates such as the Cancellation Law ([a], p.2)

(")(-r: 0 ) (A,")(* x y : :x, x z ) A : z))

to hold when moving from the classical theory of rings to the classical theory of

integral domains and fields. But inconsistent fields such as the above have both

-0 : 0 and (y,")(0 x y :0 x z: 0) holding. Yet one does not want to detach

every A : z or the theory is uninteresting. But one does want to detach U : z for

those r classically not identical with 0 (in Q or ,R say). However, in the inconsistent

fields mod p, while both -0 : 0 and (y,r)(0 x A : 0 x z: 0) holds, still U : z

cannot be detached (e.g. obviously not F 0 : 1). This is another symptom of

the general undetachability of I. But also, if ú :0 does not hold classically, then

(y,")(t x a : t x z ) y : z) holds; and then if ú x tt : t x f2 holds classically,

tt: tz can be detached (all by the Extendability lemma).

A useful general result proved by Dunn in [11] is as follows.

Proposition 2.18. (Dunn) Let A be an algebra (D,ot,...,on) where the o;

are operations on D. Let A' be a subalgebra of A and å be a congruence from .4

to A'with h(r): r for all x \n A'. Then the classical equational theory Th of. A

with names for all elements of D can be extended to an inconsistent transparent

theory ?å2 using the assignment /(ú) : h(t) for all names l, and I(t, : tz) : B iT

1(¿r) : 1(ú2) else l(tr: tz): F.

Proof. That Thz is an extension of 7h1 follows by the Extendability lemma

from the fact that if lt : 12 holds classically then clearly 1(ú1) : I(tz), so that

I(tt:tz):I(-tr:tr)--B.But also condition (3) for transparency in Proposition

2.13 is evidently satisfied, so Thz is transparent. D

This can be applied to the {+, r.,/} congruence from the non-negative ratio-

nals into itself given by À(z) : 1 if (classically) " I 0 and å(0) : 0, to give an

inconsistent transparent nontrivial extension of the classical {+, *, /} theory of the

non-negative rationals with names for all of them. But the attempt to bring in the

negative rationals and subtraction while retaining all classical laws and functional-
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ity, wrecks the theory: there needs to be an additive inverse -n Tor each n; but if

classically distinct elements rlt,Ttrz are identified inconsistently, then by functional-

ity they should have the same additive inverse, so that nt - nz - rr1- n1 holds. If
the usual classical laws also are to hold then r¿t-rlt: 0 also holds. But division by

0 is prohibited, so division by nt - n2 must similarly be undefined by functionality

again. But division by nt - flz is permitted in the classical theory. The interac-

tion between subtraction and division is the problem here, and it strengthens the

suspicion that it is not so easy to inconsistentise fields.

4. Surnmary of Further Results in Arithmetic

These are proved in [27] or [41]

Proposition 2.19. RM3^ can be axiomatised by: RM#, plus l- 0 : m

plus l- 0 : f ++ 0 : 1 for every I in {0,1,..., rn - I}.

Proposition 2.2O. In Rff, l- (0: nr o0 : rr) ++ 0 : gcd(n1,n2'), where

Ao B -df - (A---+-B) ar.d gcd(n1,n2) is thegreatest common divisor of n1 and

Tl'2

Definition 2.21. RM(2n + 1)* is the result of replacing RMJ as background

logic in RM3* by the logic RM2n+I (see [27]) RMJI :df ìo¡mRMJ*.
RMu :df )"u^,,RM(2n + 1)-.

Proposition 2.22. RMu is inconsistent, incomplete, nontrivial and

ø-inconsistent. Its extensional part is complete, and identical with the zero de-

gree part of RM3a. Any inconsistent zero-degree extension of the zero-degree

part of Rft is complete. Not all inconsistent extensions of Af are extensions of

RM#. The nontheorems oT RMu are recursively enumerable. Problem: is RMu

decidable?
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Definition 2.23. LRQ is the logic axiomatised by dropping the distribution

axiom (9) from ,BQ (Definition 2.2). LR# is then formed by adding the Peano

postulates (#1)- (f7) and ruIe RMI (Definition 2.3) to LRQ.

Proposition 2.24. Distribution is not provable in LRfi, but is provable in

any inconsistent extension of LRfr. Problem: is every extensional instance of

Distribution provable in LRff?
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CH,A'PTER 3: MODULO INFINITY

The Classical Denumerable Nonstandard Model of
Natural Number Arithmetic

The classical consistent complete denumerable model of the natural numbers,

{0,1,2,...}, of order type ar, is also called the standard model of classical Peano

arithmetic. This contrasts with the (classical consistent complete denumerable)

nonstand,ard model. As is well known the latter has a domain of order type

a + q(u* + c,l), consisting of an initial block isomorphic to {0, I,2,. ..} (called the

finitc natural numbers), with succeeding blocks of numbers (called the infinite nat-

ural numbers) isomorphic to the integers (order type tr* at*r), the blocks themselves

being densely ordered (order typ" ry). Both models verify exactly the sentences of

classical standard arithmetic P## (see Definition 2.3) in their common language.

In this chapter we consider consistent and inconsistent theories which arise from

the nonstandard model.

Given a finite (natural) number n"¿) arry infinite number can be uniquely rep-

resented as the sum of a multiple (possibly infinite) of rn plus a unique natural

number between 0 and m - I. This gives a natural definition of modulo rn for all

infinite numbers. Hence the {*, -, x } modulo models of Chapter 2 car_ have added

to them names for all nonstandard infinite numbers.

Classical nonstandard numbers are constructed in such a way that first order

properties of the standard natural numbers continue to hold. One such property is

that the modulus of any number can be taken w.r.t. any nonzero number:

(Vrn,r)(-m : 0 ) (1y,2)(r : zrn + Ak1 < y < m - l))

That is,

(Ynt.,r)(-m : 0 ) (ly, z)(r : zrn + ykQu)þa I y + I : rn)))

Hence in the nonstandard model, for any infinite numbers m and r, there is a mul-

tiple of m Lo more than m - I below u. This evidently allows a consistent complete



34 Modulo Infinity

modeÌ modulo inflnite rn with functions {+, t}, as well as additive inverses and

subtraction. AIso there are plainly inconsistent versions given by I(t1 : tz): B

if ú1 mod m : tz mod rn else 1 - F , and by the Extendability lemma all of the

classical consistent complete {*,-, x} theory of the integers Z continues to hold

in the inconsistent models.

An interesting subclass of these structures arises from the facts that inflnite

numbers can have infinite divisors and that infinite primes with no divisors save

themselves and unity exist. (Proof: Add to classical Peano arithmetic Pff the

axioms (r)((ly)(r *A : p) > (" : 1 V r : p y - (12)(r x z : p)), i.". p is prime,

and -p :I,-p:2r-p - 3,.... Everyfinitesubset of axiomshas aclassicalmodel

so by the compactness theorem the whole theory has a model. But p is not one of

the finite numbers.) Now noting that 'r divides y' is definable as (=z)(r x z : A),

we have that the well known theorem of standard number theory that

(r,y,p)((prime p & p divides r x y) ) (p divides r Vp divides y))

holds also in the (classical) nonstandard numbers, and thus for infinite primes p.

(See [a], p.19, Theorem 9.) But this is equivalent to saying that if x x U : 0 mod p,

then r : 0 mod p or y: 0 mod p. It follows easily that classical modulo infinite p

is an integral domain and obeys the Cancellation Law (r, A,z)(-r:0 ) (r ry -
r x z ) a : z)). (See [+], p.5, Theorem 1.) The usual argument ([4], p.41) can

then be applied to show that every r + 0 in mod p has a unique multiplicative

inverse r-1 modp. (Proof: The products c x 0,2 x 1,...,, x (p - 1) are all in

{0,-.. ,p - 7 } since (x mod p) is an operation; but they are all distinct by the

Cancellation Law. Exactly one of them must be l therefore, and z-r :d/ the

unique y such that ø x y : 1 mod p.) Further by the Cancellation Law, if two

numbers have the same inverse then they are identical. Classical mod infinite p

is thus a field, and r(l mod p)y :df x(x mod p)(V-t mod p). Its 'natural' order

type is evidently a + rl(.* *cu) -f c..'*, with a last member p - I and a final block of

order type o*. That is, the final block i. {...,p -2,p - l}.

Some properties of consistent mod p arei
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A number is finite iff its additive inverse is in the final block.

(p-t)lZ and ((p- l)12)+ 1 are additive inverses in the same block (Benham),

as are l(p-t)lz and ((p -3)12) +3)1,..., and l(p-(2"+t))12 and ((p-
(2n*I))12)*(2n+1)1, and [(p *(2n+I))12 and (p *(2n+I)12)-(2n+I))
etc.

The multiplicative inverse of any finite number save zero is defined and

infinite.

2-1 is (n + I) ¡2, and (p - 2)-t : (-2)-t : (p - I) 12, which are in the same

block and additive inverses.

(3)

(4)

2. Inconsistency

Now we move to inconsistency. Take names for all members of the classical

nonstandard model (naming themselves). If ú is a name, then set I(t) : ú mod p,

set 1(*) - * mod p and similarly for {-, x, l}. Note that l(l'l.lt2) is not defined

rf. I(t;t): 0; but this never happens if f2 is a nonzero finite number. The terms

2-r )3-1,. . . can be used as names for the reciprocals of the natural numbers, and

the terms fi x trt for all finite names t1rt2 can be used as names for all the rational

numbers. The assignment 1(ú1 : tz) : B if. I(tr) :1(ú2) else l(tt : tr) : F,

determines an inconsistent theory. By the Extendability lemma this is an extension

of the classical theory of the integers; and also of the integers modulo p so that all

the sentences of the classical theory of fields hold. Also it is not difficult to show

that it is transparent. Hence we have a strengthening of the results of the previous

chapter (see also [28] and [3a]):

Proposition 3.1. There exist infinite inconsistent transparent models modulo

an infinite prime in which hold all sentences of the classical consistent complete

theory of the field of rationals Ç, with names for all the rationals. ¡

Inthesetheories l- -0:0, sincel(0:0) : B - I(-0:0). A different

construction of {*, x } arithmetic enables that to be avoided, with inconsistency
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being confined to the infinite part of the diagram, and has some consequences for

Fermat's Last Theorem. Choose an arbitrary infinite number m and for domain D

take D : {0, 1,2,...}U{" : rn 1r 12m-1}. If f is aname, set 1(ú) : til ú is finite

else set I(t) : f mod rn+rn. (In other words shift ú mod rn along by m to get 1(t).)

Set 1(11 + tz) : h I tzif both are finite, else 1(11 +t2) : ((¿r + ú2) mod m) + m.

Set 1(t1 ,tz) --fixt2 if both arefinite, else 1(11 xt2): ((ú, " ú2) mod m)+m.

Set 1(ú1 : tz) : T if. 1(¿1) : I(t2) and both are finite, set 1(f1 : tz) : B if
1(¿1) : 1(f2) and both are infinite, else set I(t, : tz) : F. Call this model and the

associated theory ¡/S¡/.

Proposition 3.2. Every sentence holding in the classical standard and non-

standard models of the natural numbers holds in NSI/. ¡/S¡ú is transparent.

Proof. If A holds in standard arithmetic then it holds in the classìcal nonstan-

dard model. An inductive argument on the complexity of the term ú1 shows that

if út : ú2 holds in the nonstandard model then 1(ú1) : I(tz).

(Base:) Let f1 be any name. If tr is finite then if tt : tz holds then 1(f1) - tt :
tz: I(tz). If ú1 is infinite then 1(ú1) : fr mod rn+rn: fz mod rn+rn: I(tz).

(*clause:) If ú1 is tz * t+ then if both ú3 and úa are finite then 1(ú3 + t+) : ts * U -
h -- tz : I (tz). Else, if one of ts,ta is infinite then also ú2 which : ls * úa is infinite.

Hence I(t"+tn):* * (¿e*Ía) mod Tr¿: nù f ú2 mod *: I(tz).

(xclause:) Similar. But if 1(¿r) :1(ú2) then tt:tz holds in 1ú^91/, so lr/,5/ú is an

extension of the classical standard and nonstandard models.

For transparency, by Proposition 2.13(1) it suffices to prove that if tt: tz

holds in I[Sl/ then for all atomic F, I(Ftl): I(Ftz). Now f1 : úz holds iff

/(úr) : I(tr), so it must be proved that if I(tl) :1(ú2) then for all atomic -F,

I(Ftr): I(Ftz). Again it suffices to prove this for just one replacement of ú1 by

ú2, so let .Fl1 be ú(ú1) : l¡ and Ft2 be t(t2) : ¿3 (the case where Fl1 is h : t(tt)
is similar). Now note that if 1(úr) : I(tz) then ú1 mod m : tzrnodm. (Rea-

son: if ú1 is finite then certainly ú1 - tz, while if ú1 is infinite then 1(tr) :
rn I h mod m : I(tz) -- m * f2 mod m) so that since the addition is ordinary ad-
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dition of nonstandard numb€rs, ú1 mod rn : úz mod ra.) But now the functionality

of the classical modulus construction ensures that ú(ú1) mod rn : t(tz) mod rn and

so that m + t(t1) mod rn - m I t(t2) mod m. If t(tl) is finite then /(ú(út)) :
t(tr) : r(r1) mod m : t(tz) mod rn : t(tz) : I(t(tz)), and if ú(tt) is infinite then

I(f (ú1)) - m * ú(ú1) mod rn : n'¿ + t(t2) mod rn : I(t(tz)) again. !

N.9N is interesting because it contains a'pseudo-zero', the least infinite number

rn (and a pseudo-unity m * 1 as Richard Benham pointed out). That is, for any

nonzero t, I t x n'¿ : m, andfor any infinite t,l t + m : t.

Now since rn is apseudo-zero, n'r3 * m3 : rn3 holds, that is I (m x m x m) *
(rnxmxm): (mxmr*), a counterexample to Fermat's Last Theorem @LT')
in this structure. At the time of writing, F LT seems to be a good bet following

Andrew Wiles' argument, though Wiles has indicated that one case remains open.

The situation can be analysed as follows. Neither F LT nor -F LT can be expressed

in the present {+, x} language, since the capacity to express exponentiation fully

is absent. However, each instance of both FLT and - FLT can be considered in

the language, since one can write, for example, (xrrx) + (yyyV) : zzzz. Thus,

if any one of these held in a model for Standard Arithmetic, then F LT would

be false; and if any one held in a model of Peano Arithmetic, then FZ? would

be unprovable in Pf. This motivates the introduction of the symbols'FLT'and

'-FLT'into the language, where the former is evaluated as the minimum of the

values of its instances (that is semantically the quantifier V is treated as generalised

conjunction), and the latter evaluated as the maximum of its instances. More

exactly, the value - F LT is the maximum of the values of all equations of the

form (z times itself n times) * (y times itself n times) - (z times itself n times),

where rrA,z are nonzero numbers and n exceeds 2; while the value of FLT is

the RM3-complement of the value of -FLT. Now by the construction of 1úSl/,

(m x rn x m) * (rn x m x rn) : In x mx rn has the value B in,¡/.91/,so -F LT is B

or T in ¡/^9¡/, and thus holds in I/Sl/. The following definition is now necessary.
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Definition 3.3. For any subset S of. L, the Routley * oL S,

S* :df {A:-A does not belong to .9}.

The Routley * operation is important in the semantics of relevant logics, and

is used in several places in this book. It is known that if Th is an inconsistent

RM3-theory determined by an assignment 1, then Th* is an incomplete theory

determined by taking .I and changing only the set of designated values V : {7}.

Proposition 3.4. F LT is true iff -F LT is exactly B in 1/SI/, and iff neither

-FLT r'or FLT is in l/^9N'; and FLT is false iff -FLT is 7 in ¡úS¡/, and iff

-FLT is in l/^9N* and FLT is not in ¡/S¡/..

Proof. That -FLT is B in I/.91ú iff neither -FLT rror FLT is in.ðy'Sly'*,

follows from the well known fact that both A and -A are in an RM3-lheory ?å iff

neither A nor -A are in T h* . Now by an uncontroversial argument of Tarski, Ftr?

is false ifffor some finite t,A,z not classically identical with 0 and n not classical

identical with 0, I or 2, xn * A" : z" holds in classical Robinson arithmetic. Hence,

if -FLT is exactly B in l{.91/, then there are no such finite t,U,z,n, and thus

FLT is true. Conversely iÎ FLT is true then there are no such finite r,y,z,,n to

raise the value of -FLT to 7 in ¡/S¡tr, and -FLT is exactly B. For the second

part of the proposition, FLT ís false iff these finite r,A,z,n exist, 1ff -FLT isT
in,¡/.9I/. But also it is well known that A is ? in Thitr A is in Th* and -A is not

inTh*. So -FLT is ? in ¡/.9¡rr iff -FLT is in l/Sl/* and FLT is not in,ð/SÀ/..¡

Unfortunately, the job of proving -F LT to be ? in 1/.9I{ seems to be no easier

than finding a refuting instance to FLT, that is a finite t,A,z,n with rn * U" : 7n,

eúc. ever was.
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CHAPTER 4: ORDER

1. Order and Equality without Function Symbols

So far, we have only been considering equational theories, that is, theories

whose only primitive predicate symbol is :. We have been looking at how function

symbols such as * and x behave inconsistently in such theories. In this chapter a

second primitive predicate < is added to :, interpreted as 'less than'. In the first

section, function symbols are omitted. The main result of this section is as follows.

There is a well-kno\ryn metatheorem of classical model theory to the effect that the

theory of dense order without endpoints is N¡-categorical, that is, that all classical

models of that theory of cardinality No are isomorphic. We see that this breaks

down for RM3-theories, given a natural extension of the notion of isomorphism of

modeis to the more general case. It follows that the classical metatheorem depends

on the assumption of ciassical logic. Such is not always the case: various other

results in this book are invariant with respect to changes in background logic away

from the classical case. In the next section, function symbols are re-introduced and

several results about these are summarised.

The following axiomatises the classical theory of dense order without endpoints

(see e.s. l22l).

(1) Irreflexivitv (")(- r < r)
(2) Asymmetry (r,y)(, 1y )- y < r)
(3) Transitivity (r,y,")((, < yka < z) > r < z)

(4) Comparability (z,y)((- r : yk - r { V) > y < ")
(5) Exclusiveness (r,y)((r:y) (-" < Ak-y <r)k(r 1y)- x:y))
(6) No endpoints (z)(ly,r)(, < ykz < r)
(7) Denseness (r,A)@ < a ) Qz)(r 1 zkz < y))

(8) Mixing (r,y,z)(r:A ) (y < z) r < z)k(z <y ), <ù))

It is well known that all classical models of cardinality Ne of these axioms are

isomorphic. To compare with RM3-models, a definition of isomorphism is needed



40 Order

which reduces to the usual in the classical case. The following seems adequate at

least where every element of the domains is named.

Definition 4.1. Two models (Dt,It) and (D2,12) are isomorphic iff there is a

1-1 correspondence f : Dt --+ Dz such that for all names ttr...tn,tn+t,,...t2n, iÎ

Ir(t.+t): f Q{tl)) and ... and l"(tr"): f U{t")) then for all atomic F, Ffi...tn
holds in 11 iff Ftn+t...tzn holds in 12.

Proposition 4.2. There are nonisomorphic -RM3-models of the theory of dense

order without endpoints.

Proof. For both models, take as names the rational numbers Q. For (Dt,It)
set D1 : Q; set fi(f) : ú for all Í; set l1(tt : tz) : T rf h : úz else h : F;

and set Ir(tt < t") : T if h ( úz else h : F. That is I is the classical (and

so RM3-) model of the {:,<} theory of Q. For (D2,12) set Dz: the integers

Z; set Ir(t¡ : the integral part of ú; set Ir(tt : tr) : B iÍ I2(tL) : 1z(úz) else

Iz: F; and set Ir(tt <tz): B if I2(tL) < Ir(t") else 12 : F. By the Extendability

lemma, 12 is an extension of ,I1 and so (1)-(8) above hold in 12. But there is no

1-1 correspondence between Z and Q which preserves atomic sentences of fi and

12, since any correspondence eventually reverses the order on some elements. D

This shows that the proof of No-categoricity is not invariant with regard to

background logic, but depends on the special properties of classical logic. Note

also that 12 is transparent; since if ú1 : f2 holds then clearly for all atomic

F, I2(Ftr) : Iz(Ftz), then use Proposition 2.13(1). The discreteness postulate

(z)(19)(r < yk(z)((r < zk N y < z) ) y : r)) also holds in 12 which shows that

discreteness and denseness postulates can be jointly satisfied inconsistently.

2. Order and Equality with Function Symbols

There are many such models and theories with different properties. These are

studied in [34]. Summarising those results:
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(1) Primitive symbols {:, (, *, -, x }; names for all the integers; domain D :
finite integers modulo rn of Chapter 2; I(t): ú mod m; I(1,-, x) : (*, -, x) mod

m; I(fi:tz): B if l(tt):1(ú2) else I: F; and 1(ú1 .tz): Bilh 1tz
else 1 : F. AII sentences of the classical consistent complete theory of the ring

of integers Zhold includingthe Sum Law (ø,y,2)(r <y ) r+ z <y+z) and

Product Law (r, A,z)(x < y ) (0 <, J r x z < y x ")). Functionality and

hence transparency fail: tt, : tz holds iff t1 mod m : tz mod rn; but ú1 mod rn :
ú2 mod rn plus h 1 tz do not ensure t2 1 fu since ú2 might be too large. The

equational subtheory is transparent.

(2) As for (1) but with 1(ú1 . tr) : B if 1(ú1) 3 I(t") else 1 : f'. These are

transparent but not all sentences of the classical theory of Z with names hold, e.g.

in mod 3, I(2 < 4) : f' because not 2 mod 3 ( 4 mod 3: 1.

(3) As for (1) but with 1(ú1 a tr) : B all terms t1,t2. These are transparent

and all sentences of the {:,(,*,-, x} theory of. Z wilh names hold, but at the

cost of triviality in the {<, +, -, x} subtheory.

(a) Primitive symbolr {:, (, *, X, /}. Take the two-element model with names

for the rationals at the end of Chapter 2 Section 3 and add 1(ú1 a tz) : B if.

1(¿t) I 1(ú2) else I : F. This is transparent and extends the classical consistent

complete arithmetic and order theory of the nonnegative rationals.

(5) Primitive symbols {:,(,*,-,*,1}; names for all the real numbers; D:
{0,1,...,p- 1}; for any term f set 1(t):0 if¿ < 0 or ú ) p- 1 else 1(t) :
the greatest integer ( ú; set l(tt : tr) : B if. I(tr) : I(tz) else 1 : fl; and

set 1(ú1 a tz) : B i11(¿t) < 1(12) else I : F. The theory is transparent. The

{:, <} subtheory extends that of the classical consistent complete real numbers,B,

including the continuity schema ([50], p.31). The {:, -f , -, X, /} subtheory extends

the classical theory of fields. Also Sum and Product laws hold. It is not known

whether all classical consequences of field axioms + (t)-(S) * continuity scheme

hold.



42 Order

(6) {:, (, *, -, x,l}; names for all real numbers; D : modp; I(+,-,x, f }

are mod p; set I(t) :0 if ú < 0, 1(¿) : the least whole number > t if 0 < t I p-2,

else 1(ú) : p-I;set.I(ú1 - tr) : B if. I(tt) : I(tz)else 1 : F; and set 1(ú1 1 tz) : T

if 1(¿1) < I(tr), I(tt<tr): B if I(tL): I(tz) else 1: F. These are transpar-

ent, and the {:,<} subtheory extends that of classical A, and the {:, +,-,x,1}
subtheory extends that of classical fields. But Sum and Product laws fail, and in

different moduli. (Sum law: in mod 2 or mod prime p>3, p-2 < p-1 holds but

(p-Z) + 1 < (p-t) * 1 does not hold. Product law: in mod p ) 3, 1 < p-l and

0<p-lareboth?but1(1 x(p-t) <(p-1)r(p-1)) : I(p-t<1) :F.

Finally, inconsistency can be isolated to subtheories containing one primitive

predicate and not the other, while retaining transparency. In mod p, both the

following are transparent:

(7) I(h-tz): Bfil(tr): I(tz)else.I: f',and I(tt <tr):T if /(¿1) < I(t")
else I : F.

(8) I(tt:tr):Tif. I(tr): I(tz) elsel - F, andl(ú1 .tz): B\l
/(¿t) I 1(ú2) else I: F.
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CHAPTER, 5: CALCULUS

1. Introduction

As noted in Chapter 1, there have been calls recently for inconsistent calculus,

appealing to the history of calculus in which inconsistent claims abound, especially

about infinitesimals (Newton, Leibniz, Bernoulli, I'Hospital, even Cauchy). How-

ever, inconsistent calculus has resisted development. There seem to be at least two

reasons for this. First, as we have seen, the functional structure of fields interacts

with inconsistency to produce triviaiity even in the purely equational part of the-

ories, in a way which normal paraconsistentist contradiction-containment devices,

such as weakening ex contradictione quodlibet, do not prevent. Stronger theories,

including set membership, terms of infinite length, order, limits and integration,

are then infected with the same triviality. Second, the functional structure of in-

consistent set theory remains difficult to control, and seems to require sacrifice of

logical principles in addition to, and more natural than, ECQ.(See Meyer et.al.

[29], Slaney [53], but also below Chapter 14.) But unless there are distinctive in-

consistent theories of the order of strength of classical analysis, then the claim that

the history of the calculus supports paraconsistency is undermined. Inconsistency

might well instead be a symptom of confusion.

This chapter extends inconsistency to the case of inconsistent equational the-

ories strong enough for a reasonable notion of differentiation of polynomials, in

order to show that inconsistency does not cripple such an equational differential

calculus. It turns out to be instructive to begin not with an inconsistent theory but

with an incomplete consistent (intuitionist) theory; which can be seen to have some

similarities with, and advantages over, the well-known intuitionist theory Synthetic

Differential Geometry (SDG). It also has the advantage of showing how incomplete

theories are just as amenable to treatment by these methods as inconsistent theo-

ries are. In section 2 a congruence relation is defined on the noninfinite hyperreal

numbers, and the algebra of equivalence classes so obtained is shown to have the
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structure of a nilpotent ring. This allows the functional properties of the incom-

plete theory to be defined in section 3. In section 4 the calculus of polynomials is

described and results on incompleteness, nilpotence, Taylor formulae, polynomial

differentiation and continuity are obtained. These are compared with SDG, and

the similarities, advantages (mostly simplicity) and limitations of the comparison

are discussed. In section 5 it is shown that a small change allows a very similar

inconsistent theory to be defined. Section 6 deals with integration, and in the final
section, various further directions are sketched. On the basis of these results it is

argued that the fact that the same functional structure can underlie inconsistent,

incomplete, or classical theories suggests that the functional aspects of mathematics

are more important than squabbles at the sentential level over ECQ, inconsistency,

incompleteness, eúc.

2. A Nilpotent Ring of Hyperreal Numbers

We begin with the usual classical arithmetic of the field of hyperreal num-

bers .R*, with operations {*,-, X, l}. A"v hyperreal number has a representation

H+r+d where -FI is an infinite number, r a real number and d an infinitesimal,

the reciprocal of an infinite number. If two hyperreal numbers r)y are at most

infinitesimally distinct, we write r x y.Thus any infinitesimal = 0. The subfield

of real numbers is called -r?. For each nonzero u in -R*, the binary relation =r is de-

fined by :x1 xr xz:dr @tlr) is at most infinitesimally different from (r2lr); that
is (qlr) x (r2f r), that is (q-'2)lx is infinitesimal, written (21 - rr)1, r 0. For

fixed z ihis is an equivalence relation on -R*, as is easy to verify. It is not however a

congruence. F'or example if (r1- *r)l* is infinite w.r.t. 13, then 11 Nr z2 does not
ensure (rtl*r) xr (r2f ¡3)- However, if ø is any infinitesimal á, then a congruence

on the noninfinite hyperreal numbers, w.r.t. the operations {*, -, x}, is obtained;

as well as an associated ring of equivalence classes. So, fix á; then we can define:



A Nilpotent Ring of Hyperreal Numbers 45

Definition 5.1. Let .9 be the set of noninfinite hyperreals, that is of the form

r I d where r is any real number and d any infinitesimal (possibly 0). Then

D :df {d e S : for some positive integer k, dk 16 = 0};

S- :df ,S with d restricted to D.

Proposition 5.2. The relation =ó is a congruence on ,9 and on S-.

Proof. Let (r1 adr) x6 (x2*dz), that is ((rt+ dr)-(*r+d2))16 x 0;

and let (rr + d") =6 (ro* ds), that is (("r + dz) - (*n+ da))16 x 0. Then

(((" + d') + ('. + d.)) - (("r+ dr)+(*n+ dn)))16 = 0, that is

(("' + d') * ('. + d')) M ((r, + dr) + (*n* dn)).

The subtraction case is the same. For multiplication note that (u r *dr) x6 (r2td2)

iff 11 : s2 and fi16 = d2/ó. Now

(("' +d') x ('.+ d')) - ((rr+ d2) x (ra+dn))16

- (*t*" - rzrq I r3d1 - xsdz I xtdz - rzdq. * dds - d2d4) I 6.

The frrst pair of terms cancel. The second pair are È since multiplication by a

real number does not disturb Ai, so their difference is infinitesimal. Ditto the other

two pairs in the sum, so the whole sum is infinitesimal. This shows that tó is a

congruence for {*, -, x} on ^9. For S-, suppose that

d,l'16 x af'ld = d!, 16 x df^ 16 x o

The infinitesimal part of (rr + dr) + ("r + d3) is (d1 1d3), and

lc1*È¡
(d, * dr¡kt+ks ¡6 : t (k,, * kt)dl'+u-'o;

i=0
16.

But each term of the sum = 0 so the whole sum is; and so (rr*dt)t(".{d3) is in

,5-, as is obviously (rz*d2)*(ra¡dn).Subtraction is similar. For multiplication

("t + dt) x (". + dt): (rtr"I rldsl rsdt * d1d3). Now

0 x rfi!" x r3dl'æ drcff"(È"È'),

so each term of the sum is in S- ; so the whole sum is as in the proof of the addition

case above. !
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Note that the proof of congruence breaks down for the case of division, for

example if all z¿ are 0 and dt - dz : ds. It follows from Proposition 5.2 that the set

of equivalence classes under ryó form a ring (call it .R) w.r.t. the induced operations

{*, -, x }. Denote the equivalence class of any element r * d by [r * d]. n has the

following properties.

Proposition 5.3. (1) For any real numb€rs n1, rz,lrtl:lrz]iff 11: ar.

(2) For anyinflnitesimals d1 ,d,2,if [rl] : IOZ]: [0] then [d,] x [dr] : [0].

(3) For any nonnegative integer ,b, there is some infinitesimal d with [dÀ+1] : [0]

but not [du] : [0].

Proof. (1) If 21, 12 ate real, then not (21 - *r)16 = 0 unless rt: 12.

(2) Let di: d?16 and' d|: d716. By hypothesis, di = 0 = di. But

d,Ld2l6 -- (aia1¡t")''' : (oî)''' (o;)''' ,

which is infinitesimal if di and di are.

(3) Consider 62 ,6,6t/z ,6r/3,, . . . , etc..

Proposition 5.4. For any infinitesimal ó and any positive integer fr, there is

an infinitesimal d such that dÈ+r /á is infinitesimal while dk l6 is infinite.

Proof. Let d: ó(/"+1)/i"(å+z). Now

dk+t l6 - 5(k+r)2/k(rc+z) ¡5 - 5$2+zk+r)lrc(*+z) ¡5(k2+2k)/(k2+2k) - 61/(k2+2È) = 0

But,

dk l6 :6k(k+r)/k(k+z) f 6 : 5\+r¡¡1*¡z¡ f 6$+z)/(k+2) _ 5-r/(*+2) _ Il6rl&+2)

which is infinite

Definition 5.5. ,o :df [0]; and, for all positive integers k,

Dr:d,f {V): [dt+t1 : [0] and not [dÈ] : [0]].

Note that {ldlt d is in D} : Ual n@r).(For D see Definition 5.1.)

Proposition 5.6. For all positive integers k, (1) there is a [d] in D¡ such that

for all [d1] in D,ldt), [d*] : [0]; and (2) there is a [d] in D¡ and u [dr] it D¡,¡2
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such that not [d1] x [dn] : [0].

Proof. (1) Let dbe 611k. Now dß/ó: 1 not = 0. But dk+tf 6: I.6rlk = 0.

Hence [d] is ìn D¡. But also, for any infinitesimal d,1, ù.dkl6 : dt N 0; so that

ld'l xldÈl :[0].
(2) Let d be ó(/"+1)/È(*+2) as in Proposition 5.4, and let fibe6l@.\.Now by the

argument of Proposition 5.4, [d] is in D¡. Further,

ú : 6ld,k : 6f 6(k+r)l(k+2) - 6rl(k+2) .

So

a\k+z) ¡O : 6(k+2)/(k+z) l6$+2)l(k+2) 
_ I not = 0;

and ¿\k+3) ¡A : 6(ß+3)/(ß+2) f 6Ø+2ll$+2) :6r/(*+z) r 0.

Hence d1 is in Dn+z.Finally, (dñk)16:1not = 0; so that not [dr] * ldrl: [0]. D

Definition 5.7. An element d ol an algebra is nilpotent of degree k iÎ dk+l : 0;

and strictly nilpotent of degree lc iÎ dk+r : 0 but not dk : 0; and an aigebra is

(strictly) nilpotent of d,egree /c if it has (strictly) nilpotent elements of degree fr.

Proposition 5.3(1) shows that ß has a subfield isomorphic to the real numbers

-t?. This field of equivalence classes will also be referred to as .R. Now in IR we can as

usual write [r]fr for [rß] and drop the multiplication signs or use dots. Proposition

5.3(3) shows that ,R is strictly nilpotent of all degrees. Proposition 5.3(2) is relevant

to the comparison with SDG in section 4. While all elements of D¡ go to zero on

being raised to the k + lst power and not for any lesser power) Proposition b.6

shows that these elements fall into two classes: those whose kth power multiplied

by any nilpotent element goes to zero, and those whose kth power has a nonzero

product with some nilpotent element. This is also ¡elevant to section 4.

3. An Incomplete Theory

This section specifies an incomplete model based on the three-valued intuitionist

logic J3. In the following section theorems of calculus are proved in it.
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Definition 5.8. The theory CJ is specified by:

(1) background logic -/3 (Threevalues {4¡,¡,?} with V: {7}. See Definition

2.e.);

(2) names for all noninfinite hyperreal numbers;

(3) term forming operators {*, -, x };

(4) the single binary relation :;
(5) sentential operators {-, &, V, *};
(6) Two sorts of object language variables, each with several sorts of associated

quantifiers

(6i) variables t, ro¡ tt¡ . . .and two associated pairs of quantifiers (V e -R),

(f e ,n) and (V € ,?), (3 e ,R), and

(6ii) variables d,,d,s,d4.,... and associated pairs of quantifiers (V € D),,

(f e D) and for every positive integer /c, (V e Do), (l e Dt);

(7) {),=,<-+} are defined in the usual way, (Er.x € R)(Fr) is defined as

(l ø € fi) (Fu&(Vro € A)(Frs--+ x: ro))i

(8) The model (D,Il is specified by

(8i) D : IR

(8ii) For every name t, I(t) : ltl
(8iii) 1(+, -, x) are the corresponding ring operations on -B

(8iv) For any terms t1,t2, set I(t1 : tz): 
" 

if 1(úr) :1(f2), set

I(tt: tz): N if 1(¿r) I l(tr) but the hyperreal number (h-t2)16
is noninfinite, else set 1(11 : tz) : F.

(9) For every quantified sentence of the form (V u e X)Fu, 1((V u e X)Fu) :
glb{a : for some term ú, 1(t) is in X and I(Ft) : y}; and 1((3u) Fu : /uó{the

same set), where u is any variable and X is ,R,r?, D or D¡;

(10) C J is then {A : I(A) - r}.

The model just described is transparent. (This follows from the facts (1) that

tt : tz holds itr 1(¿r) : I(tz), and hence (2) that if ¿r - 12 holds then /(Ftr) :
I (Ft2) for any atomic ,F. The latter then serves as the base of an obvious induction

for all F.) This means that there is full functionality for calculation, so that

advantage can be taken of facts about nilpotence such as F 62 :0 for simplifying
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calculation. Elimination of 'second order' terms in a series has looked attractive

from as long ago as Newton. The theory C J \s intuitionist in the senses

(i) that -/3 is three-valued intuitionist logic, and (ii) that C J is incomplete: since if

I(6:0) : ¡ú then 1(- ó:0) : f., so that neither l- ó: 0 nor l-- 6:0, although

l--- ó : 0 & - 67/2: 0. Finally note that the wholly classical two-valued theory

of IR can be obtained by takin1 I(t, - tr) : T iÎ I(tr) : I(tz) else 1 : F. This

shows that classical two-valued model theory can be obtained as a special case.

4. Incornplete Differential Calculus

In this section it is shown that Taylor's formula and polynomial differentiation

laws hold in C J. A definition of limits can be given, and it is proved that every

function is continuous. It is shown that the theory has some similarities with a

corresponding part of Synthetic Differential Geometry, and the dissimilarities are

outlined.

Definition 5.9. A functional expression (abbreviatedto function) is the result

of replacing any term or terms inside any term, by variables. A function with

no remaining names denoting infinitesimals is called a real function. If / is a

function with a single free variable u (possibly occurring more than once) then

this is indicated bV /(r). If u1 and u2 ã1€ variables of any sort, then f @t + rr)
is the result of replacing u by ut I lsz throughout; and if h,tz are any terms then

/(¿r + ú2) is the result of replacing u by tt I tz throughout. Similarly for - and

x. (Etrt,...,rt" € r?) is defined as (Etr1 € ,?) . ..(Er.r¡ € A). (See Definition

5.8 (7).)

Proposition 5.10. If /(z) is any real function, then for all positive integers k,

F (Vz e R) (8h1,..., rr Ç R) (Vd € nù (fþ +d): f (") + rtdl_ ...-lrr,dk).

Proof. If /(r) is a real function, then by the polynomial laws of -R*, for any term

t, I(f(t)) is identical with I(to+tú+...Itntn), where the Í; are names denoting

real numbers. This is clear because identities are not destroyed in passing from -R*
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to IR. So we may restrict attention to functions of the form to * tp I .. . * tnr"

where the ú; are names for real numbers so that ihe 1(ú;) are in ,R. We abbreviate

these functions by Ði=o t¿r' . Then for any such /(r) and any term ú from r? and

any termdwith 1(d) insome Dr, f(t *d) is tottt(t+d) +...+t"(t+ d)'. So

IU(t+d)) : 1(¿o)+(1(ú1))(1(¿)+f1a¡;*... etc. The operations on the right hand

side of the last expression obey the polynomial laws, so that sum can be computed

using the binomial expansion. If n 3 k, the nilpotence of the element d does not

affect this expansion, and (a) below follows by normal arithmetic.Iln > ft, those

terms of the binomial expansion of I(f (t * d)) which contain [do*t] as a factor are

identical with [0]. So 1(/(t * d)) computes to

r(,o+,,,+ + t*{) +' ((å (î) ,,"-') ,) * *' ((å f 'r) ,r,--) r) (o)

Hence by the assignment rules for quantifiers

F (Vr € r?)(3r1 ...rk € A)(V d e D¡) f (" + ù: f @) *lr¿di
k

i=l
@)

The next part of the argument, for uniqueness, uses the postulate that the 1(ú¿)

are real. We need to conjoin t" (É) the following:

(Vr¡+t ...rzk € AX(V d e D¡')
k

l(t+d): f(t)*\r¡a¿di
i=l

-) ({t, : *r*r)k...k(to : *rù),

where the t; are a relabelling of the coefficients of (a). Eliminating quantifiers to

appropriately assigned terms, we need to prove that:

k

l-(Vdrnr) f (t + d.) : f (t) tlt¡¡¿di - k!=, (t¿: t*+¿) (r)
i=l

If the consequent takes the value 7 then ('y) holds by ihe tables for ---. If the

consequent does not take the value T then there are two cases: either (\) t¡: ¡t*

does not hold, or (ii) some other t; : t*+¿ does not hold.

(case i:) If tr: ú2¡ does not hold, then 1(ú¡) I I(t"*).Now since /¡ and t2¡ are

real, (ú6 -trn)16 is infinite, so 1(ú¡ -tzr): F. But by Proposition 5.4, there is some

infinitesimal hyperreal number d such that dkl6 is infinite; hence (tk - t2k)dk l6 is
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infinite. If every other t¡: t*+¡ holds, then [l¿] : ltr+¿) and ú¿ : tk+¿ in .R. So in

R*,

tQ+d)-
k

/(ú) + Dtr*,d',
i=l

: f (t) +lt¿ai -
k

/(ú) + Dtr*,d',
i:1

: (tr - tzr)dk

k

k

i:1

But the latter is infinite w.r.t. 6. So in IR,

IU(t+d))+I /(¿) + Dtr+,do
i=1

k

But also in A*,

r$+d)-

But in r?*,

f(t+d)- /(ú) + Ðto*ndn
k

,í=\ )) 
,,

is infinite. Hence the antecedent of (f) i. F and (,y) holds by the table for --+.

(case ii:) Otherwise, let i be the least integer for which t¿ -- t*+¿ does not hold

Then choosing the same d, in ,R* we have

/(ú) + Ðto*,dn : (t; - t*+;)d'f higher powers of d
k

i=1

But the first term is infinite w.r.t. 6 il dk is. So, as in case (i), in ,R,

ru(t+d))+r /(ú) + Dto*,dn

f(t+d)-

i=7

k

/(¿) + Dtu*,dn
i=l )) ,,

is infinite. Hence again the antecedent of (f) ir F and so (.y) holds. E

Consider the case k : I. Then for any fd) in D1 and any real ú,

I fþ +d) : f(t)+t1d,for sometermf1 with 1(ú1) in r?.

Definition 5.11. A function 9(z) is called a deriuatiue of f(x), if for any d in

D1 and anyt with 1(f) in.r?, l- f(t+d): f(t)+d.g(t). If gþ) is aderivariveof

/(r), it is also denoted bv f'(").

It is clear independently from classical real number calculus that there is always

at least one derivative for each real function /(r). So we have:
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Proposition 5.12. (Taylor Formula) For any derivative f'@),

I f(t+d): /(¿) + d.f'(t); or F (Vr e Ä)(V de Dt)(f("+d)-- f@)+d.f'@))

Definition 5.13. An n-th degree polynomial in the ind,eterminate r rs any

function of the form ús *tfi + . . . + tnrn, where the Ú; are names, that is DT=o t¿r''

Proposition 5.14. (Polynomial Differentiation) If / is any polynomial of

the form DT:o t¿r" with real coefficients f; and /'(r) is any derivative of /, then

l- (Vr e R)(f'(r) : ÐL, it;ri-l).

Proof. From the Taylor formula, l- (V r e ,R)(/(r + d) : /(t) + d.f'@)) where

1(d) is in D1. Hence IU(t + d)) :1(/(ú)) + I(d).IU'(t)) for any term ú with 1(ú)

in -R. But 1(/(t+d)) :1(DLoti(t+ d)'). As in Proposition 5.10, this computes

ro 1(fþo t¿ti) + (r (rL, (;)t'r'-') .r(d) + (r (X=,(;)r¡n-') tt#l) { higher

powers of d. Since I(d,') --1(d3) : ... : [0], all of these can be dropped. Thus we

have

rff(t+ d)) : 1(/(¿)) + (/(d).1(/'(¿)))

and also

So since subtraction is one of the congruence operations,

:1(/(f)) + (rra¡ rÉrl),,"-'))

r(d).ru,þ)): r(d).r (å f l)',,'-')

But since 1(d) is in Dr and 1(ú) and 1(ú¿) are in -R, this can only happen if

But f was arbitrarily chosen from.R. Hence F (Vz e R)(f'(r) : Ðl=, it¡r'-l) tr

Definition 5-15.

(1) f'E/(") :tt:df (vd€ D)Uþ+d): ú,v(ldr € D)U(t+d)-h:dt))
(2) / is continuous at t:df frgi/(") : f (t)

(3) / is continuous :d/ (V z € A) (/ is continuous at z).

ru,(t)):, (å (î),,,,-')
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A definition of one sided limits can be given, but that is not done here because

of the following proposition. (See also Chapter 6.) It is also noted that in the above

definition of limit, the case where not l- Í(t) : ú1 does not arise, as the following

proposition shows.

Proposition 5.16. For every real function /(ø), F / is continuous.

Proof. It has to be proved, for every real term ú, that:

l--(vd e D)u(t+d): /(¿) v(ldr e D)(Í(t+d,)- Í(t) -- dr)).But itfollows

from Proposition 5.10 that F (V d € Dk)U(t +d) : /(¿) + tñ+...+t*dk). 11

not all the real t¿ ate:0, then I f(t+d,) - f(t):td+...1t*dk.It is obvious

that raising the RHS to the power k is not (considered as a hyperreal number)

infinitesimal w.r.t. á (since its first term is not); while raising the RHS to the

power k + t is infinitesimal w.r.t. á (since each term is). Hence the RHS is in

D¡. Thus F (ldl € D)U(t + d) - /(¿) : d1). The result follows by disjoining the

alternatives and universal generalisation. ¡

Synthetic Differential Geometry (SDG), as expounded in Kock [18] (see also

Bell [3]), is likewise an incomplete theory, with neither ó : 0 nor - á : 0 holding.

The theory of [18] has nilpotent elements of all degrees, while the theory of [3]

concentrates on D1. Neither proceeds from a construction on the classical hyperreal

numbers, nor uses three valued model theory. In these theories, also, every function

is continuous. The method of obtaining derivatives from the Taylor formula as in

Proposition 5.I2 is similar to that in [18], and is a variant of the usual classical

treatment. Like SDG, Propositions 5.10 and 5.14 use the calculatory advantages of

nilpotent elements, since these ensure that higher order differentials can ultimately

be ignored.

The case r:0 of Proposition 5.10 is Axiom 1'of [18], with the proviso that r?

in Proposition 5.10 is replaced by the whole domain there. If however ,t? is replaced

Ïty IR in Proposition 5.10 then it fails, as follows. Choose any dlin Dl and let /(z)
be the function d1r. Then certainly l- (3r e Ä)(V d e Dr)(f (d,): /(0 1zd)), the
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ø in question being d1. However, this r is not unique: for any other d2in D we

have l- (V d e Dr)(d.d2 - d.dr: 0) while not [- dt : dz; so that the antecedent of

(V d € nt)U@): /(0) +d.d2) '--+ d1 : dz holds while the consequent does not hold'

Indeed, / could even have a noninfinitesimal coefficient, l@) : (r * 6)r say. For

then the coefficient fails to be unique, since F (Vr € ,t)((5 +6)d:0: (5+26)d)

while not l- 5+ó:5*2ó. Thus the present theory is atheory of functions with

real slopes as in classical nonstandard analysis.

The essential difference with SDG is that the D1 part of the domain is postulated

in SDG to contain elements dt,dz such that not l- dtdz - 0, while in the present

model this is not so (Proposition 5.3(2)). Correspondingly there faiis the SDG

Cancellation Principle (V d e D:)(d.tl: d.tz) --+ ú1 : t2; lor example when 1(¿r) : [ó]

and 1(ú2) :1261then the antecedent is 7 and the consequent is N. However, the

Cancellation Principle holds for cases where the difference between 1(f1) and 1(f2)

is infinite w.r.t. ó if they are different at all, such as the real numbers. For example,

I (V rp2 € AX(V d e D1)(d'q: d-rz) -+ 11: a2).

The failure of the Law of Excluded Middle (LEM) is of interest. The account of

[18] links it to the holding of the Cancellation Principle and the continuity of every

function. Howeve¡ in the present theory it is rather independent of the functional

part of the construction, since the latter can also produce a classical two-valued

model (end of section 3). The same point pertains to the inconsistent theory of the

next section. This does not show that the 'correct' description is that of classical

logic, however; to the contrary it suggests that functionality is mathematically prior

to sentential logic.

SDG in [i8] uses the mathematical machinery of Cartesian closed categories,

which is considerably stronger than that of equational theories. On the other

hand there is some simplicity in presenting the ideas of incompleteness, nilpotence,

differentiability, limits, continuity eúc. within the framework of nonclassical model

theory. AIso, the present approach permits investigation of similar theories with

different nonclassical background logics (see section 5). Another point is that while
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[18] maintains that SDG is an essentially geometric treatment of analysis, it is

interesting how close one can get to SDG with resources merely from algebraic

number theory and model theory.

5. Inconsistent Differential Calculus

Definition 5.17. The theory CR is obtained by changing the definition of

CJ h the following ways (1) background logic is RM3 with elements {fl B,T}

and designated elements V : {B,f}, Q) I(tr: tr) : T if h: úz considered as

hyperreal numbers, else 1(ú1 - tz): B if l(tr): I(tz), else 1(ú1 :tz): F.

There are a number of other options here, for example background logic P3

(this inconsistent theory can be called C P; see next two chapters), or dropping

the first clause of (2). The latter produces a transparent theory, whereas C R is

functional but not transparent. (Proof of functionality: By inspection , tt : úz holds

itr 1(¿1) : I(tz).But [] is a congruence, so if 1(ú1) : I(tz) then /(ú(ú1)) : 1(¿(¿r)).

Hence if ¿(¿1) : fs holds then /(f(tr)) : 1(¿r), so that l(t(tr)) : I(tz), and so

t(t2) : f3 holds. Disproof of transparency: I 62 :0, but while I - 62 : 0, neither

l- - 0 : 0 nor I - 62 : 6'.) This means that on the one hand calculations

using the advantages of | 62 :0 can be carried out, while on the other hand one

does not have to submit to l- - t : t for any term ú, an improvement on earlier

chapters. The loss of transparency does not appear a serious disadvantage: while it

changes the logical properties of the theory, particularly which theories it extends,

it does not affect calculation. Now it can be shown that the main Propositions of

the incomplete theory can be reproved for the inconsistent theory.

Proposition 5.18. If /(r) is any real function, then for every positive integer

k, F-(Vu e ,R) (Et*r...rk€Æ)(V d,eD*) (f{r+ ù:f@)Iri.+...+r*dk).
Proof. The proof that 1(/(ú + d)) computes to (a) as in Proposition 5.10, is

identical. To prove uniqueness, we need to prove (f ). If the consequent of (7) is ?,

then (7) holds. And for real coefficients l¿,/¡a¿, one never has 1(l; :t*+¿): B.
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Hence consider the case I(t;: t^*.¡: F. Then 1(ú;) + I(t*+¿). But also

(t; - tr+;) ló considered as a hyperreal number is infinite, since the numerator is real

and nonzero. Hence as in Proposition 5.10, for some d with [d] in D¡, do(t, - tr+r)16

is noninfinitesimal. So /(dtf¿) + I(ditk+i), and the antecedent of (r) ir F as re-

quired. E

Proposition 5.19. If / is any polynomial of the form fl=o ú;ø' with real

coefficients f¿, then F (V r e R)(f'(x) : DL, it;xi-t).

Proof. Similar to Proposition 5.14. ¡

Proposition 5.20. For every real function /, F / is continuous.

Proof. Similar to Proposition 5.16.

To repeat an earlier point, inconsistent calculus is not being recommended as

superior or truer, though its nilpotent elements have some of the calculatory ad-

vantages of SDG. The aim is only to show that it exists, that inconsistency permits

a reasonable amount of calculus without collapse, and hopefully that inconsistent

theories can be of mathematical interest

6. Integration

This can be done in a similar way to the classical nonstandard account in

Keisler [17]. The theory following is not much more complex than Keisler's; but on

the other hand nilpotent elements appear not to convey any particular advantage,

unlike in the case of differentiation. If there are any advantages at all, they may be

that nilpotent elements allow 'smearing out zero' and a theory of delta functions

as in Chapter 7.

Definition 5.2L. (Keisler) Let /(r) be a real function on an interval I. An

area function for / is a two placed function A : R x r? --- l? satisfying (i) Addition

Property A(a,b) : A(o,c) + A(c,ö) for all a ( c 1 b in z, and (ii) Rectangle

!
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Property ^(b- a) < A(a,b) < M(b -ø) for all a ( b\nI, where m:rninf onI
and M : max f on L The finite Riemann Sumlb" f (r)Lr is defined to be:

b

D /(r)¡' :df f(r6)a'r -t f(r1)Lx * ... * f@"-')ar * f("")(b - rn),
a

where Ar is any positive real number, n is the maximum integer such that

a|n\.r ( ó, and ro: dt tt : t * Ar,...rtn: r ln\,t. The inf'nite Rie-

rnann sum lb" f (x)dn, where dr is any nonzero infinitesimal, is the nonstandard

natural extension of the finite Riemann sum. Intuitively, it is the same sum as the

finite sum except that there are an infinite number of terms, that is n becomes the

largest hyperinteger such that ø t nd,r < ó. The defi,nite integral of f from a to b

rb

J" f {*)a* is the standard part of the infinite Riemann sum.

That these are well deflned follows from the next Proposition

Propositi on 5.22. (Keisler)

The infinite Riemannian sum is always a finite hyperreal number.

The definite integral from ¿ to b is independent of the size of the (nonzero)

infinitesimal dr.

The definite integral of / from a lo b is the unique area function for /.

(1)

(2)

(3)

(4) (i)

(ii )

l"o

l"o

l"o

c.dr:c.(b-a)

l"o
dx c. f(r)dr..f (*)

( ll ) U+ùd,,: l"u fa*+ l"o na'

l"o na''(i") f <gimplies

l"o
(5) f'(r)dr: f(b) - Í(")

dr1
l"o t

D

Moving to C R, functional expressions can be generalised to any string in which

r is the sole variable, with the proviso that the interpretation ,I(string) is a partial

function on the domain and /(strine(¿)) : 1(stringXf(r)) Now it is clear that

(1)-(5) above hold for all infinitesimals d or dr, so in particular they hold for all

infinitesimals d such that not lcn d: 0. But passing to CR preserves functional
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equality for functions restricted to such infinitesimals, provided that reference to

hyperintegers is restricted to the metalanguage (infinitesimals such as ó2 behave

like zero in virtue of I 62 : 0 plus functionality). Hence we have

Proposition 5.22. (1)-(5) of the previous proposition hold of CR.

Further aspects of integration, such as indefinite integrals, the Second Funda-

mental Theorem, etc. can be dealt with in a similar way. In the special case of

polynomial integration antiderivatives are easy to find directly, and so (1)-(5) can

be verified directly.

7. Conclusion

The inconsistent theory here can be regarded as yet another approach to the idea

of an 'infinitesimal microscope' (see [17],[54],[55]). A microscope with 'resolving

power' ó can be said to be a theory which inconsistently identifies with zero and one

another all quantities which are infinitesimal w.r.t. ó. One is unable to distinguish

between quantities below this 'order of infinitesimality' or 'order of relative identity';

they have all one another's properties in common.

Further directions in which these ideas might be developed include inconsistent

superreals (see [55]), inconsistent polynomial rings in one or more indeterminates,

and introducing set membership (see Chapter 10). Finally, perhaps the present

theories satisfy some of the inconsistent intuitions of the classical analysts; but

even if not, inconsistent theories should be investigated.
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CHAPTER 6: INCONSISTENT CONTINUOUS
FUNCTIONS

l-. Introduction

The idea that motion or change is an inconsistent process has, as is well known, a

Iong history. Recent nice work by Graham Priest [46] suggests that an inconsistent

account of motion and change is at least possible. It is a further matter whether

it is true; and despite Priest's arguments, there does not seem to be a compelling

reason for rejecting the existing consistent account from classical physics, which is

mathematically both simple and elegant. Priest argues that the classical account

has it that motion is being in different places at different times; whereas what he

wants is an intrinsic account of motion according to which an instantaneous state

ought to be unambiguously change or nonchange, independently of its (distance)

relations to other states. Against this, one is inclined to argue that the relations are

nonetheless present; that an account in which the relations alone carry the change

is therefore inevitably simpler; and that being in different places at different times

is surely necessary for motion, and more importantly (at least given a positive

definite metric) sufficient as well.

As part of his account, Priest appeals to the Leibniz Continuity Condition

(LCC). This condition is that whatever holds throughout an interval holds at its

limits, and there is evidence that Leibniz held it. Now there is a technical problem

with the principle as thus stated. Since any strictly monotonic continuous function

takes throughout any interval values less than its value at the right hand endpoint

of the interval, then applying the LCC gives that the function takes a value both

Iess than and equal to itself at the endpoint. But since any point is the endpoint

of some such interval, the function is both less than and equal to itself at all points

(and greater than itself at all points as well, since whatever is greater than itself is

less than itself as well, by symmetry).

Now, while Priest appeals to the LCC, not much of his account depends on it,
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I think. On the other hand, the LCC should not be dismissed too quickly. The

above problem depends on applying the LCC to the relation 'less than'. But not

so much harm ensues if the LCC is applied only to equations, as we see in this

chapter. In other words, it can be argued that the correct sphere of application

of the LCC is at the fundamental level of being expressed by the basic physical

Laws of Nature, and laws and boundary conditions of dynamical systems, since all

of these are expressed in functional-equational form. Indeed, the application of the

LCC to at least some discontinuous functions has the consequence that they can

be treated as inconsistently continuous, in a manner outlined in this chapter; and

that the natural logic arising from them is closed set logic.

The LCC serves to motivate the following account; however it is stressed that the

theory stands independently of the LCC. We are concerned here with a special case,

namely certain functions which from a classical point of view are not everywhere

differentiable, but which can from an inconsistent point of view be regarded as

having continuous derivatives. We see that the inconsistent derivative of such

functions is continuous, given a natural extension of the meaning of the latter.

Differentiating these in turn leads to delta functions, and in the next chapter an

inconsistent account of these is proposed.

2. Functionality

Consider the continuous function g(ú) : lcú for all real numbers ú ( 0 and

g(t) : k2t for all ú > 0, where k1 and k2 are classically different real numbers.

The usual story about its derivative is that g'(ú) : frr for all f < 0, and g'(t): k,

for all ú ) 0, but that 9'(0) does not exist; since the left hand limit of g(6t)l6t

as óú --- 0- is k1, while the right hand limit as óú --+ 0+ is k2, and k, I kr.

Inconsistently, however, there is no particular reason not to allow both - lq : lcz

and also li : kz. The latter lt : lcz would ensure both that LH derivative:Rl{

derivative so that g is differentiable at t :0, and also that the derivative function

is continuous at ú :0 and thus continuous everywhere.
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Considering then the 'derivative function' /(f) : frr for all ú ( 0 and f (Ð : k2

for all t ) 0, we have that /(0) : kr and /(0) : lc2; and, since / is a function,

also k1 : lcz at ú : 0. For this to amount to an inconsistency, it must also be that

- h7 : k2 at t: 0. So a first consideration should be that enough of the arithmetic

of the real numbers holds in the space of values of / at ú : 0, that - lq : kzholds.

One might insist that a necessary condition on any account which represents the

oddity of what is happening at t : 0, be that - kt: k2 represents the norm., with

kt : kz an extra abnormality at t : 0. (Even the orthodox account recognizes

abnormality after a fashion, in that declaring that g' does not exist at ú : 0 is a

kind of incompleteness.)

It is known, however, that if kl : k2 where classically these are distinct real

numbers, then there follows by purely {1,-, x,/} substitutions in classical real

number identities, the undesirable conclusion that any real number a is identical

with every other real number ó. (Proof: let - kt : lq - kt. Substituting k2

for k1, kt - lq : Icz - kt. Classically, LHS: 0; so 0 : lcz - Iq. Classically

((kr- k1) x (ô - a))l(kz- kt): ((k, - ft') x (ó- 
"Dl(k, - ftr). Substituting in

LHS, (0 x (ó - "Dl(kr- k') : ((kr- k') x (b - a))l(k, - kr). Classically LHS : 0

and RHS - þ- c, so 0 - b- ø. Classically ¿* (b-"): a* (ó-o), so substituting

0 for ô-¿ in LHS, a*0: a-l(b-ø). Classically LHS: ¿ and RHS: ó, so ø: ó.)

Hence whatever is happening in the space of values of / at ú : 0 has a reduced

functional structure compared with that of the full field structure at ú other than

zelo) or else the value space would have no structure at all at t :0. The latter in

turn would make it impossible to distinguish at t :0 between an inconsistent jump

from k1 to fr2 and an inconsistent jump to any other k3. One of the advantages of

the present account is that this distinction can be sustained to a fair degree.

In the above argument, once one gets to 0: lcz - Æ1 , if one then allows 'scale

changes' by multiplying by a real number c, then one gets 0 : (k, - kr) x c which

spreads rapidly to a : ö. So it is reasonable to say that the value space at I : 0

lacks a multiplicative structure. But as we see there is no particular reason not to
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allow the extra additive consequences of 0 : kz - kt

A natural account exploits the fact that for any real number r there is a

uniqueinteger ø and aunique realnumber bsuch that r : a.llez -krl *ó and

0 < ó <lkr- k1l. So it is proposed to take the map å. : R --+ [0,|fr, - k1l) with

h(a.lk2 - kt I * b) : b; and then aI t : 0 to identify real-valued quantities c and d

if å.(c) : h(d). This produces 0 : k, - k, and k1 : kz among other things. One

can think of the space of values of / as undergoing an 'instantaneous slip' from

k1 to le2 at t :0. Another analogy is for an 'instantaneous cylindrification' of the

value space, in which the whole positive and negative axes are wound respectively

clockwise and anticlockwise around the finite halfopen interval [O,l¿, - krl).

Now the halfopen interval [0, 1fr, - fttl) has a natural additive structure, defined

by a!'b :df h(a*b), the latter f being real number sum. It is known that *' so de-

fined is a function on [0, lkr-ktl). This makes å an additive group homomorphism,

and it is seen later that in the inconsistent theory holding aL t :0, functionality of

{+, -} is preserved. Coming at it from another direction, let ø ry b :df ¿ - ó is an

integral multiple of lk2 - kt l, where ¿ and ó ¿,¡:e real numbers. It is not difÊcult to

prove that 3 is a congruence w.r.t. addition ([a], p.1a8). Hence the map h : r --+

(the unique ó such that r ry ó and 0 < ó < lk, -k1l) takes the additive group of

real numbers to the additive group on [0, lk, - ktl) with o. +' b :df h@ * ö) and

-'a :df lk2 - k1l - a.

It is obviously important that therebe at least somefunctions such as {*, -} irt

the value space of the derivative function; otherwise it has no structure save identi-

ties and their denials. Quite a lot is definable in the additive group, for example all

integer multiplications. Howeve¡ the corresponding definition of unrestricted multi-

plication fails of functionality, and so multiplication is left 'undefined' at I : 0. (In

the next section this is dealt with logically using incompleteness.) This looks bad

only if one forgets the origin of differentiation in the gradients of a scalar field, or

quantity spaces or phase spaces. There, one might insist, congruences of difference,

or metrical distance on a quantity scale, are absolute. This defines 'twice, thrice,
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. . . the distance'on the difference as absolute. On the other hand, expansion or con-

traction of the value space by multiplying quantities by an un-unitted real number

is merely a scale change and not a quantity change. That arithmetical laws might

be different from time-to-time is easier intuitively to attribute to quantity spaces

than to (apparently) universal real numbers. But it is not really an extra problem

to deal formally with the value space of / as real numbers, rather than unitted

quantities as here. One simply treats the situation formally as here, forgetting the

implicit units following the values of g,, g' and /.

3. Logic

To make this logically more precise, a language for describing the value space

at various I and a background logic are needed. In the following it is convenient

to think of the variable f of diferentiation as ranging over times in accord with

dynamical systems. It is seen later that the topology of the dynamical system

described by the inconsistent function /(ú) provides its own logic.

Take as a language names fo¡ all real numbers, term forming operators

{*,-, x,l}, and a single binary predicate :. As background logic take the

Iogic PJ4 (Definiiion 2.9), with four valuer {r, N,B,T} and designated values

V: {8,?}. An additiue term is one containing no occurrences of { x,l}.Atomic
sentences are assigned values by a function 1 : L x Time -* {r, N,T, B} in accor-

dance with
(1) For any time ú other than 0 and any terms tt,tz, I(tr: tz,t) - T il h: úz is

true in classical real number theory, else 1(11 : tz,t) : F.

(2) [f ú1 and t2 are both additive terms then

(2.1) I(tr: tz,0):T il]'l_: tzis true in classical real number theory; and

(2.2) I(tr: t2,0) : B \f h and ú2 are classically distinct real numbers but

h(tr): h(tr), while l(tt: tr,O) - F \f h(tr) I h(tr).

(3) If ú1 and t2 are not both additive terms then /(ú1 : ú2, 0) : Iy'.

Values for all nonatomic sentences and a corresponding theory for each I are then
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determined as in Definition 2.9.

Proposition 6.1. 1 determines a functional theory at all times.

Proof. It is obvious that this is so (relative to the functionality of the classical

theory of the real numbers) at times other than ú : 0, since the quantity space

(space of values of /) behaves identically with the real numbers at those times. So

suppose time: 0 and let ú1 - ú2 hold. That is I(t, : ú2,0) € {B,T}; and so by

construction of 1 both ú1 and t2 are additive. Therefore any atomic sentence Fú1

is additive itr Ft2 is additive. As usual it suffices to prove the proposition for only

one replacement of t1 by t2. If neither ,Fú1 nor Ft2 is additive then neither hold

by construction of 1. If both are additive then let Fúr hold and be of the form

¿(ú1) : ú3, so that Ftz is ú(¿2) : ls. Now since l(ú1) : ús holds , h(t(tr)) : h(tz).

But since tt:tz holds, h(tr): h(tr).So by the fact that *'and -'are functions

on [0, lkr- krl), h(t(tr)): h(t(tt)); and since the latter : h(tz), Fú2 holds. lf Ftr

does not hold, then å(ú(ú1)) # h(t"); whence by å(t1) : h(tz), h(t(tr)) I h(t"),

so that Ft2 does not hold. The argument is similar iî. FtL is ú3 : ú(ú1). Hence I
determines a functional theory at time: 0 also. D

Proposition 6.2. The inconsistent zero degree theory determined at I : 0

extends the additive part of classical.real number theory (-R").

Proof. By induction on the number of occurrences of {-,&,V} in an additive

sentence A, that (i) if A is true in -8. then 1(4,0) :7 and (ii) if A is false in r?"

then 1(,4,0) e {F, B}.

(Base:) Clear by construction of /.

(-clause (i):) I1 - A is true in.B. then A is false in.R.; so by inductive hypothesis

(ii) 1(,4,0) e {F,.8}, so I(- A,0) : ?.

(-clause (ii):) If - A is false in l?. then A is true in .R.; so by inductive hypothesis

(i) 1(,4, 0) : T, so 1(- A,0) : F e {F, B}.

(&clause (i):) If CkD is true in,B. then both C and D are true in -R. so by

inductive hypothesis (i) I(C,0): I(D,0) : T, so I(CkD,0) : ?.
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(&clause (ii):) H CkD is false in r?. then one or both of C, D is false in -R.. Let C

be false. By inductive hypothesis (i) I (C ,0) € {4 B}, so that I (C kr, 0) € {F, B} .

(Vclause (i):) I1 (Vr)Fr is true in r?" then Fú1 is true in R" for every name út. By

inductive hypothesis (i) I(f.úr) : T, so that I((Vz)Fr,0):1.

(Vclause (ii):) If (Vx)Fr is false in.R. then f'ú1 is false în R. for some name 11.

By inductive hypothesis (ii) I(Ft1,0) e {F,B}, so that 1((Vø)Fr,0) € {F,B}. !

Summarising, the theory describing the value space of / and g' is consistent

complete R" at times other than ú : 0. At f : 0, the theory in its additive part

is inconsistent, complete and contains .8.. In its nonadditive part it is incomplete,

and overall it is functional. The additive part of -R. holds at all times, and at the

singularityf :0 theextraadditivepropositions 0: frz -ltr,kr: lez,kt*1 : lczll,
efc. hold, making things inconsistent at that time.

Consider any continuous function g(f ) with the property that at all but a finite

set {l¿ : I I i S n} of times/points g is differentiable; and that for all the f ¿, left and

right derivatives are defined (but classically unequal). This determines'a closed-

set topological space on the real numbers whose boundaries are the singletons {ú¿}

and whose closed sets have the basis [--, tt], [út, tz], . . . ,lln-r,tnl,lt.,*-]. So one

can identify the derivative function g' with a map from the set of times with the

closed set topology to (the set of PJ!-lheories of L x lhe real numbers), with the

following two provisos:

(1) if {t} is not a boundary then 9'(l) : (R., the classical derivative of 9 at ú);

(2) if {¿}isaboundarythen g'(t): (?å¿,thelefthandderivativeatl),whereTh¡

is the additively inconsistent multiplicatively incomplete theory described above.

Note that it would be equivalent if the right hand derivative were used instead;

since in Thr,LH derivative: RH derivative. The continuous function g can itself

be regarded as such a map, which shows that there is a proper generalisation here.

For g, in which there are no boundaries, the closed set topology is just {r?,4};
and for aII t, g(t) : (R., the classical value of g at ú). For any such function g, g

is differentiable at t if g'(t) is defined; which it is at every t, so g is differentiable
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everywhere and its derivative is g'. Finally, a function is continuous at ú if the LH

limit at ú : the RH limit at t : the value of the function at ú. But this holds for

g' at aIl ú. Hence g/ is continuous and g has a continuous derivative.

It might be wondered whether the derivative g'(0) should contain information

about whether g is increasing, decreasing, or stationary at f : 0. This would

seem to need an absolute distinction between positive and negative values of the

derivative at t : 0; though since such a distinction could be programmed, no

doubt there is functionality at some level. But in any case it isn't clear that

there are straightforward intuitions about whether g is increasing if according to

its LH derivative it is increasing but according to its RH derivative it is decreasing.

(Stationary?) Perhaps the only cases where intuition gives a lead are when g is
increasing according to both LH and RH derivatives, or decreasing according to

both. But this conception already imports classical LH and RH neighbourhoods of

ú : 0. Thus one might say that the inconsistent account describes the 'magnitude'

of the rate of change of g, an 'instantaneous slip'from k1 to lc2; while the direction

of change, where it is meaningful at all, is a matter of neighbourhoods.

A function 'defines its own logic' in that it is associated with a closed set topol-

ogy which constitutes a paraconsistent logic (see Chapter 11). The propositions of

the logic are closed sets of times at which various additive atomic equations hold.

The negation of an additive proposition holds at the closure of the set-theoretic

complement of times at which the proposition holds) so an additive proposition

and its negation hold at the boundary. Multiplicative (nonadditive) propositions,

however, hold only on open sets and thus fail to hold at the boundaries, as expected.

The composite open-closed-boundary-space is a Boolean algebra with open set (in-

tuitionist) and closed set (paraconsistent) subalgebras or sublogics, which describe

the values of multiplicative and additive propositions respectively.
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CHAPTER 7: THE DELTA FUNCTION

1-. Introduction

In Chapter 6, differentiating the function 9(¿) : kú for all ú ( 0 and g(t) : kzt

for all ¿ > 0, where ,t1 and lc2 ate classically distinct real numbers, Ied to the

inconsistent continuous function /(¿) : g'(t): kr for all ¿ ( 0 and f(t) -- k,

for all ú > 0. If a dynamic system is described by g(t), then the derivative takes

an instantaneous jump at ú : 0. That it is instantaneous rather than taking an

infinitesimal amount of time, is represented by the inconsistent continuity. The

aim in this chapter is to differentiate one step further, frnding /'(ú). The new

derivative can naturally be thought of as (k2 - lcl).A,(¿), where A(ú) has the two

properties (i) A(ú) : 0 for all t 10, and (tt) /: A(¿)dú : 1. Property (ii)

means that at constant times the integral recovers the precise amount of the j,t-p

from fr1 to k2. The delta function occupies an interesting niche in the history of

mathematics. Long regarded as problematic but useful in elementary quantum

theory and quantum field theory, it was eventually'solved' in Schwartz' Theory of

Distributions; but at the cost of a considerable increase in complexity, as well as

an increase in the size of the function space for quantum mechanics.

One can produce an account of something close to the delta function within

classical nonstandard analysis. Considering the f-axis (the real line) and its value

space as augmented by infinitesimals and their reciprocals the infinite numbers,

one can draw a triangle with base 2ó and height 1/6. The area of this triangle is

(basexheight)/2 : 1. The triangle is described by the function At(¿) :0 for all Ú

with lúl ) á, A, (t): (t162).t+(t/ó) for -ó < ¿ < 0, and A'(¿) : erl62)i+(tl6)
for 0 ( t < 6. The slopes of the sides are If62 Tor -6 < I < 0 and -1/ó2 for

0 < ¿ < ó. Property (i) for the deltafunction, namely A(ú) :0 for all t +0, is not

quite right here. But it is nearly right, since A1(ú) :0 for all realt + 0. Property

(ii) for A1 follows straightforwardly from any reasonable account of the integral as

an area function, given the area under the triangle as described. This account of
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the delta function differs from Robinson's approach in nonstandard analysis, which

is more like a nonstandard account of the theory of distributions, in keeping with

Robinson's operationist attitude to infinitesimals. But it is a reasonable account

all the same.

Nevertheless, it is possible to exploit inconsistency to give an account where

A(¿) : 0 for all nonzero ú; and which more reasonably gives an instantaneous

account of the change in /(t) from fr1 to k2. Furthermore it is possible to give sense

to the idea that the rate of change is different in an instantaneous jnmp from k1 to

k2, from an instantaneous j.t-p from fr1 to k3.

2. Functionality

In Chapter 5 the reciprocals of infinitesimals were avoided because they give

problems with functionality. But these problems are not quite so insurmountable. It
is shown in this chapter that a construction can be given wherein total functionality

fails but some partial and reasonable control of functionality remains. Further, the

area of failure of functionality has a reasonable motivation. In turn, this leads to

an inconsistent account of the delta function.

First, introduce the concepts of 'the bandwidth of zero' and 'the representative

of. zero'. In Chapter 5 certain infinitesimals were inconsistently identified with zero,

while others were consistently nonzero. One can think of zero as 'smeared out' over

the range or bandwidth of the former. A positive infinitesimal ô is taken as the

bandwidth of zero, and ó2 is taken as the representative of zero. The idea is that

all and only those numbers infinitesimal w.r.t. ó are inconsistently identified with

zero, while ó2 represents zero for the purposes of multiplication. The bandwidth of

zero gives the equivalence relation æá of Chapter 5.
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Definition 7.1. The theory DRis given by

(3)

(4.i)

(4.2)

background logic RM3

names for every hyperreal number finite or infinitesimal w.r.t. 1/ó2, that is

names for all numbers z such that r.62 is finite or infinitesimal

term-forming operators {*, -, x, l}
If ú is any name then 1(ú) : [t]

1(*) and 1(-) are addition and subtraction on the set of equivalence classes

of numbers finite or infinitesimal wr.t. lf 62

For multiplication, if ú1 and t2 are terms with [ú1] : [0], then 1(ú1 xt2):
I(t2xtr) : [the representative of zerc.t2]:162.1"2l. (Note that here x is the

term forming operator and . is multiplication between hyperreal numbers.)

If neitner [út] : [0] nor ltrl : [0] then: (4.4.I) if not both ([ú1] is infinire

and [ú2] is infinite), then 1(ú1 x t2):ltr.t2l; else (4.4.2) if both [ú1] and [ú2]

are infinite, then I(t1x ú2) is not defined.

I(tr: tr): T fi1'1: fu,, I(t1 - tz): B if h I t2b:glt 1(¿1) :1(ú2), else

I(tt:tz):F.

(4.3)

(4.4)

(5)

The notion of infinitude of equivalence classes is well defined in that every

member is an infinite hyperreal number. Similarly for middlesized and infinitesimal

numbers. Addition and subtraction of numbers finite or infinitesimal w.r.t. ll6,
remain noninfinite w.r.t. \f 62, so there is no need to restrict these operations.

Division and reciprocation are set aside for a while.

Proposition 7.2. (1) For any term l, l- f x 0 : 0 iff ú.6 is infinitesimal. (2) If
f is noninfinite, then l- f x 0 : 0.

Proof. (1) l- lx0:0 ifr I(t x0:0) e {8,?} itrI(tx0) :1(0). Now

I(tx0) :[62.t]and/(0) :[0].But[á2.ú] :[0] itró2.úisinfinitesimalw.r.r. ó,rhar

is itr 62.t16 is infinitesimal, iff ú.ó is infinitesimal. (2) If I is noninfinite then ú.ó is

infinitesimal; then apply (1). !

Thus the use of a representative of zero does not disturb the 'nullifying' property

of multiplication by zero of noninfinite numberc (e.g. reals). Similarly some but not
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all infinite numbers with names in the theory are nullified by zero. For example, let

H be the name of the infinite numbe¡ which is the reciprocal of 62 in the classical

hyperreals,ret Hl be the name ol2f 62,Iet H2 be the name orrf 6, and let H3be

the name of lf 6z/s. All these names occur in the theory since É11ó2 is finite. But
l- fI x 0 : 1 and l- H1 x 0 :2 andl H2 x0 : á and F Ërs x 0 : 0, (though not
I H2 x 0 : 0, since á/ó is not infinitesimal).

As was seen in Chapter 5, multiplication of noninfinite numbers by noninfinite

numbers is functional. But this is not in general true of multiplication of noninfinite
numbersbyinfinitenumbers. Forexample, l- 5: b*ó2 and I H: H+6, but not

l- 5 x H : (5*ó2) x (H +ó2) nor even l- 5 x H : (5+ 62) x H. This is because

[(5 I 6r).f1] : [(5.f1) +(6r.H)]: [(5.f1) +1]+ [5.ã], so rhat 1((5+ 6"), H) +
1(5 x fI). Multiplication is however perfectly well-defined in the theory. The failure

of functionality at this point does not seem particularly troublesome or bad. It is

related to resolution of the smearing of zero, in that multiplication of the zero

difference between two numbers by a sufficiently large infinite number can produce

a nonzero (though possibly still infinitesimal) difference. We also have:

Proposition 7.3. If 1(¿1 x ú2) is defined, then it is noninfinite w.r.t. rl6";
similarly for addition and subtraction.

Proof' Names are restricted to numbers which are noninfinite w.r.t. I162. The
sum and difference of any such numbers are likewise restricted; while multiplication
is defined only when at least one number is finite, and the product of a finite number

by one noninfinite w.r.t. 1162 \s likewise. ¡

Reciprocals and division can be added to the theory, for example by setting
1(¿-t) : [ú-t] for all ú such that neither ó.ú nor 6lt is infinite (e.g. alI reals, á1l2,

5-tlz, etu.)- This gives I(t x ¿-t) : [¿.¿-t] : [1], thus l- ú x ú-r : r. However

reciprocation is not everywhere functional. Fol example, let ú1 - á and tz : 6 + 62.

Then F tt: ú2;but (tr'-t;')16: ttr.tit(tr- tr)16: (á2+á3)-r.5zl6: Ile+62)
which is not infinitesimal, so that not l- l¡1 : úr 2. Reciprocation of small enough
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nonzero numbers thus 'unsmears identity'. As usual, however, reciprocation is

functional on the middlesized numbers: if l- ú1 :tz and both are middlesized; then

since (1,I - t;t)/6 : çtrt2)-r.(t, - t)16 and the latter is infinitesimal, so is the

former.

Summarising, the theory is functional for {+, -}; and functional for multipli-

cation where it is desirable, on middlesized numbers. Elsewhere, identities are

unsmeared by multiplication by large enough numbers. Multiplication by zero nul-

lifies middlesized numbers, as well as all infinitesimals and some infinite numbers.

Multiplication of zero by big enough numbers unsmears the zero to produce a

product which is at most middlesized, and which depends on the size of the infinite

number. There is no biggest infinite number but there is a biggest order of size, in

that numbers infinite w.r.t. Il62 do not exist.

The latter dependency can be exploited in an account of derivatives of incon-

sistent continuous functions.

Definition 7.4. a(t) is the function from {r : r is hyperreal and r.62 is

noninfinite) to itself; with the property that A(ú) : 0 if t : 0 does not hold, else

A,(t) : 17.

To find the area function for A in DR, draw at zero a rectangle of base zero

units (that is a vertical line abov e zero) with height 11. Take the infinite Riemann

sum over the interval [4, ö] including 0 w.r.t. the partition determined by the

infinitesimal dt : 62. The contributions of all terms for which A(ú,) : 0, are

obviously zero. The only nonzero contribution to the infinite Riemann sum is the

area of the line of height H at t: 0. The area of a line of finite height is, naturally

enough, zero: base x height : 0 x noninfinite number : 0. But the area of a

line of infinite length can be nonzero: 0 x Ë1 : 62 x H : L Clearly also, this is

the magnitude of a unit instantaneous jump in an ìnconsistent continuous function.

Thus A(l) can serve as the derivative of such functions, and conversely the integral

of A is the instantaneous one unit jrl-p. Should the instantaneous jnmp be from



72 The Delta Fbnction

lc1 to lc2, there is then a natural measure of the magnitude and sign of the rate of
jrr-p in (k2 - frr).4(0), that is (fr2 - *r).H. Note also that the A-function can be

translated r units along the ú-axis by A,(ú) :df L(t + r).

This method of integration doesn't work with the area functions of Chapter b,

since there resolution of the ú-axis below the order of magnitude of ó2 is forbidden.

So one can say that the normal area functions of C R apply until the function jumps

instantaneously, and then its derivative is in a different space D-R where Riemann

sums are taken w-r.t. partitions of size 0, that is 62. Needless to say, it is not

claimed that this is the 'right' account of the delta function, only that it is an

account' Also, it is not apparent how to go on to differentiate delta functions in
turn by these methods, but then there appear not to be any meaningful intuitions
about that anyway.
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CHAPTER 8: INCONSISTENT SYSTEMS OF
LINEAR EQUATIONS

1. Introduction

The existence of the inconsistent case of a system of linear equations (or for that

matter any system of constraints, not necessarily linear) has been known for a long

time, but there has been no attempt to analyse its structure. There would seem

to be good reason to do so, if only because the state of affairs might arise in a real

life control system (see sections 3 and 4). Using the methods developed so far, it
is possible to say something about the structure of solutions to such cases; though

it must be confessed that in the end the situation remains less than satisfactory.

2" The Inconsistent Case

Consider a system ,9 of n linear equations in s unknowns Í1, ...¡fr" having

an n x s coefficient matrix Mc : [ø;¡] and an r¿ x (s + 1) augmented matrix

Ma: lMc,B), where B : collh...,bnl is the column vector of constants. The

usual story is that ^9 has a solution iff the row rank r of Mc: the row rank of

Ma, and,S has a unique solution iff in addition r : s. We concentrate mostly on

the first of these, looking briefly at the second later. Clearly r ( rowrank(Ma),

since every row ol Mc is part of a row or Ma. But if r < rowrank(Ma), then

elementary row operations on Ma wlII produce an equivalent matrix with zeros

everywhere below row r except in column s + 1. This corresponds to the equations

0 : å"+r ,0 : br+2r. . . ,0 : b, where one or more of the br¡¡ are nonzero. This is

an inconsistency, so that it is impossible to satisfy ,S below row r. Hence ,9 has no

solutions. (See e.9. Perlis [44], Birkhoff and Maclane [4].)

But if there were inconsistent arithmetics in which 0 : ó,+r ,0 : b,+2,. . . could

all hold, then there would be no particular reason why all of the equations of ,9

could not hold simultaneously. So we can begin by informally postulating structures
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in which 0 : ó"+r,0 : b,+2,... hold inconsistently, that is where - 0 : ó"+1,

- 0 : b,+2¡ -. . and a reasonable amount of classical real number theory also hold.

The distinctive role piayed in S by the column vector of constants motivates

the following definition, particularly part (3).

Definition 8.1. (1) A matrix M is row reduced if (a) every leading entry of a

nonzero row is 1, and (b) every column containing such a leading entry I has all

other entries zero.

(2) M is in row echelon form (REF) if also (c) each zero row comes below all

nonzero rows' and (d) leading coefficients begin further to the right as one goes

down.

(3) An augmented matrix Ma - lM.,B] is in wealc row echelon form (WFÙEF) if
Mcis in REF.

Thus M¿ in WREF might look iike

MaI:

when deleting the last column produces a matrix in row echelon form

It is obvious that any matrix regarded as an augmented matrix can be trans-

formed to one ìn WRBF using elementary row operations, and that some sequence

of operations on an augmented matrix M a sttffi,ces to reduce its coefficient matrix

M c to its unique REF. Further, M a arises from a consistent set of equations j ust in

case there are no rows with a nonzero only in the last column. Note that the usual

process of determining a basis for the rowspace of M a considered simply as a matrix

(rather than as an augmented matrix arising from a set of equations) goes beyond

WREF to produce RtrF in Ma, that is a 1 in row r * I (where rowrank(Mc) : ,)
and zeros everywhere else in that column. But as we see this is not so useful for

100203
010 0 02
007232
000005
000007



The Inconsistent Case íõ

dealing even with the consistent case, so we deal with WREF's. These diverge from

REF's only when rowrank(Mc) < rowrank(Ma), that is when ^9 is an inconsistent

set of equations.

The rowrank of Mc can be read off from any WRtrF row-equivalent to Ma,

as the number of nonzero rows discounting the last place. The rowspace of any

matrix in WREF is identical with that of its unique REF. It does not seem to

be determinate whether one should say that the rowrank of. Ma is the number of

nonzero rows in the WRtrF, or the generally lesser number of rowrank(Mc) +I.
The latter is favored by the classical treatment of linear algebra, but the former

has certain advantages in inconsistent situations.

In general more than one sequence of elementary row operations suffices to

reduce Mc to REF. If and only if ^9 is consistent, exactly those sequences of row

operations reduce Ma to REF. If S is inconsistent, just those sequences of row

operations reduce M a to WREF. Furthermore, each such sequence produces a

unique vector of constants in column s + 1 with at least one nonzero entry below

row r. However, the rowspace spanned by the first r row vectors of a WREF of

Ma is not unique. For example, consider

Ma2 :

Subtracting row I from row 4 and row 2 from row b gives the WREF

Ma3

100203
010002
00r232
100208
010009

10 02 0 3

010 0 02
00r232
000005
000007
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While first interchanging the first and fourth rows then performing the same oper-

ations gives the WRtrF

Ma4:

where the rowspace spanned by the first three rowvectors is different in Ma3 from

Ma4. Nonetheless, two aspects are determinate.

(") Given a selection of r linearly independent rowvectors, reducing just these

to REF uniquely determines the constants ó"..,.1 ¡br!2t... lower down (since in

the coefficient matrix Mc every row lower down than row r is a unique linear

combination of earlier rows, and this linear combination carries the ó"1¿ along

with it).

(b) There are only a bounded number of selections of r linearly independent

rowvectors from the rz x (s -|- 1) matrix Ma.

So we can think of an augmented matrix reduced to WREF as containing two

parts: (i) the first r rows, spanning a (classical) r-dimensional vector subspace of

V,+t(F), and constituting a consistent set of linear relationships between the vari-

ables 11 . . . r" which can be satisfied in some classìcal (s - r)-dimensional solution

space (which is exactly how one would say it in the case where r: rowrank(Ma),

see [4], p.169); plus (ii) a set of propositions of the form 0 : br+r¡} : b,+2,... to

be satisfied conjointly in an inconsistent arithmetic. (It is also desirable that these

parts interact.) And furthermore there are a bounded number of consistent solution

spaces and each determines a unique set of inconsistent arithmetical propositions.

So one can informally define a solution structure for a set S of n linear equations

in s unknowns to be a finite collection {C¡} where each C, has two interacting

parts, a classical (s - r)-dimensional solution space, and a structure in which a set

of inconsistent identities 0 : b,+i hold in an appropriate paraconsistent logic. A

00123

10020
01000

00000
00000

8

2

2

-5

I
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solution, then, would be a vector of constant values for z1 . . . z" satisfying the set

of relationships of the consistent solution space (that is, lying in one of the (s -
r)-dimensional classical solution spaces), and interacting with the corresponding

inconsistent mathematical theory. In the case where ^9 is consistent, these reduce

to the classical definitions of solution space and solution, since the second part of

the definitions covering inconsistency becomes inoperative.

The situation would be less flexible if it was permitted to go beyond WREF to
REF for Ma by reducing all or even any of the 0 : b,+; to 0 : 1 by multiplying by

(ó"+t)-t; and even less flexible if one then cleared all other places in col[ó1 ...b^].
Aside from mathematical interest, at least one good reason for disallowing this is a

functional one. Division by ze¡o remains functionally chaotic despite all attempts to

do so inconsistently. But if division by zero is disallowed, then division by anything

equal to zero, such as b,+rt.. . , ought also to be disallowed, on pain of failure of

functionality. That is, when 0 : ó,+r holds then (ó,a1)-1 should be undefined. But
it is (ö,a1)-r which is needed to be the multiplier to red.uce 0 : ó"+r to 0 : 1, or

to 0 : b,¡2 fot that matter. That is to say, when dealing with inconsistent sets of
equations, reduction to WREF is correct and preferred to REF, while there is no

disagreement in the consistent case. A slight problem arises because in arriving at

a wREF, multiplication by (ó"*r)-t might have been used in reducing Mc to REF
and it might seem that even this move should be disallowed. Against this it seems

fair to say that in reducing M c to REF one is remaining within the consistent part

of the solution space, so one is entitled to use (ó,+r)-t with its classical meaning.

3. Control Theory

Modern control theory describes control systems in terms of a (column) vector u

of inputs, a vector ¿ of inner states, and a vector y of outputs. A plant functioning

stably can be described as a linear transformation (matrix) M representing the

laws governing the plant, and transforming input into output in accordance with
y(t): M-u(t), where I is the time variable. A more detailed analysis of such plants,
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incorporating feedback and the state vector r, is standardly given by supposing

four matrices A,B,C,D with the two relations r(ú + 1) : Ar(t) -l Bu(t): and

A(t) -- Cr(t) + Du(t). However, it is not necessary to incorporate those relations

at the present stage.

An unexpected and persistent change is postulated in the output. Since the

change is significant and nontransient, it can be regarded as originating from a

change in the physical laws of the plant described by M. This leads to a distinc-

tion between the matrices MoId and Mnew. Mold (the original M) is responsible

for the predicted value of the output, ypred; and Mnew is responsible for the ob-

served value of the output, yobs. Mold was known when the plant was functioning

correctly; Mnew is unknown but its result yobs is known through observation.

One can now define a machine to be malfunctioning \ff yobs I ypred, otherwise

wellfunctioning.

A standard situation in modern control theory is to determine from an observed

stream of outputs yobs(ú) what is the nature of the linear plant, Mnew, responsible

for them. The approach taken here is different. There might be a real-time prob-

lem: the problem of keeping some control before Mnew is ascertained, let alone

rectified back to Mold. So one wants to see if there are ways of operating the plant

(modifying the st¡eam of inputs) under the anomalous conditions without complete

shutdown or explosion.

Applying ideas from earlier in this chapter, one would like to form a model of

the malfunctioning plant which exploits inconsistency to represent quantitatively

the discrepancy between ypred and yobs. A desirable constraìnt would be that

the inconsistency disappears when the plant wellfunctions. Accordingly) one can

form the augmented checlcmatrir for a plant, consisting of a core which is Mold,

an extra column which is yobs, and a bottom row (checkrow) which is the sums

of each of the columns except lhat the RH cell is Dypred. Subjected to trref, it

can be shown that the RH corner entry is zero if yobs : ypred. When the corner

entry is nonzero, it is a parameter which identifies an inconsistent mathematical
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environment which can be represented in a software controller. There are a number

of options for the way in which input can be modified by the controller with the

aim of eventual wellfunctioning.

That is, the controller forms an inconsistent model of the nature of the mal-

functioning plant. A desirable behaviour for malfunctioning plants is that, under

the influence of the inconsistent controller, the plant eventually becomes wellfunc-

tioning simply by means of modifying the input. This proves to be possible. On

the other hand, among plants which are not eventually wellfunctioning there can

be defined several types.

(") A plant cycles iff yobs(t) : yobs(f * k) for some ,b and all ú (or all ú after

some appropriate ú6).

(b) A plant is persistent iff yobs(¿) : yobs(t * fr) for all k and all ú (after

some appropriate ú6). Note that it is possible to have a malfunctioning but

persistent plant, i.e. in which yobs(t) remains constant but never equals

ypred(ú).

(") A plant is bounded iff no component of yobs(ú) ever gets more than a fixed

number fr from zero, for all f. A plant may be bounded without either

cycling or persistence.

(d) A plant is defined (operationally) to explode iff some component of yobs

exceeds a predetermined bound (in software simulations it has been taken

to be 10000).

For a plant which does not eventually wellfunction, any of the above behaviours

(u)-(.) is a substitute in which functioning is not too degraded, so all of these

behaviours are more desirable than explosion.

AII of the above behaviours have been observed in software simulations
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4. Applications, Problerns and Special Cases

An application might be a machine with a range of sensor inputs, controlled by

a system of simultaneous equations. Supposing that one sensor becomes faulty, and

begins returning a value zero for a particular variable, the matrix might go incon-

sistent and become impossible to invert to find stable settings. In the circumstance

one does not want chaos, and it might be that the best fault-tolerant software is

one which rides with the contradiction until things are straightened out.

There is no problem about the logical aspects of solution structures for incon-

sistent systems of simultaneous equations, as is clear from previous chapters. But

functionality is more than usually problematic. The difficulty is to find a theory in

which all the ó¡a¿ are identified with zero and their inverses undefined. The obvious

manoeuvre is to go to an additive group as in Chapter 6, undefining all multipli-

cation but integer multiplication. The worst case here would be trying to satisfy

jointlg say, 0 : zr and 0 -- 2, since there is no greatest common integer divisor for

a single base equation. Unfortunately, the worst case looks to be the typical case.

Nevertheless, there are a number of special cases which are more tractable.

(1) If the field F over which the vector space is constructed is the integers

modulo a finite or infinite prime, then there is no problem in taking the greatest

common divisor of the b,-,.;. From the base 0 : ó,+; all the others follow, and the

vector or vectors in the solution space are readily represented in the inconsistent

arithmetic. Needless to say if the b,¡; are relatively prime then the base is 0: 1,

which is bad if one remains with integers. But one can be lucky and avoid total

collapse of functional structure when they are not relatively prime, which might

serve to avoid total degeneration of information in a control system. (Birkhoff and

Maclane treat the consistent case, see [a], pp.aO-aa.)



Applications, Problems and Special Cases 81

(2) If the field is .Ê, and there is only one 0 : b,+i, and in the additive

group on the interval [0, ó"*t) the vector relationships of the first r rows of the

WRtrF can be represented, then combined with a judicious change of scale to

expand that interval, this might be a practical proposal for control systems. Also,

it appears fairly straightforward to separate several inconsistencies into several

'logical dimensions' or 'logical subspaces' (with logical projectìon operators) in each

of which only one inconsistency holds. This option is available and usefui whatever

one does to superpose the inconsistent substates. If such logical separation could

correspond, or be made to correspond, to relative causal separation of subparts

of the control system, then reasonable control might be achieved for each of the

separately inconsistent subsystems, or at least the area of lack of control isolated

(always a paraconsistentist ideal).

(3) The role of computers as engines of empirical arithmetic can't be overlooked.

Supposing that it is decided to input all data in the data-type integer (which is by

no means impossible if a judicious choice of scale size is made), then for example

Pascal comes with built-in maximum and minimum integers, just as in the finite

inconsistent case. (e.g. Maxlnt : 32767, -Maxlnt : -32768, Maxlonglnt :
2147483647.) The inconvenience of small numbers compared with floating-point

numbers might be outweighed by increased control over inconsistent situations.

There might be no reason to switch on the fault-tolerance module until inconsis-

tency manifests itself. But even floating-point arithmetic is finite (and inevitably

'approximate', that is approximate to something called a real number). Empirical

arithmetic exists, and all computer calculations are carried out in it. So there does

not seem to be anything wrong in principle with integer representations of a prob-

lem. (If there is a difficulty it is with how finite human brains can imagine that

finite output represents something infinite, a real number.) But if integer represen-

tations are always OK for a control system, then perhaps there is no real difficulty

in always exploiting their inconsistency-tolerance.
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(4) A different style of solution is to associate the rows below r with incon-

sistencies in different dimensions in the state space of the plant: 0 : ó,-.,r-1 gm,

0 : b,+z volts, . . . and the like. Thus inconsistency in one dimension of the phase

space ought not to affect consistency or inconsistency in an orthogonal dimension.

This approach is still in an early stage of development.
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CHAPTER g: PROJECTIVE SPACES

1. Introduction

A common construction (following more-or less that of Birkhoff and Maclane

[+]) of the projective plane Pt(F) over a field F, begins with the 3D vector

space V"(F) and then'identifies'nonzero triples of members of F, (*r,rr,r.) :
(*\,r'r,r!) if for some nonzero a e F and for all i < 3, r; - ar'r. The equivalence

classes so formed are the points of. P2(F). The lines of P2(F) correspond to, or

'are', planes in I/3(F); that is seús of solutions ("r, rz,rz) of linear homogeneous

equations Da¿r¿:0 where eacha¿ € fl and not all a;:0. One can then identify

lines by (or'identify'lines'with') the triples of coefficients (a1,az,as)i noting that

iÎ a I 0, then al a;x¿ : 0 determines the same set of solutions as ! a;r,; : Q, st

that the projective line whose coefficients are (a1 )a2,a3) is identical with the line

whose coefficients are a(alrazraz).

In order to keep track of the source of the triples (*r,*r,r3) in this con-

struction, the notion of homogeneous coordinates is introduced. Again the

terminology is somewhat anomalous: Birkhoff and Maclane (p.275) for exam-

ple speak of homogeneous coordinates of points as the triples (*r,rr,z3) 'with
the identification' (r1,r2,xs) : a(x1,r2,r3) when a f 0. With the same

'identification', triples (41, az,az) are homogeneous coordinates of lines. One

can then proceed to define'(*r,rrrr3) on (or,or,ca)'to mean Do¿r¿: 0;

'(r1,12,r3) is a point' or 'P(rr,:L2jr3)) to mean '(lor, a2,as)((r1jiL2)iL3) on

(orror,¿s))'; '(¿r, azras) is a line' or'L(r1,r2,:13)'to mean,(lor, a2,a3)((t1):r2,r 3)

on (a1 ,az,az))'; and '(a1, az,az) contains (*r,*r,23)' to mean ,(rr,rr,r3) on

(ay,a2,a3)'. The familiar duality is easily seen to follow, whereby the transfor-

mation (:,P,tr,on,contains)--+(:, L,P,contains,on) preserves true sentences.

However, if (21, rzr:Ls) and (4r1, o,x)2,ax:3) are distinct triples then they are not

literally identical homogeneous coordinates. One should speak rather ol clifferent

co-ordinates of the same point, with the recognition that qu¿ representations of
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the one thing, a point, they behave congruently w.r.t. its properties. Similarly,

triples (*r,*",23) and (ar1,o'r2,ar3) are not literally identical if they are distinct

members of the one equivalence class, a point. There should then be an explanation

of this common bú literally false terminology; and of course one which does not

disturb the entirely correct orthodox account in terms of equivalence classes just

given, but rather augments it. In this chapter an explanation is offered in terms of

literal inconsistent identities.

First the case of inconsistent vector spaces is considered. In section 3 incon-

sistent projective planes are constructed, in which homogeneous coordinates are

inconsistently identified. It turns out to be easier to inconsistentise projective

spaces than vector spaces, as the example of the projective plane over .R shows.

In section 4, projective planes over consistent and inconsistent fields modulo an

infinite prime are constructed. In these the usual projective duality holds for a

strengthened set of concepts which contains 'finite, and ,infinite' as well.

2. Vector Spaces

Take background Iogic RM3, and consider any one of the finite inconsistent

fields modulo a prime p with names for all the integers, of Chap ter 2. Call it f',
and construct the theory vt(F) as follows. Add as terms all triples (tr,tr,ú3) where

the ú; are terms from F. Take term-forming operators * and . (the latter usually

suppressed) for vector addition and scalar multiplication. The domain D has all
triples from {0,1,..., p-1}, and the operations of vector addition and scalar multi-
plication on the usual classical vector space constructed on the finite classical field

modulo p. Set I((tr,tz,tr)) : (ú, mod p,ú2 mod p,ú3 mod p); set 1(+) :s1¿r.¡.r1

vector addition mod p and set 1(.):.lur.ical scalar multiplication mod p. This

induces as in Chapter 2,

I ((t r, tz, ts) * (t., t r, ta)) : 1(+ ) (1( (t r, tr, h)), I ((t4,úr, tu) ) )

and I(t.(tt,tr,tr)) : I(.)UU), I((tr,tr,tr))).

Finally set 1((11, tz,ts): (tn,ts,tu)): B iÎ I((tr,tz,tz)): I((ts,tu,úu)), else 1: f-.
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Now, for example, l- (0, 1,2): (p,p+l,p*z) k, - (0,1,2) : (p,p*I,p+z),
as well as l- (0, 1,2) : (p+1).(0,f,2) k, - (0,1,2) : (r+1).(O,t,Z¡, and

l- (0, 1,2)+(0, 1,0): (0,2,2) & -(0, r,2)+ (0, 1,0) :(0,2,2), and

F -(0,7,2):(0,2,2), but not F (0,1,2):(0,,2,2).

Proposition 9.1. V"(F) is transparent

Proof left to the reader.

Proposition 9.2. All first order extensional sentences of the classical theory

of vector spaces hold in V"(F).

Proof. Consider the classical finite vector space mod p; that is the above

structure modified so that there are only a finite number of names {0, 1, . . . ,p - r},
and 1((Í1,tz,ts) : (tq,úu,úu)) : T iÎ 1((¿r,tz,ts)) : I((tn,fu,úo)), else 1 - F.

As is well known this satisfies all the axioms for vector spaces and their classical

consequences. Add the infinite number of names {p + t,.. .} and all complex

terms generated by the term-forming operators. For any new term f or (ú1, tr,ts)
set 1(f) : ú mod p or l((t1,tr,t")) : (ú, modp,ú2 modp,ú3 modp) respectively.

Obviously the addition of the extra names makes no difference to the value of the

sentence not containing them, since they map congruently onto existing names (or

appeal to Proposition 2.14). Change the model so that I'(term1 - term2) : B ifr
I'(term1) :I'(termz). By Extendability (Proposition 2.I0).,1'extends I. Bú Il
determines V=(F), so all extensional sentences of classical vector space theory hold

in V3F. tr

It is also obvious that I/3(.F) extends the classical theory of the integers. In

addition it is clear that this method of construction of inconsistent vector spaces

suffers the same limitations as inconsistent fields, because any limitations on the

functionality of the field F translate immediately into limitations on vector addition

and scalar multiplication.
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3. Projective Geometry

Proceeding to projective geometries over these structures, add to the do-

main D the equivalence classes [(r, y,z)] of triples from {0,1,..., p - I}, where

l(*,y, z)l: lta(r,y,z)l: l(tor,uy,uz)l for all w + 0, the last three products being

mod p. These equivalence classes form a classical projective geometry in the usual

way. This can be described in the classical structure (D,I) where I((tr,tz,h)):
[(f(¿t), I(tr),f(¿r))]; and /(term1 : term2) : T iff /(term1) : I(termz) else 1 : F;

and with'point','line', 'on', and 'contains'defined in the usual way (see above this

section, for a more full description see below this section). Notice that in lhe lan-

guo'ge only the hornogeneous coordinates (t1rtz,ts) appear as terms, the equivalence

classes l(tt,tr,ú3)] do not appear. This is where the distinction between objects of

the space and their names is being made: coordinate systems are naming systems,

a natural view from elsewhere e.g. differential geometry. (Nonetheless it is appro-

priate to take the long term view that this distinction should be blurred, so as to

be dealing with mathematical structures and objects with inconsistent properties.)

However this l fails to reflect the origin of the úi as natural number terms and the

(tr,t",f3) as being inconsistently identified with certain (tn,tr,,Í6) in the underlying

vector space. In addition, the aim of representing homogeneous coordinates in terms

of inconsistent identifications is not realised. There are (at least) two structures in

which these aims can be more adequately realised.

For both of these structures, it is useful to introduce two new sets of metalin-

guistic variables rrtrtr,t. . .and c, arte2r. . . ranging over names and {+, -, x, /}
compositions of them, to reflect the differing roles of points and lines in the pro-

jective geometry. If 11,r2rz3 âre any such terms, introduce 'P(rr,:121r3)i intended

to mean'(*r,rr,r3) is a point'. Also, if atta2¡û,3 â.r€ any such terms, introduce

the predicate'L(a1,az,az)' intended to mean '(or,orra3) are the coefficients of a

line'; and the two relations'(rr,rr,r3) on (or,or,ø3)'for,The point (rr,*r,r3) is

on the line whose coefficients are (a1, az)a3))) and'(a1, az,as) contains (r1,r2,r3)'
for'The line whose coefficients are (a1 ,a2,a3) contains the point (r1,r2,r3)'.
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These predicates and relations are still only syntax, so it is necessary to specify

the interpretation function for sentences containing them, and for identity sentences

as well. Only then can the resultant theory be judged as a projective geometry. As

I just said there are two ways to do this. The first way is as follows.

Set 1(P(r1,rz,xs)) : B i|[(1("r), I(r"),1("3))j is a point in classical projective

geometry on the domain else 1 : F; set I(L(a¡az,az)) : B if. [(1(rr), I(o"),1(rr))]

is the coefficient of a line in the domain; set 1((r1, r2,,rr) on (ø1 ,a2,as)) : B

if 1((ø1, rz,rs)) is a point and 1((a1, az,az)) is a line and ! airi - 0; and set

1((ot, a2)a3) contains (*r,rr,rr)) : I((*r,xz,rs) on (ø1, az,az)). And then for

identity sentences set /(terml : term2) : B il l(term1) :I(termz), else I: F.

(The specification is somewhat roundabout for the case of finite geometries, but it
is adequate and has the merit of permitting easy generalisations where the domain

is not finite.)

This model produces an inconsistent projective geometry (see below); but a

second structure, which confines the inconsistency in a more sensitive fashion, is

as follows. Let the interpretation of 'P'r'L'r'on', and tcontains' be classical,

that is change B to T in the interpretation of these predicates. This obviously

ensures that the first order sentences in the {P,Lron,contains} language which

hold are exactly those of classical finite projective geometry mod p, including the

characteristic (2, y)((LrkLy) > (=")(Pz k z oî r þ. z on v)), i.e. any lines have

a point in common. (It needs identity to state 'exactly one'.) But also continue

with /(terlrìl : term2) : B if /(term1) : I(te.mz), else I : F. This has the

effect of confining the inconsistency to identity statements between what from the

traditional point of view are homogeneous coordinates, and it is only from that

source that inconsistency arises. This then is the promised account of identifying'

homogeneous coordinates: homogeneous coordinates are inconsistently identif,ed,

and disidentified just when they are coordinates of the same classical equiualence

class.

This structure is a projective geometry in the sense that all extensional first
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order sentences of projective geometry hold (by Extendability). There seems to be

some difference as to what is the mark of a projective geometry, or what constitute

the propositions of projective geometry. Birkhoff and Maclane ([4], p.275) have a

simple account: any two distinct points are on a unique line plus duality, both of

which hold in the inconsistent structures. Coxeter's ([9], p.230-1) is less simple, but

his axioms are still first order, so must hold in the first order classical structures,

so in the inconsistent structures. Both inconsistent models above are transparent

(proof omitted). Summarising,

Proposition 9.3. There are inconsistent transparent theories in which all

sentences holding in classical projective geometry hold.

This has been done here for the finite projective geometries, but it can also

be done for P2(R), the projective plane over .R. For all triples of real num-

bers ø1, 12¡rs take the equivalence classes Í(*t,rr,"r)] : l(.*r,wr2ruxs)l and

set 1(ø1, rz,rz) : [(rt, xz,rz)l and then give the same conditions on 1 as above.

The point is that this does not collapse from functionality limitations en incon-

sistent -R, because the functional language {+,-, X,/} is discarded in moving to

the projective language {:, P,,L,on,contains}. This example is discussed further

in Chapter 10 in connection with ìts topological aspects. It is not necessary to

have an inconsistent fleld to start with. The example shows this, but also note

that inconsistency in the base field is irrelevant to the construction of the flnite

geometries above.

4. Projective Geometry Modulo Infinity

This section uses the type of construction of the previous section except that

consistent and inconsistent fields modulo an infinite prime are used. In these struc-

tures the usual projective duality results can be strengthened to a language con-

taining 'finite' and 'infinite' when these are suitably defined. Sylvester's Theorem

is also considered.
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There are both consistent and inconsistent projective structures over the

fields modulo an infinite prime p. For both, for any terms ty,t2,t3 let

I((tr,tr,ts)): [ú, mod p,,t2 rnod p, t3 mod p)], where the equivalence classes are

equal in the domain just when their members are a multiple mod p of one another.

The consistent case is the same as for modulo finite p, with l(P(ryr2,rs)): f
if (r1, r2.,rr) is a point in the domain projective space, else 1 - F; etc.; and

I(term1 - term2) : T \f /(term1) :I(termz), else I : F. The two inconsistent

cases change 7 to B respectively (a) for all atomic sentences, or (b) for all identi-

ties only. Both are transparent, and (b) confines the inconsistency to the effects of

the inconsistent identification of homogeneous co-ordinates as before. Now some

definitions are needed.

Definition 9.4. In either consistent or inconsistent theories, a point is infi,nite

if it is identical only with points having at least one component r; which is an

infinite nonstandard number, else finite. Similarly for lines.

An infinite line is not the same thing as a line at infinity, which does not appear

in the present account. Problem: which inconsistent identities are needed to get

ir?

Proposition 9.5. There are finite points and lines, and infinite points and

lines.

Proof. For finite points and lines, consider the equivalence class of any triple
all of whose components are finite. For infinite triples, consider (1, -1,r) (any

z), that is (1, p - 7,r). If (1, -\,r) were finite, then for some finite t1,t2,t3

l- (1, -1, r) : (ú1 ,tz,tz).That is, for some k < p- 1, [k(1, -l, r)] : [(tr, ú2, ú3)]. So

in particular k. - | -- tz which is a finite number. Hence fr must equal -ú2. But

it was seen in Chapter 3 that the additive inverse of a finite number is an infinite

number (in fact p - tz), so ,b is an infinite number. But then the first component

Æ.1 is equal to 11 which is thus infrnite, contrary to the supposition that ú1 is finite.

Hence (1, -1,r) is infinite, either as a point or as the coefficients of a line. !
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We recall that the first order duality principle for projective geometry is as

follows: if .9 is any sentence in the language {:,p,L,on,contains} and s, is the

result of interchanging 'P' with 'L' and 'on' with 'contains', then s holds iff s,
holds. In the present consistent and inconsistent models there is an extended

duality principle, that the same interchange preserves 'holds' in a strong language

also containing 'finite' (and a fortiori'infinite'). This might be described as an

invariance theorem for 'finite' and 'infinite'. For this, the word 'finite' has to be

included in the object language with an appropriate semantic interpretation, so for
any number terms t1,t2,t3 whose moduli are not all zero, set /(Finit e(fi,t2,t")) : T
if (úr, tz,ts) is finite, else 1 - F. This obviously induces an interpretation on

'infinite' -df '- finite'. Let S be a sentence in the language with ,finite' added,

and let,9'be the result of interchanging'p'with ,L, and,,on'with,contains'.

Proposition 9.G. (Duality) .9 holds iff.g, holds.

Proof. By induction on the number of occurrences of {-, &, v} to prove that
1(S) :1(^9').

(Base:) Atomic sentences are of the form p(term), tr(term), Finite(term), terml
on term2, terml contains term2, and terml : termz. But by inspection of 1,

in all the models /(P(term)) : I(L(term)), and /(terml on termz) : /(termr
contains term2). Nor do these reversals have any effect on identity or finitude:
/(term1 : term2) holds independently of whether they are points or lines, and

1(Finite(term)) is similarly independent.

(- cl.ur"') If 1(S) : 1(S') then 1(-g) : 1(-S,).
(& clause:) Similar.

(V clause:) If 1(Sú) : I(S't) for all terms ú then I((r)Sr): 1((u )S,r). ¡

This proposition can be applied after the next one. Let (ay,az,az) be the

coefficients of a line tr where all of I ("0) l0 mod p.
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Proposition 9.7. If tr is finite then every point on ,[ is infinite.

Proof. If ,L is a finite line and P were a finite point on it then for some

(or.,or,ø3) and (rr,*r,r3) where all the a¿ and :x,¿ ale finite, none of the ø¿ is

classically identical with 0 mod p, at least one of the z; is not classically identical

with 0 mod p, and ! o,¿r; : Q. But this is impossible since the sum of products

would be a frnite positive number. n

Proposition 9.8. If P is a finite point satisfying the same conditions as tr in

the previous proposition, any line containing P is infinite.

Proof. By applying duality. tr

Note that these break down for any of the following triples/lines/points:

(rr,0,0) on (0, az,as) and (0,a2,0) and (0,0,43); (0,rr,0) on (ø1,0,¿s) and (ø1,0,0)

and (0,0, ¿s) etc. Say that a pair of points determ'ine a line if both are on it, and

that a pair of lines intersect in a point if both contain it. Then,

Proposition 9.9. Every pair of finite points determine an infinite line; every

pair of finite lines intersect in an infinite point.

Proof. The first part follows from the previous proposition; the second part

follows by duality. fl

While a finite point can only be on inflnite lines, an infinite point can be on

finite lines. Can an infinite point be on both finite and infinite lines? Can an

infinite line contain only infinite points?

Finally in this section we consider Sylvester's Theorem. This says that for any

positive integer n, if n points are not collinear, then there exists a line through

exactly two of them. Sylvester's Theorem holds in classical Euclidean geometry.

But it is known that it fails in the classical finite projective planes modulo p.

(Reason: In mod p,let n: p2 +p+l.These p2 lp* 1 points are not all collinear;

else some line has p2 +p { I points on it, whereas lines in this geometry have only

p + I points on them. But there is no line containing exactly two of them; since
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again every line has p + | points on it, while the p2 * p + 1 points exhaust the

whole space.) But this argument breaks down if p is an infinite prime, provided

that n is restricted Lo f,nite positive integers, because then n cannot be chosen to

b" p' I p * l. So the question is whether Sylvester's Theorem holds for either

the consistent or inconsistent projective geometries modulo infinite p? However, if

n is allowed to be unrestricted, that is any nonstandard integer as well, then the

above argument goes through and Sylvester's Theorem breaks down. Of course this

nonstandard version of Sylvester's Theorem (for any finite or infinite n collinear

points . . .) ir a stronger statement, and thus it is not so surprising that it breaks

down.
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CHAPTER 10: TOPOLOGY

Quotient constructions are a natural place to find inconsistent structures. In

this chapter, aspects of the quotient construction in topology are considered. This

requires the introduction of the primitive binary predicate € into the object lan-

guage. It is seen that there is an interaction between the topological properties of

the space from which the quotient topology arises, and the functionality of a natu-

ral class of inconsistent models and theories associated with them. A special case

of quotient constructions is the ubiquitous practice in topology of joining, cutting

or pasting, coming under the terminology of identification'. Similar points apply

as in the previous chapter. It is suggested on the basis of the present chapter that

there is no problem about taking this terminology literally in an inconsistent frame-

work. It is a convenient way of signalling the identiflcation relationship between

two spaces, to see one as an inconsistent functional extension of the othêr, or for

that matter an incomplete cut-down.

Let (X,,O) be a topological space where O is the collection of open subsets of

X, let ,B be an equivalence relation on X, let Xl-R be the induced quotient set,

let P be the induced projection P : X --+ XlR, and let Q be the induced quotient

topology on Xl-R (that is, Q:dT {S _c XIR: P-l(S) e O}). It is not difficult to

find inconsistent transparent structures which take this data into account.

To see this, let the language have as terms (i) all members of X, (ii) all subsets

of X including the null set A, (iii) the constant term O. As before t,t1,t2,... are

metalinguistic variables ranging over terms; as well, S, Sr, Sz, . . .are metalinguistic

variables ranging over terms which are subsets of X. There are two binary pred-

icates i:,€Ì, and all sentences of the form f € ^9 and S e O are stipulated to

be atomic. The set of sentences is the usual closure under {-,&,V}. Now given

(X,O,,R) define a model by:
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(1) I(t): P(t): [f] for all terms t in X-

(2) 1(S) : P(S) : P(Ë(S)) for all terms S ç X, where

R(S) :¿¡ {r : (ly)(Axyky € s)}.

(3) I(tr: tz) : B if 1(ú1) : I(tz), else 1 : F.

(4) I(t e .9) : B if 1(t) is in 1(.9), else 1: F'.

(5) 1(^91 : ^9r) : B if 1(.9r) : I(Sz), else 1: F.

(6) /(S e O): B if 1(S) is open in 1(O), i.e. 1(^9) e I(O), else /: ,F'.

This produces an inconsistent extension of the classical consistent complete theory

of the topology of (X, O), and it is straightforward to prove that 1 is transparent.

One could also have added into the object language terms for describing the con-

tents of X l,R and its topology, but the results following do not depend on the theory

containing descriptions of the behaviour of XlR, so it is better not to complicate

the issue (but it is a direction worth pursuing elsewhere). The behaviour ol XIR

has to be taken into account metalinguisticaily in the statements and proofs of the

propositions following, needless to say. AIso, the term-forming operations {n, U}

could be included in the object language connecting subsets of X or members of

O, and an interpretation induced with /(S1 U ^92) 
: /(St)U 1(Sr) and similarly for

lì, but this is not done here.

A more sophisticated model confines the inconsistency to those statements

which from the classical point of view are 'really' false. Keeping (1) and (2) as

before let

(3') I(tt:tz):T ifúr: t2inX,I(tt:tz): Bilh+t2inX but 1(¿1): I(tz),

else 1: F.

(4') 1(te .9) :Tif úis amemberof S, I(f € S) : Bif t isnot amemberof 
^9

but 1(l) is in 1(S), else 1: f'.
(5') 1(^91 :^9r) :?if .9r: Sz as subsets of X,l(.91 :.9r) : B if .9r I 52 but

/(St) :I(Sz),else1:F.
(6') 1(S e O):7if S isopen inO,1(S e O): Bif S isnot openin O but

1(S) is in 1(O), else 1: F.

This ÄM3-theory fails transparency if there is even one pair t1,t2 in X with



Topology 95

Rti2 and ú1 not identical with t2 \n X : for then we have I(t, : t2) : fi :
I(-tt:tz) and so both tt : tz and - tt : tz hold; so that if the theory were

transparent -úr : úr would hold contradicting I(h: tt) : T. But the theory is

functional: an atomic equation holds iff it is true when interpreted in the classical

theory of the equivalence classes in Xl-R, and the latter is certainly functional. This

chapter shows, hopefully, that transparency is not a particularly strong desidera-

tum.

The class of theories considered in the rest of this chapter is obtained by taking

(1), (2), (3'), (4'), (5') and replacing (6') by:

(6") 1(.9 e O) : T iÎ S is open in O, else 1(^9 e O) : p. (One could also have B

instead of ? without affecting the following results.)

Given the data (X,o,r?) a unique structure satisfying (1)-(6") is induced, so it is

named M(X,O,R),, or M for short. The following results show that the function-

ality of M(X,,o, R) is related to the (classical) topological properties of (X, o) and

the properties of -r?.

Definition 1o.1. The projection map P : (X,o) - (xlR,O) ir said to be

openiff for any^9 ç x if S is open in o then P(^g) is open in e. (See Kelley [16],

p.e4.)

Proposition 10.2. If M(X,O, R) is functional then P is open.

Proof. If P is not open, then by Kelley [16] Theorem 10 p.97, there is a subset

S ç X open in O such that fi(S) is not open in O. Now 1(,S) : P(S) : p(Ë(S)) :
1(A(S)). Hence 1(.9 : ,q(S)) : T or B, that is

.9: A(S) holds in M (o)

Now .9 is open in O, so

SeOholdsinM (p)

Further, Ë(.9) is not open in O, so

1?(.9) € O does not hold in M (r)
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But (a), (B) and ('y) are jointly incompatible with the functionality or M

Definition 10.3. O+ : df {S ç X
O+ - {S g X : P-1(P(.9)) is open in O}.

P(.9) is open i" 0Ì; that is

In general O+ is not a topology, which perhaps accounts for its neglect: while

X and A are in O+ and O+ is a closed under arbitrary unions, it is not always

closed under finite intersections. However, the properties of O+ are related to the

topological properties of (X, O) and the functionality of M(X,O, R) as we will see.

One observation to make is that in general neither O C O+ (see Proposition 10.5)

nor O+ Ç O (see example following Proposition 10.11). Either of these can obtain

without the other, however, as can O : O+ (for example if O is the discrete or

indiscrete topology), in which case O* is a topology.

Proposition 10.4. If O : O+ then M (X , O , R) is functional.

Proof. Note that if.t1,,t2 are terms in X and tt: tz holds in M then substitu-

tions of t2 for f1 into atomic contexts are always functional: [tr] : [ú2] implies that

([11] isin[.9] itr[¿r] isin[s]). Henceif Misnotfunctional,theremustbesl,^92of

X such that in M, Sr: Sz and $ € O hold but Sz € O does not hold. If Sr € O
holds and o : o*, then 51 is in o+. So by definition of o+, p(Sr) is open in e.
If .91 : 52 holds in M, then P(.91) : P(,Sr). Hence P(Sz) is open ]n e. But if
Sz € o does not hold, then 52 is not open in o. rf o : o+ and Sz is not open in

o, then .92 is not in o+. But this is incompatible with p(sr) being open in Ç. ¡

Proposition 10.5. P is open itr O ç O+

Proof. L to R: Let P be open and let S be in o. since p is open, p(s) is in

8; ro ^9 is in o+ , by definition of o+. .R to tr : suppose p is not open. Then for

some S ç X, ^9 is in o and P(.9) is not in Q.Bv the latter, S is not in o+; that

isnotoco+. !
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Proposition 10.6. Il M(X,O, R) is functional, then O+ C O.

Proof. suppose not o+ C o; that is for some s c x,,s is in o+ and s is not

in o. If ,s is in o+ then P(^9) is in Q, so that p-t(p(s)) is in o. Thar is,

P-r(p(s)) € o holds in M. (o)

Now note that P(S) : P(P-t (P(S))). (Reason: [ú] is in p(S) itr ú is in p-l(p(S))
itr [f] is in P(P-1(P(S))).) Hence, 1(S) : I(e-r(p(S))). Thar is,

P-l(P(s)) : S holds in M. (p)

But since ,S is not \n O,

S e O does not hold in M (r)

However (o)., (þ) and (7) jointly imply that M is not functional.

Proposition 10.7. M(X,O,R) is function al tfr O : O+.

Proof. L to R If M is functional, then by proposition 10.2, p is open. So by

Proposition 10.5, o ç o*. By Proposition 10.6, o+ ç o; hence o : o+. R to L
is Proposition 10.4. D

Obvious examples of inconsistent functional theories, then, are those arising

from the discrete topology on any X and any R; since for these o : o+. (Reason:

Q: {s c xlt: P-l(s) is in o}. But every p-t(,s) is in the discrete topology

o, so every s in xlÆ is in Ç. Thus if .g is in o, then p(^9) is i., g. Hence p is

open.) Again, if fi is the identity relation, then for any (X, o), (xlï,Ç) is just

an isomorphic copy of (x,o); so that M(x,o,R) is functional. we see presently

that there are functional theories for other topologies.

Definition 1o.8- A space (x,o,R) is R-discrete iff for all r in x, if there is
ay in X with r ly and Rry then the singleton {r} is open.

Æ-discreteness is a kind of relativised discreteness, for example all spaces with
the discrete topology are r?-discrete for every Æ. Another property is:
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Proposition 10.9. If (X, O,R) is -R-discrete then p is open.

Proof. Let (x, o, R) be -R-discrete and ,5 be open in o. By Kelley [16] Theorem

10(b) p.97, it suffices to show that A(.9) is open in o. Let s1 : {r in .g : (ly in
X)(Rry and r I y)j and let Sz: S -,9r. Then.91 U^92: S and,S1 O^g2: I
and r?(^92) - Sz. Now Ã(S) : ,?(^9r) U r?(Sr) : R(,9r) U.gz. But ^91 C A(,S1).

Therefore, r?(^9) : (A(Sr) -.9r) U,9rU,Sr: (A(.9r) -,Sr) U^9. Now for alls in
fi(Sr), there is some y Á x with Rry and r I y; 

"o 
by r?-discreteness {r} is open

in o. Hence for all r in r?(,s1) - st the same is true. Hence r?(,sr) - ^gr, as the

union of all these {c}, is also open in o. But Ã(s) : (A(sr) - ^9r) U,s, and ^9 is

also open in O; so ,R(.9) is open in O. tr

The converse of Proposition 10.9 fails, see example at the end of the chapter.

The two main theorems of the chapter are the next two, which show that the pres-

ence or absence of Hausdorffness for (X, O) is relevant to the connection between

.R-discreteness and functionality.

Proposition 10.10. If (x, o) is a ?2 space, then M(x,o, R) is functional only

if (X, O) is A-discrete.

Proof. Let(X,O) beT2,let rbeinXandsuppose (fy)(Rxy andø lA). It
suffices to prove on the supposition of functionality that {r} is in O. Since (X,O)
is 72, there are disjoint,51,52 in O such that r is in 51 but not 52 and y is in Sz but

not,91. Now since -rBuy, p({y}): P({*,y}); so P(Sr): P(Szu {"}). Therefore,
p-t(p(s2)) : p-t(p(sru {"})) Bur o+ : {s c x : p-1(p(s)) is in o}. Hence

52 is in o+ itr Szu {"} is in o+. By functionality, o : o+. Hence ^gz is in o iff
s2 u {ri is in o (both sides of o : o+ are used here). But s2 is in o, so s2 U {r}
is in o. But ,S1 is in o, so 51 n (Sz u {"}) is in o. ^91 and ^gz are disjoint, so

51 ¡ (S2 u {"}) : ^9r tl {'} : {r} which is thus in O. ¡

This proof needs all the resources of the hypothesis, in particular the Hausdorff

condition that the separating open sets be disjoint, as the next Proposition shows.
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Proposition 10.11. There is a space (x,o,,R) such that (X,o) is 7' but

neither T2 îü -R-discrete, while M(X,O, R) is functional.

Proof. Let X: {0, I,2,...}, let @ : {cofinitesubsets of X} U {A}, and let

-R: {(1,2),(2,t)} u {\r,"): z in X}. Now it is well known rhar (X,O) is ft bur

not 72. Also, it is not -r?-discrete; because 1 is in X and Rr2 and I + 2 while {1} is
not cofinite so not in O. It remains to prove lhat M is functional, that is O : O+.

(") o ç g+ : This holds iff P is open, iff .9 is in o implies p(.g) is in e, iff s is

in O implies P-l(P(S)) is in O, iff S is cofinite implies p-l(p(S)) is cofinite. But

S c P-1(P(S)), so if S is cofinite so is P-1(P(S)).

(b) o+ ç o : Let s be in o+. Then P-l(P(s)) is in o and so is cofinite. Thar

is, P-r(P(S)) - X - {*r,.. .,rn}. Now there are two subcases:

(bi) Neither 1 nor 2 is in P-l(P(S)). Then P-l(P(S)) : S and S is cofinite as

required.

(bii) Both 1 and 2 are in P-l(P(S)). (Since .R12 there can,t be one without

the other.) But then,S - X - {*r,...,rn,I} or,S : X - {rr¡...,trn¡2} or

s : X - {tt ¡.-.,rn,i,2}. whichever, ,s is cofinite. Thus for either (bi) or (bii),

^9 is in O as required. tr

An example of a space which is ?2 with open P but neither functional nor

-R-discrete (thereby showing that open P is weaker than functionality and .R-

discreteness even given Tz) is obtained from the earlier example of the projective

plane over -R (see Chapter g end of section B). Let X : the sphere 52, let o be

the usual topology on 52 which isT2,let Rry iff z : y or (r,y) arc an antipodal

pair' Then Xll? constitutes the projective plane and Q is the usual topology on

it. Note that .9 is open in O iff .9' is open in O, where ,S, is the set of antipodes of

members of S. But Ë(S) : S U ,9'; so if S is open A(.9) is open. That is, p is an

open map. But (X, O) is not rB-discrete; no singleton is an open set. Ilence neither

is M functional.
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These results can be shown in a picture.

Functionality;O:O+

fr' f, 1

R-discrete T2

lu
P open ;O C O+

Problem: Under what conditions if any does -R-discreteness imply functionality?

There would also seem to be further directions to explore in this general area. Are

there further conditions relating ?r to T2 to functionality? what of rs spaces?

The non-?s space with the indiscrete topology (any X,r?) is of course functional.

Introducing an additional coarser topology Q- C e on xlr? has connections with
these concepts; for example, it is known that p is open only if e- : e. The

open closed duality can presumably also be exploited. The aim of this chapter,

however, has been to show that there is interaction between aspects of inconsistent

topological structures and their more traditional classical topological features.

?

I
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CHAPTER 11: CATEGORY THEORY

(with Peter Lavers)

1. Introduction

It was claimed in Chapter I that the broad abstraction principles encountered

in category theory look interestingly close to inconsistency. Foundational problems

in category theory are well-summarised in Hatcher [15] pp.255-260, though he does

not consider paraconsistency. The situation seems to be somewhat similar to that

in the foundations of set theory, which is hardly surprising. A distinction can be

made between large and small categories, the lbrmer being categories which, were

they set-like, would contain so many sets that they would have to be proper classes

(such as the category of sets). These tend to common, as Hatcher points out.

The problem is that natural tendencies to abstraction lead one to want to consider

several such categories as a category, and functors between them as morphisms of

the category. The impuise to do so is normal category-theoretic thinkiirg, but it

appears that NBG set theory cannot make sense of it. Again, functor categories are

categories whose objects are functors (between small categories perhaps) and whose

morphisms are natural transformations between the functors. These appear not to

be accommodated in a natural way within, say, NBG. Yet such constructions can be

natural, apparently parallel to other acceptable constructions, and even required by

the spirit of category theory. Needless to say several theories have been forthcoming

to place the situation on a consistent footing, but these seem mostly to have various

ad-hoceries, as with the more familiar case of set theory. At any rate, just as with

set theory, the case for an inconsistent foundation for category theory, to allow

adequately for its powerful abstraction principles, looks at least to be worth proper

investigation.

However in this chapter we concentrate on a certain kind of category, namely

toposes. It is well-known that set theory gives rise to Boolean algebra. It was

realised by Lawvere, Grothendieck and many others that set theory could be weak-
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ened in a natural way to produce a broader class of category-theoretic structures,

toposes; and that these stand to intuitionist logic, that is the logic of open sets,

as sets do to classical logic. This brilliant theory proved to have many aspects.

In quantification theory for example it was seen that toposes yielded a natural

logic which could be described as higher-order intuitionist type theory. This is not

surprising given that set theory also can naturally represent type theory, but the

topos-theoretic representation is structurally deeper.

Most of this chapter is concerned with the propositional aspects of topos logic.

Specifying a topological space by its closed sets is as natural as specifying it by

its open sets. So it would seem odd that topos theory should be associated with

open sets rather than closed sets. Yet this is what would be the case if open set

logic were the natural propositional logic of toposes. At any rate, there should be a

simple 'topological' transformation of the theory of toposes, which stands to closed

sets and their logic, as topos theory does to open sets and intuitionism. Further-

more, the logic of closed sets is paraconsistent. This is essentially the message of

Goodman's [13], though we disagree with his pessimistic conclusions, paiticularly

concerning implication (see this chapter, section 4). There are, in fact, a number

of different paraconsistent logics of closed sets, depending on different definitions

of theoremhood and deducibility.

In section 2, we define paraconsistent algebras corresponding to closed set logic.

In section 3 we show that a simple duality transformation of topos theory and its

t-semantics will produce such paraconsistent logics. In section 4 it is shown that

there is a reasonable implication operator on these dualised toposes which produces

a corresponding reasonable implication operator on the logics. This operator can

also be defined in toposes, which shows that even toposes allow additional rea-

sonable implications to the usual intuitionist implication. In section 5 we sketch

quantification theory to show that intuitionism has no special claim on the quan-

tificational aspects of the theory. The topological duality of intuitionist and para-

consistent sentential logics, as well as implication on the latter, is also considered
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in Mortensen and Leishman [40]

2. Closed Set Logic

Definition 11.1. Paraconsistent algebras are distributive lattices with a maxi-

mal element Tr, a minimal element ,F and a complement operation r. We suppose

for convenience that these are specified by equational theories, with the order (
defrned in theusual way as a 1b:df añó: ø, equivalentlyaUó: ó. In addi-

tion, paraconsistent algebras satisfy the condition that a lJ b : Tr itr ra l) b : b,

equivalently iff rø I b : î-a.

These ensure the following further properties of paraconsistent algebras.

(i) a t) ra : Tr.

(ii) rral) o.: at equivalently rra O ¿ : rra, that is rr¿ ( ø.

(iii) r(a fì b) l rau rb.

(i") r(a Cì ra) :17.
(") r(øUó) n(røUró):r(øUó); that isr(øUå) < ratrb.
("i) In general a(1ra f F, and in general al)rra f rra, i.e. not a ( rra; but

these can be equal e.g. when a : Tr or a : F.

Any closed set topology determines a paraconsistent algebra when r¿ : the clo-

sure of the set-theoretic (Boolean) complement of the closed set ø, U and ¡¡ are

set-theoretic union and intersection respectively, Tr : the whole space and F :
the null set.

In the next two sections we deal with a propositional language, closed under

conjunctions A, disjunctions V, and paraconsistent negations r. Implication --- is

not included at first but is considered in section 4. In section 5 quantifiers are

added.

Definition 11.2. A paraconsistent ualuation is a function I : language --+ P

assigning atomic wffs to members of a paraconsistent algebra P and matching A
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with f-ì, V with U, and negations r with paraconsistent complements r

It is natural to define the consequent relation At,. . . , A. I B, where lhe A¿

and B are wffs, to mean (vI)(glb{I(A,) ,1 < i < n} < I(B)). There are a num-

ber of options for theoremhood (semantic validity of a formula) w.r.t. a particular

paraconsistent algebra:

(1) 
= 

A:dr (v1x1(A) : rr);
(2) + A:df (v1x1(A) t F);

(3) 
= 

A:df (VIXI(A) € D) where D is some proper fitter, e.g. (V1)(1(A) > ¿)

for some t + F.

Corresponding to each of these there are definitions of theoremhood w.r.t. all

paraconsistent algebras. If we take a paraconsistent valuation with 1(A) : some

non-null non-universal closed set a, then 1(,4ArA) : the boundary of a I F. If
also 1(B) : F and Th : {X : I(X) + F},then both A., rA e Thbur B ø Th.

(Alternatively, let Th : {x : I(X) e ])} where D is some proper frLter, e.g.

D: {x : AArA s x}.) BúTh is a semitheory (respectively, theory) of any

of the above logics, so they are paraconsistent. Note that A= B VrB but not in
general A nrA I B, nor A,rA I B.

3. Propositional Logic in a Category

A knowledge of basic category-theoretic and topos-theoretic concepts is assumed

here. For a clear introduction, see e.g. Goldblatt [1a]. The following definition then

dualises the usual definitions for toposes.

Definition 1l-3. A com.plement-classifierfor a category B with terminal object

1, is an object Q together with an arrow.F: 1--* 0 satisfying the condition that
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for every monic arrow f : ar-- ó there exists a unique arrow X7 such that

f
>__}

_)
F

is a pullback. X¡ is the cornplernent-character of /. This generalises the situation

in Set where F: {0} --+ {0,1} has F(0) :0, and X¡ is the characteristic function

of the set-complement of the image of /. That is, if f : a + b is a 1-1 function,

X¡:b --+ {0,1} is given byX¡:1 if r €b- f@), and X¡(z) :0 if r € f(a).

An (elementary) cornplement-topos is a category with initial and terminal ob-

jects, pullbacks, pushouts, exponentiation, and a complement classifier. It is clear

that, if E is a complement-topos and E' is the category obtained by renaming f-
as 7 and eachX¡ as X¡ then .E' is a topos; since initial and terminal objects, pull-

backs, pushouts and exponents are prior category-theoretic notions independent of

classifiers. This enables a dualisation of all topos constructions substituting F for

? and X¡ for X¡, as follows.

True Tr : | --+ 0 is the complement-character of the initial object 0

0r

b

I,'
f,

<L

J
1

1

t_
J 

t'": 
"o'

ç¿

0

1

-}

------+

--------+

------------ìl

F

This is plausible for a complement-classifier. It is the dual of the definition I of

for toposes.

Negation r: f) --+ 0 is the complement-character of ?r

I

J
1

Tr

F'

f^l

J-;
f-¿

This dualises r for toposes

X,,
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Disjuncti,on V:Ox0 --+ flis thecomplement-characterof (F, F):I -- Oxf)
(F, F)

Compare with 
^9eú, 

where the complement of {(0,0)} in2x2 is {(1, 1), (1,0), (0, 1)}

Conjunction A : 0 x 0 --+ f) is given by

[(Fo,1o), (1o, Fo)]

F
Compare again Set, where the complement of conjunction is {(1,0), (0, 1), (0,0)}.

The above definitions of V and A dualise by reversing those of A and V respectively

in toposes.

Let E be a complement-topos with classifier F : 1 --+ f), and let E'be the topos

obtained by renaming F as T and eachX¡ as x¡. Let a, brc,... be variables rang-

ing over unspecified arrows of E, let ,9 be an identity statement about E involving

some of (ø,brcr...) as well as some subset of the constant arrows (F,Trrr,V,A),
and let ,S'be the statement obtained by substituting (T, r,-r, A, V) respectively for

the latter. Then

Proposition 11.4. (Duality Theorem) s is true in E if .9' is true in E'.

Proof. It is clear that the diagrams for (F,Tr,r, V, Â) are diagrams

for (T,r,-ì,4,V) where these are renamed, and that compositions, pullbacks,

pushouts, initial and terminal objects and exponents are prior category-theoretic

notions unaffected by the renaming. So any construction establishing identity in -E

is under the renaming a construction establishing identity in E' , and vice versa. !

Definition 11.5. As for the usual t-semantics for toposes, the truth ualues

of a complement-topos ,E are the monics: t -- f), also called elements oT {1. A
paraconsistent ualuation on.E is a function 1 : language --+ f), in which the atomic

1

1

X(" ,F)

fl x f-l

J';
f¿

F

0xf)t_
I 

n 

": 

X¡1n,.,,r,r¡,1r,r,r,r¡1

J
f)
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wffs are assigned to truth values and the connectives {r, V, A} agree with their

complement- topos counterparts.

Proposition 11.6. The truth values of E form a paraconsistent algebra, when

7r is interpreted as the maximal element and F is interpreted as the minimal ele-

ment, and A, V are interpreted as O and U respectively.

Proof. This is a matter of verifying that the conditions for a paraconsistent

algebra in section two are satisfied, and these are ensured by the duality theorem.

First one needs al) b : a iff afì ó : ó; but the dual is ø O b : aiff ¿ U b : bwhich

holds for open sets and for the elements of 0 in topos theory. For latticehood one

needs first the partial order properties (t)-(3):

(1) reflexivity, i.e. a1ari.e. al)a:aìa:a
(2) antisymmetry,i.e. (aUb: ó and al)b: ø) only ila:b
(3) transitivity,i.e.(aUb:óand bl)c: c) onlyif øUc:c. Also:

(4) aìb1a,b, i.e. (aìb)era: (øfì ó) n ó: at)b

(5) c1a nó iff c1a and c 1b, i.e. (ønó) tlc: citr(altc: cand ónc: c)

(6) a,b3aUb, i.e. aU (øU b) : bU (aU b) : avb
(7) aUbl citr(a ( c and b1c), i.e. (aUó)U c:ciff(øUc: cand bUc:c).
Dualised, these are respectively

(1d) aìa:al)a:a
(2d) (aUb:óand aÀb:ø) onlyif a:b
(3d) (anó: ó and bf)c: c) only iÎ alc: c

(4d) (ø u ó) t)a: (øu å) Ub: aUb

(5d) (aub) Uc: citr(at)c: cand buc:c)
(6d) aÀ(a n ô) : ón (a ¡¡ ó) : ¿ ¡ 6

(7d) (anó) oc: c iff ((øf-ìc) :c and (ånc) : c;.

These are all facts about truth values in a topos E', indeed facts about lattices of

open sets. For distributivity, one needs (8) cU(bnc): (cUö)n(øUc) and

an (óU c) : (ø n ó) U (øn c); which dualise to (8d) aÀ(bUc) : (an å) U (ø n c)

and ¿ U (ó n c) : (a U ó) n (c U c) which both hold of the elements of toposes.

The maximalityof Tr and minimality of F are (9) øUTr: Tr and aCtF: F
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respectively; which dualiseto (9d) alìI: I and øUT: T. These assert the

minimality of I and the maximality of T and hold of E' as desired. Finally one

needs (10) o U å: Tr itrraUb: á. Dualised this is (10d) aÀb: I iffra tb: b,

i.e. a l-ì ó: I itr ó 1-ta; but this is the condition for pseudo-complements in the

topos E' , ar'd holds of open sets when r¿ is the interior of the Boolean complement

of ø and I is the null set (Goldblatt [1a], p.179). ¡

One can go to verify that the consequent further properties (i)-(vi) of paracon-

sistent algebras specified in section 2 also hold of complement-toposes.

(i) al)ra : Tr dualises to ¿ O 1a : L which holds of the truth values of a topos

as well as of open sets.

(ii) rral) o, : at i.e. rra ( ø, dualises to rra la : a, i.e. a 1--t1a, which holds

of open sets.

(iii) r(ø o b) : ra U ró dualises to r(ø u ó) : r¿ l-ìró which holds of open sets.

(i") r(øfìra): Tr dualises to r(aUra) : I;the Boolean complement of ¿Urø

is a boundary, so its interior is the null set.

(") r(øUó) n (røñró) :r(aU b), i.e. r(ø U b) <ratìró, dualises to r(a n ä) U

(rø U ró) : r(ø t^t b), i.e. r¿ U rå < r(o fl ó), which holds of open sets.

("i) allra+ F, and øl)rraf rrai.e. not¿ 1rra,, dualiseto¿U-ralT
and ¿Urr¿ f tn i.e. not rr¿ ( a, and these are in general inequalities for

open sets.

But the inequalities become equalities when a : Tr oÍ o, : F; since Tr f)lTr : F,

Trur/Tr - r(Tr, F ìrF: F and FurrF - rrF dualise respectively to

IUrI : T, Ilìrrl - rrl, TUrT : T and TOrrT - -r-rT, all of which hold

in toposes.

Thus we now have from the previous two propositions and according to the

definitions of theoremhood and deducibility of section 2.

Proposition 11.7. The set of all paraconsistent valuations on a complement-

topos determines a paraconsistent logic. n
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4. Implication

It is time to come clean about implication, on which the authors of this chapter

hold slighily different views. The usual intuitionist story defines â: f) x Q --+ f)

as Xt , whe¡e å is the equaliser å 
' O .-+ f) x C, * C, ; and then for any arrows /, gPrt

which are truth values: 1-+ f ), defines f + g to be + o ("f,g), where (/,g) is the

usual product map: 1 --+ 0 x f,l.

We note here that in toposes there also exists h' as the equaliser
U

h',Ø'--+f,) x n Å f), as well as versions substitutin| prz ror pr1. In the cor-

responding complement-topos, the same constructions obviously exist, with the

property that (/,9) factors through å in the topos itr (1,9) factors through å' in

the complement-topos, and similarly with å and å' reversed.

PL thinks that the right dualisation of X¿ in the topos is X¿, in the complement-

topos. X¿, o ff,g) correspondstoCurry'rg-/; butthisproduces/ - f :F,
for every truth value /. It isn't obvious how to avoid this consequence if one has

X without X. PL favors having both; which strictly takes one outside toposes, but

has the advantage of allowing a truth range and a falsity range for every concept.

CM thinks that there is at least one simple and reasonable implication on any

lattice, namely f + g:Tr if / < 9, else f + g: f'. This can beproduced in

complement toposes as follows.

Proposition 11.8. LeL f and g be truth values f ,g , | -+ o. Then the product

map (.f, g) is exactly one of two types.

Type 1. The domain d of the pullback arrow (i,j| , d * g is not isomorphic

with 1.

(i,i)
d

1

#

PB

(r, e)
>----_+ 0xfl
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Type 2. (f ,g) Íacilors through å 
'@'--+ 

0 x f)

(f, s)"

J
I ,__-+0 x f-l

(f, e)

where (f , g) p is the factorisation of U, g).

Proof. consists of proving that (/,9) is of type 2 ifr d = 1 in diagram 1

L to R: Draw the diagram:

(i,i)
d

1

# o

I'
xf,)

(f'e) F

It is desired to prove that ! is iso. Now (/, g) o | : h o (i,j) b1the pullback. But
(Í,g): ho(f,,g)eby thefactorisation. So åo (f,s), o !: ho(i,i). But å is
monic, soleft-cancellable; hence (f ,g) " !: (i,j). But (i,j) ismonicsince (/,9) is,

by the pullback. so (.f, g) " I is monic. But then ! is monic (Goldblatt p.39 Ex(2)).
Now ! is certainly epic, so ! is both epic and monic. But in any complement-topos,

as in any topos, an epic monic is iso (proof of this by running through Goldblatt
pp'109-110 substituting F for ? and X¡ for X¡, and then for the Corollary noting
that Theorern2 p.57 is independent of the dualisation). Thus d= r.
R to L : If ! is iso then it has an inverse !-r. Then (f ,g), can be defined as

(i,il " !-1. This is because the arrow (i,i) " !-r : I ---+ @ is unique in making the
diagram commute: if k : I ---+ @ is any other arrow making the diagram commute,

then we have that (f,g) : h o (i,j) " t-l : h o fr; but since å is monic ancl

left-cancellable, k: (i,j) " !-t as required for the definition. That is, (/,g) factors
through O, ro (/, g) i. of type 2. tr

Now let fr,gr,fz,gzbe truth values such that (fr,gr) is type 1 and (fr,Sr) i"
type2. (Note that there is at least one of each type: (Tr,F) is type I and (F,Tr)
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There are very many aspects of quantification theory of toposes which we do

not deal with, but identity and higher order types cleserve mention. It is customary
to treat identity as a logical symbol; so that it is built into the assignment clause

for identity that r t : ú does not hold. In light of the earlier chapters, this is not
natural for complement-toposes, and so one should discard assignment clauses for
identity such as that on Goldblatt p.246. Higher order logic and type theory is

obtained in topos theory because of the fact that toposes, being Cartesian closed

categories, contain all powerobjects, which serve as semantic values of syntactic
types' However, powerobjects are prior to the classifier, so it is to be expected that
these constructions go over to complement-toposes unchanged. This is perhaps not
so surprising given that a parallel construction can be done for classical logic and

set theory with powersets.

6. Conclusion

It hardly bears saying that a comprement-topos really is a topos, it is just a
matter of how one understands the notion of a subobject classifier. This can be

masked by the usual terminology of r : 1 ---+ CI, rather than f' as we have. There
are various natural paraconsistent propositional logics arising from the t-semantics
of complement-toposes, and thus from toposes. The bias toward intuitionism is at
least not justified by these structural aspects of a topos, since it depends on how
they are interpreted.

We conclude this section by raising the question of whether there is a construc-
tion internal to topos theory (rather than dualising 'outside' the topos as we have)
which also yields paraconsistent logic. This seems not unreasonable. It also seems

reasonable to think that there are other avenues of the dualisation; for example
closed set sheaves, which are accord.ingly explored in the next chapter.
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CHAPTER 12: CLOSED SET SHEAVES AND THEIR
CATEGORItrS

(by William James)

1. Introduction

With this chapter we examine categorial sheaves over the closed sets of a topo-

logical space. Aside from the historical interest that sheaves seem to have been

defined over closed sets first before the more usual definition over open sets, there

are a number of other reasons for developing the theory of sheaves over closed sets.

First of all having a base topology of closed sets gives us a working concept of

boundary that does not exist for the open set sheaf notion. One area in which

this may work for us is the mathematics of physics. Lawvere in the introduction

to Categories in Conti'nuum Physics [21] mentions the speculation that there is a

role for a closed set sheaf in thermodynamics as a functor from a category of parts

of a body to a category of "abstract thermodynamical state-and-process systems"

(p.g). Another reason for closed set sheaves is their efiect on categorial logic. A
closed set topology ordered by set inclusion is a paraconsistent algebra. Via the

sheaves we can introduce this paraconsistency to toposes.

The first two sections contain a brief description of some of the existing theory of

categorial sheaves. We note that categories of sheaves as standardly understood are

toposes. It will be our claim that categories of SET-valued sheaves over the closed

sets of a topological space are toposes in just the same way. Since the existence of a

subobject classifier and the resulting subobject classifying maps is a defining feature

of a topos, we will be obliged to show, contrary to some standard presentations,

that there is a construction for the classifying arrows ¡ of sheaf monics that does

not rely on !-completeness of the base space topology. We establish the necessary

construction as a corollary to a theorem at the end of section two. This clears the

way for section three where we briefly justify the notion of a sheaf over closed sets

and the claim that the category of all sheaves over the closed sets of topological
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space is a topos

In essence what we describe is a category, indeed a topos, of sheaves over a

closed set topology understood as a poset category. It shouìd be noted that our

discussion ultimately is given in terms of the theory of j-sheaves and as a result

the categories we describe are not necessarily equivalent to categories of continuous

local homeomorphisms or sheaf spaces. We therefore emphasise a particular type

of j-sheaf category: one that includes a set theoretic covering system for the base

topology. It will then be appropriate to describe our particular construction as a

category of sheaves.

For a category C any contravariant functor Cop -- StrT is called a SET-valued

presheaf. The SET-valued sheaues ate a special subset of the presheaves. Through-

out this discussion we assume that C is a small category.

2. Pretopologies and Topologies for Categories

This section follows similar discussions in Johnstone [15a] and in Goldblatt [1a].

Definition 12.L. Ã pretopology on a category C with pullbacks is a system

P where for each C-object [/ there is a set P(U). Each P(U) contains families of

c-morphis^r {u. :\ u : i e I}. The following conditions are satisfied.

(i) for each U e C, {id"} e P(U);

(ii) ilV---UinC and {U, :\U:i,e I} e.P(U),rhen {Vxuy¿3V:ieI}
in P(Iz). Note zr1 is the pullback in C of ad along V --+ [J;

(iii) if {Ui:iU:ie I}€p(U),andforeachi e I,{V* !+U,:keI{;} e

P(U;), then {%r !4 uo:i U :i € I, k e IÇ} € p(U). Nore that V*is
an example of a double indexed object rather than the intersection of I{ and

V¡.
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The notion of a pretopology is a categorial generalisation of a system of (set the-

oretic) covers on a topology T where a co?)error U € T is aset {U; : (I; € T,i e I}
such that U{U¿ , i e I} : y. The generalisation is achieved by noting that the

topology ordered by inclusion is a (poset) category and that any cover corresponds

to a collection of inclusion arrows U; --+ U. Given this, any family of arrows con-

tained in P(U) of a pretopology is also called a cover.

Definition L2.2. In analogy with sheaves over a topological space we have

the notion of sheaves over categories with pretopologies. We shall say that any

contravariant functor F : Cop -i SET \s a sheaf just in case for each U € C and for

each {U¿ :t U : i e I} € P(U), we have an equaliser

do
F(u)--+ II ¡(ø) 

= il F(u; xu u¡)
iel d,1 ¿,i

where ds and d4 are product arrows determined respectively by the images under

F of the first and second projection maps (J¿ xu U¡ - U¿ and U; xu {Jj - U¡, a\l

i,j e I.

Pretopologies do not in general uniquely determine a category of sheaves. To

do that we need the notion of a (categorial) topology.

Definition 12.3. For an object U in a category C a IJ -sieue is a family -R

of C-morphisms with codoma\n IJ such that if. V 3 U e R and W L V i" uny

C-morphism, then the composite I4l \ V 3 fl e R. (Some writers make no

terminological distinction between sieves and their categorial duals. Others do,

and name the duals cribles. Still others, notably Goldblatt [14], use the opposite

naming convention, their crible being our sieve). A topology on C is a system -/
of sets J(U) for each U € C where each J(U) is a set of [/-sieves called coaering

sieves. We have the following conditions:
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A system -I is a topology for C if:

(i) for any U e C, the maúrn¿l sieve {o : cod(a) : U} e J(U);

(ii) if R € J(U) and V \ U is a morphism of C, rhen

f-@) -- {W 3V : f .o e ,B} is in J(V);

(iii) if fi€ J(u)andsisasieveon[/whereforeach V !e e Rwehave

/.(^9) in J(V), then S e J(U).

Note that a collection of morphisms with codom ain U can be a U-sieve without

being a covering sieve on U.

A small category C together with a topology .I is called a site. We now define a

sheaf on a site (C,J) to be any contravariant functor f : Cop -- SET satisfying the

equaliser condition expressed in terms of covering sieves for U rather than covers.

A category of sheaves on a site is called a Grothendieck topos and denote d sh(C, J).

Proposition 12.4. (Johnstone, [15a]) Any Grothendieck topos is an elemen-

tary topos. tr

Proposition 12.5. Given a pretopology P we can define a topology "/ that will
give rise to the same sheaves on C. We say that for any (J € C, we have _¡? e J(U)
iff ,R contains a pretopology cover {a¿ : i e 1} e P(U). n

Definition 12.6. The category of all presheaves on C is denoted SETc"o and

when c is a small category, sETc"o is a topos (Goldblatt, [14], pp.204-2r0). The

classifier object in SETc"o is a presheaf f): c"p ---t sET where ror u €c,

f-¿(U) : {all sieves on U},

and for v \ u in c, ft(/) : f)(u) --+ f-¿(y) (also denoted f lfl) is given by

f¿(t/) I S* {W 3V, f .a e S} € f-¿(y)

When all arrows inC areinclusionsthis becomes Sr+ {W:W Ç Vand W e S}
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A topology "/ exists as a presheaf J : Cop --+ SET where we have C ) U ,- J(U)

and for any V \ U inC the map /(/) : J(U) -- J(V) is given by R,- f"(R).
Clearly, .I is a subobject of 0; that is, an inclusion J - f) exists. The classifying

map associated with this inclusion is denoted by j, and since it has proven possible

to describe the same category of sheaves on C in terms of either J or j, that map

J : fl + f) is also called a topology. Note that J is a topology on C and j is a

topology in SETc"o.

The notion of a topology as an endomorphism of the classifier object has been

extended to all elementary toposes.

Definition L2.7. Any map j , Q --+ 0 in a topos t is a topology in t if. lhe

following conditions are met:

(i) j'true-true;
(ii) j-j:i;
(iii) n'(jxj):j.t.

Sheaves are then distinguished objects of t identified with respect to j. Such objects

arecalled j-sheaues. Amonic X':+ X€t iscalled j-denseif itsclassifyingmap

¡o factors through -/ -+ f).

Proposition 12.8. For any topos t,an object F is a j-sheaf if and only if for

any t-arrow 13 : X' --+ .F and any j-dense monic a : X' ,--+ X there is exactly one

13' , X --+ F such that the following diagram commutes:

a
Xt>------------+ X

13

F

The category of sheaves identified in this manner is a full sub-category of t and

will be denoted sh¡(€).
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Proposition 12.9. (Johnstone, [15a]) If t is atopos with topology j:f) --+ f),

then sh¡(t) is also a topos. n

3. Subobject Classifiers

We have seen described in Definition 12.6 the standard construction of the

classifier object for SET-valued presheaf categories. We complete the description

by giving the cosntruction for the classifier arrow true and subobject classifying

arrows. We follow this with a dependent construction for the subobject classifier

of a j-sheaf category. We include a theorem about that construction.

Definition 12.10. The map true: I ---+ 0 in SETc"o is a natural transformation

given by components trueo for all a € C. The functor 1 is given by C > U ,- {Ø}

with the obvious restriction maps. Clearly this is a terminal object for SETc"o.

The components oL true are trueo: {Ø} -- Cl(ø) where true"(Ø): maximal ¿-sieve.

Equally, 1 is a j-sheaf for any j (trivially true by Proposition 12.8) and will be

terminal for the sheaf category slz¡(SETc"o).

For any SETc"'-monic r : F r--+ G the classifying arrow ¡" is a natural trans-

formation G ---+ f,) given by components (¡")" : G(a) -- Q(o) such that for any

r e G(a), we have

(x")"(") :{ó---+ a:Gi@) €ra(F(ó))}

where b -+ a is aC-morphism, Gfr is the restriction map G(a) --+ G(ó), and 16 is the

ó-component F(ó) --+ G(ó) of the natural transformation r. It is straightforward to

confirm that X" is a natural transformation and is the unique map that makes the

following a pullback in SETc"o.

T
F

1

>-----------+ G

1,.
J
f-¿

-}
true
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Proposition 12.11 (as taken from [14], p.371). The category så¡(sET'"') has a

subobject classifier and it can be described by the following SETc"o-diagram where

e is an equaliser and true¡ is the unique arrow making the diagram commute:

" 
ida

f¡ ----n
J

true

1

So, given that we are dealing with SET-valued functors, for all a € C, we have

fl¡(o) : {.9 : ,S e f)(a) and (ido),(^9) : j"(S)}. tr

We intend now to show that the classifying maps, yr,, ror monics, r : F ,--+ G in

så¡(SETc"o) are similarly related to classifying maps for monics in SETc"o. First

we need

Proposition L2.12. (Johnstone, [15a]) For any topos t with topology j, the

category sh¡(t) has finite limits and the inclusion functor sh¡(t) ---+ t preserves

them. tr

In essence, the limit in t of a finite diagram of j-sheaves is a j-sheaf. And

in particular a pullback in så¡(SETc"o) is a pullback in SETc"o and a pullback in

SETc"o of j-sheaves is a pullback in sår(SETc"o). As a corollary, any sh¡(t)-monic

is monic in t and any morphism between j-sheaves that is monic in t is monìc in

sh¡(t). This holds since any map A 3 B is monic if and only if the following is a

pullback.

A !\A
id,,l I ,-J 

J
A --;' B

true,
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Proposition 12.13. When t is a topos with topology j and r ; F,---+G is a

sh¡(t)-monic, we have ¡" : e- Xr, .

Proof. Consider the diagram

E

k
J

F G

I
çlj

x+

T

I'
1

X

_______) f)
etruej

Let r be a monic and the inner square be a pullback in sh¡(S). Let y: e.Xi. We

will refer to parts of the above diagram by (clockwise) vertices. So, {F,G,0¡,1} is

the inner square, that is, the pullback diagram lor true¡ and yr,.

Map e is an equaliser and therefore monic, so

X+. r - true¡ . f ifr e - X+. r : X. r : e. true¡. /

(The conditional, if LHS then RHS, is trivial). In other words {F,G,fl¡,1} com-

mutes itr {4G,fl,1} commutes. Likewise, we prove that {8, G,Qj,1} commutes

itr {8,G, C¿,1} commutes and indeed that {F, G,Qj,1} is a pullback ffi {f, G, CI, 1}

is a pullback. But {E,G,or,1} is a pullback; and since e.true¡ - true, there is,

by definition, exactly one x that makes {8,G,ç},1} a pullback in t, namely x,.
So, e. XJ" -- Xr. !

Corollary. For SET-valued j-sheaves over a category C, any a e C, and any

sheaf monomorphism r, we have Xt,þ): X,(a).

Proof. The nature of equalisers in SET. !
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4. Closed Set Sheaves

Typically sheaves over topological spaces are defined in terms of the open sets

of the base space. The notion of a category of sheaves over a site allows us to define

a category of sheaves over the closed sets of a topological space and announce that

these categories are toposes.

Given a closed set topology r we can define a covering system C where for each

U e.r wehave C(U): {{U;:U¿ € r}:U :U{U;: U; €. r}}. Now, anytopology Z
is partially ordered by set inclusion, so any topology forms a poset category where

all morphisms are the inclusions. For that category let R : {U; :\ U : i e I}
be any pretopology cover. Since between any two objects of 7 there can be at

most on earro\Ã/ and it must be an inclusion, we can interpret -R to be a family

{dom(a¿) : d; €. r?} of elements of T. The defining conditions for a pretopology

become:

(i) for each U e T, {U} e P(U);

(ii) 11V çU inT and {U¿ :i e I} € P(U), rhen {V ìU¡:i e I} Ç p(V);

(iii) if {U;:ie I} € P(U) andforeachi € lthereexists {Vï'k e I{;} Çp(Ui),
then {I{i : k e I{;, i e I} e P(U).

Plainly, if we define C as suggested above then, in essence, we have a pretopology

for the poset category. Given a pretopoloçy C rvve can define a (categorial) topology

,,/ for category SETZ"' that will give rise to the same category of sheaves.

The constructions for the toposes sh(T,J) and sA;(StrTz"o) u.r" then standard.

We can use either an appropriate version of the equaliser condition Definition 12.2,

or Proposition 12.8, to identify those functors in SET7"' that are sheaves over

closed sets. In surrr:

Proposition 12.4. The category of sheaves over the closed sets of a topological

space forms a topos.
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This theory can be extended in a number of directions. One is to identify

constructions in toposes of closed set sheaves dual to various morphisms in toposes.

It is asserted here that the pseudo-difference arrow (p.108), dual to intuitionist

implication, does exist in such categories (proof omitted, see forthcoming).
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CHAPTER 1.3: DUALITY

The first people to think (around 1970) that incompleteness and inconsistency

are somehow equally reasonable, seem to have been Da Costa and the Brazilian

school of logicians, and independently the Routleys. The idea expressed itself in

Brazilian logic in the paraconsistent C-logics, dualisìng by abandoning the law of

Noncontradiction - (A k - A), rather than Excluded Middle A V - A as in

intuitionism; and additionally adopting the opposite Double Negation axiom to

intuitionism. The Routleys proposed their +-operation on theories (see Definition

3.4 or below), which had the property that for any background logic satisfying

minimal conditions, the x of an incomplete theory is an inconsistent theory and

vice versa. The capacity to admit both inconsistent and incomplete theories was

seen as essential to, and explicative of, relevance, at least at the propositional level.

Neither the Brazilians nor the Routleys appealed to topological duality, which has

only become clear more recently, but which would seem to be an expression of

Brazilian intuitions.

This chapter briefly surveys the *-operation; then applies it to open and closed

set theories,, then finds an alternative to the x-operation which has different but

similar effects.

Recalling Definitions 2.8 and 3.4, an tr-semitheory is a set of sentences ?å closed

under the rule: if A ìs in Th and l-¿ A ---+ B then B is in Tå. An tr-theory is an

tr-semitheory closed under conjunctions. An tr-semitheory is prime if whenever a

disjunction is in it at least one of the disjuncts is also. And for the *-operation,

Th* -- {A : -A is not in Th}.
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(1)

(2)

(3)

Duality

Proposition 13.1. (Routleys)

IllL (A -- B) t (-B --+ -A) then This an tr-semitheory iff ?4. is an

-L-semitheory.

If in addition De Morgan's Laws and the Double Negation Law are theorems

of ,L then Th is an -L-theory iff Th- is a prime tr-semitheory.

Under the same conditions as (2), This a prime,L-theory ifrTh. is a prime

.L-theory.

If I L A +-+ --A (Double Negation Law) then Th** : Th.

If lL A *- --A then ?å is inconsistent iff Th* is incomplete.

1L L : classical logic and Th is nontrivial then 7å* : Th.

(4)

(5)

(6)

(1), (3) and (6) can be described as *-invariance results. (a) is an involution

result. Attention is drawn to (5) which is a duality result of a different kind from

the previous chapter. However, x also has interesting effects on theories of open set

logics and closed set logics.

Definition 13.2. A theory on a closed set logic or open set logic is simple iff
sentences are assigned only to either (i) the whole space, (ii) the null set, (iii) any

boundary, (iv) any coboundary, that is the whole space minus a boundary.

Obviously (iii) and (iv) cannot both hold if the logic has only open sets, or

only closed sets, in \f (PJ4 has both). Also, theories need not be simple: consider

the closed set topology {4,{r},(--, rl,l*,f-),-R} where the third and fourth

elements are not boundaries.

Proposition 13.3.

(1) Let L be a closed set logic with all elements but ,F designated. If Tå. is an

inconsistent complete simple theory then Tå. is the consistent complete (simple)

theory formed by dropping all sentences .4. such that both A and -A both hold in

Th.
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(2) Let L be an open set logic with just T designated . 11 Th is a consistent

incomplete simple theory then Th* is the consistent complete theory formed by

adding all sentences A such that neither A nor -A hold in Th.

Proof.

(1) Ler A and -,4. be in Tå. Clearly by the definition oT x, A is not in ?å.. But

inTh,1(,4) must be aboundary, so I(--4¡: the null set, and so --Ais not in

?å. Hence -A is in Th*.

(2) Let neither A nor -AbeinTh. By the definition or.*, A is in ?å*. But in

Th, I (A) must be a coboundary, so I (--¡¡ : the whole space and --A is in ?å.

Hence -A is not in ?å*. !

Thus, to inconsistentise a consistent complete theory one can add various atomic

sentences A such that -A holds, and evaluate as a simple theory in a closed set

logic; whereas to incompletise, one can drop various atomic sentences A such that

-A does not hold and evaluate as a simple theory in an open set logic.

Definition L3.4. Thx : d,f {A: -A is in Th}

Proposition 13.5.

(1) Let L be a closed set logic andTh be an inconsistent complete simple theory.

Then ?åx is the consistent complete theory formed by dropping all -(z'+1) A and

adding all -(zn) ,4, such that A is atomic and both A and -A are in Th.

(2) Let L be an open set logic and Th be a consistent incomplete simple theory.

Then ?åx is the consistent complete theory formed by adding ¿ll -(2n+r) A and

dropping all -(2') A, such that A is atomic and neither A nor -A areinTh.

Proof.

(1) Let A and -A hold in Th. Clearly A is inTh". Since This simple, --Ais
not in Th,so -,4. is not in 7å". Sincs---1is in Tå,, --AisinThx etc.

(2) Let neither A nor -AbeinTh. Clearly A is not \nThx. Since This simple,

--A is in Tlr, so -L is in 7åt. Since ---1is not inTh, --A is not inThx etc.
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These results contribute to the duality between incompleteness and inconsis-

tency, and at the same time demonstrate the utility of * and x in connection with

these notions.
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CHAPTER 14: FOUNDATIONS:
PROVA'BILITY, TRUTH AND SETS

(with Joshua Cole)

1. Introduction

It is appropriate to end with a chapter on topics in what has been called in this

century the foundations of mathematics, if only to draw attention to the disavowal

of foundationalism in mathematics, but also to draw the attention of mathemati-

cians to the fact that the foundations constitute a mathematically interesting area.

Furthermore, the paraconsistent approach grows historically out of logic, which has

certainly been part of the usual conception of foundational studies.

Three areas are considered: provability, truth and sets. First there is considered

the fate of the classical Gödel sentence and thus the concept of provability, in the

finite inconsistent arithmetics. It turns out that it becomes a truth predicate in a

certain weak sense. The question of stronger senses of the truth predicate (which

can be distinguished inconsistently but not classically) remains open. Second, we

review the well-known use of a fixed point method in connection with the truth

predicate, as demonstrated by Kripke. Third, we review the application of the fixed

point method by Gilmore and Brady to set theory. This demonstrates the existence

of incomplete and inconsistent set theories with naive comprehension. In the latter

the inconsistent R.ussell set can be demonstrated to exist (non-well-founded sets).

This is a highly desirable state of affairs, since it has the prospect of mathematics

being able to rely on the full generality of set abstraction: given any property, one

can collect up into a set just the things having that property. It turns out that both

uses of the fixed point method produce incomplete as well as inconsistent theories,

which are Routley-+-duals of one another.
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2. Provability

Gódel's first and second incompleteness theorems arise by means of a partial

mapping of the metalanguage of arithmetic into its object language. Specifically,

one represents (a) the concept of provability via the provability predicate Prov(r),

and (b) the capacity for self reference via the Diagonal Lemma. From these it is a

short argument to the first incompleteness theorem, namely that if an (axiomatis-

able) arithmetical theory Th is consistent then it is incomplete. On the other hand,

if the mapping of the metalanguage were not partial but total in the sense that

one were able to represent the truth predicate in the object language while retain-

ing self reference/diagonalisability, then one could demonstrate the inconsistency

of Th; that is, Tarski's theorem, which essentially amounts to the Liar paradox.

The parallel between the Gódel sentence 'This sentence is unprovable' and the

Liar sentence 'This sentence is false', is obvious and striking, and has been noted

many times. That is to say, the provability predicate is the nearest one gets within

consistent arithmetic to the truth predicate, the Gódel sentence is the consistent

arithmetical analog of the Liar sentence, and the first incompleteness theorem is

the consistent counterpart of the Liar paradox.

This section aims to contribute to these observations by demonstrating that

when one moves to inconsistent extensions of classical arithmetics, specifically the

finite moduli arithmetics, then the provability predicate becomes, in a sense to be

specified, a truth predicate. The consequence of this result is that in appropriate

inconsistent theories the Gödel sentence is, in the same sense, the Liar sentence.

2.1 Consistent Preliminaries

In this section, the terminology and approach to the classical logic case of the

Gódel theorems is summarised, drawing on the approach of Boolos and Jeffrey [4a].

We deal with classical arithmetical theories containing Robinson arithmetic Q as a

subtheory, including Peano arithmetic Pf .
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Definition 14.1. If X is any arithmetical sentence, r X1 denotes the Gódel

number of X. A predicate F(r) is said to be a ytrouability predicate for a theory

Th itr for any sentence X :

(i) ill,rhX then lrn F(tX-)
and (ii) lrn F(rX > Y.) ¡ (F(-X.) r r(rl,r))
and (iii) trn F(-X.) r r(rF(-x.).).
If F(z) is aprovability predicatefor Th,we denote F(z) atso by ProvT¿(z); but it
should be noted that in general there is more than one provability predicate for a

given Th.

Proposition L4.2. Peano Arithmetic Pff and Robinson Arithmetic Q have

provability predicates.

Definition 14.3. A set ,9 of sentences is said to be definable in Q iff there is a

predicate Prov"(z) such that for any sentence X
(i) il X e ^9 then [-qProv"(-X.)

and (ii) if X ø,S then Fq -Prov"(-X.).

Proposition 14.4. Any recursive set, and in particular the set of theorems of

any axiomatisable complete theory, is definable in Q.

Definition 14.5. A function /(z) is said to be representable in Q \tr there

is a predicate F(r,y) such that for any natural numbers a,b il f @) : ó then

Fç (Vy)(f (*,y) = y : n), where I'n)n reptesent a, å respectively in the arithmeti-

cal language of f-. (This definition generalises to the case where ø is an n-tuple

but that does not concern us here.)

Proposition 14.6. Every recursive function is representable in Q

Proposition L4.7. (Diagonal Lemma) For any predicate F("), there is a

sentence Ë1 such that Ì-ç H : F('-H-r). In particular, since -Provo(r) and

-Provpg(r) are such predicates, there are sentences Gq and Gp# such that

lq Gq:-Provq(t"d) and Fç Gr#:-Provp4(tCrì).
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Intuitively,, -I1 "says" in Q and any supertheory: 'This sentence has the property

F', while Gq and Gpç "say" 'This sentence is unprovable in 8l P#'. G7¡ is called

af the Gódel sentence forTh.

Proposition 14.8. Any axiomatisable complete theory containing Q is incon-

sistent.

Proposition 14.9. (Gödel's first incompleteness theorem). Any consistent

axiomatisable theory containing Q is incomplete.

Definition 14.10. A truth predicate for a theory Th is any predicate Tr(r)
having the property that for any X,Lrn X : Tr(-X-).

Proposition 14.11. Any (classical) theory containing Q and having a truth

predicate is inconsistent.

2.2 The Inconsistent Case

Moving to the inconsistent finite arithmetics RM3', we recall the following facts

from Chapter 2. The RM3'are all inconsistent, complete and decidable. More than

the last, there is a recursive function "fn(c) returning 2,I or 0 respectively as r is

the Gödel number of a sentence assigned T, B or r. respectively in Ë, where Ë is

short for any of the RM3'. By representability, therefore, there is an arithmetical

predicate Fn with the corresponding representability properties. That is, in Q,

F^(tX-,y) is provably true of 2,7 or 0 only, whererxr ir the Gödel number of a

sentence assigned T, B or .F respectively in -R. It is therefore natural to make the

following definition:

Definition L4.L2. Prov¿(r) :df Fn(r,1) V Fa(r,2).

Proposition 14.13. The predicate Provp(r) is a provability predicate for ,R.

Proof. From the previous section, three conditions must be satisfied to be a

provability predicate.
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Ad (i): If t-R X then by representability (Proposition 14.6), le F^(t X-,2). Hence,

since Q C R, I p F^(- X- ,2). So, by the three-valued tables for V, l-pProva( - X-).

Ad (ii) and (iìi): note that Prov¿ never takes the value T,for any X. This is because

of the transparency of r?: back in Q,for fixed (-r-), F^(-X-,y) is provably true

of just oîe U) namely 2,, I or 0, and is provably false of all other y. Passing to,R,

then, the negation of F¿ remains provable of all y other Lhan 2, 1 or 0. But in

RM33 , say, (that is mod 3) we have that 2, 1 and 0 are provably equal to some of

these A þ.g.5, 4 and 3 respectively). But RM33 is transparent (as are all the,R);

that is, provable identities are intersubstitutable in all contexts. So -f'n holds of

2, 1, and 0 in -rB, so that .Pn is B or F in l? when y \s 2,1 or 0. By the tables for

V, this ensures that for those values of y, Provp is B or tr' also. But by the tables

for RM3, a J sentence with such an antecedent takes a designated value. !

Now it can be shown that in the above defined sense (Definition 14.10), Prov6

is a truth predicate for rB.

Propositi on 14.14. For all X , I n (X = Prov¿(-X.)).

Proof. From the three-valued tables for :, X : Y fails to hold only when

one side takes the value ? and the other side takes the value F. Now if X is T

then since Prov is a provability predicate, then bV (i) of the previous proposition,

FpProv¡(tX-).That is, the latter does not take the value r' in,R. On the other

hand, by the argument for (ii) and (iii) of the previous Proposition, Prov¿(-X.)

is never ?. Consequently, when X is F, their : holds as required. !

This proposition is not a trivial reconstruction by means of the trxtendability

lemma of something which holds in Q, t n cannot be replaced by l-ç else Q would

be inconsistent (by the Diagonal lemma applied to the predicate -Prorn(r)). It

is now shown that the Gödel sentence models the Liar sentence in the sense that

both the Grídel sentence and its negation are theorems of Lhe RM3'. The Gódel

sentence for r? is that sentence whose existence is guaranteed by diagonalisation in

Q; that is, the sentence which expresses in Ç the statement 'I am unprovable in

R.',.
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Proposition 14.15. lnGn and l-r-ç".

Proof. First note that the existence of Gn is ensured by the classical Diag-

onal Lemma (Proposition 14.7), as the sentence such that given the predicate

-Provn(z), Fq Gn = - Provn(-G"t) suppose not l-p Ga. By representabil-

ity, l-ç- Provp(-G;). By the Diagonal Lemma, lq Gn, so that, since e C Æ,

lnGn.That is, from not lnGn it follows that l-¡ G¿;hence lnGn.By repre-

sentability again, Fç Prov¿(-G;). By the Diagonal Lemma again, Fo-Gn. But

Q c R, so l-¿-¿;". tr

A further interesting fact follows here: that the denial of the Gödel sentence

for any of the -R is already provable in Q. This is as it should be: since the -R

are decidable, when G is provable in r? then this fact is provable in Q,, hence by

diagonalisation so is the denial of G. It further follows that if Q is consistent, then

the Gódel sentence for -R is unprovable in Ç.

Proposition 14.16. (Strong diagonalisation for Gp).

lnGn <-+ - Ptov"(-G;)

Proof. From Proposition 14.14, Gn is B in any of the ,R. Since Prov¿ is a

provability predicate and Gp holds, so does Prov¡7. But by the argument of the

previous proposition Prov4 is never T. Thus Prov¿ is exactly B, so that -ProvR
is also. The RM3 tables for ++ then ensure the Proposition. tr

Problem: Prov is a weak truth predicate in the sense that the : of Proposi-

tion 14.4 does not guarantee detachability in general; though being a provability

predicate there is detachability one way (Proposition la.13(i)). We have just seen

the stronger detachability is present for Gn via the stronger connective +-+. Can

Proposition 14.I4 be reproved with * replacing :, or at least detachability the

other way, perhaps with a modification to the natural Prov that we have used?

There is a point here about Lób's theorem. This says that, in any theory Tå

extending Q and in the same language, if F is a provability predicate for Zå, then
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\1 lrn F( -4.) ) A then iFrn A. This might look like an insuperable barrier

to Prov being a truth predicate, since a truth predicate would have the above

properties so that triviality would follow. However, Löb's theorem breaks down in

the inconsistent finite models. This is because the proof of Lób's theorem essentially

requires one to deduce the consequent of a J statement from its antecedent, which

one cannot do in these inconsistent nontrivial theories. Now it is possible that

a stronger version of Lób's theorem can be obtained for the stronger language

containing --+ as well as ), since the property I Tr(-4.) .t A would certainly

ensure Lhat Tr would be a provability predicate, and the --+ has the necessary

deductive force. However, while possibie, this is not obviously true, since adding

to the language formally voids the diagonal lemma which is applied in the usual

proof of Lób's theorem, so that Löb's theorem might break down for this addition

to the language. In the following sections it is seen that a truth predicate can be

added to the classical language without triviality.

3. Tbuth

3.1 The Fixed Point Method

The fixed point method is an iterative method for constructing a model for

a collection of axioms. In general terms we take as starting point an already

established model and extend it by adding new logical predicate symbols with

their attendant governing axioms. The axioms to be modelled need to have a

conditional or biconditional main connective and may be quantified. The model

for the new axioms is given a (transfinite) inductive definition. Some simple rules

are iterated to eventually produce the new extended model. It should be noted that

the underlying logic of models generated in this way are non-classical. Depending

on your philosophical disposition the logic can be incomplete or inconsistent, as we

shall see.

These sections will be structured in the following way. Firstly the method is
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described in general terms. Then, contrary to historical sequence, it is shown how

the method has been used by Kripke to model the T-scheme in languages which

contain their own truth predicate. Then we see how the method can be used to

model axioms in set theory. In particular it provides a method for modelling the

axioms of comprehension and extensionality. Gilmore appears to have been the

first to use the method to model the axiom of comprehension in a restricted, non-

extensional set theory. Later Brady showed how to model the extensionality axiom

as well in an inconsistent logic. Then followed Kripke, while later use of the method

has been made by Feferman in connection with the foundations of category theory.

Finally there is brief speculation on the possibility of further applications for this

method.

Suppose that we have a language ,C which we wish to extend by adding an

n-ary predicate P". Let L have an interpretation l with domain D. The usual

interpretation for a predicate is in terms of a subset of D". That is, arr n-aty

relation or D. We define the interpretation of. P" in terms of an ordered pair

(Sr,Sr) where both ^9r and,92 are n-ary relations on D.,Sr is called the extension

of P arad ^92 is called the antiextension. The axiom to be modelled will be of a

biconditional form: Aiff B, where,4 is a sentence of the form Pn(at¡d2¡...,an)

and B is a formula containing some of a1ra2t...,an.

Basically the model is built up in stages by repeatedly adding to the interpre-

tation of P to force sentences which are instances of the axiom's LHS A to be

interpreted true or false whenever its corresponding RHS B is interpreted as true

or false respectively at the previous stage. Each time the model is extended in

this way a whole new collection of sentences become available as true RHSs of the

axiom, thus requiring the model to be again expanded to include a new collection

of corresponding LHSs to acount for the axiom's truth.

Eventually, through the magic of infinity, there will be a stage where for each

candidate RHS true (false) in the interpretation, its corresponding LHS will already

be interpreted true (false). Such points will be called fixed points. So we have ex-
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tended the original language L to contain a new predicate Pn. We have extended

the original interpretation 1by interpreting P' in terms of the pair (51,,92). The

interpretation of everything else remains unchanged. Let Is be the original inter-

pretation /. The fixed point method will generate a succession of interpretations

Io,,It, Iz, . . . . In successive interpretations the interpretaiton oî. P" which is the

ordered pair (S1, Sz) is modified by extending the relations of ^91, Sz or both.

If we think of successive changes to the interpretation as being the results of

applications of a rule /, i.e. In¡1 : Ó(1"), any fixed point of {, i.e. interpretation

1¡ such that /(/¡) - I^, will be an interpretation which will model the extended

language.

3.2 The fixed point method applied to truth theory

The liar paradox and its variations have been thought to arise from the capacity

of languages to express their own truth and falsity predicates. The Tarski hierarchy

of languages is an elaborate attempt to avoid the paradoxes by postulating.infinitely

many levels of language, each with its own truth predicate Truen. Sentences at level

n cal. only be named in level n * 1 and greater. This is complicated and unnatural

and doesn't correspond well with the facts. In natural languages we are clearly

able to name sentences in the language without jumping to higher and higher

levels. There is only one level not many.

In his 1975 paper 'Outline of a Theory of Truth' [19], Kripke showed that it is

possibie for a language to contain its own truth predicate and yet still avoid the

liar and related paradoxes. Using the fixed point method Kripke outlined a more

intuitive theory of truth than the Tarski language hierarchy. Although Kripke was

not the first to use the method, his paper is used to illustrate the fixed point method

because its application to truth theory has particular intuitive appeal.

The truth predicate ? is governed by the ?-scheme axiom

T(rA1¡:4
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Using the fixed point method we are able to show that an uncontroversial language

not containing its own truth predicate can be extended to contain its own truth

predicate which behaves according to the T-scheme. We start with a language .C

(.,V, k,),:,1,V) and extend it by adding the unary predicate T(").The axiom

to be modelled, the ?-scheme, has a : main connective.

We will interpret the truth predicate ? in the extended language by the pair

(,S1,Sz) of unary relations on D (i.e. subsets of D). The interpretation of every-

thing else in the extended language will remain as þefore, closed sentences being

interpreted in the values {True,False}. Initially 7 will be interpreted as (Ø, Ø) and

it will be built up in stages by applying a function / until a frxed point is reached.

The function / appends new sentences to the extension 51 and antiextension ,92

of ? according to the wff evaluation rules. That is d((St,,Sr)) : (Sí,Si). The wff

evaluation rules are applied with T only partially interpreted by (Sr,Sr) and the

elements of D which are codes of sentences interpreted True are collected together

to form .91. Elements of D which are not codes of sentences or are the codes

of sentences intepreted False are collected together to form.9i. This explains how

interpretations Is, It,Iz,. . . are defined. For a limit ordinal the situation is different.

Let À be a limit ordinal, then ,9;,¡ : Uo<ÀS¿,o lor i :1,2.

The problem can be seen as the problem of explaining to someone the notion

of truth. We assume that they understand the meanings of all sentences in the

Ianguage except those containing the word 'true'. The initial complete ignorance

of the notion of truth is indicated by the empty interpretation (Ø,Ø). fne concept

of truth is built up in stages by applying a simple rule: we are entitled to assert (or

deny) that any sentence is true (or false) under the exact same circumstances we

can assert (or deny) that sentence itself. This is the function / in our formalisation.

Our subject has a complete understanding of when sentences not containing the

word 'true' can be asserted or denied. By applying the rule about truth they

are able to glean a partial understanding of sentences containing the word 'true'.

By applying the rule once from a situation of complete ignorance sentences like
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" tDogs are mammals' is true" and "'The moon is a piece of cheese' is true" will

be interpreted as True arrd False respectively. However, sentences like ' "'Dogs are

mammals' is true" is true' will still not be interpreted. This partial understanding

of sentences containing the word'true'is formalised by (Sr,r,Sr,r). Applying the

rule governing truth again will result in this last sentence being correctly interpreted

True. At afixedpoint 1r, d((,Sr,r,,9r,.1)) : (Sr,.r,Sr,r). So, applyingtheruleabout

the word 'true' adds nothing further to the concept. At such a point we will say

that the model is saturated and the language contains its own truth predicate.

Now the theory of truth which results from this treatment can be shown to

be incomplete. That is, some sentences never get assigned a truth value. Some

sentences are ;onsidered neither true nor false. An example is the Liar sentence.

Assume it does get assigned a truth value and let a be the least ordinal such that

I"(LIAR) : True(False). Once we permit such a sentence to have a truth value we

unleash its paradoxical potential. Applying the rule / we generate Io+7 which has

the effect of reversing the Liar's truth value. That is 1"+1(LIAR) : False(True).

This contradicts the monotonicity of the operation / which will be proved in the

section which follows.

3.3 The proof that fixed points model the T-scheme

To prove that fixed points provide a model for the ?-scheme axiom we require

a simple lemma about the construction.

Lemma 1. If a ( B then for any sentence ^9 if 1"(.9) : ?rze, then

Ip(S): True. If o(^9) - False, then /B(.9) : False.

This lemma says that the interpretation of the truth predicate 7 is only ever

changed by giving a truth value to sentences which were previously not interpreted.

Once a sentence becomes interpreted as a truth value, its value never changes in

subsequent interpretations. If we define the relation ( between interpretations as

I. I Ip iff Sr,, C St.,g and S2,o Ç Sz,p then lemma 1 says that þ is a monotone
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increasing operation on (.

Proof of Lemma 1. The proof is by induction on the number of connectives

in .9. If ,S is an atomic sentence then lemma t holds. Assume for sentences A and

B that the lemma holds. We prove that lemma t holds for a sentence .9 where S

is of the form rA, AV B, AkB,(1r)A,(r)A.

e.g. Let I"(AbB) : True. By the wff evaluation rules I"(A) : I.(B) : True.

By the induction hypothesis, IB(A) : IB(B) : True. So IB(AþB) : Tru". There

is a similar proof for I"(AUB): False.

Divide the proof that the fixed point method generates a model for the ?-scheme

into two parts: one for each direction of tire biconditional. The modelling of the

schema for general sentence o is proved by showing the modelling of one instance

of the schema for an arbitrarily chosen sentence S.

Let /¡ be a fixed point of the method. That is, d((St,^, ^9r,^)) : (Sr,r, ^9r,r).

Left to right: We assum" /^(f (S)) : Tru% and show that 1¡(S) : True. LeI

a be the least ordinal for which 1,(?(S)) : True. a will be a successor ordinal

because (i) it is non-zero, and (ii) if it were a limit ordinal then by the method

of construction there would be an ordinal B < a such that Ipg(S)): True, thrs

contradicting the assumption that a was the least such ordinal.

If a is a successor ordinal and the least ordinal for which 1"(7(.9)) : True, then

by the method of construction it must be the case that 1.-¡(.9) : True. Now, since

1o-r ( 1, it follows by lemma 1 that 1"(S) : True as required. A similar proof

can be run assuming 1¡(T(.9)): Folt" and showing that 1.r(S) -- False.

Right to left: We assume 1¡(S) : True and show that 1¡(T( S)) : Tru". By

the method of construction it follows that 1¡-,,1(?(S)): Tru". But since 1¡ is a

fixed point I¡: Is+t So 1¡(T(S)) : True as required. If /r(S) : False it follows

by a similar argument that 1À(?(S)) : False. ¡
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3.4 The proof that there are fixed points

The method has a certain intuitive appeal and fixed points would seem to be

the kind of solution to the problem of representing the truth predicate that we are

looking for. However, it is not immediately obvious that fixed point solutions will
always exist.

The proof that there are fixed points is a simple argument based on some

assumptions about the language being modelled and the function ó. The method

will generate a chain of ordered pairs of n-ary relations on D modelling the predicate

P" in our language:

(sr,o, sr,o) s (sr,r, sr,r) < (sr,r, sr,r) 1 . . .

At each stage in the construction more sentences in the language (or their names)

are being added to the extension and antiextension of P". At every stage, at least

one new sentence gets decided. An assignment to extension or antiextension is

never changed by a later assignment. The relations of extension and antiextension

only increase in size, they never retract. This feature of the method results from

the monotonicity of the function /.

There are only denumerably many sentences our language which contain the

predicate P'. You could show a 1-1 correspondence with the natural numbers by

listing the sentences containing P" in alphabetical order or similar.

So for some À of the second number class, (Sr,^, ^gr,.r) : d((Sr,^,.gr,i))

4. The Fixed Point Method Applied to Set Theory

P.C. Gilmore appears to have been the first person to use the fixed point method

in a recognisable form although he attributes its origins to a persistence lemma by

Roger C. Lyndon in 1959. In his paper) 'The Consistency of Partial Set Theory

Without Extensionality' [124], Gilmore shows how to model the comprehension
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axiom in a partial set theory. To say that the theory is partial means that for a set

^9 in the theory, its characteristic function

fs(") : if ze 
^9

if r/S
1

0

is a partial function.

The theory extends predicate logic wìth two new primitìve binary predicates €

and /. New terms in the theory are formulae of the form {z , P,Q} where P and

Q are'positive' formuiae. That is, formulae in which only conjunction, disjunction

and quantifications are used.

The axioms to be modelled are the pair:

(1) (,)[(" € {y'P(a),a(a)}v (P(r)kQ(,))) = 
p(*)]

(2) (')[(' I {y , P(a),a@)} v (P(r)kQ("))) = Q@)]

The main connectives in these two axioms are disjunctions and the method

requires a conditional or biconditional main connective. Gilmore gives ¡ pair of

conditional sentences for each axiom (1) and (2) whose conjunction is logically

equivalent to the original axiom.

(1.1) (")[(" € {u : P(*),Q@)}): P(r)]

(1.2) (u)[(P(z)&-Q@)) ) x e {y, P(y),A@)}l

(2.1) (")[(" / {", P(*),8(r)}) I 8(r)]
(2 2) (ø)[r(P(r)kQ@)) ), 1 {y, P(y),4(y)}]

He shows how these four sentences are modelled using the fixed point method.

We interpret € and / by a pair of sets (St, Sr). Sr and 52 are built up in

stages by applying a simple rule: assume we have (St,,, S2,o) already defined for an

ordinal a. We generate Sr,o+r by appending to ,51,o sentences a € {x : P(r),Q@)}

for all sentences P(a)bQ(a) such that 1"(P(a)ktQþ)) : True. Similarly we

generate Sz,o+t by appending to S2,o sentences a / {r : P(r),Qþ)} for all sentences

-tP(a)kQ(a) such that 1,(rP(a)kQ@)) : True. This amounts to a definition of

the function /.
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For a limit ordinal l, S¿,¡ : Uo<ÀS¿,o for i :1,2

We let Is of the construction be a model for the language without the new

predicates € and / with (Sr,o, Sr,o) : (Ø,Ø).

Again the proof that the fixed point method generates a rnodel fr¡r the set t]reory

axioms requires first a lemma thaí þ is monotone.

Lemma 2. If a ( B then for any sentence S if 1"(S) - True, then 1B(.9) :
True. I11,(.9) - False, then /p(^9) : False (cf. Lemma 1).

Proof. The proof proceeds as an induction on the number of logical connectives

in the sentence ^9. This is Lyndon's persistence lemma. E

Armed with this lemma we can now set about proving that the fixed point

method generates a model for the four sentences (1.1), (L.2),(2.1), (2.2).Let ,I¡ be

a fixed point. That is, let 1r : Ä+r.

(1.1): Assume for arbitrary ø that I¡(a e {r : P(x),,Q(")}) : True. We want

to show that I¡(P(o)) : Tru". Let a be the least ordinal for which I,(a e {n :

P("),8(t)]) : True. o is a successor ordinal. So by the method of construction

I.-{P(a)k-Qþ)) : True. Now a - 1 < l, so by Lemma 1 I¡(P(a)k-rQ(a)) :
True. Hence I¡(P(a)): Tru".

(2.I): Assume for arbitrary ø that Ix(o I {x : P(r),Q(")}) : True. We want

to show that I¡(Q(o)): Tru". Let a be the least ordinal for which I,(a e {r:
P(*),Q(t))) : True. c is a successor ordinal. So by the method of construction

I.a(--tP(a)kQþ)): True. Now o - 1 < À, so by Lemma I, I¡(=P(a) k QþD :
True. Hence I¡(Qþ)) -- True.

(1.2): Assume for arbitrary ø that /¡(P(ø)&r(Ç(r)) : True. We want to

show that I¡(a € {* , P(r),Q(")}) : True. By the method of construction

1,r+r(o € {r : P(*),Q@)}): Tru". But 1¡ : Is.+t, so I¡(a € {z : P(r),Q@)}):
True.
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(2.2): Assume for arbitrary ø such that I¡(rP(a)kQþD: True. We want

to show that /¡(a I {" , P("),A@)}) : True. By the method of construction

I.r+r(a Ø {, t P("),,Q@)}) : True. But 1¡ : 1À+r, so 1¡(a I {" , P(*),Q(r)}) :
True. n

We can be assured of the existence of fixed points by virtue of a proof similar

to last time.

Like Kripke's truth theory, Gilmore's set theory is incomplete. Neither of the

following sentences will be interpreted true:

R,€R,

R'øR'

where R' : {r: r € rr" Ø r}.

LeL a be the first stage at which I.(R' e R') : True. By the method of construction

a is a successor ordinal and 1.-1(,r?' e R'): True contradicting the assumption

that a was the least such ordinal. A similar proof can be provided ror R' / R,.

So we are able to model a versiop of the axiom of comprehension of set theory

using this method. Gilmore's paper is significant because it led the way for a
number of useful applications of the method. In 1971 Ross Brady showed that

both the axiom of comprehension and a version of the axiom of extensionality

could be modelled using transfinite induction in a paper 'The Consistency of the

Axioms of Abstraction and Extensionality in a Three-Valued Logic' [5r]. This

paper is interesting not so much for its modelling of extensionality, but because it
models the axioms in paraconsistent three-valued logic. Where Kripke and Gilmore

are incomplete, Brady is inconsistent. But the difference between the modellings

is only superficial - inconsistent models can be simply transformed to become

incomplete and vice versa.
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Brady models a more familiar version of the axiom schema of comprehension

(ly)(z)(z e y * P(x,21,...,"n))

We extend propositional logic by adding the new primitive predicate symbol €
which is governed by a familiar comprehension axiom. Brady's model has a back-

ground logic Lukasiewicz three-valued. The values are 1,|,0.nd the first two are

designated.

Initially all wfs of the form z € y are assigned the truth value |. fms is the

initial interpretation Is. As the construction proceeds, more and more of these

sentences get assigned either a value 0 or 1 according to a rule / : assuming we

have 1o defined for some ordinal a. Then 1o-,1 is generated from 1o by making

the following changes: I..a(a € {r : P(x)}) : I"(p(o)). That is, sentences

a € {r: P(ø)} get assigned a value 1 (0) at stage o* 1 whenever the sentence p(a)

was interpreted 1 (0) at stage o. For a limit ordinar À, Is(a € {r: r(")}) :1 (0)

if for some o ( ì, \(P(a)): 1 (0).

Like in the previous two constructions, we again have a set of sentences which

is the extension of the new predicate symbol and a set of sentences which is its
antiextension. These are the sentences assigned the values 1 and 0 respectively.

Unlike the previous constructions every sentence gets assigned a truth value, be-

cause initially all wffs of the form r e y are assigned the value |. Now I is a
designated truth value so that paradoxical sentences involving € get assigned a

designated truth value.

It can be proved that,R / R where A : {r : r / r} never gets assigned

a value 0 or 1 because that would contradict the monotonicity of /. AIso, the

sentence R, e R, where R, : {r : r e r} never gets assigned a truth value 0 or 1

because there can be no first level at which this value is assigned. Such sentences

remain with the initial truth value |. n"t it is only a matter of convention whether

sentences which never get assigned a truth value of true or false by the method are

no ru ue ,ora u gn tru t ue, or a
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third designated truth value. The method does not stipulate which.

The axiom of extensionality for set theory does not lend itself to a simple mod-

elling by the fixed point method. This is because it is not in required form. We

add to our language a new predicate : for sets and model the axiom:

(r)(y)(z)þ : a ) (r e z : a e z))

This has a conditional main connective but we need the sentence containing the

new predicate : on its right for the method to be simply applied.

Brady models a different axiom of extensionality:

(rXy)[(rXu e x <-+ u € y) > (")(" € z +_+ y e z)]

using transfinite induction. This axiom does not contain any ne\^/ predicate symbol
: and the construction does not fit the general fixed point method procedure.

5. Further Applications

Clearly the fixed point method has quite general application in mathematics.

It can be used to model axioms which introduce a new predicate symbol and which

are in the appropriate form. The purpose of studying this method was in the hope

that it could be used to model some axioms of category theory.

The current foundations for category theory seem unnecessarily restrictive in
the kinds of categories they allow us to construct. Categories are restricted in size

so as to avoid Russell-type paradoxes. The thought is that it might be possible to
give a comprehension axiom for category theory which permits the construction of
the types of categories which seem intuitively possible but which are forbidden by

the current foundations. The modelling of such an axiom could perhaps employ

methods similar to ones used in here.
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