
Behavioral Constraints for Services

Niels Lohmann1?, Peter Massuthe1, and Karsten Wolf2

1 Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

{nlohmann,massuthe}@informatik.hu-berlin.de
2 Universität Rostock, Institut für Informatik,

18051 Rostock, Germany
karsten.wolf@informatik.uni-rostock.de

Abstract. Recently, we introduced the concept of an operating guideline
of a service as a structure that characterizes all its properly interacting
partner services. The hitherto considered correctness criterion is deadlock
freedom of the composition of both services.
In practice, there are intended and unintended deadlock-freely interact-
ing partners of a service. In this paper, we provide a formal approach
to express intended and unintended behavior as behavioral constraints.
With such a constraint, unintended partners can be “filtered” yielding a
customized operating guideline. Customized operating guidelines can be
applied to validate a service and for service discovery.

Key words: Business process modeling and analysis, Formal models in busi-
ness process management, Process verification and validation, Petri nets, Oper-
ating guidelines, Constraints

1 Introduction

Services are an emerging paradigm of interorganizational cooperation. They ba-
sically encapsulate self-contained functionalities that interact through a well-
defined interface. A service can typically not be executed in isolation— services
are designed for being invoked by other services or for invoking other services
themselves. Service-oriented architectures (SOA) [1] provide a general frame-
work for service interaction. Thereby, three roles of services are distinguished. A
service provider publishes information about his service to a public repository.
A service broker manages the repository and allows a service requester (also
called client) to find an adequate published service. Then, the provider and the
requester may bind their services and start interaction.

In [3, 4] we introduced the notion of an operating guideline (OG) of a service
as an artifact to be published by a provider. The operating guideline OGProv

of a service Prov characterizes all requester services Req that interact deadlock-
freely with Prov . Operating guidelines therefore enable the broker to return
only those published services Prov to a querying Req such that their interaction
? Funded by the BMBF project “Tools4BPEL”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127602029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is guaranteed to be deadlock-free. Additionally, an operating guideline is an
operational description and can therefore be used to generate a deadlock-free
interacting service Req .

In practice, there are intended and unintended clients for a service. For ex-
ample, an online shop is intendedly designed for selling goods to its customers.
After an update of its functionality, it might introduce the possibility to abort
the ordering at any time. The OG of such a shop would now also characterize
customers that abort after the first, second, etc. step of the ordering process.
These interactions with aborting partners are deadlock-free. However, the owner
of the shop is interested whether it is still possible to actually purchase goods in
his shop.

On the other hand, a service broker might classify provider services as in-
tended or unintended. For example, he may want to assure certain features, like
payment with certain credit cards only. Finally, a client requesting for a travel
agency might want to exclude going by train and thus is only interested in flights.
Even more involved, he could prefer arranged communication such that certain
actions occur in a given order (first hotel reservation, then flight booking, for
instance).

In this paper we study behavioral constraints (constraints for short) that have
to be satisfied in addition to deadlock freedom. We provide a formal approach
for steering the communication with Prov into a desired direction and extend
operating guidelines to customized operating guidelines. A customized OG of
Prov characterizes all those services Req that communicate deadlock-freely with
Prov satisfying a given constraint.

We identified four scenarios involving behavioral constraints.

1. Validation. Before publishing, the designer of a service Prov wants to check
whether a certain feature of Prov can be used.

2. Restriction. A specialized repository might require a certain constraint to be
fulfilled by published services. To add a service Prov to this repository, its
behavior might have to be restricted to satisfy the constraint.

3. Selection. For a service Req , the broker is queried for a matching provider
service Prov satisfying a given constraint.

4. Construction. A requester does not have a service yet, but expresses desired
features as a constraint. The broker returns all operating guidelines providing
these features. With this operational description, the requester service can
then be constructed.

In the first two scenarios, the operational description — in this paper given as
a Petri net — of Prov itself is available. This has the advantage that constraints
are not restricted to communication actions but may involve internal behavior
of the service. This way, a service can, for instance, be customized to legal
requirements (publish, for example, an operating guideline where only those
partners are characterized, for which the internal action “add added value tax”
has been executed). In contrast, in the last two scenarios, a customized operating
guideline is computed from a given general operating guideline of Prov , without
having access to an operational description of Prov itself.

2

In this paper, we propose solutions for all four scenarios. That is, we show
how to compute customized operating guidelines (a) from a given operational
description of Prov itself, or (b) from a given general operating guideline.

It is worth being mentioned that our approach is fully residing on the be-
havioral (protocol) level. That is, we abstract from semantic as well as nonfunc-
tional issues. Our approach is not meant to be a competitor to those approaches
but rather a complement. In fact, a proper treatment of semantic discrepan-
cies between services is a prerequisite of our approach, but does not replace the
necessity to send and receive messages in a suitable order. Policies and nonfunc-
tional criteria can be integrated into our approach as far as they can be reduced
to behavioral constraints. They are, however, not the focus of this paper. We
chose deadlock freedom as the principle notion of “correct interaction”. There
are certainly other correctness criteria which make sense (for instance, additional
absence of livelocks) but our setting is certainly the most simple one and part
of any other reasonable concept of correctness. Thus, our setting can be seen as
an intermediate step towards more sophisticated settings.

The rest of this paper is organized as follows. In Sect. 2, we set up the
formal basis for our approach and introduce an online shop as running example
throughout the paper. Section 3 is devoted to implement constraints into the
operational description of a service. Our solutions to compute a customized
operating guideline from a general one are presented in Sect. 4. We conclude
with a presentation of related work in Sect. 5 and a discussion of future work in
Sect. 6.

2 A Formal Approach to SOA

Our algorithms are based on open workflow nets (oWFNs) [2] and descriptions of
their behavior (service automata [3]). Suitability of oWFNs for modeling services
has been proven through an implemented translation from the industrial service
description language WS-BPEL [5] into oWFNs [6]. Service automata form the
basis of our concept of an operating guideline. The presentation of our construc-
tions on this formal level simplifies the constructions and makes our approach
independent of the evolution of real-world service description languages. As our
approach is to a large extend computer-aided, the formalisms can, however, be
hidden in real applications of our methods.

2.1 Open Workflow Nets

Open workflow nets (oWFNs) are a special class of Petri nets. They generalize the
classical workflow nets [7] by introducing an interface for asynchronous message
passing. oWFNs provide a simple but formal foundation to model services and
their interaction.

We assume the usual definition of (place/transition) Petri nets. An open
workflow net is a Petri net N = [P, T, F], together with an interface Pi ∪ Po

such that Pi, Po ⊆ P , Pi ∩ Po = ∅, and for all transitions t ∈ T : p ∈ Pi (resp.

3

p ∈ Po) implies (t, p) /∈ F (resp. (p, t) /∈ F); a distinguished marking m0, called
the initial marking ; and a distinguished set Ω of final markings. Pi (resp. Po) is
called the set of input (resp. output) places.

We require that the initial or a final marking neither marks input nor output
places. We further require that final markings do not enable a transition. A
nonfinal marking that does not enable a transition is called deadlock.

Throughout this paper, consider an online shop as running example. An open
workflow net Nshop modeling this online shop is depicted in Fig. 1. The only final
marking is [final]; that is, only place final is marked. Though the online shop is
a small toy example, it allows to demonstrate the results of this paper.

t7

t1

t2

t5 t3 t6

t4

final

order

premium
customer

regular
customer

credit
card

cash on
delivery

delivery surcharge

error

initial Fig. 1. An oWFN Nshop modeling an
online shop. It initially receives an or-
der from a customer. Depending on the
previous orders, the customer is classi-
fied as premium or regular customer. Pre-
mium customers can pay with credit card
or cash on delivery, whereas regular cus-
tomers can only pay cash on delivery: If a
regular customer tries to pay with credit
card, the online shop will respond with
an error message. Otherwise, a delivery
notification— and in case of cash on de-
livery payment a surcharge notification—
is sent.

Open workflow nets — like common Petri nets —allow for diverse analysis
methods of computer-aided verification. The explicit modeling of the interface
further allows to analyze the communicational behavior of a service [6, 8].

The interaction of services is modeled by the composition of the correspond-
ing oWFN models. For composing two oWFNs M and N , we require that M
and N share interface places only. The composed oWFN M ⊕ N can then be
constructed by merging joint places and merging the initial and final markings.
Merged places become internal to M ⊕N .

For a given oWFN Prov of a service provider we are particularly interested in
the set of oWFNs Req of service requesters, such that Req⊕Prov is deadlock-free.
Each such Req is called a strategy for Prov . We write Strat(Prov) to denote the
set of strategies for Prov . The term strategy originates from a control-theoretic
point of view (see [9, 10], for instance): We may see Req as a controller for Prov
imposing deadlock freedom of Req ⊕ Prov .

As an example, consider a client of our online shop firstly placing an order
and then receiving either premium customer or regular customer. In any case,
he pays cash on delivery and then receives the surcharge notice and the delivery.
Obviously, the described client is a strategy for Nshop.

4

In this paper, we restrict ourselves to oWFNs with bounded state space. That
is, we require the oWFNs M , N , and M ⊕ N to have finitely many reachable
markings.

2.2 Service Automata

In the following, we recall the concepts of service automata and operating guide-
lines, which were introduced in [3] and generalized in [4]. Operating guidelines
are well-suited to characterize the set of all services Req for which Req ⊕Prov is
deadlock-free. Since absence of deadlocks is a behavioral property, two oWFNs
which have the same behavior but are structurally different have the same strate-
gies. Thus, we may refrain from structural aspects and consider the behavior of
oWFNs only. Service automata serve as our behavioral model.

A service automaton A = [Q, I, O, δ, q0, Ω] consists of a set Q of states; a
set I of input channels; a set O of output channels, such that I ∩ O = ∅; a
nondeterministic transition relation δ ⊆ Q× (I ∪ O ∪ {τ})×Q; an initial state
q0 ∈ Q; and a set of final states Ω ⊆ Q such that q ∈ Ω and (q, x, q′) ∈ δ implies
x ∈ I. A service automaton is finite if its set of states is finite.

As an example, the service automaton modeling the described client of the
online shop is depicted in Fig 2.

?regular customer

!order

?delivery

!cash on delivery

?surcharge

?premium customer

Fig. 2. An automaton describing a strategy for the on-
line shop. The client first sends an order message to the
shop, then either receives the regular customer or the
premium customer message. In either case he decides for
cash on delivery, receives the surcharge note, and finally
waits until he receives his delivery. As a convention, we
label a transition sending (resp. receiving) a message x
with !x (resp. ?x).

The translation of an oWFN into its corresponding service automaton is
straightforward [4]. Thereby, we consider the inner of the oWFN, easily con-
structed by removing the interface places and their adjacent arcs, and compute
its reachability graph. Transitions of the oWFN that are connected to interface
places correspond to transition labels of the service automaton. Similarly, a ser-
vice automaton can be retranslated into its corresponding oWFN model, using
the existing approach of region theory [11], for instance.

The composition of two service automata is the service automaton A ⊕ B
where the shared interface channels become internal. To reflect our proposed
model of asynchronous communication, a state of A ⊕ B is a triple of a state
of A, a state of B, and a multiset of currently pending messages (see [4] for
details). The notions of deadlocks and strategies can be canonically extended
from oWFNs to service automata.

5

2.3 Operating Guidelines

Given a service automaton A, consider now a function Φ that maps every state
q of A to a Boolean formula Φ(q). Let the propositions of Φ(q) be labels of
transitions that leave q in A. Φ is then called annotation to A. An annotated
automaton is denoted by AΦ. We use annotated automata to represent sets of
automata. Therefore, we need the concept of compliance defined in Def. 1.

Let A and B be two service automata. Then, R(A,B) ⊆ QA×QB , the matching
relation of A and B, is inductively defined as follows: (q0A

, q0B
) ∈ R(A,B). If

(qA, qB) ∈ R(A,B), (qA, x, q′A) ∈ δA and (qB , x, q′B) ∈ δB , then (q′A, q′B) ∈ R(A,B).
Let furthermore βqA

denote an assignment at state qA of A that assigns true to
all propositions x for which there exists a transition (qA, x, q′A) ∈ δA and false
to all other propositions.

Definition 1 (Compliance). Let A be a service automaton, let BΦ be an an-
notated service automaton and let R(A,B) and β be as described above.
Then, A complies to BΦ iff for every state qA ∈ QA:
– there exists a state qB ∈ QB with (qA, qB) ∈ R, and
– for every state qB ∈ R(qA) holds: βqA

satisfies the formula Φ(qB).

Let Comply(BΦ) denote the set of all service automata that are compliant to
BΦ. This way, the annotated automaton BΦ characterizes the set Comply(BΦ)
of service automata.

As an example, Fig. 3(a) shows an annotated service automaton AΦ. The
service automaton B from Fig. 3(b) complies to AΦ whereas the automata C
and D (cf. Fig. 3(c) and 3(d)) do not comply to AΦ.

q1: ?a ∧ ?b

q2: !c ∨ !d q3: true

?a

!c

!d

?b

(a) AΦ

q1

q2

q1

q3

?a

!c

?b

(b) B

q1

q2

–

?b

?a !c

(c) C

q1

q3
?b

(d) D

Fig. 3. (a) An annotated service automaton AΦ. The annotation Φ(q) is depicted inside
a state. (b)–(d) Three service automata B, C, and D. A state q of AΦ attached to a
state s of B, C, or D represents the element (q, s) in the corresponding matching with
AΦ. Since the final state of C has no matching state in A, C does not comply to AΦ.
D does not comply to AΦ, because it violates the annotation Φ(q1) in D’s initial state.

Finally, the operating guideline OGProv of a service Prov is a special an-
notated service automaton that represents the set Strat(Prov) of strategies for
Prov .

Definition 2 (Operating guideline). Let A be a service automaton. An an-
notated service automaton BΦ with Comply(BΦ) = Strat(A) is called operating
guideline of A, denoted OGA.

6

In [4], we presented an algorithm to compute operating guidelines for finite-
state service automata. If there is no single strategy for a service Prov , then
OGProv is empty. In that case, Prov is obviously ill-designed and has to be
corrected. In [6], we demonstrated that even very small changes of a service
Prov can have crucial effects on the set of strategies for Prov . The calculation
of operating guidelines is implemented in the tool Fiona3, giving the designer of
services the possibility to detect and repair errors, that would have been hard
or impossible to find manually.

As an example, Fig. 4 depicts the operating guideline for our online shop.
Obviously, there are some interleavings in which an error message is received by
the client (?e). These interleavings describe deadlock-free interactions though
cannot be regarded as successful interactions by the owner of the online shop.
Constraints can help to, for example, exclude this unwanted behavior.

0: !cod ∨ !cc ∨ !o

1: !o 2: !cod ∨ !cc ∨ (?p ∧ ?r) 3: !o

4: ?s ∨ ?d ∨ (?r ∧ ?p) 5: !cod ∨ !cc 6: !cod ∨ !cc 7: (?p ∨ ?d) ∧ (?r ∨ ?e)

8: ?d ∨ (?r ∧ ?p) 11: ?s ∨ ?d9: ?s ∨ (?r ∧ ?p) 10: ?s ∨ ?d 13: ?d12: ?e

14: ?d

17: ?r ∧ ?p

15: ?s
18: ?r

16: ?p

19: true

!o
!cod !cc

!cod !cc?p

?r

?s ?p

?d ?r

?p
?r

?d

?d

?p

?r

?s

?d

?s

?s

?p

?r

?s

?d

?e

?p

?d

?r

?r

?d

?p

?e

!cod
!cc!cod

!cc

!o !o

Fig. 4. The operating guideline OGshop of the online shop. For reasons of space we
abbreviated message names by its first letter (!o means !order, for instance). !cod ab-
breviates !cash on delivery, !cc means !credit card. It is easy to see that the client of
Fig. 2 complies to OGshop. The matching involves the highlighted states of OGshop.

We propose to use operating guidelines as an artifact generated by the owner
of a provider service Prov to be published to the service broker. The broker can
then check whether or not a given requester service Req will have deadlocks with
Prov even before actually plugging them together.

In Sect. 4, we will use the operating guideline for Prov to characterize all
requester services for which their composition with Prov satisfies a given con-
straint, thus realizing the third and the fourth scenario from the introduction.

3 Adding Constraints to Open Workflow Nets

As stated in the introduction, we aim at putting constraints on the behavior of
two oWFNs Prov and Req in their interaction. Therefore we consider the notion
of a run of an oWFN N : A run of N is a transition sequence t0 . . . tn starting in
the initial marking of N and ending in a final marking of N .
3 Available at http://www.informatik.hu-berlin.de/top/tools4bpel.

7

We distinguish two effects of constraints: exclusion of unwanted behavior and
enforcement of desired behavior. Using oWFN service models, these effects can
be expressed by sets of transitions that are either not permitted to fire, or that
are required to fire.

As a service usually deadlocks without interaction with its partners, investi-
gating Prov in isolation does not make sense in general. Instead, we consider the
composition of Req and Prov , and check whether this composition satisfies the
given constraint. This leads to the following definition of exclude and enforce.

Definition 3 (Exclude, enforce). Let Req and Prov be two oWFNs and let t
be a transition of Prov. Req ⊕Prov excludes t iff no run of Req ⊕Prov contains
t. Req ⊕ Prov enforces t iff every run of Req ⊕ Prov contains t.

Definition 3 can be canonically extended to sets of excluded or enforced
transitions. As an example, the composition of the online shop and the client
described above excludes the transitions t5 and t6, because it has no run where
the client sends a credit card message. Furthermore, this composition enforces
transition t7, because in every run an order is sent by the client.

When two services Req and Prov are given, the exclusion or enforcement of
transitions can be checked with the help of the runs of Req ⊕ Prov . Therefore,
standard model checking techniques could be used. However—coming back to
the scenarios described in the introduction —when a service provider wants to
validate his service Prov , there is no fixed partner service Req . Hence, we follow
a different approach: We suggest to change the oWFN Prov according to a given
constraint in such a way that the set Strat(Prov ′) of the resulting oWFN Prov ′

will be exactly the set of requester services Req for which the composition of Req
and the original oWFN Prov satisfies the constraint.

To formulate constraints, we propose constraint oWFNs. A constraint oWFN
is an oWFN with an empty interface whose transitions are labeled with transi-
tions of the oWFN to be constrained.

Definition 4 (Constraint oWFN). Let N be an oWFN. Let N ′ be an oWFN
with PiN′ = PoN′ = ∅ such that PN ∩ PN ′ = ∅ and TN ∩ TN ′ = ∅. Let L be a
labeling function L : TN ′ → 2TN . Then C = [N ′, L] is a constraint oWFN for N .

Constraint oWFNs are a general means to describe constraints: The exclusion
and enforcement of transitions can also be expressed by constraint oWFNs.

Figure 5(a) depicts a constraint oWFN, C1, for the online shop Nshop of
Fig. 1. The transitions are labeled with sets of transitions of Nshop. Intuitively,
C1 is satisfied if the online shop receives a cash on delivery message (i. e., t1 or t2
fires) and then sends a surcharge message (i. e., t3 or t4 fires). C1 is an example
for constraining the order of transitions and therefore cannot be expressed by
exclude/enforce constraints as defined in Def. 3.

To implement a constraint in an oWFN, we construct the product of the re-
spective constraint oWFN and the oWFN to be constrained. Intuitively, labeled
transitions of the constraint oWFN are merged (i. e., “synchronized”) with the
transitions of the considered oWFN. So, the product reaches a final marking

8

initialC

p
C

{t1, t2} t8

{t3, t4} t9

finalC

(a) C1

t7

[t1, t8]

[t2, t8]

t5 t6

[t4, t9]

final

order

premium
customer

regular
customer

credit
card

cash on
delivery

delivery surcharge

error

initial

initialC

pC

finalC

[t3, t9]

(b) Nshop ⊗ C1

Fig. 5. (a) The constraint oWFN C1 for the online shop of Fig. 1. As a convention,
the labels of the labeling function L are written inside a transition. (b) The product
of the online shop and C1. Gray nodes highlight the changes of the original oWFN.

if both the constraint and the considered oWFN reach a final marking. Define
L(T) =

⋃
t∈T L(t) to be the set of all transitions used as a label.

Definition 5 (Product of oWFN and constraint oWFN). Let N be an
oWFN and let C = [N ′, L] be a constraint oWFN for N . The product of N and
C is the oWFN N ⊗ C = [P, Pi, Po, T, F, m0, Ω], defined as follows:
– P = PN⊕N ′ , Pi = PiN , Po = PoN ,
– T = (TN \ L(TN ′)) ∪ {(t, t′) | t′ ∈ TN ′ , t ∈ L(t′)} ∪ {t′ ∈ TN ′ | L(t′) = ∅},
– F = FN \ ((PN × L(TN ′)) ∪ (L(TN ′)× PN))

∪ {[(t, t′), p] | t′ ∈ TN ′ , t ∈ L(t′), p ∈ t• ∪ t′•}
∪ {[p, (t, t′)] | t′ ∈ TN ′ , t ∈ L(t′), p ∈ •t ∪ •t′},

– m0 = m0N
⊕m0N′ ,

– Ω = ΩN⊕N ′ .

The product of the online shop of Fig. 1 and the constraint oWFN C1 of
Fig. 5(a) is depicted in Fig. 5(b). The marking [final, finalc] is the only final
marking of the product. Only when composed to a requester who chooses cash
on delivery and then receives the surcharge note, the product can reach this
marking.

To check whether an oWFN N satisfies a constraint oWFN C = [N ′, L],
the runs of N and N ′ have to be considered. A run σ′ of N ′ induces an ordered
labeled transition sequence. Each label consists of a set of transitions of N . Thus,
σ′ describes which transitions of N have to be fired in which order. However, σ′

might contain unlabeled transitions, and a run σ of N might contain transitions
that are not used as a label in N ′. Let σ′|L be the transition sequence σ′ without

9

all transitions with an empty label. Similarly, let σ|L be the transition sequence
σ without all transitions that are not used as labels.

Definition 6 (Equivalence, satisfaction). Let N be an oWFN an C = [N ′, L]
a constraint oWFN for N . Let σ and σ′ be a run of N and N ′, respectively. σ
and σ′ are equivalent iff σ|L = t1 . . . tn and ti ∈ L(t′i) for all 1 ≤ i ≤ n. N
satisfies the constraint oWFN C, denoted N |= C, iff for every run of N there
exists an equivalent run of N ′.

We now can link the satisfaction of a constraint with the product:

Theorem 1. Let Prov and Req be two oWFNs and C = [N, L] a constraint
oWFN for Prov.
Then, Req is a strategy for Prov ⊗ C iff Req is a strategy for Prov and
Req ⊕ Prov |= C.

Proof (sketch).
(→) Every run of Req ⊕ (Prov ⊗ C) can be “replayed” by Req ⊕ Prov . This

run satisfies C —if not, C would deadlock in Req ⊕ (Prov ⊗ C), contradicting
the assumption that Req is a strategy for Prov ⊗ C.

(←) As Req ⊕ Prov |= C, there exists a sub-run of C for every run of Req ⊕
Prov . From a run of Req ⊕Prov and its sub-run of C, a run of Req ⊕ (Prov ⊗C)
can be derived. ut

Theorem 1 underlines the connection between the product of an oWFN with
a constraint oWFN and the runs satisfying a constraint. This connection justifies
more efficient solutions for the first two scenarios described in Sect. 1. In the first
scenario, a service provider wants to validate his service Prov . In particular, he
wants to make sure that for all strategies Req for Prov the composition Req⊕Prov
satisfies certain constraints, for example that payments will be made, or no errors
occur. We suggest to describe the constraint as a constraint oWFN C. Then,
Theorem 1 allows to analyze the product of Prov and C, Prov ⊗ C, instead
of Prov . The operating guideline of Prov ⊗ C characterizes all strategies Req
for Prov such that Req ⊕ Prov satisfies C. The benefit of this approach is that
instead of calculating all strategies Req and checking whether Req⊕Prov satisfies
the constraint C, it is possible to characterize all C-satisfying strategies Req . In
addition, the latter calculation usually has the same complexity as calculating
all strategies for Prov .

Similarly, the problem of the second scenario, the publication of a provider
service in special repositories, can be solved. We assume that the constraints
that have to be satisfied by a provider service to be published in a special repos-
itory— for example, the required acceptance of credit cards — are published by
the service broker. We again suggest to describe these constraints as a con-
straint oWFN C. The service provider can now calculate the operating guideline
OGProv⊗C of the product of his service Prov and the constraint C. Theorem 1
states that this operating guideline characterizes all strategies Req for Prov such
that Req ⊕ Prov satisfies the constraint C. If the set of these strategies is not
empty, the service provider can publish OGProv⊗C in the service repository.

10

The service Prov , however, can remain unchanged. This is an advantage
as— instead of adjusting, re-implementing, and maintaining several “versions”
of Prov for each repository and constraint—only a single service Prov has to be
deployed. From this service the customized operating guidelines are constructed
and published. If, for example, Prov supports credit card payment and cash on
delivery, then only the strategies using credit card payments would be published
to the repository mentioned above. Though there exist strategies Req for Prov
using cash on delivery, those requesters would not match with the published
operating guideline.

To conclude this section, we return to the exclude/enforce constraints defined
in Def. 3. As mentioned earlier, they can be expressed as constraint oWFNs.
The canonic constraint oWFNs expressing the exclusion and enforcement of
transitions are depicted in Fig. 6(a) and Fig. 6(b), respectively.

initial/final

{t1, . . . , tn} t

(a) exclude({t1, . . . , tn})

initial1

final1

{t1}

{t1}

initialn

{tn}

finaln

{tn}

· · ·

(b) enforce({t1, . . . , tn})
Fig. 6. In the constraint oWFN to exclude a set of transitions (a), the initial and final
marking coincide. Thus, the final marking of the composition becomes unreachable
when transition t fires. The constraint oWFN to enforce a set of transitions (b) consists
of n similar nets. Each net consists of two labeled transitions to ensure that the enforced
transition may fire arbitrary often. To enforce every of the n transitions to fire at least
once, the final marking is [final1, . . . , finaln].

To enforce a certain communication event (the sending of the delivery notifi-
cation by the online shop, for example), however, a constraint oWFN like the one
in Fig. 6(b) cannot be used: enforcing, for instance, all three transitions sending
delivery (t3, t4, and t5) would require each of the transitions to fire in every run of
Req⊕Nshop for a client Req . This is not possible as at most one delivery message
is sent. Still, the constraint can be expressed by a constraint oWFN similar to
C1 (cf. Fig. 5(a)) with the set {t3, t4, t5} used in a label, meaning one of these
transition has to fire.

4 Customized Operating Guidelines

The last section was devoted to implementing constraints at build time. We
changed the service by building the product of the oWFN model of the service
and the constraint oWFN describing the required behavioral restrictions. The
presented solutions can be used to validate a given provider service or to publish
the service in special repositories.

11

In a service-oriented approach, however, we also want to be able to dynami-
cally bind provider and requester services Prov and Req at runtime without the
need to change an already published Prov . Thus, the question arises whether it
is still possible to satisfy a given constraint after publishing the service Prov .
In this section, we extend our operating guideline approach to this regard. We
show that it is possible to describe a constraint as an annotated automaton CΨ ,
called constraint automaton, and apply it by building the product of CΨ and
the operating guideline OGProv . The resulting customized operating guideline
guideline CΨ ⊗ OGProv will describe the set of all requester services Req such
that Req ⊕ Prov satisfies the constraint.

An advantage of this setting is that we do not need the original oWFN model
of Prov . A drawback, however, is that for the same reason we are not able to
enforce, exclude, or order concrete transitions of the oWFN any more. CΨ may
only constrain send or receive actions as such. For example, if two or more
transitions send a message a, then a CΨ excluding a means that all the original
transitions are excluded.

Definition 7 (Constraint automaton). Let OGProv be an operating guideline
with input channels IOG and output channels OOG. Let C = [Q, I, O, δ, q0, Ω] be
a service automaton such that I ⊆ IOG and O ⊆ OOG and let Ψ be an annotation
to C. Then, CΨ is a constraint automaton for OGProv .

The product AΦ ⊗ BΨ of two annotated automata AΦ and BΨ can be con-
structed as follows. The states of AΦ ⊗BΨ are pairs (qA, qB) of states qA ∈ QA

and qB ∈ QB . The initial state is the pair (q0A
, q0B

). A state (qA, qB) is a fi-
nal state of AΦ ⊗ BΨ iff qA and qB are final states of A and B, respectively.
There is a transition ((qA, qB), x, (q′A, q′B)) in AΦ ⊗ BΨ iff there are transitions
(qA, x, q′A) in A and (qB , x, q′B) in B. The interface of the product is defined as
IAΦ⊗BΨ = IA ∩ IB and OAΦ⊗BΨ = OA ∩OB . The annotation of a state (qA, qB)
is the conjunction of the annotations of qA and qB .

As an example, a constraint automaton CΨ for OGshop of Fig. 4 is depicted
in Fig. 7(a). It assures that premium customers pay with credit card and regular
customers pay cash on delivery. Thereby, we exclude the error message and
avoid a surcharge where possible. The product of OGshop with CΨ is depicted
in Fig. 7(b). It can easily be seen that every requester service that complies to
OGshop ⊗ CΨ sends !cc after receiving ?p and therefore avoids the surcharge. A
regular customer (message ?r) sends !cod, avoiding an error message. Hence, the
interaction of the original online shop with a service requester complying to the
new OG satisfies the constraint.

The following theorem justifies the construction.

Theorem 2. Let OGProv be an operating guideline and let CΨ be a constraint
automaton for OGProv .
Then, Req ∈ Comply(OGProv ⊗ CΨ) iff Req ∈ Comply(OGProv) and R ∈
Comply(CΨ).

Proof (sketch). Let OGProv be equal to AΦ.

12

c1:
∨

x∈I
x

c2:
∨

x∈I
x c3:

∨
x∈I

x

c4: true

?r ?p

!cod !cc

I \ {?r, ?p}

I \ {!cod} I \ {!cc}

I

(a) A constraint automaton CΨ .

(0,c1): !o

(2,c1): ?p ∧ ?r

(5,c2): !cod (6,c3): !cc

(10,c4): ?s ∨ ?d (13,c4): ?d

(14,c4): ?d (15,c4): ?s

(19,c4): true

!o

?p?r

?d
?s

?s ?d

?d

!cc!cod

(b) The product OGshop ⊗
CΨ .

Fig. 7. (a) A constraint automaton for OGshop of Fig. 4. A transition labeled with a
set means a transition for each element. I = {!o, !cc, !cod, ?r, ?p, ?s, ?e, ?d} is the set
of all messages that can be sent to or received by the online shop. (b) The product
OGshop ⊗ CΨ . The annotations were simplified for reasons of better readability.

(→) Req ∈ Comply(AΦ ⊗ CΨ) means that Req matches with AΦ ⊗ CΨ

structurally (first item of Def. 1) and each state of Req fulfills the annota-
tion of the matching state(s) of AΦ ⊗ CΨ (second item of Def. 1). Let qReq

be an arbitrary state of Req . Then, if (qReq , (qA, qC)) ∈ R(Req,AΦ⊗CΨ), then
(qReq , qA) ∈ R(Req,AΦ) and (qReq , qC) ∈ R(Req,CΨ). Hence, Req matches with A
and Req matches with C. By assumption, each assignment βqReq fulfills the an-
notation Φ(qA) ∧ Ψ(qC) for each (qA, qC) ∈ R(Req,AΦ⊗CΨ). Hence, βqReq fulfills
Φ(qA) and βqReq fulfills Ψ(qC).

(←) By assumption, Req ’s states match with the states of A and of C. Let
qA and qC be the corresponding states in R(Req,A)(qA) and R(Req,C)(qA), respec-
tively. Then, the state (qA, qC) is in AΦ⊗CΨ and (qReq , (qA, qC)) ∈ R(Req,AΦ⊗CΨ).
Hence, Req matches with AΦ ⊗ CΨ . Finally, since the assignment βqReq fulfills
the annotation Φ(qA) and the annotation Ψ(qC) of matching states in A or C,
βqReq fulfills their conjunction as well. ut

With the result of Theorem 2 we are able to come back to the last two sce-
narios described in the introduction. As already seen in our example, in these
scenarios the constraint is modeled as a constraint automaton CΨ . CΨ charac-
terizes the set of accepted behaviors and can be formulated without knowing the
structure of the OG needed later on. Only the interface (i. e., the set of input
and output channels of the corresponding service automaton) must be known.

In the third scenario, the (general) operating guidelines of all provider services
are already published in the repository and a requester Req queries for a matching
service Prov under a given constraint CΨ . Theorem 2 allows that the broker
computes the customized operating guideline of a provider first and then matches
Req with the customized OG. That way, the consideration of constraints refines
the “find” operation of SOAs: Instead of finding any provider service Prov such

13

that the composition with a requester service Req is deadlock-free, only the
subset of providers Prov for which Req⊕Prov satisfies the constraint is returned.
To speed up the matching, the two steps of building the product and matching
Req with the product can easily be interleaved. Additionally, the broker could
prepare customized OGs for often-used constraints.

In the fourth scenario, the requester service Req is yet to be constructed.
Therefore, the desired features of Req are described as a constraint automaton.
For example, consider a requester who wants to book a flight paying with credit
card. If these features are expressed as a constraint automaton CΨ , it can be
sent to the broker who returns all operating guidelines of provider services Prov
offering these features (i. e., where the product of OGProv with CΨ is not empty).
From this operational descriptions, the service Req can easily be constructed.

c1:
∨

x∈I
x

c2: true

a

I \ {a}

I

(a) enforce(a)

c1: true

c2: false

a

I \ {a}

I

(b) exclude(a)

Fig. 8. The constraint automata for enforcing or excluding a communication action a.

To conclude this section, we depict generic constraint automata for enforcing
or excluding a communication action a in Fig. 8. The broker could apply such
constraint automata and store customized OGs enforcing or excluding the most
common typical communication actions (as payments, errors, etc.) in addition
to the general OG version of the provider services.

5 Related Work

There is a lot of research being done to enforce constraints in services. The orig-
inality of this paper lies in the application of constraints to the communication
between a requester and a provider service. Furthermore, the presented model
of constraints allows us to refine “find” operation in SOAs.

The idea to constrain the behavior of a system by composing it with an
automaton is also used in the area of model checking. When a component of
a distributed system is analyzed in isolation, it might reach states that are
unreachable in the original (composed) system. To avoid these states, [12] intro-
duce an interface specification which is composed to the considered component
and mimics the interface behavior of the original system. In [13], cut states are
added to the interface specification which are not allowed to be reached in the
composition. These states are similar states with false annotation in Fig. 8(b).

In [14], services are described with a logic, allowing the enforcement of con-
straints by logical composition of a service specification with a constraint speci-
fication. Similarly, several protocol operators, including an intersection operator

14

are introduced in [15]. Though these approaches consider synchronous commu-
nication, they are similar to our product definition of Sect. 3.

An approach to describe services and desired (functional or nonfunctional)
requirements by symbolic labeled transition systems is proposed in [16]. An algo-
rithm then selects services such that their composition fulfils the given require-
ments. However, the requirements have to be quite specific; that is, the behavior
of the desired service have to be specified in detail. In our presented approach,
the desired behavior can be described by a constraint instead of a specific work-
flow. However, the discovery of a composition of services to satisfy the required
constraint is subject of future work.

6 Conclusion

We presented algorithms for the calculation of customized operating guidelines
from different inputs. Computing a customized OG from a general one is useful
for scenarios where a requester wants to explore specific features of a service that
is published through its (general) operating guideline. Computing a customized
OG from the service description itself may be useful for registration in specialized
repositories as well as for validation purposes.

We implemented all results of this paper in our analysis tool Fiona. First case
studies show that when the oWFN model N of the considered service is given,
applying a constraint given as a constraint oWFN C to N and calculating the
OG of the product N ⊗C has the same complexity as calculating the OG of N
and applying the same constraint given as constraint automaton.

In ongoing work, we are further exploring the validation scenario. In case
that a service turns out not to have partners, we are trying to produce convinc-
ing diagnosis information to visualize why a constraint cannot be satisfied. In
addition, we work on an extension of the set of requirements that can be used
for customizing an operating guideline. For instance, we explore the possibility
of replacing the finite automata used in this paper with Büchi automata, thus
being able to handle arbitrary requirements given in linear time temporal logic
(LTL).

References

1. Gottschalk, K.: Web Services Architecture Overview. IBM whitepaper, IBM de-
veloperWorks (2000) http://ibm.com/developerWorks/web/library/w-ovr/.

2. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3) (2005) 35–43

3. Massuthe, P., Schmidt, K.: Operating Guidelines – An Automata-Theoretic Foun-
dation for the Service-Oriented Architecture. In Cai, K.Y., Ohnishi, A., Lau, M.,
eds.: Proceedings of the Fifth International Conference on Quality Software (QSIC
2005), Melbourne, Australia, IEEE Computer Society (2005) 452–457

4. Lohmann, N., Massuthe, P., Wolf, K.: Operating Guidelines for Finite-State Ser-
vices. In: Petri Nets and Other Models of Concurrency – ICATPN 2007. (2007)
accepted.

15

5. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Gúızar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M.,
Mehta, V., Thatte, S., Rijn, D.v.d., Yendluri, P., Yiu, A.: Web Services Business
Process Execution Language Version 2.0. Committee Specification, Organization
for the Advancement of Structured Information Standards (OASIS) (2007)

6. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing Interacting BPEL
Processes. In Dustdar, S., Fiadeiro, J.L., Sheth, A., eds.: Forth International
Conference on Business Process Management (BPM 2006), 5–7 September 2006
Vienna, Austria. Volume 4102 of Lecture Notes in Computer Science., Springer-
Verlag (2006) 17–32

7. Aalst, W.M.P.v.d.: The application of Petri nets to workflow management. Journal
of Circuits, Systems and Computers 8(1) (1998) 21–66

8. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing Interacting WS-
BPEL Processes Using Flexible Model Generation. Data Knowl. Eng. (2007) ac-
cepted for special issue of BPM 2006.

9. Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer
Academic Publishers (1999)

10. Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event pro-
cesses. SIAM J. Control Optim. 25(1) (1987) 206–230

11. Badouel, E., Darondeau, P.: Theory of Regions. In Reisig, W., Rozenberg, G.,
eds.: Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, the volumes
are based on the Advanced Course on Petri Nets, held in Dagstuhl, September
1996. Volume 1491 of Lecture Notes in Computer Science., Springer-Verlag (1996)
529–586

12. Graf, S., Steffen, B.: Compositional Minimization of Finite State Systems. In
Clarke, E.M., Kurshan, R.P., eds.: Computer Aided Verification, 2nd International
Conference, CAV ’90, New Brunswick, NJ, USA, June 18–21, 1990, Proceedings.
Volume 531 of Lecture Notes in Computer Science., Springer-Verlag (1991) 186–196

13. Valmari, A.: Composition and Abstraction. In Cassez, F., Jard, C., Rozoy, B.,
Ryan, M.D., eds.: Modeling and Verification of Parallel Processes, 4th Summer
School, MOVEP 2000, Nantes, France, June 19–23, 2000. Volume 2067 of Lecture
Notes in Computer Science., Springer-Verlag (2001) 58–98

14. Davulcu, H., Kifer, M., Ramakrishnan, I.V.: CTR-S: a logic for specifying con-
tracts in semantic web services. In Feldman, S.I., Uretsky, M., Najork, M., Wills,
C.E., eds.: Proceedings of the 13th international conference on World Wide Web –
Alternate Track Papers & Posters, WWW 2004, New York, NY, USA, May 17–20,
2004, ACM (2004) 144–153

15. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing
web service protocols. Data Knowl. Eng. 58(3) (2006) 327–357

16. Pathak, J., Basu, S., Honavar, V.: Modeling Web Services by Iterative Reformu-
lation of Functional and Non-functional Requirements. In Dan, A., Lamersdorf,
W., eds.: Service-Oriented Computing – ICSOC 2006, 4th International Confer-
ence, Chicago, IL, USA, December 4–7, 2006, Proceedings. Volume 4294 of Lecture
Notes in Computer Science., Springer-Verlag (2006) 314–326

16

