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Transitive projective planes

Nick Gill*

(Communicated by W. M. Kantor)

Abstract. A long-standing conjecture is that any transitive finitejpctive plane is Desarguesian.
We make a contribution towards a proof of this conjecture ligwsng that a group acting transi-
tively on the points of a non-Desarguesian projective planst not contain any components.

1 Background definitions and main results

We say that a projective planetignsitive(respectivelyprimitive) if it admits an automor-
phism group which is transitive (respectively primitive) points. Kantor [22] has proved
that a projective plan® of orderz admitting a point-primitive automorphism grotpis
Desarguesian an@ > PSL(3,z), or elsez? + z + 1 is a prime and5 is a regular or
Frobenius group of order dividing:? + = + 1)(z + 1) or (2? + = + 1)x.

Kantor’s result, which depends upon the Classification oit€iSimple Groups, rep-
resents the strongest success in the pursuit of a proof toothecture mentioned in the
abstract. A corollary of Kantor’s result is that a group gmtsnitively on the points of
a projective plané if and only if it acts primitively on the lines of. We also know,
by a combinatorial argument of Block, that a group acts itae$y on the points of a
projective planéP if and only if it acts transitively on the lines &6f [5].

Our primary result is the following:

Theorem A. Suppose thats acts transitively on a projective plarie of orderz. Then
one of the following cases holds:

e Pis Desarguesian; > PSL(3, z) and the action i2-transitive on points;
¢ ( does not contain a component. In particular all minimal nairsubgroups o>
are elementary abelian.

*This paper contains results from the author’s PhD thesisulavlike to thank my supervisor, Professor Jan
Saxl. Professor Bill Kantor has also given much helpful eevor which | am very grateful.
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Here acomponen€ of a groupG is defined to be a subnormal quasi-simple subgroup
of G. We note that Theorem A implies that if an almost simple gr(palmost quasi-
simple group)G acts transitively on the lines of a projective plahef orderx then®
is Desarguesian ar@ has soclé’SL(3, ). Note that definitions for group theory terms
used here are provided in Section 4.

Theorem A also relates to two other results that alreadyt éxithe literature. The
first is Kantor’s result on primitive projective planes [2&hich has already been men-
tioned and which is used in the proof of Theorem A; Theorem A loa thought of as a
generalization of Kantor’s result. The second is Ho's rethat a finite projective plane
admitting more than one abelian Singer group is Desargu¢®ty Theorem 1]; this re-
sult is implied by Theorem A and [20, Lemma 4.3 and Theorem @tails are given in
[16]. In fact [16] outlines a number of results about linersitive projective planes that
follow from Theorem A.

Finally we note that all groups and sets that we considerigngéiper are finite.

2 Overview of proof

To prove Theorem A we need to analyse many different possihsitive group actions
on finite projective planes. The framework for our analydishe transitive projective
planes will be given by results in [9] and [7]. The key theorisrthe following:

Theorem 1. [7, Theorem 2)et G act transitively on a projective plari® and letM be
a minimal normal subgroup @f. ThenM is either abelian or simple.

In fact we are able to state our results more strongly by tewgrihis result in terms
of componentsHence the theorem which will provide the framework for onalgsis is
the following:

Theorem 2. Suppose that? acts transitively on a projective plarie ThenG contains
at most one component.

The proof of this theorem, which involves rewriting proofssamilar theorems from
[9] and [7], is given in Section 3. In Section 4 we give the bdsimmas and notation
which will be used throughout the remainder of the paper.

In the remaining sections we use Theorem 2 to examine thehp®smique com-
ponents of a groué: acting transitively on a projective plane. Existing resdit the
literature are generally limited to the case where the corapbis simple and; is almost
simple.

3  Framework results

We prove Theorem 2 which states that if a gratifacts transitively upon a projective
plane then= contains at most one component. Our proof of Theorem 2 stétfissome
preliminary results.
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Note first that ifC' is a component of7 thenC® := (CY9 : g € G) 2 C o (C9 o
---0 (9 is a normal subgroup @ wheregy, . .., g, € G; furthermore, ifC' andD are
components oy with C' not G-conjugate taD then[C, D] = 1 and so[C°, D°] = 1.

We need some information about the fixed points of automsmsiof a projective
plane? of orderz: If an automorphisng fixes at least: points thery is calledquasicen-
tral andg fixesx + 1, z + 2 or x + /= + 1 points [14, 4.1.7]. In the first two casedixes
afan, namely a line€ and a pointx and all the points o£ and all the lines incident with
a. The distinction between the two cases depends on whethmterlies on£. In the
third case the set of fixed points and fixed lineg ddrms a subplane dP of order,/x.

In addition we have the following lemma:

Lemma 3. [14, 3.1.2 and 4.1.G]et P be a projective plane of order. If H is a group of
automorphisms dP which does not fixpoint-wisg a subplane off then the fixed set of
H lies inside a fan. If, on the other hand] point-wise fixes a subplane of ordgthen
eithery? =zory(y +1) <z — 2.

We are now ready to prove our first result which is very simite}l9, Theorem 3]:

Proposition 4. LetG be a transitive automorphism group of a projective plénef order
greater thand. LetG have normal subgroups! and N such thatM, # 1 and N, # 1
for some point. Then[N, M] # 1.

Proof. Let M and N be two normal subgroups @f such that there is a poiat so that
M, #1andN, # land[M,N] =1.

Consider the point € aN and letn € N be such thati = an. If m € M, then
Bm = anm = amn = B. ThusaN is fixed point-wise byM,,. If 8 € aN\{«a} andg
is the line throughy and 3, thenM,, fixes £ set-wise. Thus there is a ling@througha
which is fixed byM, and M, fixes at least two points. A similar result applies with
replacingh.

Next we show that every line throughis fixed either byM,, or N,,. Assume that this
is false and let be a line througla which is fixed by neither. Sinc€' is line-transitive,
there is some point such thatlz fixes £. Now, since[M, N] = 1, N,, acts on the set
of fixed lines of M. Thus each image af under the action ofV,, is a line through
fixed by Mg. SinceN, does not fixg, it follows that M fixesa. However, this means
thatMg = M, and hencel/,, fixes £ which is a contradiction to our assumption.

Thus, for one of\/,, and N, the number of lines through which are fixed must be
at leastk /2. Without loss of generality, this is true fd¥,,. We now show that the set of
fixed points ofN,, forms a subplane ¢P. By the lemma above it is sufficient to prove that
N¢(N,) acts transitively on the set of lines fixed BY,; to show this we demonstrate
that Ne = N,, for any line £ fixed by N,.

Let £ be any line througla which is fixed byN,. Letm € M such thattm # £.
Then, sincdM, N| = 1, it follows that £mNe = £Nem = £m, that isNg fixes £m
and soNg fixes&m N £ = {#}, say. ThenV, C N¢ C Ng, and sinceV,, is conjugate
to N3, we obtainN,, = Ng.
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SinceN is normal inG, N¢(Ng) is transitive on the lines fixed by = N,. Thus
the fixed set ofV,, is a subplane of with line size at leask /2. This is a contradiction
of the lemma above. O

Corollary 5. Suppose thatr acts transitively on a projective plarfeé Then all compo-
nents ofGG are conjugate irnG.

Proof. If P is Desarguesian the@@ contains at most one component and the statement
holds.

By [14, 3.2.15] a non-Desarguesian projective plane hasratleasd. Thus by the
previous theorem any two normal subgrodgsand N of G with M,, # 1 andN,, # 1
for some point satisfy[N, M] # 1.

Now suppose that' and D are components d@¥ which are not conjugate i&. Then
C° and D° are distinct normal subgroups 6f. Note that any component contains an
involution and, since the number of pointsdnis odd, each involution must fix a point.
The theorem implies tha€°, D°] # 1. This is a contradiction. |

We can now prove Theorem 2. Our method of proof is very sinbddhat of Camina
[7, Theorem 1]. First we state some preliminary results:

Lemma 6. [9, Theorem 1]Let P be a finite linear space and l&t be a line-transitive
automorphism group dP. Let NV be a normal subgroup af. ThenN acts faithfully on
each of its point orbits.

Lemma 7. [21, XIII.13.1] Let A be an abelian automorphism group of a projective plane
of orderz. Then|A4| < 22 + 2 + 1.

Theorem 2. Suppose that? acts transitively on a projective plarie ThenG contains
at most one component.

Proof. By Corollary 5, is non-Desarguesian of orderand all components are conju-
gate inG. LetC be a component af and letC® be the normal closure @ in G. Write
C° = (4 o---0Cy with eachC; isomorphic toC and suppose that > 2.

Let D be a Sylow2-subgroup ofC°. Since® has an odd number of points there is a
pointa so thatD fixesa. Thus(C;), # 1for 1 < i < m. SinceG acts transitively on
P this is true for all pointsy. Choosex so that(C4), has maximal order. Observe that
[Ca, (C1)a] = 1 soaCy consists of points fixed b§Ch ).

Now C* is faithful on all its point orbits by Lemma 6. This impliesatiaeCy contains
at least 5 points aS’; is quasisimple and normal ifi°. The fixed set ofC1),, is either a
subplane or lies inside a fan. But, sinCe does not fix any point, we conclude that, ).,
fixes a subplane whose order is at mg&t

We now show that for any lin€ incident witha there is aj so that(C}), fixes £.
Choose a line incident witha. If (C4),, fixes £ there is nothing to prove. We know that
there exists a lineg;, which is incident withw and is fixed by(C ). But G is transitive
on lines so there ig € G with £,9 = £. Theng = ayg is incident with€ and((C})a)?
fixes £. But there existg so that((C1).)? = (C;)s sinceg permutes the factorS;. Let
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i # j. Then(C;), commutes with(C;) s and so acts on the set of lines fixed (@Y; ) 5.
If (C;)a fixes £ then we have proved our claim. If not we see t(id}) s fixes at least
two lines through and so fixesy. However((C1)q)? = (C;)3 so by the maximality of
(C1)a We have(C})a = (C})s and the claim is proved.

Lety be the order of the subplane fixed ;). Thenm(y+1) > z+1. If y = /z
then this implies thatn > /z. If y # /= then Lemma 3 implies that(y + 1) < = — 2.
Thusm >y +1andsom > vz +1 > \/z.

SinceC*® has an abelian subgroup of order at le#gtit follows from Lemma 7 that
22 + x4+ 1> 5™ > 5V, This has no solutions. O

4 Basic results and notation

The notation outlined in this section will hold througholetrest of the paper. We also
state here a number of basic results which will be used reghlathroughout the paper.

4.1 Projective plane results. Consider a projective plari of ordera with v = 2 +
x + 1 points and lines.

Lemma 8. [22, p. 33]Let G act transitively on a projective plane witt¥, a point-
stabilizer. Ifp; is a prime= 2(3) thenG,, contains some Sylow -subgroup ofG.
Moreover,GG,, contains a subgroup of index at masin a Sylow3-subgroup of5.

Forg an element o> we writen, for the size of the7-conjugacy class of in G and
r4 for the number of these conjugates lying in a point-stadili.,, for some fixed point
ain P. Furthermored, is the number of fixed points @i We will sometimes also write
rq(B) for the number of5-conjugates of lying in a subgrou of G, sor, = r,(G,).

We know already that if an automorphigprfixes at least: points theng is called
quasicentralandg fixesz + 1, z 4+ 2 or z + /x + 1 points [14, 4.1.7]. Furthermore, if
an automorphism has+ 1 or z + 2 fixed points then it is known asgerspectivityand
Wagner has proved that@ contains a nontrivial perspectivity aidédacts transitively on
P then? is Desarguesian ar@ > PSL(3, x) [34].

Now any involution is quasicentral ([14, 3.1.6]) and so h# groups~ that we con-
sider contain quasicentral automorphisms. By Wagnerslrege will be interested in
the situation whernr is a square, say = 2, and all quasicentral automorphisms, in
particular all involutions, have? + v + 1 fixed points.

We will be particularly interested in properties of integ@ef the formu? + u + 1
whereu is an integer.

Lemma9. If z = u?thenz? + 2 +1 = (u® + u+ 1)(u?® — u + 1), where(u? + u +
Lu?—u+1)=1.

Lemma 10. [27, p. 11]If u? + u + 1 = p$ wherep; is a prime, then eithep} = p; or
pi =7
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Lemma 11. [22, p. 33]If z = v? andz? + x + 1 = p%m for a primep with a > 1, then
eitherm > 8p® orp® = u? £ u + 1 = 75

Lemma 12. Letz = u? and letg be an involution acting on projective plarfe with
u? + u + 1 fixed points. Then

U f—g:u2—u+1;
g9
o dg:u2+u+1;
© v=7tdgand(E,dg) = 1.

Proof. Count pairs of the fornje, ¢g), wherea is a point andy is an involution fixinga,
in two different ways. Thef{(«, g) : ag = a}| = vry = ny4dy. We know already that
dg = u? + u+ 1 thus we must havé* = u? — u + 1 and the result follows. O

el

Lemma 13. Suppose thaj is an involution acting on projective plarfewith v2 4« + 1
fixed points. Ifn, = 2°p*m where(m, 2p) = 1 then the largest power gf in v is less
than or equal tanax(p®, m + 2v/m + 2).

Proof. If p|:—;’ then clearly the highest power pfdividing v dividesp®. If not, then
u? —u+1 = ’;—j dividesm. Then the highest power of dividing v dividesd, =
wWtut+l<@—u+1)+2vVuZ —u+1+2. O

Itis in our exploitation of the last two results that our treant will differ substantially
from that of Kantor in the primitive case. We will make use loé equalities outlined in
Lemma 12, taking to be a member of a small conjugacy class of involutions.

4.2 Group theory results and notation. We begin with a general lemma which will
be useful throughout the chapter.

Lemma 14. LetC' < A x B. SupposeA| < |B : N| whereN is the largest proper
normal subgroup of3. Then either:

e O < Ax ByforB; < B;or
L C:A1XBf0rA1 < A.

Proof. Suppose” £ A x B; for By < B. Then defineB; = {(1,b) : (a,b) € C} = B
and observe that the projectich— A, (a,b) — a has kernelKX = {(1,b) € C} < By.
But |B; : K| < |A| < |B : N| whereN is the largest proper normal subgroup®f
ThusK = By andC = A; x B for someA; < A as required. O

Now we want to show that a grodpwith unique component cannot act transitively
on a projective plan® unless it contains a non-trivial perspectivity.

Recall thatZ is a component of7 providedL is a subnormal quasi-simple subgroup
of G; aquasi-simplegroupC is one such tha€ = C’ (C is equal to its commutator
subgroup) and”/Z(C') is simple. We also define aimost simplegroup to be a group
G such thatv <G < Aut(N) whereN is a non-abelian simple group; an almost simple
group can also be thought of as a group withn-abelian simple soclehe socleof a
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groupG being the product of the minimal normal subgroups:ofor a fuller discussion
see [3].

We write H.G for an extension of a groufl by a groupG and H : G for a split
extension. An integen denotes a cyclic group of order, while [n] (respectively¢"])
denotes an arbitrary soluble group of ordgrespectively;”™) andp™ denotes an elemen-
tary abelian group of order” wherep is a prime. We writg H |, for the highest divisor
of |H| which is a power of a primg.

PutL, = G, N L, the stabilizer of a point. in the action of. on P. In general,
we will set M to be a maximal subgroup of the componénvhich containg.,,. Define
Lt :=L/Z(L)andM" := M/(Z(L) N M).

Write G = (L o Ce(L)).N whereN is a subgroup 0Out L. ThenG/Cg(L) is an
almost simple group and we use results about the maximalsupsg of such groups:

WhenL' is a classical simple group we use the results of Aschbathes[described
in Kleidman and Liebeck [23]. These results give informatabout the maximal sub-
groups of a groufd.t. v where the simple soclg' is a classical group.

We will sometimes precede the structure of a subgroup of giiee group with®
which means that we are giving the structure of the pre-iniadfee corresponding uni-
versal group (we call thikat notatior). For a given element € L we will often write
g* for an element in the corresponding universal group whidjgets ontgg. The sym-
bol * will also be used in a different way, with groups, efy., to signal that a group is a
subgroup of a section df or L. Write GF(q) for the finite field of size.

We now prove a small result which will be very useful:

Lemma 15. Suppose tha€’ has a unique componetit and G acts transitively on the
set of points of a projective plarf2. Then, except wheh = PQ"(8,q), there exists
L < H <Gsuchthatd/Cy (L) <TL andH acts transitively on the set of points ®f
HereI'L is the full semilinear classical group associated with

Proof. The result is trivial except wheh! = PSL(n, q) while G/Cg(L) contains an
inverse-transpose automorphism/oénd whenl. = Sp(4, 27) while G /C (L) contains
a graph automorphism df. In both cases+ contains a normal subgroup of index 2
suchthatd/Cy (L) < T'L. Since we are acting on a set of odd order, any transitiveracti
of G induces a transitive action éf as required. ]

Lemma 15 implies that, to prove Theorem A, it is enough to sti@aithe subgroupl
cannot act transitively upon a non-Desarguesian proggiigne as this implies that the
same must hold fof. Thus, exceptwheh! = PQ* (8, q), we assume that/C (L) <
L.

We will write M € €; to mean thatM T is in thei-th family of natural maximal
subgroups ofL." given by Kleidman and Liebeck [23]. Whell is parabolic we will
write M = P,, to mean thaf\/ is a maximal parabolic subgroup fixing a totally singular
subspacéV of dimensionn inside the natural classical geometfyof dimension..

When L' is an exceptional simple group we use different sources tbififormation
about maximal subgroup®/ of L. When M is parabolic we refer to [10, 19, 18]. In
some other cases, the maximal subgroups are completelyezated; in particular for
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LT =2By(q) [32], for LT = 2G4 (q) [24, 35], for LT = G2(q) [24, 13], for LT = 2F}(q)
[28, 12] and forL = 3Dy(q) [25].

In both classical and exceptional cases, we appeal to & cfdlibeck and Saxl [26]
and Kantor [22] which gives the maximal subgroups of odd xnigdean almost simple
group. In particular, when the socle is a finite simple clzssjroup acting on a classical
geometryl/, such a maximal subgroup either lies@n (stabilizers of totally singular or
non-singular subspaces) for characterigtar, when the characteristic is odd, lies@n,
C, (stabilizers of decompositions into subspaces of fixed dsiwa,V = @!_,V;) or C5
(stabilizers of subfields) or is in a small set of listed exmays.

Finally, whenL' is a sporadic simple group we refer to [2] which, amongst many
other things, lists the maximal subgroups of odd index.

Our analysis becomes slightly simpler by using the follaywesult of Camina and
Praeger which is a corollary of Lemma 6:

Lemma 16. [9, Corollary 1]Let N be an abelian normal subgroup of a groGh Suppose
that G acts line-transitively on a finite linear spa@e ThenN acts semiregularly on the
points ofP.

In the case wher@ is a projective plane we can apply Lemma 8. Thusi$ a unique
component of7 thenZ (L) is normal inG and must have order only divisible by primes
congruenttad (3) or by 3 to the first power. In the case whefds a group of Lie type, for
instance, this implies that is simple unless it is isomorphic ts(q), 2Es(q), U(n, q)
or PSL(n, q) for certainn.

4.3 Hypothesis. Finally we state our hypothesis for the rest of the paper:

Hypothesis. 1. Suppose thak is a group with a unigue componeht

2. Suppose that’ acts transitively on a set of points of order= 22 + = + 1 where
r=ulu€lu>2;

3. Suppose that all involutions fix¢ + u + 1 points;

4. Suppose that, < M whereM is a maximal subgroup af of odd index and that
v>|L: M|

5. Exceptwher.! = PQ7(8,q), suppose that/Cs (L) <TL;

6. Finally suppose that (L) has order only divisible by primes congruenti{@) or by
3 to the first power.

Throughout the rest of the paper we will getto be in a particular family of simple
groups and will prove the following result (which, in turmplies Theorem A):

Result. If L # PSL(2, q), then our hypothesis leads to a contradictionL = PSL(2, ),
then our hypothesis along with two extra suppositifiescribed in Sectior) leads to a
contradiction.

This result is entirely group theoretic and makes no refegeio the geometry of
projective planes. Note also that Lemmas 8 to 13 all applyeundr hypothesis since
they depend only on the number of poinfs+ = + 1.
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5 LT is alternating or sporadic

In this section we prove that, ' is alternating or sporadic, then the hypothesis in Sec-
tion 4.3 leads to a contradiction. This implies the follog/jproposition:

Proposition 17. Suppos& has a unique componetsuch thatZ' is isomorphic to an
alternating group,A,, with n > 5, or a sporadic simple group. Thed does not act
transitively on a projective plane.

When L' is a sporadic simple group, the maximal subgroups obf odd index are
given by Aschbacher [2]. Aschbacher’s list implies that ergximal subgroupg/ of odd
index in L has index divisible by or by a prime congruent &(3). SinceL,, must lie in
such a maximal subgroup this contradicts Lemma 8.

Suppose thakt! = A,,, the alternating group on letters. Ifn # 6,7 thenZ(L) < 2
[30]; thus, by Lemma 16, = Lt = A,. If n = 6,7 thenZ(L) < 6 and so, by
Lemmal6,L = A, orL =3.A,.

Assume for the moment that > 7 and soL. = A,,. Letg € L = A,, be a double
transposition. Them, = n(n — 1)(n — 2)(n — 3)/8. Now A,, contains an abelian
subgroupH, of size2! 21~ which contains at leagt2 | (| 2| — 1) L-conjugates of.

Since H lies inside a Sylow2-subgroup ofL, we know thatH lies in L., for some
pointa. We conclude that

ng n(n—1)(n—2)(n—3)

re — 855 -1
Next we refer to Lemma 7 and observe thdt < v. Furthermore, fou > 2, we have
v < 2(:?—;')2. Hence

n%(n —1)%(n — 2)? (n73)2'
20(5)%([5) -2

Thus2l2! < n* andn < 43. If v = 2 thenv = 21 and again we can conclude that
n < 43. Now to examine the cases whére: n < 43 we use a method similar to that in
[8, Section 5].

Consider the usual permutation actionlof= A,, asAlt(£2), acting on a se® of size
n. ThenL,, contains a Sylow-subgroup ofL for every primep = 2(3) and a subgroup
of index 3 in a Sylows-subgroup ofL.

LetT" be the longest orbit of , in Q. If 8 < n < 10 then, sincel,, contains a Sylow
2-group and a Sylové-group of L, LL, must be primitive; ifl1 < n < 21 then the same
conclusion comes from the primeésand11; if 22 < n < 33 then the same conclusion
comes from the prime2 and17; and if 34 < n < 43 then the same conclusion comes
from the primes2 and29. Now L. has odd index im\1t(T") and5 does not divide the
index. By [26] this means thdt., containsAlt(T").

Forn > 11,n # 39, we claim thatT'| > n — 2. This is proved using Lemma 8 for
each individual value of.. We do not reproduce this here but consider, for instancenwh

2ls]-1 < 2
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n = 16: ThenL, contains elements with cycle tygel) and(8,8) and so|T'| = 16 >
n— 2.

Let us examine this case, where> 11, n # 39. Consider agairy, a double transpo-
sition withn, = n(n —1)(n —2)(n —3)/8. Thenr, > (n—2)(n—3)(n—4)(n—15)/8
and so”;—j < % < 3forn > 11. This is impossible.

Forn = 39 it turns out, using Lemma 8, thiff| > 34. Then¢ < 3 and this case is
excluded. ’

Forn = 8 or 10, the same argument givéls| = n and no action exists. For = 9,
|T'| > 5 and, referring to [26]L,, lies in an intransitive subgroup @fand this contradicts
Lemma 8.

Now suppose: < 7. If n = 5 or 6 then Lemma 8 implies thal. : L,| < 3. This is
impossible since no subgroup of such small index exists. iie are left withn = 7.

Whenn = 7 we know thatL,, contains an element of ordér Examining [12] this
means thal/t = S5 or Ag. In fact we must havé,, = S5 or Ag. In both cases'ﬁr%" is
not an integer. Thus all cases are excluded. ’

Remark. It is worth noting that we could prove Proposition 17 dirgdtly appealing to
[17, Theorem 1] and then dealing with the cases whete21.

6 L' =PSL(n,q),n >3

In this section we assume that> 3 and prove that, if." = PSL(n, ¢), then the hypoth-
esis in Section 4.3 leads to a contradiction. This impliesfétiowing proposition:

Proposition 18. If G' has a unique component such that is isomorphic toPSL(n, ¢)
with n > 3, thenG does not act transitively on a projective plane.

ConsideiSL(n, ¢) acting naturally on a vector spabe Recall that dransvectiong*
say, inSL(n, ¢q) is an automorphism df such thaty* — I has rank 1 and square 0. We
now state the following preliminary result:

Lemma 19. LetC be a conjugacy classes of involutions/ircorresponding to either

« diagonalizable involutions in the natural modular repratgion ofSL(n, ¢) with ¢
odd; or to
« the projective image of transvections3h(n, ¢), whereq = 2¢ for some integet.

ThenC is invariant unded'L.

Proof. Consider the diagonalizable case first. We need to congideadtions by conju-
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gation of automorphisms &fL.(n, ¢) on a diagonal matrix,

—1

1

Clearly a field automorphism will preservg. Similarly an automorphism lying in
GL(n, q) of form,

a

wherea € GF(q)*, also preserveg*. These generate the full outer automorphism group
of SL(n, ¢) in I'L(n, ¢) and we are done. In the case where we have a transvection we
consider the actions by conjugation of automorphisnféldh, ¢) on a matrix,

1 10 0
. 1
g:
0
1

Clearly both field automorphisms and the automorphisn&Inn, ¢) exhibited above
preservegs* and we are done. ]

Much of the ensuing treatment will involve counting invaduts g. We will take
care to ensure thatis always of one of the two types in this lemma thus ensuriag th
ng = 1r4(L) = |L : Cr(g)| andr, = r4(Ls). Also, observe that we may exclude
PSL(4,2) = Ag. We begin by restricting the family within which/, a maximal sub-
group of L containingL,,, may lie:

6.1 L, must lie in a parabolic subgroup. By Liebeck and Saxl [26], we know that
L, lies inside a maximal subgroud where

e forqodd,M € Cy,Cq 0r Cs; Orn = 4;
e forgeven,M € C;.

Lemma 20. L, cannot lie inside a maximal subgroup from famil®&s: > 1.
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Proof. We may assume thatis odd. InSL(n, ¢), define

1

Theng* is centralized irSL(n, q) by (SL(2, ¢) xSL(n—2, q)).(¢—1). Then the projective
image,g, of g* is an involution inL andn, divides

q2(n72)(qn*1 + g+ 1)((]”72 +o+g+1)/(g+1).

Examining the order of subgroupd in €, of 5 we find that| M|, < ¢i ("~ 1" and
hence|L : M|, > ¢i(»~ D", Sincen > 3, we know thaty? divides the index of any
maximal subgroup i€, or Cs. In the case where = 4, the only maximal subgroups of
odd index which do not lie in familie€,, G, or €5 also have index divisible by?. Hence
p > 7 by Lemma 8. Then, by Lemma 13, the largest power of v is ¢2("—2),

Thus, forn > 4, gsn(r=D-2(n=2) — ;3(n’=5n+8) divides the order ofL,. We
therefore need to havg(n? — 5n + 8) < (n — 1)n and son < 7.

If nis 5 or 6, the only possibility that fits this inequality is whéd = N, (L(n, qo))
for ¢ = ¢3. Butthen|L : M|is even and so this case can be excluded. This possibility
can also be excluded when= 4. However whem = 4 we also need to consider the
following further possibilities (note that when= 4 we can assume that= PSL(4, ¢)):

e M ="(SL(2,q) x SL(2,q)).(¢ — 1).2. (Recall that we use hat notatioto indicate
that we are giving the structure of the pre-imagé6fin SL(4, ¢).) In this caseL :
M| =ny = 1¢*(¢®>+1)(¢*+¢+1). Then we know that the maximum powengih v
is ¢* henceL,, contains Sylow-subgroups of\/. However the index of a parabolic

subgroup infSL(2, ¢) is even, hence we must ha\{8L(2, q) x SL(2,q)).2 < L,.

Then we know that for some, L, > ( SL(2.q) SL(2 q)). SinceL,, also contains

a Sylow2-subgroup ofPSL(4, ¢), this implies thatL, must contain the projective
1
image of( - ) which is L-conjugate tog and sor, > ¢*(¢ + 1)?. Thus

—1

:—j’ < 1P +1)andv < ¢* (¢ +1)(¢*+q+1)and sw = 3¢* (¢ +1)(¢*+q+1)
contradicting Lemma 11.

© M = L(4,90).[ ;=577 (a0 — 1, 4)] wherec = (¢ —1)/(q0 — 1, ;5777)) @ndg = ;.
Then|L : M| = (g5(a5 + 0 +1)(af + a3 +1)(a5 + a5 + 1))/ (=575 (a0 — 1. 4)).
Now we know thap = 1(3) and so the highest power 8fin ¢ is 3. Then we have
9||L : M| which is impossible.

e M is of odd index but does not lie in familigy , G2 or C5. Examining [23, 26] we
find that there are two possibilities: Eith&f ¢ Cs andM = 24 A or M € Cg and
M = PGSp(4,q). In the former case;® divides|L : M| which is a contradiction.
In the latter case, singe= 1(3), we find that9 divides|L : M| which, again, is a
contradiction. a
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Thus we assume from here on thaf lies insideM € €;. This means thak, must
always lie inside a parabolic subgroup,,, which stabilizes a subspagg of dimension
m in the natural vector space f6f. We now seek to bounah.

6.2 L, liesin P,,, m small. We begin by noting some preliminary facts which we
will use to establish which parabolic groups, are possible candidates to contéif. In
particular we will show thatn is small.

Lemma 21. Supposel,, lies insideP,,. For r|(),  prime, there exists an integer

such that(1 + ¢® + - - - + ¢®"=1)) divides|L : P,,| which, in turn, divides.

Corollary 22. Supposd.,, lies insidep,,.
* If p = 1(3) then for each prime dividing ("), we haver = 1(3) or » = 3 and
* If pis odd then(" ) is odd, and so either is odd, orn is even andn is even.
e Ifp=2then() # 0(4).

Proof. We need only prove the final statement. Suppg$g ). Then eitherq® + 1)|v or
(¢ + 1)2Jv. This means that eitheris divisible by a prime congruent &(3) or that9|v.
Both of these are impossible. m]

Note that, since(n,q) # (4,2), the smallest index of a parabolic subgroup in
PSL(n,q), n > 4 is 31 ([23, table 5.2A]). Since is a square we know that > 91
and sady < 27%.

6.2.1 Casen 0dd, p odd. In this caselL contains the projective image, of

-1

-1
1

Thenn, = ¢"*(¢"~! +--- 4+ ¢ + 1). Furthermore, since > 4, g is conjugate in¥
to the projective imagé;, of at least one other diagonal matrix. Theandh commute
and lie in an elementary abelian 2-group. Sidgecontains a Sylow 2-subgroup @f,
we must have, > 2.

Thus’:_j < %qn—l(qn—l +F g+ 1), dg < qn—l(qn—l 4+ Fq+ 1) and
v < 3¢ 2(¢" 1 + -+ + ¢+ 1)%. Now observe that

1 . .
@ g 1) > ¢ implies (¢" — 1)* > 207" (g - 1)%,
hencey®” > 2¢?"~!(q —1)%, which givesg > 2(¢ — 1)? andq < 3. We know that; > 3
hencel(¢" '+ +¢+1)2 < ¢t andv < ¢*"~. But|L : P,,| > ¢™(™~™ hence,
forn > 23, we haven < 4. We use Corollary 22 to narrow down the possibilities:
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1. Forp = 1(3) we find, by explicit calculation using Corollary 22, that< 4 for all n.
In fact, checking smalh we find that ifm = 1,2 thenn > 7; if m = 3 thenn > 39;
if m = 4 thenn > 70.

2. Forp #1(3) then72(3(¢" ' +--- 4 ¢ + 1). Henced, < 3.¢" and sov < 9¢°". For
n > 11 this implies thatn < 2.
Checking the cases where< 11 we find thatm < 2 or (n, m) = (7, 3). This final
case will be dealt with along with other exceptional caseéb@end of Section 6.3.9.

6.2.2 Casen even,p odd. Note that in this case we must haveeven andL contains
the projective image;, of

1

Nown, = > 2 (¢" 2+ +¢*+1)(¢" 2+ +q+1). Againr, > 2 and S0y <
%qQ(n—Q) (qn—2+. . .+q2+1)(qn—2+. . -+q+1). This giVESdg < q2(n—2)(qn—2+. o

q2+1)(qn—2+. . +q+1)and s § %q4(n—2)(qn—2+. . .+q2+1)2(qn—2+. . +q+1)2
In a similar fashion to before we know that, f@e> 3 andn > 4,

1 ,

§(qn—2 4. +q2 T 1)2(qn—2 4. +q+ 1)2 < q4n—7

and sov < ¢®"~ 1. But|PSL(n,q) : P,| > ¢™™ ™ hence, forn > 70, we have

m < 8. Once again we use Corollary 22 to narrow down the posséslit

(1) Forp = 1(3), we find thatn < 70 implies thatm = 2. In fact (n,m) = (14, 2),
(38,2) or (62, 2).

(2) Forp # 1(3), $213(¢"* + -+ @ + 1)(¢" >+ -+ q+ 1) < 3¢°"°. Thus
v < 9¢* . BUt|G : P,,| > ¢™(»=™). Thus forn > 18 we must haven < 4. For

n < 18, m < 4 or (n,m) = (14,6). This final case will be dealt with along with
other exceptional cases in Section 6.3.9.

6.2.3 Casep = 2. Inthis case&s contains the projective image, of

1 0 --- 0 1

1 0

g = :
1 0

1

Hereg* is atransvection and, = (¢" ' —1)(¢" "' +---+¢+1). Examining a Sylow-2
subgroup ofPSL(n, ) we see that it contains at leaxt;”~! — 1) L-conjugates of;.
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SinceL,, must contain one such Sylow 2-subgroup, we concluderthat 2(¢" ! — 1)
and so7* < (gt +---+q+1). Sinced, < 272, v < L@ g+ 1)
Also, sinceL,, < P,, and|PSL(n,q) : P,,| > ¢™(~™), we conclude that, fon > 10,
m < 2.

Forn < 10, the fact thatt | () implies that(n,m) = (7,3),(8,4) or (9,4) if
m > 2. We rule out these three possibilities in turn:

(9,4): This givesg*(®=% > ¢*>" which is a contradiction.

(8,4): Inthis case(q* + 1)||G : P4| which is impossible.

(7,3): Inthiscase|G : P3| = (> — g+ 1) (¢* +-+q+1)(¢®*+---+q+1) >
1(¢® + -~ + ¢+ 1)? > v which is a contradiction.

Note that ifim = 2 andn = 0, 1(4) then(¢? + 1)|v which is impossible. Hence when
m = 2 we assume that = 2, 3(4).

6.2.4 Cases to be examinedWe now state those values of for which L, < P,
gives a potential transitive action 6f.

lL.p=22m=1(Mm=>5)or2(n>6),
2. p#1(3), p odd:

e noddm=1(n>5),m=2(n>T7)or(n,m)=(7,3);

e nevenim =2 (n >6),m =4(n > 12) or (n,m) = (14,6);
3. p=1(3):

e nevenim =2 (n=140rn > 38),m =4,6,8 (n > 70);

e nodd:m=1,2(n>7),m=3(n=>39),m=4(n> 70).

Remark. Note thatn = 4 is now done. We will assume that> 5 from now on.

All that remains is to go through the listed cases one at a éisseming that,, lies
inside the givenP,, and so|L : P,,| dividesv. We seek a contradiction. We begin
with a preliminary lemma and corollary which will be usefaoffcounting the number of
involutions inL,:

Lemma 23. Suppose thaj is an odd prime power. Assume that the following two matri-
ces are involutions iSL(n, ¢), then they are conjugate BL(n, ¢):

vV X Voo
0o wj)'\o W
whereV € GL(m,q), W € GL(n —m,q) andX; € M(m x (n —m), q), the set ofn

byn — m matrices over the field af elements.

Proof. Since these matrices are involutions we must Have, + X W = 0. TakeX
suchthatX = —X;W. ThenAX = X; + XW and we find that:

66 w6 w6 1) :
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Corollary 24. Letq be odd and suppose thét, lies inside a parabolic subgroug,,,,
of L whereP,, ="A: (B : C)withC = ¢ — 1 and

Ao (T Monx Gy (S Y

Definer(L,,) to be equal to the following set:

the projection of?,,, onto the Levi quotient restricted 1a,. Now assume thdt, contains
an involutiong which is the projective image of an involutionSi.(n, q), g* = (** ¥, ).
Thenr, is greater than or equal to the number of L, )-conjugates of the block

diagonal matrix( X' ) in w(La).

Recall that, in our statement of the corollary, we use haatimt” to indicate that we
are giving the structure of the pre-imagef®f, in SL(n, ¢). Note that in what follows we
will assume thaf.,, lies in a parabolic subgroup whichisconjugate to one of the above
form. In fact, inPSL(n, q) wheren > 3, there are two conjugacy classes of parabolic
subgroups. However, since these two classes are fused gph gutomorphism, our
method extends trivially to cover the other class.

6.3 Remaining cases.

6.3.1 Casep = 2, m = 1. Takeg* a transvection as before, with, = (¢" ! — 1)
("' +---+q+1). Recall that, > 2(¢"~! —1) and soZ—j <L+ q+1)
andsov < 2(¢" 14 +q+1)%

Then we suppose that, = "A.B.C < P, ="¢" '] : (SL(n —1,q).(¢ — 1)). Since
L,, contains a Sylov2-subgroup ofZ, A = [¢" '] with B < SL(n—1,¢),C < (¢ —1).
Now|L:Pi|=¢" '+ ---+g+landthu§SL(n—1,¢): B| < i(¢" '+ -+ q+1).
We know thatB contains a Sylove-subgroup oSL(n — 1, ¢) and so we are in one of the
following situations:

* B < P, aparabolic subgroup ¢fL.(n — 1,¢q). Forn > 5 andm; > 2 observe
that| SL(n — 1,q) : P, | > >3 > 1(¢"~! + - + ¢ + 1) which is impossible.
Thusm; = 1andB < [¢" 2] : GL(n — 2,q). Inthis casgq¢" '+ --- + ¢+ 1) -
(" 2+---+q+1)dividesv andB = [¢" %] : Bf where| GL(n—2,q) : Bf| < q.
ThusB > B} > SL(n — 2,q).

e B=SL(n-1,q).

Consider the second situation first. We know thék.,) contains( " g1, 4 ) for
someq, and we also know that the projective images of the followiragrices are conju-
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gate in the grougd.:

1
1(1)"'0(1) 10 0 1

1 0

Lo Lo

1

Thus, by Corollary 24y, > r7,(SL(n —1,q)) > (¢" 2 = 1)(¢" 2 +--- + ¢+ 1). This
implies that < ¢(q + 1) andv < q* + ¢% + 1. This is a contradiction fon > 5.

Thus we assume that we are in the first situation. The samenamfithough implies
thatr, > r,('SL(n — 2,q)) > (¢" 2 — 1)(¢" 3 + --- + ¢ + 1). This implies that
Z—g <(¢®*+1)2and sopt < q* + ¢ + 1. This means that < ¢% + 4¢° + 7¢* + 64> + 3.
We know that(¢"~* + -+ + ¢+ 1)(¢" % + - - - + ¢ + 1)|v which gives a contradiction
forn > 6.

Forn = 5 we find that(¢® + ¢* 4+ ¢ + 1)|v hence(¢* + 1)|v which implies that a
primep; = 2(3) dividesv which is a contradiction.

6.3.2 Case = 2, m = 2. We assume here that> 6 andL, < P, = [¢**2)] :
(SL(2,q) x SL(n — 2,9)).(¢ — 1). Now P, has index(¢"~* + -+ q + 1)(¢" 2 +
-4 q+1)/(g+1). We know, as before, that < 2(¢"~' + --- + ¢ + 1) hence
|Py : Lo| < g(g + 1). Now observe thaSL(n — 2, ¢) does not have a subgroup of
index less thary(¢ + 1) henceL, > SL(n — 2,q). As form = 1, this implies that
v < ¢® 4+ 4¢° + 7¢* + 64> + 3. This must be greater than the indexffand so we must
haven = 6.

In fact when we examine = 6 we find that, to satisfy the bound, we must have
g = 2. Explicit calculation ofng, 7, and|L : P»| excludes this possibility.

Remark. From here on we assume thais odd andq > 5.

6.3.3 Casep odd, p Z 1(3), n odd, m=1. For the next two cases takeas before
for p odd andn odd withn, = ¢"~'(¢"~* +--- 4+ ¢ + 1). We suppose that, =
"A.B.C < Py ="¢"']: (SL(n—1,q).(¢q — 1)). HereA < [¢""1], B < SL(n — 1,q)
andC < ¢ — 1. Notethat L : Pj| =¢" ' +---+q+ 1.

Suppose first that # 3. Then";—j|q”—1+- tg+landsow < 2(¢" g +1)2.
Then|P; : L,| < 2(¢" ' + -+ + ¢+ 1). Now L, contains a Sylows subgroup ofL
sincep = 2(3). HenceB either lies in a parabolic subgroup,;, , of SL(n — 1,q) or
B =SL(n—1,q).

Observe that ifn; is odd then SL(n — 1,q) : Py, | is even. Thus we must assume
thatm is even, in which casgSL(n — 1,q) : P, | > ¢?"™%) > 2(¢" '+ 4+ ¢+ 1)
for n > 6. This is a contradiction. For = 5, P; also has even index i8L(4, q) so
can be excluded. Hence we assume fBat SL(n — 1,¢) and|C| is even. We know

that, for somex, 7(L,,) contains( =1 SL(nflyq)Q). Thus, appealing to Corollary 24, we
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concludethat, > r,("SL(n—1,q).2) > ¢"%(¢"?+---+¢+1)and so’ﬁ—;’ < q(q+1).
This means that < ¢* + ¢2 + 1 which is a contradiction fon > 5.

We are left with the case whefe= 3. Now L, contains a group of indeX in a
Sylow-3 subgroup of. and|L : L,| is odd. HenceB3 either lies in a parabolic subgroup,
Py of SL(n —1,q) or B = SL(n — 1,q). The case wher& = SL(n — 1,¢) is ruled
out exactly as fop # 3.

Let B < P, < SL(n—1,q) and suppose that > 8. Thenv > ¢+ +tqt+1>
1333 andﬁ—j > 31. This, combined with the fact thé?lgi <3(g"'+---+q+1), means
thatv < 12(¢" ' +--- + ¢+ 1)

Now B lies in P}, and som; must be even. ThelBL(n—1,q) : P}, | > ¢*™~3) >
12(¢" '+ .-+ g+ 1) for n > 8 which is a contradiction. We are left with= 5 or 7.
If n =5 then we exclude it as fqr # 3.

Forn = 7, we know thatd, < 22—5 <6(¢"+---+qg+1)andso < 18(¢0 +--- +
g+ 1)%. Thus we require thaf?"=%) < |SL(n — 1,q) : P}, | < 18(¢%+ -+ + g+ 1).
This is impossible foy > 9.

Wheng = 3 we find that’7f—§|3(q6 + -+ g+ 1) =3279. Nowf—j =u?—u+1for

. n o
some integer; and soﬁ <4+ ---+ g+ 1and we refer to the case whareZ 3.

Remark. Note that we have now covered all possible cases whetes and we assume
thatn > 6 from here on.

6.3.4 Casep odd, p # 1(3), n odd, m = 2. InthiscaselL, = "A.B.C < P, &
1422 : (SL(2,q) x SL(n—2,q)).(¢— 1) whereA < [¢" '], B < SL(2,¢) x SL(n —
2,g)andC < qg—1.Now|L: Pl = (¢" 3+ - +@F + )¢+ +q+1).

Now we know that’7f—g|3(q”—1 + oo+ qg+1). Thusv < 12(¢" 1+ -+ + g+ 1)?
and henceP, : L,| < 12(g + 1)%. If (n,q) # (7, 3) then no subgroup L(n — 2, q)
has index less tham2(q + 1)? unless(n, q) = (7,3). If (n,q) = (7,3) then the only
subgroups ofSL(5, ¢) with indices less than2(3 + 1)? are the parabolic subgroups.
These have indices 8L (5, ¢) divisible by11 and so can be excluded. This implies that
in all casesB = B* x SL(n — 2, q) for B* some subgroup &§L(2, q).

Now B = B* x SL(n — 2,q) implies thatr(L,) > SL(n — 2,¢).2 and so, by
Corollary 24,75 > 14("SL(n — 2,9)) > ¢"*(¢" > + -+ +q+ 1) and* < ¢*(¢* +1)
and sov < ¢® + ¢* + 1. This gives a contradiction for > 7.

6.3.5 Casepodd,p Z 1(3),n even,m = 2. Forthe nexttwo cases, takeas earlier
for p odd andn even. Them, = ¢>™ 2 (¢" 2+ +q+1)(¢" 2 +---+¢*>+1). As
in the previous casd,, = "A.B.C' < P, 2 [¢*™2)] : (SL(2,q) x SL(n—2,¢)).(¢—1)
whereA < [¢>"=2)], B < (SL(2,q) x SL(n — 2,q)), C < ¢ — 1 andn(L,) = "B.C.
Now P, has indexinL, (¢" 2+ -+ ¢> + 1)(¢" 2+ -+ +q+1).

We know, by Lemma 14, that one of the following must hold:

e B < (SL(2,q) x B;) forsomeB; < SL(n — 2,q);
e B = (By xSL(n —2,q)) forsomeB; < SL(2, q).
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Consider the second possibility first. As previously, Clangl 24 implies that-, >
rg(SL(n — 2,q)) > *" V(" 4+ g+ (@ + 2+ 1), Thenj2 <
q*(¢* + 1)? andv < ¢'® which is a contradiction fon. > 11. We will need to consider
n =6,8, 10.

We turn to the first possibility above. We know th’ﬁz&qu(q”*2 +eot g+ 1) ("2 +
-+ ¢*+1). Thisimplies that < 9(¢" 2+ -+ -+ ¢+ 1)3>(¢" 2+ -+ ¢*> + 1) and
SO|P, : Lo| < 9(¢" 2+ -+ + ¢+ 1)2. Thus we must have; lying inside a parabolic
subgroup Py, , in SL(n — 2,q) with [ SL(n — 2,q) : P}, | < 9(¢" 2+ -+ q+ 1)%
We know thatm; must be even. Ifn; > 4 then we know thatSL(n — 2,q) : P}, | >
¢*("=2-4) which is a contradiction fon > 12. Thusn — 2 < 8 in which casen; = 4
is not allowed and so this can also be excluded. Thus we mustrha = 2. However
we know that(%) is odd and so = 2(4), hencen — 2 = 0(4), hence(™ ) is even and
| SL(n — 2,q) : Py|is even by Lemma 21. We may exclude this possibility.

We are left with the possibility that = 6,8 or 10 andB = By x SL(n — 2, q) for
someB; < SL(2,q).

Observe first that. B.C'/A acts on the non-identity elements 4fby conjugation.
SinceB = By x SL(n — 2, ¢), this action has orbits of size divisible g§~2 — 1. When
p = 3, ¢"% — 1 does not divide?(»=2) /3 — 1 hence in all cases we may assume that
A= [g*=2)],

Then, for somey, A : B (or its transpose) has the following form and contains the
following conjugate ofy*:

Izyo
*12><2

* 1 BQ A

1
Observe that4 : Ca(h*)| = ¢*. Thusry, > ¢*r,(SL(n — 2,q)) > ¢*" " *(¢"* +
g+ D@ 4+ g2+ 1), Thus?2 < (¢ + 1)°. In fact we may assume that
T < gt +¢* + land s, < ¢* +3¢7 + 3andv < (¢* + ¢* + 1)(¢" + 3¢% + 3).

CNOW|L : P = (¢" 24+ 42+ 1) (q" 2+ 4q+1) > (P42 +1) (¢ +3¢%+3)
forn > 6, ¢ > 3. This is a contradiction.

Remark. Observe that we have now completed the case whete6. We assume that
n > 7 from now on.

6.3.6 Casepodd,p #Z 1(3), n even,m = 4. Letn > 12 for this case. Similarly to
the previous casd,, = "A.B.C < Py = [¢* "] : (SL(4,q) x SL(n — 4,q)).(q — 1)
whereA < [¢*"=9], B < (SL(4,q) x SL(n — 4,q)), C < ¢ — 1 andn(L,) = "B.C.

As beforep, = > 2 (¢" 2+ +q+1)(¢" 2+ -+¢*+1)and SOZ—;J (g 2+
ot g+ 1) (@2 + -+ g2+ 1). Thisimpliesthab < 9(¢" 2+ -+ q+1)3(¢" % +
-+ ¢*+1). Then we have

L Py|[Py: Lol <9(q" 2+ +q+ 1% (¢" 2+ +¢° +1)
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Sinced(q" 2+ +q+1)3(q" 2+ +¢>+1) < ¢*"~* we musthaveP; : L, | < ¢*2.
We know, by Lemma 14, that one of the following must hold:

e B < (SL(2,q) x B;) for someB; < SL(n —4,q). In this casg SL(n — 4,¢) :
Bi| < ¢'2. Forn > 12 this implies thatB; lies in the parabolic subgroup; of
SL(n — 4, ¢). But this has even index and so can be excluded.

e B = (By xSL(n —4,q)) forsomeB; < SL(4, q).

Thus the second possibility must hold. As before Corolladyir@plies thatr,
ry("SL(n —4,q)) > (@ 4+ g+ 1)(¢" O+ 2+ ). Then 2
¢*(¢* +1)* and

2
<

n n
dg <L 42, [ +2< (0" +¢" +3)d"(¢" +1)
g g

givingv < ¢*2(¢* + 1)3(¢® + ¢* + 3) which is a contradiction fon > 12.

6.3.7 Casep odd, p = 1(3), n even,m = 2,4,6 or 8. We will take g to be the
projective image of,

1

Thenn, = ¢*"= 2 (¢" 2+ -+¢*>+1)(¢" 2+ - -+q+1) and we know that < ¢5"~1°.
Recall that whemn = 2 we may assume that= 14 or n > 38, otherwisen > 70.

Let L, = "A.B.C < P,, = [¢*"~™)] : (SL(m, q) x SL(n —m,q)).(¢ — 1) where
A < [¢m»=™)], B < (SL(m, q) x SL(n —m,q)), C < ¢ — 1 andr(L,) = "B.C. Note
that|L : Prn| > qm(n—m) and SO|Pm . Lal < q8n—15—mn+m2.

There are two possibilities faB, by Lemma 14:

e B = (B3 xSL(n—m,q))for someBy < SL(m, ¢). Then Corollary 24 implies that
rg > 1y(SL(n—m,q)) > > (g2 g 1) (¢ g ).
ThenTt < ¢*"(¢™ +1)* andv < ¢*"*+° Thus we needn(n —m) < 8m+3 which
implies thatm > % which is a contradiction.

e B < (SL(m,q) x By) for someB; < SL(n —m,q). By Liebeck and Saxl [26],
the projective image oB3; in PSL(n — m,q) must lie in familiesCy, Gy or Cs.
The latter two possibilities imply that(n — 1)/4 < 8n — 15 — mn + m?, hence
n?— (33 —m)n+ (60 —m?) < 0 andn < 33 —m, which yieldsn = 14 andm = 2.
We examine the remaining situation with = 14, m = 2. Then one subgroup
in G, has index less thagtn—15—mn+m” — 46n—11 namely the projective image of
Q2 = (SL(6, q) x SL(6, q)).(¢—1).2 which has even index iRSL(12, ¢). Similarly
the only subgroup ire; with index less than®" ! is Npgp,(12,4)(PSL(12, o))
whereq = ¢3. This also has even index IPSL(12, ¢) and so can be excluded.
Thus B, lies in a parabolic subgroup;,  of SL(n — m,q). Sincen — m is even,

mq

we must haven, even to have := |SL(n — m,q) : Py, | odd. Observe that
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gmi(n—m=mi) ;< g8n—15-mn+m® gupnose first thak + mq > 10. The upper

and lower bounds forimply that(10 — m)(n — 10) < 8n — 15 — mn + m?, hence

2n < m? — 10m + 85, which implies that, < 35 andm = 2. We examine the
remaining situation witw < 35, m = 2. Referring to Corollary 22 the only value of

n less than 35 for whicli, has admissible index is = 14. But in this casen; = 8

is too large to define a parabolic groupSh(12, ¢). This case is excluded. Thus we

assume that, + m; < 8 andm < 6. We split into cases:

— Suppose thatr = 6 and som; = 2. Then|L : Ps| odd implies tha() is odd
and hencen = 2(4). However this implies thaf",®) is even and so is even
which is impossible.

— Suppose thatn = 4 and som; < 4. Recall that, by Corollary 22, does
not divide (';) hencen = 4(5). However this implies thas divides (", *)
which implies, by Lemma 21, thatis divisible by a primep; = 2(3) which is
impossible.

— Suppose that, = 2 and som; < 6. We excluden; = 2 or 6 in the same way
as we excludeeh; = 2 form = 6. We excluden; = 4 in the same way as we
excludedn,; = 4 for m = 4. Hence we are done.

6.3.8 Casep odd, p = 1(3), n odd, m = 1,2,3 or 4. We will take g to be the
projective image of,
-1

-1
1

Thenng, = ¢" (¢" ! +--- 4+ ¢+ 1) and we know that < ¢*"~3. Furthermore, by
Lemma 13, we know thdv|, < ¢"~!. Recall that, forn = 1 or 2, we haven = 7 or
n > 13, form = 3 we haven > 39 and form = 4 we haven > 70.

Then, in this caseL, = "A.B.C < P,, = [¢""™] : (SL(n — m,q).(¢ — 1))
whereA < [¢"~™], B < SL(n —m,q), C < ¢ —1andn(L,) = "B.C. Note that
IL: Ppy| > ¢™™=™ and so| SL(n — m, q) : B| < gin—3-mn+m’,

There are two possibilities fdg, by Lemma 14:

e B = (By;xSL(n—m,q)) forsomeB, < SL(m, q). We know that < C and so, by
Corollary 24,r; > r4('SL(n —m, q).2) > ¢" =™ *(¢g" ™ ' 4..-+¢+1). Hence
T <q™(g™+1)andv < g*™ + ¢®™ + 1. Thus we haven(n — m) < 4m + 1,
hencen? + (4 — n)m + 1 > 0 andm > n — 5. This is a contradiction.

e B < (SL(m,q) x By) forsomeB; < SL(n —m, q). By Liebeck and Saxl [26], the
projective image of3; in PSL(n — m, ¢) must lie in a subgroup/ of PSL(m, q)
from familiesC;, G2 or C5. The latter two possibilities imply thati(n — 1)/4 <
4n—3—mn+m?, hencen? — (17—4m)n+(12—4m?) < 0 andn < 17—2m. This
implies that eithern = 2 andn = 7 orm = 1 andn = 7,13. In fact, whenm = 1
andn = 13 the initial inequality is not satisfied and this possibiliign be excluded.
Whenm = 2 andn = 7, the only possibility is ifB; < M = Np_4)(Ls(q0)) where
q = q3. But|SL(n — 2, q) : M|is even here and can be excluded. Whes- 1 and
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n = 7we must havé/ a subgroup oBL(6, q) in C2 or €5 and| SL(6, q) : M| < ¢*°.
The only such subgroups até = "(SL(3, ¢))*.(¢—1).2andM = N4 (L(6,q0))
whereq = ¢2. Both of these subgroups have even indeslir{6, ¢) and henceB;
does not lie inside such aw'.

Thus B, lies in a parabolic subgrougy, of SL(n —m,q). Write i := |SL(n —
m,q) : P, | and observe that™ ("=m—m1) < j < gAn=3-mn+m® guppose first
thatm + my > 5. The upper and lower bounds foimply that

(5—m)(n—>5) < 4n —3 —mn+m? , hencen < m? — 5m + 28.

This implies thatn < 24 and eitherm = 1 or m = 2. These cases imply that
my > 3. Now for i to be divisible only by primes congruent 1¢3) or by 3 but not
9, we must havg” ™) divisible only by primes congruent t{3) or by 3 but not9
and hencer — m > 39 which is a contradiction.

Thusm + my < 4 andm < 3. Note that ifm is odd thenn; must be even since
is odd implies tha(”rg:”) is odd. This excludes: = 3 and ensures that, fon = 1,
mi = 2.

Observe some facts about the remaining cases:

— Suppose thatr = 1 andm; = 2. We must have: > 39 to ensure that and
(",") are divisible only by primes congruent t¢3) or by 3 but not9. Then
we haveB; < Py = [¢*("=3)] : (SL(2,q) x SL(n — 3,¢)).(¢ — 1) and, since
|SL(n — 1,9) : P5| > ¢*"=3), then|Ps : By| < ¢"**.

— Suppose thatn = 2. If n = 7 then By lies inside a parabolic subgroup of
SL(5,q). But5 divides (?) for j = 1,2 which is not allowed. Thus > 39
as this is the next smallest number with allowable divisdr§;9. Consider
my = 2. Since(}) is odd we must have = 3(4) and so(™,?) is even which
is a contradiction. Hence;, = 1andB; < Py 2 [¢" 3] : SL(n—3,q).(¢—1).
Now |SL(n — 2,q) : P;| > ¢" 2 and s P : By| < ¢"*%.

Now the only subgroup afL(n — 3,q) in €1, Gy or €5 with index less thag"™
is a parabolic subgrou@;” which has even index. Thus, fen = 1 andm =
2, By > SL(n — 3,¢).2 and so, by Corollary 24y, > r,(SL(n — 3,q).2) >
"¢+ -+ q+1). Hence™ < ¢3(¢ + 1) andv < ¢'? + ¢ + 1 which is
a contradiction. ’

6.3.9 Exceptional cases.We have deferred two cases in the process of our proof.
Firstly we need to consider the possibility that= 7,p # 1(3) is odd andL, < Ps,
a parabolic subgroup stabilizing3adimensional subspace in the vector spacefok\Ve
exclude this possibility as follows:
Refer to Section 6.2.1 whenp is odd and suppose thdt, < Ps;. In this case
3¢+ +qg+Dand|L : Ps| = (¢°+ -+ g+ D)+ + @+ 2 +1).
Thusv > ¢'2 andze > ¢° > 243

Supposefirsttha’:’&i <¢+---4+q¢g+1.Thenu®> —u+1= :_j <3S+ +q+1)
andu? +u+1=dy < ¢®+¢* +¢* + ¢* + 1 sinceZ2 > 243. Thusv < |L : P3| which
is a contradiction. ’

ng
Tg
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Then consider the case Whe?-{;é >¢%+ -+ ¢+ 1. We must haver > 3(¢° +
ot g+ D)+ P+ B+ P+ ). Suppose thag* = ¢° + -+ + ¢ + 1. Then our
lower bound orv implies thatd, > 3(¢® +¢* + ¢ +¢*+1) > 2:?—;' which is impossible.
The only other possibility is tha% =3(¢®+---+q+1) =u?—u+ 1. Butthen
uw? +u+1=d; <7(¢°+q¢*+ ¢+ ¢* + 1) which again is impossible foy > 7. For
q = 3,5 we find that3(¢® + - -- + ¢ + 1) # u? — u + 1 for integeru and so these cases
can be excluded.

The second possibility that we need to consider is when 14, p # 1(3) is odd and
L, < Py, a parabolic subgroup stabilizinggadimensional subspace in the vector space
for G. We exclude this possibility as follows:

Refer to Section 6.2.2 whem is even andg is odd and observe that < 9¢°' and
ng < ¢*°. Furthermore

Lo < Ps ="[¢""] : (SL(6,q) x SL(8,9)).(¢ — 1)

which has index greater thapt®. Thus|Ps : L.| < 9¢%. Now SL(6,¢) andSL(8, q)
do not have any subgroups with index this small, hebge> "A.(SL(6, ¢) x SL(8, q))
whereA = [¢*8] N L, . Observe thalig*®] : A| < 3. Infact, A.(SL(6,q) x SL(8,q))/A
acts by conjugation on the non-identity elementsdoWwith orbits of size divisible by
@+ ---+q+ 1, henced = [¢**]. Then, for somey, A : (SL(6,q) x SL(8, q)) (or its
transpose) has the following form and contains the follgxdonjugate ofy*:

—1
* ]5><5 SL(67q) A
h* = -1 E( SL(8,q) )"
I7x7

Let k be the projective image df*. Thenr, > r;,((SL(6, ¢) x SL(8,q))) > ¢'°.¢** =
¢**. Thenh is certainly centralized by a subgroup.4fof size no more than¢. Hence
ry > ¢3¢, This implies thalﬁ—j < ¢'¥ andv < ¢?7 which is a contradiction.

7 L =PSL(2,q)or LT = PSL(3, q)

In this section we prove firstly that 7 = PSL(3, ¢) then the hypothesis in Section 4.3
leads to a contradiction. In the case whére- PSL(2, ¢) we add two extra suppositions
to the hypothesis. Faj € G let Fix g be the set of fixed points af; then our extra
suppositions are as follows:
e Letg,h € G with g an involution,h? = g. ThenFixh = Fixg or else| Fixh| =
u+1l,u+20ru++/u+1.
e Letg, h € G with g an involution,[g, h] = 1. ThenFixh = Fix g or else| Fix h N
Fixg| <u++u+1.
We prove that, with the addition of these suppositiond, #&= PSL(2, ¢), then the hy-
pothesis in Section 4.3 leads to a contradiction.
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To understand the implications of this, suppose for a morttett is acting on a
projective plane of order. Recall that thery fixes a Baer subplane and kpas described
in our extra suppositions, either fixes this Baer subplaredsar acts as an automorphism
of this subplane. Then Lemma 3 implies that these suppasitioust hold. Hence in
proving a contradiction we prove the following proposition

Proposition 25. Suppose thatz contains a minimal normal subgroup isomorphic to
PSL(2, ¢) with ¢ > 4 or thatG has a unique componentsuch thatZ' is isomorphic to
PSL(3, q) with ¢ > 2. If G acts transitively on a projective plar®eof orderx then? is
Desarguesian and? > PSL(3, z).

7.1 Preliminary facts. We need some preliminary facts ab®#L (2, ¢) andPSL(3, q).
As before we assume that'/C(L))/Z(L) <PT'L(n, q) since|Aut(L) : PT'L(n, q)| <

2 for n = 2, 3. Observe that botRSL(2, ¢) andPSL(3, ¢) have a single conjugacy class
of involutions of size, in odd characteristiég(q = 1) andg®(¢> + ¢ + 1) respectively
and, in even characteristig? — 1 and(¢® — 1)(¢® + ¢ + 1) respectively. Both also have
the property that a Sylow 2-subgroup contains at least 2 swctutions. Since a point-
stabilizer must contain such a Sylow 2-subgroup we condiuge-, > 2. Note also that
PSL(3, ¢) has a single conjugacy class of transvections and this dizss not fuse with
any other inPT'L(3, q).

Liebeck and Saxl [26] assert that, BSL(3, ¢), the maximal subgroups of odd degree
lie, as before, in familie€;, C; andCs for ¢ > 2. Note thatPSL(3,2) = PSL(2,7)
and so we will deal with this group in tHeSL(2, q) case. We state a result of [29, 36]
(outlined in [15]) which gives the structure of all the subgps ofPSL(2, ¢):

Theorem 26. Let ¢ be a power of the primg. Letd = (¢ — 1,2). Then a subgroup of
PSL(2, ¢) is isomorphic to one of the following groups.

1. The dihedral groups of ordeX(¢q + 1)/d and their subgroups.

2. A parabolic groupP; of orderg(q — 1)/d and its subgroups. A SylowsubgroupP
of P, is elementary abelian?” < P, and the factor grougP; /P is a cyclic group of
order (¢ — 1)/d.

3. PSL(2,r) or PGL(2, ), wherer is a power ofp such that"™ = q.

4. A4, Sy or A5.

Note that whem = 2, the above list is complete without the final entry. Dickstspa
outlines the conjugacy classes of subgroup®®8KL (2, ¢); in particular it is easy to see
that there are uniquBSL(2, ¢) conjugacy classes of the maximal dihedral subgroups of
size2(q+1)/d as well as a uniquBSL(2, ¢) conjugacy class of parabolic subgroups

The result of Liebeck and Saxl [26] asserts that all of theilf@mof maximal sub-
groups can, for some, contain a subgroup of odd index RSL(2, ¢) thus, whenL =
PSL(2, q), we will simply go through the possibilities given in Theor6.

In thePSL(3, ¢) case we will also need to know the subgroup&df(2, ¢) which can
be easily obtained from the subgroup$&L(2, g).

Theorem 27. H, a subgroup ofzL(2, q), ¢ = p*, is amongst the following up to conju-
gacy inGL(2, ¢). Note that the last two cases may be omitted when2.
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=

. H is cyclic;

2. H=AD, whered < {(19) : XA € GF(¢q)} andD < N(A), is a subgroup of the
group of diagonal matrices;

3. H = (¢, S) wherec|¢® — 1, S? is a scalar2-element iry;

4. H = (D, S) whereD is a subgroup of the group of diagonal matricésis an anti-
diagonal 2-elementand? : D| = 2;

5. H = (SL(2,p"), V) or contains(SL(2,p"), V) as a subgroup of indexand hereb|a,
V is a scalar matrix. In the second cagé,> 3;

6. H/(—1I) is isomorphic toSy x C, Ay x C, or (withp # 5) A5 x C, whereC'is a
scalar subgroup o6GL(2, q)/(—1);

7. H/(—I) containsA, x C as a subgroup of indeXand A, as a subgroup with cyclic

quotient group( is a scalar subgroup oL (2, q)/(—1).

Proof. In this proof and subsequently, we will refer to subgroup&bi 2, ¢) as beingof
type y wherey is a number between 1 and 7 corresponding to the list above.

When the characteristic is odd, the proof of this result i&giin [6, Theorem 3.4].
When the characteristic is even we know thdt(2,¢) = PSL(2,q) x (¢ — 1). Then,
for H < GL(2,q) eitherH > SL(2,q) and we are in type 5 above, or we haklle <
Hy x (¢ — 1) whereH; is maximal inPSL(2, q).

If Hy = Dy,—1) thenH is clearly of type 1 or 4. Similarly if7; = Dy 4.1y thenH
is of type 1 or 3; ifH; = P, thenH is of type 2 inGL(2, q).

Now consideI < PSL(2, go) x (¢—1). Any maximal subgroup dPSL(2, ¢o) must
be an intersection wittD, .11y or P; (and so is already accounted for) or else equals
PSL(2, q1) whereq = ¢!.

Thus we must considell < PSL(2,¢1) x (¢ — 1) andH £ B x (¢ — 1) for
B < PSL(2,q1). Providedg; > 2 this implies thatfl is a subgroup o6GL(2, q) of type
5.1f g1 = 2thenPSL(2,q1) < Dy(4+1) and the case is already accounted for. ]

Note that a subgroup of type 1@L(2, ¢) is never maximal irGL(2, ¢). Furthermore
type 5 includessL(2, q) itself. We now proceed with our analysis.

7.2 L =PSL(2,q). Assumethal = PSL(2,q),q > 4. Supposefirstthat/Cs (L)
containsPGL(2, ¢). ThenG has a normal subgroul of index2, N/Cx (L) contains
only field automorphisms and acts transitively on our set of siz€ + = + 1. Proving a
contradiction forV will give a contradiction folz, hence itis enough to assume in general
thatG /Ce (L) contains only field automorphisms aftel/ Cc (L)| < [PSL(2, ¢)|.log,, g.
Forq = 4,5 0r9, L is isomorphic to an alternating group. This case has alrbadn
examined and so these valueg@fn be excluded. Observe that, a parabolic subgroup
of PSL(2, ¢), has odd index if and only if = 2. Furthermore ifp = 2 thenL, < P,
sinceL,, must contain a Sylo@-subgroup ofPSL(2, ¢). This implies that, = ¢* — 1,
rg =q—landu® —u+1= f—;’ = ¢ + 1. But thenu? — u = ¢ which is impossible.
Hence we assumkg, does not lie in a parabolic subgroupl®$L(2, ¢) and thap is odd.
Now the only maximal subgroups BSL(2, ¢) which contain a Sylowp-subgroup of
PSL(2, ¢) are the parabolic subgroups. Also, fpe= 3% with a > 3, the only maximal
subgroups containing a subgroup of ingex a Sylowp-subgroup of?SL(2, ¢) are the
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parabolic subgroups. Thus Lemma 8 implies that 1(3) and we assume this from here
on. Note that, for an involutiop € PSL(2, ¢), ny = %q(q +1).

We examine the non-parabolic subgroupd.ods candidates to be,,, using Theo-
rem 26.

If Lo = A4 thenr, = 3 and, since,|n, andp = 1(3), we must have,, = 1¢(¢—1)
andg = 3(4). Similarly if L, = As thenr, = 15 andg = 3(4). But then% divides
|L: Lyl Since%1 = 2(3) this contradicts Lemma 8.

If L, = Ssthenr, = 9 and once morg = 3(4). In fact:f—j = % Then
in PSL(2, q) there is a unique conjugacy class of elements of order 4.hlg such
an element and observe that = 6. Now the fixed set of: lies inside the fixed set of
g = h? andd;, = %dg = %(u2 + u + 1). Referring to our first extra supposition this
implies that Fix h| = u+1,u+20ru+ /u+ 1. Since| Fix h| divides| Fix g| we have

$(u?4+u+1) =u++/u+1andu = 4. But then‘I(" L =13 which is impossible.

Now suppose that, < D,.; sog+1=0(4). Then”g = fqu(qTﬂ Now | 22|, # 1
L
and so| 22|, = |v|, = q. Thus|L,| + 2 dividesq F 1.

Definem := #£: and assume first that > 1. Observe that = = %Fta for
some integen andd, = %“f—ﬁa. If |Lo| = 4 then’s = 2UFU and, in fact,
a g9

sinceq = 1(3), ’;—j = @ But thend, = % and, sinceZ! = 2(3), this is a
contradiction. Thu$L,| > 4.

Now observe thati(|L.| + 2) > ¢ F 1; furthermore if(m — 1)(|Lo| +2) = ¢ F 1
theng+1—|Ly|+2m —2 = ¢ F 1. Reducing moduld, this equation give8m = 0(4)
which is a contradiction since:|v. Thus(m — 2)(|La| + 2) > ¢ F 1. This implies that
m > |Lo| +1and so|L,|* + |Lo| < g+ 1.

Since7* < dg4 we have

q(gF1) |Lo| +2q¢+£1

,thus 2|L,, 1 Lol? + 4|0, + 4)(g £ 1a.
|La|+2< 5 |La|a Us 2|Lalg(q F 1) < (|Lal” +4|Lal +4)(g £ 1)a

We inferthat L, | < (¢-+1)¢~'a by using the factthdfL,| > 4and|L |*+|L.| < g+1.
It then implies that, > 3.

Takeh of maximal order inL,,. Since|L,| > 4 we know thath is not an involution
andn, = ¢g(¢ ¥ 1) and so% = @ Thusd), = |‘1Lil|a which means thatl;, <
dy. Now [h,g] = 1 and so, referring to our second extra suppositién,< 3d, and

SO (“ILiTll);aQ < glielt2 Era. This implies thaty + 1 < §|La|* + [La| which is a
contradiction.

Hencem = 1 and|L,| = ¢ = 1. We have two situations. ij = 3(4) thenn, =
1q(¢ — 1) andry = (g + 1) + 1. This means thai:—j is a not an integer, which is
. . - . La(q+1) N
impossible. Ifg = 1(4) then iz = % = ¢. Since|L : Lo| = q(q + 1) we must
haved, a multiple of Z£1. The only possibility is that, = ) which means that
q = 13 andv = 273.
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In this case Fix g| = 21. But a Sylow2-subgroup ofPSL(2, ¢) which centralizeg
fixes 9 points; this contradicts our second extra suppasitio

Now suppose that, = PGL(2,r) andg = r* wherea = 2(4). Thusq = 1(4)

nj . +1 Ng ng — —
and 22 = % Now % = |22, # [vf, > £ and so|7¢], = 1 andr = /3.
Thenu —u+1=2=1(¢+1). Thenu = < wherec = /2¢g— 1. This
implies thatu? + u + 1 = <3¢ Now |L : L,| = 3(¢ + 1)\/7 and so,/7 divides
u® + u + 1. Now observe that/g(¥2"2) > 432 Fyrthermore/g(¥21) < 2.

Thusd, = /g(¥Z*) wheree = 1 or 3.
Now 2u = d, — 22 = ef L We also know that, = <tl and so we must have

Tg
ey/q—3 = 2y/2q — 1. Sincee = 1 or 3 we must have = 3. Then2\/2q —1=23,/q-3,
hence2,/2q > 3\/5 — 3. Thusq < 3%(3 — 2v/2)2 < 182. This implies thayy = 72
or 132. But neither of these satisfy the equality/2q — 1 = 3,/q — 3 and so can be
excluded.

Now suppose thak,, = PSL(2,r) andg = r* wherea is odd. The n"—J ifgii;
whereg ¥ 1 = 0(4). Now leth be an element of ordeft. Then’: = 3233 If
r = 3(4) then

Ng _ ra—1(Ta—1 424 g 1) > ra—1(Ta—1 IS 1) = Th
Tg h

Henced, < d; which is impossible.
Now if r = 1(4) thenu? —u +1 = 22 = pa-1(pa=l —pa=2 4 ... _p 4 1) and so
re=t —ra=2 <4 < r2 1, This means that
p2e=2 _p2a=3 4oL pe g gpatl _9pa=2 o dg = Ny + 2u;
Tg
dg = g +2u < 2072 2073 L pe g gl
Tg

Now r@=! +ra=2 4 ... 4 + 1 dividesd,. But observe that

(P e R D) (P 202 23 2 4 3)
< 7,,2a72 o 7,,2a73 40 3ra71 o 2ra72;

(ot e )P = 202 2p0 T 2 1 4)
> 7,,2af2 o 7,,2c173 40 3ra71

This gives a contradiction and all possibilities are exeliid

7.3 L' = PSL(3,q). Once again we seek to show that the hypothesis in Section 4.3
leads to a contradiction; the usual actiorPL (3, ¢) on a Desarguesian projective plane
PG(2, q) will not arise due to our restriction that all involutions fiX + « + 1 points.

Recall that, folg an involution,n, = ¢2(¢? +¢+1) for g odd andn, = (¢> —1)(¢* +
q + 1) for g even. We assume here that- 2 and we know thaf., < M where}M is
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a member of2;, G, or C5. We consider the latter two possibilities first. Observe,thma
both casegy = 1(3) sincep? divides| PSL(3,q) : M|.

Suppose thaf\/ € @. Thenv is divisible by ¢*(¢ 4+ 1)(¢*> + ¢ +1)/6. Now the
highest power of; in ”; is ¢2. Sincev = ”Jd and(”J dy) = 1 we must havey
dividing d, andq? dividing r,. But thenu? — u + 1= ”;’ < ¢%+ ¢+ 1. This means that
v < (¢*> + ¢+ 1)(¢® + 3¢ + 3) which is a contradiction.

Suppose thal! = Npgy,3,4)(PSL(3,7)) € C5 whereq = r* anda > 3 is an odd
integer. Therjv|, = f—z Suppose first thaw|, = |f—;’|p < ¢* and sog < r3. Then we
must haver = 3, r,|(¢*> + ¢ + 1) andr? dividing |L,|. Sincer,|(¢*> + ¢ + 1) we cannot
haveL, = PSL(3,r) or PSL(3,r).3. But sincer? divides| L, | we must have.,, inside
a parabolic subgroup of PSL(3,r).3. But observe that thenis divisible by

, ¢*(¢> —1)(¢> - 1)
|PSL(3,q).P|_ 390 D7 1)

which is divisible by9, a contradiction. The only other possibility is that/ f—j and
22 < ¢* + ¢+ 1. Buttheng® < ry < r?(r? +r + 1). This is impossible.

" Hence we conclude thal/ € @;. ThusL, = "A.B where A is a subgroup of an
elementary abelian unipotent subgrolip,of orderq? and B is a subgroup of odd index
in GL(2, ¢). We will write BN SL(2,q) = (2,q — 1).B; whereB; < PSL(2, ¢).

We will take« to be such thal, < P; where

1
Pl :A{(de(t)y (;Jj)) YEGLg(q),a,bEGF(q)}

Casep # 1(3). InthiscaseU : Al < 3and|P : By N P| < 3 for someP ¢
Syl, PSL(2, ¢). If By is a subgroup of’, a parabolic subgroup &fSL(2, ¢), theng + 1
divides the index ofB in GL(2,q) andp = 2. ThenL, is a subgroup of the Borel
subgroup ofPSL(3, ¢) and contains a normal Sylow 2-subgraBpThusr, = r4(P) =
2¢*> — ¢ — 1 and sor, fn, which is a contradiction.

If By = PSL(2,q) thenB > SL(2, ). In fact, in odd characteristid3 must contain
all matrices of determinant1 since| GL(2,q) : B] is odd. Furthermore in its action
by conjugation on the non-identity elementslofSL(2, ¢) is transitive. Hencel = U.
Thus, in both odd and even characterisfig, contains all involutions of the parabolic
group: ¢*(¢ + 2) of them in the odd caség® — 1)(q + 1) of them in the even case. In
both cases, fn, which is a contradiction.

For the remaining casegv and sop = 3. If B; < D,+1 theng|v and we must have
g = 3. Inthis casey, = 3213 and sou? —u+1 = 22 = 3 or13. If 2¢ = 3 thenv = 21.

This contradicts the fact thak : M| = 13 and thIS divides. So- ”J =131y =9,dy =

21 and, sinceB; < D,+1 we must have., = [3?] : (8.2). But thenL contains more
than 9 involutions and this case is excluded.

If By is a proper subgroup @*SL(2, ¢) isomorphic toA4, Sy or A5 theng = 3 or
9. Now PSL(2,3) = A, and sog = 3 is already excluded. l§ = 9 then 5 divides
PSL(2, q) and soB; = As, but| PSL(2,9) : As| is even which is impossible.
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If By = PSL(2,r) or By = PGL(2,r) for ¢ = 7*,a > 1 then|v. Henceg = 9 and
r = 3. but then5 divides| PSL(2,9) : B;| which is a contradiction.

Casep = 1(3). In this case3 divides| PSL(3,¢) : M| and thus we assume tha&t
contains both the Sylow 2 and Sylow 3-subgroup&af(2, ¢). In fact L = PSL(3, q)
sinceZ(L) is semiregular (see Lemma 16.) ThBris a subgroup o6GL(2, ¢) of type 4,
5, 6 or 7 in the list given earlier. Note th&t contains the scalar subgroup of order 3 and
so| GL(2,q) : B] = | GL(2,q) : "B|.

Observe first that there are tw@ -conjugacy classes of involutions i,. Only one
of these is centralized by a whole Sylow 2-subgralipof P;. Call this conjugacy class
A.

In the case wheré.,, = "A : B, that is we have a split extension, we know ttat
contains a Sylow 2-subgroup &% and so the involution in the centre @ must lie in
A. This implies that we can conjugate by elementdpf(i.e. choosex) such that this
involution g is the projective image of

We conclude that

p{(= ,)veaiea)

We begin with two preliminary lemmas:

Lemma 28. Letp be odd andL, = "A : B < P;. Suppose thatd| = ¢* and that
(IB|,p) = 1. Then|B| > | GL(2,q)|/(¢* + q + 1).

Proof. Let h be an element of ordex. Then

2-1)(?+q+1
Th q*—1

np

v =

We have two possibilities:
1. Suppose thak is quasi-central. We must havk = «? + u + 1 wherev =
ut +u® + 1. Thenu® —u+1 = 2= = ¢* + ¢+ 1 and sod, = ¢° + 3¢ + 3. Thus

|B| = 520l for some integen. If a = 1 then|B] is not an integer foy > 1. If
a > 2then|B| > L5E24) as required.

2. Suppose thdt is not quasi-central. Thedf < v and sop?/(¢*> + ¢+ 1)? < v,
which yieldsv < (¢ 4+ ¢ + 1)2. This implies thatB| > |GL(2,q)|/(¢*> + ¢ + 1) as
required. m]

Lemma 29. Letp be odd andL, = "A : B < P;. Suppose that|B|,p) = 1. Then
|A] # q.
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Proof. Let i be an element of orderand suppose thatl| = ¢. Then

mhy, (@ =D +a+1)
Th h q—1

But, sincev is odd andg + 1 is even, this implies thad;, is not an integer. This is a

contradiction. m]

v =

dn = (q+1)(¢* + g + 1)da.

We now begin our analysis of the different possibilities #or In the case where
B < GL(2,q) is of type 4, 6 or 7 then Schur-Zassenhaus implies th#t is a split
extension.

Suppose first thaB is a subgroup of typd in GL(2,¢). Let a be such thaB <
(D, S) whereD is the subgroup of diagonal matrices a#t an anti-diagonal 2-element.
Note that we must havedividing | A|.

Now observe that, sincB contains a Sylow 2-subgroup @f, we can choose such

that
1 e f -1 e f g
01 0|]eA = 0 -1 0] €A
0 0 1 0 0 1
1 -2 0 1 e O
= |0 1 0led = |0 1 0])ecAd
0O 0 1 0 0 1

We conclude thatl = A; x A, where

1 e 0 1 0 f
Alg{(O 1 0) :eGGF(q)}, A2§{(0 1 0) :fGGF(q)}.
0 0 1 0 0 1

Now consider an element, as given,&f. Then,

1 0 0 1 e 0\
X = 0 0 a|l € B = 0 0 a cA: B
0 o' 0 0 a0
1 e O 1 —e —ae
— [0 1 O 0 1 0 cA:B
0 0 1 0 1
1 0
— [0 1

ae
0 | € As.
0 0 1

Thus, for fixed X, we have an injection from; into As. There is a similar injection
from A, into A; and so|A;| = |42] = /|A|. Now let

-1 0 0
E:Bﬁ{ 0 0 a :aeGF(q)}
0 a! 0
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and observe that

1 e 0 -1 0 O 1 e 0
01 0)ed,| O 0 aleE, = |0 0 a] €A:B
0 0 1 0 at 0 0 at 0

and this last element is an involution. We now count all th@iations inL,, as follows:

Pre-image of involutiory in SL(3,¢) | Number of such involutions i,

1 ¢ d
-1 A

-1

-1 0 d
-1 VIA|

1

-1 ¢ O
1 VIA]

-1

-1 ¢ d
o [l VIA

o

Thusr, = /|A|(\/|4| + | E| + 2) and note that, < ¢(2¢ + 1) since|E| < ¢ — 1.
Suppose that7t,p) = 1. Thenr, > ¢* and we must haved| = ¢*. Alternatively
suppose tha(t”—",p) # 1. Then

3 2 3
TLg q q ng q 2
| = |v], > — = -— = |A| >
|T|p ||p—|4| /—|]|_| |p— |Al > q

g 4]
Thus, in either casdA| = ¢>. Then, by Lemma 28,B| > 'Gzljr(jfﬂ But 20-D° <

[St2g) — dl Qﬁrqﬁffl) for ¢ > 1. Hence|B| = 2(¢ — 1)? and|E| = ¢ — 1. Then

rq = q(2¢ + 1) which makes-* ”9 s anon-integer unlesg= 1. This is a contradiction.
Next assume thaB is of type6 or 7. To ensure thaB has odd index ifGL(2, ) we

assume thaB = 2.(S, x C') or B = 2.(A4 x C').2whereC < Z(GL(2,q))/{(—1I).
Then we must have dividing | A| since|v|, < ¢%. We write| A| = ¢gp® wherea > 1

by Lemma 29. Sinc<€1 -1 1) € B this means that, > |A|.
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Suppose first thag = p® and|A| = ¢>. By Lemma 28] GL(2,q)|/(¢> + ¢+ 1) <
|B| < 24(q — 1), hence24(¢®> + ¢+ 1) > ¢ — g andq < 30. Theng = 7,13 or
19. Note that inGL(2, 7) subgroups of typ& or 7 have even index and i6L(2, 19)
subgroups of typ& and7 have index divisible by3. Hence we are left witly = 13.
In this casen, = 32.13.61 andwv is divisible by |L : M| = 3.7.13.61. Now since
w—-—u+1= ’:—5 dividesn, we must have, = 2,4,14 or 23. But in all of these case

u? + u + 1 is not divisible by both7 and61. Thusw is not divisible by both7 and61
which is a contradiction.
Thus assume now that> p® and|A| < ¢2. Then,

2( .2 1 2 1
(@ +aq+ )+2q tatl

Al VIA|
(¢ +2¢+1)(¢* +g+1)
|A]
(¢+1)%¢*(¢* + g+ 1)
|AJ2

ng _ ¢*(¢> +q+1)
Tg Al

= dy <

= dy4 <

— v <

This implies that

(@ +a+ Ve -V e+1) _ _ ¢*(@®+a+1)*g+1)°
|Al|B] - AP ’

hencdA| < (¢ +1)(¢> + ¢+ 1)g (¢ — 1)72|B|, which yields|A| < 2.|B| for ¢ > 7.

Now elements fron2.C' do not centralize any elementof. Thus letm = %

and observe that—! = [2.C| divides|4| — 1 = gp® — 1. This in turn means that
% dividesp® — 1. Sinceq > p® this means thatm > p. Then|B| > |A|/2, hence
48|C| > ¢.p*/2, which givesi8(q — 1)/m > q.p® andp®*! < 144. Sincep > 7,a > 1
we must have = 7, a = 1. Butwhenp = 7, 2.(44 x C).2 and2.(S, x C) have even
index inGL(2, ¢) which is a contradiction.

Thus we are left with the possibility that is of type5 in GL(2, ¢). We want to show
thatL, ="A.B is a split extension and we can choessuch that

1
B < {(dety Y) :YGB*} ~ B* < GL(2,q).

Observe first that each Sylow 2-subgrouplQf contains a unique element @f. Thus
AN L, is alL, conjugacy class. Furthermore there exist at least two mjugate
maximal subgroupsy/y, M,, of B which are of order not divisible by and index inB
not divisible by2. Then, by Schur-Zassenhaus,: M, and A : M, are subgroups of
L. But My, Ms must both have centres which are conjugatgnin fact must lie inA.
This implies that there exist conjugatesidi, M- which both lie in

1
{<detY Y> = B*} ~ B* < GL(2,q).

These conjugates must generate a complemestas required.
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Now note first thaBL(2,r) < GL(2, ¢) implies thatSL(2, ) < SL(2, ¢). Now write
q =/ and observe that, fof = p; ... p, wherep; is prime,

SL(2,r) < SL(2,77") < -+ < SL(2, 7P P»=1) < SL(2, q).

Since B has odd index ifGL(2, ¢) we assume that all of these primes are odd except,
possibly, forp;. What is more, the chain of subgroups given here is maximeegbfor
the first inclusion whem; = 2. Now there is a unique conjugacy classSh(2, ¢) of
maximal subgroups isomorphic #1.(2, ) wheng = r* for « an odd prime. Hence,
stepping down the chain of inclusion, we assume #i&®, r) has a unique conjugacy
class inSL(2, ¢) except whem; = 2 in which case there are two conjugacy classes.

By examining [23, Action Table 3.5G]) we find that, whéns even, the two conju-
gacy classes are fused@i(2, ) through conjugation by ) (1)) where\ generates the
groupGF(r?)*. Thus, inGL(2, ¢) there is a unique conjugacy classSif(2, ) and we
take« such thatB* contains the copy 8L (2, r) consisting of matrices of determinant 1
with entries inGF (r).

Observe thaB* > (§ °; ) and so

1 e f 1 e f\° 1 e 0
01 0]eA = 0 -1 0 cA=— |0 1 0]ed
0 0 1 0 0 1 0 0 1

Once again we conclude thdt= A; x As where

1 e 0 1 0 f
Alg{(() 1 0) :eeGF(q)}, A2§{<0 1 O) :fGGF(q)}.
0 0 1 0 0 1

In the same way as earlier we also know thét| = | 42| = /|A|. We count involutions
inL,:
Pre-image of involutiory in SL(3, ¢) | Number of such involutions i,

(1 c d)

-1 Al
-1

-1 ¢ d

( +1 ) 2\/14]

-1 ¢ d
( +1 a:),m;éO 2(r —1)/]4]
1

:F
-1 ¢ d
v ow |, x#0 r(r—1)y/|A]
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Thusr, = /|A|(\/]A| + 7%+ ). NowSL(2, r) has orbits of size* — 1 in its action
by conjugation on non-identity elements 4f Hence eithefA| = 1 or \/|A| > r. If
|A| = 1 then, since; divides| L, |, we must have = ¢ and so%¢ = ¢?. This contradicts

2

q
VAl ,
Then either|f—;’|p =1,r = gand/|4] = qor |f—;’|p = |v|, > “L—p* where

a_ _|GI/IL]
P =1@./Lal

Lemma 10. Hencg/[A] > r and sq 72|, =

In the latter case this means that

¢ ¢

> -
Al ~ AT

and so|A| > ¢?.p**. This implies thaA| = ¢*> anda = 0. In both cases we find that
|A| = ¢* and sory = gr(% + 1+ r). In order for this to divide:, we find that we must
haver? + 2r® — r + 1 divisible by £ + 1 + r. Forq > r% this is clearly a contradiction.
Examining cases individually far < > we find only contradictions.

Thus Proposition 25 is proved.

8 L'=U(n,q)

In this section we prove that, T = U(n, q), then the hypothesis in Section 4.3 leads to
a contradiction. This implies the following proposition:

Proposition 30. Suppose&- contains a unique componehtsuch thatZ' is isomorphic
to U(n, q). ThenG does not act transitively on a projective plane.

We may assume that > 3 and(n,q) # (3,2). We know ([23, Proposition 2.3.2])
that our unitary geometr§V, ) has a hyperbolic basis. Unless stated otherwise, we will
write all matrices representing elementsséf(n, ¢) according to this basis:

{e1, fis- s em, fm}, if n=2m;

{e1, fiy- s em, fm,x}, fn=2m+1.
wherex(e;, e;) = k(fi, fj) = 0, k(es, f;) = 65, k(es, ) = Kk(fi,x) = 0 forall 4,5 and
k(z,z) = 1.

We will also need to make use of an orthonormal basis(¥ork). Let v;,w; with
i = 1,...,m be orthonormal vectors such that, w;) = (e;, f;) foralli = 1,... ,m.
Our orthonormal basi® will consist of these vectors;, w; withi = 1,...,m, as well
as the vector: in the case where is odd.

Now the result of Liebeck and Saxl| [26] implies thig, lies inside a maximal sub-
groupM where

o forgodd,M € €1, M € Co, MT = Ny, (U(n, q0)) Whereq = ¢§ anda is odd,
or Mt = My and(n, q) = (3,5), orn = 4;
e forgeven,M € C;.
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We show next that, in all case®] must lie inC;:

Lemma 31. L, lies insideM, whereM maximal inL lies insideC;.

Proof. We may assume thatis odd. Defing; to be the projective image of

1

Forn # 4, g lies in the centre of a maximal subgro@puU(2, q) x SU(n—2,q)).(¢+1).
Forn = 4, g lies in the centre of a maximal subgro@U(2, q) x SU(2,¢)).(¢ + 1).2.
Furthermoreg has the same form under our orthonormal basi&nd, under this basis,
PT'U(n, q) = U(n, q).(d, ¢) whereyp is a field automorphism antlis conjugation by the
projective image of

a

1

for somea € GF(¢?)*, a primitive (¢ + 1)-th root of unity. Theng is centralised by
(0, ) hencengy|¢*"~2b where(q,b) = 1 andb < ¢*"~2. Then, by Lemma 13,
|U|p < q2(n72).

Suppose that,, < M whereM € @y, or Mt = Nu(n,q(U(n,q0)) whereq = qf
anda is odd, orMt = My and(n,q) = (3,5), orn = 4. Observe thatU(n, q)|, =
qz"("=Y while, forn # 4, M|, < ¢i""=. Thus we must havkn(n—1)—2(n—2) =
2(n? —5n+8) < in(n —1). Thisimplies that: < 6. We assume this from here on.

Note that we may also assume that 1(3) since, in all given caseslJ(n, q) : M|
odd implies thap? divides| U(n, q) : Mt|. We may immediately rule out the possibility
thatM T = Mio.

Consider first the case whene 4. If M € C, then|U(n, q) : M'|, > ¢*"~2) for
n = 3,5 and6 which is a contradiction. IV = Ny, 4)(U(n, q0)) theng = ¢§ wherea

is an odd prime. ThefM/ |, < ¢za"("~1 hence we havé (n? — 5n + 8) < sLn(n — 1)
which implies that. = 3 andg = ¢3. Now, whenn = 3, n, = ¢*(¢*> — ¢+ 1) andL,,
contains a Sylow-subgroup of\/. If L, > U(3, qo) thenr, = ¢3 (g% — qo + 1) but then
rq fng Which is a contradiction. The only other possibility is tdat N U(3, ¢o) < Py,
whereP; is a parabolic subgroup &f(3, ¢o). But this has even index iti(3, ¢o) which
is a contradiction.

Now suppose that = 4,p = 1(3). Note that herel. = U(4,¢) and thatn, =
1¢*(¢®> — ¢+ 1)(¢*> + 1). We need to consider the cases whefés a maximal subgroup
of odd index not lying in¢;. Furthermore we needJ(4, q) : M|, < ¢*. We go through
the possibilities in turn.



510 Nick Gill

e Suppose thall/ € C,. There exist two subgroup®/ € €, such that U(4,q) :
M]|, < ¢* but only one has odd index. We need to rule out this possipilihen
M = 7(SU(2,q) x SU(2,q)).(¢ + 1).2 and|U(4,q) : M|, = ¢*. ThenL, must
contain a Sylow-subgroup of?d/. But the parabolic subgroup 6UU(2, ¢) has even
index hence we may conclude that, for some

- (SU(2,q)
bo = ( SU(2,9))
ThenL,, containgh, the projective image of
1
1
1

1

Now £ is aU(4, g)-conjugate ofj, thusr, > 1(¢* —q)*. Hencef—;’ < ¢*(q+1)(qg+
2). If ¢* f—; then we must havégi = ¢* which is a contradiction of Lemma 10. The
only other possibility is thaf* < 1 —q+1)(¢* +1) < 3¢*. Butthend, < ¢*
and sov < $¢*(¢* — ¢+ 1)(¢* + 1) which contradictd, < M.

o Suppose that/ € Gz or M € S. The only odd index subgroupid = 2*.Ag where
q = 3(8). Butthen| U(4, q) : M|, > ¢* which is a contradiction.

» Suppose thad! € Cs. If M = Ny, (U(4,q)) theng = ¢§ wherea is an odd
prime. ThenM|p < q% hence we must havé(n2 —5n+8) =2< g which
implies thaty = ¢3. However this implies thad divides| U(n, ¢) : M| which is a
contradiction.

The only other odd index subgroup@®@ is M = PGSp(4, ¢) wheng = 1(4). Now,
given our original basiges, f1, e2, fo} and our original hermitian forna, define
the formk; = (' over theGF(q)-vector spacé’; spanned by{Ce1, f1,Cea, f2}.
Here( is an element o:F(¢?) such thatt? = —(. Thenx; is a symplectic form
overVi.

Clearly if g* is an isometry for(xy, V4) theng* is an isometry for(x, V') and we
have an embeddirgp(4, ¢) < SU(4, ¢). This embedding corresponds to a maximal
subgrou@Sp(4, ¢) < U(4, q) wheng # 1(4) andPGSp(4, ¢) < U(4, q) wheng =
1(4). In the latter case, there are two conjugacy class&ip(4, q) in U(4, q); it
is this case which concerns us.

Under the orthonormal basf:, w1, v2, ws }, the two conjugacy classesBGSp(4,
q) inU(4, q) are fused by, the projective image of

A

1

whereX € GF(¢?) is a(g + 1)-primitive element. Thus, is the same no matter
which of the two conjugacy classes we lie in. Assume from berthatL, < M =
PGSp(4, q) preserving kg, V4).
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Then|U(4,q) : M|, = ¢° thus|M : L,|, < ¢*. The only maximal subgroup,
M, of PSp(4, q) such thai PSp(4, ¢) : M;|is odd and PSp(4, q) : M|, < ¢?is
(Sp(2,q) o Sp(2, q)).2. Thus either
— Lo = M with v divisible by 1¢*(q + 1)(¢> — ¢ + 1); or
- L,NPSp(4,q) < B = (Sp(2,¢) o Sp(2,9)).2. Note that|(U(4,q) : B|, =
q*. Since the parabolic subgroupsSf(2, q) are of even index we must have
Lo NPSp(4,q) = B and soL,, = B.2 with v divisible by 1¢*(¢ + 1)(¢* —
qg+1)(¢% +1).
Under our original basis this implies that, for some

L.>" (SU(2,q) SU(M)) .

Now PSp(4, ¢) is normalized inU(4, q) by h, the projective image of

1

1

Thush lies in L,, and, as before, we know thatis aU(n, ¢)-conjugate ofy. We

may conclude that, > 1(¢? — ¢)* and sot < ¢*(¢+1)(q + 2). Asin the case

whereM € €, this contradictd.,, = B.2. We conclude thad/ = PGSp(4, q).

Now observe thal€pg,(4,4)(h) = "GL(2,¢).2; thusry > $¢*(q + 1)(¢* + 1) and

7+ < ¢* Thisimplies that < ¢°(q + 1)(¢ + 2) which is a contradiction fog > 4.
a

ThusL,, lies inside a maximal subgrould € C;. There are two types off € €
[23, Table 3.5B]:

« The parabolic subgroups},,1 < m < |%|. Observe thatg + 1)™ divides|L :
P,,|. Thisimplies thap = 2. If ¢ = 1(3) then(¢+ 1) = 2(3) andg + 1 dividesw. If
m > 1 andq = 2(3) then9|v. Neither of these situations are allowed. Hence-= 1
and we must have = 2%, a odd.

e The subgroups3,, of type GU(m,q) L GU(n —m,q) with1 < m < n/2. In
this caseg™("~™) divides|L : B,,| and we must have = 1(3). Observe that
g™ > ¢2("=2) for 2 > m > 2. But we know, by the argument in the previous
lemma, thatv|, < ¢*"~2 hencem < 2

We now examine these two situations in turn and seek a caodti@al

8.1 Casep = 2,9 = 2% ao0dd, L, < P;. Letn, bethe evenelement §fi,n—1}
while n, is the odd element. Then= |U(n,q) : Pi| = % We know that
3|(g+1)|i. Inaddition,g™e =2 + - - - + ¢* + 1|i and so for all| %, ¢* =2 + - - - + ¢® + 1]
which means that for af| %, » = 1(3). A similar argument allows us to conclude from
the fact thatq"e—! — --- + ¢*> — ¢ + 1)|i that for all|n,,r = 1(3). We may conclude

from this thatn is even andh = 2(12). Thusn > 14.
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Now L, = [¢*" 3] : B < P, whereB < ((¢*> — 1) x SU(n — 2,q)). We consider
the two possibilities given by Lemma 14:

* B <((¢*> — 1) x By) for someB; < SU(n — 2,q). We know thatB; must lie in
a parabolic subgroup &fU(n — 2, ¢) by Liebeck, Saxl [26]. However any parabolic
subgroup ofSU(n — 2, ¢) has index divisible by; + 1 which would result in9|v
which is a contradiction.

e B="(A; xSU(n - 2,q)) for someA; < (¢> — 1). For somex

Lo >~ 1
1

Now consider transvections BUU(n, ¢). All transvections are conjugate to
gV = Vo v+ sk(v,er)e;

for somes € GF(¢?), s + s¢ = 0[33, p. 119]. ForlV = (e;), defineXyy ;. to be
the subgroup o8U(n, ¢) consisting of all transvections of this form. Now suppose
thath € SU(n, q) preservedV. Then, forv € V,

v(h™tg*h) = (vh™" + sk(vh™ ', e1)er)h
=v+sk(vh™t ethh Yerh
=v+ sk(v,e1h)erh

= v+ sttk(v, e1)e;

wheret € GF(q)* is defined viae; h = tey. Then(stt?)? + stt? = (s + s) = 0.
Thus Xy 2 is normal in the parabolic subgroup 9% (n, ¢) stabilizingiV. Since
| Xw.we| = q[33, p. 114], we may conclude that, forthe projective image of*,
% dividesC1(g). Then, since the only maximal subgroupléfn, ¢) whose order

is divisible by 4} is Py, we find thatn, < LnalletnatL2los 0.

Furthermorey € L, and, by the same argument, > W whereP; is a
1
parabolic subgroup &U(n — 2, ). Thus,

ny _ U0l = Dia+1)2oga P _ s
o 7 [§U(n—2,4)

Thenv < ¢'7 which is a contradiction.
8.2 Casep =1(3), Lo < By, m < 2. Observe that

—m) (qn B (_1)n) - (qnferl _ (_1)n7m+1)
(g+1)...(gm — (-1)™) .

|L . Bml = qm(n

Consider two situations:
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Suppose is odd. Thenl contains the projective image, of

-1

-1
1

Thenyg is centralized inU(n, q) by "GU(n — 1,q). Furthermore, as in Lemma 3%,
has the same form, under the baBisas above and so is centralised {oy ). Hence
ngl(¢" 1) (¢g""t — -+ — g+ 1). Thus|v|, < ¢"~'. Suppose that. > 2, in which case
|L : B,,|is divisible byg*™~2). Thus we need(n — 2) < n — 1 which givesn < 3. For
n = 3 we know thatm = 1. Thus, in generall., < By ="GU(n — 1, ¢). Furthermore
L,, contains a Sylow-subgroup of GU(n — 1, q).

Thus eitherL,, > "SU(n — 1, q) or L,, lies in a parabolic subgroup 0&U(n — 1, q).
But (¢ + 1) divides|"GU(n — 1,q) : P| for P a parabolic subgroup 6GU(n — 1, q)
which is impossible. Thug, > "SU(n — 1,¢) and L,, contains all the involutions of
"GU(n —1,q).

Now, for n > 3, consider a different involutio as in Lemma 31. Them, =

q2("’2)% andr, > r,((GU(n — 1,q)) = q2("’3)%. This
implies that";—j < ¢* and so’:—j <g¢*-¢+1landv < ¢® +¢* + 1. But|L :
By| = ¢""Y(¢"" ' —--- — ¢+ 1) which is greater thag® + ¢* + 1 forn > 7. For
n = 5,2U(5,q) : Bi] > ¢ +¢* +1and so have, = U(5,q), L, = B; and
v=q*¢" — ¢+ ¢ — q+1). But, sinceg® > /v, this implies thal, = ¢* which
contradicts Lemma 10.

Forn = 3 there is a unique conjugacy class of involutions of siz&? — ¢ + 1).
Since’SU(2,q) < L, <"GU(2,q), L, must contain precisely the involutions lying in
"GU(2, q) of which there arg? — ¢ + 1. Then'ﬁ—;’ = ¢2 which contradicts Lemma 10.

Suppose: is even and ley be as in the proof of Lemma 31. NoW (n, q) : B] is
even and thug,, < By =" (SU(n —2,q) x SU(2,¢)).(¢+ 1) and, sincev|, < ¢>"~2),
L,, contains a Sylow-subgroup of(SU(n — 2,¢q) x SU(2,q)). Note that, since3; is
non-maximal inL = U(4, ¢), we may assume that> 6.

Now the index of the parabolic subgroupsSif(n — 2,¢) in SU(n — 2,q) is even.
Hence we must have,, > "SU(n — 2, ¢). For somey, we may assume that

SU(n —2,q)
L, >" 1
1

Now g is centralized inl, by some conjugate aB,. This implies that

(" =1 +1)
(q+1)(¢*—1)

Thus% < ¢%(¢? + 1) andv < ¢'° + ¢'° and, forn > 8, this contradictd., < Bs.

e qnil qn71+1
1y = g2 (@ = )

and > g2(n—4)
G+ 1)@ 1) o=
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We are left with the possibility that = 6. But2|U(6,q) : Bs| > ¢'¢ + ¢'°, thus
Lo = By andv = ¢8(¢* + ¢ + 1)(¢* — ¢* + ¢*> — ¢+ 1). Buttheng® > /v and so
dy, = ¢® which contradicts Lemma 10.

Thus Proposition 30 is proven.

9 L =PSp(n,q)

In this section we prove that, § = PSp(n, ¢), then the hypothesis in Section 4.3 leads
to a contradiction. This implies the following proposition

Proposition 32. Supposé& contains a minimal normal subgroup isomorphi®8p(n, ¢)
with n > 4. ThenG does not act transitively on a projective plane.

We know [23, Proposition 2.4.1] that our symplectic geomélf, ) has a symplectic
basis. Unless stated otherwise, we will write all matrixesgntations dip(n, ¢) accord-
ing to this basis{ei, f1,...,em, fm}, Wheren = 2m. Herex(e;,e;) = r(fi, f;) =0
andlﬁl(ei, f]) = 51]

By Liebeck and Saxl [26], we know thét, lies inside a maximal subgrouy where

e forgodd,M € Cy,Cy 0r M = Npgpn,q)(PSp(n, qo)) orn = 4;
e forgeven,M € C;.

Note that whem = 4 we can assume that> 3 sincePSp(4,3) = U(4, 2) which has
already been covered.

Lemma 33. L, lies inside a maximal subgroup from fam@y.

Proof. Assume thay is odd and that., < M where M is a maximal subgroup of
PSp(n, ¢) that does not lie ir2;. Observe that iPSp(n, ¢) there exists a subgroup
B =8p(2,q) oSp(n —2,q).

Forn # 4, by [23, Lemma 3.2.1 and Table 3.5.d}, is normal in aPT'Sp(n, q)-
maximal subgrouBr such that PI'Sp(n,q) : Br| = |L : B|. Thus, forn # 4, the
involutiong € Z(B) hasn, = |L: B| =¢"%(¢" 2+ -+ ¢* + 1).

Whenn = 4 the same argument applies B = (Sp(2,q) o Sp(2,¢)).2 and the
involutiong € Z(B) hasn, = $¢*(¢*> + 1).

Therefore the highest power pfin v is at most;”~2. The lowest index op among
maximal subgroupd/ € €y or M = Npgp(n,q)(PSp(n, q0)) is qé”z. This implies that
n—2> %nQ which is a contradiction fon > 4.

Now suppose that/ is maximal inPSp(4, q), M ¢ Ci, |PSp(4,q) : M| is odd and
| PSp(4,q) : M|, < ¢*. We must havel/ = (Sp(2,q) o Sp(2,¢)).2. ThenL, < M
andL, > P for someP a Sylowp-subgroup ofM/. Since the parabolic subgroups of
Sp(2, ¢) have even index iBp(2, ¢) we must havd.,, = (Sp(2, ¢) o Sp(2,q)).2.

Now we can choose such that

L g )
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Observe that is conjugate tq@ in PSp(4, q).

, 1,2(g2
Now h has at least¢?(¢*> — 1) L-conjugates inL,, thus =2 < % < 2.
g 2 -

Thenv < 8¢2. Butv > |L : L,| = $¢%(¢* + 1) which is a contradiction fog > 3.
Hence in all cases/ € C;. a

In €; we have subgroups of two types:

 Parabolic subgroups,, = [Q“]-(ﬁ)-(PGL(W q) x PSp(n — 2m, q)) where

1<m< §a=%— % + mn. If L, < P, then(q + 1)||PSp(n,q) : Pyl
dividesv. Hence we must haye= 2.

e SubgroupsB,,, of typeSp,, L Sp,,_,, isomorphic toSp(m,q) o Sp(n — m,q)
where2 < m < % andm is even. In this cas¢” divides| PSp(n, ¢) : By,| which in
turn dividesv. Hence we must haye= 1(3).

9.1 Casep =2,L, < P,,. TheindexofP,, in Sp(n, q) is divisible byq* + 1 for all
m > 1 which is impossible and s@ = 1. ThenP; = [¢" '] : ((¢ — 1) x Sp(n — 2,q))
and|Sp(n,q) : Pi| = (g+1)(¢" 2 +---+¢*+ 1). We conclude thag = 2(3) and that
every prime dividings is congruent td (3). Hencen > 14 andn = 2(4). This implies
thatn — 2 = 0(4) and every parabolic subgroup 8f(n — 2, ¢) has index divisible by
¢®>+ 1. ThusL, = [¢" '] : (A x Sp(n — 2,q)) for someA4 < ¢ — 1.

Now considerSp(n, ¢) acting on a vector spadé preserving a symplectic form.
Foru € V,a € GF(q) we have transvections Bp(n, ¢) defined by,

Gau: V= Vv — v+ akr(v,u)u.

SetW = (u) and letXy o = {gau : @ € GF(q)}. ThenXy, . < Sp(n,q) is of

sizeq. The parabolic subgroup 6f(n, ¢) which preserve$l” normalizesXy v . .
Now letg = g; ,,. Then, since the only maximal subgroup whose order is dilady

% is P;, we have

| Sp(n, )|

—1)1 .
— |P1| (q )Ong

Similarly r, > %}f"’” whereP; is a parabolic subgroup &b (n — 2, ¢). Then

ng  |Sp(m @lIPrl(g — Dlogyq _ g
rg — ISpln=29)lP] T

Thusv < ¢” which contradicts > 14 and this case is excluded.

9.2 Casep = 1(3), Lo < B,,. We know that the maximum power ofin v is at
mostg™ 2. Now | PSp(n, q) : By, = ¢ /4=m"/4=(n=m)*/4 Thus we need,

Lo o 2y _ 1
n—QEZ(n —m®—(n—m) )—am(n—m).

This implies thatn = 2 and soL, < Sp(2,¢) o Sp(n — 2,q). If n = 4thenBs is not
maximal and so we assume that> 4. Furthermore we know that, must contain a
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Sylow p-subgroup ofSp(2, q) o Sp(n — 2, ¢). But the indices of a parabolic subgroup of
Sp(2, q) in Sp(2, ¢) and of a parabolic subgroup 8p(n — 2, ¢) in Sp(n — 2, ¢) are both
divisible byq + 1, hence are even. Thus we conclude that= Sp(2, ¢) o Sp(n — 2, q).
Nowry > 2¢"*(¢"~*+---+¢*+1) and SOZ—;’ < 2¢%(¢?>+1) andv < 8¢*(¢®+1)%.
Butv > |L: Lo| = ¢"%(¢" %+ -+ ¢* + 1) which is a contradiction fon > 6.
Thus we mustassume that= 6and|L : La| = ¢*(¢"+¢*+1) and?* < 2¢*(¢*+1).
I 122 = [vlp > q* then:f—j = ¢* which contradicts Lemma 10. Thljj%fh, =1 and so
Z—g |t +*+ 1.0 ’;—j = ¢* + ¢*> + 1 thend,, is not divisible byg* which contradicts the
fact that|L : L/ dividesv. If 72 < 2(q* + ¢* + 1) thenv < |L : L,| which is also a
contradiction.

10 L = Q(n,q), nq odd

Throughout the next two sections, Greek letters such asand ¢ will stand for either
+, — or o. We will write polynomials such as — ¢ to meanz — 1. We writeQ°(n, q)
to meanf2(n, ¢) whenn is odd.

In this section we assume that> 7 andq is odd and we prove that, ff = Q(n, q),
then the hypothesis in Section 4.3 leads to a contradictidns implies the following
proposition:

Proposition 34. Suppose that is odd,n > 7 and G has a minimal normal subgroup
isomorphic ta2(n, ¢). ThenG does not act transitively on a projective plane.

Observe thal, containsQ®(n — 1,¢).2 fore = — ande = +. One of these groups
contains a central involution and hentecontains an involutiory such thatr,(L) =
1¢"2 (¢"= + ¢). Examining [23, Table 3.5.D] for fusion of conjugacy classee see

n—1

thatn, = r,(L) and thugv|, < ¢ =z .
We begin by proving that,, must lie in a maximal subgroufl € Cy:

Lemma 35. L, does not lie inside a subgroug € C;,i > 1.

Proof. We examine the list of odd index maximal subgroups&-ias given by Liebeck
and Saxl [26]. The following possibilities are available fomaximal subgroup/ of odd
index. We exclude them in turn.

e L = Q(7,q) and M = Q(7,2). We know thatjv|, < ¢* and so|L,| must be
divisible byq®. This is impossible fol, < M.
* M € Cy0rM = Ngn,g (2(n,q0)) whereq = g5 for c an odd prime. In both cases

M|, < /]2, )[,- Now | (n, q)|, = g5~ D* and so we must have,

1(71—1)2—1—%(71—1) >

3 (n—1)=%

] =

This is impossible fon > 7. O
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Thus L., lies inside a parabolic subgroup or a subgrdgp of type O(m,q) L
O"(n — m,q) for some oddn < n. In fact parabolic subgroups have even index in
PQ(n, q) hence we may assume that < B,,, for somem.

Sincelv|, < ¢"= we know thatL, < By = Q"(n — 1,¢).2 and thatL,, contains a
Sylow p-subgroup of2"”(n — 1, ¢). Now the parabolic subgroups 6f'(n — 1, ¢q) have
even index. Hence we must hale, = Q"(n — 1,¢) andv is divisible by|Q(n, q) :
V(n—1,9).2 = 3¢" (¢"T +n).

Now consider the involution centralized inL by (Q¢(2, q) x Q(n — 2, ¢)).[4]. Then

ny, = % Now Q7 (n — 1, ¢) contains a conjugate éfcentralized by, at most,

_3, n=3 n—1
(Q6(2,q) x Q(n — 3,¢)).[4]. thenr, > Ll e T This implies that
e < g(g+1) and sow < 2¢*(q + 1), Butthenv < |L : L,| which is a contradiction.
Hence we have proved Proposition 34.

11 L = PQ%(n,q),neven

In this section we assume that> 8 and we prove that, it. = PQ¢(n,q), then the
hypothesis in Section 4.3 leads to a contradiction. Thidigsphe following proposition:

Proposition 36. Suppose that is even,n > 8 and G has a minimal normal subgroup
isomorphic toPQ¢(n, ¢). ThenG does not act transitively on a projective plane.

First we examine what happens wheps- 2:

Lemma 37. Supposer > 8 is even and~ has a minimal normal subgroup isomorphic
to PQ#(n, 2%). ThenG does not act transitively on a set of sizeé+ z + 1.

Proof. Write ¢ = 2*. We know thatL, < P,, for some integemn. If m > 1 then
¢ + 1 divides|PQ¢(n, q) : P,,| whereb is some even integer. Singé + 1 = 2(3) this
is impossible. Thud., lies inside some parabolic subgroip. Now

n n—-2
PO (n, ) : Py| = L2 =9 . *9
=

-2

If ¢ =2(3)theng™= +1 = ¢% + 1 = 2(3). Since one of these dividéBO (n, q) :
P,,|, this is impossible. Hencg = 1(3). Now letn, be the even one df and“3=, n,
the odd one. Then one of the following holds:

* 19°(n,q) : Pi| = ©52 (g™ + 1) and9 divides|Q® (n, q) : P1; or
o [0°(n.q): Pi| = 51 (g" + 1) andg™e +1=2(3).
Both of these cases are impossible. m]

Throughout the rest of the sectignis an odd prime. NowL contains maximal
subgroups in2; of type O¢(2,q) L O"(n — 2,q) for (n = . One of these groups
contains a central involution and hentecontains an involutiory with |L : Cr(g)| =
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%q”—Q(q”Tf2 +n)(q% — €)/(q — ¢). Examining for fusion of conjugacy classes in [23,

Tables 3.5.E and 3.5.F] we see that, except wher) = (8,+), ny, = |L : Cr(g)|.

When(n,e) = (8, +), we know thatr, < 3|L : C1(g)| and so, in all casesy|, < ¢" 2.
We begin by proving that, must lie in a maximal subgrouf € Cy:

Lemma 38. L, does not lie inside a subgroug € C;,i > 1.

Proof. We examine the list of odd index maximal subgroups&-ias given by Liebeck
and Saxl [26]. The following possibilities are available Eomaximal subgroup of odd
indexM ¢ C;. We exclude them in turn.

e L = PQ"(8,q) and eithetM = Q1 (8,2) or M = 23.26. PSL(3,2). We know that
lv], < ¢ and soL,|, > ¢°. This is impossible fol, < M in both cases.
* M € Cy0r M = Npqe(n,q) (PQ(n,q0)) Whereq = ¢ for c an odd prime. In both

casegM|, < \/|PQ¢(n, q)],. Now |PQ?(n, q)|, = ¢""~?)/4 and so we must have
1 1
gn(n72)+n72 > Zn(n72).

This is impossible fom > 8. Whenn = 8, no subgroupV of odd index has
|M|, > 6 so the result stands. O

ThusL, lies inside a parabolic subgroup, or a subgrougB,,, of typeO(m, q)$* L
O™ (n—m, q) forsomem < 3. Infact parabolic subgroups have evenindekin®(n, q)
for p odd. Hence we assume thif, < B, for some integern. We know thafv|, <
q"~% and so|PQ°(n, q) : B, < ¢" 2. This implies thatn = 1 orm = 2. Note also
thatp = 1(3).

Suppose first that,, < B, where B, is of type 0% (2,q) L O™ (n — 2,q) for
Gim = e. Then|PQ*(n,q) : Bs| = %(]”‘2((]%2 +m)(g? —€)/(qg — ¢1) and soL,
must contain a Sylow-subgroup ofB,. Since the parabolic subgroupsP™ (n—2, q)
have even index we must haiig > Q" (n — 2, q).

In the case wheré,, < B; thenL, < Q(n — 1,q).c; wherec; € {1,2}. Now
|PQE(n,q) : Bilp = 7 henceB; : Ly, < ¢"z" . Examining the proof of Lemma 35
this means thak, NQ(n — 1, q) lies inside a maximal subgroup 8fn — 1, ¢) in family
Cy.

Since the parabolic subgroups @fn — 1,¢) have even index if2(n — 1, q) this
means thal., NQ(n — 1,¢) < B}, ; hereB, is a maximal subgroup d(n — 1, q) of

mi? ma
typeO,,, (¢) L OY(n—1—my,q) forsome oddn; < n—1. Infact|By : L[, < =
implies thatn; = 1 and thatZL,, contains a Sylow-subgroup ofB; = Q™ (n — 2, q).ca
wherecy € {1,2}. Once again, since the parabolic subgroupQsf(n — 2, ¢) have even
index we must havé,, > Q" (n — 2, q).

Thus in both cases, when = 1 and whenn = 2, we see thal, > Q™ (n—2,q) is
a subgroup o2 (n, ¢) which preserves a decomposition of the associated vecaoesp
V into subspaced = W, L W,,_o, wheredim W; = ¢ and thel¥; are non-degenerate

subspaces df’.
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ThenH = Q™ (n — 2,q) containsh a conjugate of;, andCy (h) is isomorphic to
either(Q7(2,q) x Q"2 (n —4,q)).2 or 2.(PQ7(2,q) x PQ"(n — 4,q)).[4] (see [23,
Proposition 4.1.6]). In either casg > %q”—‘l(q%4 + 72)(qn772 —m)/(qg— 7).

If n > 8 this means tha% < qzéq_ﬁf and sov < 2¢*(¢ + 1)*. Since|L : L,| < v
we must have: = 10, ¢ = 7andL,, = B;. Butthen|L : B, | is divisible byl 74(7% £+ 1).
This is impossible since thdi : B;| is divisible by a primes = 2(3).

If n =8 thenit < d¢*(q+1)>. Thenv < 28¢*(q + 1)* whichis less thaiL : Bs|.
ThusL, = B;. Butthen|L : L, | is even which is a contradiction.

Proposition 36 is now proven.

12 L is an exceptional group of Lie type in odd characteristic

In this section we prove that, if is an exceptional group of Lie type in odd characteristic,
then the hypothesis in Section 4.3 leads to a contradictidns implies the following
proposition:

Proposition 39. Suppose that’ has a minimal normal subgroup whereL is an excep-
tional group of Lie type in odd characteristic or th&t has a unique componentsuch
that L' is isomorphic to a simple groups(q) or 2Eg(q) whereq is odd. Theni does
not act transitively on a projective plane.

We introduce some extra notation for this section and tHeviahg one. We will write
Ey for 2Es, Ef for Es. Similarly SL~ will stand forSU, SL™ for SL. We will usee
to denote eithet-1 or + depending on the context. Generally our notation referbeo t
adjoint version of the exceptional group, any variation bis will be specified. For a
groupG, we will write £G to mean a subgroup i& of index2. We defineP(G) :=
min{|G : H| : H < G}. Finally, for a groupH we write O” H to mean the unique
smallest normal subgroup of H such tha{H/N|, = 1.

We have eight possibilities fat which we will examine in turn. As usual we will
examine odd-index maximal subgroups lof treating these as candidates to contain a
stabilizerL,,, and seek to show a contradiction.

We immediately exclude the case whére- 2G»(q), ¢ > 3, by examining the list of
maximal subgroups ofG(q) given in [24, Theorem C] (see also [35]). We see that any
maximal subgroup of odd index must have index divisibl®and hence cannot contain
a point-stabilizer. Hence this case is excluded. Note titist given by Kleidman [24]
contains a maximal subgroup of odd index (with struc{@ex D1 (441y) : 3) which has
been omitted by Liebeck and Saxl [26] and by Kantor [22].

For the remaining cases we will refer to the results of Liébmed Saxl| [26] giving
the maximal subgroupa/’ of odd index inLf. These maximal subgroupg’ take
one of two forms: Eithed/T = N+ (LT(qo)), whereq = ¢§ for a an odd prime and the
subgrouplf(qo) of L(q) corresponds to the centralizer of a field automorphisihi¢§)
(see [22, Theorem CJ), av/T is enumerated in [26, Table 1].



520 Nick Gill

Note that, by [23, Table 5.1.Bput L, the outer automorphism group bf has order
strictly less thary providedL # 3D,(3),2Eg(5). We also use the following lemma:

Lemma 40. Let ¢ be a field automorphism af(q) of prime ordera. Let L(gy) =
OP Cr(q) (@) Whereq = q§. ThenNp 4 (L(q)) < Inndiag(L(go)) and, furthermore,
Inndiag(L(qo)) = L(qo).d where

(3,90 —¢) L =E§
d= (2,q0—1) L:E7
1 otherwise

Proof. Our notation is consistent with that in [19]. Wrile(q) = OP Cx(0) whereL
is a simple adjoinif,-algebraic groupF,, is the algebraic closure ¢&F(q) ando is a
Steinberg automorphism [19, Definition 2.2.1].

By [19, Proposition 2.5.17], there exists a Steinberg aotgmismr of L such that
7% = o andr inducesy on L. ThenL(q,) = O”' Cr(r) and, by [19, Proposition 2.5.9],
Nz(L(q0)) = CF(7). ThusNy(4)(L(qo)) = CL()(T) < Cr(g) () S Inndiag(L(qo))
by [19, Proposition 4.9.1]. The structure of the grdupdiag(L(qo)) is given in [19,
Theorem 2.5.12]. m]

12.1 CaseL = Es(q). Referring to [19, Table 4.5.1], we see th&{(q) contains
an involutiong such thatC(g) > 2.(PSL(2,q) x Ez(q)). There is one suclis(q)
conjugacy class of involutions ih and son, divides

2¢°°(¢" + )¢ + 1)(¢° + (g™ — 1)(¢* -~ ).

Using Lemma 13 this implies that|, < ¢°¢ and hence thdf, |, > ¢%*. The listin [26,
Table 1] contains no maximal subgroupésuch thatM|, > ¢%%. Similarly Lemma 40
implies that N1 (Es(q0))|, = |Es(q0)|, = ¢¢%°. Sinceq = ¢§ wherea is an odd prime,
q4?° < ¢*Y and so this possibility is excluded.

12.2 CaseL = E7(q). Referringto [19, Table 4.5.1], we see tha{(q) contains an
involution g such thaiC,(g) containsSL*(8, ¢)/(4,q — ¢) for  either+ or —. Thereis
one suclinndiag(E~(¢)) conjugacy class of involutions i and son, divides

(4,0 -1 "+ )@+ )@ +e)® +¢* + 1) (P + ¢+ 1).

This implies thatjv|, < ¢ and hence thatL,|, > ¢?%. The list in [26, Table 1]
contains one maximal subgroup such thdt,, > ¢*%, namelyM = N (2.(PSL(2,q) x
PQT(12,q)). Then|L : M|, = ¢* and sop = 1(3). But this implies tha® divides
|L : M| and so it is not possible that, < M.

Similarly Lemma 40 implies thdtVz, (E7(q0))|, < |E7(q0)-2|, = ¢§*. Sinceg = ¢§
wherea is an odd primeg$? < ¢*! and so this possibility is excluded.



Transitive projective planes 521

12.3 CaseL’ = Eg(q). Referringto [19, Table 4.5.1], we see thiatontains an in-
volutiong such thatC' (g) containsSpin{,(¢). HereSpinj,(¢) = (4, q —€).PQ°(10, q).
There is only one suchindiag(E§(q)) conjugacy class of involutions ih and so,

ng=q"%(¢® +eq® +1)(¢* +eq+1)(¢® +¢* +1).

This implies thafv|, < ¢'® and hence thatL, |, > ¢*°. Then Lemma 40 implies that
[Nzt (LT (q0))], < |LT(q0)-(3,q — )|, which divides3¢3®. Sinceq = ¢& wherea is an
odd prime g3 < ¢'? and so this possibility is excluded.

12.3.1 Subcase = +. In this case the list in [26, Table 1] contains two maximal
subgroupsMt such thafMT|, > ¢*°: Mt = N.+((4,¢ — 1).PQ+(10,q)) or MT is
parabolic of typeDs. If p = 1(3) in either case thef divides|L : M| which is a
contradiction. Hence # 1(3), the universal and adjoint versions coincide ahds
simple.

In the non-parabolic casg, : M|, > p? which is impossible fop # 1(3). HenceM
is a parabolic subgroup df; (q) of type D5 and we haveL : M| = (¢° + ¢ +1)(¢® +
g+ 1)(E+q*+1).

Now M = [¢'6] : (Spinj,(¢)H) where H is a Cartan subgroup dfs(q) and H
normalizesSpin,(¢). HereSpinf,(q) = (4,q — 1).PQ+(10,¢) and PQ*(10,q) has
parabolic subgroups of even index. This implies that > [¢'¢] : (Spinj,(q).2) for
p#3.

Furthermore, fop = 3, every non-parabolic subgroup 827 (10, ¢) has index di-

visible by 9 [23]. This means thaL, > [%].(Spin'fo(q).Q). Now E, the commutator
subgroup of the Levi complement i, is isomorphic tdpinj,(¢) and|E : L, N E| is
at most3 (¢ — 1). But P(Spiny(q)) > 2(¢ — 1) [23, Table 5.2.A]. Thud., > E.

Now if ¢ = 3¢ then|E| is divisible by 3% — 1; in particular,|E| is divisible by
the primitive prime divisors o8% — 1. This implies that ifp : £ — GL(m,3) is a
non-trivial representation af over GF(3) thenm > 8a. Now consider the action df
on the unipotent radical of the full parabolic groug'®], considered as a module over
GF(3). We know thatE' does not act trivially on any submodule of the unipotenteadi
(otherwiseZ(E) would have too large a centralizer; see [19, Table 4.5.1}usTthe
action must be either irreducible or split into two moduleshbof sizeq®. In either case
we must havd.,, > [¢*°] : (Spinj,(q).2).

We return to the general case wheret 1(3) and assume that/ containsC'r(g) =
Spin,(¢) H. Furthermore we know thdt acts on the cosets af as a rank 3 permutation
group with subdegreds (¢° +1)(¢° —1)/(¢—1) andq®(¢* +1)(¢° — 1)/ (¢~ 1) ([22]).
Then we have two possibilities:

 Suppose& (k) > Spinj,(q) for all 4 in L, whereh is L-conjugate tgy. Now if
M = [¢*%] : CL(g) thenM containsg'® M-conjugates of”;,(¢) each containing a
unique copy oBpinj,(¢). Any otherL-conjugate oiC(g) lies inside a non-trivial
conjugate ofM. But these intersect/ with non-trivial indices as above. These
intersections cannot contafipin{, (¢). HenceM contains only)M -conjugates of;
and, in fact, all these must lie ib,. Thusr, = ¢*® and22 = (¢ + ¢* + 1)(¢° +

Tg
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@ +1)(¢*> +q+1). Set

e Lr B 5 599 4 120 o 423, A9 39587
T TR T 69 1987 T 9567 T 10247 T 20487 " 32763

Thenu? —u+1 > 7o forq > 47. Ifwe setu = u — 35565 thenu? —uy +1 < 22
for ¢ > 1. Thus we need to cheak< 47 but no suchy satisfiesu? —u +1 = 22
for integeru.

» Suppose there existsin L, which is L-conjugate tg; andC), (h) does not contain

a copy ofSpinj,(q). ThenCy(h) lies inside a non-trivial conjugate @ff. Hence
|M : Car(h)|is amultiple ofg(¢® +1)(¢° —1)/(¢—1) org*(¢* +1)(¢° —1)/(¢—1).
Furthermore we know thaf'® divides|M : Cy(h)| since|M|, = ¢'¢|CL(g)lp-
Hence|M : Cr(h)] > ¢ (¢* +1)(¢° — 1)/(g — 1).
Now, if Lo, > [¢°] : (Spinfy(q).2) thenr, = r,(M) sinceL, < M and|M : L,
is odd. Thusry > ¢'%(¢* +1)(¢° — 1)/(¢ — 1) and ¢ < ¢° + ¢* + 1. Then
dg < ®+¢*+1<(¢®+¢+1)(¢*> +q+1). Thusv < |L : M| which is a
contradiction.

12.3.2 Subcase = —. In this case the list in [26, Table 1] contains one maximal
subgroupM T in LT such thatM |, > ¢?°, namelyM T = N+ ((4,q + 1).PQ~(10,q)).
Infact| M|, = ¢** and s = 1(3) and the universal and adjoint versionsi)f coincide
and L is simple. ThenM = N (Spin;,(q)) = Spinjy(q).(¢ + 1) ([19, Table 4.5.2]).
Furthermore.,, must contain a Sylow-subgroup ofA/. But the parabolic subgroups of
PQ7,(¢) have even index, hen&pin;,(¢).2 < L, < Spinjy(q).(q¢ + 1).

Now, using [19, Table 4.5.2], we see thB{ (¢) contains two conjugacy classes of
involutions: those conjugate g centralized byspin;,(¢), and those conjugate tq say,
centralized byL(2, ¢) o SU(6, ¢). Thenn, = ¢'(¢*> —q+1)(¢® —®* +1)(¢® +¢* + 1)
andNy, = ¢*°(¢* +1)(¢*> + 1)(¢° — ¢* + 1)(¢® + ¢* + 1).

We examine the involutions lying ifipin;,(¢) using [19, Table 4.5.2]. Apart from
the central involution$pin;,(¢) contains two conjugacy classes of involutions. Léte
an involution inSpin;, (¢) centralized by8pinj (¢) o Sping (¢). ThenL,, contains at least
103 (¢* +¢*+¢* +q+1)(¢> —q+1)(¢* +1)(¢*+1) conjugates oh. If h is L-conjugate
tog, thenﬁ < 4q8 which is a contradiction. Thus assume thas L-conjugate tqy;.

In this cas < 4¢"% + 4¢'? 4 4¢%. Then

dg<%+2 /%Jrz<4q16+4q12+6q8+2q4+2.
g g

This implies thaty < 19|L : M| forg > 7.
Suppose thatj16 does not d|V|de"— Then”J divides the productg® — ¢ + 1)(¢° —

@+ 1)(¢®+¢* +1)and sod, < 3q16 andv = |L : M|. This contradicts Lemma 11.
Thusv =7|L : M|orv = 13|L M| andqlﬁ\ 2o

If ’;J > 7q16 thenv > 49¢32 > 13|L : M| which is a contradiction. Thus, by
Lemma 10,22 = 3¢'6. This implies thaB¢'® < d, < 3¢'° + 2v/3¢® + 2 and so
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9¢3% < v < 9¢*? + 12¢** + 6¢*°. Butthen7|L : M| < v < 13|L : M| which is a
contradiction.

12.4 CaseL = 3Dy(q). We know that*D4(q) has a single conjugacy class of in-
volutions [19] which is centralized by a maximal subgroupni®rphic to(SL(2, ¢) o
SL(2, q)).2 [25]). Hence, forg an involution inL, n, = ¢®(¢® + ¢* + 1) and sojv|, < ¢®
and|L,|, > ¢*.

If Lo < M = N5(*D4(qo))) then this condition implies that = ¢5. No such
subfield subgroup exists.

There are two other odd index maximal subgrougssuch that|M|, > ¢*; see
[26]. The first possibility is thaf\/ = G2(q) and|L : M|, = ¢°. But then odd index
subgroups of32(q) havep-index strictly greater thap?; see [26]. Thud., = Ga(q).
Now r,(G2(q)) = ¢*(¢* + ¢*> + 1) and sof—;’ = ¢*(¢* — ¢* + 1). But this implies that
|v], < ¢* which is impossible.

The second possibility is that, < M = 2.(PSL(2,q) x PSL(2,¢%)).2. Then
L : M| = ¢®(¢® +¢* + 1) and sop = 1(3) and L,, contains a Sylow-subgroup of
M. But the parabolic subgroups BSL(2, ¢) have even index, hence we conclude that
L, =M.

Now 74 (2.(PSL(2,q) x PSL(2,¢%))) > 1+ $¢*(¢* — 1)3¢(q — 1). This implies that
’:—5 < 7¢%. Suppose thdtﬁ—gh, =1and hencé:—j < ¢®+¢* + 1. Thend, < 3¢® and so
dy = ¢®. This contradicts Lemma 11.

Thus|"f’ |, > 1 and so we must have eith@# = ¢® (contradicting Lemma 10) or

= =345 If 2o = 3¢% thend, < 2(¢® +¢* + 1) which is the smallest possibility for
dg that is Iargerthaﬁ— Thus we haveacontrad|ct|on

ng

12.5 CaseL = G2(q). Referringto [19, Table 4.5.1], we see tl&t(q) contains an
involution g such thatC'(¢) containsSL(2, q) o SL(2, ¢). There is one such conjugacy
class of involutions ir. and, examining [24], we see thaf (g) = (SL(2, ¢)oSL(2, q)).2.
Hencen, = ¢*(¢* + ¢*> + 1). Using Lemma 13, we may conclude that, < ¢* and
hence thatL,|, > ¢°.

Examining the odd-index maximal subgroups [23], we find #ihhavep-index di-
visible by p? and sop = 1(3). We have a number of possibilities faf an odd-index
maximal subgroupg M|, > ¢, M containingL,:

» SupposeVl = N1 (Ga(qo)). Then using Lemma 40 we find that= ¢3. But this
means thad divides|L : M| which is impossible.

e SupposeM = (SL(2,q) o SL(2,q)).2. ThenL, > 2.P.2 whereP is a Sylowp-
subgroup oPSL(2, ¢) x PSL(2, ¢). Since the parabolic subgroup®$L(2, ¢) have
even index we must havk, = M andv = ¢*(¢* + ¢ + 1)a for some integet:.
Then Lemma 11 implies that+# 1 and soa > 7.

Now PSL(2, q) x PSL(2, q) has at least ¢*(¢ + 1)? involutions and thus so does
SL(2,q) o SL(2,q). Then

4 2
1
L A
Tg q*—2q+1

4
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forqg > 7. Thus eithelﬁ—j = ¢* (contradicting Lemma 10) djf = 3q¢* or f—;’ divides
¢t +q® + 1.

If u? —u+1= 22 =3¢* thenu*+u+1=dy < 3¢*+2/3¢*+2 < 4¢* +4¢*+4.
This implies that < 12¢*(¢* + ¢+ 1) and sou = 7. Butthend, = Z(¢*+¢*+1)
which is less thaﬁ;i for ¢ > 7. This is impossible.

Ifu?2—u+1= :_f = ¢* + ¢* + 1 thenu = ¢*> + 1 andd, = ¢* + 3¢*> + 3. But
then(v, p) = 1 which is impossible. I%’ < ¢* + ¢* + 1 thenu < ¢? which implies
that7+ < ¢* — ¢ +1andd, < ¢* +¢* + 1. Then72d, < |L : M| whichis a
contradiction. ’

e SupposeM = SL(3,¢).2 and sop = 1(3). Consider first the situation where
L, = M. Whene = +, M = (SL(3,q), ») wherey is a graph automorphism
[11, (2.6)]. Whene = —, M < PT'U(3,q) [24, Proposition 2.2]. In both cases

M is equal to a universal version df; (¢) extended by a graph automorphism [19,

Definition 2.5.13].

Examining [19, Table 4.5.2] we see that has 2 conjugacy classes of involutions.

These have sizg?(¢> + eq + 1) and¢®(¢® + eq + 1)(¢ — €). Whene = + this

givesr, = ¢*(¢* + ¢+ 1) andf—;’ = q(¢*> — ¢+ 1). This is impossible since either

|:f—j|p =1lor |Z—§|p > ¢3. Whene = — we haver, = ¢*(¢*> — ¢+ 1)(¢ + 2) and

f—;’ = % This is not an integer faf > 1 hence can be excluded.

Thus we must havé, < M and we know thatM : L,|, < ¢. Examining the

subgroups ofL¢ (3, ¢) we find thatL, N SL*(3,¢) < P, a parabolic subgroup of

SL(3, q).

Whene = —, | SL(3, q) : Py| is even hence this possibility can be excluded.

Whene = +, M = (SL(3, ¢), m) wherem is a graph automorphism 6fL(3, ¢).

SinceL,, has odd index irG2(q), L, must contain a graph automorphism. Exam-

ining [23, Table 3.5.A] we find thaL, N SL(3, q) lies inside a subgroup/; of

SL(3, ¢q) of type GL(2, ¢) & GL(1, q) or of type P, ». In the former case we find

that|v], > ¢°. Sincelny|, = ¢* we must have 2|, = 1 which implies that

™ < ¢*+¢°+1and|d,|, > ¢° which contradicts Lemma 12. In the latter case,

Tg

we find that| SL(3, ¢) : M| is even and this case can be excluded.

We have covered all possible odd-index maximal subgroup&(@).

12.6 CaseL = F,(q). Referringto [19, Table 4.5.1], we see that(¢) contains an
involution g such thatC';, (¢) containsSpin(9, ¢). There is one such conjugacy class of
involutions in L and son, = ¢®(¢® + ¢* + 1).

This implies thatv|,, < ¢® and hence thdt_,,|, > ¢'®. Then Lemma 40 implies that
INL(Fi(90))lp < |Fa(qo)l, = ¢3*. Sinceq = ¢§ wherea is an odd primeg3* < ¢® and
so L, does not lie i N7 (F4(qo))-

The list in [26, Table 1] contains one maximal subgraupsuch thatf M|, > ¢'S.
ThenM = 2.Q(9,q), L, must contain a Sylow-subgroup of\/ since|L : M|, = ¢*°.
Furthermorep = 1(3). Now the parabolic subgroups (9, ¢) have even index, hence
we may conclude that,, = M andv = ¢®(¢® + ¢* + 1)a for some integes. Lemma 11
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implies thata # 1 and hence > 7.

Now suppose, > 1q%(¢* — 1). Then < 2¢*(q* +3) < Z¢%. Thend, < L¢®
andv < 7¢*® which is a contradiction. Alse, is clearly greater thaih. Thus there is an
involutiong € 2.92(9, ¢) such that

1< 2.209,9) : Caqo,q(9)] < q*(¢* —1)/2.

Now let B be the central subgroup df,, of order2, so thatL,/B = PQ(9,q). Let
h = Bg an involution inPQ(9, ¢). Then we must have

12(9,9) : Cogo,q (W] < ¢*(a* —1)/2.

Examining [19, Table 4.5.1] we see that all involution cahizers inQ2(9, ¢) have index
atleast;¢*(¢* — 1). Hence we have a contradiction.
Proposition 39 is now proven.

13 L is an exceptional group of Lie type in characteristic2

In this section we prove that, if is an exceptional group of Lie type in characteristic
2, then the hypothesis in Section 4.3 leads to a contradiclibis implies the following
proposition:

Proposition 41. Suppos&; has a minimal normal subgroupwhereL is an exceptional
group of Lie type in characteristi2 or that G has a unique componeiitsuch thatLf

is isomorphic toFg(q) or 2Es(q) whereq = 2. ThenG does not act transitively on a
projective plane.

We have nine possibilities far and, by Tits’ Lemma [31, 1.6], we know that, must
lie in a parabolic subgroup/ of L. We demonstrate that this is impossible, generally by
showing a contradiction with Lemma 8.

13.1 CaseL = 3D4(q), G2(q), g > 2. In each case, for any parabolic subgroup
M, |L : M| is divisible by (¢* + ¢* + 1)(¢ + 1). If ¢ = 1(3) then|L : M| is divisible
by ¢ + 1 = 2(3), while if ¢ = 2(3) then9 divides|L : M|. ThusM cannot contairl,,
(Lemma 8) and we are done.

13.2 CaseL = 2Bs(q), q > 2,2Fs(q)’, Fa(q), E<(q), Es(q). Examining the
indices of the parabolic subgroupg in L in these cases, we find that they are nearly
always divisible byy™ + 1 for some even integen. Sinceq™ + 1 = 2(3) these cases
are excluded. We deal with the exceptions which are as fgtlow
(1) L = E;(q) andM is of type Es. Then|L : M| is divisible by(¢® + 1)(¢° + 1). If
q = 1(3) theng® + 1 = 2(3) and if ¢ = 2(3) then9 divides|L : M|. Both of these
are impossible henckl cannot contairl.,.
(2) L = E(q) andM is of type Dg. Then|L : M| is divisible by (¢® + ¢* + 1)(¢'? +
q® + 1) which is in turn divisible byd. HenceM cannot contairL,.
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(3) L = E;(q) andM is of type D5 x A;. Then|L : M| is divisible by(¢° + 1)(¢® +
¢*+1). If ¢ = 1(3) theng® + 1 = 2(3) and if¢ = 2(3) then9 divides|L : M|. Both
of these are impossible hengé cannot contaird.,,.

Note that Kantor's argument to exclude the last two cases (E7(¢) and M of type

Dg or D5 x Ay) when the action is primitive is incorrect [22].

13.3 CaseL' = E£(q). We proceed as in Section 13.2; we need only examine the
parabolic subgroups/ in L which are not divisible by™ + 1 for some even integer..
There are two such possibilities:

1. Lt = Ef (¢) and M is of type Ds. Then|L : M| = (¢° + ¢ + 1)(¢® + ¢* + 1)(¢® +
q+1). Forqg = 1(3), |L : M| is divisible by9 henceM cannot contairl,. Thus we
assume thaj = 2(3) and soL is simple.

Now we know thatM’ := [¢*6].Q],(q) < Lo, < M = [¢*%] : (Qf,(¢)H) where H

is the Cartan subgroup df. This is because all parabolic subgroup€Xf(q) have
index divisible byg* + 1 = 2(3).

By [4, (15.1),(15.5)],L contains an involutioy such thatCy, (g) = [¢?!] : SL(6, q)

and song = (¢° +¢* + 1)(¢® +¢* +1)(¢® — 1). Nowif ry > (¢° +¢* +1)(¢* — 1)

thenTt < (¢*+1)2 = (¢*+1)+1andsad, < (¢* +1)® + (¢* + 1) + 1. But then
";—jdg < |L : M| which is a contradiction. Thus, for @l € L,, conjugate inG to g,

|K : Cre(h)] < (¢° +¢° +1)(¢° — 1).

Now Q,(q) £ Cr(g). Furthermore the only maximal subgroups$xf,(¢) with index
less than¢® + ¢ + 1)(¢® — 1) are the parabolic subgroups a# (¢). All but one
type of parabolic subgroups have index divisiblegdy+ 1. Sinceq® + 1 does not
divide ny, there must bé € L, conjugate inG to g such thatCx (h) lies in either
[4%].(1"] : 5((q — 1) x SO{ (9))) or [¢"°]. Sps(q).

Consider the first possibility. No®Oj (¢) £ C71.(g) and so

|QT0(Q)| .
[¢%] : 5((g = 1) x SO (q))]

Using the value forP(SO{ (¢)) given in [23, Table 5.2.A] we conclude thaj >
(¢° + ¢® + 1)(¢® — 1) which is impossible.
Similarly Spg (¢) £ Cr(g) and sory > P(Spg (4))|2y(q)|/|Sps (¢))|- Once again
we find thatr, > (¢° + ¢® + 1)(¢® — 1) which is impossible.

2. LT = E4 (q) andM is of type?Dy4(q). Then|L : M| is divisible by(¢® +1)(¢° + 1);
we exclude this possibility in the same way as in Section, Mt#&nL = F;(q) and
M is of type F.

rg > P(SO;{(Q))

Theorem A is now proven.
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