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Abstract. Despite a considerable number of topology generation algorithms for simulation
of wireless multihop networks it is difficult to find one with output similar to real networks
[13].
In this paper, we propose NPART – a Node Placement Algorithm for Realistic Topologies
whose created topologies resemble networks encountered in reality. The algorithm is flexi-
ble since it is sufficient to provide it with different input data to obtain different topologies.
To demonstrate its quality and adaptivity, we compare topologies created by PART algo-
rithm with topology samples from open wireless multihop networks in Berlin and Leipzig.
Compared with real topologies, the generated topologies have almost identical node degree
distribution, similar number of cut edges and vertices, and distribution of component sizes
after bridge removal.
The importance of node placement algorithm is demonstrated by comparing ns-2 simulation
results for grid and uniform node placement with NPART generated topologies. Simulation
results show that quality of node placement model plays as important role in simulation
outcome as the accuracy of wireless signal propagation model.
To our best knowledge, this is the first node placement algorithm for wireless multihop
networks capable of creating topologies that have properties observed in user initiated
networks.

1 Introduction

Wireless multihop networks (WMNs) are used for various purposes such as Internet access, sens-
ing applications, and military usage. Different applications require dedicated protocols in order
to offer quality and performance to end users in presence of limited resources. Verification of
developed protocols is necessary and usually it is performed by simulators, due to their low op-
erating cost and fast setup. Quality of simulation directly depends on simulation model. Model
of WMNs is complex and it consists of five sub-models: node model describes hardware and
software of a node; deployment and mobility models provide node positions and their movement
patterns; radio model describes the characteristics of the radio used by the node; wireless signal
propagation model deals with attenuation and characteristics of wireless channel; traffic models
define traffic patterns in a network.

Some of sub-models are based on real data measurements (e.g., wireless signal propagation
[1], traffic models [17]). However, some of them are synthetic and somewhat arbitrary like the
topology generators/node placement models.

In [11], [12] and [13] we have presented results of measurements from wireless mesh networks
in Berlin and Leipzig. Approximately 1500 topological samples have been taken from each net-
work. The analysis showed that properties of artificial topologies are substantially different from
properties observed in reality. Table 1 summarizes differences observed for average node degree,
network diameter, number of biconnected components and articulation points.

The main approach in natural sciences such as physics or biology is to observe reality and
create a model that reflects it. In computer science a frequent activity is to create artifacts
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Average Average #Biconnected Network Articulation
Nodes degree components Diameter points

Berlin 315 4.02 99.22 20.52 75.93
Leipzig 586 4.35 120.1 23.69 93.32
Uniform 400 5.31 30.6 37.76 32.46
RWM 400 7.6 31.7 25.15 21.22

20x20 Grid 400 3.8 1 38 0
Table 1. Comparison of real and synthetic topologies.

and develop unrealistic models that do not reflect the reality. And so is with most of the node
placement models: they have not been inspired by reality nor verified by the measurements. In
order to correct this fundamental issue, we propose algorithm that produces realistic topologies.

The paper is organized as follows: Section 3 reviews existing topology generators for WMN
simulations. In Section 4, we present our node placement/topology creation algorithm. Section 5
shows that the developed algorithm generates topologies whose properties reflect the properties
of real topologies.

2 Definitions

We use undirected graphs to model communication in WMNs. In communication graph, network
nodes are represented as vertices. If node p is able to communicate with node q there exists edge
pq in the graph.

Definition 1. Two vertices a and b are adjacent if there exists an edge between them ( ab ∈ E(G)
). If vertex a belongs to an edge e, e and a are incident.[18]

Definition 2. A walk of length k is a sequence v0, e1, e2, ..., ek, vk of vertices and edges such that
ei = vi−1vi for all i. A trail is a walk with no repeated edge. A path is a walk with no repeated
vertex.

Definition 3. If in graph G exists a path between vertices u and v, the distance d(u, v) between
u and v is the number of edges on path (u, v). The diameter of graph G is max(u,v)∈V (G)d(u, v).

Definition 4. The degree of a vertex v in a graph G, written dG(v) or d(v) is the number of
edges incident on v. A pendant vertex is a vertex of degree 1.

Definition 5. Maximally connected subgraph is a graph such that there exists a path between any
pair of nodes (p, q). Components of a graph G are its maximally connected subgraphs. A bridge in
a graph (cut-edge) is an edge whose deletion increases the number of components. An articulation
point in a graph (cut-vertex) is a vertex whose deletion increases the number of components in
the graph.

Definition 6. Given an undirected graph, a degree sequence is a monotonic nonincreasing se-
quence of the vertex degrees (valencies) of its graph vertices. A degree set is a set of integers that
make up a degree sequence.

Definition 7. The frequency of an event i is the number ni of times the event occurred in the
experiment. The frequency can be absolute, when the counts ni are given and relative, when counts
are normalized by the total number of events.



3 Related Work

Calvert et al. [4] propose two algorithms that support locality and hierarchy properties observed
in the Internet for creation of topologies of wired networks that resemble typical internetworks.
Zegura et al. [19] compare these algorithms with other topology generators and demonstrate their
impact on simulation results on example of multicast routing. Unfortunately, the experiences
from generation of wired network topologies cannot be applied in wireless context, since in wired
networks there does not exist strong dependency between node location, internode distance and
existence of links, like in wireless networks.

In WMN research, the most frequent node placement models are uniform, chain and grid.
In uniform placement model a placement area (rectangular or circular) of size |A| is chosen
and n nodes are placed inside of it with uniform probability puniform = n

|A| . If placement area
is rectangular ((0, xmax), (0, ymax)), this is typically achieved by sampling x coordinate of a
vertex from U(0, xmax) and y from U(0, ymax). Chain placement model places nodes on a line on
equal distance. In grid placement model, nodes are located at intersections of a rectangular grid.
Number of edges in grid depends on node communication radius, shape and size of cell. In the
literature these parameters are typically chosen so that all nodes that are not on the grid border
have degree of four.

It is particularly difficult to create connected low-density topologies with existing random-
ized models. To ensure connectivity of simulated network, the average node degree is increased.
Bettstetter shows in [2] that for uniform placement process, it is required that nodes have average
degree of 10.8 if we are to have network that is connected with probability of 0.99. Li et al. [9]
provide even higher estimation – they claim that obtaining of the same connectivity probabil-
ity requires 13.78 neighbor nodes on the average. Such dense networks have strong impact on
simulation results since:

– Network diameter is significantly reduced
– Numerous independent paths between each pair of nodes exist
– Failure of individual nodes does not impact the connectivity nor the functionality of the

network

The need for improved node placement model in WMNs has been already noticed and several
non-homogeneous models have been proposed. Bettstetter et al. [3] place nodes in accordance
with the uniform homogeneous process and then apply thinning to it. The thinning operation
removes nodes from a network that have less than k neighbors within radius r (denoted as tr in
[3]). Parameters k and r are specified by the user and they control the level of inhomogeneity of
the topology. Bettstetter et al. also calculate several statistics for the obtained model, such as
probability of nearest neighbor survival and distance to closest neighbor. However, they discuss
only the node placement, ignoring the properties and connectivity of topologies that can be
obtained from it.

Liu and Haenggi [10] propose two quasiregular placement models. In first, vertex coordinates
are Gaussian distributed with the mean given by regular grid points. The second selects vertices
from a uniform placement model such that every selected vertex is closest to a regular grid point.
The obtained topologies resemble the grid structure but they are not as regular as grids. Various
other variations and inhomogeneity models exist: in [6], two-dimensional Gaussian distribution is
used to determine location of sensor nodes. This idea can be extended so that there are multiple
(two or more) vertex focal points, each of the points having a non-uniform distribution attached
to it.

Onat and Stojmenovic [14] propose considerably different approach. They have developed sev-
eral algorithms that create connected topologies with high probability and allow user to choose
the average node degree. The shape of topologies primarily depends on the selected algorithm.
The algorithms do not guarantee connectivity of their output - if the end result is not connected,



algorithm is restarted. Their analysis focuses on algorithm complexity and probability that cre-
ated graph is connected. The probability density function for node degree for each of algorithms
is presented and the differences among placement topologies created by different algorithms is
informally (visually) demonstrated.

4 NPART – a Node Placement Algorithm for Realistic Topologies

Our goal is to develop a node placement / topology generating algorithm that is

– Adaptive – it is capable to create more than one node distribution type.
– Realistic – if algorithm receives input based on measurements from a real network, the

topologies that it produces should have similar properties as the original networks.
– Random – the algorithm does not merely re-create a sampled topology from measured node

locations, wireless device parameters (power, receiving threshold), signal to noise ratio. It is
capable to create new, random topologies but preserving the properties of adaptivity and
reality.

The starting point for algorithm creation is taken from [12]. The following sociological and
technological reasons that shape topologies of real networks are identified:

– It is more likely that new participants join the network in areas where connectivity is already
good.

– A participant in the network expects to have at least a single communication link to the
remainder of the network, possibly creating large number of pendant nodes.

– A pendant node might become a seed for a new, larger and well connected subnetwork.
– It is the network that specifies the area it occupies, not the other way around. So, instead

of defining the node placement area like in most of the existing placement algorithms, the
network should be allowed to grow.

4.1 Algorithm description

The algorithm is presented in Figure 1. As input parameters, algorithm accepts n, the number of
vertices to be placed and communication radius r. The algorithm calculates topologies based on
the path-loss model. The user should specify the additional propagation models in the simulation
(shadowing and Rayleigh fading [1]) to create realistic simulation results. If needed, users can
also customize the algorithm by specifying appropriate metrics that take propagation models in
account (e.g., number of edges in the graph with expected packet loss higher than 0.5 in presence
of shadowing on the wireless channel).

In first iteration of the algorithm the first vertex is placed at an arbitrary point (x,y) in two-
dimensional space. The variables minX and maxX are initialized to x, minY and maxY to y.
Values of these variables from iteration Ik are used to determine the placement area of nodes in
the next iteration: in Ik+1 x coordinate of candidate nodes is uniformly sampled from (minX−r,
maxX + r), while y coordinate is chosen from (minY − r, maxY + r). This enables the network
to grow, without need to predetermine its geographical size.

The algorithm consists of three loops. The innermost ensures that the candidate vertex is
connected with the remainder of the graph, since it is possible that a vertex placed in rectangle
((minX − r, minY − r), (maxX + r, maxY + r)) is not connected to already placed vertices.
For instance, in iteration I4 Vertex 0 in Figure 2 is disconnected from nodes placed in I3. The
Vertex 0 is ignored and new candidate vertex is generated.

Once the candidate vertex forms the connected topology with the existing graph, a user-
defined metric is applied to it. Section 4.2 describes four metrics that we have implemented and
tested. If the candidate vertex has lower metric than previous candidates, it is stored as the



place nodes(nodes n, comm.radius r,
candidates to evaluate in iteration retries):

placedNodes = place first node arbitrarily at (x,y)
minX=maxX=x
minY=maxY=y
repeat

minMetric=∞, candidateN = null
repeat

repeat
x-coordinate=U(minX-r, maxX+r)
y-coordinate=U(minY-r, maxY+r)
create node candidateN from coordinates

until (candidateN ∪ placedNodes is connected)
m=apply metric on placedNodes ∪ candidateN
if(m < minMetric)

bestCandidate = candidateN
minMetric = m

endif
until(retries candidates evaluated)
update minX,maxX, minY,maxY based on

bestCandidate location
placedNodes = placedNodes ∪ bestCandidate

until(all n nodes placed)

Fig. 1. NPART pseudo code description.

bestCandidate and minimal metric value is updated. After evaluation of retries connected can-
didates, the best candidate is added to the topology and minX, maxX, minY , maxY variables
are updated, if needed. For example, if Vertex 3 is the best candidate out of three candidate
nodes in Figure 2, variables maxX and minY must be updated. Number of evaluated candidates
retries is parameter of the algorithm, and as the number of evaluated candidates grows, increases
the chance that the produced topology is closer to the predefined goal.

After placement of all n nodes their locations can be shifted so that they are in rectangle
((0, 0), (|maxX − minX|, |maxY − minY |)). This step is optional and does not influence the
functionality of the algorithm.

4.2 Quality metrics

Metric that evaluates quality of topology candidates is as important as the algorithm itself.
Inappropriate metric results in unsatisfactory topologies. Unfortunately, there does not exist
universal metric. User must define them and perform tests to check whether the algorithm and
metric produce desired topologies.

Our goal are topologies that have properties observed in real, user-initiated networks. In
process of selecting what should be the input for metric, it was obvious from experience with
existing placement models that generic parameters such as node density or average node degree
cannot capture desired level of detail. Realistic topologies can be produced only with input
parameters that originate from measurements.

Capturing spatial node distribution and link quality metrics (e.g., signal to noise ratio, bit
error ratio, packet loss probability) in real network would be an excellent input for a vertex place-



Fig. 2. Placement area and candidate nodes.

ment algorithm, but impossible to implement (e.g., due to privacy concerns not all participants
in a real network are willing to disclose their geographical locations). Additionally, quality of
antennas cannot be automatically collected, signal propagation environment is heterogenous and
its impact on link quality cannot be accurately measured with of-the-shelf components that are
commonly used. In rare cases when it is possible to take samples from user initiated networks,
typically only the topological information is available, without node location data.

We have implemented several metrics that use node degree frequencies (Definition 7). The
degree frequency is a compromise between detail level, data anonymity and feasibility of sampling.
It is easily extracted from networks, regardless of the routing protocol type (proactive or reactive)
and it is anonymous by its definition. In proactive protocols, it is trivial to calculate it. In case
of reactive routing protocols where no global topology view exists, node degrees can be easily
obtained assuming that nodes in the network are cooperative: each node samples its degree and
shares it with the central repository. Additionally, small errors in sampling (a node falsely reports
its degree, or topology has not converged to its steady state) are hidden by larger set of correct
data.

The implemented metrics are shown in Figure 3. As input for distance and adaptive metrics,
we calculate relative node degree frequency from degree sequences from all samples that were
taken from Berlin’s and Leipzig’s networks. The relative node degree frequency of real network is
multiplied by number of nodes that should be placed by the algorithm, creating absolute vertex
degree frequency for target topology target. For each candidate vertex that is evaluated, absolute
degree frequency candidate of topology that it creates with already placed nodes is calculated
and compared with the target frequency.

The simplest, distance metric is a variation of the Manhattan metric:

d∑

degrees

(1targetd−candidated>0·(targetd−candidated)+1targetd−candidated<0·p·(candidated−targetd))

(1)
where 1A(x) is indicator function, returning one if x ∈ A, zero otherwise. The metric sums

difference between proposed and target vertex frequency if difference is positive. If it is negative
(produced topology has more nodes of certain degree than the target topology), absolute value
of difference is multiplied with penalty factor p. The penalty factor reflects user’s tolerance for



distance metric(target frequency target, candidate frequency candidate, penalty p):
metric = 0;
for (i in degrees of target)

if(target[i]-candidate[i]<0)
metric = metric + |target[i]− candidate[i]| · p

else metric = metric + target[i]− candidate[i]
return metric

adaptive metric(target frequency target, candidate frequency candidate,
frequency of already placed placed, penalty p):

weights = normalize to one(|target− placed|)
metric = 0;
for (i in degrees of target)

if(target[i]-candidate[i] < 0)
metric = metric + |target[i]− candidate[i]| · p

else metric = metric + (target[i]− candidate[i]) · weights[i]
return metric

secondaryDistribution(canidate graph topology topology,
secondary degree relative frequency secondary target)

Initiate list of empty absolute degree frequencies list
for each node n in topology

***select frequency based on current node degree***
current freq = list[degree(n)]
for each neighbor ng of n

current freq[degree(ng)] + +
endfor
list=calculate relative frequencies from absolute frequencies
metric = 0
for i in 1:length(secondary target)

metric = metric + |secondary target[i]− list[i]|
return metric

combined(target frequency target, candidate frequency candidate,
frequency of already placed placed, penalty p, secondary weight s,
secondary degree relative frequency secondary target, candidate graph topology topology,)

return adaptive(target, candidate, placed, p) + secondary(target,topology) ·s
quality(target frequency target, generated frequency generated)

quality = 0
for (i in degrees of target)

quality = quality + |target[i]− generated[i]|
return quality

Fig. 3. Implemented metrics.



Degrees 1 2 3 4 5 Distance metric Adaptive metric
Absolute Target degree frequency 2 5 3 2 1 0 0
Absolute Placed degree frequency 0 3 0 0 0 10 2

Weights wd 0.2 0.2 0.3 0.2 0.1
Candidate 1 0 2 2 0 0 9 1.8
Candidate 2 0 0 4 0 0 15 6.9
Candidate 3 1 2 1 0 0 9 1.9

Table 2. Metric example for node candidates in Figure 2. Parameter p is set to five.

overloading of degrees: with decrease in tolerance, user increases the factor p. If p = 1, the
distance metric is identical to the Manhattan metric.

The drawback of the distance metric is its impossibility to detect stronger need for creation
of vertices with certain degree. Some degrees are more frequent in target degree frequency so
topologies that produce them should be rewarded. For instance, if the algorithm should create
20 vertices with degree two and three vertices with degree four, the metric should give greater
reward (smaller metric value) in early iterations of the algorithm to topologies that increases
number of vertices with degree two. The adaptive metric resolves this issue:

d∑

degrees

(1targetd−candidated>0·(targetd−candidated)·wd+1targetd−candidated<0·p·(candidated−targetd))

(2)
and

wd =
|targetd − placedd|∑d

degrees |targetd − placedd|
where placed is the absolute degree frequency of vertices that are already placed.
Figure 2 and Table 2 illustrate use of distance and adaptive metrics. Three iterations of

algorithm have been executed and in fourth iteration three candidates are evaluated. The distance
metric calculates equal value for Candidates 1 and 3, so either of them can be selected as the
best candidate. Adaptive metric correctly chooses Candidate 1 as better, since it satisfies greater
need to create node of degree three (after I3 three more nodes with degree three are required)
than to create node of degree one like the candidate Vertex 3 (after I3 two more nodes of degree
one are needed to reach the target absolute degree frequency).

Figure 4 shows behavior of algorithm, used with distance and adaptive metrics, for different
combinations of parameters p and retries. Input are degree frequencies from Freifunk Berlin
and Freifunk Leipzig networks. As quality measure of algorithm we use Manhattan metric be-
tween targeted and produced absolute degree frequencies. The topologies produced with the
adaptive metric are considerably better than the topologies produced with the distance metric.
The distance metric is invariant of the penalty parameter. The adaptive metric is sensitive to
the penalty parameter, but if penalty is equal to or larger than five the quality of produced
topologies stabilizes. As expected, increase in number of retries improves quality of produced
topologies for both metrics. However, there is no significant quality improvement if number of
retries is increased from 100 to 500. Based on this evaluation, we conclude that adaptive metric
is better, and it will be analyzed in more detail in Section 5.

It is possible to extract additional degree data from topologies. Let us observe relative degree
frequency of neighbors of a node p under condition that degree of p is k. As Figure 5 shows, the
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Fig. 4. Average quality of produced topologies for distance and adaptive metrics. Solid line
represents Leipzig distribution while dashed is for distribution from Berlin’s network.
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Fig. 5. Conditional degree distributions.

conditional relative frequencies differ considerably among themselves and to the joint relative
frequency.

The metric secondaryDistribution uses these differences. First it calculates set of conditional
relative degree frequencies for candidate topology and then compares them (using Manhattan
metric) with the target conditional relative degree frequency.

The combined metric is a linear combination of adaptive and secondaryDistribution met-
rics. It is possible to vary the penalty factor p in the adaptive metric and weight s for the
secondaryDistribution metric.

5 Evaluation of Created Topologies

This section compares properties of topologies produced by the NPART algorithm and presented
metrics with properties of real networks. The quality of the algorithm is demonstrated and
different combinations of algorithm parameters are tested to find the one that produces best
results.

The data that is used to provide input degree distributions for the algorithm and for later
comparison is taken from Berlin and Leipzig networks. Sampling methodology, detailed analysis



Fig. 6. Visual comparison of topologies created by uniform placement model.

and comparison with synthetic placement models are presented in [13]. There is a small change
in datasets if compared with [12] and [13]: only the main partition (largest maximally connected
subnetwork) is considered for algorithm’s degree data input and later result comparison. The
main partition in Berlin has 275 and in Leipzig 346 nodes on the average.

To illustrate the improvements brought by the NPART, it is compared with the ubiquitous
uniform placement model. Uniform placement algorithm is set to create topologies with the
average node degree of six. The average node degree is substantially lower than proposed in
[2] and [9] for networks connected with high probability so it is possible that such a graph is
partitioned. Increasing the average node degree above six improves connectivity but creates even
greater discrepancy with measurement results (e.g. bridges do not exist in generated topologies),
while decreasing it creates highly partitioned graphs (Figure 6). Since the size of Berlin’s and
Leipzig’s main partition differs there are also two uniform placement scenarios, with 275 and 346
nodes. The data for comparison is collected in 500 executions of each scenario.

The proposed placement algorithm is also run with two basic setups: 275 vertices and degree
data input from Berlin’s network (NPART/Berlin), and 346 vertices and data input from Leipzig’s
network (NPART/Leipzig). The parameter retry is set to 150 while parameters for penalty p
and secondary metric weight are varied to take values from set {0, 1, 5}×{0, 1, 5}. Not all results
are presented since some parameter combinations do not create reasonable results: as soon as
secondary weight is higher than the penalty p, the algorithm becomes unstable and creates almost
fully connected graphs. It is shown later that secondary metric is excellent for refinement of the
adaptive metric but it should not be used on its own.

Figures 6 and 7 informally illustrate differences between topologies created by the uniform
placement model, sample real topology and topologies created by our algorithm. With increase
in average node degree, the uniform placement model creates fewer partitions but in all cases
bridges are rare. None of uniform placements resemble the shape of real topology (Figure 7).

If no retries are used (or no metric) our algorithm does not bring improvements: it creates a
connected graph with few bridges and articulation points. However, with retries and combined
metrics (p = 5, s = 1) it generates topology that resembles real topologies.

Although visual representation of topologies gives valuable insight in shape of generated
topologies, such informal comparison is not sufficient. The following section statistically compares
the properties of generated and real topologies.

5.1 Properties of generated topologies

Figure 8 shows the vertex degree probability mass function (PMF). As it can be seen, for all
parameter combinations, the degree distribution of topologies created by our algorithm precisely



Fig. 7. Visual comparison of topologies produced with our algorithm and a real sample. Real
topology example is visualized in Graphviz tool [7].
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Fig. 8. Comparison of node degree distributions.

follows the distribution of real networks. The algorithm adapts with ease to both of distributions.
The uniform distribution has its own shape that is considerably different from real distributions.
It also has zero-degree nodes, indicating existence of partitioned networks.

The bridge to edge ratio (Figure 9) and articulation point count (Figure 10) show that NPART
topologies follow the properties of real networks. However, the proposed algorithm creates slightly
more bridges and articulation points than it should. The uniform placement model is unable to
adapt nor to represent the reality: its topologies have less than 1% of bridges and few articulation
points.

Figure 11 shows the cumulative distribution of relative component size obtained by removal
of bridges. The majority of components are small (less than five nodes) and distribution directly
obtained from component size would not provide much information – almost whole distribution
weight would be concentrated between one and five. To offset this effect, each component is
weighted by its size, relatively to the network size: Crel = Ccount·|C|

n .
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Fig. 9. Cumulative distributions of bridge to edge ratio for real samples and created topologies.
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Fig. 10. Cumulative distributions of articulation point count for real samples and created topolo-
gies.

For instance, in a graph with 100 nodes, after bridge removal ten components of three vertices
exist. The relative component size is: 3·10

100 = 0.3: 30% of vertices are in three-vertex components.
NPART is again considerably better than the uniform placement model, in particular for the

Berlin’s network. Topologies produced with secondary metric have distributions more aligned
with real measurements than metrics that use only the adaptive metric, both for Leipzig and
Berlin distributions.

5.2 Offsetting the imprecision brought by simplified modeling

Although considerably better than existing topology generators, the algorithm can be further
improved since it creates more bridges and articulation points than it should.



0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Partition size

C
D

F

Berlin
NPART, p=0, s=0
NPART, p=1, s=0
NPART, p=1, s=1
NPART, p=5, s=1
NPART, p=5, s=5
Uniform

(a) NPART/Berlin

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Partition size

C
D

F

Leipzig
NPART, p=0, s=0
NPART, p=1, s=0
NPART, p=1, s=1
NPART, p=5, s=1
NPART, p=5, s=5
Uniform

(b) NPART/Leipzig

Fig. 11. Cumulative distribution of weighted network components obtained by bridge removal.

Fig. 12. Impact of correlated shadowing.

We have carefully investigated the input degree data and original topology samples. The
analysis revealed a number of nodes with high degree that have lots of pendant nodes attached
to it. In reality it is possible due to the phenomenon of correlated shadowing: e.g., a large concrete
building blocks all communication links that traverse it, while in its proximity could be open space
providing excellent communication possibilities (Figure 12). Correlated shadowing model exists
for single wireless hop analysis [8] but is not supported in discrete event simulators for multihop
networks nor in our placement algorithm.

In order to partially offset the lack of correlated shadowing model, we reduce the number of
pendant nodes in input distribution by 20%. The reduction of bridge and articulation point count
is obvious as shown in Figures 14 and 15 and they are closer to real distributions than in Figures
9 and 10. As expected, the degree distribution (Figure 13) follows closely the real distribution,
except of course for nodes of degree 1.

The relative component size distribution in Figure 16 retains good fit with reality as for the
original distribution. It also demonstrates the importance of secondary metric: in Figure 16(a)
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Fig. 13. Comparison of node degree distributions after reduction of pendant node count by 20%.
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Fig. 14. Cumulative distributions of bridge to edge ratio for real samples and created topologies
after reduction of pendant node count by 20%.

the topologies created without it have poorer alignment with reality than in Figure 11(a), while
topologies that have used the secondary metric remain as they were.

In order to summarize and quantify the differences between uniform placement model, NPART
algorithm and reality, we have calculated Mean Square Error (MSE) between measurement re-
sults and generated topologies. The value of mean square error of a single approach is difficult to
interpret: although it is known that a better approach has smaller value of MSE it is not possible
to determine a MSE threshold that guarantees acceptable approach. However, MSE is excellent
metric for comparison of multiple approaches since it provides their relative ordering when com-
pared to measurements. Tables 3 and 4 show MSE values for distributions of node degree, bridges
and articulation points with and without reduction of pendant vertex count. The advantage of
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Fig. 15. Cumulative distributions of articulation point count for real samples and created topolo-
gies after reduction of pendant node count by 20%.
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Fig. 16. Cumulative distribution of weighted network components obtained by bridge removal
after reduction of pendant node count by 20%.

NPART is clear as it has by order of magnitude smaller MSE values than the uniform node
placement model.

Based on MSE values and Figures 11 and 16 we conclude that parameter combination of
p = 5, s = 1 provides the best compromise between bridge share and articulation point count (fit
with reality decreases with increase in s) and relative component size (fit with reality improves
with increase in s).

5.3 Analysis of algorithm’s execution time

The complexity of the algorithm is difficult to calculate because it includes stochastic deciding
process in it: the innermost loop is repeated until a connected graph is produced. Still, it is



Degree Bridges Art.Points Degree Bridges Art.Points
Berlin Berlin Berlin Leipzig Leipzig Leipzig

NPART, p=0, s=0 7.254e-06 0.001295 0.000924 4.042e-06 0.001185 0.001108
NPART, p=1, s=0 2.779e-06 0.002929 0.001768 2.307e-06 0.002959 0.002368
NPART, p=1, s=1 7.370e-06 0.002221 0.001311 2.084e-05 0.002156 0.000625
NPART, p=5, s=1 7.558e-06 0.002298 0.001155 1.233e-05 0.002436 0.000761
NPART, p=5, s=5 9.028e-06 0.002363 0.001650 4.334e-06 0.002334 0.002004

Uniform 3.85e-03 0.007200 0.003224 1.775e-03 0.005367 0.003199
Table 3. Comparison of mean square errors.

Degree Bridges Art.Points Degree Bridges Art.Points
Berlin Berlin Berlin Leipzig Leipzig Leipzig

NPART, p=0, s=0 9.187e-05 0.001191 0.002057 2.805e-05 0.000416 0.000461
NPART, p=1, s=0 7.701e-05 0.000580 0.001250 2.281e-05 0.001812 0.001607
NPART, p=1, s=1 8.531e-05 0.000647 0.000865 8.906e-05 0.001258 0.000251
NPART, p=5, s=1 8.422e-05 0.000547 0.000720 4.342e-05 0.001622 0.000629
NPART, p=5, s=5 8.491e-05 0.000828 0.000811 2.580e-05 0.002210 0.001641

Uniform 3.85e-03 0.007200 0.003224 1.775e-03 0.005367 0.003199
Table 4. Comparison of mean square errors after pendant node count reduction.

necessary to evaluate the time algorithm needs to create a topology in order to demonstrate the
algorithm behavior that can be experienced by a user.

For evaluation we measure the time needed to generate a topology. The test server has 32GB
memory and 8 Dual-core AMD Opteron processors working at 2.6GHz. However, the algorithm
implementation uses only one processor core at a time. The algorithm is implemented in Java
programming language and run in Sun’s Java 2 Runtime Environment Standard Edition (build
1.5.0 06-b05). The measurements in this section are based on 500 executions of the algorithm.

As a reference point for time execution of the algorithm, we have also implemented the
uniform placement algorithm and run it on same test computer under same conditions. The task
was to produce a connected graph consisting of 275 vertices with average vertex degree of 4.17
(numbers are equal to the average degree and average number of participating nodes in main
partition of Berlin’s network). The time required to place nodes and to create connectivity graph
is measured. Connectivity testing is not included in measured time. At first, we tried to evaluate
time required for fully connected graph (all 275 vertices belong to the same graph component).
However, after several hours of attempts, the uniform placement algorithm did not produce even
a single fully connected topology. The connectivity condition was then weakened, and we have
measured time required for creation of topologies whose biggest partition contains at least 97.5%
of placed nodes.

With the weaker condition the uniform placement algorithm needs 489.8 seconds per topology
on the average. Although the uniform placement algorithm is substantially faster for a single
execution, for low-degree networks it requires more time. The topologies that it creates are
partitioned, and on the average 66623 retries are required before the 97.5% connectivity condition
is met.

NPART is considerably faster for such sparse graphs. If only adaptive metric is used, topology
is created in only 2.84 seconds on the average. The combined metric is more demanding and if
it is used, the average execution time grows to 288.56 seconds. Still, that is 41.1% faster than
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Fig. 17. ns-2 simulation results for different topologies and signal propagation models. AODV
routing protocol is used.

the uniform algorithm with the 97.5% connectivity constraint. For sparser graphs, it is to expect
that difference increases considerably in favor of NPART.

5.4 ns-2 Simulation results

This section demonstrates that choice of node placement algorithm considerably impacts simula-
tion results. For this purpose, we have used ns2 simulator [5], version 2.29 with Rayleigh-Ricean
fading extension [16]. Nominal communication range of nodes is set to 250m.

There are six distinct simulation setups:

– Grid node placement and path-loss propagation model
– Grid node placement and Rayleigh propagation model
– Uniform node placement and path-loss propagation model
– Uniform node placement and Rayleigh propagation model
– NPART/Berlin node placement and path-loss propagation model
– NPART/Berlin node placement and Rayleigh propagation model

Grid consists of 272 nodes, put in 16 rows and 17 columns. Internode distance is 200m. For
uniform node placement, 275 nodes are placed in 2700x2700m area, producing average node
degree of 7.4. Such parameter selection creates network that is not too dense but connected with
rather high probability. NPART algorithm generates 275-node topologies, using data input from
Berlin’s network and combined metric (s=1, p=5). Routing protocol is AODV [15]. Its default
parameters have not been changed.

In each of simulation setups the number of TCP flows is varied (4,6,8,10). Throughput and
number of flows that were unable to start (unsuccessful flows) are measured. In order to avoid
counting of unsuccessful flows that are caused by partitioned network, uniform placement topolo-
gies are tested for connectivity before they are accepted for simulation.

Each point in Figure 17 is calculated from 50 simulations performed on 50 different topologies
(except for grid where all topologies are identical). TCP flows are created between randomly
selected pairs of nodes. Warm up phase is set to 30s and simulation is executed 250s.

As expected and already shown in research studies, there exists a considerable difference in
simulation results between over-simplistic, over-optimistic path-loss propagation model and more



realistic Rayleigh model: obtained throughput is considerably higher and number of unsuccessful
flows is considerably lower for the path-loss model.

It is important to observe that for the same propagation model there also exists considerable
difference in simulation results between grid, uniform node placement and NPART produced
topologies: in NPART topologies throughput is lower than in both synthetic placements.

Simulation of NPART/Berlin topologies with realistic wireless signal propagation model re-
sults in particularly high ratio of unsuccessful flows – although a communication path between
pair of nodes exists (NPART guarantees connected topologies), AODV is unable to find it. In
[11] we have predicted such behavior of AODV with different methodology.

Uniform placement model creates fewer unsuccessful flows than NPART/Berlin while in grid
structured network only one of all simulated flows was unsuccessful, even with Rayleigh fading
on the wireless channel.

6 Conclusions

We have proposed, developed and evaluated NPART - Node Placement Algorithm for Realistic
Topologies. The algorithm provides input for simulation of static wireless multihop networks.
It is flexible since it is sufficient that user defines a metric in accordance with his/her needs or
provides different data input set and algorithm creates topologies with different properties. The
algorithm guarantees the connectivity of produced topologies.

We have evaluated four metrics with the algorithm and shown that with appropriate met-
ric and parameter selection NPART creates realistic topologies. Stochastic analysis is used to
compare NPART-produced topologies with ubiquitous uniform placement algorithm and real
networks in Berlin and Leipzig. The properties of interest are node degree distribution, bridge
to edge ratio, articulation point count and size of graph components after bridge removal. The
properties of topologies produced by our algorithm fit closely with measurements, while uniform
placement model has its own properties that are far from reality.

The importance of accurate signal propagation models is known and shown in numerous publi-
cations but the impact of topology generators on simulation outcome is often overlooked. In order
to demonstrate importance of node placement models in simulation, we have compared through-
put and number of unsuccessful flows in topologies produced by the grid, uniform placement
model and our proposed NPART algorithm under simplistic path-loss and realistic Rayleigh sig-
nal propagation models. Simulation results show that node placement model plays as important
role in simulation outcome as the wireless signal propagation model.

We hope that our results will encourage the research community to use realistic modeling in
all segments of simulation setup thus increasing the simulation quality and narrowing the gap
between simulation and reality.
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