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Abstract

We consider a class of multi-objective probabilistically constrained problems MOPCP with a
joint chance constraint, a multi-row random technology matrix, and a risk parameter (i.e., the
reliability level) defined as a decision variable. We propose a Boolean modeling framework and
derive a series of new equivalent mixed-integer programming formulations. We demonstrate the
computational efficiency of the formulations that contain a small number of binary variables.
We provide modeling insights pertaining to the most suitable reformulation, to the trade-off be-
tween the conflicting cost/revenue and reliability objectives, and to the scalarization parameter
determining the relative importance of the objectives. Finally, we propose several MOPCP vari-
ants of multi-portfolio financial optimization models that implement a downside risk measure
and can be used in a centralized or decentralized investment context. We study the impact of
the model parameters on the portfolios, show, via a cross-validation study, the robustness of the
proposed models, and perform a comparative analysis of the optimal investment decisions.

Key words: chance-constrained programming, variable reliability, Boolean programming, risk man-
agement, multi-portfolio optimization

1 Introduction

In this paper, we propose a new modeling and solution method for a class of multi-objective stochas-
tic programming problems [31]. The formulation includes a joint probabilistic constraint with a
random technology matrix which requires a system of inequalities to hold with some probability
level. The probability level, often used to characterize the quality of service or the reliability of a
system, is defined as a lower-bounded continuous decision variable. The generic formulation of the
Multi-Objective Probabilistically Constrained Problems MOPCP reads:

MOPCP : max qTx+ η(p) (1)

subject to Ax ≥ b (2)

P(Tx ≤ d) ≥ p (3)

p ≥ p (4)

0 ≤ x ≤ u, (5)

where T is an [r × |J |]-matrix and its rows TT
1 , . . . , T

T
r are discretely distributed random vectors

not necessarily independent. Each component of Ti is given by tijξj , where tij is a fixed scalar and
ξj is a random variable. The notation |J | refers to the cardinality of the set J while u and d are
|J |- and r-dimensional deterministic vectors. We denote by p the lowest acceptable reliability level

∗George Washington University, Washington, DC, USA; email: mlejeune@gwu.edu
†University of Michigan, Ann Arbor, MI, USA; email: siqian@umich.edu

1



and by P a probability measure. We assume that each coefficient tij is non-negative. As it will
be shown after having introduced the reformulation method (see Remark 1), this assumption can
be relaxed and our method can be generalized for tij ∈ R. The decision variables xj , j ∈ J are
non-negative and upper-bounded (see (5)). Constraint (2) defines a set of deterministic constraints,
and (3) is a multi-row probabilistic constraint with a random technology matrix, ensuring that the
r inequalities TT

i x ≤ di (i = 1, . . . , r) hold jointly with a probability at least equal to p. The system
of stochastic inequalities Tx ≤ d in (3) includes |J | inequalities of form ξjxj ≤ dr−|J |+j , j ∈ J .

The objective function is qTx+ η(p) : R|J |+1 → R where η(p) is a monotone increasing function
in p. The decision variable p is lower-bounded by p in (4) and represents the enforced reliability
level. It can be interpreted as the reliability of a quality control process [22] or the ready rate service
level provided to customers [16]. As the reliability p increases, the probability of losing customers
and the related loss of goodwill become lower, resulting in an increase of the overall benefits of a
company. On the other hand, a larger p may trigger additional resources required for the company
and raise additional operational and management costs. Ang and De Leon [1] advocate the use of
a multi-objective chance-constrained formulation to decide whether an existing infrastructure for
earthquake protection should be upgraded. They use a weighted objective function accounting for
the degree of structural damage caused by earthquake, the cost of upgrading versus potential losses
due to damages, and interpret p as a target reliability level for damage control and life safety. In
this paper, we assume that the reliability component η(p) of the objective function is linear in p,
and the objective (1) is specified as qTx+ap, where a > 0 is the scalarization parameter that defines
a proper balance between the profit and reliability objectives [e.g., 8, 19]. The determination of
the form η(p) is problem-dependent and is a complicated issue beyond the scope of this study.

The first multi-objective chance-constrained problem, in which cost and reliability are two
components of a scalarized objective function, is due to Evers [10]. Sengupta and Portillo-Campbell
[28] suggest to define reliability levels as decision variables and propose a multi-objective chance-
constrained production scheduling model. Prékopa [23] underlines the difficulty of solving MOPCP
and suggests a parametric approximation approach. The method requires the recursive solution
of a variant of MOPCP in which p is fixed and to choose the best solution obtained during the
iterative process. Morgan et al. [21] propose a chance-constrained formulation which trades off
pumping costs and reliability of an aquifer network. Rengarajan and Morton [24] and Rengarajan
et al. [25] analyze the trade-off between the cost of building a network and the probability of
an adversarial event causing a network failure, both of which motivate the use of stochastic multi-
objective formulations with their ability in comprehending the risk tradeoff in network applications,
and contrast this approach with a more traditional one in which the risk (or cost) level is fixed a
priori and the other objective is optimized.

Additional motivations for studying MOPCP stem from the prevalence of various types of
hidden costs (e.g., reputation damage) associated with a reliability level p, which are not necessar-
ily taken into account in chance-constrained programs with fixed reliability level. Chapman and
Harwood [5] as well as Sullivan and Kida [33] suggest that the risk faced by a company and the
one faced by its managers may need separate consideration as manager’s reputation might suf-
fer from a highly visible mistake. The function η(p) can then be used to capture the manager’s
reputation objective associated with a reliability level p. The function η(p) can also represent a
company’s long-term reputation or brand name modelled as an increasing function of the quality of
service level p delivered to the customers. Under this context, the objective function in MOPCP
combines a short-term profit qTx goal with the long-term brand name objective. Alternatively,
η(p) gives the flexibility of ignoring the violation of the constraints Tx ≤ d in (3) with a variable
probability level at most equal to (1−p). The impact of the violation depends on the value of p and
may significantly impact decision quality, especially in highly uncertain environments (e.g., high-
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tech industries including oil drilling and renewable energy investment) where optimal decisions are
sensitive with respect to p. Shen [30] investigates similar chance-constrained programs where the
associated reliability guarantees are considered as decision variables. Moreover, the paper assumes
individual chance constraints with each having a single row in the technology matrix, yielding a
much simpler modeling mechanism and solution schemes.

The main contribution of this study is to develop new and exact formulations, as well as a so-
lution method for the NP-hard multi-objective stochastic programming MOPCP. The MOPCP
contains a joint probabilistic constraint in which the components of the multi-row random technol-
ogy matrix are discretely distributed. A discrete representation of the uncertainty with a set of joint
scenarios is frequently employed (see, e.g., [7, 26]), which permits to take into account dependen-
cies among random variables, and can be derived by sampling from some underlying distribution
of the uncertainty. While algorithmic methods have been proposed for single-objective stochastic
problems including a joint chance constraint with random right-hand sides [e.g., 7, 13, 15, 17],
and, most recently, with multi-row random technology matrix [2, 12], no efficient reformulation or
solution method has been proposed, to the best of our knowledge, for the class of multi-objective
stochastic programming problems considered in this study.

Moreover, our reformulation approach does not require the solution of multiple complex prob-
lems approximating MOPCP in which p is fixed and iteratively set to (all or) a series of acceptable
values. This is in contrast with studies that perform a Pareto analysis of the “efficient frontier” of
chance-constrained programming models. Two representative articles [24, 25] are reviewed above,
where the authors vary p in (3) and compute the corresponding objective qTx subject to (2)–(5)
for a fixed p. Mitra et al. [20] use a similar approach to construct the efficient frontier of a chance-
constrained supply chain planning problem in which the objectives are cost and demand satisfaction.
Greenberg et al. [11] analyze the impact of changing the value of p in chance-constrained programs
with recourse variables by constructing the response space frontier using generalized Lagrangian du-
ality. All these studies require the solution of a chance-constrained program for a sufficiently large
number of reliability choices, whereas we provide a nonparametric approach that simultaneously
determines the optimal values of x and p through the solution of one single problem MOPCP.

We extend a recently proposed Boolean modeling framework [12, 15] to derive a series of new
mixed-integer programming (MIP) formulations for MOPCP. The Boolean method involves the
binarization of the probability distribution with a set of so-called cut points. This permits to
represent a joint probabilistic constraint as a partially defined Boolean function, and to subsequently
model its satisfiability with sets of mixed-integer linear inequalities. In a recent study, Kogan and
Lejeune [12] employ the Boolean method to formulate equivalent mixed-integer formulations of a
joint chance constraint with random technology matrix and fixed reliability level. By contrast,
our study defines the reliability as a decision variable. This further compounds the computational
challenge of solving the associated multi-objective problem and requires a significant extension of
the Boolean framework [12]. We first introduce binary variables to model the determination of the
optimal reliability level. By analyzing the special structure of the optimal solutions of MOPCP,
we are able to further relax the integrality of the new binary variables and keep new variables and
constraints in sizes that are polynomial to the number of cut points and to the number of scenarios
considered for the random vector ξ. We also provide computational and modeling insights which
cover the following aspects. First, we analyze the interplay between the objectives. Second, we
assess the sensitivity of the solution with respect to the parameter defining the relative importance
of each objective, which provides guidance to specify the value of this parameter. Additionally, we
provide formulations for stochastic multi-portfolio optimization which balance return with downside
risk and can be used in a centralized or decentralized investment fashion.

The remainder of the paper is organized as follows. In Section 2, we define the key components
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of the Boolean modeling framework first introduced in [12, 15]. Section 3 revisits some fundamental
Boolean concepts and the reformulation of the single-objective version of MOPCP in which the
probability level p is fixed. Section 4 derives new equivalent mixed-integer linear programming
(MILP) reformulations of the multi-objective MOPCP with variable p. Section 5 compares the
computational tractability of the proposed formulations, and presents insights about the trade-off
between objectives and the sensitivity of the solution. In Section 6, we conduct a comprehensive
analysis of stochastic multi-portfolio models that can be used in decentralized and centralized
investment contexts. Section 7 provides concluding remarks and future research directions.

2 Boolean Modeling

For self-containment purposes, we present succinctly the Boolean modeling framework that defines
the satisfiability of a joint probabilistic constraint in terms of a partially defined Boolean function
(pdBf). The method was first introduced to handle joint probabilistic constraints with dependent
random right-hand sides [15]. It was also used in Lejeune [14] to elicit the exhaustive list of p-
efficient points [see, e.g., 23], represented as combinatorial ep-patterns, through solutions of an
MILP problem. Most recently, the method was employed for deriving reformulations and exact
solutions of stochastic programming problems with joint probabilistic constraints and multi-row
random technology matrix [12]. We shall here expand the method for optimizing probabilistically
constrained problems with random technology matrix in which the reliability level is a decision
variable. The Boolean method involves the construction of the set of recombinations and the
binarization of the probability distribution.

2.1 Construction of Set of Recombinations

Let ξ be the |J |-dimensional vector of distinct random variables in the matrix T . Further, we
denote by Ω the support set of ξ. The set Ω contains all possible realizations of the |J |-random
vector ξ with distribution function F . A realization k is represented by the |J |-numerical vector ωk.

Definition 1. [14] A realization k is called p-sufficient if and only if F (ωk) ≥ p and is p-
insufficient if F (ωk) < p.

A p-sufficient realization defines sufficient conditions for the probabilistic constraint (3) to hold.
Let T (ωk) represent the image of T when ξ is realized as ωk. If k is p-sufficient, which implies
that F (ωk) ≥ p, we have: T (ωk)x ≤ d ⇒ P(Tx ≤ d) ≥ p. The dichotomy between p-sufficient
and p-insufficient realizations gives a partition of the set Ω into two disjoint sets of p-sufficient
Ω+(p) =

{
k ∈ Ω : F (ωk) ≥ p

}
and p-insufficient Ω−(p) = Ω \ Ω+(p) realizations.

We generate all points that can be p-sufficient. These are called recombinations [12]. Let Fj

be the marginal probability distribution of ξj . The inequalities

Fj(ω
k
j ) ≥ p, j = 1, . . . , |J | (6)

define necessary conditions for (3) to hold: P(Tx ≤ d) ≥ p ⇒ Fj(ω
k
j ) ≥ p, j = 1, . . . , |J |. The

direct product Ω̄(p) = C1(p)× . . .× Cj(p)× . . .× C|J |(p) of each set

Cj(p) =
{
ωk
j : Fj(ω

k
j ) ≥ p, k ∈ Ω

}
, j = 1, . . . , |J | (7)

provides the set Ω̄(p) of recombinations containing all points that can possibly be p-sufficient. Each
vector ωk associated to a recombination k ∈ Ω̄(p) satisfies the |J | conditions defined by (6). The
disjoint sets of p-sufficient and p-insufficient recombinations are respectively denoted by Ω̄+(p) =
{k ∈ Ω̄(p) : F (ωk) ≥ p} and Ω̄−(p) = {k ∈ Ω̄(p) : F (ωk) < p}.
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2.2 Binarization Process

We shall now binarize the probability distribution and the recombinations using cut points.
The concept of cut point is frequently used in Boolean and combinatorial data mining methods
[4, 34] to separate points belonging to different classes. The objective of the binarization process is
first to represent the joint probabilistic constraint as a partially defined Boolean function, and to
subsequently model its satisfiability with sets of mixed-integer linear inequalities derived by using
the concept of minorant of a threshold Boolean function. The number of binary variables in the
set of inequalities is equal to the number of cut points and is typically order of magnitude smaller
than the number of possible realizations for the vector of random variables. Let nj be the number
of cut points associated with ξj and n =

∑
j∈J nj be the total number of cut points over all j.

Definition 2. [15] The binarization process is a mapping R|J | → {0, 1}n of a numerical vector ωk

into a binary vector βk =
[
βk11, . . . , β

k
1n1
, . . . , βkjl, . . . , β

k
jnj
, . . .

]
, such that the value of each Boolean

component βkjl is defined with respect to a cut point cjl as follows:

βkjl =

{
1 if ωk

j ≥ cjl
0 otherwise

, (8)

where cjl denotes the lth cut point associated with ξj ,

l′ < l ⇒ cjl′ < cjl , j ∈ J, l = 2, . . . , nj , l
′ = 1, . . . , nj − 1 . (9)

For any given p, the binarization of Ω̄(p) creates the set Ω̄B(p) ⊆ {0, 1}n of relevant Boolean
vectors, each of which is a binary mapping of a recombination. The cut points are arranged in
ascending order in (9). Lemma 1 follows directly from the definition of the binarization process.

Lemma 1. The binarization process (8)–(9) generates a regularized set of Boolean vectors, i.e.,
for every component ξj , j ∈ J , if cjl′ < cjl for some l, l′ = 1, . . . , nj , l 6= l′, then

βkjl ≤ βkjl′ , ∀k ∈ Ω̄(p) . (10)

The binarization process must be based on a consistent set of cut points to preserve the dis-
jointedness between binary projections Ω̄+

B(p) and Ω̄−B(p) of Ω̄+(p) and Ω̄−(p). We employ the
sufficient-equivalent consistent set of cut points [12]

Ce(p) =

|J |⋃
j=1

Cj(p) , (11)

with Cj(p), j ∈ J defined by (7), that guarantees that no pair of p-sufficient and p-insufficient
recombinations can have the same binary image. The set of relevant Boolean vectors is partitioned
into disjoint sets of p-sufficient Ω̄+

B(p) and p-insufficient Ω̄−B(p) relevant Boolean vectors. The
binarization based on the sufficient-equivalent set of cut points defined in (11) ensures a one-to-one
mapping between vectors ωk and βk associated with a recombination k. The binarization permits
the derivation of a pdBf representing the satisfiability of the joint probabilistic constraint (2).

Definition 3. Let T (g) and F(g) denote the sets of respectively true and false points of a Boolean
function. A Boolean function f defined by the pair of disjoint sets (T ,F) ⊆ {0, 1}n is a mapping
f : (T

⋃
F) → {0, 1} such that f(k) = 1 (resp., f(k) = 0) if k is a true (resp., false) point: k ∈ T

(resp., k ∈ F).
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Definition 4. For any given p and two disjoint subsets Ω̄+
B(p), Ω̄−B(p): Ω̄+

B(p)
⋃

Ω̄−B(p) = Ω̄B(p) ⊆
{0, 1}n, g

(
Ω̄+
B(p), Ω̄−B(p)

)
is a pdBf with sets of true points Ω̄+

B(p) and false points Ω̄−B(p).

The set of p-sufficient (resp., p-insufficient) relevant Boolean vectors contains the true (resp.,
false) points. Theorem 1 provides a characterization of the set of relevant Boolean vectors. We
refer to Kogan and Lejeune [12] for a detailed proof.

Theorem 1. Consider the binarization process obtained with Ce. The set Ω̄B(p) of relevant
Boolean vectors is a binary projection of Ω̄(p) and is given by

Ω̄B(p) =
{
k : βk ∈ {0, 1}n : βkj1 = 1, βkjl ≤ βkjl−1, j ∈ J, l = 2, . . . , nj

}
. (12)

Example 1. Consider the following example with two decision variables and a four-row random
technology matrix to illustrate how the Boolean method reformulates the satisfiability of the prob-
abilistic constraint as a pdBf.

max 3x1 + 2x2 + 2p

subject to P


ξ1x1 + 2ξ2x2 ≤ 13
5ξ1x1 + 3ξ2x2 ≤ 27
ξ1x1 ≤ 4
ξ2x2 ≤ 7

 ≥ p
x1, x2 ≥ 0, x1 ≤ 1.5, x2 ≤ 2.5

0.6 ≤ p ≤ 1

(13)

where t11 = 1, t12 = 2, t21 = 5, t22 = 3, t31 = 4, t42 = 7, d1 = 13, d2 = 27, d3 = 4, d4 = 7, random
row vectors T1 = [ξ1, 2ξ2], T2 = [5ξ1, 3ξ2], T3 = [ξ1, 0], T4 = [0, ξ2], and η(p) = 2p.

Assume that ξ = [ξ1, ξ2] has eight joint possible realizations denoted by ωk = [ωk
1 , ω

k
2 ], k =

1, . . . , 8. Table 1 displays the probability of each realization ωk, the joint cumulative probability
function F of ξ = [ξ1, ξ2] and the marginal cumulative distribution functions Fi of ξi, i = 1, 2.

Table 1: Realizations ωk of ξ and cumulative probabilities.

k ωk
1 ωk

2 P{ξ = ωk} F1(ω
k
1 ) F2(ω

k
2 ) F (ωk)

1 2 2 0.5 0.77 0.65 0.5

2 2 4 0.05 0.77 0.78 0.55

3 2 5 0.22 0.77 1 0.77

4 3 2 0.05 0.87 0.65 0.55

5 3 3 0.05 0.87 0.7 0.6

6 4 1 0.04 0.94 0.04 0.04

7 4 4 0.03 0.94 0.78 0.72

8 5 2 0.06 1 0.65 0.65

For p = 0.6, the sufficient-equivalent set of cut points is:

Ce(0.6) = {c11 = 2; c12 = 3; c13 = 4; c14 = 5; c21 = 2; c22 = 3; c23 = 4; c24 = 5}.

Table 7 in Appendix A.1 displays the recombinations, their binary images (relevant Boolean vec-
tors), and their partitioning into Ω̄−B(0.6) and Ω̄+

B(0.6).
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3 Reformulations for Probabilistically Constrained Programs with
Fixed Reliability Level

Prior to deriving equivalent reformulations of MOPCP (Section 4), we shall first review some
key Boolean concepts (Section 3.1) and model the feasible region of probabilistically constrained
problems with multi-row random technology matrix and fixed reliability level (Section 3.2). These
concepts and properties play a fundamental role in the derivation of reformulations equivalent to
MOPCP in which the reliability level p is a decision variable.

3.1 Boolean Function and Minorant

The Boolean programming concepts (see Crama and Hammer [6] for a comprehensive overview of
the Boolean programming discipline) presented below are used in Section 3.2 to characterize the
feasible set of a probabilistically constrained problem with fixed reliability level.

Definition 5. [6] A function f : {0, 1}n → {0, 1} is a threshold Boolean function if for all
(o1, . . . , on) ∈ {0, 1}n, there exists a vector of weights λ ∈ Rn and a threshold θ ∈ R, such that

f(o1, . . . , on) = 1 if and only if
n∑

l=1

λlol ≥ θ . (14)

The hyperplane

{
o ∈ {0, 1}n :

n∑
l=1

λlol = θ

}
is a separator for f and the (n + 1)-tuple (λ, θ) is

the separating structure for the threshold Boolean function f .

Definition 6. A Boolean function f is a minorant of a pdBf g
(
Ω̄+
B(p), Ω̄−B(p)

)
if Ω̄−B(p) ⊆ F(f).

We shall use the concept of tight minorant to obtain a more precise characterization of the
pdBf g

(
Ω̄+
B(p), Ω̄−B(p)

)
.

Definition 7. A Boolean function f is a tight minorant of a pdBf g
(
Ω̄+
B(p), Ω̄−B(p)

)
if (i) f is a

minorant of g
(
Ω̄+
B(p), Ω̄−B(p)

)
and (ii) the true set T (f) of f is such that: T (f)

⋂
Ω̄+
B(p) 6= ∅.

Since a threshold Boolean function is characterized by a separating structure, Definition 7 leads
to Lemma 2.

Lemma 2. [12] A threshold Boolean function f defined by the separating structure (λ, |J |) is a
tight minorant of a pdBf g(Ω̄+

B(p), Ω̄−B(p)) if the system of inequalities

∑
j∈J

nj∑
l=1

λjl β
k
jl ≥ |J |, for at least one k ∈ Ω̄+

B(p) (15)

∑
j∈J

nj∑
l=1

λjl β
k
jl ≤ |J | − 1, k ∈ Ω̄−B(p) (16)

has a feasible solution.

At least one condition must hold for each component of the random vector ξ in the chance con-
straint (3). The minimal number of non-zero weights in a threshold tight minorant of g

(
Ω̄+
B(p), Ω̄−B(p)

)
is therefore |J |, which validates the replacement of θ in (14) by (|J |−1) in the right-hand side of (16).
Importantly, Kogan and Lejeune [12] have shown that there exists a threshold tight minorant, and
hence a feasible solution for (15)–(16), for any g

(
Ω̄+
B(p), Ω̄−B(p)

)
defined as in Definition 4.
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3.2 Equivalent Reformulations

In this section, we assume that the probability level p in constraint (3) is fixed to a number in (0, 1]
and present several reformulations for the single-objective version of MOPCP with fixed p.

3.2.1 An Equivalent Mixed-Integer Nonlinear Formulation

We first derive an equivalent mixed-integer bilinear reformulation of the probabilistic constraint (3)
when p is fixed. We provide the proof of the equivalence in Appendix B.

Theorem 2. Given p ∈ (0, 1], every feasible solution of the system of inequalities

∑
j∈J

nj∑
l=1

λjl β
k
jl ≤ |J | − 1, k ∈ Ω̄−B(p) (17)

nj∑
l=1

λjl = 1, j ∈ J (18)

λjl ∈ {0, 1}, j ∈ J, l = 1, . . . , nj (19)

defines a threshold tight minorant f with integral separating structure (λ, |J |) ∈ {0, 1}n × Z+.
Every point k such that

∑
j∈J
∑nj

l=1 λjl β
k
jl = |J | belongs to Ω̄+

B(p).

Theorem 2 shows that we do not need to include the disjunction (15) to generate a tight
minorant of g

(
Ω̄+
B(p), Ω̄−B(p)

)
. This permits to derive a quadratic mixed-integer set representing

the feasible region of (3) with fixed p.

Theorem 3. The feasible set defined by the probabilistic constraint (3) with multi-row random
technology matrix and fixed reliability level p is equivalent to the feasible set defined by the system
S1 of mixed-integer quadratic inequalities

S1:
(17) ; (18) ; (19)∑

j∈J
tijxj

( nj∑
l=1

λjl cjl

)
≤ di, i = 1, . . . , r . (20)

Proof. We show the equivalence between S1 and the chance constraint (3) by verifying two facts,
indicated as Result (i) and Result (ii).
Result (i): Any solution feasible for S1 is feasible for (3). Due to constraints (17), (18) and (19), it
follows from Theorem 2 that any λ̂ ∈ {λ : (17), (18), (19)} defines a separating structure (λ̂, |J |)
of a threshold tight minorant f . Hence, we define

G =

k ∈ Ω̄B(p) :
∑
j∈J

nj∑
l=1

λ̂jl β
k
jl = |J |

 ,

and we have that G ⊆ Ω̄+
B(p). Let L =

{
(j, l) : λ̂jl = 1, j ∈ J, l = 1, . . . , nj

}
. For any k ∈ G, the

binarization process (8) implies that

ωk
j ≥ cjl, (j, l) ∈ L. (21)

Further, we have from the definition of the sufficient-equivalent set of cut points (11) that ∃ k′ ∈ G
such that:

ωk′
j = cjl, (j, l) ∈ L . (22)
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Constraints (18) and (19) ensure that exactly one term λ̂jlcjl in each summation
∑nj

l=1 λjlcjl of
constraint (20) is non-zero and equal to cjl, (j, l) ∈ L. Hence, (22) can be rewritten as

ωk′
j = cjl =

nj∑
i=1

λjl cjl, (j, l) ∈ L. (23)

Recall that every component of T is: tij ξj , i = 1, . . . , r, j ∈ J :

P(Tx ≤ d) = P

∑
j∈J

tij ξj xj ≤ di, i = 1, . . . , r

 . (24)

Given that xj and tij are non-negative, and k′ ∈ G ⊆ Ω̄+(p), we have P
(
ξ ≤ ωk′

)
≥ p and thus

P

(∑
j∈J

tij ξj xj ≤
∑
j∈J

tij ω
k′
j xj , i = 1, . . . , r

)
≥ p. This, combined with (24), implies that

∑
j∈J

tij ω
k′
j xj ≤ di, i = 1, . . . , r ⇒ P

∑
j∈J

tij ξj xj ≤ di, i = 1, . . . , r

 ≥ p. (25)

which, together with (23), further implies that

∑
j∈J

tij xj

( nj∑
l=1

λjl cjl

)
≤ di, i = 1, . . . , r ⇒ P(Tx ≤ d) ≥ p. (26)

Result (ii): Any solution feasible for (3) is feasible for S1. For any k′′ such that P(ξ ≤ ωk′′) ≥ p,
the definition of the sufficient-equivalent set of cut points implies that there exists k′ ∈ Ω̄+

B(p) such
that ωk′ ≤ ωk′′ and ωk′

j =
∨

l=1,...,nj

cjl, j ∈ J . Let l∗j = arg max
l
{cjl : cjl = ωk′

j }, j ∈ J . What is left

to prove is that the vector λ′

λ′jl =

{
1 if l = l∗j
0 otherwise

, j ∈ J (27)

is feasible for S1. Clearly, λ′ is feasible for (18), (19) and (20). From (27), we have λ′ feasible
for (17) if ∑

j∈J

nj∑
l=1

λ′jl β
k
jl =

∑
j∈J

λ′jl∗j β
k
jl∗j

=
∑
j∈J

βkjl∗j ≤ |J | − 1, k ∈ Ω̄−B(p). (28)

The feasibility of the above constraints is ensured if βkjl∗j
= 0 for at least one j ∈ J, ∀k ∈ Ω̄−B(p).

For any k′ ∈ Ω̄+
B(p), there is no k ∈ Ω̄−B(p) such that βk ≥ βk

′
(see Definition (11) for the

sufficient-equivalent set of cut points). This implies that

(βkj1, . . . , β
k
jnj

) < (βk
′

j1, . . . , β
k′
jnj

) for at least one j, ∀k ∈ Ω̄−B(p).

Let h ∈ J be an index such that (βkh1, . . . , β
k
hnh

) < (βk
′

h1, . . . , β
k′
hnh

) for an arbitrary k ∈ Ω̄−B(p). Since

l∗h = arg max
l

βk
′

hl = 1, we have for any l > l∗h that βkhl = βk
′

hl = 0. Thus, vectors βk
′

and βk differ

only in the first l∗h components, and we have

(βkh1, . . . , β
k
hl∗h

) < (βk
′

h1, . . . , β
k′
hl∗h

).
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The regularization property (see Lemma 1) indicates that this relationship can only be true if
βkhl∗h

= 0 < βk
′

hl∗h
= 1. This shows that, for any k ∈ Ω̄−B(p), βkjl∗j

= 0 for at least one j, which results

in
∑

j∈J β
k
jl∗j

to be bounded from above by (|J | − 1) for each k ∈ Ω̄−B(p) and implies that λ′ is

feasible for (28) and thus (17). This provides the result that we set out to prove.

Remark 1. Result (i) in the proof of Theorem 3 uses the assumption made in Section 1 that
each coefficient tij is non-negative. This assumption is non-restrictive and was made to ease the
notations. Indeed, if one (or more) of the coefficients tij is negative, we rewrite tij = t+ij − t

−
ij with

t+ij , t
−
ij ≥ 0, introduce a random vector ξ̃ = −ξ, and then rewrite all entries in Tx as t+ijxjξj +t−ijxj ξ̃j

in (3). The proof of Theorem 3 can be derived the same way on that basis.

In Appendix A.2, we provide the reformulation yielded by Theorem 3 for the probabilistic
constraint in Example 1.

3.2.2 Equivalent Mixed-Integer Linear Programming Reformulations

We now propose several linearization approaches for the bilinear constraints (20) in S1.
We first linearize the bilinear terms xjλjl in (20) by using the inequalities proposed by Mc-

Cormick [18]. Note that each contains a binary variable λjl and a non-negative continuous variable
xj . Define yjl ≡ xjλjl, j ∈ J, l = 1, . . . , nj , and enforce the relationship with the inequalities

yjl ≤ ujλjl (29)

yjl ≤ xj (30)

yjl ≥ xj − uj(1− λjl) (31)

yjl ≥ 0, (32)

where uj is the upper bound of variable xj , j ∈ J . Constraints (29) and (32) together force yjl to
take value 0 if λjl = 0, whereas (30) and (31) imply that yjl = xj × 1 = xj if λjl = 1.

Lemma 3. The feasible set of the probabilistic constraint (3) with a fixed p and the feasible set
defined by the mixed-integer quadratic inequalities in S1 can be equivalently represented by

S2:
(17) ; (18) ; (19) ; (29) ; (30); (31) ; (32)∑

j∈J
tij

( nj∑
l=1

yjl cjl

)
≤ di, i = 1, . . . , r. (33)

Note that S2 only contains mixed-integer linear inequalities. Furthermore, we can reduce the
number of binary integer variables in S2 by noting that

∑nj

l=1 λjl = 1. Thus, for every j ∈ J , only
one of the variables yjl is equal to xj while all the other yjl are equal to zero. Lemma 4 provides
an alternative MILP formulation that is equivalent to S2.

Lemma 4. Given a fixed reliability level p, the feasible sets defined by constraint (3), system S1,
and system S2 are equivalent to the following system of mixed-integer inequalities:

(17) ; (18) ; (19)

S3:

∑
j∈J

tijzj ≤ di , i = 1, . . . , r (34)

zj ≥ cjlxj −Mjl(1− λjl) , j ∈ J, l = 1, . . . , nj (35)

zj ≤ cjlxj +Mjl(1− λjl) , j ∈ J, l = 1, . . . , nj , (36)

where Mjl = cjl(xj −xj) with xj and xj being the (sharpened) upper and lower bounds for xj . For
all j ∈ J, l = 1, . . . , nj , we have:
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• if cjnj > cj1 > 0, then

xj = min

{
uj , max

i:tij 6=0

{ di
tijcj1

: di > 0
}}

, and xj = max

{
0, min

i:tij 6=0

{ di
tijcjnj

: di > 0
}}

.

• if 0 > cjnj > cj1, then

xj = min

{
uj , max

i:tij 6=0

{ di
tijcjnj

: di < 0
}}

, and xj = max

{
0, min

i:tij 6=0

{ di
tijcj1

: di < 0
}}

.

• if cjnj > 0 > cj1, then

xj = min

{
uj , max

i:tij 6=0

{ di
tijcjnj

: di > 0
}}

, and xj = max

{
0, min

i:tij 6=0

{ di
tijcj1

: di < 0
}}

.

Proof. Let zj =
∑nj

l=1 yjlcjl, j ∈ J . Due to constraints (18) (i.e.,
nj∑
l=1

λjl = 1, j ∈ J), exactly one

variable λjl, l = 1, . . . , nj can take value 1 for each j ∈ J . Thus, for all j ∈ J

zj =

nj∑
l=1

yjl cjl =

nj∑
l=1

(xjλjl)cjl

takes the value of xjcjl for some l ∈ {1, . . . , nj} if the corresponding λjl = 1. As a result,

zj ≥ cjlxj − cjluj(1− λjl) , j ∈ J, l = 1, . . . , nj (37)

zj ≤ cjlxj + cjluj(1− λjl) , j ∈ J, l = 1, . . . , nj , (38)

enforce zj = xjcjl for some l when λjl = 1, and are not binding when the solution does not pick
the corresponding cut point (i.e., when λjl = 0).
We strengthen the valid inequalities (37)–(38) by reducing the value of the big-M coefficients uj
and setting each to (xj − xj), j ∈ J . Recall that the cut points are sorted out in ascending order
(see (9)). To establish the validity of the given upper and lower bounds of xj , j ∈ J , we distinguish
three cases: (i) cjnj > cj1 > 0, (ii) 0 > cjnj > cj1, and (iii) cjnj > 0 > cj1. We substitute zj , j ∈ J
for
∑nj

l=1 yjl cjl in (33), and replace the McCormick inequalities (29)–(32) by (35) and (36). This
completes the proof.

4 Reformulations of MOPCP with Variable Reliability Level

In this section, we shall use the results presented in Theorem 3, Lemma 3, and Lemma 4 to derive
reformulations (Sections 4.2–4.3) equivalent to the multi-objective probabilistic problem MOPCP
in which the reliability level p is a decision variable. The concept of special ordered set of type 1
(SOS1) variables is employed in Section 4.4 for that purpose.

4.1 Backbone Formulation for MOPCP

Using the system of inequalities S3, we propose in Lemma 5 (directly implied by Lemma 4) an
MILP formulation MIO, whose solutions are feasible for MOPCP with variable p. Note that
instead of S3, we could rely upon S1 and S2.
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Lemma 5. Any solution (x, λ, z) feasible for the mixed-integer optimization problem

MIO : max qTx

subject to (2) ; (5) ; (18)− (19) ; (34)− (36)∑
j∈J

nj∑
l=1

λjl β
k
jl ≤ |J | − 1, k ∈ Ω̄−B(p) (39)

is feasible for MOPCP.

Any solution feasible for MIO has a reliability level at least equal to p and is therefore feasible
for MOPCP. We shall now use Lemma 4 to obtain equivalent reformulations for MOPCP in
which p is a decision variable. Problem MIO will serve as the backbone formulation in which
additional constraints (see Sections 4.2–4.4) are introduced.

4.2 Equivalent Formulation I for MOPCP

A few comments are in order before proceeding to the reformulation of MOPCP. First, the
sufficient-equivalent set of cut points Ce(p) corresponding to the reliability level p is a superset

of Ce(p) for any p ≥ p. Second, each set Ω̄−B(p), p ≥ p of p-insufficient recombinations is a superset
of the set Ω̄−(p). Finally, there exists a finite number of acceptable reliability levels p ≥ p. This

number can be calculated up-front and is upper bounded by |Ω̄+(p)|. We denote by Ω̃−B(p) ⊆ Ω̄−B(p)
the set of non-dominated p-insufficient recombinations that is obtained through the construction
of a partial order over the set of p-insufficient recombinations.

Definition 8. Consider the set Ω̄−B(p) of p-insufficient recombinations. For any k, k
′ ∈ Ω̄−B(p), a

partial order � defined on Ω̄−B(p)

k � k′ ⇔ βk ≤ βk
′
.

is consistent with problem MIO.

The above partial order is implied by the componentwise inequality ≤ in the space of p-
insufficient recombinations. If the above relationship holds, the p-insufficient recombination k
is said to be dominated by k

′
: k ∈ Ω̃−B(p).

Let S be the set of acceptable reliability levels hs : hs ≥ p, s = 1, . . . , |S|. Assume w.l.o.g. that

the levels hs are sorted in an ascending order with p = h1. Let Hs = {k : P(ξ ≤ ωk) = hs}, s ∈ S
denote the set of hs-sufficient recombinations with cumulative probability equal to hs. We set H0 =
Ω̃−B(p). Let αs be a binary variable associated with each set Hs. Each variable αs, s ∈ S is forced to
take value 0 if the solution of the optimization problem has a reliability level strictly smaller than
hs, and can take value 1 otherwise. Since the lowest acceptable reliability level is p = h1, we fix α1

to 1. The above notations and decisions variables permit to rewrite p =
∑

s∈S(hs−hs−1)αs in terms
of hs and αs, with h0 = 0. As a result, p = hs if αi = 1, i = 1, . . . , s and αi = 0, i = s+ 1, . . . , |S|.

Theorem 4. The MILP formulation

EMP1 : max qTx+ a
∑
s∈S

(hs − hs−1)αs (40)

subject to (2) ; (5) ; (18)− (19) ; (34)− (36)

αs +
∑
j∈J

nj∑
l=1

λjl β
k
jl ≤ |J | k ∈ Ht, t < s ∈ S (41)
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α1 = 1 (42)

0 ≤ αs ≤ 1 s ∈ S, s 6= 1 (43)

is equivalent to MOPCP.

Proof. Lemme 5 indicates that the feasible set of MOPCP is defined by constraints (2), (5), (18),
(19), (34)–(36), and (39). Therefore, we only need to demonstrate that the new constraints (41)–
(43) inserted in EMP1 enforce (39) without cutting any feasible solution for MOPCP, and permit
to capture the reliability level corresponding to a solution (x, z, λ, α) feasible for EMP1.
(i) Theorem 2 indicates that for any arbitrary vector λ̃ feasible for (18)–(19) and (39), there exists

at least one k ∈ Ω̄+
B(p), such that:

∑
j∈J

nj∑
l=1

λ̃jl β
k
jl = |J |. The construction of the set of sufficient-

equivalent cut points further implies that for any feasible solution (and the corresponding integral
separation structure (λ̃, |J |)), there exists k∗ ∈ Ω̄+

B(p) such that we have for each j ∈ J :

βk
∗

jl = 1 , l = 1, . . . , l∗j , and βk
∗

jl = 0, l > l∗j with l∗j such that: λ̃jl∗j = 1. (44)

Given that P(ξ ≤ ωk∗) = hs, k
∗ ∈ Hs ⊆ Ω̄+

B(p), the reliability level that can be achieved with λ̃ is
hs. It follows from Theorem 2 that

∑
j∈J

nj∑
l=1

λ̃jl β
k
jl ≤ |J | − 1, k ∈ Ω̄−B(hs) , (45)

and therefore that αs can take value 1 in each of the inequalities:

αs +
∑
j∈J

nj∑
l=1

λ̃jl β
k
jl ≤ |J |, k ∈ Ω̄−B(hs) . (46)

Note that the variable αs will always take value 1 when allowed, since EMP1 is a maximization
problem and all coefficients (hs − hs−1) of the variables αs in (40) are non-negative.
(ii) In order for the variable αs to be an indicator of whether the reliability level hs is reached
(αs=1) or not (αs = 0), we must also verify the solution λ̃ defined in (44) forces αr = 0, ∀r ≥ s.
For r = s, one can immediately see that k∗ (see (44)) is such that

∑
j∈J
∑nj

l=1 λ̃jl β
k∗
jl = |J |, which

implies that αs must be equal to 0. For r > s, k∗ ∈ Ω̄−B(hr), and for any r > s, the inequality

αr +
∑
j∈J

nj∑
l=1

λ̃jl β
k∗
jl ≤ |J | , (47)

forces αr to take value 0 for each r > s. This is what was set out to prove and justifies the
substitution of (45) and (43) for (39).
This result, along with part (i) in which it is shown that each variable α will always take value
1 if allowed, explains why the variables α do not have to be defined as binary ones and can be
defined on [0, 1] as in (43). It follows that the second term of a

∑
s∈S(hs − hs−1)αs in (40) defines

the reliability level corresponding to a feasible solution (x, z, λ, γ, α).
(iii) Finally, we identify a number of redundant constraints in (45). The preorder k � k′ ⇔ βk ≤
βk
′

in Definition 8 implies that

∑
j∈J

nj∑
l=1

λjl β
k
jl ≤

∑
j∈J

nj∑
l=1

λjl β
k
′

jl for any λjl ∈ {0, 1} . (48)
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This implies that if the k′-inequality (46) holds, then the k-inequality (46) is satisfied too:

αs +
∑
j∈J

nj∑
l=1

λjlβ
k′
jl ≤ |J | ⇒ αs +

∑
j∈J

nj∑
l=1

λjlβ
k
jl ≤ |J | for any feasible λ .

Thus, each constraint (46) associated with a dominated k ∈ Ω̄−B(hs) is redundant, and we can replace
the set of constraints (46) by the more parsimonious one (41). This completes the proof.

The EMP1 model has two most remarkable features. First, the number of binary variables in
EMP1 is not an increasing function of the number of scenarios and is typically much smaller than
the number of scenarios. Second, the number of binary variables is equal to the number of cut points
used in the binarization process. This means that the MILP reformulations of the multi-objective
stochastic MOPCP have the same number of binary variables as the MILP reformulations of the
single-objective (i.e., p fixed) chance-constrained problem studied in [12].

4.3 Equivalent Formulation II for MOPCP

In this section, we introduce a new MILP formulation in which we introduce precedence constraints
and further preprocess the of set covering constraints (41).

Theorem 5. The MILP problem

EMP2 : max qTx+ a
∑

s∈S:s≥1
(hs − hs−1)αs

subject to (2) ; (5) ; (18)− (19) ; (34)− (36) ; (42)− (43)

αs +
∑
j∈J

nj∑
l=1

λjl β
k
jl ≤ |J | k ∈ Hs−1, s ∈ S (49)

αs ≤ αs−1 s ∈ S (50)

is equivalent to MOPCP.

Proof. To establish the equivalence between EMP1 and EMP2, we show that the constraints (41)
are implied by the constraints (49)–(50) in EMP2.
First, we observe that constraints (41) are implied by their subset

αs +
∑
j∈J

nj∑
l=1

λjl β
k
jl ≤ |J |, k ∈ Ht, t < s ∈ S (51)

when s = 1 and thus k ∈ H0 = Ω̃−B(p). For any s ∈ S and t < s, the recombinations in Ht are

hs-insufficient, and thus belong to Ω̄−B(hs). Therefore, if αs = 1 is feasible for (51), we recover∑
j∈J
∑nj

l=1 λjlβ
k
jl ≤ |J | − 1, for all k ∈ Ω̄−B(hs), and thus λ is feasible for (18)–(19), and (51).

It follows from Theorem 3 that every solution (x, λ, z) feasible for (18)–(19), (34)–(36), and (51)
satisfies P(Tx ≤ d) ≥ hs.
Next, consider a feasible solution (x, z, λ, α) for EMP2 with

∑
j∈J
∑nj

l=1 λjlβ
k∗
jl = |J | for some

k∗ ∈ Hs∗ with binary image βk
∗

il , j ∈ J, l = 1, . . . , nj defined by (44). For any k ∈ Hs∗−1, we have
βkjl < βk

∗
jl for at least one component (j, l). Therefore, we have

∑
j∈J

nj∑
l=1

λjlβ
k
jl <

∑
j∈J

nj∑
l=1

λjlβ
k∗
jl = |J | ∀k ∈ Hs∗−1,
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and (49) allows αs∗ = 1. The precedence constraints (50) enforce αt = 1, t = 1, . . . , s∗ − 1.
Finally, consider the constraints (51) (s ∈ S and t < s − 1) that are not included in (49). Note
that for any kt ∈ Ht with ht < hs−1, one can find at least one k ∈ Hs−1 such that βktjl ≤ βkjl and

βktj′l′ < βkj′l′ for at least one (j′, l′). Therefore, we have

∑
j∈J

nj∑
l=1

βktjl <
∑
j∈J

nj∑
l=1

βkjl ⇒
∑
j∈J

nj∑
l=1

λjlβ
kt
jl ≤

∑
j∈J

nj∑
l=1

λjlβ
k
jl

since the variables λjl are non-negative. By adding αs to both sides, we obtain

αs +
∑
j∈J

nj∑
l=1

λjlβ
kt
jl ≤ αs +

∑
j∈J

nj∑
l=1

λjlβ
k
jl ≤ |J | ∀kt ∈ Ht, t < s− 1, s ∈ S

which shows that the constraints (51) are implied by the constraints (49). This demonstrates the
equivalence between EMP2 and EMP1 and completes the proof.

In Example 1, there are nine distinct acceptable probability levels in the interval [60%, 100%].
We provide in Appendix A.3 the EMP2 formulation for Example 1. Note that the elimination of
the implied constraints in (41) and their replacement by (49)–(50) reduce significantly the number
of constraints in the MILP formulation. In Section 5, we demonstrate the computational efficacy
of EMP2 with a set of randomly generated MOPCP instances.

4.4 Equivalent Formulations with SOS1 Variables

In this section, we use the concept of Special Ordered Set Variables of Type One (SOS1) to provide
equivalent reformulations to those presented in the previous sub-sections. Let πs, s ∈ S denote a
binary variable taking value 1 if the attained probability level is hs and 0 otherwise.

Theorem 6. The MILP problem

EMP1− SOS1 : max qTx+ a
|S|∑
s=1

hsπs

subject to (2) ; (5) ; (18)− (19) ; (34)− (36)

πs +
∑
j∈J

nj∑
l=1

λjl β
k
jl ≤ |J | k ∈ Ht, t < s ∈ S (52)

|S|∑
s=1

πs = 1 (53)

0 ≤ πs ≤ 1 s ∈ S. (54)

is equivalent to MOPCP.

Proof. Recall that set Hs = {k : P(ξ ≤ ωk) = hs}, s = 1, . . . , |S| and H0 = Ω̃−B(p). Constraints (53)
with binary requirements πs ∈ {0, 1}, s ∈ S indicate that we can only select one value among
{h1, . . . , hS} as the reliability level p. Moreover, we can relax the binary constraints and include
constraints (54) by noting that exactly one πs, s ∈ S takes value one at optimum. This is due to
the fact that we maximize the objective value in EMP1-SOS1 and the coefficients hs, s ∈ S are
strictly positive.
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Suppose that πs′ = 1 for some s′, then for any t < s′ and any k ∈ Ht, (52) is enforced as

∑
j∈J

nj∑
l=1

λjl β
k
jl ≤ |J | − 1.

Clearly, we have
⋃

t<s1
Ht ⊆

⋃
t<s2

Ht, for any s1 < s2 ∈ S. Thus any k ∈ Ht, t < s ≤ s′ that is
included in an inequality for πs, is also included in an inequality for πs′ . For other k ∈ Ht where
t < s but s > s′, constraints (52) are not binding since we only require P(Tx ≤ d) ≥ hs′ as (3) in
MOPCP. The rest of the proof is similar to the proof for Theorem 4.

Following procedures and arguments similar to those presented in Section 4.3, we provide an-
other equivalent MOPCP reformulation by replacing the variables αs, s ∈ S in EMP2 with the
SOS1 variables πs, s ∈ S, yielding

EMP2− SOS1 : max qTx+ a
|S|∑
s=1

hsπs

subject to (2) ; (5) ; (18)− (19) ; (34)− (36) ; (53)− (54)∑
t≥s

πt +
∑
j∈J

nj∑
l=1

λjl β
k
jl ≤ |J | k ∈ Hs−1, s ∈ S

5 Computational Tractability and Model Sensitivity

As each variable αs always takes an integer value in the optimal solution of EMP1, one can solve
the reformulation EMP1 of MOPCP more efficiently and precisely as compared to either directly
tackling formulation (1)–(5) or using parametric methods that heuristically vary the inputs of the
reliability variable p. Problem EMP2 further improves the formulation EMP1 by eliminating
many redundant constraints and variables, leading to a significant reduction in the CPU time. The
sizes of all our MILP formulations depend on the number r of rows and |J | of columns in Tx ≤ d, as
well as the number of cut points (i.e., |Cj(p)|, j ∈ J). The latter does not only affect the number of
binary variables λjl, but more importantly, bounds the number of reliability thresholds, i.e., |S| ≤
|Ω̄+(p)| < |Ω̄(p)| that is further bounded by |C1(p)| × · · · × |C|J |(p)|. Different from reformulations
based on efficient points, reformulations based on p-sufficient points have much fewer number of
variables and constraints (both being bounded by |S|). In practice, decision makers often trade off
among relatively high reliability levels (e.g., p ≥ 95%). As a result, the number of realizations in
Ω that can violate the joint chance constraint is quite small, since |Cj(p)| ≤ b(1− p)|Ω|c, j ∈ J , of
which the latter is a very small value for large p and linear in |Ω|. Therefore, the number |S| of

threshold values is bounded by a polynomial function
(
b(1− p)|Ω|c

)|J |
where |J | is fixed.

In this section, we evaluate the computational performance of EMP1, EMP2, EMP1-SOS1,
and EMP2-SOS1 on randomly generated MOPCP instances. The goals are (i) to demonstrate
the computational tractability of the developed formulations and (ii) to derive insights about the
impact of changes of relative weights attributed to the multiple objective items on the optimal
revenue and reliability levels.

5.1 Experimental Design

We omit the deterministic constraints Ax ≥ b. All decision variables are nonnegative without
specified upper bounds. The components of vectors q and d take integer values randomly generated
from the intervals [10, 50] and [40, 100], with interval [75%, 100%] for selecting an optimal reliability
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variable p. We generate a [3×5]-dimensional T matrix with coefficients tij , i = 1, . . . , 3, j = 1, . . . , 5
drawn from a Bernoulli distribution with 70% “successful” rate. We generate |Ω| = 1500 equally
likely realizations of the random variable ξ = [ξ1, ξ2, ξ3, ξ4, ξ5]

T , with each realization ωk, k ∈
Ω being the nearest integer of a random number sampled from a normal distribution N (2j +
d10/je, d5/je), j = 1, . . . , 5. Note that the described parameter settings could generate trivial
instances, in which the chance constraint (3) cannot be satisfied unless all x = 0. We select ten
nontrivial instances for each combination of parameter settings. All problems are solved with
CPLEX 12.5.1 via ILOG Concert Technology with C++, and the computations are performed
on a HP Workstation Z200 Windows 7 machine with Intel(R) Xeon(R) CPU 2.80 GHz, and 8GB
memory. We use the valid inequalities described in Appendix C.

5.2 Comparison of CPU Times

We set the parameter a in η(p) = ap as: a = 30%
(∑5

i=1 qi

)
. Table 2 shows the average, minimum,

and maximum CPU seconds needed to attain the optimum with each formulation.

Table 2: CPU seconds for each MOPCP formulation.

Formulation
CPU Time (in seconds)

Minimum Average Maximum

EMP1 112.56 321.55 531.50
EMP2 1.29 10.53 26.68

EMP1-SOS1 178.25 369.78 610.40
EMP2-SOS1 1.78 13.35 29.26

Formulation EMP1, in which the integrality restrictions on variables α are relaxed, solves all
instances within ten minutes. We achieve significant average, minimum and maximum CPU time
reduction when using EMP2 in which the redundant constraints of form (51) are removed. This
illustrates the computational benefits obtained by preprocessing and eliminating the redundant
linear constraints and by reducing the number of binary decision variables. EMP1-SOS1 and
EMP2-SOS1 do not further reduce solution times, and even take slightly more time than their
counterparts EMP1 and EMP2. As it is shown to be the most efficient formulation, we will
employ formulation EMP2 in Section 6 for the financial problems.

5.3 Sensitivity to Scalarization Parameter a

We also analyze the relative importance of the two objectives, i.e., revenue and reliability, by testing
various values for the parameter a = τ

∑5
i=1 qi in function η(p) = ap. We

Table 3 illustrates the results for an arbitrarily picked instance. We denote by (x∗, p∗) the
optimal solution of EMP2 and by qTx∗ the optimal objective value. We also report the change in
the revenue objective function (qTx∗) following a 1% change of the optimal reliability level p∗.

Table 3: Sensitivity analysis with respect to a = τ
∑5

i=1 qi.

τ [0.01, 0.15) [0.15, 0.27) [0.27, 0.31) [0.31, 0.47) [0.47, 0.63) [0.63, 0.90) [0.90, 1]

Optimal p∗ 75% 80% 82% 91% 96% 98% 100%
qTx∗ 217.31 214.72 212.27 209.06 207.45 204.18 198.94

change in qTx∗

1% change in p∗
N/A -0.52 -1.23 -0.36 -0.32 -1.64 -2.62
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Table 3 shows seven value intervals of τ where the optimal reliability level p∗ remains the same
in each interval. As an result, the optimal solution (x∗, p∗) and the revenue objective component
qTx∗ are both unchanged corresponding to each interval. We present two key observations. First,
the ratios of revenue changes to the changes of optimal reliability levels (indicated in the last row
of Table 3) fluctuate as we increase τ . Similar fluctuating patterns are observed in the other nine
instances we tested, for which there are generally between 5 and 7 ranges of values for τ leading to a
different optimal value of reliability p∗. In all instances, the optimal revenue qTx∗ decreases sharply
when the worst-case scenario is considered and a 100% reliability level is enforced. There exist
significant tradeoff fluctuations between revenue and reliability for various values of τ , emphasizing
the importance of studying and solving problems of form MOPCP. Second, when p∗ is relatively
low (close to 75%), a 1% change of p∗ results in a small reduction in the optimal revenue qTx∗. The
reduction becomes more significant as p∗ increases (i.e., p∗ ∈ [80%, 85%]), but becomes small again
as p∗ incraeses and takves value in [85%, 95%]. The revenue reduction rate ultimately becomes very
large when the optimal reliability p∗ is required to be close to 100%. These results highlight the
sensitivity of the revenue to the level of reliability p∗. The revenue is, without surprise, a decreasing
function of the reliability level. More interestingly, the amount by which the revenue decreases due
to a 1%-change in reliability appears to vary tremendously at different reliability levels and to
be a highly non-linear and non-monotone function of the optimal p∗. The models proposed in
this study permit to identify the “sensitivity zones” of the optimal reliability level on the revenue.
Additionally, the sensitivity study provides guidance to set the value of the scalarization parameter
a and to specify the minimal required reliability level p in problems of form MOPCP.

6 Centralized versus Decentralized Multi-Portfolio Optimization

6.1 Problem Description and Formulations

We consider the multi-portfolio problem faced by an investment company that manages several
funds specialized in diverse asset classes (e.g., bonds, small caps), industrial sectors (e.g., financial,
consumer staples), or geographical areas (e.g., Japan, Eurozone, North America). We propose two
types of stochastic multi-portfolio models based on a downside risk measure and study their use in
two types of investment management approaches, i.e., centralized versus decentralized investment.

We first introduce the notations. The asset universe includes |J | financial securities. Each
security j ∈ J has a stochastic return ξj with mean return µj and belongs to one or several of the
r∗ asset classes i. We denote by Ri the set of assets in sub-portfolio i:

⋃
i=1,...,r∗ Ri = J . The asset

classes are not required to be disjoint, as a security can be included in more than one specialized
funds (e.g., a security can be both a large cap and a consumer staples). The notation xij is the
fraction of capital invested in security j by fund i.

With a centralized investment management [29] approach, the investment company em-
ploys a single generalist manager with a balanced mandate across all asset classes. In the first
multi-portfolio model SMPC1, the downside risk measure requires that the loss or negative return
of a sub-portfolio i does not exceed a prescribed loss level di with a certain probability p. A distinct
value can be assigned to each di depending on the risk-return profile of the corresponding asset
class i. The objective function is a weighted summation of the overall expected return of the port-
folio of funds and the probability level p with which each sub-portfolio avoids losing more than the
specified loss level. The probability level p represents the risk tolerance and the parameter a can
be viewed as the marginal rate of substitution of risk or reliability for expected return. Problem
SMPC1 is mean-reliability multi-portfolio investment model, in which expected return is traded
off with the probability at which losses exceeding a specified amount can be prevented:
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SMPC1 : max
∑
j∈J

(
µj

r∗∑
i=1

xij

)
+ ap (55)

subject to P

( − ∑
j∈Ri

ξjxij ≤ di, i = 1, . . . , r∗

−ξjxij ≤ d′j , j ∈ J

)
≥ p (56)∑

j∈Ri

xij = qi, i = 1, . . . , r∗ (57)

0 ≤
r∗∑
i=1

xij ≤ uj , j ∈ J (58)

xij = 0, j /∈ Ri, i = 1, . . . , r∗ (59)

p ≤ p ≤ 1 (60)

xij ≥ 0, j ∈ J, i = 1, . . . , r∗ (61)

The parameter qi is the fixed fraction of capital allocated to fund i, and (57) requires a proportion
qi of the entire capital to be invested in i. By setting

∑r∗

i∈1 qi = 1, the constraints (57) guarantee
that the entirety of the capital is invested. The downside risk constraint (56) stipulates that the
loss incurred by each sub-portfolio i must be at most equal to the loss threshold di with probability
level at least p. The second set of inequalities in (56) impose upper-bounds d′j on the loss associated
with each individual asset j. As the same generalist manager handles all funds, the downside risk
constraints takes the form of a joint probabilistic constraint. The constraints (59) do not permit
sub-portfolios to have a position in a security not belonging to the asset class they handle. The
concentration constraints (58) do not allow that the sum of the positions (across all funds) in
security j exceeds an upper bound uj and can be enforced as the management of each sub-portfolio
is entrusted to the same manager. Constraint (60) defines the lowest acceptable p probability level
while constraints (61) preclude short-selling.

In the second model SMPC2, the loss level di of each sub-portfolio is a decision variable
instead of a fixed parameter. Instead of the expected return, the objective function now includes
a component accounting for the weighted loss level

∑r∗

i=1 qidi that must not be exceeded with a
probability level p. The formulation reads:

SMPC2 : max −
r∗∑
i=1

qidi + ap (62)

subject to (56)− (61),

with decisions variables xij , i = 1, . . . , r∗, j ∈ Ri, di, i = 1, . . . , r∗, and p.
With a decentralized investment management approach [29], the investment company

relies upon multiple managers, each with a specialist mandate within a particular asset class.
Collecting information about specific assets or asset classes and capitalizing on such informational
advantage require highly specialized skills. This explains why fund companies can replace generalist
balanced managers with managers specialized in a single asset class with the expectation that they
will outperform the generalists. Decentralized investment management can even be a necessity for
investment companies. In fact, some large clients, such as pension funds, international organizations
or educational endowments, sometimes require the capital allocated to a particular asset class to
be partitioned among several sub-funds or asset managers [35]. As a consequence, investment firms
regularly employ multiple specialized managers (even within the same asset class) in an attempt
to diversify investment strategies and reduce diseconomies of scale as funds grow larger [3]. Each
specialized fund manager acts on a myopic basis and controls their fund independently of the others.
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Consequently, the joint probabilistic constraint (56) is replaced by r∗ joint chance constraints of
smaller dimensionality, and p is replaced by the reliability levels pi, i = 1, . . . , r∗ representing each
the probability that the loss due to each individually considered sub-portfolio i is at most equal to
di. In the decentralized investment setting, the multi-portfolio multi-manager model is:

SMPD1 : max
∑
j∈J

(
µj

r∗∑
i=1

xij

)
+ a

r∗∑
i=1

pi (63)

subject to P

( −
∑
j∈Ri

ξjxij ≤ di

−ξjxij ≤ d′j , j ∈ Ri

)
≥ pi , i = 1, . . . , r∗ (64)

0 ≤ xij ≤ uj , j ∈ J, i = 1, . . . , r∗ (65)

p ≤ pi ≤ 1 , i = 1, . . . , r∗ (66)

(57)− (59)

and replaces the formulation SMPC1 for the centralized investment approach.
We also analyze a second model for the decentralized investment context in which the loss levels

are decision variables di, i = 1, . . . , r∗:

SMPD2 : max −
r∗∑
i=1

qidi + a
r∗∑
i=1

pi (67)

(57)− (59) ; (64)− (66) .

The decentralized model SMPD2 is the counterpart of SMPC2.

6.2 Data and Experimental Design

To illustrate our approach, we consider three sub-portfolios or funds, respectively focused on eq-
uities, fixed-income assets, and international securities. Table 8 in Appendix D lists the securities
selected for possible inclusion in each sub-portfolio. The selection of the funds is based on the
following criteria. Each fund has a 4- or 5-star Morningstar rating, belongs to Morningstar’s top
ten in its fund category, and has a track-record of at least ten years. For each fund, we collect
the monthly returns (without missing data) from January 1993 to April 2013. For cross-validation
purposes, we split the data into two disjoint subsets. The training set is used to derive the optimal
portfolio allocation, while the data the testing set are not used to derive the optimal investment
strategy and are reserved to analyze the robustness of the models and cross-validate the results.

We create seventy-two problem instances: 48 for the formulations SMPC1 and SMPD1 and 24
for the SMPC2 and SMPD2. In each, the minimal reliability level p is set to 95% and the upper
bound uj invested in a security j is set to 20%. The problem instances differ in terms of the weight
a balancing the relative importance of the objectives, the proportion of capital qi, i = 1, . . . , r
allocated to each sub-portfolio, and the maximum loss level di, i = 1, . . . , r tolerated for each
sub-portfolio. Appendix D details the construction of the instances. Each problem instance is
formulated with the EMP2 model which is the the one providing the best solutions times (see
Section 5.2). The instances are modeled with AMPL and solved with the Cplex 12.5.1 solver.

6.3 Modeling and Managerial Insights

The numerical experiments conducted in this section have three main objectives. The first one
is to assess the applicability and the computational tractability of our reformulation approach
to the proposed stochastic multi-portfolio optimization problems. The second one pertains to
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the derivation of managerial insights related to: (i) the effect of the different parameters on the
composition of the sub-portfolios, and (ii) the impact of the decentralized and centralized financial
investment approaches on the results obtained with the proposed downside risk multi-portfolio
optimization models. The third one is to verify the robustness of the models. To that effect, we
carry out a cross-validation analysis to check whether the results obtained on the testing set (data
not used to determine the investment strategy) are aligned (in terms of return and reliability) with
what is expected from the investment policy built on the basis of the data in the training set.

6.3.1 Solution Insights

For each of the seventy-two problem instances, optimality can be proven within 175 seconds (see
Table 4). The optimal solution of the instances associated with the centralized investment approach
(i.e., formulations SMPC1 and SMPC2) takes about 133 seconds on average, while the solution
of the instances associated with the decentralized investment approach (i.e., formulations SMPD1
and SMPD2) is faster and takes less than one second (i.e., 0.65 second) on average. This is
due to the significantly lower number of constraints included in the deterministic reformulations
of SMPD1 and SMPD2. Note also that the formulations SMPC1 and SMPD1 in which each
di, i = 1, . . . , r takes a fixed value can be solved faster than their counterparts SMPC2 and
SMPD2 in which di, i = 1, . . . , r∗ are decision variables.

Table 4: Computational times in CPU seconds.

SMPC1 SMPC2 SMPD1 SMPD2

Average Time 119.15 161.82 0.07 0.13

Standard Deviation 3.88 8.19 0.03 0.02

Smallest Time 114.89 153.99 0.05 0.09

Largest Time 128.81 181.59 0.19 0.16

6.3.2 Parametric Sensitivity Analysis

To evaluate the impact of the parameters a, q, and d (for SMPC1 and SMPD1 only), we consider
the trios of problem instances that differ only in terms of one single parameter.

The parameter a defines the relative importance of the two objectives (i.e., reliability and
return) and has in our experiments a marginal impact on the composition of the optimal portfolios.
Among the twenty-four triplets of instances that differ only in terms of the value attributed to
a, we observe a difference in the composition of the optimal portfolio in only seven out of the 24
cases. The composition of the portfolios is particularly stable with respect to a for the centralized
problem instances. For those, in only two of the sixteen triplets of instances do we have a difference
in the optimal portfolio when a is modified. Increasing the importance of an objective by up to
20% does not appear to be sufficient to have a strong impact on the composition of the portfolio.

The parameters qi, i = 1, . . . , r∗ define the proportion of capital allocated to each sub-portfolio
i and have a clear impact on the composition of the portfolio, and on the return and reliability
objectives. In almost all cases, the lowest reliability level is obtained when the proportion of capital
allocated to the equity sub-portfolio is the largest (i.e., 40%). Interestingly, with the SMPC1
decentralized investment model, the expected return that can be achieved is the largest when the
proportion of capital allocated to the equity sub-portfolio is the largest.

The parameters di, i = 1, . . . , r determine the loss that must not be exceeded with a certain
probability level. The optimal expected return for SMPC1 and SMPD1 with fixed parameter
di is the lowest when the values assigned to di are the largest (except in three instances) and is a
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consequence of the trade-off between mean return and downside risk. The optimal objective value
of SMPC1 and SMPD1 decreases monotonically with the values taken by di. In Tables 5 and 6,
we refer to the average, smallest, and largest values with the abbreviations AV, SM, and LA.

Table 5: Expected return as a function of maximal authorized loss level.

Loss Level Expected Return Objective Value
AV SM LA

AV SM LA AV SM LA
d1 d2 d3

SMPC1
0.05 0.03 0.04 0.110 0.078 0.143 0.1089 0.1081 0.1103
0.035 0.02 0.03 0.092 0.045 0.130 0.1086 0.1025 0.1122

SMPD1
0.05 0.03 0.04 0.119 0.083 0.155 0.0115 0.0108 0.0119
0.035 0.02 0.03 0.101 0.064 0.138 0.0107 0.0102 0.0113

For both the centralized SMPC1 and decentralized SMPD1 models, the parameter setting
leading to the largest objective value is obtained when the weight a is equal to a3 and gives a priority
(20% more important) to the return objective, when the allowable loss levels are the highest, and
when the capital is equally split between the three sub-portfolios.

6.3.3 Comparison of Centralized and Decentralized Models

As above-mentioned, the stochastic multi-portfolio optimization models SMPD1 and SMPD2
for the decentralized investment approach are easier to solve than their counterparts SMPC1 and
SMPC2 for the centralized investment approach, since they contain less binary variables and a
significantly smaller number of constraints.

In each problem instance, the decentralized approach models generate a higher objective value.
Indeed, the optimal objective value of SMPD1 (resp., SMPD2) is always at least equal to the
optimal objective value for SMPC1 (resp., SMPC2). This highlights that the decentralized
approach models SMPD1 and SMPD2 are less constraining than the centralized approach models
SMPC1 and SMPC2. In SMPC1 and SMPC2, the optimization is carried out with respect to
the joint probabilistic constraint (56) which is more constraining than the set of constraints (56)
included in SMPD1 and SMPD2 ((56) ⇒ (64)). Also, the concentration constraints (58) in
SMPC1 and SMPC2 are more restrictive than the ones (65) in SMPD1 and SMPD2. The
decentralization of the investment decisions does not permit to impose the same concentration
limitations (i.e., at most 20% in each security), since some securities can be included in several
sub-portfolios managed by different managers.

For forty-five of the forty-eight decentralized problem instances SMPD1 and SMPD2, the
optimal portfolio includes at least one position exceeding 20%. With SMPD1, the position in
the Virtus Emerging Markets Opportunities (resp., Invesco Asia Pacific Growth and Henderson
European Focus) fund exceeds the 20% threshold 50% (resp., 12.5% and 45.8%) of the time. With
SMPD2, the position in the TCW Emerging Markets Income (resp., Henderson European Focus)
fund exceeds 20% in 2/3 (resp., all) of the instances. This shows that the decentralization approach
can lead to concentration and loss of diversification issues as individual managers have hardly any
incentive to take into account the correlation of their fund returns with these of other managers [3].
Elton and Gruber [9] acknowledge this issue but note that it is possible to overcome, to some extent,
the lack of coordination between managers and the ensuing loss of diversification by imposing rules
to asset managers and crafting appropriate managerial incentive contracts. Schleifer [27] adds that
the recourse to multiple managers can induce a “yardstick competition” and that the resulting
higher effort levels of the managers can further improve their performance.
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The return obtained with SMPD1 (resp., SMPD2) is equal or above the expected return
obtained with SMPC1 (resp., SMPC2) for 58.33% (resp., all) the problem instances. Table 5
shows that the average, lowest, and largest return levels for SMPD1 exceeds those obtained with
SMPC1. The objective value obtained with SMPD1 (resp., SMPD2) is strictly larger than
the one obtained with SMPC1 (resp., SMPC2) for each problem instance. Clearly, the com-
positions of the decentralized optimal sub-portfolios differ from these of the centralized optimal
sub-portfolios. This corroborates what Sharpe [29] observed for the mean-variance models, namely
that the centralized optimal solution to the mean-variance problem is different from the optimal
linear combination of mean-variance efficient portfolios for each specialized manager (see also [35]).

The entire portfolio’s average (resp., minimum and maximum) loss
∑3

i=1 qidi taken over all
instances amounts to 1.9% (resp., 1.7% and 2.1%) and 1.8% (resp., 1.5% and 2%) for SMPC2 and
SMPD2, respectively (Table 6). The average, minimal, and maximal loss levels are lower for and
SMPD2 than they are for and SMPC2 for each sub-portfolio and for the entire portfolio.

Table 6: Optimal loss levels.

Models
Sub-Portfolios

Entire Portfolio Equity Fixed-Income International Securities
AV SM LA AV SM LA AV SM LA AV SM LA

SMPC2 0.019 0.017 0.021 0.028 0.025 0.034 0.011 0.010 0.014 0.016 0.022 0.013

SMPD2 0.018 0.015 0.020 0.028 0.025 0.034 0.009 0.008 0.010 0.016 0.022 0.013

6.3.4 Cross-Validation and Robustness Analysis

For each problem instance, we use for the testing period the asset allocation derived by considering
the training data only and observe the average return of the portfolio over the testing period and
its reliability. The proposed models cross-validate well as shown by the following statistics. The
reliability requirement is satisfied for all the seventy-two problem instances over the testing period.
The proportion of times that the loss of the portfolio is below the prescribed maximal loss level is
below 5%. For twenty-one (resp., eighteen) of the twenty-four problem instances SMPD1 (resp.,
SMPC1), the average return over the testing period exceeds the one over the training period.
Similarly, for all (resp., eight of) the twelve problem instances SMPD2 (resp., SMPC2), the
average return over the testing period exceeds the one over the training period.

7 Conclusions and Future Research

We propose a new modeling and solution method for a class of multi-objective stochastic pro-
gramming problems. The problems include a joint probabilistic constraint with multi-row random
technology matrix which requires a system of inequalities to hold with some probability level. This
latter level is adjustable and defined as a decision variable. The weighted linear objective function
includes a revenue and a reliability component and is a monotone increasing function of the prob-
ability level p. This latter can be used to represent the reputation of a manager, the brand name
of a firm, the quality of its service, or the reliability of a network. The scalarization parameter
determines the relative importance of the objectives and its value is specified by the decision maker.
This parameter can be viewed as the marginal rate of substitution of reliability for revenue. This
type of problems permits to capture the trade-offs between revenue and risk or reliability.

The contributions of this study are manifold. On the modeling and algorithmic side, we propose
new and exact formulations as well as solution methods for the class of NP-hard MOPCPs. While
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a variety of algorithmic methods exist for probabilistically constrained problems, to the best of our
knowledge, no exact efficient reformulation or solution method is available for the class of problems
studied here. We derive four MILP formulations equivalent to MOPCP. For that purpose, we
develop significant extensions to the work of optimizing risk variables associated with single-row
chance constraints [30], and to the Boolean modeling framework allowing for the solution of single-
objective chance-constrained problems with random right-hand sides [15] and random technology
matrix [12]. A key feature of the approach is that the number of binary variables in the MILP
formulations does not depend directly on the number of scenarios. Indeed, the number of binary
variables actually is equal to the number of cut points used in the binarization process. This means
that the MILP reformulations of the MOPCP have the same number of binary variables as the
reformulations of the single-objective chance-constrained problems studied in [12].

This study provides a method to solve exactly multi-objective probabilistically constrained prob-
lems of form MOPCP and to investigate the trade-offs between objectives. This contribution is
particularly meaningful as problems of form MOPCP are applicable to multiple types of problems
(see, e.g., network reliability [25], disaster management [1], water management [21], production
scheduling [28]), and industrial sectors.

We have also executed a computational study which provides modeling insights about the
efficiency of the reformulations and about the solution sensitivity with respect to the relative
importance of the objectives. The computational times differ greatly among the proposed MILP
reformulations. The study provides guidance to select the most appropriate formulation and to
specify the value of the scalarization parameter defining the relative importance of the several
pursued goals. The results show first that the revenues are a decreasing function of the reliability
level. Second, the rate of substitution of revenue for reliability varies strongly with and is a non-
linear and non-monotone function of the optimal reliability level p∗.

Finally, we propose several stochastic multi-portfolio financial optimization models which bal-
ance return with downside risk and which can be used in a centralized fashion (i.e., one generalist
manager has a balanced mandate across asset classes) or a decentralized one (i.e., specialized man-
agers each have a mandate for a particular asset class). The tests show: (i) the applicability of the
models and the ability to solve them efficiently; (ii) the effect of the different parameters (tolerated
loss levels, scalarization parameter, capital allocated to each sub-portfolio) on the composition of
the sub-portfolios; (iii) the possible pros and cons of the decentralized and centralized financial
investment approaches; (iv) the robustness of the proposed models. To our knowledge, this study
is the first to propose stochastic multi-objective, multi-portfolio optimization problems.

In the future, we plan to consider different forms (other than linear) for the function η(p)
depending on the probability level and to develop specific and scalable algorithms for the resulting
reformulations. We are also interested in deriving families to valid inequalities that will speed up
the solution process and in applying these formulations to specific problems, such as the distribution
of perishable products in supply chains and the design of emergency response systems.
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APPENDIX

A Formulations for Example 1

A.1 Binarization Process and Recombinations for Example 1

Table 7 displays the recombinations, their binary images (relevant Boolean vectors), and their parti-
tioning into Ω̄−B(0.6) and Ω̄+

B(0.6). The recombinations k= 1–5 and 7–10 correspond to realizations
of ξ, while the recombinations k= 11–17 do not coincide with any realization of the random vector.
Realization k= 6 is dropped since it does not meet the criterion stated in (6).

Table 7: Recombinations and relevant Boolean vectors.

k
Recombinations Relevant Boolean Vectors

g(k) Boolean sets
ωk
1 ωk

2 βk11 βk12 βk13 βk14 βk21 βk22 βk23 βk24
1 2 2 1 0 0 0 1 0 0 0 0

Ω̄−B(0.6)
2 2 4 1 0 0 0 1 1 1 0 0
4 3 2 1 1 0 0 1 0 0 0 0
9 2 3 1 0 0 0 1 1 0 0 0
12 4 2 1 1 1 0 1 0 0 0 0

3 2 5 1 0 0 0 1 1 1 1 1

Ω̄+
B(0.6)

5 3 3 1 1 0 0 1 1 0 0 1
7 4 4 1 1 1 0 1 1 1 0 1
8 5 2 1 1 1 1 1 0 0 0 1
10 3 4 1 1 0 0 1 1 1 0 1
11 3 5 1 1 0 0 1 1 1 1 1
13 4 3 1 1 1 0 1 1 0 0 1
14 4 5 1 1 1 0 1 1 1 1 1
15 5 3 1 1 1 1 1 1 0 0 1
16 5 4 1 1 1 1 1 1 1 0 1
17 5 5 1 1 1 1 1 1 1 1 1

Cut Points
c11 c12 c13 c14 c21 c22 c23 c24
2 3 4 5 2 3 4 5
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A.2 Feasibility Set S1 for Example 1

Recall that k = 1, 2, 4, 9, 12 belong to Ω̄B(0.6) (see Table 7). The system S1 of inequalities reads:

λ11 + λ21 ≤ 1 (17) for k = 1

λ11 + λ21 + λ22 + λ23 ≤ 1 (17) for k = 2

λ11 + λ12 + λ21 ≤ 1 (17) for k = 4

λ11 + λ21 + λ22 ≤ 1 (17) for k = 9

λ11 + λ12 + λ13 + λ21 ≤ 1 (17) for k = 12

λ11 + λ12 + λ13 + λ14 = 1 (18) for j = 1

λ21 + λ22 + λ23 + λ24 = 1 (18) for j = 2

x1(2λ11 + 3λ12 + 4λ13 + 5λ14) + 2x2(2λ21 + 3λ22 + 4λ23 + 5λ24) ≤ 13 (20) for row i = 1

5x1(2λ11 + 3λ12 + 4λ13 + 5λ14) + 3x2(2λ21 + 3λ22 + 4λ23 + 5λ24) ≤ 27 (20) for row i = 2

x1(2λ11 + 3λ12 + 4λ13 + 5λ14) ≤ 4 (20) for row i = 3

x2(2λ21 + 3λ22 + 4λ23 + 5λ24) ≤ 7 (20) for row i = 4

where all the λ variables are binary (see (19)), 0 ≤ x1 ≤ 1.5, and 0 ≤ x2 ≤ 2.5.

A.3 Formulation EMP2 for Example 1

After calculating the cumulative probabilities F (ωk) for all recombinations in Table 7 of Example
1, we obtain nine distinct probability levels hs ∈ [60%, 100%]: h1 = 0.6, h2 = 0.64, h3 = 0.65, h4 =
0.7, h5 = 0.72, h6 = 0.78, h7 = 0.87, h8 = 0.94, and h9 = 1. We associate a variable αs with each
reliability level hs. We ignore constraints (36) as they are not binding for Example 1 due to the
maximization nature of the objective. We provide below the EMP2 formulation for Example 1.

max 3x1 + 2x2

+1.2α1 + 0.08α2 + 0.02α3 + 0.1α4 + 0.04α5

+0.12α6 + 0.18α7 + 0.14α8 + 0.12α9

subject to

(18) for j = 1 λ11 + λ12 + λ13 + λ14 = 1

(18) for j = 2 λ21 + λ22 + λ23 + λ24 = 1

(34) for i = 1 z1 + 2z2 ≤ 13

(34) for i = 2 5z1 + 3z2 ≤ 27

(34) for i = 3 z1 ≤ 4

(34) for i = 4 z2 ≤ 7

(35) for j = 1, l = 1 2x1 + 13λ11 − z1 ≤ 13

(35) for j = 1, l = 2 3x1 + 19.5λ12 − z1 ≤ 19.5

(35) for j = 1, l = 3 4x1 + 26λ13 − z1 ≤ 26

(35) for j = 1, l = 4 5x1 + 32.5λ14 − z1 ≤ 32.5

(35) for j = 2, l = 1 2x2 + 9λ21 − z2 ≤ 9

(35) for j = 2, l = 2 3x2 + 13.5λ22 − z2 ≤ 13.5

(35) for j = 2, l = 3 4x2 + 18λ23 − z2 ≤ 18

(35) for j = 2, l = 4 5x2 + 22.5λ24 − z2 ≤ 22.5
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(49) for s = 2, k = 5 α2 + λ11 + λ12 + λ21 + λ22 ≤ 2

(49) for s = 3, k = 13 α3 + λ11 + λ12 + λ13 + λ21 + λ22 ≤ 2

(49) for s = 4, k = 8 α4 + λ11 + λ12 + λ13 + λ14 + λ21 ≤ 2

(49) for s = 4, k = 10 α4 + λ11 + λ12 + λ21 + λ22 + λ23 ≤ 2

(49) for s = 5, k = 15 α5 + λ11 + λ12 + λ13 + λ14 + λ21 + λ22 ≤ 2

(49) for s = 6, k = 7 α6 + λ11 + λ12 + λ13 + λ21 + λ22 + λ23 ≤ 2

(49) for s = 7, k = 16 α7 + λ11 + λ12 + λ13 + λ14 + λ21 + λ22 + λ23 ≤ 2

(49) for s = 8, k = 11 α8 + λ11 + λ12 + λ21 + λ22 + λ23 + λ24 ≤ 2

(49) for s = 9, k = 14 α9 + λ11 + λ12 + λ13 + λ21 + λ22 + λ23 + λ24 ≤ 2

(50) α1 = 1, α1 ≥ · · · ≥ α9,

in which the the original bounds 0 ≤ x1 ≤ 1.5, 0 ≤ x2 ≤ 2.5, 0 ≤ αs ≤ 1, s = 2, . . . , 9, and the
binary restrictions λjl ∈ {0, 1}, l = 1, . . . , nj , j ∈ J must be added.

The optimal solution for the problem is: α1 = α2 = α3 = 1, αs = 0, s = 4, . . . , 9, x1 = 0.48,
x2 = 2.5, λ14 = 1, λ21 = 1, and all the other λjl variables take value 0. The integral separation
structure of the threshold minorant defined by the optimal solution corresponds to the p-sufficient
recombination (ω1, ω2) = (5, 2). The optimal value of the objective function is 7.74 with a reliability
level equal to 65%.

B Proof of Theorem 2

Proof. Let k′ be the “extreme” recombination such that βk
′

jl = 1, l = 1, . . . , nj , j ∈ J . Clearly,

F (ωk′) = 1 and k′ ∈ Ω̄+
B(p). For any λ satisfying (17)–(19), we have

∑
j∈J

nj∑
l=1

λjl β
k′
jl =

∑
j∈J

nj∑
l=1

λjl ≥
∑
j∈J

1 = |J |.

which induces (15) and make it redundant.
Consider an arbitrary separating structure (λ, |J |) feasible for (17)–(19). All possible Boolean

vectors belong either to the set Ω̄+
B(p) of relevant p-sufficient Boolean vectors, or the set Ω̄−B(p) of

relevant p-insufficient Boolean vectors, or the set of
(
Ω−B(p) \ Ω̄−B(p)

)
of non-relevant p-insufficient

realizations. Constraint (17) prevents any k ∈ Ω̄−B(p) from satisfying (68):

∑
j∈J

nj∑
l=1

λjl β
k
jl ≥ |J |. (68)

Any k ∈
(
Ω−B(p) \ Ω̄−B(p)

)
is such that βkj1 = 0 for at least one j ∈ J . Combining this result with

the regularization property (see (10) in Lemma 1), we have:

βkjl = 0, l = 1, . . . , nj for at least one j ∈ J, ∀k ∈
(
Ω−B(p) \ Ω̄−B(p)

)
.

Therefore,
nj∑
l=1

λjl β
k
jl = 0, for at least one j ∈ J, ∀k ∈

(
Ω−B(p) \ Ω̄−B(p)

)
,
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implying that ∑
j∈J

nj∑
l=1

λjl β
k
jl ≤ |J | − 1, k ∈

(
Ω−B(p) \ Ω̄−B(p)

)
,

and thus that (68) does not hold for any k ∈
(
Ω−B(p) \ Ω̄−B(p)

)
. Hence, any k for which (68) holds

should belong to Ω̄+
B(p).

C Valid Inequalities for the MILP Formulations

We present here a family of valid inequalities that can be used to strengthen the mixed-integer
inequalities (35) in formulations EMP1, EMP2, EMP1-SOS1 and EMP2-SOS1.

Proposition 1. Consider the set

Gj =

(xj , zj , λ) ∈ R2
+ × {0, 1}nj : zj ≥ cjl xj −Mjl(1− λjl), l = 1, . . . , nj ;

nj∑
j=1

λjl = 1

 . (69)

The inequalities
zj ≥ cjl xj −Mjl(1− vjl), l = 1, . . . , nj , (70)

with vjl =

nj∑
r=l

λjr , l = 1, . . . , nj , (71)

are valid for Gj and are tighter than the inequalities (35).

Valid inequalities similar to (70) and (71) are derived by Kogan and Lejeune [12] for a single-
objective stochastic programming problem of type MOPCP with fixed reliability level p. We refer
the reader to [12] for the proof of Proposition 1.

D Financial Data and Construction of Problem Instances

We build three sub-portfolios or funds including respectively equities, fixed-income assets, and
international securities. The equity sub-portfolio comprises seven securities: a growth large cap
domestic equity mutual fund, a value large cap domestic equity mutual fund, a growth small cap
domestic equity mutual fund, a value small cap domestic equity mutual fund, an Asian equity fund,
a European equity fund, and an emerging market equity fund. The fixed-income sub-portfolio also
includes seven securities: a high yield bond fund, a multi-sector bond fund, an emerging markets
bond fund, a government bond fund, a world bond fund, an inflation-protected bond fund, and a
high yield muni fund. The international securities sub-portfolio includes five funds covering the
emerging markets, Europe, and Asia.

We create 72 problem instances. The forty-eight problem instances constructed for the models
SMPC1 and SMPD1 differ in terms of the weight a balancing the relative importance of the ob-
jectives, the proportion of capital qi, i = 1, . . . , r allocated to each sub-portfolio, and the maximum
loss level di, i = 1, . . . , r tolerated for each sub-portfolio.

We consider three values for the parameter a. The first value a1 is set to give an equal weight
to the two objectives (i.e., expected return and reliability). A standard procedure in the multi-
objective literature [32] is to define a1 as follows:

a1 =
RU −RL

PU − PL
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Sub-Portfolio Category Security

Equities

Domestic Growth Large Cap Equity Wells Fargo Advantage Growth
Domestic Value Large Cap Equity SunAmerica Focused Dividend

Domestic Growth Small Cap Equity T. Rowe Price New Horizons
Domestic Value Small Cap Equity Undiscovered Mgrs Behavioral Value Inst

European Equity Henderson European Focus
Pacific/Asia Equity Invesco Asia Pacific Growth

Emerging Markets Equity Virtus Emerging Markets Opportunities

Fixed-Income

High Yield Bond Delaware Pooled High-Yield Bond
Multisector Bond Loomis Sayles Fixed Income

Emerging Markets Bond TCW Emerging Markets Income
Government Bond PIMCO Long-Term US Government Instl

World Bond Templeton Global Bond Adv
Inflation-Protected Bond PIMCO Real Return Asset Instl

High Yield Muni Ivy Municipal High Income

International

European Equity Henderson European Focus
Pacific/Asia Equity Invesco Asia Pacific Growth

Emerging Markets Equity Virtus Emerging Markets Opportunities
Emerging Markets Bond TCW Emerging Markets Income

World Bond Templeton Global Bond Adv

Table 8: Asset universe.

where RU (resp., RL) is an upper (resp., lower) bound on the maximal (resp., minimal) value of
the expected return. Similarly, PU (resp., PL) is an upper (resp., lower) bound on the maximal
(resp., minimal) value of the reliability p. The second (resp., third) value a2 = 1.2a1 (resp.,
a3 = 0.8a1) assigned to a gives 20% more importance to the reliability (resp., expected return)
objective. We consider four combinations of values for the parameters qi determining the allocation
of capital between sub-portfolios. First, we allocate an equal amount of capital to each sub-portfolio:
qi = 1/3, i = 1, 2, 3. In the other three settings, 40% of the capital is allocated to one sub-portfolio
i∗ : qi∗ = 40%, while the remaining part is split equally between the other two sub-portfolios:
qi = 30%, i 6= i∗. As for the maximal allowable loss di for each sub-portfolio, we consider two sets
of values. In the first one, the equity (resp., fixed-income and international securities) sub-portfolio
is required to generate a loss lower than 3% (resp., 1.5% and 2%), while the maximal loss associated
to the equity (resp., fixed-income and international securities) sub-portfolio is equal to 4% (resp.,
2.5% and 3%) in the second parameter setting.

The twenty-four problem instances constructed for the models SMPC2 and SMPD2 differ in
terms of the weight and the proportion of capital qi, i = 1, . . . , r∗ allocated to each sub-portfolio.
Indeed, the portfolio loss level di, i = 1, . . . , r∗ that can be obtained with a certain reliability is a
decision variable in formulations SMPC2 and SMPD2. The considered values for the parameters
a and q are the same as those employed in the SMPC1 and SMPD1 problem instances.
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