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The Natural Rate Hypothesis and Real Determinacy
A Sticky-Information Perspective

Abstract

The uniqueness of bounded local equilibria under interdst nules is analyzed
in a model with sticky information a la Mankiw and Reis (200Zhe main results
are tighter bounds on monetary policy than in sticky-pricedeis, irrelevance of
the degree of output-gap targeting for determinacy, indépece of determinacy re-
gions from parameters outside the interest-rate rule, gnd/aence between real
determinacy in models satisfying the natural rate hypah&sd nominal determi-
nacy in the associated full-information, flex-price eqlevé. The analysis follows
from boundedness considerations on the nonautonomousi@tthat describe the
MA( ) representation of variables’ reaction to endogenousuéaiins.

Forty years have past since Friedman (1968, p. 11) quitarstiycstated, “there is
always a temporary trade-off between inflation and emplownt@ere is no permanent
trade-off.” Yet, at the foundation of current monetary pglanalysis is a model of price
setting that imposes a systematic relationship betweeatiiorfl and output, stable even in
the long ru

The first central result of the analysis here is that the regif determinacy asso-
ciated with interest rate rules are tighter in a model witrpermanent trade-off than
in the literature standard sticky-price New Keynesian nho@leough determinacy, at its
core, is a long-run consideration, it has immediate releeanmposing boundedness,
a dynamic path is uniquely determined if all but one of thehpatonsistent with equi-
librium diverge. In the absence of determinacy, the econ@wulnerable to arbitrary
and potentially welfare-reducing endogenous fluctuatioes sunspots.(Carlstrom and
Fuerst 2002, p. 79) The central result has, therefore, aipigepolicy recommendation:
if one is unwilling to accept a systematic, long-run relasbip between inflation and out-
put, the tighter parameter bounds for interest rate rulasetehere ought to be heeded.

Mankiw and Reis (2002) (extended to general equilibriumeby,, Trabandt (2007))
have shown that several empirical and theoretical sholitogsnin sticky-price models
can be overcome by a sticky-information setup, in which fiopsmally reset their prices
each period constrained by a probabilistic Bayesian updati information governed by
a Poisson process. For the purposes here, the relevanimempent is “that it survives the
McCallum critique” (Mankiw and Reis 2002, p. 1300); thatitdulfills the strict version
of the natural rate hypothesis.

The natural rate hypothesis states that “on average, amaddiegs of [the] monetary
policy regime, output [...] should be equal to potentialpuit (Andrés, Lopez-Salido,
and Nelson 2005, p. 1027). A model that satisfies the natatalhypothesis will have a

1cf. Woodford (2003b, p. 254)



vertical long-run Phillips curve and, thus, will exhibit permanent trade-dff. The natu-
ral rate hypothesis being fulfilled, therefore, forces thgat gap to convergegardless
of monetary policy.

In the sticky-price model, a reaction of the nominal intemage to the output gap
serves as a substitute for a reaction to inflation, allowiegy(tirect) response to inflation
to be less than one while still adhering to the Taylor prih}ﬁo This would be futile
within the context of the sticky-information model exanrteere, as there is no long-run
link between inflation and the output gap: the output gap casuabstitute for inflation
insofar as determinacy is concerned.

This is the second result of the analysis here: the degreatptibgap targeting is
irrelevant for determinacy. Simply put: via the naturakeratypothesis, the output gap
must be zero asymptoticallegardless of inflation and monetary policy; targeting the
output gap will not yield a long-run change in the nominaknesst rate. This, in turn,
implies the third result: determinacy is independent obpeater values in the dynamic
IS and Phillips curve equations. With the demand side detawyealdynamic IS curve, the
convergence of the output gap implies convergence of tHentemest rate regardless of
monetary policy. Thus, determinacy via an interest rate rests on the determinacy of
nominal variables through the Fisher equation, an equatittnno relation to parameter
values in the dynamic IS or aggregate supply equations.

As implied by the foregoing paragraph, these results arenaamuence of the three
equation reduced form (1S, Phillips curve, nominal interate rule) satisfying the natural
rate hypothesis. The sticky-information model certainlififis this hypothesis, but the
results of the analysis here extend to any model of the thqeat®n reduced form with a
short-run link between inflation and the output gap thasfias the natural rate hypothe-
sis. The uniqueness of a path for inflation occurs under the sanditions as would be
obtained for the corresponding flex-price, full-infornmaticounterpart. In models with a
short-run link between the nominal and real sides, the pattise nominal side and real
side are interdependent. Therefore, a monetary policywaisures a unique path for
inflation will ensure the uniqueness of the necessarily eayent path for the output gap
and this will occur only if the monetary policy is consistaith nominal determinacy in
the corresponding flex-price, full information equililbmu

The specific results for the sticky-information model fellérom the derivation of
conditions for saddle-path stability in the system of ndoaamous homogenous linear
difference equations that describe the dynamic responeahodel to an endogenous
fluctuation. For comparison with the sticky-price litenafl) inflation-forecast and con-
temporaneous inflation targeting rules in a pure and exteidéh output-gap target-
ing and interest-rate smoothing), exogenous interestrudés, and price-level targeting

2¢f. Fischer (1977, p. 192)

3cf. Woodford (2003b, pp. 254-255), ”... indeed, a large gjiojuesponse tadither [the output gap or
inflation] suffices to guarantee determinacy.”

4e.g. Woodford (2003b) or Lubik and Marzo (2007)
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rules are examined. The Taylor Principle is a necessaryittondor determinacy and
a pure inflation-forecast rule is shown to be indeterminaé&zyavhere, with interest-rate
smoothing opening a small window for determinacy.

The results here extend Carlstrom and Fuerst’s (ﬁ)ﬁﬁalysis to models that satisfy
Lucas’s (1972) formulation of the natural rate hypothesilevfailing to satisfy their
yet stricter version: “the model’s behavior becomes idmitio flexible-price behavior
in finite time” (Carlstrom and Fuerst 2002, p. 80). This didtime allows for a trade-off
between inflation and the output gapaditfinite horizons while still ensuring that “[t]he
unconditional mean of the output gap cannot [...] be affgciry aspect of the monetary
policy rule” (McCallum 1994, p. 259).

The rest of the paper is organized as follows: in Sedtion ballsliscuss the basic
sticky-price and sticky-information models. In Sectidnc@nditions for determinacy in
the sticky-information model for various interest rateesiwill be presented. Section
shows the equivalence of the bounds for determinacy todson monetary policy
for nominal determinacy in the full-information counterpt motivate the extension of
the results to a more general class of models. Settion 4 examspecious determinacy
arising from a common truncation method. Sectibn 5 disatseresults and alternative
equilibrium selections and Sectibh 6 concludes.

1 A Sticky-Information Model

“[T]loday’s near-canonical monetary policy model,” theckyi-price model with Calvo
(1983)-style overlapping contracts in general equilibrjis composed of three structural
equations determining the supply side, demand side, anctaignpolicy (McCallum
2003). Abstracting from exogenous driving processes, &g Keynesian model is given
(in log-deviations) b{f

(1) Yt = Et [Vi11] — R + a1 B¢ [T 44]
(2) % = BEt [Thy1] + Kyt

wherey; is the output gaprg inflation , andR; the nominal interest rate. Equatidn (1) is
an expectational 1S-curve derived from the first-order @omas of the household for in-
tertemporal utility maximization and equatian (2) is thesN€eynesian Phillips curve de-
rived from Dixit-Stiglitz aggregators of individual firm#&tertemporal discounted profit
maximization constrained by the probability that priceteday remain in effect into the
future.

5 Their differing timing convention serves only to alter theerpretation: their “backward-looking”
rule corresponds to the contemporaneous inflation targetile here and their “current-looking” rule cor-
responds to the inflation-forecast targeting rule.

6cf. McCallum (2001, p. 152), equations (2.7) and (2.14); obik and Marzo (2007, p. 21)



Both Woodford (2003b, pp. 243 & 245) and Lubik and Marzo (20@&trict both
K anda; to be strictly positive and a positiva is assumed here throughout. Lubik and
Marzo (2007, p. 17) emphasize that the derivation of thesspeters from first principles
is absolutely essential due to “cross-equation restristio A main result of this paper
is that the specific parameter values in the sticky-inforomatodel are irrelevant for
determinacy.

In the sticky-information variant of the New Keynesian mipeguation|() is replaced
by the sticky-information Phillips curve

1-A

© M= S5 (1A) 3 N )

whereg is Woodford’s (2003b, pp. 160-161) measure of strategicptementarities, and
1— A is the probability that a firm receives an information upd&equation[(B) is due to
Mankiw and Reis (2002) who derive this Phillips curve basedirons’ pricing decisions
being the expectation of the optimal price conditional oeirtlfpotentially) out-dated
information set. A derivation of (1) andl(3) based on firshpiples with exogenously
given government expenditures analogous to Woodford (20G8. 4) can be found in
Trabandt (2007). In any case, despite any similarities¢aribdel examined by Carlstrom
and Fuerst (2002), their model lacks the infinite regresisanrtformation structure of the
Phillips curve found in[(3), making their model isomorplocat flex-price model in finite
time.

The dynamics of inflation as presented by Mankiw and ReisZp@@ve been criti-
cized by, e.g., Keen (2007) as the assumptionafé< 1 drives the results of the former
and the latter find a specification larger than unity to be npdaesible. | do not want
to dwell on the importance of strategic complementaritiesehas they play no role in
the determinacy of equilibria under the interest-rateirsgtules examined here. Thus,
though the degree of strategic complementarities may b@atror the dynamics of the
model, it will be irrelevant for determinacy. So long as ihdae accepted thateteris
paribus an increase in the deviation of aggregate output from iggural” level induces
firms to want to raise their price§ ¢ 0), no further restriction is necessary for the results
that follow. This is certainly a mild assumption and covdrs entire parameter space
considered by Woodford (2003b, pp. 162-164).

Missing is a specification of monetary policy. Following Vdford (2003b) among
many, | shall focus on interest-rate setting rules. “Witk thterest rate as the policy
instrument, the central bank adjusts the money supply tthaiinterest rate target” and,
thus, “itis not necessary to specify a money market equulibrcondition” (Clarida, Gali,
and Gertler 1999, p. 1667).



2 Indeterminacy and the Nominal Interest Rate

After introducing the methods of the analysis, the set adriedgt rate setting rules exam-
ined by Woodford (2003b, Ch. 4) will be examined in the cohtéequilibrium determi-
nacy. The ordering therein will be roughly followed: examupfirst output-gap targeting
rules (with exogenous rules presented as a special caflajioin targeting (both fore-
casted and, then, contemporaneous) and, finally, pricd4asgeting. With the exception
of the examination of exogenous rules, the pattern will bexamine a pure targeting
rule as a special case of an extended specification thatiesloth interest-rate smooth-
ing and output-gap targeting. It will prove informative teaenine the special case first,
likewise following Woodford (2003b, Ch. 4).

2.1 Endogenous Fluctuations and Determinacy

Conspicuously absent from the preceding introduction o dticky-price and sticky-
information models are any exogenous driving forces. Tray seem to be an omission
of an important aspect of the system. However, following,,elheorem 3.15 of Elaydi
(2005, p. 130), the solution to a system of difference equatcan be split into a particu-
lar and a homogenous solution. Only the homogenous solotithre system of difference
equations is relevant for the examination of determiEaEylllowing Taylor (1986), the
bounded solution will be unique for any given bounded exogsrsequence of shocks if
and only if the homogenous solution is uniquely determingthle boundedness condi-
tions on the endogenous variabfes.

By examining the infinite moving average representationhef model in response
to endogenous fluctuations (i.e. to sunspot shocks), thteraysf difference equations
originating from the model of sticky information yields amautonomous or time-variant
system of homogenous difference equations. Appendix Aigesvthe necessary theo-
rems for the analysis in this paper and Apperidix B shows thigat®n of the system
of difference equations that arise from the infinite movimgrage representation of the
model’s variables to sunspot shocks.

2.2 Output-Gap Targeting and Exogenous Interest Rates

In this section, | shall examine interest-rate rules withdigack solely from the output
gap. As a special case, a constant interest rate(i.e. nbdeklis considered.

Consider the model defined byl (1) and (3) with an output-gagetiang interest-rate
rule:

(4) R=@y, 0<@ <o

’cf. Lubik and Marzo (2007)
8Analogous conclusions can be found in, e.g., Woodford (20p3252, & p. 636) .
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Lemma 2.1. The uniqueness of the fundamental solution (i.e. the alesehsunspot
equilibria) is determined by the existence of a unique bedm:bquence{é%’}io that
solves the following non-autonomous recursion:

- o1 - ol a
(1_)\|+2)E+)\I+2a_l] 6in _ |:(1_)\I+1) )\E+}\I+2 al 6Iy

(5) i=0,1,2,...,
Proof. See Appendik CI1.

Using Lemmad 2J1, one looks for parameter spaces of monetdigy @) such that
the boundedness condition in the Lemma provides an addltrestriction on the recur-
sion.

Proposition 2.2. The model given by (11,1(3), arld (4) is indeterminate fofadl @, < co.
Proof. See Appendik C]2.

Thus, contrary to Woodford (2003b, p. 254), if the feedbacknf endogenous vari-
ables is limited to the output gap, no degree of output-gayetang will suffice to ensure
real determinacy. This difference between the stickysmiation and sticky-price models
is due to the long-run slope of the Phillips curve. In the fermis vertical, while in the
latter it is not.(Woodford 2003b, p. 254) Non-verticalityosvs monetary policy to sub-
stitute output-gap targeting for inflation targeting so @sadtisfy the Taylor Principle, a
possibility not available in a model without a systematrid-rung relationship between
inflation and outpb@.

With a bounded, exogenous interest rate, the system defyin@i and [(3) is extended
by a bounded exogenous processRarAs determinacy is related solely to the homoge-
nous part of the system of difference equations, the acddtioany bounded stochas-
tic process in the interest rate rule will not affect the tessuThus, determinacy with
a bounded exogenous interest rate will be obtained undesaimne conditions as for a
constant interest rate. Therefore, without loss of geitgrahe model is closed by the
following interest rate rule:

(6) R=0

This is simply a special case of Proposition 2.2 and, thuscanstant or bounded ex-
ogenous interest rate rule is necessarily associated nd#terminacy. This corresponds
to Woodford (2003b, p. 253) and confirms that a nominal irstierate rule must involve
feedback from endogenous variables, if sunspot equildrado be avoided. This extends

9Fries (2007) notes the independence of determinacy frometeee of output-gap targeting in a sticky-
information model, but this conclusion is based on Wang ara$\(2006) supposition for finite lagged
expectations and not directly applicable to the true, itdiapecification of the sticky information model.
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Sargent and Wallace’s (1975, p. 251) conclusion in their ehodhere their “Phillips
curve is not vertical [in the short run], but Wicksell’s intdaminacy [i.e. indeterminacy
with an exogenous interest rate] still arises,” to hold ia thodel here where the Phillips
curve is vertical only asymptotically.

2.3 Forward-Looking Inflation Targeting

Consider the model defined hy (1) ahd (3), with an extendeatiafi-forecast Taylor-type
rule:

(7) Rt = @RR—1 + OnEt [Tk 1] + QW
0< <o, 0<@g <o, 0<r<1

Lemma 2.3. The uniqueness of the fundamental solution is determingdebgxistence
of unique bounded sequencé&y, BiR}im:O that solve the following non-autonomous re-
cursion:

(1-A+2)g _%;2 &1 [awpeaey _)\i+2% 5
1 —m(l—%ﬂ) [QE} B [ 14ant g ] {QR_J
=012 ..
(8) R, =0

Proof. See AppendikDJ1.

Using Lemma 2.3, one looks for parameter spaces of monetdigy{®,) such that
the boundedness condition in the Lemma provides an addltrestriction on the recur-
sion.

Proposition 2.4. The model given bi/(11,1(3), arid (7) is determinate if and drily- g <
On<1l+ (pR

Proof. See AppendikDJ2.

It is instructive to begin with the special capg= @r = 0, the case of pure inflation-
forecast targetin@ Note that according to Propositibn 2.4, the determinacioregol-
lapses to an empty set: a pure inflation-forecast targetilegsnecessarily indeterminate.

OHere and in the following, it is to be understood that the wsialwill be abstracting from cases where
the relevant eigenvalues lie on the unit circle. Followingdffford (2003b, p. 254), in such a case, the
linearized models examined here are insufficient to addhesguestion of local determinacy. As shown
by Klein (2000), the arbitrary initial condition associdtgith the stable manifold must be “translated” into
the given initial condition. As is shown numerically in thependices, this would appear to be the case
quite generally.

M)t is also instructive to prove the special case first as caoined in AppendixD.P
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Thus, despite the fact that the sticky-information doesatsfy Carlstrom and Fuerst's
(2002) more stringent natural-rate hypothesis (i.e. thelehts not isomorphic to its
flexible-price equivalent in finite time), the same resuétv{ag for the alternate timing-
convention) for indeterminacy is obtained. Contrary tolgtiprice models (cf. Lubik and
Marzo (2007) or Woodford (2003b)), there is no region of detaacy for pure inflation-
forecast targeting rules. In Carlstrom and Fuerst’'s (200&)d of finite stickiness, the
model displays real determinacy only if the model possesegsnal determinacy. The
latter is fulfilled only if the the inflation rate is uniquelyetermined at the dawn of the
flexible-price world, which itself cannot hold if inflatiorfecasts are the sole feedback
variable for nominal interest rate rules. Here, the flexjiniee world dawns only at the
end of time, yet the asymptotic vertically of the Phillipgeel suffices to prevent deter-
minacy under the rule considered here. This would certaiagm to be more consistent
with Woodford’s (2000) discussion of the non-optimalitypafrely forward-looking mon-
etary policy rules than the analogous analysis in stickgegmodels: the purely forward-
looking rule considered here will always be indeterminate, ahus, opens the model to
potentially welfare-reducing arbitrary fluctuations.

The driving force behind this result can be seen by first eramgithe sticky price
model. Lubik and Marzo (2007, pp. 23-24) derive a lower botordp, corresponding
to the Taylor Principle, which rules out monotonic sunspatidwior, and an upper bound
which rules out non-monotonic sunspot dynamics. A key imsigpm their analysis is:
“that the determinacy region disappears as [...] pricestoecperfectly flexible.”(Lubik
and Marzo 2007, p. 23) As the Phillips curve becomes peyfeetitical in the long run,
the upper bound converges to the lower bound.

The intuition behind the non-monotonic sunspots can be agérilows. Consider the
case:pr=1+ 21 13 and the sunspot belief structwg > 0, y; = 0,vt > 1 that dis-

1-A Eal
turbs the economy from its steady state: is this consistéhtthie equilibrium equations?

From (3) and[{i1)

1—A
1n:—77£w+(1—ﬂ)m+%1—AUEAM
Yt = Yit1 —a1(Qrn— 1)Thy1

Fort=0,19 = 1X—)‘EYO- From the demand equation,

1
=T

w=w+mmrbm:w+rja

this should be zero without placing any restrictionsygrif the belief structure is a con-

2This particular parameter setting allows for the sunspmt®hverge after one period. For other values
of @, the sunspots converge only asymptotically and their amablyould unduly clutter the exposition
here.



sistent sunspot. Examining the Phillips Curve of the nexrioge

1—-A 1-A_/14+A
m= TEYl-l-(l—)\)T[l—f—(l—)\) EAY; = TE (T)&—YO)

Inserting this into the demand equation,

1+A 1+A
YiI=Yo+——Y1—Yo & Y1=——Y1=0

A A

leading torm = —1X—)‘EYO- The sunspot belief in a positive deviation in the outputigaps
to higher inflation through firms’ monopolistic behavior. eraxpectation of a return to
a closed output gap tomorrow implies negative growth in thigpat gap for tomorrow,
the both of which lead to a fall in inflation tomorrow. This eqbed fall in inflation leads
the central bank to lower the nominal interest rate todayentlban the expected fall in
inflation tomorrow. This yields a fall in the real interesta@oday, thereby confirming the
sunspot increase in the output gap.

Like in sticky-price models, the sticky information modeissits both a lower bound
and an upper bound on the determinacy region. The lower boeoures the interest
rate to follow the Taylor Principle, necessitating an aetiverest rate. The upper bound,
however, requires that the interest rate not be overly aggre, lest “the output gap and
inflation [be] projected to converge back to the steady stgardlessof their values in
the current period.” (Levin, Wieland, and Williams 20036@8) The difference is that the
two bounds collapse, meaning every interest rate rule sftyiue is either too aggressive
or not aggressive enough.

Turning to the general case, the history dependence in theest-rate rule induced
by the motive of interest-rate smoothing is enough to opeimaaow of determinacy for
a forward-looking Taylor-type rule. That there exists ap@pand a lower bound on
the elasticity of the nominal interest rate with respectxpeeted inflation is consistent
with sticky-price models as discussed above. The lower d@omforms to Woodford’s
(2003b, p. 96) inertial modification of the Taylor Principtee cumulative response of the
nominal interest rate must react more than one-to-one tetaised deviation in inflation
(saving for the irrelevance of output-gap targeting asudised previously). Lubik and
Marzo’s (2007, p. 29) remark that the upper bound in theakgtprice model is “far
above the range of reasonable inflation coefficients” forrmamly encountered parameter
values. This assurance is far from convincing in the stickgrmation model. Indeed,
for the inertial interest rate rule considered here, thdfiodent must be less than two: a
value which is certainly not far above the range of reasaebéfficients.



2.4 Contemporaneous Inflation Targeting

Consider again the modéll (1) and (3). If monetary policy passa extended inflation
target, the model will be closed by the following Taylor-¢ymule:

(9) Rt = RR—1 + OrTk + GVt
O0<@Pr<o, 0<@ <o, 0<r<1

Lemma 2.5. The uniqueness of the fundamental solution is determingdebgxistence
of unique bounded sequencé&y, BiR}im:O that solve the following non-autonomous re-
cursion:

(1_ }\i+2) E +)\i+2%n _% {6?;1} (1_ )\i+1) )\E. _)\i+2% {5?/}
1_a1(pﬂpi 2 .|~ 1 a <1+ %) o
i=0,12,..,
(10 o (e )%

Proof. See Appendik EIl1.

Using Lemmad 2.5, one looks for parameter spaceggfguch that the boundedness
condition in the Lemma provides an additional restriction.

Proposition 2.6. The model given bi/(1],1(3), arid (9) is determinate if and drily- g <
Q-

Proof. See Appendik EI2.

In the special case of pure inflation targetipg= @r = 0. As with pure inflation-
forecast targeting, although the sticky-information mattees not satisfy Carlstrom and
Fuerst’s (2002) more stringent natural-rate hypothelsessame result for indeterminacy
is obtained. The celebrated Taylor Principle is seen to becassary (as discussed in the
previous section) and, now, sufficient condition for detewany.

Thus, contrary to Woodford (2003b, p. 255), determinacyhdependent of the de-
gree of output-gap targeting, as discussed in Settion Zamnkhing the casegr = 0, this
condition reduces to that of a pure inflation target, and¢foy 0, determinacy requires
the nominal interest rate to move cumulatively more thantorene in response to a per-
manent change in inflation, Woodford’s (2003b, pp. 95-9&gteual” Taylor Principle.

The equivalence (up to cumulative effects) of the two irderate feedback rules
examined here, reiterate the conclusion from previousa@ecthat output-gap targeting
is irrelevant for determinacy. The absence of parametassdriof monetary policy has
the convenient attribute that determinacy can be evalustézly on the merits of the

10



interest rate rule. Thus, Woodford’s (2003b, p. 255) slighbmplicated interpretation
of Taylor (2001), requiring parameter estimations of thekstprice Phillips curve is not
necessary in the sticky-information model. Indeed, if anéoitake Woodford (2003b,
p. 255) seriously, that monetary policy of the pre-Volkex inplied indeterminacy is not
necessarily due to too weak of a reaction to inflation, a higéaction to the output gap
would have sufficed; a conclusion which cannot be reachesl her

2.5 Price-Level Targeting

Consider the model defined ky (1) andl (3). If monetary poligyspes a price-level target
with feedback from the output gap, the model will be closedh®yfollowing rule:

(11) R = @ppt+@¥, 0<@p, @ <o

Lemma 2.7. The uniqueness of the fundamental solution is determingdebgxistence
of unigue bounded sequench¥, &R} that solve the following non-autonomous re-
cursion:

i+2 i+2% AF2 _\i+l i+2®%  _y\i+2%R
(1-AF2) g 4 A &N [6?,;#1} _ (L=ATH)AE+A o N2 [6{1]
1—3-1% %; Oii1 1—&1% ai (l-l—%) 5
i=0,1,2,..,
B [1-N, @
12 £:<__{+_)y
(12) o X o)

Proof. See Appendik Fl1.

Using Lemma 2.J7, one looks for parameter spaces of monetdigy{®,) such that
the boundary condition in the Lemma provides an additioestiriction on the recursion.

Proposition 2.8. The model given by(1)1(3), arld (9) is determinate if and drgy > O.
Proof. See Appendik F]2.

With pure price-level targetingy, = 0, any positive response to the price level will
ensure determinacy. This corresponds to Woodford (200361 and follows from the
Taylor Principle.

Note that the general result stands in contrast to that ofdiwd (2003b, p. 261).
This is an obvious consequence of the irrelevance of theeéegfr output-gap targeting
that follows from the long-run verticality of the Phillipsiove in the sticky-information
model as discussed in the foregoing sections. Woodfor@3R, p. 261) assessment of
the attractiveness of a price-level target due to the indégece of determinacy from the
strength of the elasticity with respect to the output gajofes here and throughout this
paper essentially tautologically as the question of dateny is independent of output-
gap targeting for all the rules considered here.
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3 Real and Nominal Determinacy and the Natural Rate

In this section, | shall show that the results obtained loéoet are equivalent to nominal
determinacy in the corresponding flex-price, full-infotioa counterpart. Thereafter, |
shall extend the results of previous sections to a broadesaf models that share the
natural-rate feature and the structure of the demand sidlenametary policy.

The equivalence to nominal determinacy in the counterpghtowt nominal frictions
provides a key insight for the extension to a broader clasthd full-information counter-
part of the sticky-information model, there is no impedimterfirms’ setting the optimal,
full-information price every period. It follows that the tpwt gap is always zero and, thus,

from (1),
(13) R = E; [T4]

this is identical to the Fisher equation in Woodford’s (2008h. 2) analysis of nominal
(price-level) determinacy in a frictionless, flexible-g@ieconomy. The conditions for the
existence of a unique, locally bounded solution for the mahinterest rate and inflation
for each of the interest rate rules in the foregoing sectayasdentical to the conditions
presented there. This is shown explicitly in Woodford (2008h. 2) for exogenous
interest rate rules and contemporaneous inflation tagetith and without interest rate
smoothing. It can easily be shown that this holds for the reimg rules examined here
and will be excluded here for the sake of brevity.

Using the foregoing, the results in this paper can be extétal@ broader class of
models.

Proposition 3.1. Consider a model with a demand side as given[by (1) and mognetar
policy defined over control of the nominal interest rate. thet supply side be described
by any relationship between the output gap and inflation skiah(l) the model conforms

to Lucas’s (1972) natural rate hypothesis and (I1) for atdeane horizon, there is a trade-
off between inflation and the output gap. The bounds for relrthinacy are identical to
the bounds for nominal determinacy in the flex-price, fufbrmation counterpart given

by (13).

Proof. If the model conforms to (1), then the unconditional expgotaof the output gap
must be equal to zero independent of monetary policy (seediha@ (1998, p. 359)).
Taking the unconditional expectation of (1):

(14) ElVt — Y1) = aE [ 1 — R

which posits a relationship between the unconditional etgimn of the output gap with
monetary policy (defined over the nominal interest i&fe One could certainly spec-
ify a process for the nominal interest rate such that the mditional expectation of the
output gap would be equal to zero, but the natural rate hgsighrequires that this hold
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regardless of monetary policy. Thus, that the unconditierpectation of the output gap
is equal to zero must follow from the supply side equation gt hold independently
of ().

The natural rate hypothesis delivers, then, the existentadt the uniqueness of a
bounded path for the output gap irrespective of the existamc uniqueness of bounded
paths for inflation and the nominal interest rate. Howevernf(14) it must then be the
case that the real interest r&e— E; [T 1] also converges. Furthermore, if the bounded
path for the real interest rate is uniquely determined, seis the bounded path for the
output gap and vice-versa.

The uniqueness of a bounded path for inflation and the nonmitexest rate is, thus,
given by the rule for monetary policy and {13) as the realregkrate is some bounded
process and can, for the purposes of determinabg normalized to zero. Determinacy,
therefore, corresponds to nominal determinacy in the fleoepfull-information counter-
part.

Were it not for (I1), there would be complete separation leswthe real and nominal
sides of the economy and monetary policy through the nonmitedest rate would serve
only to establish nominal determinacy. That (II) holds bguasption links nominal and
real determinacy: without a unique path for inflation, (ljplies that although every path
for the output gap be bounded, a unique path for the outputgapot be pinned down.
If a unique path for inflation be determined by |(13) and monygalicy, this path selects,
through (Il), a single path for the output gap.

Therefore, there is a unique convergent path for the outpptigand only if there
is a unique convergent path for inflation and the nominakrégterate in the counterpart
model [13). O

A few comments are in order here. Classical real busineds oyadels are generally
of the type that (I) holds but not (Il), as complete flexililib prices is assumetd. This
is simply the case studied at the beginning of this sectiahrannetary policy serves
only to establish nominal determinacy. In the sticky-pridew Keynesian model, (11)
holds while (I) does not. As a consequence of (I) not holdihg,sticky-price model is
not isomorphic to its flex-price equivalent even asymptilyc and there is no reason to
expect a general equivalence between determinacy comglitiothe two models. With
there being a permanent link between the nominal and realodithe economy, nominal
and real determinacy must be simultaneously ascertained.

When both (I) and (Il) hold, (II) provides the link betweenmimal and real deter-
minacy as in standard sticky-price models. Condition (bwaver, ensures that this link

13see Sectiorf(211). As the real rate converges independsfritiflation and the nominal interest rate,
it can be omitted from the homogenous solution of the latvettie purpose of determinacy, leaving the
homogenous solution t¢_(fL3) and the monetary policy rulestal#ish the determinacy of the nominal
variables.

4cf. Woodford (2003b, p. 6)
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dissolves such that conditions necessary to determindebesminacy are identical to the
conditions for nominal determinacy that would prevail w@endition (II) not present.

This conceptual link between nominal determinacy in RBC e®@nd both real and
nominal determinacy in real-rate models with nominal faos is more than just a cu-
riosity. It provides for a simple means to establish nomarad real determinacy: one
need only to examine the conditions for nominal determinadie corresponding flex-
price, full-information equivalent, i.e. the “correspangl RBC model.” This is generally
a much simpler task and, in the class of models examined aualependent of the
parameters in the demand and supply equation.

4 Truncation and Specious Determinacy

Here, | shall examine the consequence of the truncation bgedabandt (2007) and

Andrés, Lopez-Salido, and Nelson (2005) under a puratiofi forecast targeting rule
for the nominal interest rate. Their truncation eliminatestail end of the distribution of

lagged expectations in the sticky-information Phillipsvaiand, thereby, induces a form
of permanent rigidity causing the model to violate the retuate hypothesis. As such,
it is not surprising that this will lead to a specious deteracy region for the otherwise
indeterminate monetary policy rule considered in Sec{B)(

Equation[(B) is replaced with

1—A 1-1

(15) T =& +(1-7) _Z)A‘Et_i_l [T% + EAy]

for somel < «. And monetary policy is given bl = @rEt [Tk+1], 0 < @ < 0.
The system, augmented additionally by (1), can be writtenaitrix form as:

0= _ZAi Ee i [Yira] + Z BiE:_i %] + _Zci Et—i [Yi—1]

whereY; = [Trt Ve Rt]’. This is the canonical form of Meyer-Gohde (2007) and the
uniqueness of a bounded solution can be determined by exaire eigenvalued () of
the matrix pencil

(16) Fil—a)ci zi'_lo Bi] r l? —zi'ao/sq]

There will, in general, be six generalized eigenvalues asbaated eigenvectors. At
most four finite solutions to the associated problem exiséd of which are equal to zero
as can be seen in AppendiX G. Uniqueness can be characteyzibe@ uniqueness of
exactly thred"; associated with the foregoing problem, whirg < 1.
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As shown in Appendik G, there will exist a unique bounded Sofuf the interest-rate
rule satisfies the Taylor Principle and does not react “toangfly”’to expected inflation:

2)\|+1
& (L+ A — 2\ D)

(17) 1<@r< 1+

A simple explanation for the (re)emergence of a determimegion compared with Sec-
tion (2.3) is: the truncation scheme (as the tail end of tls&ridution of lagged expecta-
tionsneveradjusts) causes the natural rate hypothesis to be violated.

The right-hand condition of (17) approaches 1 approaches infinity:

_ 2)\I+l
i, (H a1£(1+A—2A'+1>) =1

Thus, as the truncated version approaches its intended tbenconditions for a unique
equilibrium as determined by monetary policy are given by@, < 1; or, indeed, that no
value for the response of the nominal interest rate to erpdoflation is consistent with
a unique equilibrium. Thereby replicating the result oft®ec(2.3). Thus, in addition to
potentially spurious dynamics as shown by Meyer-Gohde {R@€uncation in a sticky-
information model can also lead to specious determinacys déficiency is only fully
overcome in the limit with this truncation scheme, as, for famite |, the truncated model
violates the natural rate hypothesis.

Alternatively, one could truncate to ensure that the narata hypothesis is still ful-
filled, e.g.

1-A 1-))
(19 m= 2R LS Ve sy

for somel < o. As is confirmed in Appendik]G, the equilibrium is necesgyairide-
terminate by repeating the foregoing exercise. The poirg iethat the weights in the

probability distribution of information updating must sumone % zi';g)\i =1).

5 Discussion

Woodford’s (2003b, pp. 252-259) conclusion that an interate setting rule which does
not directly (i.e. with respect to inflation only) satisfyetiTaylor principal need not
be associated with indeterminacy does not carry over to tibkysinformation model.

Whereas the “near-canonical” sticky-price model exhigit®n-vertical long-run Phillips
curve that allows for both “substitution” of output-gapgating for inflation targeting and
a pure inflation-forecast target to ensure uniquenesstitig/snformation model’s ver-

tical long-run Phillips curve precludes both policies. Fkields stricter bounds (lower
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and, in the case of forward-looking policy rules, upper) loa ¢oefficients of interest-rate
setting rules for the sticky-information model. The bouwdsinterest-rate rules as de-
rived here are juxtaposed in Table 1 with the bounds deriwé&tiaodford (2003b, Ch. 4)
for the sticky-price model.

These tighter bounds have one obvious advantage over tkerlomes derived by
Woodford (2003b): the are independent of model-specifiampater values. Regardless
of the calibration, the Taylor principle is only satisfiedhi direct (cumulative) reaction
of the nominal interest rate to a (permanent) deviationfiaiion is greater than ongg; >
1— @r is necessary under sticky information. This corresponddyn&athe conclusions
of Taylor (2001) with regards to the pre-Volcker and the WelecGreenspan eras that
the elasticity of the nominal interest rate with respectriitation was less than one in
the former implying an instability in inflation and greatbah one in the latter implying
stable inflation.

Perhaps discomforting is the conclusion that the uppertquresent under a forward-
looking interest-rate setting rule, is significantly lowtkan would be concluded from a
sticky-price model. Indeed, without interest-rate smowhthe model is necessarily in-
determinate. The estimated values from Clarida, Gali,@edler (2000), however, are
such that the period 1982-96 would be associated with a eréquilibrium in the sticky-
information model, as in a sticky-price model of Woodfor@@3b, p. 260). The analysis
here serves to strengthen and clarify conclusions drawn &mpirical examinations of
American monetary policy, as determinacy is a direct conerge of the form and pa-
rameter values of monetary policy with the coefficients mith and Phillips curves being
irrelevant.

The upper bound on determinacy with forward-looking rulas been criticized by,
e.g., McCallum (2001) as not being consistent with his MSMitson approach or with
E-stability. As the sticky-information model has a statetee of infinite dimension,
E-stability would seem difficult to ascertain. The MSV apgb proposes to select a
solution using the minimum number of state variables, bistiginecessarily infinite in
this case; thus, having no “advantage” over the infiniteessafution in the form of an
MA( ) solution as per Muth (1961) and Taylor (1986). The MSV doluhas, however,
a second requirement: “the MSV solution involves a procedbat makes it unique by
construction.”(McCallum 1999, p. 627) The bubble-freautioh in the model considered
here would be the trivial solution zero for all variablespasexogenous forces were pos-
tulated. That this solution is readily identifiable here @¢ wery useful when confronted
with a model containing such exogenous forces.

Woodford’s (2003b, p. 258) Figure 4.1 shows, for his paramset, that the upper
bound in sticky-price models is so high that the discussjoeaj., McCallum (2003)
and Woodford (2003a) regarding this upper bound is almostlpacademic. Yet, this
discussion is of pressing importance in the sticky-infaioramodel, as its upper bound
1+ @r is not far from the range of relevant parameter valuesgipr Should the upper
bound be found to not be “of dubious merit” (McCallum 20031 p54), a pure inflation-
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Table 1: Determinacy Regions: Comparison of Sticky Infaioraand Sticky Prices

LT

Interest Rate Rule Sticky Prices Sticky Information
Non-Price-Related Feedback
R=0 0 0
R =om ®> 15 0
Inflation-Forecast Feedback
R = Q& [Tho1] 1< @p< 14228 0
(Prr>1—<PR—1%é(Py P> 1—¢R

R = @rR—1+ @nE [Th41] + G0t 1p

cpn<1+(nq+7<(g,+21§—1‘m> P < 1+@r

Contemporaneous Inflation Feedback

R = @nTk o> 1 Q> 1

R = GrR_ 1+ QrTk + G}t on>1-gr—LPq P> 1—gr
Price-Level Feedback

R = @px ¢p>0 >0

R = @ppt + Q) Pp>00r@p=0, > 155 @ >0



forecast rule should be avoided rather generally by mopetaicy and implemented only
with great caution when it be imbued with some form of histdependence such as the
interest-rate smoothing examined here. Even then, therlbawend derived here would
still prescribe a more stringent interpretation of the dayrinciple than in sticky-price
models due to the irrelevance of output-gap targeting foeerd@nacy.

6 Conclusion

Inflation targeting does work, but some conclusions readhed far on the basis of
a model that violates the natural rate hypothesis are prematlhe generalization of
the results for the prototypical sticky-information moge¢sents some comfort: Lucas’s
(1972) natural rate hypothesis suffices to induce an iné@tank between nominal de-
terminacy in the associated full-information, flexiblegercounterpart and both real and
nominal determinacy in the nominally rigid model, the formbeing a generally simple
exercise to determine. This equivalence, furthermoreliggts the link in terms of de-
terminacy that the natural rate hypothesis provides betwtendard RBC models and
models with nominal rigidities.

As argued in Sargent (1973, p. 480), “right or wrong, the lomg natural rate [hypo]thesis
has immediate relevance because it says something impaltant the impact of system-
atic and predictable changes on the economic system.” Qreetsf this relevance is that
interest rate rules induce multiple equilibria in broadargmeter spaces than previously
thought.
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A Time-Variant Difference Equations

In this appendix, | shall present the necessary theoremstablesh the existence of (lo-
cally) uniqgue bounded solutions to the models presentethentéxt. The systems of
difference equations that describe the solutions to tleysinformation Phillips curve
are nonautonomous (time-variant) difference equationsy@vtGohde 2007, p. 4). Un-
fortunately, following Elaydi (2005, p. 191), “eigenvatido not generally provide any
information about the stability of nonautonomous differeequations.” Yet, both Wang
and Wen (2006) and Meyer-Gohde (2007) work with the eigem®sbf the system de-
scribed by the limiting coefficients. While the former prod@s no support for the conjec-
ture in the infinite case, the latter imposes the requiretiethe matrices of coefficients
converge element-wise, ruling out the periodic coeffi@ga@asponsible for, e.g., Edwards
and Ford’s (2002, p. 286) counterexample.

This convergence will prove sufficient to determine the nandd backward-looking
variables, i.e. the familiar eigenvalue accounting of Blzard and Kahn (1980). As
in, e.g., Klein (2000), even if there are exactly as many hack-looking variables as
given initial conditions, it need not hold that the given diions can be “translated” to
the backward-looking variables. With potentially singuiane-variant coefficient matri-
ces being involved, a definitive answer to the translatgisinnot be given analytically.
Thus, although regions of indeterminacy smaller than tiostandard sticky-price mod-
els are analytically proven to exist, regions of determyra® contingent upon translata-
bility, confirmed for broad parameter spaces numerically.

A.1 Stability of Nearly Time-Invariant Systems

Here, | shall present necessary conditions for the stalfditd therefore boundedn&)
of nearly time-invariant linear systems by repeating Thao8-29 in Ludyk (1985, p. 61).
Consider the system given by, 1 = [C+ D(k)] X«

Theorem A.1. If
1. the time-invariant equivalenty; = Cyx is stable
2. andy}, ||D(K)|| < ol

then x,1 = [C+ D(K)] x is stable.

Proof. See Ludyk (1985, pp. 61-6B.

15¢f, Theorem 3-12 of Ludyk (1985, p. 39)

18Edwards and Ford (2002, p. 286) note that the matrix 2-noowiges the suitable measure for nonau-
tonomous systems and following, e.g., Golub and van Loa89}1p. 57), the 2-norm is bounded above by
the Frobenius norm, establishing the appropriatenes®datter in the analysis that follows here.

Yor Satz 4 and 5 “stability” [Stabilitat] in Perron (1929, .p456-47), the full linearity of the models
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A.2 Asymptotically Constant Systems of Difference Equatins

Here, | shall present Theorem 8.25 of Elaydi (2005, pp. 36D}&s it applies to this
paper.
Consider the system given By, 1 = A(k)xx, whereA(k) = C+ D(k)

Theorem A.2. If

1. C contains as many distinct, non-zero, hyperbolic eigkras and as many linearly
independent eigenvectors as its dimension

2. andyj, |ID(K)|| < e
then

1. %1 = A(K)x can be written a®y;1 = NG + D(K)©
whereA = P~1CP,D(k) = P~ID(k)P, andOy, 1 = P~ x,1

2. there exists a one-to-one correspondence between bdsotigions of
Okr1 = N\O+D(k)©y and=y 1 = A= given by

k—1 5 0 5
(A1) = :wj;odn(k)wl(j +1)D(j)0; - gkcbz(k)wl(j +1)D(j)0;

where®(K) is the solution map afy, P2(k) is the solution map aEy with regards
to unstable eigenvalues, adg (k) is the solution map aEy with regards to stable
eigenvalues.

Proof. See Theorem 8.19 in Elaydi (2005, pp. 351—@). O

A.3 Initial Conditions on the Stable Manifold for Asymptoti cally Con-
stant Time-Variant 2x2 Systems of Difference Equations
Now, | shall apply Theorem Al2 to two-dimensional systemsime-variant systems of

difference equations to determine initial conditions #ragure the system lie on the stable
manifold.

considered here allows his conditicisand¢ to be fulfilled when the second assumption of the foregoing
is fulfilled (Perron 1929, pp. 62-63).

18or Satz 8 and 9 “conditional stability” [bedingte Stalaititin Perron (1929, pp. 49-53), the full linearity
of the models considered here allows his conditi@rend¢ to be fulfilled when the second assumption of
the foregoing is fulfilled.
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Proposition A.3. If xk1 = A(K)Xk is a two-dimensional system of time-variant difference
equations that satisfy the assumptions of Thedrem A.2 anfirgt eigenvalue is inside
and the second outside the unit circle, then the solutias kounded if and only if

© j—1
(A-2) p-1 (I +5 29D A —i—1>>x0:o
P2 | l2e j; ) i|:L

where|z,| > 1 is the second eigenvalue of C angliB the second row of the matrix of
(right) eigenvectors of C.

Proof. See the construction of the initial conditions below

Let A(k) satisfy the assumptions of Theorém A.2. Theran be diagonalized to
yield the systen®,, = AO, + D(k)Oy with constant-coefficient diagonal counterpart
=kir1 = N=k. Assume, without loss of generality, the second eigenvafue (and thus
the lower right entry im\) lies outside the unit circle. The only bounded solution_:ﬁx)
(the second element &) is =2 = Ovk, as=2 would grow without bound otherwise.

Using [A-1),

(A-3) 0==0— Z)dlag 2, B)diag(0,2,")B(j)e
thus
(A-4) Op=So— %diag(o,z;““))ﬁ(j)e,-

as the solution oE& (the first element oEy) was stable by constructioﬁé is indeter-
minate with respect to boundedness, and, therefore, ddgemade a restriction. Thus

(A-5) G = [3] - i [3 Z;?H)] B(j)e;
pa

for some initial conditiorc. With the definition®POy = xx andxx+1 = A(K) X,

= |0
(A‘6) P_lxo = |:8:| - % [O —(j+1) 1D I_LA ] —i—
=

The second row of which is

j—1
(A-7) Pt <|2x2+222’“ (j)tLA(j—i—l))xo:O
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B Model Appendix

In this appendix, | derive the nonautonomous system of i@iffee equations that charac-
terizes the response ¢fi (1) amd (3) to a sunspot. Assumeuwtithss of generality that a
sunspot shock occurs at tirhand denote witl®* the responseperiods after the sunspot
of the variablex/1

Equation[(1) can be rewritten as

(B-8) =8

R T
i+1 7 a9 + a16i+1

As the system’s response to a perturbation at tifmem equilibrium is being exam-
ined, the response of all variables and all expectatioreddaford are equal to zero (i.e.
the model is starting from the equilibrium steady-statentkoh) Equation[(B) can thus
be rewritten as

1A <l
o= = Ve84 (1)) 3 M B +E&(8 -8 )]
=
collecting terms
AT <1;7‘ n (1_>\i)> &8 —&(1-\) &
= i 1—1
or

(B-9) AT = (1-AT1))Ees —en (1-N) & 4

C Proofs from Section 2.2

C.1 Proof of Lemmal2.1

Proof. With the nominal interest rate being a feedback rule depgmatathe output gap,
the system defined by (B-8) arld (B-9) is extended by the eaudfi = @& to yield the
dynamical system

A= (1N Es —an (1-A) &,

& =0 —ad+ad,
3 = @0

B¢f. Taylor's (1986) method for solving for the infinite mograverage coefficients of endogenous
variables
20cf. Mankiw and Reis’s (2002) Appendix

25



(C-10) i=0,1,...
Substituting the third into the second and the second, themthe first,
AT = (1— ) €3]

(1—AH2) g4 N+2= }6,V+1:[(1—7\”1))\&“”27”;1% 5
1

(C-11) i=0,1,2,...

The first equation places no restriction on the recursioerdesd by the second (deter-
mining only the initial response of the inflation rate givhe tnitial response of the output
gap), and, thus, the dynamical system is giver{ by (5)

C.2 Proof of Proposition[2.2

Proof. The difference equation ifl(5) can be invertag 4nd¢ were assumed to be both
positive and finite and & A < 1) and rewritten as

&, = (A+A‘+2(1_M G-¥) Hﬂ/) &

i1 £ 4 \I+2 <a_1l_5)

(C-12) i = 0,1,2,..

(1) (& -8)+oy
E+A2( L
stable. The second assumption of Theorem](A.1) requires

5 ID0)| < =
i (1-A (——E>+(Py Ai+2 1
Z;'“z e mez( )||<(1—>\)<a—1—5)+(ﬂ/)|

)\|+2

- I~ A)(——a)+cpy)\\gzw+2< 5

(c-19) = i{a-n(F-8)+a)M<o

where the last line comes from the absolute convergencesahfimite series which fol-
lows from the ratio test.

Thus, both the assumptions of Theorém (A.1) are fulfillede Técursion is stable
and, therefore, any finite sunspot deviation of the outpptig@onsistent with a bounded
solution of the recursion: the equilibrium is indetermmat

Defining A= A andD(k) = Ai*2 , itis trivial (0 < A < 1) to see thaA is

26



D Proofs from Section 2.3

D.1 Proof of Lemmal2.3

Proof. With the nominal interest rate now feeding back on its owmgéyvalue, tomor-
row’s expected inflation, and the current output gap, théesysdefined by[(B48) and
(B-9) is extended by the equatidft = ¢nd]} ; to yield the dynamical system

(D-14) &R = @rOR 1 + o0 1 + @8
which defines the dynamical system

AT = (1A ES e (1-N) &,

& = & —adl+ad,
& = RO% 1+ 00+ @0
i = 0,1,2,..

651 — O

Inserting the third into the first and the third into the setgives

, A2 ) 2@ PR
1-A+2) gy, - =38R = [)\ 1— A1 —)\'*2—} & —NT2EFR
( )E i+1 P i € ( ) P i O i—1
1 PR
& —a (1—@) N = <1+a1%n) 5iy+ala_[5iR_1
i = 0,1,2,..
651 - O
(D-15) AL = (1-MN)EF)

As in previous sections, the last equation places no réstion the recursion; thusly,
the dynamical system can be written in matrix form[as (8).

D.2 Proof of Proposition[2.4

It is instructive to begin with the special case of pure inflatforecast targeting, as the
system can be reduced to a scalar system and direct methots epplied.

Special Caselpy =pr =0

With pure inflation-forecast targeting, the system can beiteen as

A = (1-MN)EY
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[(1-A")Eay (pn—1) -NT &, = [(1-A"1)A&ay (pn—1) —A2] &

(D-16) i = 0,1,2..

As in Section[(Cl1), the first equation places no restricbarthe recursion described
by the second (determining only the initial response of ttilaiion rate given the initial
response of the output gap), and, thus, the dynamical systgiven by

[(1-A"2)&ay (pr—1) — N & = [(1- A1) A&ay (@n— 1) —A'T2] &

(D-17) i=0,12,...,

Proof of Special Casepy, = gr=0
Proof. The difference equation in.(D-17) can be inverted to yield

(D-18) o1 = a()y
L A [( )\|+1) Eal (Pn l) )\i+1}
(D-19) a(i) = [(1—N+2)Eay (Qr— 1) — AT

so long asp; # 1+ ( for somei.

1— )\|+2)
The solution map is glven by

(D-20) & = <|i_La(n)> A

Simple calculations reveal that

K A=A Eag (g — 1) — A
k-l
(D-21) =2 (o) oy (g 1) - N2
and thus
|+1 - a
J=
(0-22) _ AM(1-A)&a (Pn—1) — A &

[(1—A+2) Eayg (Qr— 1) —AI+2] 70

the limit of which asi — o is zero for any finiteESg)’y asA is necessarily within the unit
circle. Thus, the stability of the difference equation @&@atisfies the boundedness con-
dition and no other condition is present to pin down the ahitbnditions of the recursion
necessary for a unique solution.
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second assumption of TheoreEGA.Z) for= 0. This is not, however, problematic, but
does require a closer inspection. ForiaH i;

for somei (sayiy), then the system does not fulfill the

& = (A+b(i)d
(D-23) b(i) = —AI*? (1-A)(1+&ar(pr—1))

€ag (Pn—1) —A+2(14&ag (Pn— 1))

but b(i: +1) = —A and, thusﬁ, 42=0. As(A+Db(i)) #0, Vi > i; +1, the foregoing

requiresd = 0, Vi > ir +2. From [D=17), ifor = 1+ (17;\‘:7;2)&1 EST = 0. Whence

& =0,i=0,1,..i;. Thus, the bounded solution is given &Y= 0 for alli > 0 except
ir +1 for any|®’ 1l <o

This has served merely to shift the initial point of the restom and the conclusion
of indeterminacy still holds. For the foregoing cases (amtted whenevep; < 1+

W) the difference equation falls into the category “stabldha further sense”

(Perron 1929, pp. 41- é@ as the replacement of= 0 withi > i; 4+ 1 as the initial point
of the recursion produces a recursion which is stable in émses of Theoreni_(Al1) or
Perron’s (1929, pp. 45-46) Satz 4.

Thus, there is necessarily indeterminacy in the case of ipfletion-forecast target-
ing.

Proof of General Case:0 < @ <o, 0<gr <1

Proof. The system of difference equationsl[ih (8) can be invertedetiol y

) - cronlg

A 0
_adg+(1-MEon g
a&(pn—1) On—1
)\i+2

AN+2(1+ @€ (gn—1)) — &€ (n— 1)

D(i) =

1-N)(1+&a(pn—1)) +ay ¥
(0-24) ( (pn)( +&ay (Or ))-I-l 1o (PR(PH
Qa1 +EQ-N) (1 5g) e
solongaspn;«élJr%,Vizo.

214im weiteren Sinnetabil”
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)\|+2 |

Using the Frobenius norfiiD(i)|| = v(i)M, wherev(i) = |N+2 Tt (o) ek onT) -

Applying the ratio test tw(i) deliversy;> 4v(i) < « and, thusP(i) satisfies the second
assumption of Theoreris A.1 and A.2.

Examining the eigenvalues @f, z1 = A, o = the first of which is necessarily

T—0n <p,[’
stable. Thus, the system will be inherently stablg#;-| < 1 and will allow for a unique
stable solutionB}’, R, & = 0 following from the initial conditiorﬁR1 = 0 and Proposition

A3 if \1“’R | > 1. Thus, in the former case, the boundedness condition wilhbuffi-
cient to rule out sunspot equilibria (indeterminacy), vézes, in the latter, only the trivial,
sunspot-free equmbrlum (determlnacy) will satisfy theulmdedness condition.

Shouldg; =1+ W for somei (sayi¢), then the system does not fulfill the

second assumption of Theorem (A.2) tor= 0. This is analogous to the situation in
the proof of the special case. The singularity of the coeffitimatrix combined with
the initial conditiond®; = 0 implies thatdR ; = & =0, i <i;. Using either of the two

equations in the recursion then yields a new initial condifil — A'+2) 66, = )"”2 3R,
which then yields a non-singular recursion fet i; +1,i: + 2, ..., with the same stablllty
characteristics as in the recursion without the singylafihe Ilnear relationship between

6R andE')y+1 is supplemented by the condition supplied by Propos-l Both condi-

tlons run through the origin and, thus, the unique squl:*.zoE'Lrl o = 0, unless both
conditions define the same linear relationship. As the d¢mrdprovided by Proposition
[A.3 cannot, in general, be solved for analytically, numariavestigations must be re-
lied upon. Numerical calculations confirm, for a wide ranfjparameter values, that the
supplemental initial condition provides a linearly indegent relationship betwee®

it+1
anddf. Figure[1 plots the initial conditiofl — A'*"2) g8 | = 2. =3 and the initial
condltlon from Propositioh_Al3 for a wide parameter rangmmjlzed for the former
to have a slope of one. Therefore, the system is stable (abl&sin the further sense”
(Perron 1929, pp. 41-42)) Whégu—\ < 1 and, thusly, indeterminate and the system is
saddle-path stable (or “condltlonally stable in the furteense” (Perron 1929, pp. 41-

42,53)) wher 1_“’;“| >1

)\I'[+2

E Proofs from Section 2.4

E.1 Proof of Lemmal2.5

Proof. The system defined bly (B-8) and (B-9) is now closed with anreleéd contemporaneous-
inflation targeting rule of the form

(E-25) & = RO 1 + ¥+ @,
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— — — Given Intitial Condition
Variation of Constants Initial Condition

Figure 1: Linear Independence of Initial Conditions for Bwsition[D.2
ga;€{001:01:21:1:10}, i € {0,1,5,10,20}, @ € {0,0.5,1,2}, gr € {0.25,0.5,0.9}, A €
{0.25,0.5,0.75}

The dynamical system is given by

AT = (1-ATHES e (1-N) &,

& = & —ad+ad,
& = RO+ O+ @0
i = 0,1,2,..

(E-26) N =0

Combining inserting the third into the first and into the setof the foregoing yields

(1_)\i+2) E +)\i+2(w 6y B }\i+26R - (1_)\i+l) )\an_)\i+2_(pR6_R
0 i+1 ® i+1 = i Ore 1
a () =
(1— al—:;::i) 6iy+1—|— —16iR+1 = 5iy+ a1 <1+ —> 6iR

i = 0,1,2..
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A5 = ((1-AN)E&@n+Aqy)
(E-27) N, =0

the last of which is irrelevant for the stability considésat of the recursion, yielding

@a).

E.2 Proof of Proposition[Z.6
Proof. The system of difference equations[in](10)can be invertekeid

y y
] = croml3
. A 0
T [E@3ran) m(eg)
. A+2 (1-2)(1—-ag) ay
(E-28) D(i) = NTZ(1—anE) T Ak _(pn(kalgi(lm _(pn<1_a1%[>

as long agpln (}\i+2+a1€ (1—)\i+2)) # 0, which, as botla; andg are finite and positive
and 0< A < 1, will be well defined and will hold for G @y <.

Using the Frobenius normD(i)|| = v(i)M, wherev(i) = \ﬁﬁ(l+;)+alz|. Applying
the ratio test to (i) confirms thaty;> yv(i) is finite and, thusD(i) satisfies the second
assumption of Theoreris A.1 and A.2.

The eigenvalues @, z; andz, are given byz; = A andz, = @y <1+ %) = Qn+ Qr.

The first of which is necessarily inside the unit circle. Thlisg+ @r| < 1, the system
is inherently stable and, therefore, indeterminate follga heoreni A.lL.

If |@n > 1, Propositior_A.B will provide an initial condition to ensuthat the re-
cursion remains bounded. Unfortunately, the formula caieoevaluated analytically.
Numerical calculations reveal, however, that the init@hditions require a negative re-
lationship betweer@é andéff running through the origin. This, in conjunction with the

On
tween the two variables running through the origin, has ssinique bounded solution

6%’ = BiR =0, Vi > 0; thereby ruling out sunspot reactions of endogenoushlasaFigure
plots the two initial conditions for a wide range of paraematalues normalized for the
former to have a slope of one. This demonstrates that theawdittons are, at very least,
not generally linearly dependant.

R
additional initial condition® — <1X—)‘E + %ﬁ) 6‘0’ which posits a positive relationship be-
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Figure 2: Linear Independence of Initial Conditions for Rusition E.2
£a€{001:01:1,2:1:10},¢r€ {1.001:01:24:2:10,¢, € {0,05,1,2} ,¢r €
{0.25,0.5,0.9},\ € {0.25,0.5,0.75}

F Proofs from Section 2.5

F.1 Proof of Lemmal2.7

Proof. The system defined by (B-8) arld (B-9) is now closed by a moyetalicy de-
scribed by

(F-29) 3 = @8’ + @0

Combining the foregoing with equatioris (B-9) ahd (B-8), dymamical system is given
by

NP -8 ) = (1-NThEd —en (1-A) &,

& =8 —adl+a (8-
& = oo’ + @3
i=0,1,...
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(F-30) &, =&, =0

As before, the final restriction can be omitted from the rem. Substituting the third
into the second and the third into the first (and lagging fedaance) yields[(12).

F.2 Proof of Proposition[Z2.8
Proof. The system of difference equations[inl(12) can be invertsteid

%] - c+om (3]

i+1
C A °
T AN (2-q) 149
. AI+2 (1-N)(1—af) ai
(F31) D) = Sza—ag ras S @)D (o ag,)

as long astplp (AN+2 4+ &€ (1—A1*2)) =£ 0, which, as botley andg are finite and positive
and 0< A < 1, will be well defined and will hold for G< @p < .

Using the Frobenius normD(i)|| = v(i)M, wherev(i) = \ﬁﬁ(l+;)+alz|. Applying
the ratio test tw(i) confirms thaty ;> o v (i) is finite and, thus, thdd(i) satisfies the second
assumption of Theoreris A.1 and A.2.

Examining the eigenvalues Gf z; andz, it is trivial to see thaty = A, 2o = 1+ @y,
Thus, according to Theorem A.2, the system is stable (ardeftre, indeterminate) if
both eigenvalues are within the unit circle. Asiecessarily is, then, {fL+ @,| < 1, the
system is inherently stable.

If |14 @p| > 1, Propositiori A.B will provide an initial condition to ersuthat the
recursion remains bounded. Unfortunately, the formulanoaibe evaluated analytically.
Numerical calculations reveal, however, that the initiahditions require a relationship
betweerf% andéff running through the origin. This, in conjunction with thed#&dnal
initial condition%‘ze = (J'X—)\E—i— %) 6‘0’ which posits a positive relationship (fgy, > 0)
between the two variables running through the origin, hatssasiique bounded solution
6%’ = BiR =0, Vi > 0; thereby ruling out sunspot reactions of endogenoushiasaFigure
plots the two initial conditions for a wide range of paraenatalues normalized for the
former to have a slope of one. Note, that although the adddfooutput-gap targeting
can bring the additional initial condition arbitrarily de to the original condition, the two
never cross. This demonstrates that the two conditionsaanegry least, not generally
linearly dependant.
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— — — Given Intitial Condition
Variation of Constants Initial Condition

Figure 3: Linear Independence of Initial Conditions for pusition E.2
£a€{001:01:1,2:1:10,¢, € {0.001:01:24:2:10},q, € {0,0.5,1,2} ,A € {0.25,0.5,0.75}

G Proofs from Section 4

The pencil [16) can be written as

[0 0 -¢ ()\_)\H-l) a1 0 E(l_)\|+1)-
0O O 0 al —a r-1
0 O 0 o 1 0
(G-32) - 0 0 1 0 0
0 —-r 0 0 1 0
0 0 - 0O o 1]

the determinate of which gives the polynomial
(G-33) [()\H-l_ ()\ _)\H—l) aé ((pn_ 1)) -r ()\H—l _ (1_)\|+1) aé ((pn_ 1))] r3 -0

The two “missing” eigenvalues are called “infinite” follomg Klein's (2000) abuse of
language. Of the remaining four eigenvalues, it is trivaakee that three are equal to
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zero. Thus, determinacy will rest upon the final eigenvakiadpoutside the unit circle:

B )\I+1_ ()\_)\Hl) alE. ((p,_[_l>
NI (1N g€ (e 1)

If (I5) is replaced with the truncation ({L8), the penicill(t&) be rewritten as

(G-34) r

[0 O A O 0 17
0 0 0 ayl —a Mr—1
0 0 0 of 1 0
(G-35) ro o 1 0 0
O - o 0 1 0
| 0 O -r o 0 1 ]
the determinate of which gives the polynomial
(G-36) A (@r—1)—T (gr—1)]auM*=0

Excepting for the knife-edge cagg = 1 following Woodford (2003b), the two “missing”
eigenvalues are infinite, three eigenvalues are trivia@hpzand the remaining eigenvalue
isI™ = A which is necessarily inside the unit circle.
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