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Abstract

The climate system is a complex dynamical system with many closely interact-
ing subsystems, for instance the atmosphere. Although many attempts were, and
are still taken to model the climate system as a whole using global circulation
models, many issues and challenges persist. Prediction of precipitation is one of
the major problems in dynamical models. In the following an approach to the
analysis of spatial structures of precipitation event synchronizations is presented.
By estimating the synchronicity of precipitation events between points in space,
a spatial similarity network is constructed. These Climate Networks can be
analyzed statistically in various ways. However, the similarity measure Event
Synchronization that will be presented, as well as the concept of Climate Net-
works, is more general. Climate Network precipitation analyses are done in the
applications part in order to present improvements to existing methodologies,
as well as novel ones.

On one hand, the existing similarity measure Event Synchronization will be
refined and extended to a weighted and continuous version, and on the other
hand, new methods for statistical analyses of Climate Networks will be presented.
Climate Networks are spatially embedded networks and the probability of a link
between two nodes decreases with the distance between these nodes. In other
words, Climate Network topologies depend on the spatial embedding. Often
this effect is distracting and should be considered as a bias in Climate Network
statistics. This thesis provides a methodology to estimate this bias and to correct
network measures for it.

Furthermore, two novel graph statistics are introduced. First, the novel
network measure Directionality, and second, a network coarse-graining approach
that reduces Climate Networks to Climate Networks of teleconnections, i.e.,
long-ranged interrelations. This new approach is in contrast to existing Climate
Network construction schemes, since commonly most links are short. The
novel network measure Directionality provides a dominant direction of links
in the embedding space. For undirected Event Synchronization networks this
measure is applied for the estimation of Isochrones, i.e., lines of synchronous
event occurrences.
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Zusammenfassung

Das Klima System ist ein so komplexes dynamisches System aus mehreren
eng ineinder verflochtenen subsystemen wie z.b. der Atmosphäre, dass es immer
noch nicht vollständig gelungen ist dieses als ganzes erfolgreich zu modellieren.
Die Vorhersage von Niederschlägen stellt dabei ein besonderes Problem dar. Im
folgenden wird ein Verfahren dargestellt welches die Möglichkeit bietet kom-
plexe räumliche Zusammenhänge zwischen Niederschlagsereignissen quantitativ
in Klimanetzwerke zu fassen und diese auf vielfältige Arten und Weisen zu
analysieren. In dem Maße wie synchronisiert Niederschlagsereignisse zwischen
Raumpunkten auftreten, in dem Maße sind diese Raumpunkte in Event Syn-
chronization Klimanetzwerken verbunden. Sowohl das Konzept der vorgestellten
Ereignissynchronisation, als auch das Konzept Klimanetzwerke, ist jedoch viel
allgemeiner. Die Analyse von Niederschlägen stellt nur eine Möglichkeit dar und
wird vollzogen um Fortschritte in der allgemeinen Methodik exemplarisch zu
zeigen.

Zum einen wird das bestehende Ähnlichkeitsmaß der Ereignissynchronisation
verbessert und erweitert, und zum anderen werden verschiedene, zum Teil neue,
statistische Methoden zur Netzwerkanalyse vorgestellt und erläutert. Klima-
netzwerke sind räumlich eingebettete Netzwerke und die statistisch zu zeigende
Abhängigkeit der Ähnlichkeit vom räumlichen Abstand führt zu einer vom Raum
nicht unabängigen Netzwerkstruktur. Dies ist in einer Vielzahl von Fällen ein
ungewünschter Effekt und es wird eine Methodik entwickelt wie dieser statistisch
quantifiziert werden kann.

Des weiteren werden zwei weitere neue Netzwerkstatistiken vorgestellt. Ei-
nerseits das neue Netzwerkmaß Directionality und andererseits eine Netzwer-
kreduktion welche Klimanetzwerke auf Klimanetzwerke mit weitreichenden
Verbindungen reduziert. Dieser neue Ansatz steht gewissermaßen im Gegensatz
zur klassischen Klimanetzwerkkonstruktion die vor allem zu kurzreichweitigen
Verbindungen führt. Das neue Netzwerkmaß Directionality gibt für jeden Raum-
punkt des Netzwerks eine dominante Raumrichtung der Netzwerkverbindungen
an und kann dadurch z.B. für bestimmte Event Synchronization Klimanetzwerke
Isochronen abbilden.
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Chapter 1.

Introduction

The study of spatially extended complex systems is a lively and growing field, for
instance in astrophysics (Amelino-Camelia, 2011), biology (Hauert and Doebeli,
2004), Earth sciences (Davidsen and Paczuski, 2005), ecology (Blasius et al., 1999;
Jones et al., 2008), or medical image analysis (Schmah et al., 2011). In the last
decades, powerful tools of time series analysis have been proposed and developed,
such as wavelet analysis (Torrence and Compo, 1998), empirical mode decomposition
(Huang et al., 1998), singular spectrum analysis (Ghil et al., 2002), or recurrence
plots (Marwan et al., 2007b). For a spatial analysis various tools are available, such
as empirical orthogonal functions (EOFs) (Hannachi et al., 2007), tools adapted from
time series analysis such as spatial recurrence plots (Marwan et al., 2007a; Agustí
et al., 2011), or complex networks (Newman, 2003).

In many fields of research, complex networks have proven to be a successful concept
for understanding complex systems, e.g. resilience studies of the Internet (Cohen
et al., 2000) or power grids (Menck et al., 2014), transport optimization on street
networks, power grids and supply chain networks (Danila et al., 2006; Chen et al.,
2010), spread of epidemics within populations (Klovdahl et al., 1994; Tuckwell et al.,
1998; N. M. Ferguson, 2000), relations from structure to function in brain networks
(Sporns et al., 2004; Zhou et al., 2006; Stam, Reijneveld, et al., 2007; Bullmore
and Sporns, 2009; Zamora-López et al., 2010; Bashan et al., 2012; Gallos et al.,
2012), and even in the analysis of single time series by recurrence networks (Marwan
et al., 2009; Donner et al., 2010). Recently, network theory has also been utilized in
climate research by so called Climate Networks for understanding complex climate
phenomena (Tsonis and Roebber, 2004a; Yamasaki et al., 2008a; Donges et al., 2009a;
Steinhaeuser et al., 2010; Paluš et al., 2011, P2).

Especially in meteorology, climatology and oceanography EOFs are traditionally
employed as a tool for spatial exploratory data analyses. Such EOFs are derived by
a principal component analysis (PCA) (Pearson, 1901) of the covariance matrix of
given data set. It is used as a form of dimensionality reduction for spatial feature
extraction. It is assumed that relevant similarities between time series are linear and
correctly estimated by the covariance matrix, and that relevant spatial structures
are represented in its eigenvectors (EOFs). However, although these eigenvectors are
linearly uncorrelated, they are in general not independent (Monahan et al., 2009).
Hence, it is in general impossible to interpret a single EOF as being of individual
dynamical meaning. This carries the disadvantage that one potentially has to combine
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Chapter 1. Introduction

an a priori unknown subset of EOFs in an a priori unknown combination in order to
identify a physical process of interest.

Climate Networks have certain advantages in such exploratory data analyses. The
basic idea of the Climate Network approach is to represent time series of observables
under consideration as network nodes, and interrelations among them as network
links. Possibly unknown physical processes underlying the co-variabilities between the
time series determine the topology of the resulting network and can then be inferred
from suitable statistics on these networks. This approach is a more general and
adaptable approach compared to EOFs. For instance, it is not restricted to a certain
type of similarity matrix and it provides various feature extraction possibilities, e.g.
graph statistics from graph theory.

The aim of this thesis is to extend and enhance existing techniques and methods
of the Climate Network approach as well as to introduce new ones. The first part
of this thesis covers the theoretical framework. It is divided into a chapter about
Climate Network construction and a chapter about statistics on Climate Networks,
i.e., about feature extraction from Climate Networks. The second part of this thesis
contains several applications of the Climate Network approach to precipitation and
lightning data. This part begins with the fourth chapter on the general applicability
of Event Synchronization as a similarity measure for Climate Networks in analyses
of precipitation events. In chapter five the novel network measure Directionality is
applied to rainfall networks in South America. In chapter six the novel link-weighted
and spatially corrected Directionality is applied to precipitation networks in Germany.
Finally, in chapter seven a novel Climate Network coarse-graining approach is applied
to an Asian precipitation network, to a global sea surface temperature network,
as well as to a combined network of these Climate Networks in order to identify
teleconnections within and between these systems.
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Part I.

Theoretical Framework

This part also provides the theoretical foundation of
associated publications P1 to C3, and follows in parts
closely corresponding sections in these publications.





Chapter 2.

Climate Network Construction

Abstract

Climate Networks have proven to be a useful concept in various studies of
climate systems. This chapter briefly reviews the Climate Network approach
and introduces for this thesis relevant Climate Network construction schemes.
Relevant similarity measures are introduced that serve as basis for the construc-
tion of Climate Networks. Furthermore, statistical network models are presented
with which the statistical significance of found Climate Network topologies is
tested.

2.1. Climate Networks

2.1.1. Introduction

The conception of Climate Networks is to represent estimated interrelations between
a possibly large set of climatic time series as links of a network that can be analyzed
statistically. This is in contrast to, for instance, recurrence networks from climatic
time series where recurrences of a single time series are encoded in a network (Marwan
et al., 2009; Donner et al., 2010). With the Climate Networks approach spatially
extended systems are thus studied with respect to interrelations between the time
series. Depending on the observable or observables of given climatic time series and the
measures used to estimate interrelations between them, a resulting Climate Network
encodes certain features of the underlying climate system. A measure that quantifies
an interrelation between two time series is referred to as a similarity measure. Many
different similarity measures have been studied in the context of Climate Networks,
most prominently Pearson’s correlation coefficient (PCC), Spearman’s rho (�), their
cross-correlation versions and mutual information (MI). However, more recently the
event-based similarity measure Event Synchronization (ES) (Quiroga et al., 2002) got
applied in various forms to Climate Networks in studies of precipitation events (e.g.
Malik et al., 2012a; Boers et al., 2013, P1, P2, P3, C1, C3).
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Chapter 2. Climate Network Construction

2.1.2. Network Representation

In graph theory a graph G is defined as a set of vertices V together with a set of
edges E connecting vertices (Newman, 2010):

G := (V, E) .

As it is more common in the physics literature, I will refer to graphs as networks,
to vertices as nodes and to edges as links. Climate Networks are spatially embedded
networks since nodes represent time series that have a one-to-one correspondence
to geographical positions. In this thesis Climate Networks occur as node-weighted,
link-weighted or unweighted networks. Node-weighted networks have a weight ui

attached to each node Vi and link-weighted networks have a weight wij attached to
each link Ek connecting node Vi to node Vj . In this thesis Climate Networks can
furthermore be directed or undirected. Undirected networks have undirected links
and hence, if node Vi is connected to node Vj by a single undirected link, node Vj

is also connected to node Vi by that same link. For undirected and link-weighted
networks wij is equal to wji for all links.

In the following, the general and common representation of Climate Networks by
their adjacency matrix A together with its corresponding spatial embedding and
potential node weights u is utilized. The spatial embedding is provided by a pair of
geographical coordinate vectors (X, Y ) with a geographical position (Xi, Yi) for each
node Vi. A is defined as

Aij := wij ,

with wij = 0 if the corresponding nodes are not connected. For unweighted networks
A simplifies to,

Aij =
{

1 if Vi is connected to Vj ,

0 otherwise .

2.2. Similarity Measures

An initial idea behind the Climate Network approach was to consider climate as a
network of many dynamical systems (Tsonis and Roebber, 2004b). And further, to
study the collective behavior of these dynamical systems by an investigation of the
coupling architecture of this network. This idea was pursued in various studies by
analyzing spatially extended sets of time series of climatic observables by similarity
measures.

Depending on the value distribution of time series and the assumed functional
form of relationships between time series, different similarity measures might be
suitable. Although the climate system might have various non-linear interactions, the
coupling between Climate Network nodes does not necessarily have to be assumed
as non-linear. Complex dynamical behavior can also emerge from linearly coupled
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dynamical systems. In fact, some Climate Networks constructed by a linear similarity
measure are surprisingly similar to those constructed by a non-linear measure (Donges
et al., 2009a).

Additionally, depending on the spatial scale of the Climate Network and the
temporal resolution of time series, an assumed relationship between time series
might occur with a certain delay. Traditionally, this is studied by a lead-lag analysis
using cross-correlation. However, especially with higher temporal resolutions of
time series covering climatic periods such a single delay for a pair of time series
might be inappropriate. An interesting similarity measure in that context is Event
Synchronization, which is designed to handle dynamical delays. The following
similarity measures occur in this thesis:

Pearson’s correlation coefficient (PCC): The probably most common similarity
measure is Pearson’s correlation coefficient (PCC). It quantifies linear dependencies
and can for centered data distribution be interpreted geometrically as the cosine
of the angle between the two time series as vectors. In this case the PCC can be
seen as a normalized dot product. If PCC = 0 the two vectors are orthogonal and
therefore linearly independent. If PCC = 1 or PCC = −1, the one time series is a
linear combination of the other and vice versa. For two time series x and y of length
l with means x̄ and ȳ and standard deviations σx and σy the Pearson’s correlation
coefficient is defined as

PCCx,y := Cov(x, y)
σxσx

=
∑l

t=1(xt − x̄)(yt − ȳ)√∑l
t=1(xt − x̄)2

√∑l
t=1(yt − ȳ)2

∈ [−1, 1] . (2.1)

Hence, for centered data x̂, ŷ:

PCCx̂,ŷ ≡ x̂ · ŷ

‖x̂‖ ‖ŷ‖ = cos(θx̂,ŷ) ,

with the angle θx̂,ŷ between vectors.

Spearman’s rho (�): The Spearman’s rho � is defined as the Pearson’s correlation
coefficient between the ranked time series. It therefore provides a non-parametric
measure of a monotonic relationship between the two time series. In that sense it
is a non-linear measure. Unlike the Pearson’s correlation coefficient it is robust to
outliers.

Event Synchronization (ES): This non-linear synchronization measure first intro-
duced by Quiroga et al., 2002 is defined on event series. It quantifies the synchronicity
between events in two given event series eμ

i and eν
j by counting the number of events

that can be uniquely associated with each other within a prescribed maximum delay,
while taking into account their temporal ordering.
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Event series can be constructed from natural time series in various ways and in the
applications part of this thesis several thresholding techniques are pursued. One can
also think of natural event series like series of earth quakes or lightning strokes. In
the following also a novel, kernel-based event synchronization measure is introduced
that is used to quantify synchronicity of lightning activity (P4).

Consider two event series eμ
i and eν

j , where eμ
i (eν

j ) denotes the time index of the
μ-th (ν-th) event observed at grid point i (j). In order to decide if two events eμ

i and
eν

j with eμ
i > eν

j can be assigned to each other uniquely, we first compute the waiting
time dμ,ν

ij := eμ
i − eν

j , and then define the dynamical delay :

τμν
ij = 1

2 min{dμ,μ−1
ii , dμ,μ+1

ii , dν,ν−1
jj , dν,ν+1

jj } . (2.2)

In order to avoid nonphysical synchronizations of events in sparse event series, we
further introduce a maximum delay τmax which shall serve as an upper bound for the
dynamical delay. If then 0 < dμ,ν

ij ≤ τμν
ij and dμ,ν

ij ≤ τmax, we count this as a directed
synchronization from j to i:

Sμν
ij =

{
1 if 0 < dμ,ν

ij ≤ τμν
ij and dμ,ν

ij ≤ τmax ,

0 else .
(2.3)

Directed Event Synchronization (Boers et al., 2014a) from j to i is then given by

ESdir
ij :=

∑
μν

Sμν
ij . (2.4)

A symmetric version of this measure can be obtained by also counting events at
the very same time as synchronous and taking the absolute value of the dynamical
delay,

S
μν
ij =

{
1 if |dμ,ν

ij | ≤ τμν
ij and dμ,ν

ij ≤ τmax ,

0 else ,
(2.5)

and computing the corresponding sum:

ESsym
ij :=

∑
μν

S
μν
ij . (2.6)

A continuous version of this measure can be obtained by a kernel-based approach.
Instead of a dynamical delay τ a dynamical delay kernel κ is incorporated into the
synchronicity estimation. For a given kernel κ the Kernel-based Event Synchronization
is defined as

KESij :=
∑
μν

κμν
ij . (2.7)
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A directed measure is achieved by an asymmetric kernel

asymκμν
ij =

{
f(dμ,ν

ij , . . . ) if dμ,ν
ij > 0 ,

0 else ,
(2.8)

where f is the actual function of the kernel with possible parameters in case of a
dynamic delay kernel. A possible parameter could be for instance τμν

ij . An undirected
Kernel-based Event Synchronization would have a symmetric kernel, for instance a
Gaussian:

gaussκμν
ij = exp −

(
dμ,ν

ij

)2

2
(
σμ,ν

ij

)2 , (2.9)

where σμ,ν
ij is the standard deviation of the Gaussian. An undirected Kernel-based

Event Synchronization using a dynamic delay Gaussian kernel is therefore given by

KESgauss
ij =

∑
μν

exp −
(
dμ,ν

ij

)2

2
(
σμ,ν

ij

)2 . (2.10)

The Kernel-based Event Synchronization can be seen as a generalization of the
common Event Synchronization. A dynamical step function as a delay kernel would
correspond to the previously defined ES versions using a dynamical delay τ . However,
as the kernel is in general a continuous function it does not rely on temporal sampling
as in time series. Therefore, it is directly applicable to continuous time measurements
such as lightning activity data (P4).

2.3. Statistical Network Models

As links of Climate Networks are often estimated using traditional measures of
correlation (dependence), the statistical inference approaches of statistical hypothesis
testing and confidence interval estimation are also applicable to Climate Network
topologies. For instance, a common question in the Climate Network approach
is whether an estimated similarity between two time series (nodes) is statistically
significant according to a certain significance level. In the case of Pearson’s correlation
coefficient and bivariate normally distributed time series, such a question can be
answered analytically. However, with more complex similarity measures or non-normal
distributed observables, a statistical null model often has to be computed numerically
by surrogate data sets. Prominent examples are surrogates retrieved by permutation
or bootstrapping, sometimes referred to as shuffled surrogates, Fourier surrogates
(Schreiber and Schmitz, 1996; Schreiber and Schmitz, 2000), or twin surrogates (Thiel
et al., 2006; Marwan et al., 2007b; Thiel et al., 2008; Romano et al., 2009) as also
applied in the associated publication C2.
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However, in studies of complex networks also other statistical models have been
developed that are more network specific. Depending on the null hypothesis they
range from random network models like the Erdős-Rényi network model (Solomonoff
and Rapoport, 1951; Erdős and Rényi, 1959) over configuration models (Newman
and Park, 2003; Squartini and Garlaschelli, 2011) to network models that respect the
spatial embedding. An example of such a spatial network model will be introduced
in the following chapter (see Sec. 3.3).

In order to infer the statistical significance of Event Synchronization estimates we
will employ shuffled surrogates. The associated statistical model also reveals a bias
in the measure Event Synchronization that depends on the event rate in event time
series and is therefore called event rate bias (P3). Furthermore, we could show that
this model is an analytical model for the case of no delay, i.e., for simultaneously
occurring events.

2.3.1. Event Rate Bias

Given two event series eμ
i and eν

j with events μ ∈ {1, . . . , m} and ν ∈ {1, . . . , n} with
n ≥ m, the maximum number of synchronizations in the measure Event Synchroniza-
tions is limited by the number of events m. The limit would correspond to the case
that all m events in eμ

i synchronize with events in eν
j . In other words,

∑
μν

Sμν
ij ≤ m . (2.11)

Additionally, the limit gets more likely the higher event rates are. Where event
rates are given by m

l and n
l with the initial time series length l. Specifically, these

synchronization counts are biased by the number of events and we refer to this bias
as event rate bias. The initially proposed Event Synchronization by Quiroga et al.,
2002 is normalized by

√
mn. However despite this normalization the measure remains

biased. In the appendix A.3 a comparison between the original Event Synchronization
(normalized by

√
mn) and the unbiased variant presented in chapter 6 is done.

For the general Event Synchronization with delay or the Kernel-based Event
Synchronization the event rate bias has to be estimated numerically by shuffled
surrogates. However, for synchronously occurring events the distribution of the
expected number of synchronous events assuming a uniformly random distribution of
events can be written as the following:

p(k) =
(

m

k

)
(l − m)!

l!

k−1∏
i=0

n − i
m−k−1∏

j=0
l − n − j , (2.12)

where p(k) is the probability to have k synchronizations between two event series of
length l with n and m events, respectively, at uniformly random time positions. In
the appendix A.2 we provide an efficient algorithm for the computation of the exact
distribution p(k) of the expected number of synchronization counts. The distribution
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Figure 2.1.: Event rate bias for synchronously occurring events as a function of two random
event series X and Y : We show the mean number of synchronizations in percent of
the maximum possible number of synchronizations (mean rel. counts in %) given
X and Y . The length of these series is 100, hence, the percentage is also the actual
number of events in this example.

p(k) of the expected number of synchronous events assuming a uniformly random
distribution of events can serve as a statistical null model and will also be used as
such.

The event rate bias is estimated by the expected number of counts 〈k〉p, where p(k)
is either estimated numerically or given by Eq. (2.12). The higher the event rates,
the more events synchronize at random and hence, the higher is the event rate bias.
The expected number of counts 〈k〉p in percent of the maximum possible number of
counts (m) for the synchronous (analytic) case is seen in Fig. 2.1.

2.4. Summary

Technically, the Climate Network approach can be divided into five subsequent steps:

1. Data pre-processing: Depending on, for instance the research question,
the similarity measure or the data product itself, it might be necessary to
pre-process given time series. The question of research might demand the
analysis of anomalies in respect to a given climatology, or might call for a more
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aggregated measure in time or space. As in the case of precipitation analyses
in this thesis, event series for the similarity measure Event Synchronization
are constructed in this step from the continuous observable precipitation time
series. However, many more pre-processing steps are possible.

2. Similarity estimation: For a given set of N pre-processed time series xi, i ∈
{1, . . . , N}, all pair-wise similarities sij are estimated by a given similarity
measure, leading to a NxN similarity matrix. Depending on the similarity
measure used, this similarity matrix can be asymmetric, as with for instance
Directed Event Synchronization:

sij = ESdir
ij .

3. Similarity significance: In order to remove spurious similarities from a
retrieved similarity matrix a null hypothesis of statistical independence has to
be formed. For most such null hypothesis in applications of Climate Networks
no analytic models exist because of the similarity measures used or because
of not normally distributed data. Null models are therefore usually computed
numerically by surrogate data. Hence, this step often involves the generation
of surrogate data in order to estimate the distributions of similarities in the
null model. However, no matter whether these distributions are estimated
numerically or given analytically, they are then employed in the hypothesis
testing of each originally found similarity sij . Accordingly, each similarity sij

is tested and then discarded if it fails to reject the null hypothesis with a
predefined significance level, i.e., the discarded similarity is set to zero.

4. Climate Network construction: A similarity matrix that is cleared from all
spurious similarities as described in the previous step, can directly be analyzed
as a link-weighted Climate Network by identifying link weights with similarities:

wij = sij .

The similarity matrix can also be thresholded to an unweighted Climate Network
by a threshold function k(i, j) which is often chosen to be constant:

Aij =
{

1 if sij > k(i, j)
0 otherwise

.

5. Climate Network feature extraction: Which features of a Climate Network
are quantified and how depends obviously on the research question. Possibilities
include, but are not limited to, the study of Climate Networks by network
measures (e.g., Directionality, see P2 and P3) or by coarse-graining approaches
(cf. teleconnection coarse-graining in C2, e.g.) But many other criteria can be
applied to Climate Networks in order to extract certain features. For instance
one can remove non-causal links and thereby reveal to topology of causal
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networks (Ebert-Uphoff and Deng, 2012a; Runge et al., 2012). The theoretical
framework for this step in the Climate Network approach is covered in the next
chapter about Climate Network statistics.
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Chapter 3.

Climate Network Statistics

Abstract

Climate Networks are high dimensional and spatially embedded complex
networks. However, physical processes in the underlying climate system can be
inferred from Climate Networks by statistical analyses of their topologies and
its spatial embedding. Common graph statistics are network measures. Those
relevant for this thesis are introduced in this chapter. Among them also the novel
network measure Directionality which measures dominant link directions in the
embedding space. Structural properties of Climate Networks are influenced by
the spatial embedding of the network, which leads to biases in network measures.
This chapter proposes a methodology to estimate such spatial biases and to
correct network measures for it. Apart from network measures, also another
statistical approach is presented: a coarse-graining of complex networks that
reduces a Climate Network to its Teleconnection Climate Network

3.1. Introduction

In accordance with the growth of computational power in science, also the size
of networks studied increased. In order to analyze and interpret these networks
various approaches have evolved. For instance, network rendering techniques that
make complex networks visually interpretable by showing them in an equilibrium
state regarding node positions in the visualization space (Kamada and Kawai, 1989;
Fruchterman and Reingold, 1991; Wiese et al., 2004, e.g.). But also edge bundling
techniques that merge similar links in order to reveal high-level link patterns (Holten
and Van Wijk, 2009; Lambert et al., 2010; Pupyrev et al., 2011, e.g.), as well as
coarse-graining methods that merge topologically similar nodes (Itzkovitz et al., 2005,
e.g.) or community detection approaches (Girvan and Newman, 2002; Newman and
Girvan, 2004; Duch and Arenas, 2005; Aldecoa and Marín, 2013, e.g.) have been
proposed.

Climate Networks have the specialty that they are spatially embedded networks
and hence, certain topological features of the networks are related to climatological
features of the underlying climate system in the embedding space. This makes those
network statistics favorable that respect the spatial embedding. An example of a
class of very sparse Climate networks are Causal Climate Networks (Ebert-Uphoff

17



Chapter 3. Climate Network Statistics

and Deng, 2012a; Runge et al., 2012). However, even those are usually analyzed
using network statistics.

In Climate Network studies the most common network statistics are node-based
network measures. Node-based measures have the advantage that they retrieve a
score for each node of the network and hence, for each location in the embedding
space. Such a field of network measure values can then be visualized on a map by
use of geographical node positions (X, Y ). Topological features of a Climate Network
can thereby be directly related to the corresponding geographical region.

Although most Climate Network studies use network measures, it is often challeng-
ing to find straightforward climatological interpretation for measures which where
developed in different research fields like for instance social sciences. Combining
network measures in certain ways can sometimes clarify ambiguities by ruling out spe-
cific interpretations. Two examples are introduced in the next Section. Furthermore,
new network measures especially for Climate Networks with a clear climatological
interpretation are necessary in certain cases. In the associated publications P2 and P3
we put this idea forward and introduce such a network measure called Directionality.

3.2. Network Measures

In this Section all network measures used in this thesis are defined. These include
the well established measures Degree, Strength, Local Clustering Coefficient, Close-
ness Centrality and Shortest-path Betweenness (Newman, 2010), but also recently
developed climate network related measures like Mean Geographical Distance or
Long-ranged Directedness (Boers et al., 2013) and the novel vector network measure
Directionality (see P2 and P3). All measures are node-based, hence reveal statistics
for each node i ∈ 1, . . . , N of the network. Except for Directionality all network
measures are scalar measures. Link-weighted or node-weighted (Heitzig et al., 2012;
Wiedermann et al., 2013) versions of network measures are only introduced for cases
that occur in this thesis.

3.2.1. Scalar Measures

Degree (DG): The Degree of a node i is defined as the number of links that are
attached to this node:

DGi :=
N∑

j=1
Aji . (3.1)

The node-weighted Degree (DG∗) is defined as:

DG∗
i :=

N∑
j=1

ujAji , (3.2)

with node weights u. The link-weighted Degree is traditionally called Strength.
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Strength (SG): Link-weighted networks have a weight attached to each link and
are represented by the matrix of link weights with zero weights for no links (see
Section 2.1.2). Therefore, with Aij = wij the Strength of a node i is defined as:

SGi :=
N∑

j=1
wji . (3.3)

However, in this thesis the measure Strength occurs mainly in the context of directed
networks where the Strength of a given node i is separated into the Strength for
links pointing away from that node (SGout

i ) and towards that node (SGin
i ) (Newman,

2010):

SGout
i :=

N∑
j=1

wji (3.4)

SGin
i :=

N∑
j=1

wij . (3.5)

Mean Geographical Distance (MD): The Mean Geographical Distance of a node
i is defined as the mean spatial length of all links attached to it:

MDi := 1
DGi

N∑
j=1

dist(i, j)Aji , (3.6)

where dist(i, j) is the great-circle distance between node j and node i.

Local Clustering Coefficient (LC): The Local Clustering Coefficient of node i is
defined as the fraction of the number of triangles and the number of pairs of links
attached to it. It is thus an estimate of the probability that two nodes connected to
node i are connected as well.

LCi :=
∑

j<k AijAjkAki∑
j<k AijAki

. (3.7)

Closeness Centrality (CC): Closeness Centrality is a shortest-path-based network
measure. For a given node i it is defined as the inverse mean topological distance of
that node to all other nodes of the network:

CCi := N∑N
j=1 dji

, (3.8)

where dji is the topological distance (i.e., the number of links) of a shortest path
between node j and node i.
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The node-weighted Closeness Centrality (CC∗) for a node i is defined as:

CC∗
i :=

∑N
j=1 uj

ui + ∑N
j=1 ujdji

, (3.9)

with node weights u. If all node weights are equal to one CC∗ is given by

CC∗
i = CCi

∑N
j=1 dji

1 + ∑N
j=1 dji

.

Thus, in this case CC∗
i converges to CCi for N → inf.

Shortest-path Betweenness (BC): The Shortest-path Betweenness of node i is
defined as the number shortest paths in the network that go through node i:

BCi :=
∑

l<k �=i

σlk(i)
σlk

, (3.10)

where σlk is the total number of shortest paths between node l and node k, and σlk(i)
the number of shortest paths between node l and node k that go through node i. For
larger networks this measure has a highly skewed distribution of scores and is often
visualized by its decadic logarithm.

3.2.2. Combined Measures

Especially for more complex network measures there is often not a unique explanation
for their values. For instance, a high Shortest-path Betweenness score can occur for
topological bottle necks or for hubs in a network. Hubs, nodes with a high Degree,
tend to be topologically well connected, and hence, many shortest paths go through
hubs. Degree and Shortest-path Betweenness fields are therefore often very similar.
However, bottle necks have a high BC score regardless of their DG score. Accordingly,
bottle necks can be detected by a combination of the network measures Degree and
Shortest-path Betweenness. In order to combine network measures we first calculate
the normalized ranks of their scores. These normalized ranks of network measures
have the prefix NR. For instance, the normalized ranks of Degree are given by

NRDG := 1
N

rank(DG) ∈ (0, 1] . (3.11)

A good combination for the estimation of bottle necks would then be the measure
Bottleneckness.
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Bottleneckness (BN): The Bottleneckness of a node i is given by the combination
of normalized ranks of Degree (NRDG) and Shortest-path Betweenness (NRBC):

BNi := NRBCi − NRDGi ∈ [0, 1) . (3.12)

Long-ranged Directedness (LD): Another, climatologically more interesting com-
bination of network measures is the Long-ranged Directedness introduced in C3. It is
calculated from the normalized ranks of Shortest-path Betweenness (NRBC), Mean
Geographical Distance (NRMD) and Local Clustering Coefficient (NRLC). The
Long-ranged Directedness of a node i is given by

LDi := 1
2NRBCi + 1

2NRMDi − NRLCi ∈ [0, 1) . (3.13)

3.2.3. Directionality

Directionality (DR) is a novel node-based network measure introduced first in P3 as
a measure for link-weighted networks including spatial effect estimation. A modified
version for unweighted networks was applied in P2. It is a non-scalar network measure
as it reveals the dominant link direction for each node i as well as the dominance
of that direction as a vector in polar coordinates DRi = (ρi, ϕi). These vectors
DRi are vectors in the two dimensional embedding space, which makes spatial effect
estimation for this network measure fairly interesting.

The dominant link direction of a node i is determined by the mode of the frequency
distribution Pi(ϕ) of link directions in the embedding space. This distribution is
determined from all links of node i. In the case of directed networks one has to
distinguish between links pointing away from node i and links pointing toward node
i. Link directions are represented by angles, i.e., the direction of a link between node
i and j is defined as

φ(i, j) := arctan Yj − Yi

Xj − Xi
, (3.14)

given the geographical coordinates (Xi, Yi) and (Xj , Yj) of nodes i and j. For
undirected networks two directions are identical if they point in opposite directions,
therefore angles are projected onto the semicircle so that φ(i, j) = φ(j, i). In practice
Pi(ϕ) is calculated using a fuzzy angle definition instead of, for instance, ordinary
binning. In that definition two angles are considered to be identical if they do
not differ by more than ε. For applications we commonly used ε = 0.02 rad. The
Directionality of node i is then defined as:

ρi := max
ϕ

Pi(ϕ) (3.15)

ϕi := arg max
ϕ

Pi(ϕ) , (3.16)
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with Pi(ϕ) being estimated by:

Pi(ϕ) =
∑

j:φ(i,j)∈(ϕ−ε,ϕ+ε)
Aij . (3.17)

The link-weighted version is retrieved by replacing the entries of the adjacency matrix
A by the link weights wij . The frequency distribution of link directions is then
adapted accordingly:

Pi(ϕ) =
∑

j:φ(i,j)∈(ϕ−ε,ϕ+ε)
wij . (3.18)

In Figure 3.1 an example of this measure is shown on an Event Synchronization
network from artificial event time series. These time series are short (length is
250) and noisy. Only a single front of events is inherent in this set of time series
and additionally this set has a random event at 1% of the times. The network is
constructed using Event Synchronization without delay and hence, weighted links
occur only for synchronous events and are undirected. Accordingly, the dominant
orientation of links estimated by the Directionality feature isochrones. Isochrones are
lines in the embedding space along which events synchronize statistically more often
than along other directions.
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Figure 3.1.: Performance example for the network measure Directionality on Event Synchro-
nization networks from short and noisy artificial event time series. Top: Spatial
visualization of the set of 4800 (80x60 grid) short and noisy artificial event time
series of length 250. Each grid point is colored according to the time of the last
occurrence of an event in the corresponding time series. Observe the single event
front moving from the left to the top-right. The event front is blurred due to noise.
Bottom: The network measure Directionality for the Event Synchronization network
without delay constructed from the set of event time series shown above. Observe
the close resemblance between event front orientation and Directionality isochrones.
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3.3. Spatial Effects

3.3.1. Introduction

Many networks are spatial networks. However, the network structure is often influ-
enced by the spatial embedding due to distance-based costs of links, i.e., the link
probability depends on the spatial length of links (Gastner and Newman, 2006; Bar-
nett et al., 2007; Henderson and Robinson, 2011; Barthelemy, 2011). Although this
effect is usually isotropic, it becomes anisotropic if boundaries in space are introduced
to the network, as this is the case with the spatial confinement of brain networks
which are embedded in three dimensional space and confined by the area of placed
electrodes (Henderson and Robinson, 2011). Climate Networks might be bounded if
only a smaller region is considered (Yamasaki et al., 2008a; Malik et al., 2011; Boers
et al., 2013, e.g.); similarly, power grids are confined by the economic region (e.g.,
by the boundary of the European Network of Transmission System Operators for
Electricity). We also call spatially confined networks regional networks.

Boundaries cut links which would connect the region under consideration with the
outside region. Obviously, this artificially reduces node degrees and the amount of
longer links in the remaining network, and hence influences corresponding network
measures. The effect of cut links due to boundaries is larger when the network consists
of many long links, as the probability is high that such links connect the inside and
the outside regions. How strong boundaries affect network measures depends on the
distribution of link lengths and on the network measures themselves.

Based on the network of interest and its spatial confinement, boundary effects
might be negligible, of interest, or distracting from network structure not imposed by
boundaries. Neglecting boundary effects can lead to spurious conclusions, e.g., for the
identification of hubs in brain networks (Henderson and Robinson, 2011). In many
applications, resulting boundary effects are often not negligible and, consequently,
network measures should be corrected in order to exclude them.

The dependence of the link probability on the spatial length of links has also
anisotropic effects on the network structure if the node sampling in the embedding
space is not homogeneous. For instance Climate Networks from regular latitude
longitude gridded data sets suffer from a bias in the topological difference between
regions where nodes are close to each other and regions where nodes are far away
from each other. This leads to statistically more links in polar regions than in
equatorial regions. This particular spatial effect has also been described by Heitzig
et al., 2012, who propose an analytic approach that introduces node weights to
network measures and makes network measures node splitting invariant. Although
this approach removes the bias of this specific spatial effect (see Fig. 3.4) it does not
remove the bias caused by boundaries.

Here we propose a correction procedure for network measures that consistently
estimates all spatial effects (i.e., effects on network measures due to the spatial
embedding). We will use a specific random network construction with properties
similar to those in the original network, i.e., it shares a similar link probability p(Δik)
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that two nodes, i and k that have the distance Δik in space, are linked. This p(Δ) is
not the probability to find a link of length Δ among all, but rather the probability
conditioned on the number of possible links of that length due to the embedding of
nodes in space.

3.3.2. Spatial Effect Estimation

In spatially embedded random networks (SERN), influences of spatial embedding on
network structure are quantified by a link probability that depends on the spatial
length of a link in the embedding metric space (Barnett et al., 2007). We propose
this as a model for spatial effects and generate SERN for the same node positions in
space as the original network and with the same link probability depending on spatial
link lengths as the network of interest. Thus for a spatial network, we consider the
result of a certain network measure on such a SERN as an estimate of spatial effects
in that measure. Hence, the SERN we use is a surrogate in the sense that it mimics
the same length dependency in the link probability as in the original network:

• Nodes are embedded in a metric space S with the metric Δ: S × S → R+; thus
Δik is the spatial distance between node i and k.

• Nodes have given positions (X, Y ) in S. These positions are the same as in the
original network.

• Nodes i and k are connected with the link probability p(Δik), i.e., the probability
of finding a link of length Δik in the original network with respect to how many
links of that length could occur.

Depending on the positioning of nodes in space, a binning of spatial link length
might be necessary in order to improve the link probability estimate of the original
network. This can be achieved by rounding spatial link lengths to appropriate integers
so that similar lengths fall into one integer length. A measurement using such a
procedure can be done with the following algorithm. Here Ad is the number of
possible links with integer length d and Bd is the number of actually present links
with integer length d. The fraction pd of both is an estimate for the underlying link
probability p(Δ).

Ad = Bd = pd = 0 ∀ d ∈ rounded Δ
for i ∈ nodes do

for k < i do
d ← rounded Δik

increase Ad by one
if node i and k are linked in the original network then

increase Bd by one
end if

end for
end for
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p ← B
A

Link probabilities p for real data derived by this algorithm can be seen in the
applications part in Fig. ??.

Unweighted Networks The SERN are a statistical model for spatial effects for
unweighted networks. Prior to modeling spatial effects with SERN, the link probability
p(Δ) for these random networks has to be estimated from the network of interest. In
contrast to the spatial effects estimation for link-weighted networks, an unweighted
surrogate network is then constructed by use of p(Δ). However, one realization of
such a surrogate is not enough. In order to improve the estimation of spatial effects
in a certain network measure, such as Closeness Centrality, the result of that measure
has to be averaged over an ensemble of surrogates. The reliability of such an estimate
is then derived from the distribution of ensemble measures.

If a node-based network measure that returns a value for each node is used, an
estimate of spatial effects can be found for each node in space. An average estimate
such as the node-wise median from 1000 surrogates is shown for the Closeness
Centrality field in Fig. 3.2 (bottom-left). As a measure of reliability for this node-wise
median we take the interquartile range divided by the median of each node. Thus for
a fixed number of surrogates we get a distribution over all nodes of values given by
the interquartile ranges divided by the medians. The evolution of that distribution
with increasing number of surrogates is visualized in Fig. 3.3. As one can see we
could have used only half as many surrogates and would have gotten a very similar
reliability of our correction. The network on which the regional Closeness is computed
(bottom-right) is a ripped-off part of the global network (top-left). Thus, nodes in
the regional network are connected if they are connected in the global network. The
global network is a SERN with the link probability p(Δ) ∝ Δ−3.5. The scales in
colorbars go from the minimum to the maximum value in all figures since we are only
interested in relative quantities.

Link-weighted Networks For link-weighted networks an average over an ensem-
ble of surrogates is not necessary. Similar to the proposed algorithm for un-
weighted networks in the previous paragraph, the following algorithm is proposed:

Ad = Bd = Wd = 0 ∀ d ∈ rounded Δ
for i ∈ nodes do

for k < i do
d ← rounded Δik

increase Ad by one
increase Bd by wik

end for
end for
W ← B

A .
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B A
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Figure 3.2.: Top-left: Global Closeness - Closeness Centrality of a random network on a sphere.
The connection probability depends only on the spatial link length and follows
a power-law with the exponent −3.5. Top-right: Corrected regional Closeness.
Arrows point out areas of strong similarity (A) and dissimilarity (B) in the spatial
patterns in the considered region. Bottom-left: Closeness spatial effects estimate,
taken as the median from 1000 surrogates. Bottom-right: Regional Closeness -
Closeness Centrality on a part of the same network as on the whole globe (top-left).
Nodes in the depicted region are connected if they are connected in the global
network.
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Figure 3.3.: Evolution of surrogate reliability with increasing number of surrogates for the
example shown in Fig. 3.2. Shown are important quantiles of the distribution of
node-wise interquartile ranges per median. After 400 surrogates reliability does not
improve much further.

Instead of counting links corresponding to a certain spatial link length bin, corre-
sponding link weights are added up. The result W (Δ) is not a probability, but the
average link weight depending on the spatial link length. The single surrogate is then
a weighted network with link weights according to W (Δ), and spatial effects of a
given network measure are estimated by that measure on that single surrogate.

Network Measure Correction A corrected network measure is now calculated by
subtracting the estimate of spatial effects for a certain network measure from the
measure on the original network of interest. For instance, the corrected Closeness
Centrality CC− would be given by:

CC−
i = CCorig

i − CCsurr
i . (3.19)

Illustratively, a comparison between CC, CC∗ and CC− is shown in Figure 3.4 for a
random network on the widely used longitude-latitude grid. By construction, the link
probability p(Δ) has an exponential decay and the network has 7080 nodes (3◦ grid).
The network is embedded in a closed sphere and therefore network measures are
not boundary affected. However, the common Closeness Centrality CC is biased by
spatial effects due to the inhomogeneous spatial sampling of nodes (The grid is more
dense close to poles). This bias is not inherent in node-splitting invariant measures
(e.g. CC∗ as introduced by Heitzig et al., 2012) or spatially corrected measures (e.g.
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CC− as introduced in P1). Spatially corrected network measures have the advantage
that they also correct for spatial effects due to boundaries and that the measure itself
is not modified (algorithms are unaffected, e.g.). However, node-splitting invariant
measures are beneficial for networks with unweighted links and without boundaries if
the network measure is numerically expensive. It might be numerically too costly to
estimate spatial effects for an already costly link-unweighted measure like Arenas’
Random Walk Betweenness (Pastor-Satorras et al., 2003) or Newman’s Random Walk
Betweenness (Newman, 2005) by use of an ensemble of SERNs.

In Figure 3.2 nodes are approximately homogeneously distributed and therefore
network measures are biased by spatial effects only if boundaries are introduced.
The common Closeness Centrality CC and the node-splitting invariant Closeness
Centrality CC∗ can be regarded as similar on such a grid. However, if boundaries are
introduced to the network the common Closeness Centrality CC and the spatially
corrected Closeness Centrality CC− vary (compare top-right with bottom-right in
Fig. 3.2). The intrinsic spatial bias of the measure due to the artificial boundary
in the regional case (Fig. 3.2, bottom-right) is obviously removed in the corrected
measure (Fig. 3.2, top-right).

The spatial structure of the corrected Closeness Centrality field resembles the one
of the global network in the corresponding region (Fig. 3.2). Strong similarities are
denoted by A and dissimilarities by B. The similarity between corrected Closeness
Centrality and the uncorrected Closeness Centrality values in the corresponding
region of the global network can be expressed quantitatively by a Spearman’s rank
correlation coefficient of 0.661, compared to a coefficient of 0.575 if the uncorrected
measure is used. Figure 3.2 is just a visual example, thus if we generate an ensemble
of 1000 such examples we get the distributions of correlation coefficients as shown in
in Fig. 3.5. The distribution of coefficients corresponding to the corrected Closeness
is not only shifted to higher similarity, but is also more narrow. The difference as well
as the absolute value in similarity vary strongly with measures and link probabilities
used. However similarities for corrected measures are typically higher than for regional
measures.

The similarity in network measures is due to the removed spatial effects as well
as to the similarity in network structure. All links that connect nodes within the
specified region are the same in both networks. The global network has more links as
well as links that connect nodes in the region with nodes that are not in the region;
in particular, links that reach deep into the region are rare due to the power-law
dependency in the link probability p(Δ). Note that the Degree is not as strongly
affected by these additional links in the global in comparison to the regional case as
is the path-based measure Closeness Centrality. For instance, correlation coefficients
for Degree are higher.

However, due to the lack of information in the regional in comparison to the global
network (border-crossing links cannot be resolved) the corrected values of the network
measures of the regional network can still differ from those derived from ripped-off
parts of a global network. Additional links in the global in comparison to the regional
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Figure 3.4.: Three Closeness Centrality versions on a spatially embedded random network (SERN)
on the widely used longitude-latitude grid without boundaries (closed sphere). The
link probability p(Δ) has an exponential decay and the network has 7080 nodes (3◦

grid). Observe that the common Closeness Centrality CC is affected by the spatial
embedding, whereas CC∗ and CC− are not.
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Figure 3.5.: Gaussian kernel density estimate from 1000 samples for the distribution of Spear-
man’s rank correlation coefficients between regional and global Closenesses (green)
and between corrected and global Closenesses (blue). Vertical lines correspond to
the example shown in Fig. 3.2.

network can have an additional effect on network measures – especially if they are
long.

These examples show the potential of the method. The described method removes
spatial effects in network measures, but can of course not predict how these measures
would change if adjacent regions were incorporated in the network construction.
However corrected measures for different boundaries are comparable, whereas the
uncorrected measures are not.

Directionality The network measure Directionality serves also as an example mea-
sure with a more sophisticated entanglement between network topology and spatial
embedding. This makes spatial effects estimation more challenging, but has the
advantage that such a measure also provides information regarding the orientation of
links in the embedding space.

In order to correct for spatial effects in the measure Directionality, we propose
the following: The frequency distribution of links Pi(ϕ) for all nodes i is not only
estimated on the original network, but also on the spatial surrogate. The corrected
Directionality (ρ−

i , ϕ−
i ) of node i is then estimated by:

ρ−
i = max

ϕ
P orig

i (ϕ) − ciP
surr
i (ϕ) (3.20)

ϕ−
i = arg max

ϕ
P orig

i (ϕ) − ciP
surr
i (ϕ) . (3.21)
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The constant ci is defined as the quotient of the two corresponding average frequencies
of links: ci = 〈P orig

i 〉/〈P surr
i 〉. This local re-scaling of the spatial surrogate frequency

distribution of links P surr
i (ϕ) ensures that the Directionality (ρ−

i , ϕ−
i ) is approximately

the null vector if links are isotropic. ρ−
i is therefore also a measure of anisotropy that

is independent of the spatial embedding of the network.
Due to the irregular sampling of nodes in space and boundaries in the network,

even an isotropic link probability can lead to preferred directions of links. In other
words, in such a case the frequency distribution of links P orig

i (ϕ) is not necessarily
flat. However, if the surrogate frequency distribution of links P surr

i (ϕ) is subtracted,
it does become flat since the spatial surrogate is constructed with an isotropic link
probability. On the other hand, if the difference of the frequency distributions has
large positive maxima at certain angles, then these are due to more links into the
direction of these angles than what is expected from spatial effects.

Since Directionality is, in contrast to for instance path-based measures like Closeness
Centrality, a topologically local measure, this spatial effects estimation scheme is
valid for unweighted as well as for link-weighted spatial networks. The difference
stems from the different estimation of frequency distributions P (ϕ): For unweighted
networks P (ϕ) is estimated by Equation (3.17) and for link-weighted networks by
Equation (3.18).

Two examples of the link-weighted Directionality with spatial effects estimation
are given in Figure 3.6 and 3.7. Both examples are take for a node i that has 1000
links, but the spatial embedding as well as link probabilities are different each time.
Example one (see Fig. 3.6) has 1000 homogeneously sampled nodes in a quadratic
region of size 1 by 1. The node i for which the Directionality is estimated is in the
center at (0.5, 0.5). The Voronoi cell for each node’s position is colored according to
the link weight for the link to node i (Top-left). Similarly, the surrogate is depicted
(Top-center), as well as the difference between these two fields (Top-right). The
corresponding frequency distributions P orig

i (ϕ) (Bottom-left), P surr
i (ϕ) (Bottom-

center) and the adjusted difference P orig
i (ϕ) − ciP

surr
i (ϕ) (Bottom-right) are shown

in the bottom row. The underlying anisotropy in the link probability of the original
network (Left-column) is almost unperturbed by the node sampling or boundaries
in the network. Hence, already the uncorrected frequency distribution P orig

i (ϕ)
(Bottom-left) features the more or less correct direction of π

2 . However, this is not
necessarily the case as one can observe in example two (see Fig. 3.7). This example
is constructed similarly as the first, but the node i is now in the top-right corner
at (0.9, 0.9), the link probability is decreasing slower1 and the node sampling in the
embedding space is inhomogeneous. This leads to strong spatial effects that severely
bias the uncorrected Directionality. Instead of π

2 , ϕi would be less than π
4 (see the

location of the maximum in the Bottom-left panel of Fig. 3.7). Nevertheless, the
corrected Directionality reveals the correct orientation; ϕ−

i ≈ π
2 (see the red line in

the Bottom-right panel of Fig. 3.7).

1This leads to an increase in boundary effects due to more longer links, or as in this case, higher
link weights also for longer links (see P1).
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Figure 3.6.: Link-weighted Directionality example for a node i in the center of a quadratic region
with 1000 nodes. Voronoi cells for each node are colored according to the link weight
for the link to node i (Top-left). Similarly the surrogate is depicted (Top-center) and
the difference between these two fields (Top-right). The corresponding frequency
distributions P orig

i (ϕ) (Bottom-left), P surr
i (ϕ) (Bottom-center) and the adjusted

difference P orig
i (ϕ) − ciP

surr
i (ϕ) (Bottom-right) are shown in the bottom row.

The corrected Directionality features the correct orientation; ϕ−
i ≈ π

2 (see the red
line in the Bottom-right panel). So does the uncorrected orientation ϕi ≈ π

2 since
spatial effects are negligible.
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Figure 3.7.: Same as Fig. 3.6 but with the node i not in the center of the region but in the
top-right corner (0.9, 0.9). Additionally, the link probability is more long-ranged
and the spatial sampling of nodes is inhomogeneous. The corrected Directionality
features the correct orientation; ϕ−

i ≈ π
2 (see the red line in the Bottom-right

panel), while the uncorrected Directionality is biased by spatial effects; ϕi < π
4 (see

the location of the maximum in the Bottom-left panel).
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3.4. Visual Analytics

3.4.1. Introduction

Visual Analytics is an emerging approach to study large complex systems in various
fields of research, for instance climate science (Graves et al., 2012; Santos et al.,
2013, e.g.), molecular biology (Bajaj et al., 2004, e.g.), genetics (Xia et al., 2014,
e.g.), computer science (Sarma et al., 2009; Hawes et al., 2013, e.g.), or even for
Climate Networks (Tominski et al., 2009, e.g.). Its aim is to provide an interactive
visualization of complex systems for knowledge discovery. A key idea is to have a
visualization system that extracts interactively certain features of a complex system
in order to make it visually interpretable. In the following a new feature extraction
technique is presented. It displays teleconnections in Climate Networks.

3.4.2. Coarse Graining and Teleconnections

So far, empirical orthogonal functions (EOFs), which are derived from principal
component analysis of covariance matrices, are commonly used for a spatial analysis of
teleconnections in climatological data (Kawamura, 1994; Deser, 2000; Ding and Wang,
2005, e.g.). While certainly very useful in many situations, they carry certain caveats
in such analyses: First, if the data are not normally distributed the corresponding
EOFs will in general, while uncorrelated, not be statistically independent (Monahan
et al., 2009). Second, even if they are independent, EOFs do not necessarily uniquely
correspond to climatological mechanisms (Dommenget and Latif, 2002). Third, and
maybe most importantly, analyses based on the covariance matrix will only be able
to capture linear dependencies. This might be considered insufficient in view of
the strong nonlinearities involved in climatic interactions. Climate Networks can
be considered as a complementary approach to study spatial patterns of climatic
interrelations, which do not suffer from these statistical problems if derived from
a nonlinear similarity measure. Furthermore, since teleconnections are not directly
represented as links in EOFs they have to be deduced from the spatial patterns.
Although this might be possible for simple teleconnection structures, it becomes
challenging for more complicated ones.

Nonetheless, the common way of Climate Network construction is not suitable for
the investigation of teleconnections as well. There, traditionally a pair-wise similarity
analysis between all pairs of time series is performed, for instance by use of Pearson’s
correlation coefficient (Donges et al., 2009a; Tsonis et al., 2006b, e.g.). However,
Climate Networks are spatially embedded networks and the similarity between time
series is strongly dependent on their spatial distance (P1): Two time series that are
spatially close to each other are likely to be more similar than two time series which
are far away from each other in space. By focusing only on strong similarities as in
most Climate Network studies, networks have essentially only short links, which led
to the investigation of paths in Climate Networks (Donges et al., 2009b, e.g.).

Here an approach is proposed that groups all time series by similarity into clusters.
A related idea was also pursued by Hlinka et al., 2014. The specific clustering scheme
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employed here, typically provides spatially connected clusters due to the distance
dependence of the similarities in climate systems. In other words, these clusters are
localized regions of high resemblance according to the dynamics of the corresponding
time series. Each cluster will in our approach be represented by a single time series
and only the similarity structure between these representatives will be explored. By
doing so we do not only reduce the dimensionality of the network, but we more
importantly constructed a Climate Network that is reduced to its teleconnections.
We will refer to these networks as Teleconnection Climate Networks (TCN).

3.4.3. Teleconnection Climate Networks

In order to group time series by similarity the standard fast greedy hierarchical
agglomerative complete linkage clustering (Defays, 1977) is performed. This cluster-
ing is done in a metric space with dissimilarities between time series as distances.
Depending on the measure of similarity used, different distances between time series
are possible. The right choice depends on the research question. In general the
distance dij between two time series xi and xj is given by the distance function D
that converts the similarity sij between xi and xj into a metric distance:

dij = D(sij) . (3.22)

The intention is to group time series into clusters in such a way that all similarities
between time series within a given cluster are statistically significant. This is achieved
by use of the complete linkage clustering scheme that is also known as farthest neighbor
clustering. The distance measure between two clusters U and V is in this scheme
defined as

Dclust(U, V ) := max
xi∈U,xj∈V

D(sij) = max
xi∈U,xj∈V

dij . (3.23)

The resulting dendrogram then has to be cut at the distance dcrit that corresponds
to the significance threshold of all pair-wise similarities. For instance, for a 98%
significance level dcrit is given by

dcrit = D(max
ij

upT 0.98(sij)) . (3.24)

This yields the maximum number of partitions of the set of time series such that for
any two clusters U and V holds D(U, V ) ≥ dcrit, which is the same as the minimum
number of partitions such that for any two time series xi, xk ∈ U in any given cluster
U we have dik < dcrit. This clustering method does not only assure that all time
series within a cluster are significantly correlated when cutting the dendrogram at
dcrit, but also avoids the chaining phenomenon of the single linkage clustering where
a set of time series might form a cluster although only a few time series are actually
close to each other in the embedding space (Everitt et al., 2001). The clustering
reduces the dimensionality of the problem by merging dynamically similar time series
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into clusters, which will serve as nodes for the Teleconnection Climate Networks TCN
that will be constructed in the following.

More specifically, a TCN node is represented by a single time series from the
corresponding cluster. Although there are clustering schemes, such as the k-means
clustering (MacQueen et al., 1967), that suggest a certain member of a cluster as a
representative, the in this study anticipated complete linkage clustering does not. Also,
since cluster sizes vary, special care has to be taken when choosing a representative
time series for a cluster. For instance, the point-wise mean of all time series within a
cluster would be influenced by the size of the cluster. Instead the time series with
the highest average similarity to all other time series within that cluster is sensible
choice for a representative of that cluster. This also has the advantage that the
representative time series retain the original variabilities.

The TCN is then constructed by computing the similarities sij for all pairs of
representative time series. With M being the number of representative time series,
where M � N , the subset of nodes i ∈ 1, . . . , M denotes the set of TCN nodes.
The TCN adjacency matrix A is then a MxM matrix. For instance, with the
lower significance threshold loT 0.98(sij), and the upper threshold upT 0.98(sij), the
link-weighted adjacency matrix A is given by

Aij =
{

0 if loT 0.98(sij) ≤ sij ≤ upT 0.98(sij) ,

sij otherwise .
(3.25)
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Applications

This part presents several applications of previously
presented methodologies and is based on the associated
publications P1 to C3.





Chapter 4.

Event Synchronization Climate
Networks in Studies of Extreme
Rainfall

Abstract

The analysis of spatial patterns of co-variability of extreme rainfall is chal-
lenging because traditional techniques based on principal component analysis
of the covariance matrix only capture the first two statistical moments of the
data distribution, and are thus not suitable to analyze the behavior in the
tails of the respective distributions. Here, we describe an alternative to these
techniques which is based on the combination of a non-linear synchronization
measure and complex network theory. This approach allows to derive spatial
patterns encoding the co-variability of extreme rainfall at different locations. By
introducing suitable network measures, the methodology can be used to perform
climatological analysis, but also for statistical prediction of extreme rainfall
events. We introduce the methodological framework and present applications to
high-spatiotemporal resolution rainfall data (TRMM 3B42) over South America.

4.1. Introduction

The analysis of the spatial structure of co-variability of climatic time series at
different locations forms an integral part of meteorological and climatological research.
Traditional techniques in this context are based on principal component analysis
(PCA) of the covariance matrix of the dataset under consideration. By construction,
such approaches only capture the first two statistical moments of the distributions of
the individual time series, and the resulting empirical orthogonal functions (EOFs)
do thus not describe the behavior of extreme events. By combining a non-linear
synchronization measure with complex network theory, we introduce a methodology
that can fill this gap and show how it can be applied for climatological analysis, but
also for statistical prediction of extreme rainfall events.

In the recent past, so-called climate networks have attracted great attention as tools
to analyze spatial patterns of climatic co-variability, complementarily to traditional
PCA-based techniques (e.g. Tsonis and Roebber, 2004c; Tsonis and Swanson, 2008;
Donges et al., 2009b; Donges et al., 2009a; Donges et al., 2011; Gozolchiani et
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al., 2011; Steinhaeuser et al., 2012a; Van Der Mheen et al., 2013; Ludescher et
al., 2013). Here, we show how these approaches can be extended to capture the
dynamical characteristics of extreme events. The key idea of the methodology that
shall be presented in the following sections is to identify rainfall time series measured
at different locations with network nodes, and represent strong synchronizations
of extreme events in these time series by network links connecting the respective
nodes. The climatological mechanisms driving the synchronization and propagation
of extreme rainfall events are assumed to be encoded in the topology of the resulting
climate network. Different aspects of this topology can be quantified by means
of suitable network measures, and upon providing climatological interpretations
of these network measures, we will show that the spatial patterns they exhibit
reveal the underlying climatological mechanisms (Boers et al., 2013). Furthermore,
using directed and weighted networks, we will show how this approach can be used
for statistical prediction of extreme events (Boers et al., 2014a), given that the
synchronization patterns are sufficiently pronounced.

While we restrict ourselves to present its application to satellite-derived rainfall
data, the methodological framework is more general and can in principle be applied
to analyze collective synchronization patterns of extreme events in many types of
complex systems. The methodology should be considered as a general data exploration
tool that can provide the basis for building scientific hypotheses on the mechanisms
underlying the synchronization of extreme events in large, interactive systems.

4.2. Climatic Setting

The monsoon season in South America from December to February (DJF) is char-
acterized by a southward shift of the Intertropical Convergence Zone (ITCZ) and
by an amplification of the trade winds due to the differential heating between ocean
and land (Zhou and Lau, 1998) (Fig. 4.1). These low-level winds transport moist air
from the tropical Atlantic ocean toward the tropical parts of the continent, where
they cause abundant rainfall. Substantial fractions of this precipitation are recycled
back to the atmosphere by evapotranspiration, and the winds carry the water vapor
farther west across the Amazon Basin towards the Andes. There, the shape of the
mountain range forces the winds southward towards the subtropics (Vera et al., 2006;
Marengo et al., 2012). The specific exit regions of this moisture flow vary considerably
from the central Argentinean plains to southeastern Brazil. These variations are
associated with frontal systems approaching from the South, which are triggered by
Rossby waves of the polar jet streams (Siqueira and Machado, 2004; Carvalho et al.,
2010). A dominant southward component of the flow leads to the South American
Low-Level Jet (SALLJ) east of the Andes (Marengo et al., 2004), which conveys
large amounts of moisture from the tropics to southeastern South America (SESA).
The occurrence of this wind system is associated with huge thunderstorms (so-called
Mesoscale Convective Systems (Durkee et al., 2009)) in this region (Salio et al., 2007a).
On the other hand, if the flow to the subtropics is directed mainly eastwards, it leads
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to the establishment of the South Atlantic Convergence Zone (SACZ), a convective
band that extends from the central Amazon Basin to southeastern Brazil (SEBRA)
(Carvalho et al., 2004b). The oscillation between these two circulation regimes leads
to the so-called South American rainfall dipole (cf. P2), and constitutes the dominant
mode of intraseasonal variability of the monsoon (Nogués-Paegle and Mo, 1997).
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ITCZ

SACZ

SALLJ

Amazon
Basin

SEBRA

SESA

Figure 4.1.: Topography of South America and key features of the South American monsoon
system, including the main low-level wind directions, the Intertropical Convergence
Zone (ITCZ), the South Atlantic Convergence Zone (SACZ), and the South American
Low-Level Jet (SALLJ). The geographical regions southeastern South America
(SESA), southeastern Brazil (SEBRA), and Amazon Basin are referred to in the
main text.
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4.3. Data and Methods

Data We employ satellite-derived rainfall data from the Tropical Rainfall Measure-
ment Mission (TRMM 3B42 V7, (Huffman et al., 2007)) with 3-hourly temporal and
0.25◦ × 0.25◦ spatial resolutions, resulting in N = 48, 400 time series with values
measures in mmh−1. Daily (3-hourly) extreme events are defined locally as points in
time for which the corresponding rainfall rate is above the 90th (99th) percentile for
the corresponding time series, confined to the monsoon seasons (DJF) from 1998 to
2012.

Event Synchronization The non-linear synchronization measure we employ is called
Event Synchronization and was first introduced by Quiroga et al., 2002. It quantifies
the synchronicity between events in two given time series xi and xj by counting the
number of events that can be uniquely associated with each other within a prescribed
maximum delay, while taking into account their temporal ordering: Consider two
event series {eμ

i }1≤μ≤l and {eν
j }1≤ν≤l containing l events, where eμ

i denotes the time
index of the μ-th event observed at grid point i. In order to decide if two events eμ

i

and eν
j with eμ

i > eν
j can be assigned to each other uniquely, we first compute the

waiting time dμ,ν
ij := eμ

i − eν
j , and then define the dynamical delay :

τμν
ij = 1

2 min{dμ,μ−1
ii , dμ,μ+1

ii , dν,ν−1
jj , dν,ν+1

jj } (4.1)

We further introduce a maximum delay τmax which shall serve as an upper bound
for the dynamical delay. If then 0 < dμ,ν

ij ≤ τμν
ij and dμ,ν

ij ≤ τmax, we count this as a
directed synchronization from j to i:

Sμν
ij =

{
1 if 0 < dμ,ν

ij ≤ τμν
ij and dμ,ν

ij ≤ τmax,

0 else.
(4.2)

Directed Event Synchronization (Boers et al., 2014a) from j to i is then given by

ESdir
ij :=

∑
μν

Sμν
ij . (4.3)

A symmetric version of this measure can be obtained by also counting events at
the very same time as synchronous and taking the absolute value of the dynamical
delay in equation (4.2),

S
μν
ij =

{
1 if |dμ,ν

ij | ≤ τμν
ij and dμ,ν

ij ≤ τmax,

0 else,
(4.4)

and computing the corresponding sum:

ESsym
ij :=

∑
μν

S
μν
ij . (4.5)

45



Chapter 4. Event Synchronization Climate Networks in Studies of Extreme Rainfall

A major advantage of this measure is that it allows for a dynamical delay between
events in the original time series xi and xj . In classical lead-lag analysis (using, e.g.,
Pearson’s Correlation Coefficient) this is not the case, since it only provides one single
delay between the two time series, namely the time window by which the time series
xi and xj are shifted against each other. Since the various climatological mechanisms
underlying the interrelations between time series measured at different locations
cannot be assumed to operate on one single time scale, the temporal homogeneity
assumed by a classical lead-lag analysis is not justified. Furthermore, the identification
of the correct lead (or lag) is not a well-defined problem, as there may be several
maxima of the correlation value over the range of leads or lags.

Network construction In the following, the notations ES for the measure or ES
for the corresponding similarity matrix will be used if a statement applies to both
versions of Event Synchronization. From the matrix ES, we derive networks by
representing its strongest entries by network links. It has to be assured that these
values are statistically significant. For this purpose, we construct 10, 000 surrogates
of event time series preserving the block structure of subsequent events by uniformly
randomly distributing the original blocks of subsequent events, and compute ES for
all possible pairs. From the resulting histogram of values, we obtain the threshold
T 0.95 corresponding to the 5% confidence level. The link density of the network is
then chosen such that the smallest entry of ES that is represented by a network link
is above T 0.95. In terms of the adjacency matrix A, this is captured by

Aij =
{

ESij if ESij > T 0.95 ,
0 else .

(4.6)

Note that the values of ES have been assigned to the links as weights. Of course,
one can also set the corresponding entries of A to 1 in order to obtain an unweighted
network. In case of ESsym, the corresponding network will be undirected, while for
ESdir, it will be directed.

Network measures On undirected and unweighted networks, we will consider four
different network measures: First, we consider betweenness centrality (BC), which is
defined on the basis of shortest network paths, i.e. the shortest sequences of links
connecting two nodes:

BCi :=
∑

l<k �=i σkl(i)∑
l<k �=i σkl

, (4.7)

where σkl denotes the total number of shortest network paths between nodes k and l
and σkl(i) the number of shortest network paths between k and l which pass through
node i. Since BC is a non-local centrality measure, we expect BC to exhibit high
values in regions which are important for the long-ranged, directed propagation of
extreme events.
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Second, we are interested in the mean geographical distance (MD, Boers et al.,
2013) of links at each node:

MDi := 1
DGi

N∑
j=1

Aijdist(i, j) (4.8)

where dist(i, j) denotes the great-circle distance between the grid points corresponding
to the nodes i and j. MD should show high values in regions where extreme events
occur synchronously with extreme events at remote locations, and thus quantifies
similar aspects of the topology as BC, although not based on network paths. Therefore,
to confirm our interpretation of BC, we would expect this measure to have a similar
spatial distribution as BC.

Third, we employ the clustering coefficient, defined as the fraction of neighbors of
a given node that are themselves connected:

LCi :=
∑

j<k AijAjkAik∑
j<k AijAik

(4.9)

LC measures complementary aspects of the topology as compared to the previous two
measures, and should be high in regions where extreme events exhibit large spatial
coherence, as for example due to large thunderstorms.

Furthermore, we introduce a combination of these measures, called long-ranged
directedness (LD, Boers et al., 2013). For this purpose, we calculate the normalized
ranks of BC, LC, and MD, denoted by NRBC, NRLC, and NRMD, respectively, and
put

LDi := 1
2NRBCi + 1

2NRMDi − NRLCi . (4.10)

The prefactors in this definition are motivated by the fact that BC and MD are
expected to quantify similar aspects of the network topology, while LC was introduced
to estimate complementary properties of the network. We thus take the mean of the
normalized ranks of BC and MD, and subtract the normalized rank of LC. High values
of LD should indicate regions which are important for the long-ranged propagation
of extreme events, while low values should indicate regions where extreme events
strongly cluster, but do not propagate over long spatial distances.

On directed and weighted networks, we will consider the well-known in- and
out-strength, defined as

SGin
i :=

N∑
j=1

Aij and SGout
i :=

N∑
j=1

Aji (4.11)

On the basis of these measures, we define the measure network divergence (ΔSG,
Boers et al., 2014a) as the difference of in-strength and out-strength at each grid cell:
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ΔSGi := SGin
i − SGout

i . (4.12)

This measure can be used to identify source and sink regions of extreme events on a
continental scale. In order to investigate where extreme events originating from a
given source region go to, we define the strength out of a geographical region R into
a node i as

SGin
i (R) := 1

|R|
∑
j∈R

Aij , (4.13)

where |R| denotes the number of grid cells contained in R.

4.4. Results and discussion

We will first use undirected and unweighted networks to show that the methodology
introduced above reveals climatic features which are consistent with the scientific
understanding of the South American monsoon system. This is mainly intended as a
proof of concept. Thereafter we will show that, using directed and weighted networks,
the approach can in certain situations be used to predict extreme events.

Climatic analysis of extreme rainfall We compute the measures BC, MD, LC, and
LD for undirected and unweighted networks with a prescribed link density of 2%.
These networks are derived from ESsym computed for daily events above the 90th
percentile.

BC and MD show a very similar spatial distribution, with high values over the
ITCZ, the Amazon Basin, as well as at the eastern slopes of the Andes along the entire
mountain range (Fig. 4.2A,B). These regions are in fact crucial for the large-scale
distribution of extreme events over the South American continent: The low-level trade
winds drive them from the tropical Atlantic towards the continent (Zhou and Lau,
1998), and upon a cascade of rainfall and evapotranspiration over the Amazon Basin
(Eltahir and Bras Rafael L., 1993), the winds force the moist air against the Andean
slopes, leading to so-called orographic rainfall (Bookhagen and Strecker, 2008). The
positioning of the branch of high BC and MD values from the western Amazon Basin
along the Andean slopes towards the subtropics corresponds to the climatological
location of the SALLJ, which provides the moisture necessary for extreme rainfall
events (Marengo et al., 2004).

In contrast, the only regions over the mainland that exhibit high values of LC
(Fig. 4.2C) are SESA, where some of the largest thunderstorms on earth occur (Zipser
et al., 2006), and the eastern coastal regions of the continent, which are exposed to
the landfall of so-called squall lines (Cohen et al., 1995).

By construction, LD shows high values where BC and MD both show high values,
and particularly low values in most parts of SESA, where LC is high. However,
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Figure 4.2.: Network measures for undirected and unweighted networks encoding the synchro-
nization structure of daily rainfall events above the 90th percentile of the monsoon
season (DJF). A. Betweenness centrality (BC) B. Mean geographical distance (MD)
C. Clustering coefficient (LC) D. Long-ranged directedness
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LD is also relatively high in SEBRA, concisely corresponding to the climatological
position of the SACZ (Carvalho et al., 2002; Carvalho et al., 2004b). These high LD
values indicate the highly dynamical character of extreme events associated with this
convergence zone.

The spatial distributions of the four measures BC, MD, LC, and LD hence reveal
these important climatological features, and our interpretation of these network
measures is thus consistent with the understanding of the South American monsoon
system (Boers et al., 2013).

Prediction of extreme rainfall We construct directed and weighted networks on
the basis of ESdir (cf. Eq. 4.6), computed for 3-hourly events above the 99th
percentile. Network divergence ΔSG of the resulting network exhibits negative values
(i.e. source regions for extreme events) over the ITCZ and the Amazon Basin, followed
by pronounced positive values (i.e., sinks of extreme events) at the eastern slopes
of the Andes (Fig. 4.3A). Surprisingly, SESA, which was described as one of the
exit regions of the low-level flow from the tropics, is a pronounced source region
of extreme rainfall. In order to reveal where these events subsequently propagate,
we compute the strength out of the spatial box denoted by SESA in Fig. 4.3, and
infer that, while some extreme events propagate northeastward, there also exits a
concise signature of targets extending from SESA to the eastern slopes of the Central
Andes in Bolivia. Thus, extreme rainfall in the Bolivian Andes should be predictable
from preceding events in SESA. In (Boers et al., 2014a), the authors revealed the
interplay of frontal systems approaching from the South, the Andean orography,
and the low-level moisture flow from the tropics as responsible climatic mechanism.
This interplay leads to the opening of a wind channel conveying warm and moist
air from the western Amazon Basin to SESA. These air masses collide with cold
air in the aftermath of the frontal system, leading to abundant precipitation. The
typical propagation trajectory of the associated rainfall clusters is dictated by the
northward movement of the frontal system and its alignment with respect to the
Andean mountain range. Based on these insights, a simple forecast rule is formulated
in (Boers et al., 2014a), which predicts 60% (90% during positive phases of the El
Niño Southern Oscillation) of extreme rainfall events at the eastern slopes of the
Central Andes.
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Figure 4.3.: Network measures for directed and weighted networks encoding the temporally re-
solved synchronization structure of 3-hourly rainfall events above the 99th percentile
of the monsoon season (DJF). A. Network Divergence (ΔSG) B. Strength out of
SESA (SGin(SESA)), where SESA is defined as the spatial box extending from
35◦S to 30◦S and from 60◦W to 53◦W.

4.5. Conclusion

In this chapter, we showed how complex networks can be employed to reveal spatial
patterns encoding the dynamical synchronization of extreme rainfall events, and how
this can be used for climatic analysis as well as to estimate the predictability of
extreme rainfall. We constructed networks on the basis of synchronization of extreme
rainfall events in South America and showed that combining the network measures
betweenness centrality, mean geographical distance, and clustering allowed to identify
the main features of the South American monsoon system. Furthermore, we showed
that a directed network approach can be applied to reveal typical propagation patterns
of extreme rainfall events. Specifically, a pathway from southeastern South America
to the Central Andes was revealed, which provides the basis for predicting extreme
events in the Central Andes.
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Chapter 5.

The South American Rainfall Dipole
A Complex Network Analysis of Extreme Events

Abstract

Intraseasonal rainfall variability of the South American monsoon system is
characterized by a pronounced dipole between southeastern South America and
southeastern Brazil. Here, we analyze the dynamical properties of extreme rain-
fall events associated with this dipole by combining a non-linear synchronization
measure with complex networks. We make the following main observations: i)
Our approach reveals the dominant synchronization pathways of extreme events
for the two dipole phases. ii) While extreme rainfall synchronization in the
tropics is directly driven by the trade winds and their deflection by the Andes
mountains, extreme rainfall propagation in the subtropics is mainly dictated
by frontal systems. iii) The well-known rainfall dipole is in fact only the most
prominent mode of an oscillatory pattern that extends over the entire continent.
This provides further evidence that the influence of Rossby waves, which cause
frontal systems over South America and impact large-scale circulation patterns,
extends beyond the equator.

5.1. Introduction

We aim at an improved understanding of the characteristics and origins of extreme
rainfall (above the 90th percentile of wet days) in the two most densely populated
areas in South America, namely southeastern South America (SESA) around Buenos
Aires between 30◦S and 35◦S and southeastern Brazil (SEBRA) including Saõ Paulo
and Rio de Janeiro between between 18◦S and 23◦S (see Fig. 5.1).

Large parts of the economies in these two regions depend on agriculture. They are
thus heavily reliant on continuous water supply for irrigation and energy generation,
but also particularly vulnerable to damages caused by extreme rainfall and associated
floodings and landslides (Berbery et al., 2002; Carvalho et al., 2002; Barros et al.,
2006; Marengo et al., 2013).

In large parts of South America, rainfall during the monsoon season (December to
February, DJF) depends on atmospheric low-level moisture inflow from the tropical
Atlantic Ocean to the Amazon Basin provided by the trade winds (Zhou and Lau,
1998). After crossing the Amazon Basin, the low-level winds are blocked by the Andes
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SESA

SEBRA

Figure 5.1.: Top: Topography of South America and key features of the region, including typical
wind directions (blue arrows) and the South American Low Level Jet (SALLJ). The
climatological positions of the Intertropical Convergence Zone (ITCZ) and the South
Atlantic Convergence Zone (SACZ) are shown by dashed black lines, while the two
study areas SESA (30◦S to 35◦S and 60◦W to 53◦W) and SEBRA (18◦S to 23◦S
and 47◦W to 40◦W) are indicated by red boxes. Bottom: The time series of the
number of extreme events in SESA (top) and SEBRA (bottom) for the monsoon
season (DJF) of 2005. The 80th percentile thresholds used to define SESA and
SEBRA phases are indicated by horizontal dashed lines.
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mountains and channeled southwards, causing pronounced orographic rainfall peaks at
the eastern slopes of the northern central Andes (Bookhagen and Strecker, 2008, e.g.).
There exist two different regimes for the direction and strength of the subsequent
low-level flow: i) If the flow has a strong southward component, it establishes the
South American Low-Level Jet (SALLJ, (Marengo et al., 2004)), transporting large
amounts of moisture to northern Argentina and SESA. This regime is associated with
enhanced rainfall (Liebmann et al., 2004), and in particular with the formation of
mesoscale convective systems (MCS, (Salio et al., 2007b; Durkee et al., 2009; Boers
et al., 2013)) in SESA. ii) If the flow exhibits a pronounced eastward component, it
transports moisture to the South Atlantic Convergence Zone (SACZ) and leads to
enhanced rainfall in SEBRA (Liebmann et al., 2004; Carvalho et al., 2004a). The
oscillation in rainfall amounts between SESA and SEBRA is the most important
source of intraseasonal rainfall variability of the South American Monsoon System
(Vera et al., 2006; Marengo et al., 2004; Jorgetti et al., 2013).

Several studies have investigated the dipolar rainfall pattern between SESA and
SEBRA during the monsoon season in South America. They mostly rely on principal
component analysis (PCA) on the basis of daily mean values of precipitation or
outgoing long-wave radiation (as a proxy for convection) data (Nogués-Paegle and
Mo, 1997; Liebmann et al., 2004; Marengo et al., 2004; Vera et al., 2006; Marengo
et al., 2012). However, no corresponding characteristics of spatial co-variability
have been analyzed for extreme values so far, since PCA is not applicable for this
purpose: PCA only includes the first two moments of the data distribution, and is
thus by construction not capable of capturing the characteristics of extreme events,
which are located at the tail of the distribution. Furthermore, it is questionable in
general to apply PCA to strongly non-Gaussian data distributions, since the resulting
empirical orthogonal functions (EOFs) are – while uncorrelated – not independent
and interpretation of their patterns is likely to be misleading (Monahan et al., 2009).

Here, we intend to fill this gap by employing a methodology which has recently
been introduced to reveal and analyze the spatial characteristics of extreme rainfall
co-variability (Malik et al., 2012b; Boers et al., 2013; Boers et al., 2014b). This
method is based on the combination of a non-linear synchronization measure and
complex network theory.

5.2. Data

We employ satellite-derived rainfall data from the Tropical Rainfall Measurement Mis-
sion (TRMM 3B42 V7, (Huffman et al., 2007)) with daily temporal and 0.25◦ × 0.25◦

spatial resolutions. Geopotential height and wind fields at 850mb are obtained from
NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA,
(Rienecker et al., 2011)) on daily temporal and 1/2◦ × 2/3◦ spatial resolutions. The
spatial domain is confined to the coordinates 40◦S to 15◦N and 85◦W to 30◦W
(Fig. 5.1). All datasets are analyzed for the monsoon seasons (December to February,
DJF) between 1998 and 2012.
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5.3. Methods

5.3.1. Extreme rainfall events

We define extreme rainfall events as days on which rainfall amounts exceed the 90th
percentile of the rainfall distribution restricted to days with rainfall sums larger than
0.01mm/day. This percentile threshold is local in the sense that it depends on the
respective grid cell’s rainfall distribution.

5.3.2. Phases of the rainfall dipole

We define the two phases of the rainfall dipole between SESA and SEBRA on the
basis of extreme rainfall event frequencies in the two regions. The SESA (SEBRA)
phase of the dipole is defined as the set of days on which the sum of extreme events
in the entire spatial domain of the SESA (SEBRA) box exceeds the 80 percentile
(Fig. 5.1). Note that these definitions are by construction independent in the sense
that the SESA (SEBRA) phase only depends on the number of events in the SESA
(SEBRA) box. Nevertheless, there is no temporal overlap between the two phases,
which can be explained by the dipolar rainfall pattern between the two regions.

This amounts to an average of 18 active days for both SESA and SEBRA phases
per DJF season. Composites of rainfall, geopotential height, and wind, as well as
complex networks will in the following be constructed separately for these two phases.

5.3.3. Event Synchronization

We consider an event-based measure of similarity to quantify the co-variability of
extreme rainfall at different grid cells. For this purpose, we employ event synchroniza-
tion (ES), modified on the basis of (Quiroga et al., 2002). Suppose we have two event
series {eμ

i }1≤μ≤li and {eν
j }1≤ν≤lj with li (lj) events at grid points i (j), where eμ

i

denotes the time index of the μ-th event observed at grid point i. In order to decide
if two events eμ

i and eν
j can be uniquely assigned to each other, we first compute the

waiting times between events dμ,ν
ij := |eμ

i − eν
j |. On this basis, we define the dynamical

delay :

τμν
ij = min

{dμ,μ−1
ii , dμ,μ+1

ii , dν,ν−1
jj , dν,ν+1

jj }
2 (5.1)

To exclude unreasonably long delays between events at different locations, we
introduce a maximum delay τmax. If dμ,ν

ij ≤ τμν
ij and dμ,ν

ij < τmax, we count this as
synchronous events:

Sμν
ij =

{
1 if dμ,ν

ij ≤ τμν
ij and dμ,ν

ij ≤ τmax,

0 else.
(5.2)
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ES between ei and ej is given as the sum of all Sμν
ij (for fixed i and j):

ESij :=
∑
μν

Sμν
ij . (5.3)

Each value ESij thus gives the number of events at grid points i and j which
occurred synchronously (i.e., could be uniquely assigned to each other) within τmax

days. This procedure is performed for all combinations of grid points i and j, with
1 ≤ i, j ≤ N = 48400. One advantage of this similarity measure is that it accounts for
varying temporal delays between events at different grid cells within the prescribed
maximum delay τmax. In contrast, the classical lead-lag analysis on the basis of
Pearson’s Correlation Coefficient only yields one lead or lag for the entire time series.

5.3.4. Complex Networks: Construction

We will construct two separate networks for the two phases of the dipole in the
following way: For the computation of the matrix {ESij}1≤i,j≤N for the SESA
(SEBRA) phase, we will only consider those events in the time series {eμ

i }1≤μ≤li ,
which fall into the SESA (SEBRA) oscillation phase and ignore remaining events.

For each grid cell (i, j), we need to estimate the statistical significance of the value
ESij . For this purpose, we construct a null model assuming that the li events at i
and lj events at j are placed independently according to a uniform distribution: We
construct 1000 surrogate pairs of an event time series for each combination of event
numbers (li, lj). By computing ES for all these pairs, we obtain a relative frequency
distribution of values of ES consistent with the assumptions of the null model and
infer the score of the 95% significance level from this distribution. Denoting this score
by T , a network link will be placed between grid cells i and j if the corresponding
value ESij is above T . For two arbitrary grid cells i and j, this can be formally
written as

Aij = Θ(ESij − T (li, lj)) − δij , (5.4)

where Θ denotes the Heaviside function and Kronecker’s delta δ is added to exclude
links from a grid cell to itself.

5.3.5. Complex Networks: Application

In this study, we consider two network measures. First, we compute the degree (DG).
At a given network node i, DGi is defined as the number of other nodes to which
this node is connected to by a network link:

DGi :=
N∑

j=1
Aij (5.5)

57



Chapter 5. The South American Rainfall Dipole

Thus, DG at a given grid cell yields the number of other grid cells where extreme
events occur synchronously with extreme events at that grid cell. A region with
high DG will therefore be interpreted as a region, which is particularly important for
spatial distribution and thus propagation of extreme rainfall.

In addition, we are interested in the directions along which extreme events occur
synchronously. For this purpose, we employ the measure directionality (DR). At
each node (i.e., grid cell) i, this measure yields two values: the dominant angle DRφ

i

among all network links at that node and the strength DRs
i corresponding to that

angle, quantified as the number of links pointing in that direction: Let φij denote the
angle between the meridian going through node i and the straight line between node
i and j. Since the networks considered in this study are undirected, all angles φij are
taken as modulo π, thus φij ∈ [0, π). In the following, we will therefore refer to DRφ

i

as an orientation rather than an angle. We first compute the frequency distribution
of all orientations ϕ of links at i:

Pi(ϕ) =
∑

j:φij∈(ϕ−ε,ϕ+ε)
Aij , (5.6)

where we consider all orientations differing by less than ε = 0.02 as equal. DR is then
defined by the maximum of this distribution

DRs
i = max

ϕ∈[0,π)
Pi(ϕ) (5.7)

together with the corresponding orientation

DRφ
i = arg max

ϕ∈[0,π)
Pi(ϕ) . (5.8)

This measure can be visualized by streamlines which are, at each grid point, directed
along the orientation given by DR. The DR strength DRs

i will in the following be
indicated by the thickness of these streamlines. In order to be able to obtain a clear
interpretation, we will compute DR only for networks constructed for simultaneous
events (τmax = 0). By construction, extreme rainfall at grid points which lie on
the same streamline occur typically at the same day. In this sense, they can be
interpreted as isochrones. Under the assumption that the temporal resolution of
1 day is sufficiently high, we thus expect that rainfall clusters typically propagate
perpendicular to these streamlines.

5.4. Results

5.4.1. Atmospheric Conditions

Composites of geopotential height and wind fields constructed separately for the two
different dipole phases show distinctively different features (Fig. 5.2). As expected,
we find anomalously high rainfall amounts over SESA for the SESA phase, but
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Figure 5.2.: Left: Composites for the SESA (top) and SEBRA (bottom) phase: daily rainfall
(background), and geopotential height (white lines) and wind fields at 850mb (black
lines). Right: Anomalies of the same variables with respect to DJF climatology.

negative anomalies over SEBRA (top row of Fig. 5.2). We further observe relatively
low pressure values over SESA, which are associated with frontal systems initiated
by Rossby wave-type patterns originating from the western Pacific Ocean (Siqueira
and Machado, 2004; Liebmann et al., 2004; Seluchi and Garreaud, 2006). This low
pressure system extends northwestwards along the eastern slopes of the southern
Central Andes up to central Bolivia and forces the geostrophic low-level winds from
the Amazon Basin southward along the eastern slopes of the Central Andes towards
SESA (Nicolini et al., 2002).

For SEBRA phases (bottom row of Fig. 5.2), rainfall composites show pronounced
positive rainfall anomalies over SEBRA, but negative anomalies over SESA. There
is a high pressure system over northern Argentina and SESA, and relatively low
pressure over SEBRA. This pressure configuration inhibits the southward flow from
the Amazon and instead turns it eastwards towards the SACZ. There, we find clear
indicators of an active convergence zone: northeasterly winds approaching from the
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tropical Atlantic as well as northwesterly winds originating from the western Amazon
Basin all converge over the SACZ. These results are consistent with earlier studies on
intraseasonal rainfall variability over South America (Carvalho et al., 2002; Liebmann
et al., 2004; Carvalho et al., 2004a, e.g.).

5.4.2. Complex network measures

For DG, we allow synchronizations of extreme events within a maximum delay of 3
days (τmax = 3), while for DR we only consider synchronizations at the very same day
(τmax = 0). The choice of two different maximal temporal delays is justified by the
different climatological interpretations we provide for the two network measures DG
and DR. Note that computing DG for τmax = 2 or τmax = 1 does not substantially
change the results.

5.4.3. Degree (DG)

For the SESA phase (top left in Fig. 5.3), we observe high values of DG over the
ITCZ, the entire Amazon Basin, along the eastern slopes of the Andes from northern
Peru to northern Argentina, as well as over SESA. In contrast, we find low DG values
over the SEBRA.

For the SEBRA phase (bottom left in Fig. 5.3), we observe a substantially different
spatial pattern of DG than for the SESA phase. High DG values in the vicinity of
the ITCZ are located farther north than for the SESA phase. Over most parts of the
Amazon Basin, values are even higher than for the SESA phase. Most notably, the
highest values are located over the SACZ, extending from the central Amazon Basin
to the subtropical Atlantic Ocean around 30◦S and 30◦W.

Note that the maximum delay τmax = 3 only serves as an upper bound for
the dynamical delay τ (Eq. (5.1)) assuring the unique association of events in the
computation of ES. Typically, extreme events synchronize on time scales shorter than
3 days, as is evident from comparing the results of Figure 5.3 with corresponding
results for τmax = 1 and τmax = 2.

5.4.4. Directionality (DR)

For the reason explained in section 5.3.5, directionality is calculated for networks
constructed from ES with τmax = 0. For the SESA phase, we observe N-S oriented
streamlines over eastern Brazil, which turn anti-clockwise when moving farther west
towards the Peruvian and Bolivian Andes, where they are approximately NW-SE
oriented. The most pronounced streamlines can be found over SESA, where they
are also oriented in NW-SE direction. This orientation continues towards the SACZ,
however with reduced directionality strength DRs (indicated by thinner streamlines).

For the SEBRA phase, the N-S oriented streamlines over northern Brazil rotate
stronger than for the SESA phase when moving westward, with streamlines over
central Brazil already oriented in NW-SE direction. We observe a clear pattern
of almost straight, parallel streamlines extending from the central Amazon Basin
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Figure 5.3.: Left: Degree (DG) normalized by the respective link density of the network for
the SESA (top) and SEBRA (bottom) phase. Right: Isochrones, wind fields at
850mb as well as the absolute value of the scalar product between wind vectors and
Isochrones for the SESA (top) and the SEBRA (bottom) phase.
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southeastward across the southeastern Brazilian coast to the subtropical Atlantic
Ocean. In contrast to the SESA phase, no streamlines can be observed over SESA.

For both dipole phases, we computed the scalar product between normalized wind
vectors at 850mb (near surface) and normalized DR at each grid point in order to
estimate the influence of the wind fields on the direction of extreme event propagation.
We take the absolute value of the scalar product, since DR only yields an angle
determining the orientation of network links rather then the actual direction. If
the scalar product is close to 0, the orientation of extreme-event propagation is
approximately parallel to the wind direction, while for values close to 1, it will be
approximately perpendicular.

For the SESA phase (top right in Fig.5.3), we observe small values (between 0
and 0.4) over almost entire tropical South America between 10◦N and 10◦S, while
the subtropics are characterized by values between 0.6 and 1.0. In particular, at the
eastern slopes of the Central Andes in southern Peru and Bolivia as well as in SESA,
the angles determined by DR are close to the wind angles.

For the SEBRA phase, the scalar product indicates that DR angles and wind
vectors are perpendicular over the entire tropics between 10◦N and 10◦S. However,
south of 10◦, we find high values for the scalar product between wind vectors and DR
angles extending from Bolivia east of the Andes to eastern Brazil. In particular over
the climatological position of the SACZ, wind vectors and DR angles are typically
parallel.

When subtracting the DG field for the SEBRA phase from the DG field obtained
for the SESA phase (Fig. 5.4), the dipole between the two phases becomes clearly
recognizable: Highest positive values are located over SESA, while highest negative
values can be observed over SEBRA. However, it also becomes apparent that the
oscillation is not confined to the dipole between SESA and SEBRA, but farther
extends over the remaining parts of the South American continent, although with
smaller amplitude: Southwest of SESA, we observe negative values, while northeast of
the SACZ, around the equator, we find positive values for the DG difference. North
of 5◦N, we observe negative values again.
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Figure 5.4.: Difference between Degree fields for the SEBRA and for the SESA phase. Note the
oscillation between positive and negative values extending over the entire continent
beyond the dipole between the SESA and SEBRA regions.
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5.5. Discussion

DG yields an estimate of the importance of a given grid point for the synchronization
paths of extreme events over the continent, as expressed by the number of other
grid points where extreme events occur synchronously with extreme events at this
grid point. It should be emphasized, however, that this does not imply that single
rainfall clusters propagate along the entire signature of high DG values, but rather
that possibly different extreme events synchronize along this signature.

Complementarily, DR provides the typical orientation along which extreme events
synchronize. According to our interpretation that rainfall events propagate in direction
perpendicular to the DR streamlines, and further assuming that rainfall events in
tropical South America propagate from east to west rather than from west to east
(Zhou and Lau, 1998; Vera et al., 2006; Marengo et al., 2012, e.g.), we infer the
following main climatological propagation pathways:

1. For the SESA phase, rainfall events originating from the tropical and subtropical
Atlantic Ocean enter the continent at the northern Brazilian coast, and propagate
westward over the Amazon Basin (top row of Fig. 5.3). Extreme events synchronize
according to the direction dictated by the low-level wind fields until they reach
the western part of the Amazon Basin. As soon as they turn southward towards
the Peruvian and Bolivian Andes, the streamlines of simultaneous occurrence of
extreme events are aligned with the wind direction. This can be explained by the
orographic impact of the Andes mountains (Bookhagen and Strecker, 2008): When
the moist air is driven towards the mountains, it is lifted and causes extreme rainfall
along the entire eastern slope of the Central Andes, extending from Peru to Bolivia.
At the same time, the orography forces the low-level winds southward along the
mountain slopes. South of 20◦, we observe a pronounced propagation pattern over
SESA, which implies synchronization of extreme rainfall events in a SW-NE direction.
This is consistent with studies of extratropical cyclones and frontal systems, which
move from southern Argentina northeastward, causing abundant rainfall over SESA
(Siqueira and Machado, 2004; Seluchi and Garreaud, 2006). In SESA, wind directions
are perpendicular to the direction along which extreme-rainfall events synchronize,
which is typical for rainfall caused by these frontal systems, since the low-level winds
from the north follow the isobars and interact with the frontal systems (top right in
Fig. 5.2). Thus, we infer that the synchronization direction of extreme events in the
tropics is determined by the low-level flow, while in the sub- and extra tropics, the
influence of frontal systems is dominant.

2. For the SEBRA phase, extreme events also propagate from the tropical Atlantic
Ocean westward to the Amazon Basin, but then occur simultaneously (i.e., at the same
day) in a large area extending from the central Amazon Basin to the southeastern
Brazilian coast and the adjacent subtropical Atlantic Ocean (Fig. 5.4). The orientation
of isochrones suggests that they synchronize in NE-SW orientation, i.e., perpendicular
to the wind direction, implying that frontal systems approaching from the south play
the most pronounced role for driving extreme rainfall in SEBRA.

64



5.6. Conclusion

The difference between the DG fields obtained for the SEBRA and SESA phases
suggest an oscillation over the entire continent rather then a single dipole between the
regions SESA and SEBRA. While these two regions are clearly the most pronounced,
the alternating pattern extends from central Argentina beyond the equator, with three
maxima and two minima in total between 40◦S and 15◦N. During austral summer,
large-scale circulation patterns in the form of Rossby waves, which emanate from the
western Pacific Ocean, induce northward-propagating cold fronts in subtropical South
America (Hoskins and Ambrizzi, 1993; Rodwell and Hoskins, 2001). The observed
oscillation suggests that these Rossby waves control extreme-rainfall variability over
the entire South American continent.

5.6. Conclusion

We studied the dynamical properties of extreme rainfall in the two most densely
populated areas in South America: southeastern South America (SESA) including
Buenos Aires and southeastern Brazil (SEBRA) around Saõ Paulo and Rio de Janeiro.
A dipolar pattern of average rainfall between these two regions has previously been
identified as the leading mode of intraseasonal variability in the South American
Monsoon System. In order to study the dynamical properties of extreme-rainfall events
associated with this dipole, we employed a combination of a non-linear synchronization
measure and complex network theory. This approach allowed us to identify the
pathways of extreme-rainfall synchronization and the network strength along these
pathways. By constructing separate networks for the two phases of the rainfall dipole
between SESA and SEBRA, we can distinguish the climatological synchronization
routes of extreme rainfall for the two regimes: For the SESA phase, this route leads
from the southern edge of the Intertropical Convergence Zone (ITCZ) across the
Amazon Basin and subsequently southward along the Andes mountains to SESA. For
the SEBRA phase, this path enters the continent north of the ITCZ and, after passing
the Amazon Basin, turns southeastward to the SEBRA. By comparing climatological
wind directions with the orientations of streamlines of synchronous extreme rainfall,
we reveal a transition of driving mechanisms from the tropics to the subtropics:
extreme-rainfall propagation in the tropics is driven directly by the (mainly easterly)
low-level winds, but extreme-rainfall propagation in the subtropics is dominated by
frontal systems approaching from the southern tip of the continent.

Our results indicate that the rainfall dipole between SESA and SEBRA is only the
most prominent part of an oscillation which extends over the entire South American
continent. This suggests that indirect influences of Rossby waves originating from
the Pacific Ocean on extreme rainfall extend to tropical latitudes even beyond the
equator.
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Chapter 6.

Synchronous Occurrences of Heavy
Rainfall Events in Germany

Abstract

Synchronous occurrences of heavy rainfall events and the study of their relation
in time and space are of large socio-economical relevance, for instance for the
agricultural and insurance sectors, but also for the general well-being of the
population. In this study, the spatial synchronization structure is analyzed as
a regional Climate Network constructed from precipitation event series. The
similarity between event series is determined by the number of synchronous
occurrences. We propose a novel standardization of this number that results
in synchronization scores which are not biased by the number of events in the
respective time series. Additionally, we introduce a new version of the network
measure Directionality that measures the spatial Directionality of weighted links
by also taking account of the effects of the spatial embedding of the network. This
measure provides an estimate of heavy precipitation isochrones by pointing out
directions along which rainfall events synchronize. We propose a climatological
interpretation of this measure in terms of propagating fronts or event traces
and confirm it for Germany by comparing our results to known atmospheric
circulation patterns.

6.1. Introduction

In Germany, spatial structures of precipitation are mainly determined by the orography
and its position in relation to the sea. This is not only the case for long-term means
of precipitation sums (Klein and Menz, 2003), but holds true for heavy precipitation
as well, as shown on the basis of the frequency of daily sums of 10mm and more
(Gerstengarbe and Werner, 2009). As visualized in Fig. 6.1, large precipitation sums
occur mainly in mountainous areas and in regions close to the coast of the North Sea.
Small daily sums occur especially in the northeast.

In this study, our focus is exclusively on heavy precipitation in Germany, which we
define as precipitation that leads to daily sums of at least 10mm. A weather station
with a daily precipitation sum larger than or equal to this threshold is considered to
have a precipitation event on the corresponding day.
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Variations in the spatial distribution of precipitation are well-captured by precipi-
tation events defined by said threshold: The spatial precipitation pattern, given by
average daily precipitation sums, is very similar to the spatial pattern of average event
rates (see Fig. 6.1). Furthermore, we consider 10mm as a good compromise between
having a sufficient number of events at each location and a rather high threshold in
order to study heavy precipitation. The average event rate for all event series of the
entire period with a threshold of 10mm is around 0.064. On average, we have 1300
events per event series.

In order to study synchronous occurrences of heavy precipitation events, we specify
synchronization scores between all 2337 meteorological stations and precipitation
gauges in Germany. These scores are defined as the number of synchronous occur-
rences of events in the pairs of event series, standardized to the expected number
of synchronous occurrences assuming uniform-randomly distributed events. The
obtained spatial synchronization structure is analyzed in terms of a regional Climate
Network. Recently, similar approaches have been taken for extreme rainfall events in
the Indian Monsoon System (Malik et al., 2012a), as well as in the South American
Monsoon System (Boers et al., 2013), but with a slightly different synchronization
measure introduced by Quiroga et al., 2002 called Event Synchronization (ES). In
general, applying complex network theory to climate time series has proven to de-
liver novel as well as established insights into climate dynamics (Paluš et al., 2011;
Ebert-Uphoff and Deng, 2012b; Feng and Dijkstra, 2014).

We will introduce a new version of the measure Directionality, which provides
isochrones along which heavy precipitation events typically occur synchronously. We
are going to provide a climatological interpretation for this network measure, which
will be confirmed by putting our results into relation with the atmospheric conditions
of six important climatological circulation patterns over Germany, namely Bridge

Central Europe (BM), High Central Europe (HM), Trough Central

Europe (TRM), Trough Western Europe (TRW), Northwest Cyclonic

(NWZ) and West Cyclonic (WZ).

6.2. Data

In this study, a precipitation gauge data set provided by the German Weather Service
(Deutscher Wetterdienst) and the Potsdam Institute for Climate Impact Research is
employed. It consists of 2337 daily time series for the time period 1951 to 2007 for
Germany. Each time series consists of measurements of precipitation sums in mm/day.
Since there are no missing measurements in the time period under consideration, the
data is regularly sampled in time. However, it is irregularly sampled in space. In
other words, the spatial coverage of rain gauges is not homogeneous. In order to
derive spatial patterns which are independent of the spatial coverage of data, we use
the method proposed by Rheinwalt et al., 2012, which will be explained in the next
section.
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Figure 6.1.: Average daily precipitation sums (left) and rates of events with precipitation ≥ 10mm
(right) for each weather station. The region of interest is decomposed into Voronoi
cells with stations at cell centers. Each cell is colored according to the colorbar on
top.

Concerning the comparison between results of this study to known atmospheric
circulation patterns, we employ geopotential height at 850 hPa and corresponding
wind field composites derived from the MERRA reanalysis product (Rienecker et al.,
2011). This data product has a spatial resolution of 1

2
◦ on latitudes and 2

3
◦ on

longitudes. This resolution does not resolve regional wind patterns, but still reveals
large-scale atmospheric conditions. Although this daily data set starts only in 1981 it
yields sufficiently accurate composites for the purpose of this study.

6.3. Methods

6.3.1. Climate Networks

To analyze the spatial structure of the temporal interrelations between climate time
series, Climate Networks have proven to be particularly useful (Tsonis et al., 2006a;
Donges et al., 2009b; Yamasaki et al., 2008a; Steinhaeuser et al., 2010; Malik et al.,
2012a; Steinhaeuser et al., 2012b; Boers et al., 2013). Commonly, time series at
different geographical locations are identified with network nodes and correlations
between them are represented by network links.

Although there are studies using link-weighted Climate Networks (Gozolchiani
et al., 2008; Steinhaeuser et al., 2010; Zemp et al., 2014; Boers et al., 2014a), most
focus on unweighted Climate Networks; especially those concerning precipitation
events (Malik et al., 2012a; Boers et al., 2013). In most Climate Networks studied
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so far, only the strongest correlations between time series were represented by links.
In addition, these links were typically unweighted. In contrast, we incorporate all
possible links – not exclusively those corresponding to strong correlations – and weigh
links according to their synchronization score.

The topological structure of such Climate Networks is assumed to encode properties
of the underlying climate system. The topology is usually inspected in terms of
network measures like Degree, Local Clustering Coefficient, Closeness Centrality,
Shortest-path Betweenness, etc. (Donges et al., 2009b; Malik et al., 2012a; Boers
et al., 2013, e.g.). These node-based measures determine values for each node in
space. Such a scalar or vector field of network measure values can then be visualized
on a geographical map with the same spatial embedding. Features of the underlying
Climate Network can thereby be directly related to the corresponding geographical
region.

However, said network measures are known to be influenced by the spatial embed-
ding of the network itself (Gastner and Newman, 2006; Barnett et al., 2007; Henderson
and Robinson, 2011; Rheinwalt et al., 2012; Berezin et al., 2012). Here, networks are
confined by German national borders and thus network measures experience boundary
effects (Rheinwalt et al., 2012). Additionally, network measures are also biased by
the irregular sampling of nodes in space (Heitzig et al., 2012). In this study, all
these effects of the spatial embedding on network measure scores are estimated and
corrected for, using the method proposed by Rheinwalt et al., 2012, but adapted for
weighted networks (see chapter 3).

6.3.2. Precipitation Event Series Analysis

Daily precipitation time series include many zeros and comparably few spikes. Such
distributions are methodologically challenging for time series analysis, since commonly
used similarity measures such as Pearson’s correlation coefficient are debatable in
such contexts. Here, we choose a novel event-based approach that uses a Poisson
point process as a simple statistical model for expected synchronizations.

For each precipitation time series we have a series of precipitation events corre-
sponding to days with precipitation sums above the threshold of 10mm. For each
pair of such event time series, we then count how often events occur in both series at
the very same time (see Fig. 6.2). These counts depend on the number of events. As
the total number of events increases, the maximum possible number of counts also
increases, as well as the number of counts that occur at random. In other words, these
synchronization counts are biased by the number of events. This bias is called event
rate bias in this study and is estimated by a Poisson point process. This point process
provides the distribution of the expected number of synchronous events assuming a
uniformly random distribution of events:

p(k) =
(

m

k

)
(l − m)!

l!

k−1∏
i=0

n − i
m−k−1∏

j=0
l − n − j , (6.1)
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Figure 6.2.: Precipitation events (vertical red and dotted black lines) are defined as days with
daily precipitation sums above the 10mm threshold (horizontal dashed red line).
Events at weather station A synchronize with events at station B if they occur at
the same time. These events are marked as vertical red lines.

where p(k) is the probability to have k synchronizations between two event series
of length l with n and m events, respectively, at uniformly random time positions
(n ≥ m). The event rate bias is estimated by the expected number of counts 〈k〉p.
The higher the event rates, the more events synchronize at random and hence, the
higher is the event rate bias.

With the probability distribution p(k) (Eq. 6.1) obtained for the Poisson point
process as a statistical model, we could test the statistical significance of synchroniza-
tions. But due to the spatial proximity of weather stations, we would reject the null
hypothesis that events at two weather stations are independent of each other in more
than 97% cases with a confidence level of 99%. Hence, setting unweighted links by
significance would lead to Climate Networks with very high link densities.

As an alternative, we standardize synchronization counts to the distribution p(k).
Instead of using observed counts, we use the difference between observed counts and
expected counts 〈k〉p in units of the standard deviation of the corresponding p(k).
Hereby, the event rate bias in synchronization counts is eliminated and synchronization
scores that are independent of the number of events are obtained. A synchronization
score Zij between two time series i and j is regarded as an estimate of similarity
between i and j:

Zij = kij − 〈k〉p

σp
, (6.2)
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where kij is the actual number of synchronous events for station i and j, 〈k〉p is the
corresponding expectation value with respect to p(k), and σp is standard deviation of
the distribution p(k). A comparison between the commonly used ES and our proposed
similarity measure concerning the event rate bias is provided in the appendix A.3.

6.3.3. Weighted Climate Network Construction

Six weighted Climate Networks are examined in this study, constructed for the
temporal subsets corresponding to the six dominant atmospheric circulation patterns
over Germany. These networks thus represent the synchronization structure of
precipitation events for the respective circulation pattern in the time period under
consideration. The networks are constructed by using the corresponding matrix Z of
synchronization scores computed for the respective temporal subsets as a link-weighted
network adjacency matrix.

6.3.4. Network Measure

In this study, we analyze weighted Climate Networks with a novel version of the
network measure Directionality (cf. P2), which accounts for biases in the measure
due to spatial effects (cf. P1).

The Directionality of a node i specifies a vector (ρi, ϕi) that points in the dominant
direction of links concerning their number and strength. The dominant direction is
derived by the mode of the frequency distribution Pi(ϕ) of synchronizations depending
on the direction ϕ. The calculation of the mode is performed by using a fuzzy angle
definition: A direction ϑ is regarded as identical to ϕ if it falls into the same angle
interval (ϕ − ε, ϕ + ε). In this study ε is chosen as 0.02 rad. Thus, Pi(ϕ) is defined as:

Pi(ϕ) =
∑

j:φ(i,j)∈(ϕ−ε,ϕ+ε)
Zij ,

where φ(i, j) denotes the angle of the link from node i to node j. Here, networks are
undirected; therefore angles are projected onto the semicircle so that φ(i, j) = φ(j, i)
(see Fig. 6.3 for an example). Thus, ϕi specifies a tangent to node i, and not a vector,
along which synchronizations occur most often. The Directionality of node i is defined
as:

ρi = max
ϕ∈[0,π)

Pi(ϕ) (6.3)

ϕi = arg max
ϕ∈[0,π)

Pi(ϕ) . (6.4)

Since Pi(ϕ) is not a count of links, but a count of standardized synchronizations for
a given fuzzy angle ϕ, it is called a frequency distribution of synchronizations and
not of links. ρi is regarded as the Directionality strength.

In this study of synchronously occurring heavy precipitation events, the tangent to a
node i defined by ϕi specifies isochrones for these events, i.e., lines along which events
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SAB = 4

SAC = 6

SAD = 5

SAE = 3

φAD

φAC

A

B

C

D

E

PA

765

45◦

90◦

164◦

ρA = 7

ϕA = 164◦

Figure 6.3.: Directionality for an example node A with four neighbors B, C, D and E. These
four neighbors result in three directions due to the fuzzy definition of angles and the
network being undirected. φAD = 45◦ and φAC = 270◦ but is flipped back into the
first semicircle so that φAC = 90◦. The same is the case for φAE . Therefore, also
due to the fuzziness of angles, we consider φAB ≈ φAE ≈ 164◦. For this direction
the distribution PA(164◦) = SAB + SAE = 7 which is the maximum of PA. This
results in a Directionality strength for node A of ρA = 7 and the tangent has an
angle of ϕA = 164◦.
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occurred simultaneously. We thus expect the isochrones to be typically oriented along
the low-level atmospheric flow direction as determined by the corresponding wind
fields. However, this may depend on the propagation speed of precipitation systems,
the temporal resolution of time series and the spatial extent of the region under
consideration: In case of particularly low propagation speeds in relation to the daily
temporal resolution of the data, the orientation of the isochrones may be dominated
by the actual spatial extension of the precipitation system rather than by its direction
of propagation. This may happen for a slowly moving frontal system, where the
isochrones should be expected to align with the orientation of the frontal system, and
not with its direction of propagation. In contrast, fast moving precipitation systems
will leave event traces in the direction of the flow. If these traces are dominant,
isochrones feature their orientation.

The measure Directionality is visualized by coloring for each node i a tangent with
angle ϕi according to its strength ρi, i.e., isochrones are colored by their Directionality
strength (see Fig. 6.4-6.6).

Spatial effects influencing the network measure are estimated by using a spatial
surrogate network. Such a surrogate will be constructed such that it has the same
number of nodes with the same spatial embedding as well as the same dependence
of the link probability on the spatial length of links. Accordingly, the average link
weight for links of a certain spatial length is the same in the original network as well
as in the surrogate. This is in contrast to (Rheinwalt et al., 2012), where the spatial
surrogate was sampled by many unweighted networks in order to estimate spatial
effects for unweighted network measures.

In order to correct for spatial effects in the measure Directionality, we propose
the following: The frequency distribution of synchronizations Pi(ϕ) for all nodes i is
not only estimated on the original network, but also on the spatial surrogate. The
Directionality (ρ−

i , ϕ−
i ) of node i that is independent of the spatial embedding of the

network is then estimated by:

ρ−
i = max

ϕ∈[0,π)
P orig

i (ϕ) − ciP
surr
i (ϕ) (6.5)

ϕ−
i = arg max

ϕ∈[0,π)
P orig

i (ϕ) − ciP
surr
i (ϕ) . (6.6)

The constant ci is defined as the quotient of the two corresponding average frequencies
of synchronizations: ci = 〈P orig

i 〉/〈P surr
i 〉. This re-scaling of the spatial surrogate

frequency distribution of synchronizations P surr
i (ϕ) ensures that the Directionality

(ρ−
i , ϕ−

i ) is approximately the null vector if links are isotropic. However, due to
the irregular sampling of nodes in space and boundaries in the network, even an
isotropic link probability can lead to preferred directions of synchronizations. In other
words, in such a case the frequency distribution of synchronizations P orig

i (ϕ) is not
necessarily flat. However, if the surrogate frequency distribution of synchronizations
P surr

i (ϕ) is subtracted, it does become flat since the spatial surrogate is constructed
with an isotropic link probability. On the other hand, if the difference in frequency
distributions has large positive maxima at certain angles, then these are due to more
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synchronizations into the direction of these angles. A positive maximum at a certain
fuzzy angle is therefore due to more synchronizations into that direction than what is
expected from spatial effects.

In principle, a node can have multiple directions of preferred synchronizations, and
our measure picks the dominant one. In order to estimate the uncertainty σ−

i of
this dominant direction, the weighted circular variance of all angles with positive
differences in the frequency distributions of synchronizations is computed. It is defined
as

(σ−
i )2 =

∑
ϕ∈Ω

w(ϕ)(ϕ − ϕ−
i )2/

∑
ϕ∈Ω

w(ϕ) , (6.7)

with Ω = {ϕ : w(ϕ) > 0} and weights

w(ϕ) = P orig
i (ϕ) − ciP

surr
i (ϕ).

6.4. Results and Discussion

As mentioned in the methods section above, it is expected that isochrone patterns
for precipitation are strongly determined by the flow direction of air masses. Here,
the influence of atmospheric circulation patterns on the orientation of isochrones and
values of the Directionality strength is assessed by reference to six of the most frequent
circulation patterns according to Hess and Brezowsky (Werner and Gerstengarbe,
2010): Two rather dry patterns with low wind speeds (BM and HM, Fig. 6.4), two
with intermediate wind speeds but high importance for long lasting rainfall that is
likely to lead to floods (Mudelsee et al., 2004) (TRM and TRW, Fig. 6.5), and the
most frequent circulation patterns with high wind speeds (NWZ and WZ, Fig. 6.6).
For each circulation pattern the novel network measure is compared to a composite
of geopotential height and wind at 850 hPa. Note that the geopotential height fields
are on the same scale in Figs. 6.4, 6.5, and 6.6, while the length of the wind arrows
are not comparable among figures. Since wind speeds are proportional to the margin
between the isobars, they can thus still be compared qualitatively.

Low wind speeds (Fig.6.4): The circulation pattern BM with bridge-like highs
over Central Europe leads to a relatively slow eastward movement of northwest-to-
southwest fronts over Germany (Werner and Gerstengarbe, 2010). If such fronts cause
precipitation events, these events propagate slowly and are hence expected to lead to
isochrones that are parallel to the orientation of fronts.

The circulation pattern HM is even drier than BM, especially in the northeast of
Germany, where precipitation events do not synchronize significantly enough along
a dominant direction. For this pattern, isochrones exhibit rather high uncertainty
in some geographical regions, and are hence very thin or even non-existent in these
areas. With anticyclones located over the middle of Germany, the circulation pattern
HM favors clockwise, slow circulations of frontal systems (Werner and Gerstengarbe,
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Figure 6.4.: Left column: Geopotential height at 850 hPa and corresponding wind field compos-
ites for the low wind speed circulation patterns BM (top) and HM (bottom). Right
column: Network measure Directionality, visualized by isochrones for simultaneous
events with color-coded values corresponding to the Directionality strength. The line
width of isochrones is proportional to 1 − (σ−)2. Hence, more uncertain isochrones
are thinner than more certain ones. Observe that isochrones are parallel to the
expected orientation of fronts (as can be inferred from the composites in the left
column). Both columns share a common colorbar and the range of values in a panel
is marked by the corresponding yellow bar for that panel.
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Figure 6.5.: Same as Fig. 6.4, but for the intermediate wind speed circulation patterns TRM and
TRW. Observe that for TRM isochrones are typically oriented in accordance with
corresponding frontal systems except for the northwestern part of Germany. For
the circulation pattern TRW with even faster wind speeds, isochrones are mostly
parallel to the flow.
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Figure 6.6.: Same as Fig. 6.4, but for the intermediate wind speed circulation patterns NWZ and
WZ. Note that except for orographic perturbations isochrones are overall parallel to
the wind flow at 850 hPa.
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2010). In accordance with our climatological interpretation, this leads to an isochrone
pattern with isochrones typically oriented perpendicularly to the circulation direction.
However, this pattern is rather perturbed. This may be explained by the strong
influence of orography on precipitation: For instance in the Bavarian Alps (BA in
Fig. 6.7), isochrones are parallel to the mountain range of the Alps. Also the Rhenish
Massif (RM in Fig. 6.7) and the Rhineland-Palatinate (RP in Fig. 6.7) perturb the
isochrone pattern.

Intermediate wind speeds (Fig.6.5): From the geopotential height and wind com-
posites obtained for the circulation pattern TRM, a southwest-northeast orientation
of frontal systems can be inferred. In most parts of Germany, the corresponding
isochrones are aligned with this orientation, suggesting that they are caused by rather
slowly moving fronts. The exception to this is the northwestern part of Germany,
where isochrones are rather parallel to the flow. This might be explainable by the
fact that wind speeds over this region are higher than over the remaining parts of
Germany, resulting in isochrones along the propagation direction of precipitation
systems. This change in the orientation of the isochrones is very abrupt and can be
expected to associated with the influence of orography. For instance, the influence
of the Thuringian Forest (TF in Fig. 6.7) on isochrones is very pronounced in this
circulation pattern.

For the circulation pattern TRW, isochrones are oriented along event traces and
therefore parallel to the orientation of the flow, in accordance with our interpretation
given in Section 6.3.4.

High wind speeds (Fig.6.6): For the circulation pattern NWZ, relatively strong
isochrones are observed. Note the dark red isochrones in the northwest of Germany
and along the mountain range from the Thuringian Forest (TF in Fig. 6.7) to the
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Figure 6.8.: Yearly precipitation in blue and above-sea-level altitude in brown along the 52.75◦N
line of latitude.

Bavarian Forest (BF in Fig. 6.7). All strong isochrones are parallel to the wind flow
at 850 hPa. Especially in the northeast of Germany, isochrones are rather weak, and
as for TRM, the orientation of isochrones changes abruptly approximately along the
10◦E line of longitude. The reason for this abrupt change in orientation might be an
orographic barrier at ≈ 10◦E (see Fig. 6.8). The influence of this barrier on yearly
precipitation sums is seen in Fig. 6.8, which depicts the orography and precipitation
distribution alongside the 52.75◦N line of latitude. One can see that the terrain
ascends from approximately 9.5◦E to 10.5◦E from 20m to 120m above sea level, before
descending again towards the Mecklenburg lowlands (ML in Fig. 6.7). Parallel to
this, precipitation drops from 740mm/year at 10.5◦E to only 550mm/year at 11.5◦E.

This sudden change in isochrone orientation in the north of Germany can also be
observed for the circulation pattern WZ. However, in this case the Directionality
strength in the northeast of Germany is higher than for NWZ and more parallel
to the wind flow. Also, isochrones in the mountainous South of Germany are less
perturbed by orography and thus more in accordance with the flow direction for WZ

than for NWZ.

6.5. Conclusion

Based on long-term gauge station data with high spatial resolution, we investigated
the spatial characteristics of daily heavy precipitation synchronicity in Germany by
means of complex networks. We introduced a new version of the network measure
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Directionality that accounts for spatial effects in weighted Climate Networks, discussed
its applicability on regional scales and provided climatological interpretations. This
measure provides insights into the climatological orientation of the propagation
of precipitation clusters and frontal systems in terms of isochrones which, while
being consistent with known circulation patterns, go beyond the hitherto known.
The presented methodology also provides a promising framework for evaluating
climate models with respect to their implementation regarding heavy precipitation.
Furthermore, we are convinced that our findings can be helpful for the assessment of
hazard risks in form of floodings and, if combined with climate model projections,
the development of these risks under ongoing climate change.
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Chapter 7.

Teleconnections in Climate Networks
A Network of Networks Approach to Investigate the

Influence of Sea Surface Temperature Variability on

Monsoon Systems

Abstract

We analyze large-scale interdependencies between sea surface temperature
(SST) and rainfall variability. We propose a novel Climate Network construction
scheme which we call Teleconnection Climate Networks (TCN). On account of
this analysis, gridded SST and rainfall data sets are coarse-grained by merging
grid points that are dynamically similar to each other. The resulting clusters of
time series are taken as the nodes of the TCN. The SST and rainfall systems are
investigated as two separate Climate Networks, and teleconnections within the
individual Climate Networks are studied with special focus on dipolar patterns.
Our analysis reveals a pronounced rainfall dipole between southeastern Asia and
the Afghanistan-Pakistan region, and we discuss the influences of Pacific SST
anomalies on this dipole.

7.1. Introduction

Precipitation on the Asian continent is known to be influenced by large scale at-
mospheric processes like the Hadley and Walker circulation. However the intricate
interplay of different atmospheric processes and how they influence precipitation
variability are still not completely understood. Here, we study long-range interrela-
tions within the precipitation system as well as between precipitation and sea surface
temperature (SST) dynamics. Our aim is to shed light on the spatial structure of
such teleconnections, with a special focus on precipitation dipoles and how they are
influenced by SST variability.

For this purpose, we employ the Climate Networks approach by representing the
interrelations between climatic time series as complex networks (Tsonis and Roebber,
2004b; Tsonis et al., 2006b; Ebert-Uphoff and Deng, 2012a; Donges et al., 2009b;
Yamasaki et al., 2008b; Donges et al., 2009a; Malik et al., 2012c; Boers et al., 2013;
Boers et al., 2014a). The SST as well as the precipitation system are studied as two
separate networks, and the interrelations between them by their cross-topology.
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So far, empirical orthogonal functions (EOFs), which are derived from principal
component analysis of covariance matrices, are commonly used for a spatial analysis of
teleconnections in climatological data (Kawamura, 1994; Deser, 2000; Ding and Wang,
2005, e.g.). While certainly very useful in many situations, they carry certain caveats
in such analyses: First, if the data are not normally distributed the corresponding
EOFs will in general, while uncorrelated, not be statistically independent (Monahan
et al., 2009). Second, even if they are independent, EOFs do not necessarily uniquely
correspond to climatological mechanisms (Dommenget and Latif, 2002). Third, and
maybe most importantly, analyses based on the covariance matrix will only be able
to capture linear dependencies. This might be considered insufficient in view of
the strong nonlinearities involved in climatic interactions. Climate Networks can
be considered as a complementary approach to study spatial patterns of climatic
interrelations, which do not suffer from these statistical problems if derived from
a nonlinear similarity measure. Furthermore, since teleconnections are not directly
represented as links in EOFs they have to be deduced from the spatial patterns.
Although this might be possible for simple teleconnection structures, it becomes
challenging for more complicated ones.

Nonetheless, the common way of Climate Network construction is not suitable for
the investigation of teleconnections as well. There, traditionally a pair-wise similarity
analysis between all pairs of time series is performed, for instance by use of Pearson’s
correlation coefficient (Donges et al., 2009a; Tsonis et al., 2006b). However, Climate
Networks are spatially embedded networks and the similarity between time series is
strongly dependent on their spatial distance (P1): Two time series that are spatially
close to each other are likely to be more similar than two time series which are far
away from each other in space. By focusing only on strong similarities as in most
Climate Network studies, networks have essentially only short links, which led to the
investigation of paths in Climate Networks (Donges et al., 2009b).

Here we propose an approach that groups all time series by similarity into clusters.
A related idea was also pursued in (Hlinka et al., 2014). We use a specific clustering
scheme that typically provides spatially connected clusters due to the distance
dependence of the similarities in climate systems. In other words, these clusters are
localized regions of high resemblance according to the dynamics of the corresponding
time series. Each cluster will in our approach be represented by a single time series
and only the similarity structure between these representatives will be explored. By
doing so we do not only reduce the dimensionality of the network, but we more
importantly constructed a Climate Network that is reduced to its teleconnections.
We will refer to these networks as Teleconnection Climate Networks (TCN).

7.2. Method

In order to group time series by similarity we use the standard fast greedy hierarchical
agglomerative complete linkage clustering (Defays, 1977). This clustering is performed
in a metric space with dissimilarities between time series as distances. In this study
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we focus on the Spearman’s rho correlation coefficient as the similarity measure
in order to capture not only linear but also other monotonic relationships and in
order to avoid problems of skewed distributions in precipitation data. In our case
of standardized anomalies that have zero mean and unit variance this coefficient is
proportional to the dot product between the ranked variables and can be interpreted
as the cosine of the angle θ between these two ranked variables. More precisely, the
Spearman’s rho �X,Y between two ranked time series X and Y is given by

�X,Y = Cov(X, Y )
σXσY

≡ X · Y

‖X‖ ‖Y ‖ = cos(θX,Y ) . (7.1)

This angle θ in radians between two time series is a distance that we use as the
dissimilarity measure for the clustering.

Statistical significance of Spearman’s rho values is estimated using twin surrogates2.
These carry the advantage of preserving dynamical features of the original time series
in contrast to bootstrapping methods (Thiel et al., 2006; Marwan et al., 2007b; Thiel
et al., 2008; Romano et al., 2009). For each pair of time series we test against the
null hypothesis that they are independent realizations of the same dynamical system.
Upon repeating this for all pairs of time series we pick the maximum threshold
corresponding to the 98% confidence level as a global significance threshold T 0.98(�).

We intend to group time series into clusters in such a way that all correlation
values between time series within a given cluster are statistically significant. This
is achieved by use of the complete linkage clustering scheme that is also known as
farthest neighbor clustering. The distance measure between two clusters U and V is
in this scheme defined as

D(U, V ) = max
X∈U,Y ∈V

d(X, Y ) = max
X∈U,Y ∈V

θX,Y . (7.2)

We cut the resulting dendrogram at the distance dcrit that corresponds to the
significance threshold of all pair-wise correlation values, i.e., dcrit = arccos(T 0.98(ρ)).
This yields the maximum number of partitions of the set of time series such that for
any two clusters U and V holds D(U, V ) ≥ dcrit, which is the same as the minimum
number of partitions such that for any two time series X, Y ∈ U in any given cluster
U we have θX,Y < dcrit. This clustering method does not only assure that all time
series within a cluster are significantly correlated when cutting the dendrogram at
dcrit, but also avoids the chaining phenomenon of the single linkage clustering where
a set of time series might form a cluster although only a few time series are actually
close to each other in the embedding space (Everitt et al., 2001). The clustering
reduces the dimensionality of the problem by merging dynamically similar time series
into clusters, which will serve as nodes for the Teleconnection Climate Networks TCN
that will be constructed in the following.

More specifically, a TCN node is represented by a single time series from the
corresponding cluster. Although there are clustering schemes, such as the k-means

2Due to the short length of time series we obtain the twin surrogates without embedding.
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clustering (MacQueen et al., 1967), that suggest a certain member of a cluster as a
representative, the in this study anticipated complete linkage clustering does not. Also,
since cluster sizes vary, special care has to be taken when choosing a representative
time series for a cluster. For instance, the point-wise mean of all time series within a
cluster would be influenced by the size of the cluster. Instead we pick the time series
with the highest average correlation to all other time series within that cluster as a
representative for that cluster. This also has the advantage that the representative
time series retain the original variabilities.

The TCN is now constructed by computing � for all pairs of representative time
series and assigning the corresponding values as link weights. We remove all links
from the TCN that have a weight equal or below T 0.98(�).

We note that TCN could as well be studied using node-weighted network measures
(Heitzig et al., 2012; Wiedermann et al., 2013). Although not focus of this study, this
is an interesting topic of future research.

7.3. Application

We apply the proposed methodology to precipitation data for the Asian continent
together with a global SST data set. We will in the following investigate dipole
structures in the precipitation system and how these dipoles are influenced by SST
variability.

7.3.1. Data

We use monthly time series for the years 1982 to 2008: SST data is obtained from
the NOAA Optimum Interpolation SST V2 on a one by one degree grid (Reynolds
et al., 2002), and precipitation data over land is taken from the APHRODITE V1101
daily precipitation data product on a 0.25 × 0.25 degree grid (Yatagai et al., 2012).
In the latter data set, monthly mean values were calculated from daily values in
a pre-processing step. We study monthly anomalies, in contrast to the monthly
mean values itself, where the seasonal cycle would dominate correlation coefficients.
Anomalies are calculated by subtracting from each value the long-term mean for that
month and dividing by the corresponding long-term standard deviation.

7.3.2. Coarse-graining

Based on the significance tests explained above, we obtain significance thresholds
T 0.98(�) = 0.199 for the precipitation data set and T 0.98(�) = 0.494 for the SST data
set. Hence, we cut the Asian precipitation dendrogram at � = 0.2. This leads to
111 precipitation clusters which are shown in Fig. 7.1. The geographical location of
representative time series are depicted as black dots. With an initial number of 31624
time series the coarse-graining reduces the number of time series by a factor of ≈
285. While the minimum correlation within clusters is 0.2, the average correlation
within a cluster has a much higher value of 0.7.
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Figure 7.1.: Clustering of the precipitation data using the arccosine of the Spearman’s rank
correlation as a distance metric. All time series within a cluster are significantly
correlated to each other. This corresponds to a minimum correlation of 0.2 between
time series within a cluster. However, the average correlation within a cluster is
on average 0.7. Geographical locations of representative time series for clusters are
depicted as black dots.
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Figure 7.2.: Clustering of the SST data using the arccosine of the Spearman’s rank correlation
as a distance metric. All time series within a cluster are significantly correlated
to each other, which corresponds to a minimum correlation of 0.5 between time
series within a cluster. The average correlation within a cluster is on average 0.8.
Geographical locations of representative time series for clusters are depicted as black
dots.

We cut the global SST dendrogram at a threshold of � = 0.5. This leads to 1419
SST clusters as shown in Fig. 7.2. With an initially number of 40780 SST time series
the coarse-graining reduces the number of time series only by a factor of ≈ 29. This
lower reduction is due to the relatively coarser spatial resolution of the SST data
set. The correlation coefficient between SST time series within a cluster is, with an
average value of 0.8, even higher than for the precipitation clustering.

7.3.3. Dipoles

In order to focus on precipitation dipoles we reduce the precipitation TCN by removing
all nodes that do not even have a single significant link with a negative link weight.
Note that we understand dipoles as anti-correlations between representative time
series. The resulting network reflects the dipole structure that is captured from
the APHRODITE data set for the considered time period. It consists of only 36
anti-correlation links (red) and 83 correlation links (blue) (see Fig. 7.3).
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Figure 7.3.: The precipitation TCN reduced to nodes that have significant anti-correlations (red
links) and correlations (blue links) to other representative precipitation time series.
Link thickness is proportional to absolute link weight. Links are drawn between
geographical positions of representative time series and the corresponding clusters
are colored. Observe the pronounced precipitation dipole between southeastern Asia
and the Afghanistan-Pakistan region.
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Figure 7.4.: Mean correlation between monthly precipitation anomalies in the southeast Asian
pole of the dipole (yellow dots) to the global SST field. Observe the negative (red)
mean correlation values between this pole and the SSTs in the tropical central and
eastern Pacific, as well as the positive (blue) mean correlation pattern extending
from the pole to the subtropics.

7.3.4. Networks of Climate Networks

Given the two sets of representative time series for the precipitation data set as well as
for the SST data set, we estimate all pair-wise lagged correlation coefficients between
these two sets. We consider possibly lagged correlation, because teleconnections
between Asian precipitation and the global SST field can in general occur with a
delay even on monthly scales. We employ a simple maximum correlation approach as
follows. We focus on the influence of SST variability on precipitation, and thus only
consider lags that correspond to SST dynamics preceding precipitation dynamics.
Where we consider only lags up to 12 month. As link weights we take the first local
maximum of Spearman’s rho over this range of lags. A similar approach was taken
for example by Yamasaki et al., 2008b.

In order to understand the influence of SST variability on the obtained Asian
precipitation dipole, we examine cross links of nodes from the southeast Asian pole
(see Fig. 7.3). All the nodes in this region, marked as yellow dots in Fig. 7.4, experience
a spatially very similar influence from the SST network (not shown). Thus, we show
the mean correlation from the SST network to these precipitation nodes (see Fig. 7.4).
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7.4. Results and Discussion

Using the proposed method of TCN construction we find a strikingly pronounced
precipitation dipole between the southeast Asian region and the Afghanistan-Pakistan
region. This dipole has for example been described in Barlow et al., 2005. In that
study, the authors partly explain its occurrence by an interplay of the Madden-Julian
oscillation and the African-Arabian jet stream. Furthermore, this dipolar pattern is
most likely related to the lateral component of the Asian monsoon system (Webster
et al., 1999; Webster et al., 1998; Trenberth et al., 2000).

The southeast Asian region, in the precipitation network represented by nodes
marked as yellow dots in Fig. 7.4, is a major deep convection area of the considered
precipitation network. Convection is forced by solar heating, and forms a rising
branch of the Hadley cell in this area, but is also modulated by the Walker circu-
lation (Gill, 1980). This modulating effect explains the negative correlation values
between precipitation in the southeast Asian region and SST anomalies in the eastern
central tropical Pacific observed in Fig. 7.4: The Walker circulation causes upward
atmospheric motion at the western boundary of the tropical Pacific, and downward
motion at the eastern boundary. If the Walker circulation weakens as under El
Niño conditions, convection is suppressed in the southeast Asian region, resulting
in reduced precipitation. At the same time, upwelling of cold water in the eastern
Pacific ocean is reduced, which causes positive SST anomalies in the eastern and
central tropical Pacific. Correspondingly, a strengthened Walker circulation causes
stronger convection in the southeast Asian region and negative SST anomalies in the
eastern and central tropical Pacific.

On the other hand, we also observe a V-shaped pattern of positive correlation
values in Fig. 7.4, with two branches extending to the subtropics. These two branches
follow the climatological orientation of the trade winds in this region, and we suggest
the following explanation for this pattern: Since the specific humidity of the low-level
atmosphere rises with temperature, and the air temperature is in turn coupled to
the SSTs, air parcels arriving at the southeast Asian region will carry the more (less)
moisture the warmer (cooler) the SSTs are along the trajectory of the trade winds
from the subtropics. This modulates the water vapor content of the air that rises in
the southeast Asian region due to the convection discussed in the last paragraph, and
hence the amount of precipitation. We note that this mechanism should also apply
to the tropical Pacific, but there, its influence is strongly overprinted by the Walker
circulation.

7.5. Conclusion

We proposed a new framework to construct multivariate Climate Networks from
observational data. This framework is designed to study long-range interrelations,
i.e., teleconnections, by first merging dynamically similar time series into clusters,
and then investigating connections between these clusters. We applied our approach
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to SST data as well as precipitation data over the Asian continent, and coupled the
two separate networks obtained for each variable to a network of Climate Networks in
order to study the impacts of SST variability on teleconnections in the precipitation
network. Our analysis reveals a pronounced precipitation dipole between southeastern
Asia and the Afghanistan-Pakistan region, which may be controlled by an interplay of
the Madden-Julian Oscillation, and the African-Arabian jet stream. Results obtained
from the coupled network of networks analysis further suggest that trade winds from
the subtropics, as well as the Walker Circulation over the tropical Pacific in turn
modulate this dipole.
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Conclusion

8.1. Contributions

In conclusion, this thesis provides four main advances to the Climate Network
approach, as well as to complex network theory in general. First, an improved
estimation of co-variabilities of events by employing the similarity measure Event
Synchronization in an unbiased way was introduced and applied, including the
development of a novel continuous version of this measure called Kernel-based Event
Synchronization. Second, a methodology to estimate spatial effects in complex
networks was proposed and applied to artificial and observational data. Third, the
novel network measure Directionality for spatially embedded networks was invented
and applied. Fourth, a framework for the identification of teleconnections in climate
systems using complex networks of networks was introduced and applied to Asian
precipitation and global sea surface temperature data.

Event Synchronization We improved existing Climate Network approaches for
studies of event synchronicity by introducing an Event Synchronization measure that
is unbiased by the event rate in event time series. Although in general the event
rate bias has to be estimated numerically, we could present an analytic model for
the case of simultaneous events. Rainfall event Climate Networks constructed by
use of this unbiased Event Synchronization measure were discussed and climatically
interpreted on regional as well as continental scales. The introduced continuous
Event Synchronization provides opportunities to extend the range of application to
continuous time time series and point cloud data.

Associated publications: P2, P3, P4 and C3

Spatial Effects Depending on the spatial dependence of the link probability in
complex networks, network measures are biased by the spatial embedding. Although
this effect is known, the first approach to estimate these spatial effects in order
to retrieve unbiased network measures was proposed in this thesis. The potential
of the approach was demonstrated on artificial random networks, link weighted
and unweighted, and on Climate Networks constructed from rainfall data, also link
weighted as well as unweighted.

Associated publications: P1, P3 and C1
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Directionality We introduced a novel network measure called Directionality for
link-weighted as well as unweighted spatial networks that is unbiased by the spatial
embedding. Its applicability to Climate Networks on regional as well as continental
scales was discussed and climatological interpretations were provided. This measure
provides insights into the climatological orientation of the propagation of precipitation
clusters and frontal systems in terms of isochrones which, while being consistent
with known circulation patterns, go beyond the hitherto known. The presented
methodology also provides a promising framework for evaluating climate models with
respect to their implementation regarding heavy precipitation. Furthermore, we are
convinced that this network measure can be helpful for the assessment of hazard risks
in form of floodings and, if combined with climate model projections, the development
of these risks under ongoing climate change.

Associated publications: P2, P3 and P4

Teleconnections A novel framework for the construction of multivariate Climate
Networks was proposed that is designed to study long-range interrelations between
time series. By first merging dynamically similar time series into clusters, and then
constructing a network of links between clusters, a coarse-grained teleconnection
Climate Network is retrieved. This approach was applied to sea surface temperature
data as well as precipitation data over the Asian continent. Discovered climatological
insights proved the concept but went also beyond the hitherto known.

Associated publication: C2

8.2. Outlook

The introduced and applied Climate Network approach considering synchronizations
of precipitation events does not depend on a specific type of event. Accordingly, one
could apply this framework also in studies of precipitation synchronization considering
different types of precipitation events, for instance hail events or events of sudden
changes in precipitation rates. Or one could apply this framework also to completely
different observables. Promising examples for that are lightning strokes, rapid soil
moisture changes, earth quakes, volcano eruptions or neuronal spike trains.

First applications of the novel Kernel-based Event Synchronization to lightning
strokes data also revealed a new concept of temporal networks. In contrast to a
sliding window analysis, the time evolving network is estimated for a specific time
point given by the temporal position of the kernel. Considering lightning activity
this could, by use of the novel network measure Directionality, lead to interesting
storm tracking applications in order to analyze origins of hurricanes. Directionality
is a good example of a network measure that was specifically designed for Climate
Networks with a certain task in mind. Unfortunately, this is rarely happening, in other
words, little research is done on the development of new Climate Network measures.
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8.2. Outlook

Commonly, existing network measures from other disciplines like sociometry are
applied to Climate Networks and therefore sometimes hard to reinterpret.

Moreover, could a network of Climate Network analysis of heavy rainfall events and
rapid soil moisture changes provide deeper insights into the spatiotemporal coupling
between these, and hence, serve as a basis for better flood prediction.

Especially in networks of Teleconnection Climate Networks with even more observ-
ables like precipitation, sea surface temperature and sea level pressure for instance,
a combination with the causal networks approach would be instructive. A detailed
topology of long-ranged causal dependencies would most likely reveal a deeper in-
sight into the entanglement between monsoon variability, ENSO and planetary wave
dynamics. This could further be extended to a higher temporal resolution. With
daily precipitation time series of 56 years as in the APHRODITE product, time series
are long enough for a sliding window analysis. This makes it possible to study the
evolution of found teleconnections under ongoing climate change.
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Appendix A.

Regarding Chapter 6

A.1. Spatial effects on network measures of regional

Climate Networks

From a link-weighted network constructed as in the corresponding chapter but for
the entire time span of 56 years, an unweighted Climate Network is constructed in
order to test the performance of the spatial effects estimation on unweighted networks.
The unweighted network is retrieved by thresholding the link-weighted adjacency
matrix with a threshold corresponding to a link density of 15%. In other words,
the unweighted test network comprises the 15% strongest links, but considers them
as equally strong. The performance of the method proposed (see Sec. 3.3, P1) is
tested with three unweighted network measures: Degree, Closeness Centrality and
Shortest-path Betweenness. In order to get a quantitative comparison, results of
the whole regional network spanning all of Germany are compared to results of two
smaller subnetworks. The two smaller subnetworks are given by dividing the whole
regional network along the magenta colored line. All estimations of spatial effects are
done using 1000 surrogates.

In summary, huge differences between network measures of the whole regional
network and them of the two subnetworks are observable (cf. Fig. A.1.A with
Fig. A.2.A). However, corresponding spatially corrected network measures are very
similar regarding the spatial pattern (cf. Fig. A.1.C with Fig. A.2.C). This holds true
even for complex path-based network measures like Shortest-path Betweenness.

99



Appendix A. Regarding Chapter 6

47°N

51°N

55°N

5°E 10°E 15°E

A

5°E 10°E 15°E

B

47°N

51°N

55°N

5°E 10°E 15°E

C

200 400 600
Degree

200 400 600
Boundary effects estimate

300 150 0 150
Corrected degree

Figure A.1.: Degree example for the regional network with link density 15% of the whole region
of Germany. Shown are the degree field (A), the corresponding boundary effects
estimate (B) and the corresponding corrected degree field (C).
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Figure A.2.: Degree example for two separate regional networks of two subregions of Germany
that have the same links within their regions as the network of Fig. A.1. The
border between these subregions is marked by the magenta colored line. Shown are
the degree fields (A), the corresponding boundary effects estimates (B) and the
corresponding corrected degree fields (C).
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Figure A.3.: Closeness centrality example for the same regional network with link density 15%
of the whole region of Germany as in Fig. A.1. Shown are the closeness field (A),
the corresponding boundary effects estimate (B) and the corresponding corrected
closeness field (C).
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Figure A.4.: Closeness centrality example for two separate regional networks of two subregions
of Germany that have the same links within their regions as the network of Fig. A.1.
The border between these subregions is marked by the magenta colored line. Shown
are the closeness fields (A), the corresponding boundary effects estimates (B) and
the corresponding corrected closeness fields (C).
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Figure A.5.: Shortest-path betweenness example for the same regional network with link density
15% of the whole region of Germany as in Fig. A.1. Shown are the betweenness
field (A), the corresponding boundary effects estimate (B) and the corresponding
corrected betweenness field (C).
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Figure A.6.: Shortest-path betweenness example for two separate regional networks of two
subregions of Germany that have the same links within their regions as the network
of Fig. A.1. The border between these subregions is marked by the magenta colored
line. Shown are the betweenness fields (A), the corresponding boundary effects
estimates (B) and the corresponding corrected betweenness fields (C).
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A.2. Algorithm for the distribution of the expected

number of counts

The distribution p(k) of the expected number of synchronous events assuming a
uniformly random distribution of events is given by

p(k) =
(

m

k

)
(l − m)!

l!

k−1∏
i=0

n − i
m−k−1∏

j=0
l − n − j , (A.1)

and was computed in this thesis with the following algorithm:
p(k) = 1.0
a = l − n + 2
if k ≥ m − k then

s = m − k
else

s = k
end if
for i ∈ 1, 2, . . . , s do

Ensure: p(k) ∈ [10−300, 10300]
p(k) = p(k) ∗ (n − i)
p(k) = p(k)/l
l = l − 1
p(k) = p(k) ∗ (a − i)
p(k) = p(k)/l
l = l − 1
p(k) = p(k) ∗ (m − s + i)
p(k) = p(k)/i

end for
for i ∈ s + 1, s + 2, . . . , k do

Ensure: p(k) ∈ [10−300, 10300]
p(k) = p(k) ∗ (n − i)
p(k) = p(k)/l
l = l − 1

end for
for i ∈ s + 1, s + 2, . . . , m − k do

Ensure: p(k) ∈ [10−300, 10300]
p(k) = p(k) ∗ (a − i)
p(k) = p(k)/l
l = l − 1

end for
return p(k)

At the end of the algorithm p(k) holds the probability to have exactly k synchroniza-
tions if l is the length of the time series used and n ≥ m are the number of events in
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the corresponding pair of series.
The Ensure statement in the above algorithm is for our example of a double

precision floating point variable for the probability p(k). For small enough values of
m, n and l such a statement is not necessary because p(k) will not overflow. This is
the case in applications of this algorithm in this thesis.

A.3. Event rate bias comparison

The initially by Quiroga et al., 2002 proposed Event Synchronization (ES) uses
synchronization counts normalized by

√
mn, where m and n are the number of events

in each time series. However, in order to obtain a notion of synchronicity that is
independent of the number of events, this does not suffice.

The local node-based network measure Strength SGi of a node i is defined as the
sum of all its link weights (3.3). Hence, SGi gives an estimate on how well heavy
precipitation at a given weather station i is synchronized to heavy precipitation at
all other weather stations.

In Fig. A.7 we compare this measure for two artificial networks. Both networks are
constructed from the same set of random event series, but using a different similarity
measure for each network. The left weighted network is constructed using the common
ES and the right one using the proposed standardization of synchronization counts.
Note the relevance of the bias by the event rate for this study concerning the spatial
pattern of network measures.
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A.3. Event rate bias comparison

Figure A.7.: Network measure Strength for two weighted networks constructed from the same
set of random event series of length 1000, but using a different similarity measure.
The left weighted network is constructed using the common ES and the right
one using the proposed standardization of synchronization counts. The number
of random events in a time series corresponds to the actual event rate found in
observations for these stations (see Fig. 6.1 (right)). The commonly used ES (left)
is biased by the event rate and replicates the intensity pattern as seen in Fig. 6.1.
The proposed synchronization scores (right) show a weak random strength field.
The left and right panels have the same colorbar and the actual range of values for
a panel is given by the corresponding yellow bar.
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