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Abstract

This thesis consists of two parts, which are connected by an introduction on auction and
oligopoly markets and a short discussion about the obtained results at the end. The first
part provides a literature review on auctions and analyzes bidders’ behavior in Austrian
cattle auctions. The aim is to investigate whether there are differences among bidders
and whether bidders take the possibility of buying later into account when bidding for
objects. The second part analyzes firms’ strategies in the semiconductor industry. In
particular, the strategic effects of learningbydoing and spillovers are considered. Further,
the consequences of aggregating firms’ pricing behavior to an industry level pricing equa-
tion are empirically investigated. In both parts emphasis is put on the question, whether
neglecting asymmetries across market participants and/or neglecting dynamic effects in-
fluences the estimated parameters.

Keywords:
Auctions, oligopoly, applied econometrics, applied game theory



Zusammenfassung

Diese Dissertation besteht aus zwei Teilen, die durch eine Einleitung zu Auktions- und
Oligopolmärkten und durch eine kurze Diskussion über die erzielten Resultate am Ende
der Arbeit miteinander verbunden sind. Der erste Teil diskutiert die Literatur zu Auktio-
nen und analysiert das Verhalten von Bietern in österreichischen Rinderauktionen. Das
Ziel der Untersuchung ist es zu bestimmen, ob es Unterschiede im Verhalten der Bieter
gibt und ob diese die Möglichkeit eines späteren Kaufes in Betracht ziehen. Der zweite Teil
beschäftigt sich mit den Strategien von Firmen in der Halbleiterindustrie. Im besonderen
werden die strategischen Effekte von “learning-by-doing” und “spillovers” betrachtet. Des
weiteren werden die Konsequenzen der Aggregation von firmenspezifischen Preisverhalten
zu einer industriespezifischen Presigleichung empirisch untersucht. In beiden Teilen wird
schwerpunktmäßig auf der Frage eingegangen, ob das Vernachlässigen von Asymmetri-
en unter den Marktteilnehmern und/oder das Vernachlässigen dynamischer Effekte die
geschätzen Parameter beeinflußt.

Schlagwörter:
Auktionen, Oligopol, Angewandte Ökonometrie, Angewandte Spieltheorie
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He gave me the opportunity to study at the Wissenschaftszentrum Berlin (WZB) and
guided me through the years of research which finally led to this book. My special thanks
also go to my second thesis advisor, Dennis C. Mueller. The suggestions and comments
of both my advisors were of greatest help for me. I have profited a lot from their advice
and academic support.

Most helpful was the detailed feedback from Ralph Siebert during various stages of the
project for which I want to express my kindest thanks. Further I benefited greatly from
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Chapter 1

Introduction

The field of industrial economics includes the analysis of market structure and firms
behavior in the market. Most real markets are imperfectly competitive markets. The
interest of economists lies in exploring these kind of markets, as they are unlikely to
maximize social welfare. Modern industrial organization has been influenced by non-
cooperative game theory in an essential way. Formal theories offer precise and therefore
testable characterizations of firms’ behavior supporting the non-competitive outcome.
Further, empirical work making use of game theory has been developed in the study
of oligopolistic markets over last decades. Researchers derive testable implications from
game theoretic models by concentrating on reduced form econometric models to test
certain implications of theory. One concern of this approach is the possibility that other
models of behavior may have the same reduced-form predictions. Others have been led to
more and more structural models. These models rely on the hypothesis that the observed
data are the equilibrium strategies of an underlying game-theoretic model, which can be
used to estimate the characteristics of the market.

Besides oligopolistic markets auctions are another example of imperfectly competitive
markets. In both areas empirical work testing theory has made large progress the last
two decades. However, testing theory is one part of empirical work. The other important
strand is to infer relations between economic variables out of the real world data and
to establish stylized facts. Theoretical models take these relations and facts then into
account.

In this thesis I follow a structural approach and analyze the semiconductor industry
as an example of an oligopolistic market and cattle auctions in Austria as an example
of an auction market. Firms’ strategies in the semiconductor industry form one point of
interest. Bidding behavior in auctions the other. In both markets dynamic effects and
asymmetries among players seem to matter. In the semiconductor industry learning-by-
doing and spillovers are prevalent. Whether firms take the strategic effects of learning-by-
doing and learning spillovers actually into account when choosing their output strategies
is answered empirically. Austrian cattle auctions are conducted in a sequence of objects.
The aim is to investigate whether there are differences among bidders and whether bidders
take the possibility of buying later into account when bidding for objects. In both cases
the consequences on the estimated parameters (e.g. learning-by-doing) are investigated.

1



CHAPTER 1. INTRODUCTION 2

Does it matter, when asymmetries and dynamic effects are taken into account or is the
difference between the estimates rather small?

1.1 Auction markets

Auctions are one of the oldest forms to determine transaction prices. Historical sources
tell us about various auctions taking place in Greece, the Roman Empire, China, and
Japan. Not only history is witness of this economic institution, but also nowadays auctions
are used in a remarkable range of situations. There are auctions for livestock, flowers,
antiques, artwork, stamps, wine, real estate, publishing rights, timber rights, used cars,
contracts and land, and for equipment and supplies of bankrupt firms and farms. Auctions
are of special interest to economists because they are explicit mechanisms, which describe
how prices are formed. The continuing popularity of auctions makes one wonder about the
reasons why. Following Milgrom (1987) some explanations can be given: One explanation
is that auctions often yield outcomes that are efficient and stable. A second explanation
might be that a seller in a relatively weak bargaining position, consider the case where
the seller is the owner of a nearly bankrupt firm, can do as well as a strong bargainer
by conducting an auction. However, she then can not use strategic policies like imposing
a reserve price or charging entry fees. Even a seller in a strong bargaining position will
decide to sell via auction, if it is optimal in relation to other exchange games. These three
partly complementary explanations provide a cogent set of reasons for a seller to use an
auction when selling an indivisible object.

In bidding for an object a bidder faces an uncertainty about the value of the auctioned
object, a strategic uncertainty relative to other players’ strategies and relative to other
players’ characteristics. Thus in auction markets we find ourselves in the class of games
with incomplete information. Through the use of the Bayesian Nash equilibrium concept
by Harsanyi (1967) the theory of auctions has provided the necessary developments. The
three most prominent auctions models are the independent private value model due to
Vickrey (1961), the symmetric common value model due to Rothkopf (1969) and Wilson
((1969) and (1977)) and the asymmetric model due to Wilson ((1967) and (1969)). Mil-
grom and Weber (1982a) developed a model of competitive bidding in which the winning
bidder’s payoff may depend upon his personal preferences, the preferences of others, and
the intrinsic qualities of the object being sold. They introduced the concept of affiliated
values and showed that the three above mentioned models are special cases of the affiliated
value paradigm.

A lot of the theoretical models investigate one shot games only. However, the same
commodities are often sold in sequential auctions. Ashenfelter (1989) noticed a so called
declining price anomaly in wine and art auctions: winning prices decrease during the day.
One theoretical model of sequential auctions is due to Weber (1983). With independent
private values, symmetry, and bidders desiring at most one unit of the auctioned com-
modity, he showed that winning bids in sequential auctions should follow a martingale
process. With affiliated values, the sequence of winning prices displays an upward lift
(Weber (1983), Milgrom and Weber (1982b)). McAfee and Vincent (1993) showed how
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risk aversion of bidders may explain declining prices.
Auctions are analyzed by assuming that the characteristics of the bidders are drawn by

Nature from probability distributions which are common knowledge to all bidders. The
key explanatory variables of bidding behavior are these distributions. In experiments one
can control for these distributions and can analyze the strategic behavior of bidders. The
role of experiments is to test the behavioral predictions of the game theoretic analysis.1

When using field data the distributions of bidders are not known to the researcher and
are one subject of interest.

However, auctions are an interesting subject to analyze empirically, as on the one hand
the rules of associated games are usually well defined and many constraints are available
to define the structural model. Further, the data of auctions are usually quite rich and
more readily available than data from other markets. Therefore it seems to be promis-
ing to empirically test game theoretic models in the context of auctions. Some authors
concentrate on reduced form econometric models to test certain implications of auction
theory, with the observed bids as dependent variables. Explanatory variables might then
be the reservation price, the number of bidders, and some characteristics of the auctioned
object. A second approach, the structural approach, relies on the hypothesis that the
observed bids are the equilibrium bids of the considered auction model. As the optimal
strategy is a function of private values or signals, depending on the model (private vs.
common), the equilibrium strategy gained from the theoretical model can be used to esti-
mate the characteristics of the distribution of private values or signals, respectively. The
first moment of the distribution is of particular interest, as it characterizes the expected
gain for the seller.

The main difficulty of the structural approach lies in the typically highly nonlinear equi-
librium bid function and in the complex density of the winning bids. Laffont, Ossard and
Vuong (1995) developed a simulated non-linear least squares estimator that can handle
a broad class of distributions. This is in contrast to other methods, which require that
the joint distribution belongs to particular families of distributions (see e.g. Donald and
Paarsch (1993)). Nevertheless a specific distributional assumption must still be made. To
avoid the distributional assumptions Elyakime, Laffont, Loisel, and Vuong (1994) have
proposed nonparametric methods for estimating the probability law of valuations. How-
ever, in contrast to parametric methods, this approach requires knowledge of all bids,
not just the winning bids. Parametric models provide a test of the joint hypothesis that
the distribution of valuations belongs to the assumed family of distributions and that
potential buyers bid according to theory.

Most of the literature on empirical estimation of auctions assumes a static setting.
On the contrary there is little empirical work on sequential auction games. Beggs and
Graddy (1997) study the order of sale in art auctions and found that the final (winning) bid
relative to the auctioneer’s estimated price declines throughout the course of an auction.
Engelbrecht-Wiggans and Kahn (1999) examined dairy cattle auctions on different days
and found that prices decline over the course of an auction day, with the main decline
occurring towards the end of the day. Jofre-Bonet and Pesendorfer (1999) consider bidding

1Kagel (1995) gives a very detailed survey of results in experimental auctions.
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behavior in a repeated procurement auction setting. Considering a dynamic bidding model
and using data for highway construction procurement in the state of California, they assess
the importance of intertemporal constraints. Donald, Paarsch and Robert (1997) consider
a model in which a finite number of objects are sold in a sequence of ascending-price
auctions. They allow bidders to desire more than one unit and estimate the model using
data on the sales of Siberian timber-exports permits. Laffont, Loisel and Robert (1997)
consider finitely repeated first-price auctions in which at each stage an identical object is
sold. They set up a model that generates an inverse U-shaped intra-day dynamics and
confirmed it with data on eggplant auctions.

Chapter 2 reviews parts of the literature on auction theory in more detail. In particular,
I primarily concentrate on empirical issues. For this purpose I first start with describing
the most prominent auction models and give then some further issues with respect to
relaxing the major assumptions of these models. The other part concerns the econometrics
of auctions. Issues on experiments on auctions are left out. Chapter 3 provides then an
empirical analysis of cattle auctions taking place in Amstetten, Austria. These auctions
are held as sequential English auctions. In this market the bidders are either some traders,
who visit the auctions on a regular basis, or farmers with single-unit demand. The
aim is to investigate whether there is a difference in the valuations of large traders and
small bidders. The second question concerns intertemporal effects. Do bidders take the
possibility of buying later into account when bidding for objects? By analyzing I follow a
structural approach and estimate the characteristics of the distribution of bidders’ values.
In particular, I concentrate on the first moment of the distribution of the bids, as it
characterizes the expected gain for the seller.

The contribution of the analysis of Austrian cattle auctions to the literature lies in speci-
fying an empirical sequential auction model and to investigate whether bidders’ valuations
are asymmetric and whether bidders take the possibility of buying later into account. The
analysis of Austrian cattle auctions shows asymmetries among bidders and a significant
effect of the sequential bidding game. A further point of interest deals then with the
question, how the estimation results compared to the estimation results of a static sym-
metric model, which I defined as the benchmark model. In general, the findings show that
neglecting asymmetries has a great impact on the estimation results, whereas neglecting
the sequential effect does not really change the estimation results.

1.2 Oligopoly markets

The analysis of market structure, firm conduct, and market performance in oligopolistic
markets are the main theoretical and empirical concerns of contemporary industrial eco-
nomics. The central question is about firm and industry conduct: the aim is to estimate
the parameters that measure the degree of competition. To measure market power and
market conduct with a structural model relies on the hypothesis that the observed prices
and output are the equilibrium prices and equilibrium output of the considered game-
theoretic model. A system of demand and supply relations is typically estimated. Under
the assumption that the market is in equilibrium, the focus lies on the estimation of
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market conduct with regard to other market determinants, like e.g. economies of scale,
learning-by-doing and/or spillover effects. The supply relations are derived from the first
order conditions of firms’ maximization problems and specify the behavioral response of
firms in a given market. The demand equation represents consumers maximizing their
utility.

In studying repeated games strategies are considered in which past play influences cur-
rent and future strategies. Usually economists focus their attention on equilibria in a
smaller class of Markov state-space or feedback strategies. In this case the past influences
the current play only through its effect on a state variable that summarizes the direct
effect of the past on the current environment (Fudenberg and Tirole (1983)). There are
further information concepts. Firms either pre-commit themselves to their production
plans or they consider the effect of learning-by-doing and spillovers on their rivals’ output
decision. Or differently spoken firms use either open-loop or closed-loop (no memory)
strategies2. Each of these information structures has different implications on the equilib-
rium outcomes. In an open-loop equilibrium players commit to entire paths of history. In
a closed-loop perfect information structure players can condition their play at time t on
the history of the game until that date. In a memoryless perfect state information struc-
ture the past influences the current play only through its effect on a state variable like in
the feedback information pattern but also on the initial value of the state, which is known
a priori. With all information structures firms can play their strategies simultaneously or
sequentially. In both cases we talk about Nash equilibria.

The dynamic structure in a market can arise from the fact of learning-by-doing within
firms and/or learning spillovers among firms in an industry. In learning models firms learn
either from their own experience, from the experience of other firms, or both. Learning-
by-doing introduces an intertemporal component to firms decisions. Current production
adds to the firm’s stock of experience and increases in the firm’s stock of experience
reduce firm’s unit costs in future periods. Theoretical research demonstrate that learning
can have sizable impact on cost and strategic decisions and market performance (e.g.
Spence (1983), Fudenberg and Tirole (1983)).

Most empirical studies of the DRAM market investigate, whether learning-by-doing and
spillovers are prevalent in that industry and when yes, how large these effects are. The dif-
ferent setups vary to a certain degree. Baldwin and Krugman (1988), and Flamm (1993)
completed simulation studies for different generations of DRAMs. These papers deal with
calibrating theoretical models and they were the first to incorporate learning economies
into a stylized empirical model of the semiconductor industry. Another part of the semi-
conductor literature considers econometric models. Gruber (1992), (1996a) estimated
reduced form relationships assuming constant price-cost margins and found economies of
scale rather than learning-by-doing effects for various generations of DRAMs. Irwin and
Klenow (1994) implemented a recursive dynamic specification. They assumed constant
returns to scale, Cournot behavior and fixed elasticities of demand. Their results imply
learning-by-doing within and learning spillovers across firms, but no spillovers across gen-
erations. Brist and Wilson (1997) estimated both a demand and a pricing relation for

2For a mathematical treatment of dynamic games see e.g. Basar and Olsder (1991))
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a dynamic game with an open-loop information structure. Neglecting learning spillovers
among firms they showed learning-by-doing to be smaller in the presence of economies of
scale and estimated markups. Siebert (1999) used a dynamic model and investigated the
influence of a multi-product specification on the estimated parameters. He found that
multiproduct firms behave as if in perfect competition.

Most of the literature about the semiconductor industry has considered learning-by-
doing extensively, but has not considered the dynamic strategic implications. Jarmin
(1994) investigated these dynamic effects for the early rayon industry. His results show
that firms take their rivals’ reactions into account when choosing their strategies. Karp
and Perloff (1989) estimated a dynamic oligopoly model and the degree of competition
for the rice export market. Their model nests various market structures with firms that
either pre-commit themselves to a production plan or that consider the strategic effect of
their own output on their rivals’ future output decision. However, their model does not
take learning-by-doing or spillover effects into account.

The aim of Chapter 4 is to test whether firms in an dynamic oligopolistic industry pre-
commit themselves to a production plan or whether they consider the effect of learning-by-
doing and spillovers on their rivals’ output decision. I apply the same dynamic oligopoly
model to the DRAM industry that Jarmin applied to the early rayon industry. The
empirical framework for examining the dynamic effects of learning-by-doing and spillovers,
and market power is an intra industry study described in Bresnahan (1989). Further I
analyze the impact of a dynamic specification on the estimated parameters of learning-
by-doing, learning spillovers, economies of scale and price-cost margins. In a conceptual
analogous way Röller and Sickles (1900) showed for the airline industry that market
conduct in a two-stage set-up of a game in capacity and prices is significantly less collusive
than in a one-stage set-up.

The industry under investigation is the semiconductor industry, in particular the Dy-
namic Random Access Memory (DRAM) market. DRAMs are memory components
(chips) and are classified into generation. From a descriptive analysis of the DRAM mar-
ket one can conclude dynamic elements like learning-by-doing within firms and learning
spillovers among firms to matter. The implication of learning by doing in production tech-
nology for market conduct and performance can be modelled within a dynamic oligopoly
game. Thus the consequences of firms’ using experience as a strategic variable can be
considered.

Departing from a dynamic oligopoly game the first order conditions for the open-loop
and the closed-loop no memory equilibrium are derived in order to implement an econo-
metric model. The closed-loop specification then enables me to evaluate the effect of
firm’s strategy on the objective function of other firms in future periods. I assume a sin-
gle product market. The structural econometric approach is used for evaluating market
power, learning-by-doing, learning spillovers, economies of scale and strategic behavior.
The methodology involves a specification of demand and marginal cost functions and
hypotheses about the strategic interactions of the participants. Different behavioral as-
sumption about firms in the DRAM market are tested and the parameters for the demand
and the cost functions, including the parameters for market power, learning-by-doing ef-
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fects, learning spillovers, economies of scales and strategic behavior are estimated. The
empirical results show that firms behave strategically in a dynamic sense and that a pos-
sible estimation bias is evident in the DRAM industry. In particular, firms’ market power
could be wrongly estimated, if one does not consider firms to act strategically over time
and that leads to an incorrect assessment of the market under consideration.

For the analysis of market structure, firm conduct, and market performance in an oligo-
polistic market very often only industry level data is available. Theoretical models of
oligopoly are at the firm level and provide the researcher with firm level equilibrium
pricing relations. The general objective of chapter 5 concerns the aggregation of firm
level pricing equations to an industry level pricing equation. The point of interest lies
in comparing two specifications of the industry level pricing relation. The first assumes
that the market consists of firms with equal market shares. Actually, the assumption of
symmetry is not given for the 256K DRAM market. Thus with a second specification I
want to correct for the asymmetry. The two specifications are estimated with quarterly
data of the 256K generation at the industry level. For each specification I estimate a
structural dynamic model of demand and pricing relations. Under the assumption that
the market is in equilibrium, I focus on the estimation of economies of scale, learning-
by-doing, the effects of input prices and the intertemporal strategic effect. Given the
estimation results of the two specifications a potential aggregation bias can be calculated.
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Auction markets
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Chapter 2

Literature review on auctions1

2.1 Introduction to auction theory

There are a wide range of how auctions are conducted. The four most prominent types of
auctions are first-price, second-price, English and Dutch auctions. The first-price auction
is a sealed bid auction in which the buyer with the highest bid claims the object and
pays the amount she has bid. Whereas in the second-price auction the item still goes to
the bidder with the highest bid, but she pays only the amount of the second highest bid.
This arrangement does not necessarily mean a loss of revenue for the seller, as in this
form of auction the buyers will generally bid higher than in the first-price auction. The
second-price auction is also known as a “Vickreyäuction. The Dutch auction, also called
descending auction, is conducted by an auctioneer who initially calls for a very high price
and then continuously lowers the price until some bidder stops the auction and claims
the good for that price. This kind of auction is frequently used in the agricultural sector.
There are several variants of the English auction. In one, the participants themselves are
calling out the bids and when nobody is willing to raise a bid anymore the auction ends.
Another possibility is that the auctioneer calls the bids and the participants indicate their
assents by a slight gesture. In yet another form of English auction, the price is posted
using an electronic display and is raised continuously. A bidder who is active at the
current price presses a button. The moment she releases the button she withdraws from
the auction. This particular variant is used in Japan. These are three quite different
forms of English auction with three quite different corresponding games.

Differences among the bidders’ valuations of the auctioned object can have two possible
causes: differences in the bidders’ tastes or the bidders have access to different information.
To be more explicit, suppose that each bidder knows exactly how highly she values the item
to be sold. Further she knows nothing about the other bidders valuations, she perceives
any other bidder’s valuation as a draw from some probability distribution and she is aware
that the other bidders regard her valuation to be drawn from some probability distribution
as well. These probability distributions are common knowledge and the valuations of the
bidders are statistically independent. In general this is called the independent private value

1The main part of this chapter draw on Böheim and Zulehner Böheim and Zulehner (1996).
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model. Now consider the case where the auctioned object has a value known to everyone.
Namely the amount of this item on the market. However nobody knows the true value, but
has some information about the item. And the bidders’ perceived values are conditional
on the unobserved value independent draws from some probability distribution. This is
called the common value model or the mineral rights model. The first situation applies,
for example, to an auction of an antique, where the bidders buy for their own use and will
not resale it. Whereas in the latter situation an auction for an antique that is being bid
for by dealers who intend to resell it is described. The independent private value model
and the common value model describe two extremes. In reality one might find auction
situations lying between these two cases. A general model that allows for correlation
among the bidders’ valuations and that takes into consideration the two above described
special cases, was developed by Milgrom and Weber (1982a). To go back to the example
given above, an auction of an antique cannot be fully described in either of the two extreme
cases. As the dealers may be guessing about the ultimate market value of the object, but
they may differ in their selling abilities, so that the market value depends on which dealer
wins the bidding. This argument suggests the need for a more general model.

2.1.1 The independent private value model

Much of the existing literature on auction theory deals with the independent private value
paradigm in a risk neutral setting. In this section we now want to list the results and
conclusions emerging from the independent private value model. As described above,
in that model a single indivisible good is to be sold to one of n bidders. Any of the
bidders knows the value of the item to herself, and nothing about the values of the other
bidders. The values are then modelled to be independent draws from some continuous
probability distribution. As the bidders are assumed to behave competitively, i.e. there
is no collusion, the auction can be treated as a noncooperative game. There are several
important results for this game (see among others Milgrom and Weber (1982a)):

Result 1: The Dutch and the first-price auctions are strategically equivalent.
Result 2: In the context of the private value model, English and second price auctions are

equivalent as well, although in a somewhat weaker sense than the “strategic equivalenceöf
the Dutch and second-price auctions, i.e., in the latter case no assumptions about the
values to the bidders of various outcomes is required. In particular, the bidder does not
need to know the value of the item to herself.

Result 3: The outcome of the English and second-price auctions is Pareto optimal. In
symmetric models the Dutch and first-price auctions also yield Pareto optimal allocations.

Result 4: The expected revenue generated for the seller by a given mechanism is precisely
the expected value of the object to the second-highest evaluator.

Result 5: All four auctions, i.e. first-price, second-price, Dutch, and English, lead to
identical expected revenues for the seller (Vickrey (1961), Riley and Samuelson (1981)).
This is the so-called revenue-equivalence result.

Result 6: For many common sample distributions - including the normal, exponential
and uniform distributions - the four standard auction forms with suitably chosen reserve
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prices or entry fees are optimal auctions (Myerson (1981), Riley and Samuelson (1981)).
Result 7: In case of either a risk-averse buyer or risk-averse seller the seller will strictly

prefer the Dutch or first-price to the English or second-price auction.
The theory of optimal auction design addresses the question which auction maximizes

the expected revenue of the seller, given a single object to sell. The decision which kind of
auction is the best is a problem of decision in the face of uncertainty. I.e. the seller does
not know the value of the item to be sold to the bidders. Otherwise she would announce
a nonnegotiable price at or just below the highest bidder’s valuation. However, as the
seller does not know the bidder’s true valuations she is forced to choose among auction
mechanism which are almost surely going to give her less than this perfect information
optimum (Myerson (1981)).

The tool to answer this question is the Revelation Principle. It shows that the seller
can restrict herself to the class of direct and incentive- compatible mechanisms. In a
direct mechanism each bidder is asked simply to report her true valuation. Whereas in
an incentive-compatible mechanism the bidder finds it in her own interest to report her
valuation honestly. The direct revelation game has one equilibrium that leads to the same
allocation as the original equilibrium. But this equilibrium need not be unique (see also
Fudenberg and Tirole (1991)). The optimal direct mechanism is found as the solution to a
mathematical programming problem with two constraints: First, incentive-compatibility
or self-selection constraints, which state that the bidders cannot gain by not truthfully
reporting their valuations and second, individual-rationality or free-exit constraints, which
guarantee that the bidders are not better off if they refuse to take part.

In most of the literature on optimal auction design the independent private value as-
sumption is made. In this setup following results have been shown: The auction that
maximizes the expected price has the following characteristics: (i) The seller optimally
sets a reserve price and does not sell the item if all bidders’ valuations are too low.
(ii) Otherwise she sells to the bidder with the highest valuation (Myerson (1981), Riley
and Samuelson (1981), Milgrom (1987)). iii) Any of the English, Dutch, first-price, and
second-price auctions is the optimal selling mechanism provided it is supplemented by the
optimally set reserve price (Myerson (1981), Riley and Samuelson (1981)).

Bulow and Roberts (1989) have shown that the seller’s problem in devising an optimal
auction is virtually identical to the monopolist’s problem in third-degree price discrimi-
nation. The question whether a public auction or an optimally structured negotiation is
more profitable to sell a company was answered by Bulow and Klemperer (1994). They
found out that under standard assumptions, like risk-neutrality, independence of signals,
or increasing bid functions, the public auction is always preferable. The result holds for
the independent private value and the common value, as well.

Myerson (1981) has shown an optimal auction mechanism for an example with depen-
dent bidders’ values. The optimal auction includes side-bets, which are not possible in
the independent case. In the general non-independent case we can expect side-bets more
commonly. With carefully designed side-bets the seller can counterbalance the bidders’
incentive to lie to buy the object at a lower price.
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2.1.2 The common value model

In the common value auction we assume that the bidders make (conditionally) indepen-
dent estimates of the common value of the item to be sold. The bidder making the largest
estimate will give the highest bid. A consequence of this bidding strategy is that the win-
ner will find that she overestimated on average the value of the item she has won, even
if all other bidders are making unbiased estimates as well. This phenomenon is known as
the winner’s curse. It was first described by Capen, Clapp, and Campbell (1971), who
claimed that this phenomenon is the reason for the low profits earned by oil companies on
offshore tracts in the 1960’s in the US. In the case of first-price auctions the equilibrium
of this model has been studied extensively. Those results dealing with the relations be-
tween information, prices, and bidder profits are the more interesting ones. For example,
Milgrom (1979) and Wilson (1977) showed that - under certain regularity assumptions -
the equilibrium price in a first-price auction is a consistent estimator of the true value.
I.e., that although no bidder knows the true value of the item, the seller will receive that
value as the sale price. In a common value auction the price can therefore be effective in
aggregating private information. Further, the bidder’s expected profits depend more on
the privacy than on the accuracy of the information about the common value of the good
(Milgrom (1981), Milgrom and Weber (1982a)).

2.1.3 The general model of Milgrom and Weber

In Milgrom and Weber’s paper (1982a) a general model for risk neutral bidders is devel-
oped. In the sense that there is space for cases like the independent private value model
and the common value model, as well as a range of intermediate models. Consider an
auction in which a single object is to be sold and in which risk neutral bidders compete
for the possession of that object. Each of these bidders has some information about the
object. Milgrom and Weber (1982a) then introduce the concept of affiliation2 and assume
bidders’ valuations to be affiliated. Roughly speaking, this means that large values for
some of the variables make the other variables more likely to be large rather than small
(see Milgrom and Weber (1982a), p.1098). Generally it can be said, that when bidders’
valuations are affiliated, the English auction yields a higher expected revenue than the
first-price, the second-price, or the Dutch auction. Additionally it is true that the second-
price auction leads to higher expected revenue than the first-price auction, which yields
the same revenue as the Dutch auction. In the standard auction forms the seller can raise
her expected revenue by having a reporting policy of revealing any information she has
about the item’s true value. If one bidder’s information is available to another bidder, her
expected surplus is zero (see Milgrom (1981), Milgrom and Weber (1982a)). This result
implies that the privacy of information is of more importance than its accuracy.

2A general definition can be found in the Appendix of Milgrom and Weber (1982a). For variables
with densities, the following simpler definition of (1982a) will suffice. Let z and z′ be points in Rm+n.
Let z ∨ z′ denote the component-wise maximum of z and z′, and let z ∧ z′ denote the component-wise
minimum of z and z′. The variables z and z′ are affiliated, if for all z and z′, f(z∨z′)f(z∧z′) ≥ f(z)f(z′).
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2.2 Some further issues in auction theory

2.2.1 Asymmetric Bidders

The revenue-equivalence theorem for auctions predicts that expected seller revenue is in-
dependent of the bidding rules, as long as equilibrium has the properties that the buyer
with the highest reservation price wins and any buyer with the lowest possible reservation
price has zero expected surplus. Following McAfee and McMillan (1987) we now assume
that the bidders fall into separate groups. Therefore we do not have one distribution of
private values anymore, but two. Bidders of every type still draw their valuations inde-
pendently from their specific probability distribution. In this setting the English auction
operates much as in the private value model. The bidder with the highest valuation wins
and therefore the outcome is efficient. As the first-price auction yields a different price
than the English auction does, revenue equivalence breaks down. Vickrey (1961) among
others constructed examples in which the price in the English auction could on average be
higher or lower than the price in the first-price auction. In the special case where the two
distributions are only distinguishable by their mean, i.e. the shapes of the distribution are
the same, only the means differ, the class of bidders with the lower average valuation are
favored in the optimal auction (see McAfee and McMillan (1987)). The benefit from such
a policy is that the bidders with the higher average valuation are forced to bid higher than
they otherwise would. Thus the price is driven up on average. Maskin and Riley (2000)
drop the symmetry assumption in a formal analysis and they show, that “strong” buyers
prefer English auctions, whereas “weak” buyers prefer first-price auctions.

2.2.2 Sequential auctions

Under the usual assumptions of risk neutral bidders, private and independent values, sym-
metry, and bidders desiring at most one unit of the auctioned commodity, it is well known
that winning bids in sequential auctions should follow a martingale process, both for first-
price and second-price auctions (see Weber (1983)). Weber proved that, with affiliated
values, the sequence of winning prices displays an upward lift. In the symmetric affiliated
model, Milgrom and Weber (1982b) showed that the sequential first price yields greater
expected revenues than the discriminatory auction and that the sequence of winning bids
displays an upward lift. McAfee and Vincent (1993) have shown how risk aversion of bid-
ders may explain declining prices. In a general symmetric setting with two stages, which
includes the private and the common value setting as special cases, Hausch (1988) showed,
that bidders’ optimal strategy for the first object is to shade the bid in contrast to the
one-stage game. This result holds for the first-price and the second-price auction. How-
ever, assuming independent private values the term of shading in a second-price auction
is equal to zero. Katzman (1999) explores the features of a two stage sequential auction
with multi-unit demand. Working within the independent private values paradigm, he
examines a sequence of two second price auctions where individual bidders have dimin-
ishing marginal valuations. When information is complete, allocations can be inefficient
and price sequences constant or decreasing. However, when information is incomplete
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and symmetric, equilibrium behavior produces efficient outcomes and an expectation of
increasing prices. These divergent findings are reconciled using an argument based on ex
ante bidder asymmetry that can also explain the declining price anomaly.

Another issue in this context is strategic jump bidding. Avery (1998) solves for equilibria
in sequential bid (or English) auctions with affiliated values when jump bidding strategies
may be employed to intimidate one’s opponents. In these equilibria, jump bids serve as
correlating devices which select asymmetric bidding functions to be played subsequently.
Each possibility of jump bidding provides a Pareto improvement for the bidders from
the symmetric equilibrium of a sealed bid, second-price auction. The expanded set of
equilibria can approximate either first- or second-price outcomes and produce exactly the
set of expected prices between those two bounds. These results contrast with standard
conclusions that equate English and second-price auctions.

2.3 Econometrics of auctions

Many recent papers in auction literature are concerned with the possibility of formulat-
ing and testing hypotheses. In empirical auction theory two approaches have emerged:
structural and non-structural models. For a review of the existing literature on empirical
work concerning auctions see Hendricks and Paarsch (1995) and Laffont (1997). One aim
of recent work in auction theory is to identify the probability law behind the valuations of
potential bidders. This is essential if one wants to implement an optimal auction mech-
anism. Bayesian Nash Equilibrium behavior imposes restrictions upon the relationships
amongst bidders (e.g between informed and uninformed bidders) which do not depend on
the functional form of the probability law for the valuations. If one assumes that there is
no unobserved heterogeneity the actual knowledge of this probability law is unnecessary
to test these restrictions (therefore “non-structural or reduced form approach”). When
concentrating on reduced form econometric models one can test certain implications of
auction theory, with the observed bids as explained variables. Explanatory variables
might then be the reservation price, the number of bidders, and some characteristics of
the auctioned object. One concern of this approach is the possibility that other models of
behavior may have the same reduced-form predictions. In contrast to the former approach,
some authors use the entire structure of the auction to derive the data generating process.
Heterogeneity, observed and unobserved, is recognized in this approach (the “structural
approach”). It relies on the hypothesis that the observed bids are the equilibrium bids of
the considered auction model. As the optimal strategy is a function of private values or
signals, depending on the model (private vs. common), the equilibrium strategy gained
from the theoretical model can be used to estimate the characteristics of the distribution
of private values or signals, respectively. The main difficulty with this approach is the
typically highly nonlinear equilibrium bid function. In some cases, there exists no closed
form solutions for the equilibrium bid functions. Another difficulty arise from the com-
plex density of the winning bids. Laffont, Ossard and Vuong (1995) have developed a
simulated non-linear least squares estimator, which is based on simulations following Mc-
Fadden (1989) and Pakes and Pollard (1989). It can handle a broad class of distributions.
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This is in contrast to other methods, which require that the joint distribution belongs to
particular families of distributions (see e.g. Donald and Paarsch (1993)). Nevertheless
a specific distributional assumption must still be made. To avoid these distributional
assumptions Elyakime, Laffont, Loisel, and Vuong (1994) have proposed nonparametric
methods for estimating the probability law of valuations. However, in contrast to para-
metric methods, this approach requires knowledge of all bids, not just the winning bid.
Parametric models provide a test of the joint hypothesis that the distribution of valuations
belongs to the assumed family of distributions and that potential buyers bid according to
theory.

2.3.1 The non-structural approach

The sale of drainage leases was described as following a common value auction with a first-
price sealed-bid mechanism. Hendricks and Porter (1992) imposed affiliation on the joint
distribution of values, signals, and reserve price. Following this approach Hendricks and
Porter(1992) derived three restrictions governing the behavior of informed and uninformed
bidders in the Outer Continental Shelf (OCS) auctions. First, a lower participation rate of
non-neighboring firms; second, few non-neighboring bids below some de facto reserve price;
third, distributional equivalence above some level (where bids are almost never rejected,
a de facto acceptance price). They report tests on these restrictions and the empirical
distributions of bids produced “remarkable strong support” for the theory. However,
there are two caveats: firstly, the distribution of data was truncated, but that can be
accommodated in that there is a condition on the first order stochastic dominance. Second,
the assumption of independent distributions might not be fulfilled and for this reason the
asymptotic distribution of the test statistic is almost surely not standard (and up to some
computational difficulties).

McAfee and Vincent (1992) use data from Hendricks and Porter for OCS auctions, and
extend the generalized mineral-rights model to allow for stochastic endogenous participa-
tion. In this model we have nature as a player that determines the number of possible
bidders, n, with some probability qn. Out of these a subset of the potential bidders is
drawn at random. The true value is v and the bidders receive some signal, xi, which
is independently distributed. A theorem is derived that provides a distribution-free test
of whether participation is optimal. The auction is attracting inefficiently few bidders
whenever net revenues exceed the values of tracts that attracted two or more bids.

2.3.2 The structural approach

English auctions

Under the private value paradigm the setup of the English auction the simplest to test
auction theory is to estimate the joint distribution function on the bidders’ valuations.
This is because of two important assumptions: first, the independence of valuations, and,
second, the failure to distinguish between buyers. This means, that the marginal distri-
butions of the joint distributions are identical. If the task is to estimate the cumulative
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distribution function, this can be accomplished by recovering the entire joint distribu-
tion for the buyers’ valuations. From this understanding a parametric formulation can
be derived, a likelihood-function calculated and the unknown values of the distribution
function estimated (see e.g. Hendricks and Paarsch (1995) for a formal derivation).

First-price sealed bid auctions

The winning bid in a first-price sealed bid auction, under independent private values,
is a function of the set of bidders’ valuations. As in the previous section a parametric
specification for each auction can be derived. The difficulty with this framework is the
fact that the upper bound of the support of the winning bid depends on the parameters of
interest. This violates the asymptotic consistency of the maximum-likelihood estimator.
Donald, Paarsch and Robert (1997) have used this framework for the timber auctions in
British Columbia. The results showed variation in the distribution function depending
on the use of English auctions or first-price sealed bid auctions. The bidding behavior
differed in that the winning bid was more often the reserve price with English auctions
than with first-price sealed bid auctions. Moreover, the amount of rent accruing to the
government was negative.

Simulated non-linear least squares

One further drawback with the last estimation method is its computational complexity.
In general the involved functions will not have an analytic solution and have to be solved
numerically. The proposed alternative of Laffont, Ossard and Vuong(1995) is related to
the method of simulated moments (McFadden (1989) and Pakes and Pollard (1989)). The
simulated non-linear least squares estimator can be derived by minimizing an adjusted
non-linear least squares objective function. The parameters that determine the mean
and/or the variance of the distribution function are estimated using a simulated estimate
for the expected winning bid. Laffont, Ossard and Vuong(1995) have shown that the
asymptotic distribution is normal.

Non-parametric estimation

The main criticism of the maximum likelihood method or the simulated non-linear least
squares is that an explicit assumption concerning the density functions is needed. The
non-parametric approach, however, has to use all of the bids, not just the winning bid,
which the above methods used. The assumptions that are made is that each potential
buyer is bidding optimally against the opponent’s bidding strategy, potential buyers are
using the same strategy, and this strategy is increasing in bidders’ valuations. The proce-
dure consists of two steps. The first step involves the estimation of the conditional density
in a non-parametric way. The estimation of the “hazard rate” is then used to estimate
the bidding-strategy and the conditional density of valuations. This provides a test of
the behavioral hypothesis, which is carried out in Elyakime et al. (1994) for timber sales.
The auction is interesting in that the seller’s reserve price is not announced until the bids
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have been submitted. Theoretically, from the point of the buyers, the seller is another
buyer, but with a different pay-off function. This implies an additional bidding strategy.

Private vs. common values

Paarsch (1992) uses auctions of tree planting contracts in British Columbia, Canada, from
1985 to 1988, to find out whether this auctions fall within the private or common value
paradigm framework. The contracts are awarded to the lowest bid, which is typically the
cost per tree planted, in a sealed bid first-price auction. Differences in bidding behavior
can be a result of two different (and opposing) paradigms. In the first case, the cost of
planting a tree is unknown to all, but the same to all bidders. If this is true, then a
sealed-bid framework offers no additional help in finding out the most efficient since all
are equally efficient. If, on the other hand, there are differences in the planting costs then
the use of the sealed-bid framework will induce the bidder with the lowest cost to submit
the lowest bid.

Which paradigm applies will be reflected in the bidders’ bidding functions and in the
winning bids. For common value auctions, the bid functions will increase in the number
of bidders, n, where in auctions within the private value setting the bids will decrease
monotonically. The expected value of the winning bid will have no relationship with the
number of bidders in a common value setting, in private value auctions it will fall in
n. The distribution of the winning bids do not provide enough information to decide
between the models. Neither the shape nor the mean of the data allows discrimination.
Employing several empirical specifications (proportional bids, cost additive bid functions,
nonlinear functions of cost) all versions of the private value paradigm are rejected and
there is consistency between the data and the common value paradigm.

Collusion

Empirical papers on collusion can be divided into two groups. The first one tries to distin-
guish between competitive and collusive behavior. Baldwin, Marshall and Richard (1997)
examine bidding behavior in Forest Service timber sales in the Pacific Northwest of the US.
Allegations of bidder collusion were common in the 1970s. They formulated an empirical
model that allows both bidder collusion and supply effects. They compared various em-
pirical models and found that a model of collusion outperformed noncooperative behavior
in which a single unit is sold. Supply effects are dominated by collusion in determining
the winning bids in the market. Porter and Zona (1997) examine the institutional details
of the school milk procurement process, bidding data, statement of dairy executives, and
supply characteristics in Ohio during the 1980s. By comparing the bidding behavior of
a group of firms to a control group they found the behavior of each of these firms differs
from that of the control group and is consistent with collusion.

In the second group of papers collusive behavior can be assumed as it has been e.g.
proved by court. These papers investigate the different kinds of collusive behavior. Pe-
sendorfer (2000) examines the bidding for school milk contracts in Florida and Texas
during the 1980s. In both states firms were convicted of bid-rigging. The cartel in one
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state divides the market among members, while the other cartel also uses side payments
to compensate members for refraining from bidding. With a sufficiently large number of
contracts he can show that both forms of cartel agreements are almost optimal. Further
the data support the predicted equilibrium bidding behavior in asymmetric auctions in
accordance with optimal cartels.

Sequential auctions

The literature on empirical estimation of auctions assumes mostly a static auction setting.
There is little empirical work on sequential auction games. Ashenfelter (1989) noticed a
so called declining price anomaly in wine and art auctions: winning prices decrease during
the day. Beggs and Graddy (1997) study the order of sale in art auctions. The final bid
relative to the auctioneer’s estimated price declines throughout the course of an auction.
They show within a theoretical model, that in an auction ordered by declining valuation,
even in the presence of risk-neutral bidders, the price received relative to the estimate
for later items in an auction should be less than the price relative to the estimate for
earlier items. Furthermore, ordering heterogeneous items by value maximizes revenue for
the auctioneer. Engelbrecht-Wiggans and Kahn (1999) examined dairy cattle auctions on
different days and found that prices decline over the course of an auction day, with the
main decline occurring towards the end of the day. Jofre-Bonet and Pesendorfer (1999)
consider bidding behavior in a repeated procurement auction setting. They consider a
dynamic bidding model that takes into account bidder asymmetry and the presence of
intertemporal effects such as capacity constraints. They study bid data for highway con-
struction procurement in the state of of California, estimate the model and assess the
importance of intertemporal constraints. Donald, Paarsch and Robert (1997) consider a
model in which a finite number of objects are sold in a sequence of ascending-price auc-
tions. They estimate the model using data on the sales of Sibirian timber-exports permit.
Laffont, Loisel and Robert (1997) consider a finitely repeated first-price auctions in which
at each stage an identical object is sold. Their model generates intra-day dynamics which
are applied to data on eggplant auctions.



Chapter 3

Bidding behavior in Austrian cattle
auctions

3.1 Introduction

Auctions are an interesting subject to analyze econometrically. The rules of associated
games are usually well defined and many constraints are available to define a structural
model. On the other hand, the data of auctions are usually quite rich and more readily
available than data from other markets. Therefore it seems to be promising to empirically
test game theoretic models. Most of the literature on empirical estimation of auctions as-
sumes a static auction setting. On the contrary there is little empirical work on sequential
auction games.

In this chapter I analyze cattle auctions taking place in Amstetten, Austria. Each of
these auctions is conducted as an English auction. On those days, on which auctions
take place, roughly 200 objects are offered sequentially. Such a sequence of auctions is
held every month. Various issues are relevant and interesting in these auctions: There
are some traders, who visit the auctions on a regular basis. Two of them represent a
regional trade firm each. The others work for local trade firms. All the other bidders are
usually farmers from the (near) neighborhood. These bidders buy usually one animal on
one auction day, whereas the traders buy sometimes up to 55 animals per auction day.

Summarizing the relevant facts of these cattle auctions suggests to implement a the-
oretical model of sequential auctions with asymmetric bidders empirically. The aim is
to investigate whether there is a difference in the bidding behavior of large traders and
small bidders. The second questions concerns intertemporal effects. Do bidders take the
possibility of buying later into account when bidding for objects?

I follow a structural approach. As a benchmark model I analyze an English auction,
considering this type of auction in the independent private value paradigm and in an static
environment. Bidders’ valuations are assumed to be symmetric. By also implementing
a model with affiliated values I test for and confirm the independent private value as-
sumption. The static model with independent private values is then contrasted with a
model where bidders’ valuations are asymmetric. This gives the possibility to distinguish
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between the groups of bidders and to test for a difference in their bidding behavior. As a
next step I consider a sequential bidding model with symmetric and asymmetric bidders.
These models are implemented econometrically and are brought to data. The charac-
teristics of the distribution of bidders’ values are estimated and the heterogeneity of the
auctioned objects is taken into account. In particular, I concentrate on the first moment
of the distribution of bids, as it characterizes the expected gain for the seller.

The focus of the analysis of Austrian cattle auctions lies in specifying an empirical
sequential auction model and to investigate whether bidders’ valuations are asymmetric
and whether bidders take the possibility of buying later into account. The results show
asymmetries among bidders and a significant effect of the sequential bidding game. A
further point of interest deals then with the question, how the estimation results compared
to the estimation results of a static symmetric model, which I define as the benchmark
model. The findings show that neglecting asymmetries has more impact on the estimation
results than neglecting the sequential effect.

The chapter is organized as follows: In Section 3.2 I give a description of cattle auctions
in Amstetten, Lower Austria and of the data I use for estimation. Some (summary)
statistics and a preliminary analysis of the winning bids is also presented. The employed
theoretical models are introduced in Sections 3.3.1 and 3.3.2. Section 3.4 analyzes the
applied estimation method and then gives the empirical results. Section 3.6 concludes.

3.2 Cattle auction in Amstetten, Austria

In this section I describe the auction market under investigation. As we will see from this
description the relevant issues of cattle auctions in Amstetten, Austria, are asymmetries
among bidders and the fact of sequential auctions. Given the detailed literature review
from the section before, the contribution of the analysis of Austrian cattle auctions to
the literature lies in specifying an empirical sequential auction model and to investigate
whether bidders’ valuations are asymmetric and whether bidders take the possibility of
buying later into account.

3.2.1 Description

Ascending price auctions are frequently used to sell cattle, pigs, or other animals. The
particular auction we focus on is a cattle auction that takes place in Amstetten, Austria.
Most of the cattle auctioned are (dairy) cows and stock bulls. In this market the sellers
are farmers and the buyers are farmers or representatives of two resale trade firms. From
January to April 1996 these two large traders bought on average 22% of all the auctioned
cattle. Auctions take place eleven times a year. Each auction lasts for two days. On the
first day the cattle are displayed to give interested persons the opportunity to view the
animals. A catalog with a detailed description of every animal is available at a price of
ATS 20.1 Description of the cattle includes various quality criteria like milk production,

1ATS=Austrian Schilling.
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milk components, the owner of the animal, its date of birth, the parents and grandparents
as well as some of the quality criteria of the parents and grandparents. Further, medical
checks are carried out during the animals’ stay in the auction stable and the results are
published in the morning of the second day. On this day also the auctions take place. In
1994, on average, 340 animals have been sold per auction day (1994).

The auction is held by an auctioneer who announces the prices. The auctioneer is paid
by the Chamber for Agriculture in Lower Austria. Neither the sellers nor the bidders
have to pay anything for the auction house unlike at privately organized auctions (e.g. by
Sotheby’s).2 The auctioneer starts the auction at a fixed price and raises the price in fixed
step sizes. The bidders have so-called “Winkers”. They look like small traffic signs with
number on them, with which they indicate to accept the bid. Everyone who wants to bid
has to pay a fee for a “Winker”. The auction lasts until nobody is willing to accept the
next highest bid. When the bidding stops the object for sale is hammered down, but not
necessarily sold as the seller has the possibility to reject the price. During the auction the
respective seller represents his or her cattle in front of the bidders. If nobody is willing
to accept the starting price the auctioneer lowers the price like in a Dutch or descending
auction until somebody accepts that price. Then the auctioneer starts to raise the price
with the same fixed step size again and the procedure continues as described above.

3.2.2 Data

The data are from auctions which took place on January 24th, February 21st, March 20th
and April 24th 1996. On average at each auction day about 230 heads of cattle have been
sold. For each animal the winning bid, the weight, the breed, two quality criteria, the
auction day, the number of the “Winker” and the number of order on the specific auction
day is known. Further we know the total number of “Winkers” given out for each auction.

The cattle are divided into four categories, namely bulls, female calves, young female
calves and cows. For reasons of simplicity the bulls are not considered for estimation.
The cattle are of two different breeds: “Fleckvieh” or “Braunvieh”. The first quality
criteria has six different classifications, 1A to 3B. For cows and female calves this quality
criteria gives the minimum requirements for the output and the structure (fat, protein)
of their milk. In case of young female calves it gives the minimum requirements of their
mother’s milk. However, a cattle of the highest classification, 1A, was not sold on one of
these four auction days. The second quality criteria has three classifications, 1 to 3. As
everybody, who wants to bid, has at least one “Winker”, the seller can be identified in an
anonymous way. Usually bidders have different numbers on their “Winkers” at different
days. However, the large traders always get the same number. Therefore they can be
identified throughout the four auction days. This is helpful to determine possible asym-
metries among bidders (valuations). The number of potential bidders is the total number
of given out “Winkers”. But this is not the number of bidders actually participating at
each auction round, since people are not staying at the auction the whole day as they

2However, every Austrian farmer has to be member of the Chamber for Agriculture and has to pay a
membership fee.
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might not be interested in every animal.

3.2.3 Winning Bids

The average sale price for all auctions is ATS 19839 with a standard deviation of ATS
4136 (see also Table 3.1). The highest winning bid is ATS 33200 and the lowest is ATS
7800. The variation of the average winning bid across the four auction days is substantial.
The difference between the average sale prices on February 21st and April 24th is ATS
2273, which is about 11% of the overall mean. The variation of the average winning bid is
also given across other subgroups like the milk quality criteria. The mean selling price in
the classification 1B is ATS 26709, whereas in the lowest classification 3B it is only ATS
11203.

3.2.4 Who are the large traders?

The large traders are identified by the number of objects they have won. Most of the
bidders, namely 89%, bought one or two objects. On January 24th, 1996 190 objects were
sold (Table 3.2): 114 bidders bought one animal each. 17 bidders bought two animals.
The other 5 bidders purchased 3, 4, 8, 11 and 16 animals, respectively. In Table 3.2
the exact frequencies are also shown for the other auction days. The overall picture is
the same for all four auction days. In Table 3.3 the descriptive statistics of selected large
traders and that of the remaining small bidders are given. The bidders T30 and T2003 are
the same bidders, respectively, throughout all auction days. This need not be true for the
other bidders (e.g. T70). Those who have bought more than 2 objects I define as large.
In particular, the difference in the average winning bid between the small bidders and the
traders T30 and T200 is significant, using a Mann-Whitney test. As I do not control here
for other variables like quality or category, the reason for this difference is a-priori not
clear. One possibility could be that these two groups of bidders bid for different kinds of
cattle or there could be some other kind of asymmetry between bidders. If one takes a
look at the kernel density of the bids of these two large traders and compares that to the
densities of the bids of the small bidders, one recognizes a difference in the distributions
(see Figures 3.1 and 3.2, respectively). The large traders can be considered as agents of
retail sellers who have placed orders at specific prices before the opening of the market.
These prices are the valuations of the traders in the auction (see also Laffont, Ossard and
Vuong (1995)). Thus they also do not have budget constraints, whereas small bidders
seem to have them.

3.2.5 Summary

This cattle auction is as a first step modelled within the independent private value par-
adigm. The assumption of private values can be justified by the available information
about the cattle. As almost every detail of the cattle’s quality is known to all bidders

3T30 and T200 are the bidders with the “Winker” number 30 and 200, respectively.
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there is hardly any uncertainty about the common value of the cattle. Therefore none
of the bidders should have private information about the cattle’s characteristics. Be-
sides, in cattle auctions bidders tend to agree on the various characteristics of the animals
(Engelbrecht-Wiggans and Kahn (1999)). As a consequence the bidders preferences are
of pure private nature. Every bidder ranks the different characteristics in another order
depending on breeding program goals. The second source of common values is the possi-
bility of resale. However, as transportation and resale costs in this market are high it is
unlikely that short term speculation plays a significant role. Shortterm speculation is also
ruled out by the fact, that the auctioned animals have to be in possession of the owner
for at least six months. This fact itself does not prevent resale, but the cows can at least
not be sold at the next auctions.

As noted above on one auction day many animals are auctioned in a sequence. These
cattle auctions are probably most similar to the sequential auctions considered in Laffont,
Loisel and Vuong (1997) or Donald, Paarsch and Robert (1997), where identical units
of a good or identical lots of a given commodity are auctioned off (e.g. wine, flowers,
fish, tobacco). Laffont, Loisel and Vuong (1997) find that winning bids of descending or
Dutch auctions for eggplants exhibit a regular inverse U-shape in the course of one day.
In his description of wine auctions, Ashenfelter (1989) noticed a so called declining price
anomaly: winning prices decrease during the day. The winning bids of Austrian cattle
auctions do not obviously exhibit any pattern. In Figure 3.3 the price of the winning bids
in the order of how the objects were auctioned is shown.

The fact of an existing secret reservation price, as the seller has the possibility to reject
the hammered down price, has to be ignored because of the unavailability of appropriate
data for these cases.

3.3 The theoretical models

3.3.1 The independent private value model

In order to introduce the notation and the empirically implemented models I now briefly
review a model of English auctions in the independent private value model, which is
equivalent to the second-price auction (Vickrey (1961)). In the independent private value
setting a single indivisible good is to be sold to one of n risk neutral bidders. Each of the
bidders knows the value of the item herself, and nothing about the values of the other
bidders. The values are modelled as independent draws from some continuous probability
distribution. The bidders are assumed to behave competitively, i.e. there is no collusion,
and thus the auction can be treated as a non-cooperative game. Assuming symmetry
among bidders implies that the independent draws are from the same distribution. In
case of asymmetry, bidders’ valuations would be from different distributions. The bidders
are also supposed to be risk neutral. In this setting the English or ascending auction is
equivalent to the second-price auction. The dominant strategy in a second-price auction
is to bid one’s own valuation, regardless of others. These results do not depend on the
symmetry of the model (Vickrey (1961)).
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Let X = (X1, . . . , Xn) be a vector. The components of this vector are real-valued signals
observed by the individual bidders. Let Xi denote the actual value of the object to bidder
i. The variables X1, . . . , Xn are independent. And let Yi,1, . . . , Yi,n−1 denote the largest,
. . ., smallest estimates from among Xj , j �= i. Further let f(x) denote the joint probability
density of the random elements of the model, which is symmetric in its arguments. The
expectation E[Xi] is assumed to exist. The bidders’ valuations are in monetary units
and the bidders are risk neutral. Therefore, bidder i’s payoff is Xi − b, if she receives the
auctioned object and pays the amount b. A strategy for bidder i is a function mapping her
value estimate xi into a bid b = bi ≥ 0. Supposing bidders j �= i adopt strategy bj then
the highest bid among them will be W = maxj �=ibj(xj). Bidder i will win the auction if
her bid exceeds W , which will also be the price bidder i has to pay. The decision problem
bidder i is facing is to choose a bid b that maximizes the expected actual value minus the
price, ignoring the cases where her bid is not the highest, conditional on her signal. It
can be shown that the dominant equilibrium strategy in a second-price auction is to bid

b∗i (xi) = xi (3.1)

for every player i and this fact does not depend on symmetry (Vickrey (1961)). As the
bidder with the highest valuation will stop raising her bid after the bidder with the second
highest valuation has left the auction, the observable winning bid is

bw = x[2], (3.2)

where x[2] denotes the second highest of n independent draws of the distribution func-
tion F . The winning bids therefore follow the second order statistic, which has a certain
distribution and density function. Thus the characteristics of this distribution function
can be estimated (see Section 3.4 below). With asymmetry among bidders the charac-
teristics of two or more distribution functions are estimated. For each group of bidders
the private values are drawn from different distribution functions. The expected sell-
ing price is the expected price of bidder i conditional on bidder i winning the auction:
R = E[Yi,1|Xi > Yi,1] = E[X[2]], where X[2] denotes the second-order statistic.

3.3.2 A sequential auction model with two objects

The one-shot independent private value model from above does not really capture the fea-
tures of Austrian cattle auctions. As the cattle are auctioned in a sequence the theoretical
model should not ignore dynamic considerations. Taking the description of Austrian cat-
tle auctions (see Section 3.2) into account the model has to incorporate an auction with n
asymmetric bidders with multi-unit demand and T objects. There are two possible asym-
metries: One reason for asymmetry lies in different bidders, which can be expressed by
different distribution functions of bidders private valuations. In a first step I concentrate
on the case of n symmetric bidders with multi-unit demand and two objects auctioned in
a sequence. Bidders are assumed to have no budget constraints. The independent private
value paradigm still holds and bidders are again assumed to be risk neutral.

The bidding procedure corresponds to a model of two sequential English auctions. The
time horizon spans t = 1, 2. At each of these points in time an English auction takes
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place. I assume the independent private value model. In this setting an English auction
is equivalent to a second-price auction. Bidders i = 1, . . . , n are risk neutral, symmetric
and have multi-unit demand.

Each period t bidder i learns the value xit of the object.4 Each of the bidders knows the
value of the item herself, and nothing about the values of the other bidders. Bidders do
not adjust their valuations even upon learning how others feel about the good. The values
xit are modelled as independent draws from some continuous probability distribution F .
We find independence among bidders, but it can be assumed that bidder i’s valuation for
the two objects will not be independent.

The priors of other bidders and the buyer about the value of bidders are identical and
are represented by a continuous distribution function F (xit|ot) with ot measuring the char-
acteristics of the object. ot is assumed to be observable to all bidders. The distribution
of values has a continuous density function f(x|o(t)) and support T = [0, V ]. The char-
acteristics of the auctioned objects are known from the beginning. These characteristics
include quality, category and breed.

Bidders may bid for every object and the bidder with the highest bid wins the object.
The realization of the object characteristics is independent of the characteristics of past
objects.5

Each bidder i choose bit to maximize intertemporal profits defined as

Maxbi
Wi(bit, b−it) =

∑2
t=1 E{(bit − max(bj �=it)) · Prob(i wins | bit, ot)}. (3.3)

A bidding strategy bit = bt(xit, x−it, ot) for bidder i is a function of bidder i’s value xit, of
bidders j �= i valuations x−it, and of the object ot.

It can be shown that the equilibrium strategy in a two-period second-price auction with
independent private values is to bid the valuation of the relevant objects (see e.g. Milgrom
and Weber (1982b), Weber (1983), Hausch (1988))

b∗i (xi1, xi2) = (xi1, xi2|x1) (3.4)

for every player i and this fact does not depend on symmetry. As the bidder with the high-
est valuation will stop raising her bid after the bidder with the second highest valuation
has left the auction, the observable winning bid is

bw = (x[2]1, x[2]2|x1), (3.5)

where x[2]1 denotes the second highest of n1 independent draws of the distribution function
F , and x[2]2|x1 denotes the second highest of n2 independent draws of the distribution
function F given x1. The winning bids therefore follow the second order statistics, which

4Due to the information given in the catalogue bidders could know their private values of the objects
at the beginning of the auction day. However, when the animal is actually auctioned, the owner of
the animal shows it to the audience and goes around with it. And that usually gives the last piece of
information to the bidders. Therefore the above assumption seems plausible.

5This is in contrast to empirical results concerning art auctions (see Beggs and Graddy (1997)). In
these kinds of auctions the auctioneer uses the order of the objects to be sold as a strategic device.
However, in Austrian cattle auctions the order of the objects is random.
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have a certain distribution and density function. Thus the characteristics of this distribu-
tion function can be estimated (see Section 3.4 below). With asymmetry among bidders
the characteristics of two or more distribution functions are estimated. For each group of
bidders the private values are drawn from different distribution functions.

3.3.3 English auctions with affiliated values

In Milgrom and Weber’s paper Milgrom and Weber (1982a) a general model for risk neu-
tral bidders was developed. In the sense that there is space for cases like the independent
private value model and the common value model, as well as a range of intermediate
models. For reason of comparison I use the same kind of notation as Milgrom and Weber,
which I will introduce first. As next step I will repeat the equilibrium strategies of the
static symmetric game of an English auction.

Consider now an auction in which a single object is to be sold and in which n risk
neutral bidders compete for the possession of that object. Each of these bidders has some
information about the object.

Let X = (X1, . . . , Xn) be a vector. The components of this vector are real-valued signals
observed by the individual bidders. And let Y1, . . . , Yn−1 denote the largest, . . ., smallest
estimates from among X2, . . . , Xn. Let S = (S1, . . . , Sm) be a vector of additional real-
valued variables which influence the value of the object to the bidders. The seller might
observe some of the components of S. Let Vi = ui(S, X) denote the actual value of the
object to bidder i. Further let f(s, x) denote the joint probability density of the random
elements of the model. Following assumptions are made:

Assumption 1: ∃ function u on Rm+n such that ∀i, ui(S, X) = u(S, Xi, {Xj}j �=i). I.e.,
that all of the bidders’ valuations depend on S in the same manner and that each bidder’s
valuation is a symmetric function of the other bidders’ signals.

Assumption 2: u is nonnegative, continuous, and nondecreasing in its variables.
Assumption 3: For each i, E[Vi] < ∞.
Assumption 4: The bidders’ valuations are in monetary units and the bidders are risk

neutral. Therefore, bidder i’s payoff is Vi − b, if she receives the auctioned object and
pays the amount b.

Assumption 5: f is symmetric in its last n arguments.
Assumption 6: The variables S1, . . . , Sm, X1, . . . , Xn are affiliated. More precisely, let x

and x′ represent a pair of (m+n) vectors, and let f(x) denote the joint probability density
of the random variables x, and further let x ∨ x′ and x ∧ x′ denote the component-wise
maximum and minimum of x and x′, respectively. Then the variables are defined to be
affiliated if, ∀x, x′,

f(x ∨ x′)f(x ∧ x′) ≥ f(x)f(x′). (3.6)

Roughly speaking, this condition means that large values for some of the variables make
the other variables more likely to be large rather than small (see Milgrom and We-
ber (1982a), p.1098). We refer to (3.6) as the “affiliation-inequality”.

In this general setting both the independent private value paradigm and the common
value paradigm can be treated. In the first case m = 0 and each Vi = Xi. Therefore the
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only random variables are X1, . . . , Xn. They are statistically independent and fulfill (3.6)
with equality, i.e. independent variables are always affiliated. In the second case m = 1
and each Vi = S1. Let g(xi|s), h(s) and f(s, x) = h(s)g(x1|s) . . . g(xn|s) denote the
conditional density of any Xi given the common value S, the marginal density of S and
the joint density of any Xi and S, respectively. Assuming that the density g fulfills
the monotone likelihood ratio property6. Therefore g also fulfills (3.6) and by applying
Theorem 1 of Milgrom and Weber (1982a) it follows that f fulfills( 3.6) as well. As a
consequence the common value model meets the the formulation of the general model, if
the density g has the monotone likelihood ratio property. Milgrom and Weber showed
further that the function E[Vi|X1 = x, Yi,1 = y1, . . . , Yi,n−1 = yn−1] is nondecreasing in x.

There are several variants of the English auction. Milgrom and Weber developed a game
model which corresponds most closely to the Japanese, so called press-button, auction: In
the very beginning all bidders are active at price of zero. The auctioneer raises the price
and the bidders drop out one by one and can not become active anymore. Furthermore
all other bidders know the price at which someone has quit the auction. A strategy for
bidder i specifies whether, at any price level p, she will stay in the auction or not, as a
function of her signal, the number of bidders having already quit, and the price levels at
which they quit. Let k ∈ [1, K] and p1 ≤ . . . ≤ pk denote the number of bidders who
have quit and the levels at which they leave, respectively. Then bidder i’s strategy can
be described by a function bik(xi | p1, . . . , pk) which specify the price at which bidder i
will quit if, at that point, k other bidders have left at the prices p1, . . . , pk. Naturally
bik(xi | p1, . . . , pk) is required to be at least pk.

Milgrom and Weber showed that there exists a symmetric equilibrium point in this
setup. The optimal bidding strategy b∗ = (b∗i,0, . . . , b

∗
i,k) for bidder i is defined iteratively

b∗i,0(s, x) = E[Vi | Xi = x, Yi,1 = x, . . . , Yi,n−1 = x],

. . .

b∗ik(s, x | p1, . . . , pk) = E[V1 | Xi = x, Yi,1 = x, . . . , Yi,n−1 = x,

b∗i,k−1(Yi,n−k | p1, . . . , pk−1) = pk, . . . , b
∗
i,0(Yi,n−1) = p1]. (3.7)

The winning bid is then

bw = bw(s, x) = e(V[2], pK−2, . . . , p1)

= E[V[2] | XK = x, YK,1 = x, pK−2, . . . , p1] (3.8)

with V[2] denoting the second-order statistic of n bidders. Further can be shown that the
expected price in the English auction is not less than in the second-price auction. In
effect, the English auction can be divided into two parts: First, the n − 2 bidders with
the lowest estimates reveal their signal publicly through their bidding behavior. The last
two players are then engaged in a second-price auction.

The expected selling price is the expected price of bidder i conditional on bidder i
winning the auction:

R = E [E [V[2] | XK = x, YK,1 = x, pK−2, . . . , p1]]

6If for all s′ > s and x′ > x, g(x | s)/g(x | s′) ≥ g(x′ | s)/g(x′ | s′), the density g has the monotone
likelihood ratio property. This definition is equivalent to the affiliation inequality.
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= E [V[2]] (3.9)

3.4 Econometric implementation

There are five theoretical models to implement econometrically. Three static models
with symmetric and asymmetric bidders, and two sequential models with symmetric and
asymmetric bidders. One static model does not assume independent private values, but
affiliated values. I consider this model to test for affiliated values, which can be rejected
as we later see. Therefore I do not consider the models with affiliated values further in the
context of asymmetry or sequential auctions. In the case of private values the symmetric
models are nested in the asymmetric models, whereas the static models are nested in
the sequential models. The winning bids present the following predictions for empirical
testing. The difference between symmetric and asymmetric bidders results in different
distribution functions among bidders. I assume the distribution functions to be from the
same family and the differences to lie in the characteristics of the distributions.

The winning bid in the static games is the second-order statistic of bidders’ valuations,
whereas the winning bid in the sequential model is a sequence of second-order statistics.
However, the distribution functions are different. For simplicity I assume that only the
next period matters. Thus the difference between static and sequential winning bids can
be attributed to an additional term, which is essentially the winning bid of the period
before. This term takes the sequential aspect of the auction into account. If the parameter
estimate of this variable is significantly different from zero, we can conclude that bidders
use sequential strategies and take the intertemporal effect into account.

In the next sections I first specify the functional form of the distribution of private
values. Then I describe the estimation method and give the results.

3.4.1 Functional specification

I assume private values7 to follow a log-normal distribution. This distribution depends
on various characteristics concerning the auction day, the breed, the category, the quality
and the weight of the cattle. In particular, I assume that the expectation of the private
values follows a linear function of fourteen exogenous variables:

E[ln(xt)] = θ1 + θ2Date1t + θ3Date2t + θ4Date3t + θ5Breedt + θ6Cate1t+

θ7Cate2t + θ8Qual11t + θ9Qual12t + θ10Qual13t + θ11Qual14t+

θ12Qual21t + θ13Qual22t + θ14Weightt, (3.10)

where t = 1, . . . , T and T denotes the overall number of auctions. The variance σ =
V ar[ln(xt)] is assumed to be constant. The reason for the latter assumption is that the
estimations cause fewer convergence problems.

7Affiliated values are also assumed to follow a log-normal distribution, but the expressions for the
expectation is not displayed.
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Depending on the day, on which the different objects have been auctioned, the dummy
variables Date1-Date3 have been introduced. The variable Date1 (Date2, Date3) is equal
to one for items sold on January 24th (February 21st, March 20th) and zero otherwise.
The dummy variable Breed is equal to one for “Fleckvieh” and zero for “Braunvieh”.
There are three different categories: female calves, young female calves and cows. They
are introduced by two dummy variables. The dummy variable Cate1 is assigned the value
one for female calves and zero otherwise, while Cate2 takes the value one for young female
calves and zero otherwise. There are two quality criteria, Qual1 and Qual2. Qual1 has
five different classifications (see Section 3.2.2) and Qual2 has three classifications. In
the data set there were no cattle out of the highest classification of Qual1. Therefore I
construct out of both classifications six dummy variables, which are equal to one, when
the particular classification is met and zero else.

Using (3.10) implies that the distribution F is equal for all bidders. Asymmetry can
introduce different distributions among bidders’ valuations. For simplicity I assume the
distribution functions to be from the same family of distribution functions. However, the
characteristics, in particular the means, differ among bidders. The difference I model via
bidder specific variables. This yields the following equation for various groups of bidders:

E[ln(xit)] = θi1 + θi2Date1it + θi3Date2it + θi4Date3it + θi5Breedit+

θi6Cate1it + θi7Cate2it + θi8Qual11it + θi9Qual12it + θi10Qual13it+

θ11Qual14it + θi12Qual21it + θi13Qual22it + θi14Weightit, (3.11)

with i = small bidders, large traders, T30 and T200. The expectation of the private val-
ues follows a linear function of the same fourteen exogenous variables as before. But for
each bidder group the expectation of private values is allowed to be different. One group
are the small bidders who bought only one or two objects. The other bidders are defined
as large traders (see Section 3.2.4). Two of the large traders bought a lot more animals
than the other traders did. Thus and because they could be identified through the number
of their “Winker” for all four auction days, I assume that each of these two traders, T30
and T200, form a group of their own. Asymmetry among bidders is expressed by differ-
ences in the expectation of the distribution. Thus I do not allow bidders’ private values to
be different in a more general way like assuming different probability distributions. The
variance σi = V ar[ln(xit)] is assumed to be constant within each of the four groups of
bidders.

In the sequential models the private values at t = 2, . . . , T follow a log-normal distribu-
tion conditional on the private values at t − 1.

E[ln(xit)|xt−1] = θi1 + θi2Date1it + θi3Date2it + θi4Date3it + θi5Breedit+

θi6Cate1it + θi7Cate2it + θi8Qual11it + θi9Qual12it + θi10Qual13it+

θ11Qual14it + θi12Qual21it + θi13Qual22it + θi14Weightit + θi15xt−1, (3.12)

with i = all bidders or i = small bidders, large traders, T30 and T200. The functional
form of the expectation of the private values can be expressed in an analogous way as in
(3.10) and (3.11). Bidder’s optimal strategy (3.4) in a sequential auction at t is to bid
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one’s own valuation conditional on the bidders’ valuation at t − 1. As the data covers
winning bids only, we do not observe xt−1, but x[2]t−1. For simplicity I assume that
the conditional expectation (3.12) is a linear function of the winning bid at t − 1. The
variance σi = V ar[ln(xit)] is again assumed to be constant within each of the four groups
of bidders.

3.4.2 Estimation method for the models with private values

The main problem in empirical auction theory is that the valuations of the bidders are
unobservable. In contrast to that, bids can be observed. As the optimal strategy is a
function of private values the equilibrium strategy implied by the theoretical model can
be used to estimate the moments of the distribution of private values. Especially, the
first moment is of interest, as it characterizes the expected gain for the seller. Implicitly
we assume bidders bid according to the equilibrium function of the underlying game.
However, due to experimental evidence this assumption offers no restriction. In English
clock auctions in an independent private value setting market prices rapidly converge to
the dominant strategy price (Kagel (1995)).

In general, the auctioned objects are not identical. Therefore we have to take into
account possible heterogeneity. That means that the distribution of private values for the
tth auction may depend on some characteristics of the tth object to be sold. Hereafter,
T denotes the total number of auctions and subscript t denotes all relevant quantities
concerning the tth auction. We assume that zt is fully observed. In the static specification
I have further to assume mutual independence among observed auctions.

Adopting a parametric formulation means that Ft = F (., zt, θ) for all t = 1, . . . , T ,
where θ ∈ Θ ⊂ Rk and F (., zt, θ) is a chosen distribution function. For the static models
I now consider the winning bid (3.2) of the model described in Section 3.3.1. The density
h of the winning bids can be expressed as

h(bw
t ) = n · (n − 1) · F n−2

t (xt) · (1 − Ft(xt)) · ft(xt),

where F and f denote the distribution and the density function of the private values (see
e.g. Poirier (1995)). To obtain an estimator for θ one has to calculate the likelihood
function and to maximize it with respect to θ.

For the sequential models I consider the winning bid (3.5). The density h of the winning
bid can be expressed as

h(bw
t ) = n · (n − 1) · F n−2

t (xt|xt−1) · (1 − Ft(xt|xt−1)) · ft(xt|xt−1),

assuming the valuations occurring at t + 2 to be independent. F and f denote the
distribution and the density function of the private values (see e.g. Poirier (1995)).

To obtain an estimator for θ and σ in the static models one has to calculate the likelihood
function and to maximize it with respect to θ and σ. In the symmetric models θ follows
(3.10) meaning that the distribution F is identical for all bidders. Asymmetry introduces
different distributions among bidders’ valuations and θi follows (3.11). That means that
the distribution functions are from the same family of distribution functions. However,
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the characteristics, in particular the means, differ among bidders. In the sequential models
one also has to maximize the likelihood function with θi following either (3.12).

3.4.3 Estimation method for the model with affiliated values

We consider now the winning bid (3.8). Its density h can be expressed as

h(bw
t (s, x)) = h(e(V[2], pK−2, . . . , p1)),

= f(e−1(V[2], pK−2, . . . , p1)) · ∂e−1

∂bw
t

(3.13)

according to the transformation rule for densities (integrals) and f denotes the distribution
and the density function of the s, x values (see section 3.3.3).

One way to obtain an estimator for θ is to calculate the likelihood function and to
maximize it with respect to θ. However, the inverse of the equilibrium function or respec-
tively of the winning bid, which is necessary to calculate the density of the winning bid,
is not analytic, but can only be evaluated numerically. Thus I estimate the parameters of
the underlying distribution with a simulated nonlinear least square estimator, which has
been proposed by Laffont, Ossard and Vuong Laffont et al. (1995) to circumvent above de-
scribed obstacles. Another possibility would be to use a so-called piecewise maximum like-
lihood estimator, which has been developed by Donald and Paarsch Donald and Paarsch
(1993). However, this estimator requires all the exogenous variables z to be discrete.

Let now E[bw
t ] ≡ Rt(θ) ≡ R(zt, θ) denote the conditional expectation of the winning

bid bw
t given n, which is now assumed to be constant for simplicity, and zt. The usual

non-linear least square (NLLS) estimator minimizes the objective function

QT (θ) = (1/T )
T∑

t=1

(bw
t − Rt(θ))

2 (3.14)

with respect to θ. As the expected winning bid is equal to the expected selling price (3.9),
and because (3.9) is not readily available, it is one way to replace Rt(θ) by an unbiased
simulator X t(θ).

Equation (3.9) can be viewed as an integral with respect to the density of V[2]. Then (3.9)
becomes

R =
∫

L
u[2]f(u)du

=
∫

L
u[2]

f(u)

g(u)
· g(u)du, (3.15)

where g is an arbitrary chosen density with support L, called the importance function
(see e.g. Rubinstein Rubinstein (1981)). Now, for every t = 1, . . . , T , we draw S samples,
each of size n, denoted by us

1,t, . . . , u
s
n,t, where us

i,t are affiliated draws from the distribution
with density g(.) for s = 1, . . . , S. Then, for every t, E[bw

t ] can be approximated by the
sample mean

X t(θ) =
1

S

S∑
s=1

Xs,t(θ) where
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Xs,t = us
[2],t

f(us
1,t, . . . , u

s
n,t)

g(us
1,t, . . . , u

s
n,t)

, (3.16)

and us
[2],t denotes the second highest element of each random sample with respect to the

number of bidders, for each s = 1, . . . , S and each t = 1, . . . , T . But now the objective
function (3.14) produces an inconsistent estimator for any fixed number of simulations S
as T increases to infinity.

Laffont, Ossard and Vuong Laffont et al. (1995) have shown, that the “simulatednon-
linear least square (SNLLS) objective function

Q∗
S,T =

1

T

T∑
t=1

[(bw
t − X t(θ))

2 − 1

S(S − 1)

S∑
s=1

(Xs,t(θ) − X t(θ))
2] (3.17)

minimized over θ gives a consistent and
√

T -asymptotically normal estimator θ̂ for fixed
S as T → ∞. Further, it can be shown that the SNLLS estimator is as efficient as the
NLLS of θ as S increases to infinity.

The affiliated values are assumed to come from a log-normal distribution. This dis-
tribution depends on various characteristics concerning the auction day, the breed, the
category, the quality and the weight of the cattle. In particular, I assume that the ex-
pectation E[ln(vt)] follows a linear function of fourteen exogenous variables according to
equation 3.10, where t = 1, . . . , T and T denotes the overall number of auctions. The
variance V ar[ln(vt)] is assumed to be constant. The reason for the latter assumption is
that the estimations cause fewer convergence problems.

3.5 Estimation results

3.5.1 Static model with symmetric bidders

By maximizing the likelihood we now get estimates for the structural model derived from
the theoretical model, that is described in Section 3.3.1 and the parameters of (3.10) are
then estimated. The parameter estimates and their standard errors for the symmetric
static model are given in the first two columns of Table 3.4 as well as the value of the
likelihood function. All estimates are significantly different from zero at a 95% significance
level. For the value of the likelihood function I get 720.24.

Given the choice of the log-normal distribution and the parameterization (3.10), each
parameter estimate of Table 3.4 can be interpreted as the percentage change of the ex-
pected value of the auctioned item. That means for instance in the case of the dummy
variables “Qual11to “Qual14”, that quality 1B, which is the highest quality class, quality
2A, 2B and 3A are 51.9%, 47.3%, 37.4% and 12.7% more valuable than the fifth quality
3B.

The other parameters shown in Table 3.4 have also the expected signs. The parameter
estimates of the dummy variables for the three first auction days Date1 to Date3, with
values of 11.5%, , are significant and reflect the market situation in comparison to the last
auction day. Thus the bids on the first (second, third) auction day were on average 11.5%
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(12.8%, 9.5%) higher than on the last auction day. Thus it seems that some exogenous
shock happened before the fourth auction day.

The sign of the breed parameter with a value of 4.8% specifies that the breed “Fleckvieh”
yields a higher expected average selling price than “Braunvieh”, after controlling for other
variables like quality or category. The dummy variable Cate1 is significantly positive
indicating that female calves are most valuable in comparison to young female calves and
cows. Female calves are worth 25.8% more than cows, whereas cows are more valuable
than young female calves, as the negative sign and a value of 8.5% for the dummy variable
Cate2 shows. The signs and the orders of magnitude for the first set of quality dummies
agree with common beliefs as noted above. The same is true for the second quality
criteria. The parameter values for Qual21 and Qual22, respectively, indicate that these
two classification are worth 14.3% and 6.3% more than Qual23. The significantly positive
coefficient of 78.7% for the weight also coincides with conventional wisdom, that weight
has an positive impact on prices.

3.5.2 Static model with affiliated values

By minimizing the objective function (3.17) we get estimates for the structural model
with affiliated values described in section 3.3.3. I use 100 simulations per auction. For
the choice of the importance function g I follow Laffont, Ossard, and Vuong (1995),
who suggested g to be a log-normal density with mean given by equation (3.10), where
θ is equal to some preliminary consistent estimate θ̃8, and a standard deviation equal
to 0.10. The function f in equation (3.16) is also chosen to be the density of a log-
normal distribution (see section 3.4.1) with mean given by equation (3.10). A starting
value θ0 close to θ̃ is selected and the parameters of equation (3.10) are then estimated.
The estimation results are given in columns three and four of table 3.4. The parameter
estimates do not differ a lot from those assuming independent private values. Actually, a
Cox-Hausmann specification test shows that the hypothesis of independent private values
cannot be rejected. The test statistic is distributed according to a χ2 distribution function
with 14 degrees of freedom and its value is equal to 3.730.

3.5.3 Static model with asymmetric bidders

In the columns one to eight of table 3.5 the results for the static model with asymmetric
bidders are displayed. The estimations were run separately for the group of small bidders,
the group of large traders9, for the trader with the “Winker” number 30 (T30) and for
the trader with the “Winker” number 200 (T200). The values of the four likelihood
functions are 460.63, 131.39, 121.88 and 106.14, respectively. Compared with the value of
the likelihood for the static model with symmetric bidders this means one has to prefer
the model with asymmetries, as the sum of the four values of the separated estimations is

8How to obtain this preliminary estimator for θ is described in more detail in Laffont, Ossard, and
Vuong (1995).

9The group of large traders do not include the traders T30 and T200.
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with a value of 819.14 greater than 720.24. In general the estimation results are analogous
to those in the static model. The signs and the orders of magnitude for e.g. the first
set of quality dummies (Qual11 - Qual14) show the same qualitative pattern as in the
symmetric model. This is also true for the other parameters. However, the magnitudes
of the estimated parameters are different in the sequential auction model. Again most of
the parameters are significantly different from zero at a 95% significance level. There are
only a few exceptions.

From a close look at the magnitudes of the parameters it comes apparent that there
are differences among bidders. The bidders do not value the attributes of the animals in
the same way. Small bidders have a higher willingness to pay for e.g animals of Qual12
than the large traders and trader T200 have.10 In the first case the parameter estimate is
58.7%, which is significantly different from the values 46.1% and 42.0% for Qual13 in the
other cases.11. A similar pattern is found for the variables Qual13, Qual21 and Qual22.

In general, small bidders value the characteristics coming along with quality more than
the large traders, including T30 and T200, do. One exception is the variable Qual14, for
which trader T200’s willingness to pay is equal to 20.0% and highest among all bidders.
As quality is primely defined with respect to milk production and milk components of
the animals, small bidders, most of them farmers, value milk cows higher than traders
do. On the other side large traders, also T30 and T200, value weight more than the small
bidders. The value estimate for Weight among small bidders is equal to 0.5301, but it is
equal to 1.2556 (1.0796, 1.3755) for large traders (T30, T200). The traders, representing
whole sale firms, prefer to buy meat cows.

For the parameter estimates of the quality criteria Qual12 and Qual13 and for weight
a dividing line between small bidders on the on side and large traders, including T30
and T200, on the other side can be drawn. That is not true for all parameter estimates.
As already mentioned, one example is Qual14. Another example concerns the category.
Female calves are most valuable in comparison to young female calves and cows. The
estimate of the dummy variable Cate1 is equal to 30.3% in the group of small bidders and
has a value of 21.3% in the group of large traders. Female calves are worth 17.0% more
than cows for bidder T30, but are worth 37.8% more for bidder T200.

The parameter estimates of the dummy variables for the three first auction days Date1
to Date3 are significant for the four groups of bidders and reflect the market situation
in comparison to the last auction day. They are also different across the bidder groups.
However, the general pattern, that the prices of the first three auction days are significantly
higher than on the last day, is valid for all bidder groups. Therefore the suspicion of some
exogenous shock does not seem to be wrong.

The conclusion that can be drawn from the estimations for the four bidder groups are
twofold: First, asymmetries among bidders matter even in this rather small cattle auction
market. Second, the results that are significantly different across bidder groups indicate a

10None of the large traders, trader T30 or trader T200 bought an animal of Qual11. Trader T30 also
did not bought any animal of Qual12.

11The t-tests with unknown variances are equal to 14.976 (small bidders vs. large traders) and to
17.287 (small bidders vs. T200).



CHAPTER 3. BIDDING BEHAVIOR IN AUSTRIAN CATTLE AUCTIONS 35

rather large difference across the estimates. The first moment of the distribution of bids
characterizes the expected gain for the seller. Thus the significantly different estimates
for various groups of bidders yield substantial changes in the seller’s expected gain.

3.5.4 Sequential models

In the third two columns of tables 3.4 and in table 3.6 the results for the sequential
models are described. The first table gives the estimates of the model that assumes
symmetry among bidders, the other table gives the results for the model with asymmetry.
In that case the estimations were again run separately for the group of small bidders, the
group of large traders, T30 and T200. For all five estimations the parameter estimate of
the lagged winning price is significantly different from zero. Thus we can conclude that
bidders take the sequential effect into account. Although, as the sometimes positive and
sometimes negative sign shows, bidders respond to that effect differently. And again we
see, that asymmetries are prevalent. Bidders react differently to the sequential aspect of
the auction.

The bidders as one group respond to the price of the before auctioned object negatively.
A high price one period before results in a low winning bid now and the other way round.
However, in the case of small bidders the sign of the price of the auctioned object one
point in time before is positive. That indicates that small bidders bid high, when the
price before was high. The same is true for trader T30. Contrarily, the large traders and
the trader T200 rather win with a lower bid, when the price of the object before was high.

The other estimates with respect to quality, breed and so on are nearly the same as in
the static models.12 That it true for all five estimations. Thus neglecting the sequential
effect does not have such an impact on the expected gain for the seller as neglecting
asymmetries has.

3.6 Conclusions

In this chapter I described the econometrics of English auctions in the independent private
value model. Further I set up a sequential bidding model and applied both to field data.
For this purpose I used data of cattle auctions in Amstetten, Austria. The data cover
four auction days from January to April 1996 with a total number of observations of 900.
In this market the sellers are usually farmers and the buyers are either farmers as well
or resale trade firms. A further characteristic of this market are some large bidders, each
representing a resale trade firm. The auction is carried out by an auctioneer provided
by the chamber of agriculture in Lower Austria. A catalogue with detailed information
about the milk production, milk components, the owner, date of birth, the parents and
grandparents of the cattle can be bought. As all important characteristics of the cattle
are known the independent private value model is adopted.

In analyzing I followed a structural approach. First I focused on English auctions, con-
sidering this type of auction in the private value paradigm and in an static environment.

12Differences concern the third digit after the comma.
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As a next step I considered a simple sequential bidding model with asymmetric bidders.
These models were implemented econometrically and were brought to data. By also im-
plementing a model with affiliated values I test for and confirm the independent private
value assumption. I estimated the characteristics of the distribution of bidders’ values and
took the heterogeneity of the auctioned objects into account. In particular, I concentrated
on the first moment of the distribution of bids, as it characterized the expected gain for
the seller.

The most important conclusions that can be drawn from the estimations among bidder
groups are twofold: First, asymmetries among bidders matter even in this rather small
cattle auction market. Bidders’ valuations are different. Second, the significantly different
results across bidder groups show a rather large difference across the estimates.

Further we can conclude that bidders take the sequential effect into account. Although,
as the sometimes positive and sometimes negative sign shows, bidders respond to that
effect differently. And again we see, that asymmetries are prevalent. Bidders react differ-
ently to the sequential aspect of the auction.

The analysis of Austrian cattle auctions shows asymmetries among bidders and a signif-
icant effect of the sequential bidding game. A further point of interest deals then with the
question, how the estimation results compared to the estimation results of a static sym-
metric model, which I defined as the benchmark model. In general, the findings show that
neglecting asymmetries has a great impact on the estimation results, whereas neglecting
the sequential effect does not really change the estimation results.
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3.7 Appendix: Tables and Figures

Table 3.1: Winning bids for different subgroups

Variable Name Number Mean∗ Std. Error Minimum Maximum
Date1 January 24th, 1996 190 20.556 4.136 7.800 30.600
Date2 February 21st, 1996 196 21.116 3.400 10.600 30.000
Date3 March 20th, 1996 238 19.371 5.350 8.200 33.200
Date4 April 24th, 1996 276 18.842 4.205 9.500 28.200
Breed1 “Fleckvieh” 804 19.821 4.218 7.800 33.200
Breed2 “Braunvieh” 96 19.988 3.319 12.000 27.000
Cate2 Female Calves 839 20.425 3.556 10.000 33.200
Cate3 Young Female Calves 50 10.824 1.498 7.800 13.400
Cate4 Cows 11 16.091 3.528 9.500 23.400
Qual11 Quality 1B 22 26.709 2.607 23.200 33.200
Qual12 Quality 2A 34 24.571 2.343 18.800 28.200
Qual13 Quality 2B 573 21.178 2859 12.400 31.200
Qual14 Quality 3A 236 16.546 3.022 8.000 23.600
Qual15 Quality 3B 35 11.203 2.383 7.800 16.800
Qual21 Quality 1 544 20.024 4.753 7.800 33.200
Qual22 Quality 2 270 19.714 2.932 12.000 25.800
Qual23 Quality 3 86 19.063 2.832 13.000 28.400
All Data 900 19.839 4.128 7.800 33.200
∗Prices in ATS.
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Table 3.2: Frequencies of winning bids

Date Number of bidders Number of objects Total
Jan. 24th, 1996 114 1

17 2
1 3
1 4
1 8
1 11
1 16 190

Feb. 21st, 1996 104 1
12 2
1 4
1 8
1 12
2 22 196

Mar. 20th, 1996 108 1
21 2
3 3
1 5
2 12
1 23
1 27 238

Apr. 24th, 1996 118 1
21 2
5 3
1 4
1 7
1 35
1 55 276
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Table 3.3: Descriptive statistics of winning bids of large traders vs. small bidders

Date Bidder(s)∗ Number Mean∗∗ Std. Err. Minimum Maximum
Jan. 24th, 1996

T30 11 15.782 3.050 9.600 19.200
T50 8 17.325 1.422 14.800 19.200
T55 4 19.900 2.666 16.000 22.000
T145 3 25.267 1.677 24.200 27.200
T200 16 15.588 5.112 7.800 23.200
Small bidders∗∗∗ 148 21.545 3.482 12.400 30.600

Feb. 21st, 1996
T30 22 21.964 2.079 16.400 25.600
T70 8 16.200 3.997 11.200 21.000
T120 4 24.975 1.034 24.000 26.400
T200 22 19.700 3.275 10.600 24.400
T270 12 18.783 1.237 15.600 20.400
Small bidders 128 21.619 3.328 12.700 30.000

Mar. 20th, 1996
T30 23 18.096 2.882 12.200 23.600
T163 3 21.867 0.611 21.200 22.400
T183 5 20280 0.687 19.600 21.200
T200 12 20.933 2.281 17.800 27.000
T201 12 17.817 1.550 15.000 20.000
T210 3 12.400 0.529 11.800 12.800
T400 27 10.370 1.425 8.200 13.300
T408 3 16.200 0.917 15.200 17.000
Small bidders 150 21.308 3.879 11.600 33.200

Apr. 24th, 1996
T30 55 17.040 2.923 10.200 23.800
T70 3 14.400 2.358 9.500 28.200
T118 3 18.000 2.000 16.000 20.000
T157 4 18.350 3.638 15.800 23.600
T158 3 16.933 1.007 16.000 18.000
T159 3 18.067 0.306 17.800 18.400
T200 35 19.146 2.374 15.000 24.000
T270 7 14.314 0.855 13.000 15.200
T290 3 14.266 0.462 14.000 14.800
Small bidders 160 19.841 3.655 9.500 28.200

∗ Bidders T30 and T200 are the same bidders, respectively, through all auction days.
∗∗ Prices in ATS.
∗∗∗ Small bidders bought one or two objects.
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Table 3.4: Estimation results for symmetric models

Static models Sequential model
Private values Affiliated values Private values
(1) (2) (3) (4) (5) (6)

Variable Coefficient Std. error Coefficient Std. error Coefficient Std. error
Constant 8.3188∗∗ 0.0634 8.3399∗∗ 0.2822 8.5244∗∗ 0.0662
Date1 0.1150∗∗ 0.0104 0.1095∗∗ 0.0445 0.1186∗∗ 0.0045
Date2 0.1279∗∗ 0.0102 0.1245∗∗ 0.0440 0.1348∗∗ 0.0045
Date3 0.0953∗∗ 0.0100 0.0941∗∗ 0.0450 0.0983∗∗ 0.0043
Breed 0.0476∗∗ 0.0476 0.0466 0.0525 0.0556∗∗ 0.0052
Cate2 0.2583∗∗ 0.0342 0.2617∗∗ 0.1508 0.2727∗∗ 0.0153
Cate3 -0.0852∗∗ 0.0410 0.0952 0.1816 -0.0703∗∗ 0.0181
Qual11 0.5192∗∗ 0.0342 0.5377∗∗ 0.1523 0.5196∗∗ 0.0146
Qual12 0.4725∗∗ 0.0313 0.4690∗∗ 0.1407 0.4803∗∗ 0.0133
Qual13 0.3736∗∗ 0.0257 0.3858∗∗ 0.1169 0.3728∗∗ 0.0109
Qual14 0.1269∗∗ 0.0247 0.1395 0.1137 0.1241∗∗ 0.0104
Qual21 0.1437∗∗ 0.0139 0.1474∗∗ 0.0607 0.1422∗∗ 0.0060
Qual22 0.0629∗∗ 0.0136 0.0628 0.0593 0.0655∗∗ 0.0058
Weight 0.7866∗∗ 0.0684 0.7895∗∗ 0.2984 0.8245∗∗ 0.0296
LnBid(-1) - - -0.0138∗∗ 0.0063
Variance 0.2476∗∗ 0.0059 0.1080∗∗ -
Obs. 900 900 899
Max.Lik.: 720.2420 - -598.2971
Value of obj.fct.: - 95.2203 -
∗∗ (∗) denotes significance at the 95% (90%) level of confidence.
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Table 3.5: Estimation results for asymmetric static models with private values

Small bidders Large traders∗∗∗ T30 T200
(1) (2) (3) (4) (5) (6) (7) (8)

Variable Coefficient Std. error Coefficient Std. error Coefficient Std. error Coefficient Std. error
Constant 8.3349∗∗ 0.0970 8.1608∗∗ 0.1249 8.2968∗∗ 0.1575 8.0189∗∗ 0.1715
Date1 0.1155∗∗ 0.0127 0.1163∗∗ 0.0294 0.0635∗∗ 0.0322 0.0570∗∗ 0.0268
Date2 0.1131∗∗ 0.0132 0.1138∗∗ 0.0282 0.1793∗∗ 0.0213 0.0956∗∗ 0.0222
Date3 0.0802∗∗ 0.0127 0.1063∗∗ 0.0241 0.0921∗∗ 0.0202 0.1247∗∗ 0.0284
Breed 0.0485∗∗ 0.0154 0.1228∗∗ 0.0403 0.1025∗∗ 0.0445 0.0088 0.1094
Cate2 0.3038∗∗ 0.0464 0.2131∗∗ 0.0528 0.1695∗∗ 0.0811 0.3781∗∗ 0.0843
Cate3 -0.0682 0.1208 -0.0880 0.0658 -0.1856∗∗ 0.0882 0.0367 0.0192
Qual11 0.6297∗∗ 0.0601 - - - - - -
Qual12 0.5871∗∗ 0.0590 0.4608∗∗ 0.0866 - - 0.4201∗∗ 0.0862
Qual13 0.4897∗∗ 0.0557 0.2665∗∗ 0.0407 0.2303∗∗ 0.0282 0.2926∗∗ 0.0782
Qual14 0.1635∗∗ 0.0566 0.1117∗∗ 0.0347 0.1053∗∗ 0.0468 0.2002∗∗ 0.0740
Qual21 0.1538∗∗ 0.0167 0.0770∗∗ 0.0355 0.1121∗∗ 0.0344 0.0818∗∗ 0.0395
Qual22 0.0682∗∗ 0.0164 0.0444 0.0314 0.0487 0.0318 0.0352∗∗ 0.0342
Weight 0.5301∗∗ 0.0909 1.2556∗∗ 0.1529 1.0796∗∗ 0.1818 1.3755∗∗ 0.2010
Variance 0.2520∗∗ 0.0074 0.1739∗∗ 0.0117 0.1827∗∗ 0.0124 0.1569∗∗ 0.0122
Obs. 589 115 111 85
Max.Lik.: 460.6296 131.3888 121.8803 106.1405
∗∗ (∗) denotes significance at the 95% (90%) level of confidence.
∗∗∗ Large traders are without T30 and T200.
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Table 3.6: Estimation results for asymmetric sequential models with private values

Small bidders Large traders∗∗∗ T30 T200
(1) (2) (3) (4) (5) (6) (7) (8)

Variable Coefficient Std. error Coefficient Std. error Coefficient Std. error Coefficient Std. error
Constant 8.1628 ∗∗ 0.1157 9.6332∗∗ 0.1976 8.1303∗∗ 0.1402 8.6943∗∗ 0.1634
Date1 0.1158 ∗∗ 0.0055 0.1918∗∗ 0.0143 0.0598∗∗ 0.0148 0.0664∗∗ 0.0131
Date2 0.1130 ∗∗ 0.0058 0.2087∗∗ 0.0141 0.1847∗∗ 0.0098 0.1102∗∗ 0.0110
Date3 0.0799 ∗∗ 0.0056 0.1647∗∗ 0.0117 0.0939∗∗ 0.0090 0.1329∗∗ 0.0136
Breed 0.0577 ∗∗ 0.0069 0.1223∗∗ 0.0232 0.1031∗∗ 0.0200 0.0122∗ 0.0079
Cate2 0.3033 ∗∗ 0.0201 0.1630∗∗ 0.0266 0.1406∗∗ 0.0360 0.3966∗∗ 0.0494
Cate3 0.1097 ∗∗ 0.0509 -0.2160∗∗ 0.0329 -0.2081∗∗ 0.0392 0.0431 0.0675
Qual11 0.6273 ∗∗ 0.0257 - - - - - -
Qual12 0.5879 ∗∗ 0.0252 0.4542∗∗ 0.0434 - - 0.3969∗∗ 0.0397
Qual13 0.4834 ∗∗ 0.0238 0.2818∗∗ 0.0215 0.2147∗∗ 0.0240 0.2568∗∗ 0.0358
Qual14 0.1468 ∗∗ 0.0243 0.1147∗∗ 0.0182 0.0901∗∗ 0.0212 0.1656∗∗ 0.0338
Qual21 0.1592 ∗∗ 0.0073 0.0607∗∗ 0.0182 0.1194∗∗ 0.0157 0.0848∗∗ 0.0191
Qual22 0.0752 ∗∗ 0.0072 0.0548∗∗ 0.0159 0.0459∗∗ 0.0144 0.0383∗∗ 0.0160
Weight 0.5327 ∗∗ 0.0401 1.0602∗∗ 0.0772 0.9782∗∗ 0.0816 1.4090∗∗ 0.1058
LnBid(-1) 0.0286 ∗∗ 0.0114 -0.1306∗∗ 0.0201 0.0361∗∗ 0.0127 -0.0635∗∗ 0.0126
Variance 0.1110 - 0.0900∗∗ - 0.0840 - 0.0750 -
Obs. 588 114 110 84
Max.Lik.: -375.3857 -15.0966 0.7723 31.3666
∗∗ (∗) denotes significance at the 95% (90%) level of confidence.
∗∗∗ Large traders are without T30 and T200.
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Figure 3.1: Kernel density estimation of winning bids of one large trader

Figure 3.2: Kernel density estimation of winning bids of small bidders
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Figure 3.3: Winning bids of all auction days
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Chapter 4

Testing dynamic oligopolistic
interaction: Evidence from the
semiconductor industry

4.1 Introduction

Learning-by-doing and spillovers are prevalent in the semiconductor industry and in par-
ticular in the Dynamic Random Access Memory (DRAM) market.1 Firms in this market
deal with a production process that yields cost reductions the more output has been fab-
ricated in the past. This adds an intertemporal component to firms’ output decisions.
But do firms take their rivals’ future reactions into account when they choose their output
strategies today? Jarmin (1994) already asked this question for the early rayon industry
and found empirical evidence of dynamic strategic behavior.

The objective of this paper is to test whether firms in an dynamic oligopolistic industry
like the DRAM industry pre-commit themselves to a production plan or whether they
consider the strategic effect of learning-by-doing and spillovers on their rivals’ future out-
put decision. I empirically investigate whether firms act strategically in a dynamic sense,
when they formulate their output strategies. And if they do, what is the sign of this
strategic effect. Do firms consider the future output of other firms as strategic substitutes
or as strategic complements. The second objective of the paper is to analyze how the es-
timated parameters in a structural model of dynamic quantity competition change when
the dynamic strategic effect is not accounted for. My main point of interest lies then on
the price-cost margins. The industry, I concentrate on, is the semiconductor industry and
there the DRAM market. DRAMs are memory components (chips) and are classified into
generations. As we find learning-by-doing and spillovers in this market it seems to be ap-
propriate to investigate above described issues. Another aspect of this particular industry
is, that semiconductors are an important input to several high-technology industries and
that DRAMs are usually thought of as technology drivers.

1See, for example, Irwin and Klenow (1994), Gruber (1996a), Brist and Wilson (1997) and
Siebert (1999).
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In learning-by-doing models firms learn either from their own experience, from the expe-
rience of other firms, or both. Learning-by-doing introduces an intertemporal component
to firms decisions. Under the assumption that an appropriate measure of experience is
past cumulative output, current production adds to the firm’s stock of experience. In-
creases in the firm’s stock of experience reduce its unit costs in future periods. Theoretical
research demonstrate that learning can have sizable impact on cost and strategic decisions
and market performance (e.g. Spence (1983), Fudenberg and Tirole (1983)). If the firm’s
experience is completely proprietary, its optimal strategy is to overproduce in early peri-
ods as an investment in future cost reduction. Incumbent firms can exploit the learning
curve and thereby have an absolute cost advantage over potential entrants. Thus entry
barriers can be erected. However, if there are spillovers among firms the incentives for
overproducing diminish (Fudenberg and Tirole (1983)).

There exist a lot of empirical studies about the DRAM market. Most investigate,
whether learning-by-doing and spillovers are prevalent in that industry and when yes,
how large these effects are. The different setups vary to a certain degree. Baldwin and
Krugman (1988) did a simulation study for the 16K generation. This was the pioneer-
ing attempt to incorporate learning economies into a stylized empirical model of the
semiconductor industry. Flamm (1993) also completed a simulation study, but on the
1MB generation. Further he used a different theoretical model where firms first compete
in capacity and then in output. However, his simulations were extremely sensitive to
the specification of some parameters. These two papers deal with calibrating theoretical
models. Another part of the semiconductor literature considers econometric models. Gru-
ber (1992), (1996a) estimated a reduced form relationship assuming constant cost-price
margins and found economies of scale rather than learning-by-doing effects for various
generations of DRAMs. Irwin and Klenow (1994) implemented a recursive dynamic spec-
ification. They assumed constant returns to scale, Cournot behavior and fixed elasticities
of demand. Their results imply learning-by-doing within and learning spillovers across
firms, but no spillovers across generations. Brist and Wilson (1997) estimated both a
demand and a pricing relation for a dynamic game with open-loop strategies. Neglect-
ing learning spillovers among firms they showed learning-by-doing to be smaller in the
presence of economies of scale and estimated markups. Siebert (1999) used a dynamic
model and investigated the influence of a multi-product specification on the estimated
parameters. He found that multiproduct firms behave as if in perfect competition.

Most of the literature about the semiconductor industry has considered learning-by-
doing extensively, but has not considered the dynamic strategic implications. Jarmin
(1994) investigated these dynamic effects for the early rayon industry. His results show
that firms take their rivals’ reactions into account when choosing their strategies. Karp
and Perloff (1989) estimated a dynamic oligopoly model and the degree of competition
for the rice export market. Their model nests various market structures with firms that
either pre-commit themselves to a production plan or that consider the strategic effect of
their own output on their rivals’ future output decision. However, in this market learning-
by-doing or spillover do not matter. Therefore their model does not take these effects into
account. Slade (1995) developed a dynamic model for a market in which firms compete
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in prices and advertising intensity. In contrast to these papers Steen and Salvanes (1999)
proposed a dynamic oligopoly model in an error correcting framework. Using data of the
French market for fresh salmon they separated the long-run effects from the short-run
effects. Their results suggest a competitive market in the long run, but indicate that the
largest producer has some market power in the short run.

In this paper I apply the same dynamic oligopoly model to the DRAM industry that
Jarmin applied to the early rayon industry. The empirical framework for examining the
dynamic effects of learning-by-doing and spillovers, and market power is an intra industry
study described in Bresnahan (1989). The contribution of this paper is to investigate
whether firms take the strategic effect of learning-by-doing and spillovers on their rivals’
future output decision into account, and thus to test a closed-loop specification for the
DRAM industry. Further I compare the estimated parameters with the estimated param-
eters of the pre-commitment specification and investigate the influence of the assumption
of one equilibrium concept on learning-by-doing, learning spillovers, economies of scale
and price-cost margins. In a conceptual analogous way Röller and Sickles (1900) showed
for the airline industry that market conduct in a two-stage set-up of a game in capacity
and prices is significantly less collusive than in a one-stage set-up.

The implication of learning by doing in production technology for market power and
performance can be modelled within a dynamic oligopoly game. Thus the consequences
of firms’ using experience as a strategic variable can be considered. Departing from
a dynamic oligopoly game the first order conditions for the pre-commitment and the
closed-loop equilibrium are derived to implement an econometric model. The closed-loop
specification then enables me to evaluate the effect of a firm’s strategy on the objec-
tive function of other firms in future periods. I assume a single product market. A
structural econometric approach is used for evaluating market power, learning-by-doing,
learning spillovers, economies of scale and strategic behavior. The methodology involves
a specification of demand and marginal cost functions and hypotheses about the strate-
gic interactions of the participants. Different behavioral assumptions about firms in the
DRAM market are tested.

Section 4.2 contains a description of the DRAM market. In Section 4.3 I set up the
theoretical model allowing firms in an dynamic oligopolistic industry either to pre-commit
themselves to a production plan or to consider the effect of learning-by-doing and spillovers
on their rivals’ output decision. The implemented econometric model is given in Sec-
tion 4.3.2. In Section 4.4 the data and the estimation procedure are discussed. Esti-
mation results for three different DRAM generations are also provided in this section.
Conclusions are given in Section 4.5.

4.2 The DRAM industry

In this section I give a short description of the DRAM industry. More detailed descrip-
tions can be found in Gruber ((1996c), (1996b)), Irwin and Klenow (1994) and Flamm
(1993). DRAMs are memory components (chips) designed for storage and retrieval of
information in a binary form. One characteristic of DRAMs is that they lose memory
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once they are switched off and they are therefore used when memory storage need not
be permanent. They are classified into ’generations’ according to their storage capacity
in terms of binary information units. DRAMs are part of semiconductors, which are a
key input for electronic goods. The main segments are computers, consumer electronics,
communications equipment, industrial applications and cars (Gruber (1996b)).

Memory chips, like DRAMs, are produced in batches on silicon wafers. The production
of semiconductors requires a complex sequence of photolithographic transfer of circuit
patterns from photo masks onto the wafer and of etching processes. The manufacturing
process has to be very precise in terms of many physical determinants (for example,
temperature, dust, vibration levels). The wafer, once processed, is cut and the single
chips are then assembled. The wafer processing stage is the most critical and also the
most costly. The main cost determinant of a chip is the silicon material. Learning-by-
doing takes place over the entire product cycle. In the beginning of the chip production a
large proportion of the output is usually defective and has to be discarded. The yield rate,
which is measured by the ratio of usable chips to the total number of chips on the wafer,
is very low at that time. Later, the yield rate increases as firms learn. The necessary
amount of silicon and firms’ costs decreases at the same time. Therefore the use of the
traditional measure of learning, namely cumulative output, fits this pattern very well.
Part of the semiconductor production knowledge can be viewed as plant specific, because
of the difficulty of transferring the created knowledge even within one firm. However, there
are several research and development, and production joint ventures among firms. This
shows the importance of spillovers in this industry. Furthermore, as capital expenditures
for a state of the art production facility are very high, a firm’s concern is to take advantage
of the benefits of economies of scale.

Life cycles of different semiconductor industries and generations are comparable and
short-lived, fitting the standard product cycles. The time between introduction of a new
chip and the peak in output is relatively short compared to other products. Different
generations overlap form one generation to the other. Further, the price decline at the
beginning of a new generation is very extreme. Within the first year the price, for example,
the 256K (1MB) generation fell about 60% (70%).

In the 1980s there was an extensive policy debate going on in the US about the pricing
behavior of Japanese semiconductor firms. The general allegation was price dumping.
Late in 1985, the US government started investigations. Japanese producers of 64K and
256K DRAMs were asked to file a quarterly estimate of their full cost data. Japanese 64K
DRAM producers were found guilty of charging prices below their current fair market value
or cost of production. The dumping case against Japanese 256K DRAM producers was
suspended (see, for example, Nye (1996)). If learning-by-doing is present in an industry
as in the DRAM industry, firms may have an incentive to sell products even below their
static marginal costs during the early periods of the product cycle. Dick (1991) rejected
the dumping hypothesis for the DRAM industry on the basis of this incentive.

However, do firms take this incentive actually into account? This paper tries to find
an answer to this question and further, empirically investigates price-cost margins in the
presence of learning-by-doing and spillovers, which introduce an intertemporal component



CHAPTER 4. TESTING DYNAMIC OLIGOPOLISTIC INTERACTION 50

to firms’ decisions. Firms use their current output to build up experience and thereby
affect the behavior of their rivals in the future. In contrast, if firms precommit themselves
to an output path, the intertemporal component does not play a role and firms should
not sell below their static marginal cost. In the case firms take the intertemporal strategic
effect of learning-by-doing and spillovers into account, we are interested to quantify the
magnitude of this effect and the change in price-cost margins. Also the consequences on
market power and competition policy should be considered.

4.3 The model

In this section I present the model, the implications of the theoretical model for the
estimations, and the econometric implementation.

In studying repeated games strategies are considered in which past play influences cur-
rent and future strategies. Usually economists focus their attention on equilibria in a
smaller class of Markov state-space or feedback strategies. In this case the past influences
the current play only through its effect on a state variable that summarizes the direct
effect of the past on the current environment (Fudenberg and Tirole (1983)). There are
further information concepts. Firms either pre-commit themselves to their productions
plan or they consider the effect of learning-by-doing and spillovers on their rivals’ output
decision. Or differently spoken firms use either open-loop or closed-loop (no memory)
strategies. The terms open-loop and closed-loop (no memory) are used to distinguish
between different information structures in multi-stage games.

Open-loop strategies are functions of calendar time only. In an open-loop equilibrium
players simultaneously commit to entire paths of history. Thus the open-loop equilibria
are really static, in that there is only one decision point for each player. The open-
loop (pre-commitment) equilibria are just like Cournot-Nash equilibria, but with a larger
strategy space (Fudenberg and Tirole (1986)). Open-loop strategies are not perfect, as
they ignore deviations by subsets of positive measure (Fudenberg and Tirole (1983)).

In a closed-loop information structure players can condition their play at time t on
the history of the game until that date. The term closed-loop equilibrium usually means
perfect equilibrium of the game, where players can observe and respond to their opponents’
actions at the end of each period. Another information structure are above mentioned
Markov state-space or feedback strategies. These strategies are closed-loop strategies,
but do not depend on the initial value of the state-space variable as closed-loop strategies
do (see e.g. Feichtinger and Hartl (1986)). In a memoryless perfect state information
structure the past influences the current play only through its effect on a state variable
like in the feedback information pattern and also on the initial value of the state, which
is known a priori.

In the theoretical model firms are assumed to maximize their profits over the product
cycle. The model considers the case of learning-by-doing within each firm and allows firms
not only to learn from their own experience, but also from learning spillovers from other
firms. Therefore the law of motion for the state variable describes the industry experience
vector (i.e. cumulative output vector). The model is solved for equilibria in open-loop
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(pre-commitment) and closed-loop2 strategies, respectively. It is a T -period extension of
Fudenberg and Tirole (1983)’s two period game and it is the same model Jarmin (1994)
applied to the early rayon industry.3 Fudenberg and Tirole showed that firms consider
the effect of their learning-by-doing on the actions of their rivals. These strategic incen-
tives can induce firms to choose decreasing output paths. Further little learning spillovers
across firms increase output if firms use open-loop strategies, but decrease output if firms
play strategically. Fudenberg and Tirole derived analytical output paths under the as-
sumption of a linear demand. The theoretical model is solved in open-loop and closed-loop
strategies.

Like Jarmin (1994) I do not derive analytical output paths but rather first order con-
ditions, which are empirically implemented later on. A particular drawback of the use
of quantity competition to study learning-by-doing arises according to Fudenberg and
Tirole (1986) by neglecting of another strategic aspect. Firms cannot only reduce their
future costs by producing more, but can also increase their opponents’ future cost by
reducing their current market share and preventing them from learning. In a model with
price competition this strategic aspect would be reflected. However, with quantity com-
petition the opponents’ current output is fixed. The reason why firms might set quantities
rather than prices lies in the fact that in the DRAM industry reducing one’s own cost
through learning-by-doing is the crucial element. Firms set up state of the art factories
at high fixed cost, start production and try to be as fast as possible to reduce their own
costs and to use their full capacity.

4.3.1 A model with learning-by-doing and spillovers

Competition in an industry characterized by learning-by-doing and learning spillovers
can be modelled as a dynamic game, as learning-by-doing introduces an intertemporal
component to a firm’s decisions. This model incorporates not only propriety learning but
also learning spillovers across firms. It is the same model that Jarmin (1994) applied to
the early rayon industry. Firms are modelled to maximize their profit over the product
cycle. Assume there are i = 1, . . . , n firms and t = 1, . . . , T discrete time periods. At the
beginning of each period, firms choose quantities of a homogeneous output, qit. Firm i’s
cost in period t, Cit := C(qit, Xt, Wit), are a function of current output, input prices, firm
i’s experience and the experience of all firms other than i. Xt is the vector of cumulative
output of each firm i, representing the experience gain due to learning-by-doing within the
own firm and among other firms in the industry. Experience is assumed to be measured
by past cumulative output. Thus, firm i’s stock of experience is xit :=

∑t−1
s=1 qis. Output

choices play an additional role as investment into experience. The more output is produced
today, the lower unit costs will be tomorrow. Each firm i choose qit in order to maximize

2I use the term closed-loop strategies in the sense of closed-loop no memory strategies (Basar and
Olsder (1991)).

3However, the empirical implementation is different in the sense that I allow for an estimated conduct
parameter, whereas Jarmin does not.
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intertemporal profits defined as

Maxqit
Πi =

T∑
t=1

δt−1 {Pt qit − C(qit, Xt, Wit)}
s.t. Xt = Xt−1 + Qt−1 and X0 = 0 (4.1)

where δ is the discount rate, qt :=
∑n

i=1 qit is industry output, Qt is the vector of firm
specific output, and Pt := P (qt) is the inverse market demand function for a given gener-
ation.

The necessary conditions for a open-loop Nash equilibrium4 of (4.1) are

Pt +
∂Pt

∂qt

∂qt

∂qit
qit =

∂Cit

∂qit
+

T∑
s=t+1

δs−t
n∑

j=1

∂Cis

∂xjs

∂xjs

∂qit
(4.2)

for all i = 1, . . . , n and t = 1, . . . , T . The left-hand side term of equation (4.2) is the
standard Cournot marginal revenue. The first term of the right-hand side is the contem-
poraneous effect of output on marginal cost, the standard marginal cost without learning-
by-doing and learning spillovers. The second term is the discounted future cost saving
of learning-by-doing and learning spillovers gained through the contemporaneous output
decision. In case of learning-by-doing and/or learning spillovers effects, this term should
be negative. Both terms together denote dynamic marginal cost. Firms set marginal rev-
enue equal to dynamic marginal costs, which lie below static marginal cost and increase
output in order to benefit from learning-by-doing and learning spillovers reduce future
costs.

The necessary conditions for a closed-loop (no memory) Nash equilibrium5 of (4.1) are

Pt +
∂Pt

∂qt

∂qt

∂qit

qit =
∂Cit

∂qit

+
T∑

s=t+1

δs−t
n∑

j=1

∂Cis

∂xjs

∂xjs

∂qit

−
T∑

s=t+1

δs−t∂Ps

∂qs
qis

n∑
j=1

∂qs

∂qjs

∂qjs

∂xis

∂xis

∂qit
(4.3)

for all i = 1, . . . , n and t = 1, . . . , T .6 The first terms of (4.3) are the standard first
order condition from the static Cournot problem without learning-by-doing and without
learning spillovers. With closed-loop strategies learning-by-doing and learning spillovers
create an explicit intertemporal link between strategies firms employ today and the com-
petitive environment in which firms find themselves tomorrow (Jarmin (1994)). Firms
anticipate correctly that future profits will be simultaneously determined by the current

4The existence of a Nash equilibrium in an infinite game with an open-loop information structure is
guaranteed, when the objective function is continuously differentiable and the state equation is convex
and continuously differentiable. For further details see Basar and Olsder (1991).

5The existence of a Nash equilibrium in an infinite game with a no memory closed-loop information
structure is guaranteed, when the objective function is continuously differentiable and the state equation
is convex and continuously differentiable. For further details see Basar and Olsder (1991).

6The necessary conditions for an open-loop Nash equilibrium of (4.1) are the same as those for a
closed-loop Nash equilibrium only without the last term in (4.3).
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and future output decisions of all firms. The last term in the first line of (4.3) is the
discounted future cost saving of learning-by-doing and learning spillovers gained through
firm’s contemporaneous output decision. This effect is the direct effect of the firm’s out-
put choices on its payoffs. In case of learning-by-doing and learning spillovers, this term
should be negative. Both terms together denote dynamic marginal cost. The terms in the
second line show the intertemporal strategic effect due to learning-by-doing and learning
spillovers. A change in firm i’s strategy at time t affects firm j �= i’s objective function in
period s = t + 1, . . . , T through xis. When there is learning-by-doing, but no spillovers,
incumbent firms may, by overinvesting in experience, erect entry barriers (Spence (1983),
Fudenberg and Tirole (1983)). The ability of incumbents to deter entry by accumulating
experience can be reduced by spillovers. In case of learning-by-doing and no or small
spillovers qit and qjs will be strategic substitutes. If spillovers are large enough qit and qjs

will be strategic complements.

4.3.2 The econometric implementation

The empirical model of the DRAM industry consists of a demand equation and two pricing
relations for each firm based on equations (4.2) and (4.3). This gives two systems of
equations, one for open-loop strategies and one for closed-loop strategies. For estimation,
structure has to be placed on the demand and on the cost functions, as demand and cost
parameters enter the pricing relations.

Inverse demand equation

The elasticity of demand plays an important role in the pricing relations. The inverse
demand function is specified as

ln(Pt) = β0 + β1 ln(qt) + β2 ln(qS1
t ) + β3 ln(qS2

t ) + β4 ln(Yt)

+ β5 time + λ AR(1) + µt, (4.4)

where βi, i = 1, . . . , 5, and λ are the parameters to be estimated. Pt is the average
selling price of a chip at time t, qt is the output of the chip at time t, qS1

t and qS2
t are

the respective quantities of substitute semiconductors, Yt is a vector of other nonprice
demand shifters and t is a time trend. The parameters to be estimated reflect the own
inverse elasticity of demand, cross elasticities of demand, the effect of demand shifters
on a DRAM generation, a trend that captures the effect of the time that a particular
generation has been on the market and the effect of the lagged price of the relevant
DRAM. As substitute semiconductors I take the proceeding and the following generation
of DRAMs. Because I estimate an inverse demand function with an autoregressive term
βS

1 = β1 denotes the inverse short-run elasticity of demand. The short-run elasticity of
demand is denoted by εS = 1

βS
1
. Whereas εL

1 = εS

1−λ
is the long-run elasticity of demand.
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Pricing relations

The empirical models of pricing are the generalized first order conditions (4.3) and its
counterpart in open-loop strategies (4.2) which allow market structure to be estimated
rather than imposed. The econometric implementation of the open-loop equilibrium is
in line with Brist and Wilson (1997). However, they do not consider learning spillovers
and do not use input prices. I additionally set up the first-order conditions in closed-loop
strategies. The closed-loop pricing relation is formed in an analogous way and nests the
open-loop pricing relation. I compare the two estimated parameter sets and test the two
specifications.

Intertemporal strategic parameter The model in closed-loop strategies would be
overparameterized if all terms that measure dynamic strategic effects were to be estimated.
Thus I define the intertemporal strategic parameter one period ahead only. I define the
term

θij :=
∂qjt+1

∂xit+1

∂xit+1

∂qit

(4.5)

as the intertemporal strategic parameter.7 It varies over firms and measures how a change
in firm i’s output at time t changes firm j’s output at time t + 1. If firm i’s experience
is proprietary and it behaves rationally, the expected sign of the strategic parameter is
negative. qit and qjt+1 are then strategic substitutes. If firm i’s experience benefits no
one, the estimate of this parameter should be zero. The expected sign of the strategic pa-
rameter when i’s rival benefits from its experience is ambiguous. If learning spillovers are
strong enough, the strategic parameter could be positive. And if this strategic parameter
is positive, then qit and qjt+1 are strategic complements.

The first order conditions can give the following advice for empirical testing. The
difference between open-loop and closed-loop first order conditions can be pinned down
by the intertemporal strategic parameter θij . If this term is not equal to zero, we can
conclude that firms use closed-loop strategies. On other hand if this term equals zero,
nothing can be said. The situations where firms use either open-loop strategies or closed-
loop strategies without a strategic impact cannot be distinguished. If there is strategic
interaction, two possibilities emerge: i) θij < 0, i.e. qit and qjt+1 are strategic substitutes.
There is either only learning-by-doing or learning-by-doing and not large enough learning
spillovers. That means the learning-by-doing effect still exceeds the learning spillovers. ii)
θij > 0, i.e. qit and qjt+1 are strategic complements. Here we have learning-by-doing and
large learning spillovers. The learning spillovers are larger than learning-by-doing effects.
The sign and the significance of θij can be tested. I again assume symmetry in the sense
that firm i reacts in the same way to different firms j, ∀j �= i and that all firms i are
symmetric in their reaction to the other firms. Thus θ captures the average effect of firm
i’s strategy on the objective function of all other firms in the next period.

7See also Jarmin (1994) for a discussion on that parameter.



CHAPTER 4. TESTING DYNAMIC OLIGOPOLISTIC INTERACTION 55

Further dynamic effects Like Roberts and Samuelson (1988) and Jarmin (1994), I
capture all dynamic effects that occur two or more periods into the future via a firm
specific constant and define them in the following way

αi :=
T∑

s=t+2

δs−t∂Ps

∂qs

qis

n∑
j=1

∂qs

∂qjs

∂qjs

∂xis

∂xis

∂qit

. (4.6)

The terms αi are relevant only for the closed-loop specification, as there are no future
dynamic effects in the open-loop specification.

Specification of the marginal cost function The pricing relations require expres-
sions for marginal cost and for future cumulative marginal cost. These expressions in-
clude parameters that measure learning-by-doing and learning spillovers. The marginal
cost function I approximate with a log-linear function assuming that the cost function
Cit = f(qit, xit, x−it, Wit) itself is also of log-linear form. Marginal cost MCit = ∂Cit

∂qit
then

look like

MCit = γ1i + γ2 ln(qit) + γ3 ln(xit) + γ4 ln(x−it) + γ5 ln(MATit)+

γ6 ln(ENEit) + γ7 ln(LABit) + γ8 ln(CAPit) + γ9 ln(INPit) (4.7)

for i = 1, . . . , n and t = 1, . . . , T . The marginal cost functions varies for firm i through
a firm-specific intercept. Like Brist and Wilson (1997) I allow for nonconstant returns to
scale in the marginal cost function. Learning-by-doing is measured by cumulative past
output xit :=

∑t−1
s=1 qis. Learning spillovers are assumed to be symmetric and are defined

by the sum of all past cumulative output of other firms x−it :=
∑

j �=i

∑t−1
s=0 qjs. The last five

variables are input prices: MAT denotes the price of silicon, ENE the price of energy,
LAB the price of wages, CAP the price of capital, and INP the price for other inputs.
The terms of future marginal cost are captured via a firm-specific variable

γ0i :=
T∑

s=t+1

δs−t
n∑

j=1

∂Cit+1

∂xjt+1

∂xjt+1

∂qit
(4.8)

for i = 1, . . . , n and t = 1, . . . , T .

Firm-specific fixed effects For the open-loop equilibrium relation the firm-specific
constants are now given by

γi = γ0i + γ1i. (4.9)

These are firm-specific future marginal cost (4.8) and the firm-specific intercepts from the
marginal cost function (4.7). For the closed-loop equilibrium relation the firm-specific
constants are defined as follows

γi = γ0i + γ1i + αi. (4.10)

In this case the firm-specific constants additionally include the future dynamic effects
(4.6). Thus firm specific fixed effects are different in the two equilibrium settings, respec-
tively.
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Equilibrium relation Incorporating all definitions made before leads to the following
econometric models of the pricing relations. Using (4.13), (4.7) and (4.8) we get for the
open-loop equilibrium

Pt = γi + γ2 ln(qit) + γ3 ln(xit) + γ4 ln(x−it) + γ5 ln(MATit) + γ6 ln(ENEit)

+ γ7 ln(LABit) + γ8 ln(CAPit) + γ9 ln(INPit) − β1 Ptsit + µit (4.11)

Using (4.13) - (4.8) we get for the closed-loop equilibrium

Pt = γi + γ2 ln(qit) + γ3 ln(xit) + γ4 ln(x−it) + γ5 ln(MATit) + γ6 ln(ENEit)

+ γ7 ln(LABit) + γ8 ln(CAPit) + γ9 ln(INPit) − β1 Ptsit

− β1 θ Pt+1sit+1 + µit (4.12)

for i, j = 1, . . . , n and t = 1, . . . , T and where sit = qit

qt
. The econometric pricing relation

for open-loop strategies is nested in (4.12) without the term including θ. In these equa-
tions the price for DRAMs is a function of dynamical marginal costs, of the elasticity of
demand and in the closed-loop setting also of future strategic behavior measured by the
intertemporal strategic parameter θ.

I then test the effect of a firm’s strategy on the objective functions of other firms in
future periods by testing the significance of θ. The implications on the estimates of various
parameters can be explored, when the true strategies are closed-loop but one estimates the
open-loop specification. How do the price-cost margins change? Another question I want
to address, how dynamic marginal costs change in a closed-loop equilibrium compared to
an open-loop equilibrium? Further, the implications for the estimation of economies of
scale, learning-by-doing and spillovers are studied. How do estimated economies of scale,
learning-by-doing or spillovers change in the case of strategic substitutes (complements).

These questions can be answered by calculating the potential omitted variable bias and
its sign. One can easily show, that if qit and qit+1 are strategic substitutes (complements)
and the closed-loop specification is the true specification, then in an open-loop specifica-
tion the estimated learning-by-doing would be overestimated (underestimated). Another
possibility of an omitted variable bias concerns economies of scale and spillovers which
would be overestimated (underestimated) in case of strategic substitutes (complements).
This gives empirically testable hypotheses, which are derived from the theoretical model.

Price-cost margins

The degree of market power of firms in an oligopoly market is measured by the extent
to which firms can hold price above marginal cost. In a dynamic context there has also
the intertemporal strategic effects to be considered. Thus the price-cost margins can be
defined as follows:

Pt − MCit − γ0i

Pt
:= −β1sit − θβ1sit+1

Pt+1

Pt
− αi

Pt
. (4.13)

The price-cost margins are calculated with respect to dynamic marginal cost, as γ0i,
representing future cost savings (4.8), is included. Further, the intertemporal strategic
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effects θ and αi emerge on the righthand side of (4.13). In the open-loop setting these
effects are equal to zero. Thus in this case the price-cost margins are equal to the static
ones.8 In the closed-loop setting price-cost margins are the sum of the open-loop price-cost
margins and the intertemporal strategic effects.

In the estimated pricing relations (4.12) the measure of future cost savings γ0i and
αi, measuring intertemporal strategic effects occurring t + 2 onwards, are not identified
separately. Therefore it is not possible to calculate the exact price-cost margins in the
closed-loop case. However, an approximation can be given. For that purpose I find it
more convenient to reformulate (4.13). This gives

Pt − MCit − γ0i + αi + θβ1sit+1Pt+1

Pt
= −β1sit, (4.14)

where the sum of price-cost margins and the intertemporal strategic effects together mea-
sure market power.

If the strategic parameter θ is, for example, negative and qit and qjt+1 are strategic
substitutes, then the price-cost margins are lower in the strategic dynamic setting than
in the pre-commitment setting. Or equally, price-cost margins would be overestimated
in the later setting. However, to state this claim, one has to be more precise: It is not
only necessary that θ is negative, but it is also necessary that, although (empirically) not
identifiably, αi corresponds to strategic substitutability or, if (the negative) θ and αi are
of opposite strategic interaction, that the size effect of αi is not larger than that of θ.9 In
this second case the intertemporal strategic effect between t and t + 1 should be larger
than the intertemporal strategic effects between t and t + 2, . . . , T . If the size effect of αi

is larger, then it is also possible that the price-cost margins in the closed-loop setting are
larger than those in the open-loop setting. As already mentioned, αi is not identifiable.
Thus empirically, no absolute answer can be given. However, to assume that either θ
and αi exhibit the same intertemporal strategic behavior or that, if this behavior changes
over time, the effect between t and t + 1 is the largest in absolute terms and outweighs
all other future effects, that correspond to strategic complementarity, is not implausible.
Otherwise effects occurring later in the future have more weight than those in the more
immediate future.

One has also to consider that the estimated dynamic marginal cost can change due to
the omitted variable bias. The parameters in the marginal cost functions MCit and the

8In the static case the righthand side of (4.13) is often multiplied with a conduct parameter. This
parameter indexes the competitiveness of oligopoly conduct (Bresnahan (1989)). In a competitive market
a change in firm i’s output would not have any consequences on prices. Firms price according to their
marginal costs. Thus the conduct parameter and the price-cost markup would be both equal to zero. In
a Cournot game a change in firm i’s output has impact on prices. Firms price higher than their marginal
costs and the conduct parameter would be one, the price-cost markup equal to 1

β1
. If firms maximize

joint profits, the conduct parameter would be equal to the number of firms in the industry and the
resulting price-cost markup also that times higher. For the open-loop and the closed-loop specifications
the conduct parameter is equal to one. If firms collude or they are price takers, then the pre-commitment
model and the closed-loop model are equal (see, for example, Karp and Perloff (1989)).

9One has to keep in mind, that αi is equal to (4.6), which combines future strategic effects and the
elasticity of demand.
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γ0i’s are different contingent on the equilibrium concept. Although this is most likely, the
above made claims concerning the price-cost margins are independent of a change in the
parameter estimates, as long as the stated necessary conditions are fulfilled.

4.4 Data and estimation results

The data are firms producing DRAMs and are compiled by Dataquest Inc. The data
cover firms’ units shipped from the 4K generation to the 64MB generation and the average
selling price. These generations span a time period from January 1974 to December 1996.
The data are available on a quarterly basis. From the firm-level output data I construct
three variables. Namely, current output, own past cumulative output and other firms’
past cumulative output. Current output serves as measure for economies of scale. The
own cumulative output variable represents learning-by-doing. The cumulative past output
of all other firms proxies learning spillovers. Further I use price data for four important
inputs - price of silicon, energy cost, wages for production and user cost of capital. For the
material cost I use the world market price of silicon compiled by Metal Bulletin. Energy
costs and wages of production are compiled in the following way: according to each firms
production location the energy prices and the industry wages (ISIC 3825) of the concerned
location (country) are used10. User cost of capital is constructed for each firm and year
by exploiting the firms’ annual reports. As a nonprice demand shifter I use a proportion
of GNP directly attributed to electronic and electrical equipment from the OECD (1998).
Table 4.2 gives some summary statistics.

In the empirical analysis of the DRAM industry I analyze whether firms take the in-
tertemporal strategic effect of learning-by-doing and spillovers into account, i.e. I test
whether the estimate of θ in (4.12) is significantly different from zero. And if firms do
consider the effect of their own output decision in t on their rivals output decision in
t + 1, what is the sign of the intertemporal effect? When there is learning-by-doing and
no spillovers, θ will be negative and qit and qjt+1 will be strategic substitutes. With small
spillovers θ will be still negative. If on the other hand spillovers are large enough to
offset the effects of learning-by-doing, θ will be positive and qit and qjt+1 will be strategic
complements. The second part of the analysis takes a closer look at the consequences of a
possible misspecification by ignoring a significant intertemporal strategic effect. In partic-
ular, I concentrate on the estimated economies of scale, learning-by-doing and spillovers
and investigate the differences between the estimates of the closed-loop and the open-loop
specification.

For this purpose two systems of equations are estimated: equations (4.4) and (4.12)
for the closed-loop equilibrium. For the open-loop specification I also use equations (4.4)
and (4.12) with θ set equal to zero. I run the estimations for three different generations
of DRAMs, namely the 64K, the 256K, and the 1MB generation. This selection relies
primarily on the fact that not all generations of DRAMS were in the market for a long
period of time. Thus I do not consider generations, which give relatively fewer data points.

10The source for energy prices is OECD/IEA (1998), that for industry wages OECD (1998)
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The generations 64K and 256K are of particular interest as these generations were under
dumping investigations by the US Commerce Department and the International Trade
Commission (see e.g. Flamm (1993)).

For estimating the demand relations for three different generations I use single equation
techniques, in particular instrumental variable estimations. The estimations are done in
Eviews (1999) with the generalized method of moments (see e.g. Davidson and MacKin-
non (1993)). The instruments in the inverse demand equation consist of the exogenous
variables in the demand equation and summary measures from the supply side, like aver-
age market share, number of firms in the industry, and cumulative world output. For the
64K and the 1MB generation I also include lagged quantities as instruments. I corrected
for first order autocorrelation by specifying the demand equation (4.4) and further the
GMM estimates are robust to heteroskedasticity and autocorrelation of unknown form.
For the pricing relation I use exogenous variables in the specification, the age of the
generation, the nonprice demand shifter, and lagged (input) prices as instruments.

The estimates of the demand equation with their respective standard errors are reported
in Table (4.3) for three different generations of DRAMs.11 For estimation 67, 56 and 45
observations are used. All three estimations have very good fits. The adjusted R-squares
are 0.960 and higher.

The coefficient of the autoregressive process of order one is significant for all three gen-
erations. Each generation’s own demand elasticity is negative and significant, indicating
that higher industry output decreases prices. The estimates across generations with re-
spect to their own inverse demand elasticity range from 0.354 to 0.298 and 0.433 for 64K,
256K and 1MB, respectively. The values correspond to short-run elasticities of demand of
2.824, 3.580 and 2.309 and are in line with the previous literature (Flamm (1993) or Brist
and Wilson (1997)). The estimates of long-run elasticities of demand can be calculated
with the help of the first-order autoregressive terms λ: εL = εS

1−λ
with εS = 1

β1
. Using this

formula we get values of 8.508, 8.791 and 6.469 for the long run elasticities of demand for
the three generations of DRAMs. For all three generations the long run elasticities are
greater than the short run ones.

The cross elasticity to the previous generation is positive but not and significant for
the 64K generation. There seems to be no cross price effect between the 16K and 64K
generation of DRAMs. In the case of the 256K generation the cross elasticity of demand
to the previous generation is positive and significant. For the 1MB generation this effect
is negative, but not significant. The cross elasticity with respect to the following gener-
ations is not significant for neither generation of DRAMs. The nonprice demand shifter
has the correct sign and is significant for the 256K and the 1MB generation. The re-
maining demand determinant, the time trend, should be negative, suggesting that buyers
substitute away from the generation as time elapses. The estimations results show that
for all generations.

11The time series in the demand equation are tested for a Unit root. By using (Augmented) Dickey
Fuller tests I can reject the Null hypothesis of a unit root at a significance level of 5% for prices and outputs
of the 64K, the 256K and the 1MB generation. However the general demand shifter, the logarithm of GDP
attributed to electronic and electrical equipment, has a unit root. I therefore use the once differentiated
time series, which has no unit root.
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For estimating the pricing relations I again use single equation techniques. The es-
timations are done with linear 2SLS. The instruments in the pricing equations consist
of exogenous variables in the demand equation and summary measures from the supply
side, like average market shares, number of firms in the industry, and cumulative world
output. I estimate two specifications: The first assumes nonconstant returns to scale,
learning-by-doing, and spillovers, corresponding the open-loop equilibrium. The other
specification has an additional intertemporal strategic parameter and reflects the closed-
loop equilibrium relation. Afterwards I also calculate price-cost margins and compare the
two specifications.

As the open-loop equation is nested in the closed-loop specification the significance of the
intertemporal strategic parameter θ can be used for model selection. If θ is significant, the
open-loop specification can be rejected.12 Because of the panel data structure I estimate
a fixed-effects model with instrumental variables and estimate the equations with the
statistical software package STATA (2000).

Tables 4.4 and 4.5 contain the parameter estimates for the closed-loop and the open-
loop pricing relations for the estimated generations 64K, 256K and 1MB. For estimation
607, 739 and 641 observations are used. The fit of the three estimations is not as good
as the fit for the demand equations with adjusted R-squares ranging from 0.287 to 0.682.
The coefficient of the intertemporal strategic parameter θ13 is significantly negative for all
estimated generations, suggesting that firms react strategically on the objective function
of other firms in the next period (see Table 4.4). The Null hypothesis of an open-loop
equilibrium can be rejected for the three estimated generations. The adjusted R-squared
model selection criterion favors the closed-loop specification for the 64K and the 1MB
generations. However, in the case of the 256K generation one should decide for the open-
loop specification according to this model selection criterium.

The negative sign of θ suggests qit and qjs to be intertemporal strategic substitutes.
Firms view the future production of their rivals as a strategic substitute. As there are
both significant learning-by-doing and spillovers, this further indicates that the spillovers
are not large enough relative to proprietary learning-by-doing to bring about intertem-
poral strategic complements. The consequence of neglecting the intertemporal strategic
interaction can be an omitted variable bias as the following description of the estimates
show.

Economies of scale14 are measured by the logarithm of current output. The coefficients
of this variable are negative and significant for all DRAM generations under consideration
and in both specifications indicating increasing returns to scale. Economies of scale are
overestimated (in absolute values) in the open-loop specification compared to the closed-
loop specification and the differences between the estimates of the two specifications are

12The Null hypothesis is open-loop, the alternative hypothesis is closed-loop.
13In fact, I estimated rather δθ than θ. However, as the discount factor δ is strictly positive, a significant

negative (positive) sign of the estimate means that θ has to be negative (positive) and significantly
different from zero.

14The estimates for economies of scale, learning-by-doing and spillovers in Table 4.4 and Table 4.5 are
expressed as elasticities evaluated at the sample mean.
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significant for all the 256K and the 1MB generations using a t-test.15

Now consider the parameter that measures learning-by-doing. The parameter is always
negative and significant in both the open-loop and the closed-loop settings. Firms learn
through their own past output. Comparing the estimates of the two specifications shows
an overestimation of learning-by-doing in the case of the open-loop set-up. Learning
rates can be derived by 1 − 2γ3 (see, for example, Berndt (1991)). Using this formula
results in learning rates of 32% (10% and 13%) for the 64K (256K and 1MB) generation
in the closed-loop specification. The respective learning rates in the pre-commitment
specification have values of 25%, 5% and 12%. Thus the estimates of the learning rates
are underestimated in the pre-commitment specification. Further, the differences are
significantly different from zero for the 64K and the 256K generations.16

Spillovers are negative and significant for the 64K, and the 256K in the closed-loop
specification, indicating that firms also learn through spillovers from other firms. In the
case of these two generations this is also true in open-loop specification. The spillover
estimates are overestimated in the pre-commitment specification, but the differences are
only significantly different from zero for the 256K generation.17 Only for the 1MB gener-
ation, spillovers do not matter. In this case the estimate of spillovers are not significantly
different from zero.

The results for the input prices are not clear across different generations and spec-
ifications. However, their influence in the pricing equations seems to be given as their
significance levels show. There are no differences in the signs between the estimates of the
input prices in the two specifications for all generations. However, there are differences
in magnitudes. In the case of the 64K generation the prices of silicon, labor, and capital
have a significant positive effect on marginal cost, whereas the price of energy influence
marginal cost negatively. The price of other inputs has no significant effect. Marginal
cost of the firms producing the 256K generation is positively effected by the price of en-
ergy and wages, but negatively by the price of the material and other inputs. For these
two generations user cost of capital has no effect on marginal cost, as the insignificant
estimates show. The price of the most important input material has a significant positive
effect on marginal cost of the 1MB DRAM. The higher the price of silicon the higher
marginal cost. The same is true for the price of energy, whereas the influence of capital
and other inputs is not significantly different from zero. Unexpectedly, the price of labor
has a significantly negative effect on marginal cost. This indicates a high degree of factor
substitution.

In terms of policy and antitrust, the results concerning the price-cost margins are the
most interesting ones. To be able to judge the difference between closed-loop and open-
loop price-cost margins, an assumption on the future dynamic effects αi has to be made:
Either θ and αi exhibit the same intertemporal strategic behavior or, if this behavior
changes over time, the effect between t and t + 1 is the largest and outweighs all other
future effects, that exhibit strategic complementarity (see also Section 23). Under these

15The t-tests with unknown variances are equal to 0.247 (64K), to 9.000 (256K), and to 8.196 (1MB).
16The t-tests with unknown variances are equal to 2.059 (64K), to 2.248 (256K), and to 1.098 (1MB).
17The t-tests with unknown variances are equal to 0.810 (64K), and to 4.550 (256K).
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conditions, the price-cost margins in the closed-loop setting are always smaller than in
the open-loop setting. Price-cost margins (including the strategic effects) are calculated
according to (4.14) and are equal to 13% for the 64K generation, 7% for the 256K gen-
eration and equal to 6% for the 1MB generation. The estimated mark-ups are highest
for the 64K generation and become gradually lower with more generations out into the
market. Competition among firms strengthens over generations of DRAMs. These values
are respective upper bounds for the true price-cost margins in the presence of a significant
negative intertemporal strategic parameter θ. The true mark-ups over marginal cost are
supposed to lie beneath these values. However, these values cannot be calculated.

Because of the significant intertemporal strategic effect, I consider the estimation re-
sults of the closed-loop specification as the relevant ones. Ignoring that firms consider
the intertemporal strategic effect of their today’s output decision on their rivals’ output
decision tomorrow leads to an incorrect assessment of a market. Actually, market power
is lower in the case of a closed-loop information structure, where firms can react in every
point of time.

4.5 Conclusions

In this chapter, I estimated an dynamic oligopoly model that incorporates the strategic
implications of learning-by-doing and spillovers. I derived a structural model from the
theoretical game for estimation. The first order conditions were set up in closed-loop
strategies and in open-loop strategies. The contribution of this chapter was then to
test the dynamic closed-loop specification and to compare the estimated parameters with
those of the open-loop specification and to investigate the influence of the equilibrium
concept on learning-by-doing, spillovers, economies of scale and price-cost margins. The
two models were estimated using firm-level data from the DRAM semiconductor industry.
The difference between these two specifications could be described by the intertemporal
strategic parameter. As the open-loop equation was nested in the closed-loop specification
the (in)significance of the intertemporal strategic parameter could be used for model
selection.

The estimation results supported learning-by-doing and spillovers. The significant coef-
ficient of the intertemporal strategic parameter indicated that firms reacted strategically
on the objective function of other firms in the next period. The Null hypothesis of an
open-loop equilibrium could be rejected. The negative sign of the intertemporal strategic
parameter suggested that firms viewed the future production of their rivals as an intertem-
poral strategic substitute. It further indicated that the spillovers were not large enough
relative to proprietary learning to bring about strategic complements. The consequences
of this intertemporal strategic interaction could be that some of the parameters were
under- or overestimated due to an omitted variable bias. The estimation results showed
that this bias was evident in the DRAM industry. The inferred structural parameters,
such as economies of scale, learning-by-doing and price-cost margins were significantly
affected by the equilibrium concept. In particular, price-cost margins were significantly
overestimated, if one did not consider firms to act strategically over time. This implied
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that market power was actually lower in a dynamic context then in a more static frame-
work such as the open-loop equilibrium.
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4.6 Appendix: Tables and Figures

Table 4.1: Generations of DRAMs in the market over time

Year 4K 16K 64K 256K 1MB 2MB 4MB 8MB 16MB 64MB
1974 x - - - - - - - - -
1975 x - - - - - - - - -
1976 x x - - - - - - - -
1977 x x - - - - - - - -
1978 x x - - - - - - - -
1979 x x x - - - - - - -
1980 x x x - - - - - - -
1981 x x x - - - - - - -
1982 x x x x - - - - - -
1983 x x x x - - - - - -
1984 x x x x - - - - - -
1985 x x x x - - - - - -
1986 - - x x x - - - - -
1987 - - x x x - - - - -
1988 - - x x x - x - - -
1989 - - x x x - x - - -
1990 - - x x x - x - - -
1991 - - x x x - x - x -
1992 - - x x x x x - x -
1993 - - x x x x x - x -
1994 - - x x x x x - x -
1995 - - x x x x x - x x
1996 - - - x x x x x x x
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Table 4.2: Summary statistics for the 64k, 256K, and 1MB generation

Variable 64K 256K 1MB
Industry price

Mean 13.0212 11.8362 14.5490
Std. dev. 30.7383 27.2328 22.0765
Min. 0.750 1.624 3.132
Max. 135.000 150.000 110.000
Nobs 68 57 46

Industry output
Mean 38717563 88039188 103296567
Std. dev. 60386120 83457093 6357646
Min. 3000 10000 11000
Max. 264395000 242412000 215632700
Nobs 68 57 46

Firm output
Mean 3799125 5734476 6692453
Std. dev. 5855855 7726461 6357646
Min. 1000 3000 1000
Max. 31525000 39000000 31500000
Nobs 693 817 710
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Table 4.3: Estimation results for the inverse demand equation

64K 256K 1MB
Variable Coefficient Std. error Coefficient Std. error Coefficient Std. error
Constant 10.925∗∗ 0.749 8.528∗∗ 1.081 -274.295∗ 162.375
Log(Own Output) -0.354∗∗ 0.029 -0.279∗∗ 0.051 -0.433∗∗ 0.137
Log(Output of previous generation) 0.002 0.002 0.004∗∗ 0.001 -0.206 0.508
Log(Output of following generation) 0.003 0.002 -0.004 0.004 0.002 0.002
Log(Growth of GDP) 0.473 2.943 22.213∗∗ 6.382 17.774∗ 10.141
TIME -0.281∗∗ 0.027 -0.150∗∗ 0.025 -0.562∗∗ 0.218
AR(1) 0.668∗∗ 0.167 0.593∗∗ 0.259 0.643∗∗ 0.120
adj. R2 0.987 0.981 0.960
Obs. 67 56 45
∗∗ (∗) denotes significance at the 95% (90%) level of confidence.
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Table 4.4: Estimation results for the pricing relation of the closed-loop model

64K 256K 1MB
Variable Coefficient Std. err. Coefficient Std. err. Coefficient Std. err.
Log(Output)∗∗∗ -0.325∗∗ 0.021 -0.102∗∗ 0.014 -0.054∗∗ 0.012
Learning -0.567∗∗ 0.053 -0.148∗∗ 0.028 -0.207∗∗ 0.017
Spillovers -0.355∗∗ 0.058 -0.103∗∗ 0.037 0.012 0.022
θ -0.647∗∗ 0.149 -3.845∗∗ 0.896 -4.965∗∗ 0.696
Material 12.062∗∗ 2.465 -1.820∗ 0.998 4.700∗∗ 1.147
Energy -25.608∗∗ 4.121 2.594∗ 1.522 11.259∗∗ 1.194
Wages 11.121∗∗ 4.362 5.781∗∗ 2.150 -11.402∗∗ 1.518
Capital 3.344∗ 1.825 1.434 0.914 -1.076 0.716
Other inputs 0.079 4.906 -6.989∗∗ 2.505 -2.481 2.350
Constant -112.160∗∗ 57.664 -62.583∗∗ 29.612 149.783∗∗ 22.139
R2 0.529 0.470 0.682
Obs. 607 738 710
∗∗ (∗) denotes significance at the 95% (90%) level of confidence.
∗∗∗ The estimates for economies of scale, learning-by-doing and spillovers are expressed as

elasticities evaluated at the sample mean.
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Table 4.5: Estimation results for the pricing relation of the open-loop model

64K 256K 1MB
Variable Coefficient Std. err. Coefficient Std. err. Coefficient Std. err.
Log(Output)∗∗∗ -0.332∗∗ 0.019 -0.307∗∗ 0.018 -0.199∗∗ 0.013
Learning -0.417∗∗ 0.050 -0.059∗∗ 0.028 -0.179∗∗ 0.019
Spillovers -0.417∗∗ 0.050 -0.386∗∗ 0.050 -0.015 0.025
Material 14.635∗∗ 2.435 -1.422 1.155 2.250∗ 1.277
Energy -17.200∗∗ 4.078 -3.811∗∗ 1.842 7.936∗∗ 1.370
Wages 13.937∗∗ 4.380 6.792∗∗ 2.479 -9.787∗∗ 1.683
Capital 2.679 1.837 1.747∗ 1.059 -2.042∗∗ 0.780
Other inputs -13.051∗∗ 4.770 -2.305 2.892 2.643 2.571
Constant -162.762∗∗ 57.759 -30.828 34.387 171.918∗∗ 23.615
R2 0.524 0.287 0.610
Obs. 624 738 640
∗∗ (∗) denotes significance at the 95% (90%) level of confidence.
∗∗∗ The estimates for economies of scale, learning-by-doing and spillovers are expressed as

elasticities evaluated at the sample mean.
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Figure 4.1: Industry units shipped for different generations of DRAMs

Figure 4.2: Average selling prices in USD for different generations of DRAMs



Chapter 5

Aggregation of dynamic oligopoly
models

5.1 Introduction

For the analysis of market structure, firm conduct, and market performance in an oligo-
polistic market very often only industry level data is available. Theoretical models of
oligopoly are at the firm level and provide the researcher with firm level equilibrium
pricing relations. The general objective of this study concerns the aggregation of firm
level pricing equations to an industry level pricing equation. In the case, in that all firms
in a market have the same cost structure and the same market shares, the aggregation does
not yield any particularities or difficulties. In the case of different cost structure across
firms and different market shares, the representative firm is a weighted mean of all firms
and not the unweighted mean of all firm. If the researcher only has industry level data,
he/she has to make an assumption whether the market is symmetric or asymmetric when
the industry level pricing equation is set up and estimated to infer market structure.
I want to investigate, whether the assumption on (a)symmetry is crucial or not with
respect to the relevant parameter estimates, and if yes, how large the differences between
the estimates are.

For this purpose I set up an aggregated dynamic oligopoly model, which is derived from
a model with learning-by-doing and spillovers. The individual first order conditions of
firms’ dynamic maximization problems are aggregated over firms and implemented for
estimations. The aggregated model is estimated for the DRAM industry, in particular
for the 256K generation. The point of interest lies in comparing two specifications of the
industry level pricing relation. The first assumes that the market consists of firms with
equal market shares. Actually, the assumption of symmetry is not given for the 256K
DRAM market. Thus with a second specification I want to correct for the asymmetry.
The full data set for the 256K DRAM industry includes firm-level data. Therefore it is
possible to correct for asymmetries and to calculate the possible aggregation bias with this
data set. A system of demand and supply relations is estimated. Under the assumption
that the market is in equilibrium, I focus on the estimation of economies of scale, learning-
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by-doing, the effects of input prices and a intertemporal strategic effect. This effect arises
as firms consider the strategic effect of learning-by-doing and spillovers on their rivals’
future output decision. The supply function is derived from the aggregated first order
conditions of firms dynamic maximization problems, and specifies the behavioral response
of firms in the market.

Learning-by-doing and spillovers introduce a dynamic dimension into a static oligopoly
game. Learning-by-doing measured by past cumulative output influences firms’ current
and future decisions. Closed-loop equilibria in dynamic oligopolistic models1 are charac-
terized by a set of prices and outputs chosen by firms conditional on exogenous parame-
ters and on future outputs. The exogenous parameters are costs, demand and conjectures
about the behavior of firms’ rivals in the market. Firms react strategically at every point
in time and consider the strategic effect of learning-by-doing and spillovers on their rivals’
future output decision. In an open-loop setting firms pre-commit themselves to a certain
path at the beginning of the game, i.e. to a certain production plan.

In chapter 4 an empirical comparison between open-loop and closed-loop equilibria
suggested that firms take the intertemporal strategic effect on their rivals’ future output
decision into account. Therefore I now only consider firms using closed-loop strategies.
However, it is still possible to test for this kind of behavior at the industry level. Firms
follow a dynamic production strategy to earn positive profits over the entire life cycle.
Their optimal strategy is to overproduce (in a static sense) in order to invest in future
cost reductions. This induces firms to make their optimal output decisions not on the
basis of current period costs but rather on their lower shadow costs of production (see eg.
Fudenberg and Tirole (1983), Spence (1983)).

The remainder of the chapter is organized as follows. In section 5.2, I consider some
theoretical aspects and the econometric implementation of the aggregated dynamic model.
The results are presented in section 5.3. Conclusions are given in section 5.4.

5.2 An aggregated model of dynamic oligopoly

5.2.1 The basic model

The basic theoretical model is the same as was described in section 4.3. In this section
only the main features are repeated and some aspects concerning the aggregation of firm
level to industry level pricing equations are considered. Firms are modelled to maximize
their profit over the product cycle. Assume there are i = 1, . . . , n firms and t = 1, . . . , T
discrete time periods. At the beginning of each period, firms choose quantities of a
homogeneous output, qit. Firm i’s cost in period t, Cit := C(qit, Xt, Wit), are a function
of current output, input prices, firm i’s experience and the experience of all firms other
than i. Xt is the vector of cumulative output of each firm i, representing the experience
gain due to learning-by-doing within the own firm and among other firms in the industry.
Experience is assumed to be measured by past cumulative output. Thus, firm i’s stock
of experience is xit :=

∑t−1
s=1 qis. Output choices play an additional role as investment into

1For a mathematical treatment of dynamic games see Basar and Olsder (1991).
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experience. The more output is produced today, the lower unit costs will be tomorrow.
Each firm i choose qit in order to maximize intertemporal profits defined as

Maxqit
Πi =

T∑
t=1

δt−1 {Pt qit − C(qit, Xt, Wit)}
s.t. Xt = Xt−1 + Qt−1 and X0 = 0 (5.1)

where δ is the discount rate, qt :=
∑n

i=1 qit is industry output, Qt is the vector of firm spe-
cific output, and Pt := P (qt) is the inverse market demand function for a given generation
of DRAMs.

The necessary conditions for a closed-loop Nash equilibrium of (5.1) are

Pt +
∂Pt

∂qt

∂qt

∂qit
qit =

∂Cit

∂qit
+

T∑
s=t+1

δs−t
n∑

j=1

∂Cis

∂xjs

∂xjs

∂qit

−
T∑

s=t+1

δs−t∂Ps

∂qs

qis

n∑
j=1

∂qs

∂qjs

∂qjs

∂xis

∂xis

∂qit

(5.2)

for all i = 1, . . . , n and t = 1, . . . , T . The first three terms of (5.2) are the standard
first order conditions from the static Cournot problem without learning-by-doing and
without learning spillovers. The last term of the first line reflects future cost savings due
to learning-by-doing and spillovers. The last line is the intertemporal strategic effect.

A derived empirical firm level pricing equation2 is given by

Pt = MCit + γ0i + αi − β ′
1 θ1 qit − β ′

1 θ1 θ2 qit+1 + µit (5.3)

for i = 1, . . . , n and t = 1, . . . , T . Firm specific marginal cost is denoted by MCit. Future
cost savings are modelled by firm specific dummy variables γ0i. The term β ′

1 = ∂Pt

∂qt
repre-

sents the partial derivative of output on price. The term θ1 defines the conduct parameter
in an industry (see e.g. Bresnahan (1989)). The intertemporal strategic parameter θ2 mea-
sures the effect of firms output decision today on their rivals output decision tomorrow.
The αi’s capture the intertemporal strategic effects occurring from t+2 onwards (see equa-
tion (4.6)). In equation (5.3) the price for DRAMs is a function of dynamical marginal
costs, of the inverse effect on demand and of future strategic behavior measured by the
intertemporal strategic parameter θ2. An econometric pricing relation for an open-loop
information structure would be nested in (5.3) with the intertemporal strategic term θ2

and the αi’s equal to zero.
Now, aggregating (5.3) and dividing by n yields

Pt =
1

n

n∑
i=1

MCit +
1

n

n∑
i=1

γ0i +
1

n

n∑
i=1

αi − β ′
1 θ1

1

n

n∑
i=1

qit − β ′
1 θ1 θ2

1

n

n∑
i=1

qit+1

Pt = MCt + γ0 + α − β ′
1 θ1

qt

n
− β ′

1 θ1 θ2
qt+1

n
(5.4)

This gives the equation to be estimated. The relevant parameters at the industry level
will be determined. We are now able to test dynamic strategic behavior at the industry

2For a detailed derivation of the empirical pricing relation see section 4.3.
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level. The aggregated first order conditions give the following advice for empirical testing.
A difference between open-loop and closed-loop strategies can be pinned down by the
intertemporal strategic parameter θ2. If this term is not equal to zero, we can conclude
that firms use closed-loop strategies.

θ1 is interpreted as the average of the conduct parameters of the firms. In a competitive
market a change in firm i’s output would not have any consequences on prices. Firms
price according to their marginal costs. Thus the conduct parameter θ1 and the price-cost
markup would be both equal to zero. In a Cournot game a change in firm i’s output has an
impact on prices. Firms price higher than their marginal costs and the conduct parameter
would be equal to one over the number of firms in the industry. If firms maximize joint
profits, the conduct parameter would be equal to one. For closed-loop specifications the
parameter θ1 is equal to one over the number of firms.

The terms θ1 and θ2 are not identified at the same time. I fix θ1 assuming firms
to set quantities according to the first-order condition (5.2). A significant intertemporal
strategic parameter θ2 would confirm that firms use closed-loop strategies. The term
β ′

1 = ∂Pt

∂qt
plays an important role in the pricing relations and for identification of θ2 an

estimate of β ′
1 is needed. For this purpose I define an inverse log-linear demand function,

which is specified in section 4.3.2. To derive an estimate for β ′
1 I multiply β1, defined in

equation 4.4, with Pt

qt
. Pt, and qt denote the sample means of industry price and industry

output, respectively.

5.2.2 Aggregation of marginal cost

Estimation of the pricing relations at the industry level, requires expressions for marginal
cost. These expressions include parameters that measure learning-by-doing and learning
spillovers. The marginal cost function I approximate with a second-order Taylor series

MCit = γ1i + γ2 qit + γ3 q2
it + γ4 xit + γ5 MATit + γ6 ENEit + γ7 LABit

+ γ8 CAPit + γ9 INPit (5.5)

with qit to be firm level output, xit firm level learning-by-doing and the other variables
MAT , ENE, LAB, CAP and INP to be the input prices of material, energy, labor,
capital and other input prices, respectively. In contrast to chapter 4 I define marginal
cost without spillovers, as after aggregation we can not distinguish between learning-by-
doing and spillovers at the industry level. Aggregation of firm level marginal cost (5.5)
and dividing by n yields3

MCt =
1

n

n∑
i=1

γ1i + γ2
1

n

n∑
i=1

qit + γ3
1

n

n∑
i=1

q2
it + γ4

1

n

n∑
i=1

xit + γ5
1

n

n∑
i=1

MATit

+ γ6
1

n

n∑
i=1

ENEit + γ7
1

n

n∑
i=1

LABit + γ8
1

n

n∑
i=1

CAPit + γ9
1

n

n∑
i=1

INPit (5.6)

3Neven and Röller (1999) applied an aggregated structural model of competition to the European
banking industry. They use data at the industry level and refer to potential biases due to misspecification
of aggregated marginal cost. By aggregating marginal cost I follow their procedure.
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To able to estimate average marginal cost (5.6) the quadratic term 1
n

∑n
i=1 q2

it has to be
rewritten. For all other terms it is possible to exchange summation and division. Using
the definition of the Herfindahl index HI = 1

n

∑n
i=1 s2

it with market share sit of firm i and
by defining m to be the number of symmetric firms corresponding to the Herfindahl index
we can now manipulate equation (5.7)4 to get

MCt = γ1 + γ2
qt

n
+ γ3

q2
t

n ∗ m
+ γ4

xt

n
+ γ5

MATt

n
+ γ6

ENEt

n
+ γ7

LABt

n

+ γ8
CAPt

n
+ γ9

INPt

n
(5.7)

This equation also enables us to infer a possible misspecification due to neglecting an
asymmetric market structure. In the case we have a symmetric market structure m = n.
The more asymmetric a market is the smaller m in comparison to n. If then marginal
cost are convex (γ3 > 0) and using n instead of m yields a downward bias in marginal
cost (Neven and Röller (1999)).

The firm specific effects of equation (5.3) also include firm-specific future marginal cost
(4.8), the firm-specific intercepts from the marginal cost function (4.7) and the future
dynamic effects (4.6). Aggregating these effects gives

γ = γ0 + γ1 + α. (5.8)

5.2.3 Empirical pricing relations

Incorporating all definitions made before leads to the following econometric models of
industry level pricing relations. Using (5.4), (5.7) and (5.8) we get

Pt = γ + (γ2 − β ′
1)

qt

n
+ γ3

q2
t

n ∗ m
+ γ4

xt

n
+ γ5

MATt

n
+ γ6

ENEt

n

+ γ7
LABt

n
+ γ8

CAPt

n
+ γ9

INPt

n
− β ′

1 θ2
qt+1

n
+ µit (5.9)

In these equations the price for DRAMs is a function of aggregated dynamical marginal
costs, of the inverse elasticity of demand and of future strategic behavior measured by
the intertemporal strategic parameter θ2.

5.3 Estimation results

For the industry level pricing relation I estimate a specification that assumes nonconstant
returns to scale, learning by doing and an intertemporal strategic parameter. Further the
impact of input prices on marginal cost is determined. A system of equations is estimated:
equation (4.4)5 and equation (5.9) are estimated for the 256K DRAM generation. Table

4For marginal cost I assume a rather simple functional form. In the case of e.g. a log-linear function,
the aggregation of firm level marginal cost functions is not that easy to achieve. Then the Herfindahl
index can not be used for aggregation of non linear terms.

5The estimation results of the inverse demand equation are displayed in table 4.3 of chapter 4.
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5.1 shows firms’ market shares for this product. It is obvious that this market is not
symmetric. The average Herfindahl index is 0.201 and shows that the corresponding
number of symmetric firms in the 256K DRAM market would be five. This number is
not constant over time indicating that the asymmetries change over the product cycle.
Further the number of firms is not constant over time. In the beginning and in the ending
of the product cycle there less firms in the market then in between.

Therefore I estimate equation (5.9) in two specifications. The first specification takes
price, output, past cumulative output and input prices at the industry level by assuming
symmetry among firms and by holding the number of firms constant over time. I mimic the
case that the researcher only has industry level data, and also has no information about
the Herfindahl index. For the second specification the industry level data are generated
from firm level data by accounting for asymmetries in the market and by using the actual
number of firms in the market.

Thus the estimations of the two specifications of the aggregated pricing relation en-
able us to test whether an aggregation bias is given and if there is one, how large is it.
The two specifications are estimated with 2SLS6 with the statistical software package
STATA (2000). The instruments in the pricing equations consist of the exogenous vari-
ables in the demand equation and summary measures from the supply side, like cumulative
world output.

The estimates are shown in Table 5.2. Panel A covers the results of the specification
assuming symmetry among firms, panel B those accounting for asymmetry. For the es-
timations 56 observations are used. The values of the R-square are equal to 0.6435 and
0.8718, respectively. This model selection criterion suggests that the preferred specifica-
tion is the one that controls for asymmetry. It indicates that this specification generates
the more reliable model. By comparing the results from the two specification displayed
in panel A and panel B we also see the differences in the various estimates. In the follow-
ing I describe the estimates of the two specifications and the differences between them.
Further I calculate the aggregation bias for the point estimates of economies of scale,
learning-by-doing, and the intertemporal strategic effect.

In illustrating the estimation results from panels A and B of table 5.2, I describe the
estimation results of the second specification as the reference results. I begin with the
parameter estimates of contemporaneous output and contemporaneous output squared.
Given the specification of equation (5.9) actually γ2−β ′

1 has been estimated in both spec-
ifications. With some algebra we get −0.00001097 for γ2 indicating decreasing marginal
cost. Evaluated at the sample means a value of −0.263 for the elasticity follows. This
result is roughly in line with the firm specific estimation results in chapter 4. The ad-
ditional insignificant estimate for contemporaneous output squared indicates that the
marginal cost function is linear. The difference in the estimates for economies of scale is
significantly different from zero at the 5% level using a t-test with unknown variances,
which is equal to 3.087.

The estimate of the learning-by-doing parameter is highly significant. This provides ev-

6I also estimated the demand and the pricing relations with 3SLS. The results do not change very
much.
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idence that a higher degree of past experience reduces marginal cost at the industry level.
Further a learning-by-doing rate of 12% supports the reliability of the model specification.
In the case of learning-by-doing a t-test with unknown variances of 5.486 indicates the
difference in the estimates learning-by-doing of the two specifications.

The estimate for the strategic intertemporal parameter, shown by θ2, is significantly
negative for both specifications, indicating that firms react strategically on the objective
function of other firms in the next period. The negative sign of this parameter suggests
that firms consider their rivals’ output tomorrow to be a strategic substitute. Although
there is no difference between learning-by-doing and spillovers at the industry level, this
still indicates that the learning spillovers are not large enough relative to proprietary
learning-by-doing to bring about intertemporal strategic complements. Firms price ac-
cording to their dynamic marginal costs, which lie below static marginal costs.

Turning to the parameter estimates for the factor prices we see that the estimations
results of the two specification differ a lot more. Concerning economies of scale, learning-
bx-doing and the intertemporal strategic parameter the results were qualitatively the
same, bur differ in magnitude. However, the estimates for factor prices also show different
signs between the two specification. In the first specification only the price of labor is
significantly positive, the prices of energy and capital are insignificant, and the prices of
material and other inputs are significantly negative. In contrast, the second specification
gives more plausible results. The prices of material (silicon) and labor are significantly
positive, indicating that higher factor prices raise firms marginal costs. The price of the
most important input material has a significant positive effect on marginal cost of the
256K DRAM. The higher the price of silicon the higher marginal cost. The price of
capital has a negative influence on marginal cost. Energy and other input prices, are not
significantly different from zero, indicating that those factor prices have no significant
impact on marginal costs.

The coefficients for economies of scale and learning-by-doing are overestimated when
symmetry is assumed. The reason for this lies in a wrong assumption about firms’ market
shares. If the market is completely symmetric, the estimation results would be the same.
However, if firms actual market shares cannot be taken into account because of a lack of
data, one has to be aware of a potential aggregation bias.

5.4 Conclusions

In this chapter I set up an aggregated dynamic oligopoly model. The individual first
order conditions of firms’ dynamic maximization problems were aggregated over firms
and then estimated with data of the DRAM industry. I considered two specifications.
First I assumed that the market consists of firms with equal market shares. Actually, the
assumption of symmetry was not given. Thus with a second specification I corrected for
the asymmetry. Thus the second point of interest lied then in comparing the estimates
of the two specifications. Given the estimation results the aggregation bias could be
calculated and it was found to be noticeable.
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5.5 Appendix: Tables

Table 5.1: Market shares of the 256K generation

Firm 256K
AT&T Microelectronics 0.75
Fujitsu 9.08
Hitachi 10.53
Hyundai 2.54
Inmos 0.19
Intel 0.78
LG Semicon 1.10
Matsusihu 2.22
Micron 5.76
Mitsubishi 8.27
Mosel Vitalic 1.35
Mostek 0.01
Motorola 1.58
National Semiconductor 0.00
NEC 16.20
Nippon Steel 3.28
OKI 6.35
Samsung 7.36
Sanyo 0.40
Sharp 2.22
Siemens 1.63
Texas Instruments 12.28
Toshiba 5.76
Total 100.00
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Table 5.2: Estimation results for the aggregated 256K pricing relation

Variable Coefficient Std. error t-value p-value 95% Conf. Interval
Panel A
Output 6.55e-07 2.80e-07 2.34 0.024 9.22e-08 1.22e-06
Output2 -1.38e-27 1.21e-27 -1.14 0.254 -3.74e-27 9.88e-28
Learning -1.26e-08 3.72e-09 -3.39 0.001 -2.01e-08 -5.12e-09
θ2 -5.03e-07 2.92e-07 -1.72 0.092 -1.09e-06 8.47e-08
Material -.0546584 .0194329 -2.81 0.007 -.0937748 -.015542
Energy -.0075857 .0053656 -1.41 0.164 -.0183861 .0032147
Wages 4.14e-08 4.98e-08 0.83 0.410 -5.89e-08 1.42e-07
Capital .0784862 .0394535 1.99 0.053 -.0009295 .1579019
Other inputs -1.368912 .774766 -1.77 0.084 -2.928435 .1906107
Constant 301.658 75.49892 4.00 0.000 149.6866 453.6295
adj. R2 0.6435
Panel B
Output .0000175 5.96e-06 2.94 0.005 5.51e-06 .0000295
Output2 -2.82e-13 1.77e-13 -1.59 0.111 -6.28e-13 6.46e-14
Learning -1.73e-07 3.17e-08 -5.45 0.000 -2.37e-07 -1.09e-07
θ2 -.0000185 6.14e-06 -3.01 0.004 -.0000308 -6.10e-06
Material .0119663 .0039051 3.06 0.004 .0041057 .0198269
Energy .0014249 .0029307 0.49 0.629 -.0044743 .0073242
Wages 3.79e-08 1.93e-08 1.97 0.055 -8.64e-10 7.68e-08
Capital -.0111146 .0167383 -0.66 0.510 -.0448069 .0225778
Other inputs -.3964863 .2330472 -1.70 0.096 -.865586 .0726135
Constant 31.98526 6.594428 4.85 0.000 18.71137 45.25916
adj. R2 0.8718
Obs. 56



Chapter 6

Conclusions

This thesis explored two imperfectly competitive markets and illustrated these two mar-
kets by one example each. The emphasis of this thesis lied in a structural empirical
analysis of these markets. In particular, dynamic effects and asymmetries were explored.
A structural econometric approach relies on the hypothesis that the observed data in
a market are the equilibrium strategies (bids, prices, output) of the considered game-
theoretic model. The equilibrium strategy gained from the theoretical model can be used
to estimate the characteristics of the market.

Chapter 3 investigated auctions markets and analyzed cattle auctions taking place in
Amstetten, Austria. The econometrics of English auctions in the independent private
value model were described. Further a static and a sequential specification of the in-
dependent private value model was explored. Both specifications were investigated with
symmetric and asymmetric bidders. These four different models were implemented econo-
metrically and were brought to data. By also implementing a model with affiliated values
I tested for and confirmed the independent private value assumption. I estimated the
characteristics of the distribution of bidders’ values and took the heterogeneity of the
auctioned objects into account. The empirical results showed asymmetries among bidders
and a significant effect of the sequential bidding game.

In Chapter 4 I estimated a dynamic oligopoly model that incorporated the strategic
implications of learning by doing and learning spillovers. The first order conditions of
this dynamic game were set up in open-loop strategies and in closed-loop strategies. The
contribution of this chapter was then to test the dynamic closed-loop specification and to
compare the estimated parameters with those of the open-loop specification and to inves-
tigate the influence of the equilibrium concept on learning-by-doing, learning spillovers,
economies of scale and the conduct parameter. The two models were estimated using
firm-level data from the DRAM semiconductor industry. The difference between these
two specifications could be described by the intertemporal strategic parameter. The esti-
mation results supported learning by doing and learning spillovers. The significant coef-
ficient of the intertemporal strategic parameter indicated that firms reacted strategically
on the objective function of other firms in the next period.

In Chapter 5 I set up an aggregated dynamic oligopoly model. The individual first order
conditions of firms’ dynamic maximization problems were aggregated over firms. This

79



CHAPTER 6. CONCLUSIONS 80

was then implemented for estimations with data of the DRAM industry. I considered two
specifications. First I assumed that the market consists of firms with equal market shares.
Actually, the assumption of symmetry was not given. Thus with a second specification
I corrected for the asymmetry. Thus the second point of interest lied then in comparing
the estimates of the two specifications. Given the estimation results the aggregation bias
could be calculated and it was noticeable.

Summing up the empirical results of above described chapters I conclude, that dy-
namic strategic behavior among firms or bidders takes place and that further, asym-
metries among players independent of the markets under consideration exist and have
consequences on the parameter estimates of interest. The questions I raised can be sum-
marized as follows: Do we find strategic dynamic behavior among firms/bidders? Are
there differences among players in the respective markets? Both questions I could answer
positively with empirical evidence for two different markets.
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Appendix: Data description

Auction data

The data are from auctions which took place on January 24th, February 21st, March 20th
and April 24th 1996. On average at each auction day about 230 heads of cattle have been
sold. For each animal the winning bid, the weight, the breed, two quality criteria, the
auction day, the number of the “Winker” and the number of order on the specific auction
day is known. Further we know the total number of given out“Winkers” for each auction.
The cattle are divided into four categories, namely bulls, female calves, young female
calves and cows. The cattle are of two different breeds: “Fleckvieh” or “Braunvieh”. The
first quality criteria has six different classifications, 1A to 3B. For cows and female calves
this quality criteria gives the minimum requirements for the output and the structure (fat,
protein) of their milk. In case of young female calves it gives the minimum requirements
of their mother’s milk. However, a cattle of the highest classification, 1A, was not sold on
one of these four auction days. The second quality criteria has three classifications, 1 to
3. As everybody, who wants to bid, has at least one “Winker”, the seller can be identified
in an anonymous way. Usually bidders have different numbers on their “Winkers” at
different days. However, the large traders always get the same number. Therefore they
can be identified throughout the four auction days. The number of potential bidders is
the total number of given out “Winkers”. But this is not the number of bidders actually
participating at each auction round, since people are not staying at the auction the whole
day as they might be not interested in every cattle.
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DRAM data

The data used for estimating represent firms producing DRAMs and are compiled by
Dataquest Inc. The data covers firms’ units shipped from the 4K generation to the 64MB
generation and the average selling price. These generations span a time period from Jan-
uary 1974 to December 1996. The data are available at a quarterly basis. Table 4.1 shows
in which year which generation of DRAMs were in the market. The very first generation of
DRAMs, namely the 4K generation, emerged in 1974 and stayed in the market until 1985.
Two years after the start off of the 4K generation the 16K generation was on the market.
On average two to three years after one generation has emerged the following generations
goes on market. The last generation - 64MB - went on the market in 1995 and is still at
the beginning of its product cycle. Two exceptions are the 2MB and the 8MB generations.
These are byproducts and do not follow the general pattern. From the firm-level output
data I construct three variables. Namely, current output, own past cumulative output
and other firms’ past cumulative output. Current output serves as measure for economies
of scale. The own cumulative output variable represents learning-by-doing. The cumu-
lative past output of all other firms proxies learning spillovers. Further I use price data
for four important inputs - price of silicon, energy cost, wages for production and user
cost of capital. For the material cost I use the world market price of silicon compiled by
Metal Bulletin. Energy costs and wages of production are compiled in the following way:
according to each firms production location the energy prices and the industry wages
(ISIC 3825) of the concerned location (country) is used. The source for energy prices is
OECD/IEA OECD/IEA (1998), that for industry wages OECD OECD (1998). User cost
of capital is constructed for each firm and year by exploiting firms annual reports. As a
nonprice demand shifter I use a proportion of GNP directly attributed to electronic and
electrical equipment from the OECD OECD (1998). A time variable also enters the de-
mand equation as a proxy for the incremental changes in a generation over the life cycle.
As substitutes for one generation I assume its proceeding and following generation.
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