Data Confidentiality and Reputation Schemes
in Distributed Information Systems

DISSERTATION

zur Erlangung des akademischen Grades
doctor rerum politicarum
(Dr. rer. pol.)
im Fach Wirtschaftsinformatik

eingereicht an der
Wirtschaftswissenschaftlichen Fakultat
Humboldt-Universitat zu Berlin

von
Herr Dipl.-Inform. Matthias Fischmann
geboren am 4. Januar 1973 in Tiibingen

Prasident der Humboldt-Universitiat zu Berlin:
Prof. Dr. Dr. h.c. Christoph Markschies

Dekan der Wirtschaftswissenschaftlichen Fakultat:
Prof. Oliver Giinther, PhD

Gutachter:

1. Prof. Oliver Giinther, PhD
2. Prof. Dr. Bettina Berendt

eingereicht am: 4. Februar 2008
Tag der miindlichen Prifung: 23. Mai 2008

Abstract

In this thesis we discuss two demanding problems from the field of com-
puter and communication security that involve trust.

The first is known as the database service provider problem: A database
owner wants a database service provider (DSP) to host her database. She
only trusts this DSP to a limited extent, so she does not want to rely solely
on contractual solutions. It is therefore necessary to enforce confidentiality
of her data by technical means. The second problem concerns a (potentially
very large) number of network nodes in a peer-to-peer (P2P) environment.

Both problems are notoriously hard because, other than in traditional
computer security problems, the adversary has a lot of control over the sit-
uation. The untrusted DSP needs to be able to process the data without
learning anything about it, which seems to be a contradiction. In P2P appli-
cations it is desirable that nodes can join anonymously, but anonymity makes
it easy to spread false reputation information. A node that enters a P2P ap-
plication network for the first time needs to trust the claimed observations
of other nodes, independent of the rate of malicious behaviour.

Our findings are not perfect solutions, but nevertheless instructive in sev-
eral ways: We propose relaxed, but still practically useful, notions of security
for the DSP problem; we identify theoretical limitations of the DSP solution
space; and we gradually reduce the impact of adversarial behaviour in P2P
reputation systems using heuristic methods. As a side effect of our work,
we present a special-purpose framework for simulation of P2P reputation
systems that can be used to compare and fine-tune previous and upcoming
work.

Keywords:
confidentiality, databases, service provider, reputation

Zusammenfassung

Diese Arbeit betrachtet zwei anspruchsvolle Probleme aus dem Bereich
Computer- und Kommunikationssicherheit und Vertrauen.

Beim Datenbank-Serviceprovider-Problem moechte ein Anwender seine
Datenbank an einen Datenbank-Serviceprovider (DSP) uebergeben, damit
dieser sie betreiben und ihm zur Verfuegung stellen kann. Er vertraut diesem
DSP, und damit auch vertraglichen Abmachungen, nur bedingt und muss
die Vertraulichkeit seiner Daten durch technische Massnahmen sicherstellen.
Das zweite Problem ist das Verbreiten verlaesslicher Reputationsinformation
ueber eine (moeglicherweise sehr grosse) Anzahl von Netzwerk-Knoten in
einer Peer-to-Peer-Umgebung (P2P).

Beide Probleme straeuben sich hartnaeckig gegen einfache Loesungen. Im
Gegensatz zu traditionellen Sicherheitsproblemen in der Informatik hat der
Gegner in beiden ein hohes Mass an Kontrolle ueber die Situation. Der nicht
ausreichend vertrauenswuerdige DSP muss in der Lage sein, die Daten seines
Kunden zu verarbeiten, ohne etwas ueber sie zu lernen, was intuitiv wie ein
Widerspruch erscheint. In P2P-Anwendungen ist es wuenschenswert, dass
Knoten anonym beitreten und jederzeit wieder austreten koennen, aber die-
se Anonymitaet erleichtert es, falsche Reputationsinformation zu verbreiten.
Ein Knoten, der erstmalig in ein P2P-Netzwerk eintritt, muss den behaup-
teten Beobachtungen anderer Knoten vertrauen.

Die Resultate dieser Arbeit sind keine Idealloesungen, und dennoch auf-
schlussreich in mehrerlei Hinsicht: Es werden gelockerte, aber immer noch
nuetzliche Sicherheitsbegriffe fuer das DSP-Problem vorgeschlagen; es werden
theoretische Grenzen des DSP-Loesungsraums gezogen; und die Auswirkung
feindseligen Verhaltens in P2P-Reputationssystemen wird durch heuristische
Methoden reduziert. Ein Nebeneffekt unserer Arbeit ist ein speziell fuer Re-
putationssysteme in P2P-Netzwerken geeignetes Simulations-Tool, das zum
Vergleich und zum Fine-Tuning bestehender und zukuenftiger Forschungsar-
beiten genutzt werden kann.

Schlagworter:
Vertraulichkeit, Datenbanken, Service-Provider, Reputation

iv

Contents

1 Two Approaches to Information Security

I Homomorphic Encryption of Databases

2 Introduction
2.1 Problem Statement
2.2 Database Foundations
2.2.1 Relational Algebra
222 SQL
2.2.3 Object-Oriented Databases
2.3 Cryptographic Foundations
2.3.1 Probability Theory
2.3.2 Algorithms, Complexity Theory, and Oracles
2.3.3 Encryption Schemes
2.3.4 Security Definitions
2.3.5 Other Cryptographic Building Blocks
2.3.6 Homomorphic Cryptography

3 Related Work

3.1 Homomorphic Encryption Schemes
3.1.1 ATE: Homomorphic Encryption in Databases
3.1.2 Field Arithmetics
3.1.3 Full-Text Search
3.1.4 Homomorphic Signatures

3.2 Homomorphic Security Definitions
3.2.1 Small and Finite Operand Domains
3.2.2 Full-Text Search
3.2.3 Relational Algebra

3.3 Code Obfuscation
3.3.1 Proposed Solutions

12
12
14
17
18
18
20
25
27
39
49

3.3.2 Impossibility Results 83

3.4 Private Information Retrieval 90
3.5 Secure Co-Processors 92
3.6 Data Mining and Privacy 95
3.6.1 Negative Databases 95

3.6.2 Privacy-Preserving Data Mining 96

4 Adversary Models and Analysis 99
4.1 Heuristic Security: Analysisof ATE 99
4.1.1 Order Revelation through Range Queries 101

4.1.2 Small Attribute Domain Size. 104

4.1.3 On the Impact of Aggregation 107

4.1.4 Noise 110

4.2 Partial Security: Analysis of Full-Text Search 111
4.2.1 The Problem 112

4.2.2 Partial Securityo 115

4.2.3 A Note on Multi-Message Security 116

4.3 The “Good Server Going Bad” Model 117
4.3.1 Definitionso 118

4.3.2 Cryptographic Schemes 122

4.3.3 Discussion 127

4.4 Private Information Retrieval, revisited 129
4.5 A Note on Data Integrity 130

5 Security and Performance Bounds 133
5.1 Strong Security Definitions 133
5.2 Relational Algebra, Code Obfuscation 136
5.2.1 Circuits 137

5.2.2 Turing Machines 140

5.2.3 Reduction Proofs 144

5.3 Open Problems 148
5.3.1 Performance 149

5.3.2 Covert Channels and Advanced Cryptanalysis 150

6 Conclusions 153
II Trust and Reputation in P2P Networks 157
7 Introduction 159
7.1 Concepts and Outline 159

vi

7.2 Application Scenarios
7.3 The Adversary
7.4 Monetary Incentives vs. Reputation
7.5 Game Theory

Building Blocks and Related Work

8.1 Identity
8.1.1 Forms of Identity Abuse
8.1.2 Blind Signatures and Trusted Third Parties
8.1.3 Hash Cash and Enforcing Exclusivity
8.1.4 Graph-Theoretical Approaches

82 Routing
8.2.1 Flooding Strategies
8.2.2 Distributed Hash Tables
8.2.3 Discussion oo

8.3 Deletion-Proof Data Structures

8.4 Reputation Lo
8.4.1 CAN with Feedback
8.4.2 BitTorrent
8.4.3 FEigenTrust. o0

8.5 Inverse Sybil Attacks L.

Modelling Reputation Schemes

9.1 The Model
9.1.1 Reputation
9.1.2 Hostile Peers
9.1.3 Distribution Strategies

9.2 Motivation
9.2.1 Routing and Identity
9.2.2 The Reputation Matrix
9.2.3 Is There a Prisoner’s Dilemma?

9.3 Simulation Results L.
9.3.1 Idealized reputation functions QV, Q™4
9.3.2 Distribution strategies: CRL vs. CRT
9.3.3 Hostilenodes L.
9.3.4 Sparsenetworks L.
935 Figures. o

10 Conclusions

vii

viil

Chapter 1

Two Approaches to Information
Security

Computing applications are increasingly moving from individual users’ equip-
ment into the network. In the early 1990s, a PC was hosting a range of appli-
cations that still to a large extent were completely unaware of the network,
with e-mail and WWW being the two most prominent exceptions. Since
then, more and more of the applications have migrated to server farms and
have left behind only a user interface on the client machine. As a rule, newly
emerging applications such as Web 2.0 are highly distributed by their very
nature.

This imposes challenges of a new order of magnitude towards data in-
tegrity and confidentiality, among other security goals. If the personal infor-
mation of the users is not stored on a local PC any more, it is insufficient
to protect the data against unauthorized, external adversaries, because even
legitimate participants such as a service provider or a peer in a community
portal, that need some level of access to the sensitive data in order for the
application to function, cannot always be trusted without reservation.

In other words, the user of a distributed system has to surrender control
over her data to parties of limited trustworthiness at least to some extent,
and naturally wants to maintain as much control as possible while sacrific-
ing as little functionality as possible. The strictness of requirements varies
between applications. Data integrity goals in file sharing networks may be
satisfactorily met by making a posteriori decisions after download whether a
given file is a valid response to a search query, but if confidentiality of sen-
sitive business data is at stake, potential customers are less ready to make
bold compromises.

Cryptography is a branch of applied mathematics that helps enforce se-
curity requirements in distributed computing systems in which not all partic-

ipants can be trusted to obey the rules of the protocol. Confidentiality and
integrity are the most prominent security goals established by cryptographic
means, and we will restrict ourselves mostly to those two:

1. Confidentiality is the need for information secrecy. For example, it is
often required by two communicating parties that trust each other with-
out reservation, but who fear of eavesdroppers on their communication
channel. It is achieved by using a keyed transformation that turns the
communicated data into apparent gibberish for any eavesdropper who
does not know the key.

2. Integrity is the need for unmodified, authentic data flows. In the same
scenario, but with an eavesdropper that owns the channel and can re-
move or change bits on the way, integrity is achieved by adding check-
sums that are computed by another keyed transformation with another
secret key. By any changes to the communication, a potential adver-
sary would break the verification process, since she does not know how
to compute the changed checksums.

Both these requirements have robust and well-understood solutions that
we use every day, perhaps even without being aware of it, by logging on to
an SSL-protected web server. We are interested in more advanced security
problems in the sense that the adversaries are too strong, i.e. it is impossible
in principle to build secure systems. We accept this challenge and answer it
by finding new notions of security, new methods of achieving it, and where
nothing else works, solid theoretical proofs that some tasks are simply im-
possible. This thesis is comprised of two parts that consider two extreme
scenarios.

In Part I, we consider a database service provider (DSP) who wants to
convince client organizations to outsource storage and processing of their data
to her server farm. The client, however, is uncertain about the confidentiality
that the service provider can guarantee, and is only likely to sign a deal if
security deteriorates not even marginally compared to local storage.

In Chapter 2, we lay the foundation for attacking this problem by giv-
ing an account of the according cryptographic machinery. This chapter is
intended to be used by database researchers, so we will put particular em-
phasis on motivating the assumptions and definitions more thoroughly that
in the basic texts on cryptgraphy that we know of. In Chapter 3, we will give
a survey of the solutions that have been proposed to the service outsourc-
ing problem (DSP or computations in other applications) and related fields,
most importantly code obfuscation and private information retrieval. A code
obfuscator is an operation that takes any program in a given language and

transforms it into an equivalent program that does not reveal anything of
interest to an interpreter besides what can be learned from its input/output-
behavior. A private information retrieval scheme allows for a client to access
a database hosted by a DSP, only the confidentiality concerns the query text,
not the queried data. Both obfuscators and private information retrieval will
be helpful in our examination of DSP schemes.

In Chapter 4, we will then develop novel security definitions. The most
important one is an adaptation on a common security definition from cryp-
tography called indistinguishability. A variant of this takes into account that
sometimes a client can be expected to switch into defense mode when the
server turns against her. This is not realistic if the threat is a hacker breaking
into the DSP host, but it may be what a company needs that wants to insure
its clients against change of country of operation or change of ownership. We
will use these definitions of security to derive efficient and secure crypto-
graphic schemes for DSP based on existing full-text search algorithms, and
prove their security. A treatment of the orthogonal question of data integrity
in the database outsourcing scenario at the end of Chapter 4 concludes the
constructive segment of this part of the thesis.

But there are also limits to what can be done. In Chapter 4, we will ex-
pose two popular results from related work, namely ATE (HILM02) and Ftsl
(SWP00), to extensive scrutiny, uncovering several flaws and inconsistencies.
In Chapter 5, we will construct three independent proofs of impossibility for
two of our stronger security definitions, covering three different subsets of re-
lational algebra. Since private information retrieval can be reduced to Hom?,
this yields a previously unestablished lower bound for the related problem
of private information retrieval as well. Also, our reduction of homomorphic
encryption to code obfuscation, plus a trivial reduction of code obfuscation
on homomorphic encryption, will yield equivalence of the two problems.

In Part II, we consider fully decentralized peer-to-peer (P2P) networks
and investigate into means of establishing trust between peers if nobody
knows anybody a priori. Trust is useful for ensuring quality of service and
for establishing incentives for cooperation by punishing defection. However,
since every node in the network can ultimately only trust itself, trust grows
too slow in large-scale networks to be of any use, and rumor schemes need
to be deployed that propagate noise and sometimes intentionally false infor-
mation about the behavior of other nodes. In order to decrease the noise
level of these rumors, a number of techniques has been developed. These
techniques are called reputation schemes. Ideally they consist of robust, effi-
cient, distributed data structures and algorithms and advanced cryptographic
primitives to reduce noise.

In Chapter 7, we will formally introduce the concept of trust and rep-

utation and motivate the relevance of this topic not only to P2P networks
but to a much wider class of social systems. We will give a classification of
P2P applications and one of adversarial node types, have explaine the com-
plementary nature of monetary incentives and reputation, and introduce the
relevant game theoretic concepts to assess the impact and relevance of our
work.

In Chapter 8, we will establish a list of building blocks for constructing
secure P2P networks, recycling and extending the cryptography from Chap-
ter 2.3. Since most work on reputation schemes is based on existing P2P
applications, which are in turn usually based on ad hoc network designs with
inadequate cryptographic protection, this list should be of high value for
future research.

We will conclude Chapter 8 with the description of three example rep-
utation schemes, which will nicely lead over to Chapter 9, in which we will
develop a new and generic P2P application model and a corresponding rep-
utation scheme, and will use a generic P2P reputation simulator we have
developed to implement and run this model and understand its characteris-
tics.

We will design our model with the purpose of grasping the core idea of
a wide variety of different papers on the subject in a concise way. It has a
number of unusual aspects that make it not both challenging and potentially
instructive to do this. It is very generic and it is based on advanced crypto-
graphic distributed data structures, which together makes it more powerful
than most existing application networks. It is orthogonal towards monetary
incentive systems, and assumes the nodes are indifferent, too. It abandons
the hope of strong results like game theoretic equilibria that force nodes to
cooperate, and assumes certain levels of adversarial behavior independent of
the rules of the game. Finally, it is deliberately too complex for examining it
with functional analysis, and all our results stem from simulation. All these
features will be explained and justified in the following.

The two problems are opposites in several ways. This explains why our
results and even the methods of achieving them are so different, and it illus-
trates the vastness of the field of computer and communication security.

e The topology of DSP consists of a server node and a single client node
(although there is more than one client, they do not interact, so the
model only considers a two-node network) with fixed roles. P2P net-
works have many nodes with no fixed roles, interests, or communication
channels.

e While in our treatment of the DSP problem, we face a situation with
two strong, non-anonymous identities and a long-term relationship that

can be supported by off-line interactions. Therefore, we take data in-
tegrity for granted, while data confidentiality is a concern. In P2P
networks, identities are anonymous (and this is by requirement), and
connections are as numerous as they are volatile. Therefore, confiden-
tiality in the strong sense is so hard to achieve that we only consider
applications with low or no confidentiality requirements. However, (at
least gradual) integrity of data is in important issue.

e And finally, while in Part I we strive at establishing perfect security
for DSP, Part II is about incremental security improvement of P2P
applications that will always contain a certain fraction of lazy or hostile
nodes.

Why not strive for incremental security improvements for outsourced
databases as well? In a sense we did that, by giving a more relaxed defi-
nition of what confidentiality means. However, the nature of the application
gives us far less space to navigate than the P2P scenario. A DSP client has
high standards according to security — those that are set by the alterna-
tive of running the database service on her own premises, which gives her
virtually perfect access control, both physically and online. If security or
performance is noticeably reduced by an outsourcing move, it will not hap-
pen, so we need very reliable technology to convince clients that security
breaches in the DSP scenario are less likely than without outsourcing. In the
following we will prove that this can only be done in very reduced notions
of security, and thus debunk prominent research results in this direction as
well as disencourage future work that will only lead to disappointments.

In P2P applications, the situation is quite different. First of all, integrity
tends to be not quite as black-and-white as confidentiality: If my adversary
learns about my secrets, all is lost, and the consequences can be arbitrarily
damaging to me, including bankruptcy. If I misjudge the honesty of a node
in a P2P network with whom I choose to cooperate, it may be quite possible
to limit the damage that I risk to take. After all, I always know that all trust
and reputation values in the system are only estimates, and I will not share
my most sensitive secrets with a moderately trustworthy node. Instead, I
might just contribute a few idle CPU cycles or memory blocks in the hope
of receiving idle resources in return later when I need them.

Incremental decrease in security in P2P networks yields incremental de-
crease in quality of service, or incremental increase of the fraction of adver-
sarial nodes, but a P2P application allowing for sporadic failures may still be
far better than no P2P network at all. On the other hand, sporadic failures
in the security of a DSP system are unacceptable, since even the first suc-
cessful attack could lead to the revelation of valuable business secrets. The

two problems, although both are about highly distributed applications, after
close inspection turn out to be close to opposites not only in their security
requirements, but also in the techniques appropriate for assessing whether a
given system can meet those requirements or not.

The days in which I'T-security problems had sound, robust solutions that
could keep the system secure against any conceivable adversary is over. With
the growth of cyberspace, new adversaries arise that cannot be easily de-
fended against using traditional encryption or message integrity preservation
schemes, since the need for cooperation and data exchange conflicts with
their assumptions and preliminaries. In this thesis, take the new situation
into account, aiming for a new understanding of the nature of security.

By deciding early on which notions of security are most suitable in a given
context, one can benefit in two ways:

1. Security of the system can be established in a meaningful way that does
not lead to frustration and shrink on the demand side, and

2. ill-guided research that yields security-that-is-not-security can be avoi-
ded by proving over-ambitious security requirements unsatisfiable, and
thus false allocation of precious intellectual resources can be avoided.

In this thesis, our aim is to benefit two extreme applications in both ways,
and by choosing extreme techniques to establish security in these applications
evince directions in which to advance research in the field of security in
distributed computing.

Part 1

Homomorphic Encryption of
Databases

Chapter 2

Introduction

This part of the thesis, we consider applications in which a database system
is operated by a service provider (database service provider, short: DSP).
We address the problem of maintaining confidentiality of the information
processed by the application, despite the fact that the client has only limited
control over the trustworthiness of the database service provider.

2.1 Problem Statement

Traditionally, database security is concerned with two threats: Outsiders
attacking the database system at its boundaries and malicious or confused
users causing damage from within.

Attacks at the system boundaries have been a growing concern since
those have become increasingly large and distributed, and more and more
communication takes place on public networks like the Internet. It is es-
pecially problematic that those networks usually provide little protection as
they have been designed with an adversary in mind that is external to the
network (Rob66). The most immanent risks are those of eavesdropping or
revelation of confidential information to others, data corruption such as in-
jection of false (or deletion of legitimate) information, and denial of service
such as disruption of a connection to a database server.

The former two can be solved effectively and with low performance over-
head by public-key cryptographic algorithms for encryption and authentica-
tion, available through a large number of implementations of standards like
SSL and TLS (DA99). All messages are transformed into ciphertext before
transmission, and an adversary who is not in the possession of the legitimate
credentials cannot recover the plaintext communication from intercepted ci-
phertext. Further, if she injects, removes, or alters ciphertext between client

10

and server, decryption will fail and the system will be notified of the attack.
(See Section 2.3 for a more detailed treatment of encryption, and Section
2.3.5 for more on authentication.) Denial of service attacks are harder to ad-
dress in general, and usually require risk management and redundancy and
intrusion detection counter measures (Roe99; Koz03).

Threats caused by malicious (or confused, or incompetent) users are usu-
ally dealt with by access control mechanisms, which can become surprisingly
complex, powerful, and hard to understand and deploy (Ben05). Access con-
trol presumes a private, authenticated channel on which database client and
server both are confident that nobody eavesdrops and that they are talking
to each other (and not to an imposter). Each time the client attempts to per-
form a transaction, the database server consults a set of access control rules.
Only if the transaction is consistent with the rule set, the server processes it.
Otherwise, an error is triggered.

The third potential threat besides user and outsider, the database server
itself, has been paid less attention so far. There are good reasons to consider
it last. A much higher level of protection is often affordable than for clients
or network infrastructure. But even a server has to be maintained by staff
that can only be trusted to a certain extent. If users can turn against the
system, then so can administrators.

Outsourcing has become increasingly common in the last years, allowing
users to benefit from better utilization of resources like hardware, experience,
man power. This has mixed effects on the risks of privacy breach.

A service provider with specialized security engineers may be better suited
to protect the server site against both hackers and physical threats, and
achieve both at a lower price per customer than any small company could on
its own. Non-disclosure agreements can be negotiated so that the customer
can hope to get compensated for any incident that causes loss of confidential
information to a third party.

Unfortunately in practice, laws and contracts have limited power (BG02).
New risks emerge, like potential change of ownership of the service provider.
In the merger of PeopleSoft with Oracle in January 2005 in the US, People-
Soft’s customer data became property of Oracle, leading to highly complex
legal arguments about the validity of privacy agreements between PeopleSoft
and its clients. Further, companies that considered Oracle as their direct
competitor at the time of the merger may have failed to withdraw their
data in time from the PeopleSoft databases. Back in 2000, Internet retailer
Amazon had a very clear position on this subject:

In the unlikely event that Amazon.com Inc., or substantially
all of its assets are acquired, customer information will of course

11

be one of the transferred assets.
http://www.wired.com/news/politics/0,1283,38572,00.html

Amazon is not in the database service provider business, and the privacy
policy has been changed since. But the quote still illustrates the potential
risks that a client exposes herself to if she hands over confidential data to
a third party. No need to say these risks are multiplied in international
mergers, where many laws already in place on the national level in the US
and many other countries still need to be established.

As information technology is gradually penetrating more and more as-
pects of our lives, confidentiality of data has seized to be an exclusively
business-to-business topic. It is becoming a concern in people’s everyday
lives. The market for web and mobile services is growing, and a large frac-
tion of all e-mail today is processed on a web-server instead of an application
running on the user’s computer.

Empirical research has given strong evidence that customers of such ser-
vices are aware that there is a problem, and that this awareness is inhibiting
market growth. Further, even if the customer base is still large enough to do
business with, any DSP constantly risks being exposed in an identity theft
scandal and losing market share to more lucky competitors. If all application
data was securely encrypted without obstructing the DSP, crafting a privacy
policy would be trivial, and the risks involved in hacking incidents would be
minimized.

Finally, even if the effectiveness of legal and regulatory precautions is not
to be questioned in any particular scenario, those precautions still come at
a substantial cost. All parties involved can profit from technical solutions
that make it impossible for a service provider to cause any privacy breach
in the first place. The service provider will save legal infrastructure, may
be able to reduce security precautions, and still face lower risks of unhappy
clients. Clients can have higher confidence in the service provider and may
save some real money if running the service will become cheaper due to the
reduced resource requirements.

So even if the server is trustworthy it may prove beneficial for everybody
to assume it is not. In that case, re-establishing security on a technical
level is a big challenge. This is the challenge we will take on in the next
three chapters. In Chapter 3, we will review and catalogue the solutions
available in research literature. In Chapter 4, we will present a new class of
solutions for a reduced subset of relational algebra that is provably secure,
and establish the theoretical tools to prove its security. Finally, in Chapter 5,
we will establish upper limits for the level of security against an adversarial
service provider that can be achieved by mere technical solutions, and lower

http://www.wired.com/news/politics/0,1283,38572,00.html

12

limits for the overhead those solutions will always cost. In our eyes, these
limits are particularly essential to direct and evaluate future research, and
shed new light on available results.

In the remainder of this chapter, we will introduce the reader to the basic
concepts of database theory and cryptography.

2.2 Database Foundations

Databases are traditionally organized tables (or relations) that have rows (or
records, or tuples) and columns (or features, or attributes). Each record in a
table lists one set of attribute values that satisfies the relation.

2.2.1 Relational Algebra

In 1970, Edgar F. Codd proposed using relational algebras to reason about
database systems (Cod70). As a formalization of relations and the laws by
which they are governed, it is still the theoretical foundation of the field of
database systems in use today. For an extensive treatment of the subject, see
cf. (RE03). A very concise summary of relational algebra, including imple-
mentation and complexity issues and a few simple query rewriting concepts
can be found online (Nel99).

A relation R is a set of tuples rq,...,r,. The domain R of R from which
the tuples are chosen is the cross product of the attributes of the relation:

R = AO X X Ak
ReR"
ri = (ag,...,ax)

(With R” we denote the power set of set R.)

An algebra consists of operations and operands. The operands are the
relations, so now we need some operations. Since relations are sets, we can
start by using union, intersection and difference from set theory:

RUR ={r|reRVreR'}
RNR ={r|reRAreR}
R—R={r|reRA-(reR)}

Databases are used to answer questions of the form “which of my tuples
have property P?” This is done by the select operation o:

op(R)={r|re RANP(r)}

13

P is a predicate, or a boolean function on the domain R of R. It can be
expressed using the logical operators A, V, -, arithmetic operators <, >, =, ...
and attribute names A; and constants a € A; as operators. For exam-
ple, for a suitable relation R over tuples representing employees, the query
Osalary>1500.00(R) returns all employees whose salary is higher than 1500.00.

In many contexts, we only want to look at a subset of all attributes stored
in a relation. The project operation removes all but a given set of desired
attributes:

mr(R) ={ (ai,...) | (ag,...,ar) E RNA, €T }

T ={A4,,,...} is an index set that contains the names of the attributes
to be kept in the result of the projection. Keep in mind that relations are
sets, so resulting duplicate tuples in the relation are implicitly removed.

The last operation is join. It is the counterpart of projection in the sense
that it increases tuple size. In its most basic form, it is similar to the cross
product, only that it does not produce pairs of tuples but concatenations:

RN R/:{ (a07...,ak,a67-"7a’;€’)|

(ag,...,ar) € RA (ag,...,ay) € R}

In terms of expressive power, this is all we will need. However, from
an implementation perspective, X is intolerably expensive: When applied to
two large relations, it produces a result of the size the product of the sizes of
the two input relations. Worse, one is rarely interested in the cross product
of two tables, but in a maximum subset of the cross product on which the
tuple pairs match certain attributes. For example the office number of an
employee may be stored in one table, and her salary in another, but when
we join the two tables we want the result to contain only concatenations of
tuple pairs that represent aspects of the same employee.

In order to allow for a more concise representation of equality constraints,
relational algebra usually contains a variant of x that is called equi-join:

Rwxp R ={(ap,...,ar,ap,...,a5)
| (ao,...,ax) € R
A(ag, ... ay) € R
A Pl(ag,...,ag,ap,...,a) }

A less flexible but better known and often more convenient variant of
equi-join uses a set of attribute names that need to occur in both tuples and

14

have the same values:

R xz R ={ (ag,...,ap,ay,...,a5)
| (ag,...,ax) € R
A (ag,...,ay) € R
ANVA; € T,a;,a; € Aj.a; = a; }

This establishes a sound and powerful core of relational algebra. Other
common operations that are often added are grouping v and sorting 7. 7;
transforms a relation into a sequence of tuples such that attributes in the
attribute sequence I = (Ajo, ...) appear in some canonical order:

T1({ros -y TN}) = (Tigs Tiys -+ -3 Tiy)

where
VAGI,]‘ <k : Tij-A<Tik-A

Grouping <7, r collapses all tuples with all attributes in the set I =
{Aj,,...} equal into one tuple. This often requires an aggregation func-

tion F' : R? — R that aggregates all values of attributes that are not in
I:

vi.r({ro,.-.,rn}) = {F{ri| m1(r;) is the same throughout the set}}

For instance, consider a table listing bank account transactions in the form
(ap,ay), where ag is the day of the transaction and a; is the amount of
money added to the account (negative for withdrawals). Then the total
of transactions per day can be computed with ~; p, where I = {ap} and
F(R) = 3,.cr Tao} (T1)-

(If F' is not required since no non-grouped attribute is left over, simply
choose F'(z) = x to be the identity function.)

2.2.2 SQL

In the remainder of this thesis, we will use relational algebra as a model for
databases. However, many of the readers may have experienced databases
from a different perspective, namely the SQL query language (CB74). SQL
is designed to be more convenient to use than relational algebra, but the
two translate into each other to a large extent. In this paragraph, we shed
some light on this translation. In particular, we explain why, when reasoning
about security, we can simply ignore the existence of those parts of SQL that
are used to modify existing tables.

15

SQL allows for handling the database schema (creation, modification and
deletion of tables and their attribute sets) as well as the data (feeding the
tables and asking questions, or queries, about their contents). The following
SQL command creates a table for storing employee information:?

CREATE TABLE employee {
name VARCHAR (50) ,
born DATE,
position VARCHAR(80),
department NUMERIC,
salary NUMERIC

s

Each attribute in the table has a data type that restricts the contents
to a certain form: VARCHAR fields may only contain character strings,
NUMERIC fields numbers, etc. All SQL commands are terminated by a
semicolon.

A table could be removed from the database like this:

DROP TABLE employee;

When a new employee joins the company, a new record needs is added to
the table:

INSERT INTO employee (name, born, position, department, salary)
VALUES (’Jean-Paul Sartre’, ’1905-06-21’, ’Novelist’,
13, 4910.00);

And if Mr. Sartre leaves the company:
DELETE FROM employee WHERE name = ’Jean-Paul Sartre’;

Finally, once we have established a database schema and fed all the
records to it representing the data that we want to manage, we can start
retrieving information. The following SQL command outputs a table con-
taining all employees born before 1950:

SELECT * FROM employees WHERE born < ’1950-01-01’;

! The examples that are given here establish an SQL dialects many of which are in
wide-spread use today. In this text we value clarity and simplicity over flexibility and
expressive power, so the code may need small adaptations before it can be used with an
SQL database production system.

16

In terms of relational algebra:

Thorn<1950-01-01° (€mployees)
Projection is already implicit in the *, and explicit in the following:
SELECT (name, salary) FROM employees;

is the translation of

Tname, salary (employees)

For the example for join, consider a second table in which each depart-
ment is listed with the name of its head and a description of the department’s
function. Then, the following gives a list of employees with additional de-
partment information:

SELECT * FROM employee, department
WHERE employee.department = department.name;

Or, in terms of relational algebra:

employee I><Iemployee.department = department.name department

Up to here, relational algebra is a purely functional calculus in the sense
that none of its objects have a state that changes over time. An expression
creates new tables from existing ones, but no table is ever modified. How
do we express INSERT or DELETE in this context? It is simple enough to
use set union and intersection to model the creation of an updated copy, but
this is such a strong abstraction that it may seem too inaccurate to represent
reality: We want to manipulate an existing relation, not compute an entirely
new one from it. The latter would be intolerably inefficient.

The mathematical tools for expressing manipulation of the objects and
changing database state in relational algebra can be found in text books
on programming language theory (Bar84; AC96; AS85). Expressions are
evaluated in a well-defined order and in an environment of mutable variables
that can be referenced in the expressions. The language is extended by
operations that replace the contents of these variables with new data (e.g. the
union of the contents of a table and the set of new records to be inserted).
The resulting algebra is still simple and abstract, while allowing for efficient
implementations of update operations.

Fortunately, knowing that it can be done is enough for our purposes.
For most problems in database theory, the function view captures all the
relevant aspects of database systems. In particular, for reasoning about data

17

security, we only need the simpler functional view on relations: If, say, the
intersection operation that corresponds to a DELETE statement yields a
fresh table and leaves the old one intact, the information on the database
contents that can be gained from observing the system is the same as if the
old table was modified and the observer kept a history of previous system
states. The difference between the two models, namely the deletion of the old
table and storage of the new table, does not introduce any new vulnerabilities
to attack. This claim may appear to require further justification right now,
but it will become self-evident once we start discussing security definitions
for homomorphic database encryption in the next chapter.

2.2.3 Object-Oriented Databases

Today, object-oriented software engineering has become the norm. The data
is no longer separated from the algorithm, but the algorithm is embedded
into the data objects. With this paradigm shift, considerable improvements
in code modularity, abstraction and therefore robustness have hit the main-
stream. Due to its success, it has been applied to other fields of computer
engineering, such as databases.

In object oriented databases, the data is not organized in records, but in
objects. This allows for a more direct mapping of data structures of object-
oriented programming languages to the data structures of the database. Also,
most object-oriented databases come with a richer query language that allows
for isolating further parts of the functionality of a software system into the
database component.

Despite these two appealing advantages, even in 2006, 37 years after de-
velopment of the object-oriented programming language Smalltalk began,
databases are still relational to a large extent. This may be due to the
many years of experience with relational databases, the generally better per-
formance characteristics due to a simpler model, or last not least the fact
that the weaker expressive power of relational databases is enough for most
applications.

In this thesis, we will not consider object-oriented databases. Neverthe-
less, our results map directly to them, since objects can be stored in relations,
and queries on objects can be transformed into (more complicated looking)
queries on those translations. In fact, many object-oriented databases are im-
plemented using such a mapping and a relational core engine, providing the
gain in expressive power to the user without sacrificing relational database
know-how. So by using a simpler (but not less general) model, we obtain
results that apply to both relational and OO database systems.

18

2.3 Cryptographic Foundations

The second Volume of Goldreich’s Foundations of Cryptography starts with
an explanation of the term so concise that we feel it is best to simply repeat
it here:

Cryptography is concerned with the construction of schemes
that withstand any abuse. Such schemes are constructed so as to
maintain a desired functionality, even under malicious attempts
aimed at making them deviate from their prescribed functionality.

Oded Goldreich (Gol04), p. xiii

Two of the most prominent sub-disciplines of cryptography are encryption
and authentication. Encryption schemes are used for keeping (part of) the
data in the system hidden from an adversary. Message authentication and
signature schemes ensure integrity of data, i.e. the fact that no adversary is
able to change or delete existing data or inject forged data.

Part T of this thesis will only deal with those, and in fact only with
encryption to a large extent. In Part II, we will introduce more advanced
cryptographic schemes and applications. In this section, we have a closer
look at the basics of cryptography and introduce the essential preliminaries.
It is not necessary to take it all in at once; a more suitable approach may
be to read it diagonally and return to it once the individual concepts are
applied later on.

2.3.1 Probability Theory

To express the security of a cryptographic scheme, the winning probability of
the adversary in an assumed game is computed. If that probability is small
enough, the scheme is secure. So in order to do cryptography, we need a
few basics from probability theory. The foundations of modern probability
theory have been established by Kolmogorov in the 1930s (Kol33). For a
more thorough treatment see (Var01) or (Vai06).?

An experiment is a device that, once set in motion, yields one of a num-
ber of possible outcomes, or samples. The set of all possible outcomes is
called the sample set. An event is a subset of the sample set. For in-
stance, when rolling two dice, the sample set is denoted by the cross prod-
uct {1,2,3,4,5,6} x {1,2,3,4,5,6}, and the event “doublets” is denoted by
{(1,1),(2,2),(3,3), (4,4),(5,5),(6,6)}. An event S; C S is said to occur

2 The more philosophical question of how the outcomes of using the devices introduced
in this section can be interpreted is attacked in (H4j03).

19

if the outcome of the experiment lies in S;. Pr(S;) denotes the probability
distribution (or probability, for short) of the event S; to occur.

Pr: S — R must satisfy Kolmogorov’s probability axioms, which directly
imply that Pr is a measure on the sample set:

(1) (impossibility) Every experiment run produces some outcome:
Pr({}) =0

(17) (certainty) Every possible outcome is contained in the sample set:

Pr(S) =1

(i4i) (additivity) For every pair of disjoint events Sy, S2 C S with S; NSy =
{}, the probability of either of two disjoint events occurring is the sum
of the individual probabilities of the events:

PI‘(Sl U 52) = PI‘(Sl) + PI‘(SQ)

A random variable X : S +— R is a function that maps samples onto real
numbers. Random variables are convenient whenever numerical outcomes
are needed if the sample space is non-numerical (such as {heads, tails} in
the case of a coin toss experiment). If the sample space is numerical (such
as in dice experiments), a suitable random variable is the identity function
X(s) =s.

This allows for a more convenient notation. Events are usually expressed
as conditions on samples, for instance {s € S| X (s) < 0}, so as shorthand for
the probability Pr({s € S|X(s) < 0}) we often write Pr(X < 0).

The probability distribution of the random variable X is often expressed
in terms of its cumulative distribution function F', or its probability density
function f. F is defined as follows:

F(z)=Pr[X <z], z€R

The density gives for each closed interval [a,b] € R the probability that the
outcome of an experiment is in [a, b]:

b
Prla < X < b] = / flz) do

Many distributions have been given enough attention to have their own

names (McL99), such as the normal distribution (or Gaussian distribution)

materializing in a vast number of natural phenomena, or the exponential

20

distribution useful for modelling growth processes. In cryptography, we are
mostly interested in the uniform distribution that describes “pure random-
ness” in the sense that no information on the outcome is available prior to the
experiment. In the discrete case,® a random variable is uniformly distributed
iff the density function on individual events is constant:

1

VsES.f(s):E

2.3.2 Algorithms, Complexity Theory, and Oracles

When assessing the security of cryptographic methods and tools we will have
to prove that adversarial success is theoretically impossible (“there is no al-
gorithm for launching a successful attack”). Sometimes, it makes life easier
if we contend ourselves with proving that it is merely infeasible in practice
(“there is an attack, but the adversary has not enough computing power
to run it”). Either way, we will need a few basic concepts from complex-
ity theory. Two of the many good standard text-books on algorithms and
complexity are (HU00) and (HRL97).

The description of a cryptographic scheme and its security involves several
parties, including at least one honest participant and one adversary. The
adversary may have a legitimate role in the scheme (e.g., it may be the service
provider running a database for a client, and behind its client’s back attempt
to steal the data in the database despite it being encrypted), or she may be
an outsider (e.g., somebody eavesdropping on an e-mail correspondence).

Turing Machines

In order to obtain a mathematical description of the cryptographic scheme,
we take all parties involved to be Turing machines (see cf. (HRLI7; GJ79)).
A Turing machine (TM) consists of a one-dimensional infinite tape of bit
cells, a read-write head, and a directed graph of nodes representing abstract
states with a cursor on a dedicated start node. The machine proceeds in
steps. In each step, the read-write head reads a symbol, moves either to
the right or to the left, and writes a symbol. Then, a state transition is
performed moving a cursor on the state graph from the current node to the
next along any suitable directed edge. The machine halts if the cursor hits
a dedicated stop node (there may be one or more stop nodes, or even none).

A subset of all bit sequences that can be written on the tape is called
a language, and the sequences in a language are called words. The TM is

3Since cryptography is a discrete discipline, we can ignore the possibility of continuous
sample spaces.

21

said to accept a language L if it reaches a stop node when run with any
word [€ L on its tape. It is said to generate L if for each [€ L, there is
an input such that it halts with [written on the tape. Both generating a
language and accepting it is sometimes called solving it. In a way, while TMs
are generic mathematical representations of programs, languages are generic
mathematical representations of problems.

Originally, the TM is considered to perform a specific computation on its
input data, and the state graph is representing the nature of that compu-
tation. But it is possible to construct a single TM whose purpose is to run
computations that can be expressed in an arbitrary TM. In fact, this other
TM is represented as a bit stream that can be stored on the tape together
with its input. A TM that interprets such representations of any other TM
is called a universal Turing machine. This type of Turing machines occurs
wherever the boundaries between code and data are blurred, which happens
in cryptographic theory (see Section 3.3) as well as in everyday 20th century
IT, e.g. in electronic documents that support macro languages.

A few models of algorithms with less expressive power than Turing ma-
chines have been proposed, such as boolean circuits and stack automata. We
will introduce circuits when thinking about code obfuscation in Sections 3.3
and 5.2, since conceivably programs may be easier to obfuscate if they are
expressed in a more primitive language. However, since we cannot control
the devices the adversary will use to launch an attack on an information
system, we usually only need the most general model of computation.

Are there any stronger models? Turing machines come in many flavors:
The tape alphabet can be extended from bits to arbitrary finite sets of sym-
bols, the number of cursors or the number of tapes, or even the number of
dimensions of each tape can be increased, and other ways in which the read-
write head may move can be added. Further, several other formalizations of
algorithms have been proposed over a short period of time in the history of
computer science, such as the A-calculus, recursive functions, Post automata,
and probably others. However, equivalence results have emerged soon estab-
lishing that whenever a problem can be solved by an algorithm expressible in
one model, that algorithm can be expressed in every other model. In partic-
ular, all programming languages can be mapped onto any of those models in
terms of expressive power. This suggests that all models give an accurate ac-
count of what constitutes an algorithm and what problems can be solved by
automated procedures, and it provides us with the luxury of using the most
convenient one exclusively. For our purposes, this will be Turing machines,
and we use the term synonymously with the terms algorithm and program.

22

Complexity

A TM is said to be time bounded by f(n) if on an input word of length n, the
TM halts after at most f(n) steps. A language L is said to be bounded by f
if there is a TM that solves £ and that is bounded by f. A TM being space
bounded by f(n) means it never uses tape cells beyond cell f(n). Although
considering these two resources (and possibly others) separately in general
has proven useful, no TM with space bound f can have time bound g if ¢
grows slower than f: each cell that is written to the tape uses up one step
of run time. In this thesis, we will therefore only consider time bounds.

This approach of measuring the time in individual steps turns out to be
too accurate. If we want to optimize a program, we are interested in the
exact number of steps the program requires to terminate, but first, a look at
f’s complezity is likely to be more productive: If f(n) = 2" and we can show
that a language is bounded by f, no matter how hard we try to tweak any
TM that solves it, we will always run out of time on moderate problem sizes.

To reason about classes of boundary functions, we write O(f) for the set
of functions that grow at most as fast as f:

O(f)={9g:N—=N|JceR,c>0:INeN:Vn>N:g(n) <c-f(n)}

We also say that a TM or a language is in O(f) if its bound is in O(f). When
thinking about the adversary (“how good can he possibly get at solving this
problem, and is it bad enough?”), or about the hardness of a problem (“how
much work are we going to have to put into solving this, and will it ever
work?”), we sometimes want to establish lower bounds. These can be written
down the the {2-notation in analogy to the upper bounds described using O:

Qf)={9:N=N|JceRc>0:INeN:Vn>N :g(n)>c-f(n)}
Finally, there is a notation for describing a corridor of upper and lower bound:

O(f)={9g:N—=N| 3¢, eR,e,d >0: INeN:Vn>N :
c- f(n) < g(n) <d-f(n)}

For example a language is in O(n?) if there is a solving TM that terminates
in quadratically many steps over the input. Both language and TM are said
to have quadratic complexity. A language that is in O(p) for any polynomial
p is said to have polynomial complezity. The class P of all such languages is
called a complezity class. It forms the core of the complexity theory that we
need in cryptography, so we name it:

P ={L | 3 polynomial p : L€ O(p)}

23

An analogous class of problems is
NP ={L | 3 polynomial p : L € O(p) for non-deterministic TMs}

Problems that are in AP or harder are called N'P-hard. It is usually assumed
that there is a gap between P and NP, and in fact many complexity classes
have been defined that are known to be harder than the former or easier
than the latter. However, it is one of the grand open problems of computer
science to find a proof that P = NP is false.

In most cases, an algorithm with reasonable performance can be found for
a language in P, whereas any language not in P is intuitively and practically
infeasible to compute for realistic input word lengths. This observation has
found its way into terminology: Languages in P are also called efficient.
TMs in P are also called efficient TMs, but more commonly polynomial time
TMs.

In many situations in cryptography, one cannot rule out that the adver-
sary is implausibly lucky, for instance by guessing a secret encryption key
correctly and using this key to decrypt an intercepted message. We can then
only state that this luck is implausible, or so unlikely that we can ignore it.
This is done by assigning the event a negligible probability (we will come to
that soon).

A function f is called negligible if it grows slower than the inverse of any
polynomial p:

V polynomials p : AN e N : Vn > N : f(n) < 1/p(n)
or, using O-notation:
V polynomials p : f € O(1/p)

For brevity, we use neg in place of an arbitrary negligible function and write
“...neg()...” instead of “there exists a negligible f such that ... f()..."

The original motivation for developing theories of computer performance
were to gauge existing algorithms, to establish limits of how efficiently prob-
lems can be solved in principle, and to approximate these limits as tightly as
possible. However, when the discipline of cryptography merged with mathe-
matics and computer science, it turned out that complexity theory can also
be used to establish lower limits to adversarial algorithms that are impracti-
cal for the adversary to overcome.

Complexity is a vast field in theoretical computer science. But when
concerned with applications of cryptography as we are in this thesis, loosely
speaking it boils down to making sure two things.

24

1. feasibility. The honest players have algorithms in P.

2. security. The languages the adversaries have to solve in order to break
the system are N'P-hard. (Ideally, the adversary has no algorithm at
all, no matter how complex. However, complexity theory has become
accepted as a sound basis for all of public-key cryptography for more
than 30 years of open research now.)

Variants of Turing Machines

Several changes can be made to standard TMs that make them more suitable
for certain situations. (M)* is a machine that times out after k steps, whether
a halt state has been reached or not. It is a straightforward exercise to give
a generic construction of a timeout variant for an arbitrary TM.

Probabilistic TMs are more interesting. They have an extra tape with an
extra head that moves one bit to the right in every step. The tape contains
a random sequence of bits that the TM can base its moves on. Often, the
random tape is modelled as the ability of the TM to toss a coin once in each
round, and use the upper side of the coin as input for the state transition
function.

The source of randomness adds something new to the computing model.
Probabilistic TMs cannot be modelled using non-probabilistic TMs, despite
the fact that randomness is available on every computer. Since randomness
makes it harder to predict an algorithm, it is harder to fool a probabilistic
TM it into overlooking a flaw in a security system, which makes probabilistic
adversaries harder to defend against. Therefore, adversaries are thought of
being able to build arbitrary probabilistic polynomial-time Turing machines
(PPTMs) by default.

Non-deterministic TMs (or NTMs) are TMs that may have more than one
possible transition for one specific situation (bit on tape and current state in
transition graph). When an NTM is run, all steps are taken simultaneously,
and as soon as a halt state is reached somewhere, all simultaneous runs are
terminated and the corresponding tape contents is output.

NTMs are used to describe a class of computational problems, namely
the class of languages in N'P:

P ={L | L is decidable in polynomial time by a non-deterministic TM }

Although is appears that languages in NP are very hard to solve in
general, there are a number of problems for which practical solutions exist
(e.g. linear optimization). The question whether P # NP is one of the grand
open problems of computer science.

25

Oracles

If an online banking web server is under attack from the Internet, the adver-
sary can send arbitrary messages to the server and observe what the server
does. If she is lucky, she can even submit randomly created messages, have
the server treat them as valid encrypted messages, make an attempt to de-
crypt them, and pass the outcome back to her.*

The web server in this attack is called an oracle for the adversary. If the
adversary is a TM A and the web server is a TM M, we say that A has oracle
access to M.

Definition 2.1 (Oracles). If a TM A is allowed to compute values of a
function f for arbitrary input of its choice, we say that A has oracle access

to f and write
A

Analogously, oracle access to a TM M is written AM. In each step, A may
feed one bit of input to the oracle or read one bit of output from it.

In the example, f would be the decryption function that the web server
runs in incoming messages. Note that f is not required to be in P, or even
computable. However, there is a natural restriction on what an algorithm A
with access to an oracle can do. If A is in P, it only gets to ask polynomially
many questions, and the questions and the answers must be polynomial in
size.

Dice

We will often need samples from a uniform distribution over an arbitrary
set, so we conclude this section with the definition of the PPTM RND¥.
Formally, for any set X and any element z € X:

Pr[RND* =z] = —

2.3.3 Encryption Schemes

Consider two persons who want to exchange messages (in the form of bit
streams) over a public telephone line. Because they are wary of eavesdroppers
and want to keep the communication private, they decide to use an encryption
scheme.

4Although in real life it is usually more complicated than that, successful attacks have
been proposed based on this simple idea.

26

This scenario suggests a straightforward mathematical structure for an
encryption scheme: An encryption algorithm transforms a plaintext message
into a ciphertext message before it is sent over the insecure channel, and a
corresponding decryption algorithm reverses this transformation.

All algorithms are available to the adversary. This way, the cryptographic
community can scrutinize them and assess their security. Where they are
kept secret, the team of engineers that develops them will usually overlook
something that a team of reverse engineers slightly more creative and slightly
more determined will find and exploit. Of course, only the legitimate receiver
of a message should be able to decrypt an encrypted message. To enforce this
requirement, both encryption and decryption algorithm require as additional
input besides the message a value that is only known to the communicating
parties, the key. The algorithm for key generation completes the description
of an encryption scheme.

Definition 2.2 (Encryption scheme). An encryption scheme is a tuple (G, E,
D) of three probabilistic polynomial-time Turing machines (PPTMs). The
encryption algorithm

E:KxM-—=C

Ex(m) — ¢

computes a ciphertext ¢ € C from a corresponding plaintext m € M and a
key k € KC; the decryption algorithm

D:-KxC—-M
Di(c) — m
reverses encryption, and the key generation algorithm
G:{1}' =K
G(IY) =k

maps integer numbers in unary notation ({1}* denotes the set of all finite
sequences of ones) to random keys from K. An encryption scheme must
satisfy the condition that decryption recovers the plaintext. In other words,
encryption must be injective and invertible:

Vk € IC,m e M: Dk(Ek(m)) =m
More accurately, since both E and D are probabilistic we require that

PrVk e K;m € M : Di(Ex(m)) =m] > 1 — neg(N)

27

The argument of G, a natural number N passed in binary notation 1%V
mostly because it is a natural form for TMs to digest, is called the security
parameter. Its necessity stems from the asymptotic nature of security: An
encryption scheme is designed so that there is no adversarial algorithm in
P that can do it any harm, i.e., every adversarial algorithm performs worse
than any polynomial for any n > N. So in order for the system to be secure,
we always need to choose an appropriate N first.

Because key management is often straightforward in our applications, we
sometimes omit the key entirely, writing E(m) and D(c). Keep in mind that
even then, security still depends on the security parameter implicit in the
key.

It is easy to see why key generation needs to be probabilistic: An adver-
sary who is kept from observing G’s output must not be able to guess it, so
G’s output should in fact be uniformly random. The reason why F and D
are probabilistic is less obvious, and will be discussed in the following.

2.3.4 Security Definitions

The following encryption scheme encrypts any plaintext to itself and decrypts
any ciphertext to itself:

Example 2.1 (A Weak Encryption Scheme).

Gy =1~
Er(m)=m
Dy(c) = ¢

(G, E, D) satisfies Definition 2.2. In particular, it is true that D(E(m)) =
m for all keys and messages, but something is still wrong: There is a very
simple way for the adversary to decrypt ciphertexts (namely, by doing no
transformation at all).

This shows that we need a notion of security of a cryptographic scheme
that grasps the intuition that the adversary “should not figure out the plain-
text”. This notion should be as mathematically rigorous as possible so that
we can be sure not to miss any attac angle.

Simulations (or games) in which the players follow the rules of the scheme
while an adversary (who may be one of the honest players, such as a service
provider, or an outside enemy, such as an eavesdropper) attempts to corrupt
its outcome. The scheme is secure if the players can be confident that the
adversary will lose any possible game (or more accurately, that her winning
probability is negligible). We refer to such games as security definitions, or

28

notions of security. An example for such a game that is rather imperfect (in
a moment it will become clear why) and thereby instructive is this:

Example 2.2 (A Weak Notion of Security). The system is secure if there is
no adversarial PPTM A such that for every c, it holds that A(c) = Dg(c).

(Note that A is not provided with the secret decryption key.) If the
players use the bad scheme from Example 2.1, the adversary chooses Vc €
C : A(c) = c and plaintexts are always recovered in full. Hence, the scheme
is not secure by this definition. And yet, an encryption scheme that securely
hides the first bit of the message from the adversary but passes through all
other bits unmodified is secure in this definition. But the fact that it leaks
all but one bit of the plaintext to the adversary means it is only negligibly
better than our first approach.

Before we look at better formalizations of what constitutes a secure en-
cryption scheme, we need to discuss a few common mistakes that need to
be avoided in the representation of the adversary, of her goal, and of the
application that makes use of the scheme.

Assumptions on adversarial strategies and algorithms. First, it is not
enough to consider any restricted class of adversarial algorithms. During the
construction of a secure system, it is unknown what attacking algorithms
an adversary will come up with. The adversary has the advantage of being
confronted with the complete system before she has to make any decisions
on how to attack. Once she comes up with an attack, the system designer
can do very little about the design that has been finished earlier, even if the
attack becomes publicly known. Therefore, security proofs are necessarily
existential, i.e., of the form: There is no attacking algorithm A such that. . ..
We will come back to this point in Section 3.6 in an attempt to give further
motivation for the cryptographer’s position in this argument.

On the other hand, making assumptions on the computational resources
of the adversary can be justified. It is unlikely that any real system will ever
face an adversary that can solve N P-complete problems of a properly chosen
size in the life time of the system under scrutiny.’

Partial information recovery by the adversary is harmful, too. Second,
it needs to be decided what goal the adversary needs to accomplish in order
to render a scheme insecure. Ultimately, she would of course be happy to
recover the plaintext in full as required in Example 2.2. However, a basis for

5This, of course, is also an assumption, and can be rejected. However, it is more
comforting to base a system’s security on the assumption that the adversary will not solve
a mathematical problem which generations of mathematicians world-wide have failed to
solve than to assume that all effective attacks have been taken into account by a small
group of engineers.

29

security proofs needs to be more conservative. Even if a small fraction of the
plaintext is recovered successfully, e.g., a fraction of all confidential e-mails,
the users of an encryption scheme may get burnt.

Assumptions on adversarial a priori knowledge. Further, the adversary
also needs to be granted partial information on the plaintext. It cannot be
made the responsibility of the encrypting parties to reveal absolutely no in-
formation to an adversary, because much of this information may be public.
Figures from a company’s share holder reports, the structure imposed on
messages by industry standard protocols, or seemingly insignificant informa-
tion provided by unsuspecting employees, suppliers, or clients, can all lead
to disaster if the security of the encryption scheme relies on the adversary
having no knowledge of the plaintext whatsoever.

Example 2.3 (Partial Plaintext Recovery Hurts). A supply chain manage-
ment (SCM) application uses an application-layer protocol to send queries
from the client to the service provider and results from the service provider
back to the client. The encrypted communication stream of company A with
the service provider is intercepted by competitor B’s business intelligence
unit.

Because B requires the same products for its operation, B has fuzzy, but
detailed knowledge about A’s supply chains. It knows many of A’s suppliers,
what parts they supply, and at what likely price. It may also know the output
of A, and what input that requires (which parts, and how many). Also, as A
and B are clients to the same SCM service provider, B is in possession of
the exact specification of the plaintext protocol.

Now B wants to address specific questions, and an answer to any of these
question provides some benefit to B and does some damage to A. For an
order of a known number of a known part, is the unit price that A pays lower
than the one that B pays? Do patterns in the order volumes suggest that A
has found a way to produce the same output as B with less input? Is the list
of suppliers of A any different from what B expects? The reader will find it
easy to extend this list ad infinitum.

The adversary may even be able to gain partial access to the secret key,
in the form of ciphertexts to which she not only knows, but chooses the
corresponding plaintexts (this circumstance is called adversarial oracle access;
see Definition 2.1):

Example 2.4 (The Adversary may be able to Encrypt). B may contact A
and talk an employee into triggering an SQL query to the SCM database,
and then observe the traffic between A’s site and the service. There are two
messages, and A knows the complete plaintext of the first one, the query, and

30

thus the exact meaning of the second one, the reply. If the answer contains a
list of SQL tuples, B can compute the tuple count from the ciphertext without
decryption, from the size of the ciphertext and some knowledge of the database
scheme alone.®

If the adversary already suspects a certain message to be sent over the
wire in a context that she either predicts or actively provokes, she only needs
to recover one last bit, namely the answer to the yes-no-question: Was it
message m, or was it another one? If the suspected contents of the message
is a stock transfer order, the knowledge leaked to her with this one bit may
be disastrous.

(Note that when we are talking about “one bit of information” in the
last paragraph, we do not mean one bit of the plaintext representation of
the message, but one bit in the information theoretic sense (Sha48; Mac03;
Sti05): Ome bit of information can be smeared over many bits in the actual
message, and be only explicit in the value a boolean function applied to the
entire plaintext message.)

Assumptions on applications. Finally, although adversarial algorithms
usually benefit greatly from being tailored for specific applications, this does
not hold for the user of the encryption scheme. Making assumptions on what
part of the ciphertext needs to remain confidential and what can be given
away is difficult and risky.

This has two reasons. One is that is that software engineering is mostly
about managing changes in requirements. Users are likely to learn when it
is too late that something that has been specified as non-confidential turns
out to be confidential after all. But the second one is more important: The
database has internal functional dependencies that are extremely hard to
formalize and understand. A partial encryption scheme has to be protected
against an attack in which the adversary computes confidential contents of
the database as the value of a function of publicly available information.

Work has been carried out to control these functional dependencies and
allow for publication of partial messages while keeping other parts reliably
confidential. However, these approaches usually make two other mistakes
that we have already treated above: The violate the principles of arbitrary
adversarial algorithm and of adversarial a priori knowledge. Particularly the
latter one is further complicating the issue considerably. See Section 3.6 for
a discussion.

To conclude, a sound and reliable security model for encryption schemes

6We assume that ciphertext length is roughly the same as plaintext length. All relevant
encryption schemes have this property, since the performance penalty for padding does
not justify the minimal gain in security.

31

e makes no assumptions on the adversarial strategy or algorithm, but
only on her computing resources,

e considers an adversary who knows everything about a plaintext except
for one last (information theoretic) bit, and attempts to recover that
bit,

e might even grant her access to encryption or decryption oracles (see
Definition 2.1), and

e is not tailored towards any specific application.

These characteristics have been discussed and motivated or simply im-
plied in most text books on security in varying depth (Gol01; Gol04; Sta03;
Sch96; MvOVO01). They form a solid consensus from which few security en-
gineers deviate, and if they do risk disaster (Neu85). The weaknesses we
uncover in related work in Chapter 3 can be blamed to a large extent to
violations of these principles.

Doing it right

Equipped with these principles, we can now look at a few more useful security
definitions. The first, a basic form of semantic security, is both sound and
relatively intuitive. The motivation of the second one, indistinguishability,
might be more surprising, but it has its technical merits. Conveniently, the
two turn out to be equivalent.

Definition 2.3 (Semantic Security). An encryption scheme (G, E, D) is se-
mantically secure (has semantic security) in the known plaintext model iff for

any plaintext m and any probabilistic polynomial-time adversarial algorithm
A, there is an adversarial PPTM B such that

| Pr [A(Ex(m), 11 = 1] — Pr [B(AEM) = 1] | < neg(N)

where k = G(1V).

Intuitively, any access to a ciphertext does not add to the adversary’s
knowledge about the corresponding plaintext: Everything that can be com-
puted by A using the size of the ciphertext and the ciphertext itself, can also
be computed by an B using the size of the ciphertext only.

Reading security definitions as games gives us a good intuitive under-
standing, which is crucial to accept (or reject) them for a given application
as appropriate (or too strong, or too weak). But where is the game in this
definition?

32

First, the honest user decides on A and notifies the adversary, then the
adversary chooses B. In the next step, the honest user provides the adversary
with input for B and lets her run B. She runs A on the corresponding input
herself, and both players compare their results. If they match, the adversary
has guessed correctly (wins), if not, she was wrong (loses). This is played for a
number of rounds until the sample set allows for computing approximations
of the probabilities occurring in the definition above. If and only if the
adversary’s winning probability is negligible, the definition will hold.

Although this may capture our feeling for what it means for an encryption
scheme to be secure quite well, it turns out to produce clumsier proofs than
the following

Definition 2.4 (Indistinguishability). An encryption scheme (G, E, D) is in-
distinguishably secure (has indistinguishability) iff for any adversary PPTM
A and any mg, m; € M, mgy # my,

kE — G@ON)
i «— RNDWU 1
< —
Pr i* — A(mog,mq, Ex(my)) _2+neg(N)
1 =1"

Again, we rephrase this as a game. The adversary chooses A, mg,mq,
and the user tosses a coin and publishes Ej(my) if the coin turns up heads
and Ey(mq) if it turns out tails. The adversary wins if she can guess what
happened in non-negligibly more than half of all runs.

Note that knowledge about mg, m; can be build into A*’s state graph, so
strictly speaking, this makes it unnecessary to provide them as arguments.
However, making them explicit makes the intention behind the definition
more apparent. A* knows everything about the encrypted plaintext except
for one bit (namely, which of the two it is). An indistinguishable encryption
scheme renders guessing this one last bit impossible from the information
available to the adversary (namely, the ciphertext).

Indistinguishability is often more suitable for security proofs,”, while se-
mantic security intuitively seems better suited for describing practical secu-
rity. Luckily, the two are interchangeable:

Theorem 2.1. An encryption scheme (G, E, D) has semantic security iff it
has indistinguishability.

For a proof see cf. (Gol04) (pp. 383).
There is a definition of indistinguishability that looks different, but turns
out to be equivalent to the above:

7And insecurity proofs, too!

33

Definition 2.5 (Indistinguishability: Variant). An encryption scheme (G, E,
D) is indistinguishably secure (has indistinguishability) iff for any adversar-
ial PPTM A* and any mg,my € M, mg # my,

| Pr k GlN
A*(mo, my, Ek(mo)

— Pr

b GO < gy

[A*(mo,ml,Ek(ml)) _

Theorem 2.2. An encryption scheme (G, E, D) is secure in Definition 2./
iff it is secure in Definition 2.5.

Again, for a proof see cf. (Gol04).

Cryptographic literature knows several variants of indistinguishability
that grant the adversary additional information in the form of limited ac-
cess to oracles (see Definition 2.1) that perform encryption or decryption
operations. Adversaries with oracle access to the cryptographic scheme un-
der attack are called active adversaries. The idea of oracle access yields the
following 2.4.8

Definition 2.6 (Chosen Plaintext Security). An encryption scheme (G, E,
D) s (indistinguishably) secure in the chosen plaintext model iff for any
probabilistic polynomial-time adversarial PPTM A*, and mqg,m; € M, mg #
my,

k G(1Y)
i RND1} 1
p <z N
i e AP (mg,ma, Ex(my)) < 5+ neg(N)
i =

That is, A has now access to an encryption oracle. Now we can say explain
why we defined E to be probabilistic in Section 2.3.3. If E, was determin-
istic, i.e., two different runs of Ej(m) would produce the same output, the
adversary could simply have the oracle encrypt my and compare the result
with the ciphertext in its challenge. If the two are equal, the ciphertext is
Ex(my); if not, it is Fx(m;). Thus, a deterministic encryption scheme cannot
be secure in this definition.

We can fix this definition to make it weaker, and allow for deterministic
encryption: We simply replace the oracle Fj, by

E\{mo,ml}() 0 it m e {m07m1}
Ex(m) otherwise

8There are natural analogs of the following definitions for semantic security that do
not provide any further insight, so we will not consider those here.

34

However, keep in mind that this is a considerably weakens Definition 2.6.
Whenever it is used, great care must be taken that it does not break security
altogether.

Two further variants based on oracles describe, with increasing adversarial
power, a priori and adaptive chosen ciphertext adversaries.

Definition 2.7 ((A Priori) Chosen Ciphertext Security). An encryption
scheme (G, E, D) is (indistinguishably) secure in the (a priori) chosen ci-
phertext model iff for any pair of adversarial PPTMs A, B and any pair of
messages mo, m; € M,mg # my:

[k~ G(1Y)]
i RND!H
w «— BE:Pr(mg, my, 1Y) 1
’) < Z
Pr ¢ o By(m) <5 + neg(N)
i* — Almg,my, 1V, w,)
[0 = 1" i

w is the a priori computation made by the adversary using oracle encryp-
tion and decryption. (Again, since B is in P, there may be only polynomially
many queries.)

Definition 2.8 (Adaptive Chosen Ciphertext Security). An encryption
scheme (G, E, D) is (indistinguishably) secure in the adaptive chosen cipher-
text model (ACC) iff for any pair of adversarial PPTM A and any pair of
messages mo, my € M,mgy # my:

k — G(1N)
i RND1 .
Pr| ¢ «— Eg(my) < = + neg(N)
o ABeD (mo, my, 1V, ¢) 2
1 =1"

As before, D;{C} denotes an decryption oracle that decrypts anything but
the ciphertext ¢ under attack.

In practice, chosen ciphertext attacks may only reveal noisy plaintext
information such as non-uniform probability distributions over the number
of 1s in the plaintext (Koc96; Ble98). Such attacks are successful because
of the high pace with which things happen in information systems: In order
to recover a few kilobytes, millions of noisy decryption operations can be
performed in a short period of time, and extensive computations on the
noisy oracle answers can be used to recover the original plaintext or the

35

secret key. Therefore, the model grants the adversary clean access to an
encryption oracle. If this does not help against a given scheme, we may hope
to be secure using that scheme in practice as well.

We have stated that in general, it is a bad idea to make any assumptions
on the adversary’s context knowledge. However, despite its deficiencies, it
appears in the literature every now and then, and can arguably be used to
provide at least a better level of security than none at all. Therefore, where
unavoidable we will drop the principle of adversarial context knowledge and
relax Definition 2.4:

Definition 2.9 (Known Ciphertext Security). An encryption scheme (G, E,
D) is indistinguishably secure (has indistinguishability) in the known cipher-
text model iff for any two plaintexts mg, m; € M, mg # my and any proba-
bilistic polynomial-time adversarial algorithm A,

— G
i « RNDU
o

b A(Bi(my)

)
1 =1

All these models can be put into a hierarchy of strength as depicted in
Figure 2.1.

Theorem 2.3 (Hierarchy of attack models).

1. Indistinguishability (Definition 2.4) implies known ciphertext security
(Definition 2.9)

2. Chosen plaintext security (Definition 2.6) implies indistinguishability
(Definition 2.4)

3. (A priori) chosen ciphertext security (Definition 2.7) implies indistin-
guishability (Definition 2.4)

4. Adaptive chosen ciphertext security (Definition 2.8) implies adaptive
chosen ciphertext security (Definition 2.7)

Proofs derive the information required for the weaker attack from the
information available in the stronger attack. Most are straightforward. For
instance, if the adversary gets granted access to an oracle while the game
otherwise stays the same, every attack that works without access to the
oracle will still work. Hence, chosen plaintext security is strictly more secure
than basic indistinguishability. The full proofs can be found in (Gol04).

36

KMoV CrfaseTXl

'

V9IS ensHABICOTY

'

Cclharw - == Chesty
mvrext 2 arresext

MAPTIVE
oV
onteier

Figure 2.1: Hierarchy of attack models (illustration of Theorem 2.3).

Note that there is no reduction from chosen ciphertext security to chosen
plaintext security: Although an adversary with access to a decryption oracle
appears to be closer to its goal of decrypting secret messages than one with
merely access to an encryption oracle, no reduction has been found so far.
This is mostly a theoretical deficiency. Assessing the security of a particular
scheme, a proof in one model often yields a similar proof in the other.

Adaptive chosen ciphertext is the strongest model, granting the most
resources to the adversary, and there are good reasons to use this model
instead of one of the weaker variants (Sho98). In realistic scenarios, the ad-
versary has extensive capabilities of mangling authentic messages and forging
new ones. There have been effective attacks against widely deployed crypto-
graphic products caused by the wrong choice of security model (Ble98).

We have to add one last, orthogonal aspect to the hierarchy security
notions developed in Theorem 2.3. We often want to use an encryption
scheme over a longer period of time to encrypt many messages with the
same key. (Otherwise, for each message transmitted securely over an insecure
channel, we would have to transmit a key over a secure channel as well.)
The extension of the above definitions to the multiple-message case is rather
straightforward. We only list the variant for indistinguishability (the others
can be found in (Gol04)).

Definition 2.10 (Multiple-Message Indistinguishability). Let m = (m!,...,
mOPWM) be a sequence of messages of length polynomial in the security param-

37

eter, and let M be the set of sequences of polynomial length over elements of
M. Further, for any PPTM M and message sequence i, let M(m) be the
result of running M on all elements of m subsequently.

An encryption scheme (G, E, D) is indistinguishably secure (has indistin-
guishability) in the multiple-message case iff for any adversarial PPTM A,
and any Mg, m; € M,

k «— G(1N)
i RNDO1 1
P _ < = N
r 7 Almig, i, By (17;)) < 5t neg(N)
i = g*

Note that the contents of M’s randomness tape is different for each invo-
cation of M in M (m). If two of the messages in 7 are the same, the output
may still be different, because M tosses its coins anew each time.

Whether one should consider multiple-message or single-message security
is always apparent from context and application: If the same key is used for
a series of messages, single-message security is inappropriate. If not (for in-
stance because the key is generated ad hoc in the context of a larger protocol
and discarded in the next step) it is the better choice because it is easier to
achieve.

We conclude this section with a few musings on the virtues and dangers
of intuition. All of the thoughts expressed here are common sense. Some will
re-emerge in Section 4.1 when we have a look at previously proposed security
model for homomorphic encryption.

If a mistake has been made in the design of an airplane, the affected
machines can be taken down after the first serious hint to trouble, and the
pace of events will prevent a long series of crashes. On the Internet, an
engineering mistake propagates at a pace that nobody has a chance to react
until, to stay in the metaphor, hundreds of airplanes have crashed into the
neighborhoods of hundreds of airports. The reason why this has not caused
higher casualties yet is that most people, not only experts, are aware of this
and avoid relying on the Internet to the same extent they rely on the safety
of civil aviation.

Both scenarios deploy heuristic security precautions, which is the best
that can be done given the resources available and the hardness of the task.
Unfortunately, the heuristics of non-communication engineering do not work
for data network engineering any more, since the nature of the two is funda-
mentally different, and thus so are the threats that both have to deal with.

e Opportunity boost. An adversary after the contents of your tool shed
needs to meet two requirements in order to be successful: She needs

38

to know of your tool shed, and she needs to be ready to go through
the trouble to get there. On the Internet, something whose presence is
not publicly announced cannot automatically be considered secret. For
example, if a flaw in a software server product is publicly announced,
tools can be used to scan the entire IP address space for running in-
stances of that software automatically. Further, there are no geographic
distances any more: Every IP address can be reached effortlessly by the
adversary. This increases the range of potential adversaries by orders
of magnitude.

Scalability of attacks against information systems. It is a common
misconception that “everything that slows an adversary down is good.”
This is in fact true for house locks, because it will slow down every
adversary, in every instance of an attack. Time is very scarce for the
adversary, and every minute she needs to spend on the attack increases
the probability to get caught on site. However, attacks against in-
formation technology almost always come with outrageous scalability
benefits due to attack automation.

Breaking a cryptographic scheme is not like breaking a lock, but like
crafting a key that fits all the locks of a certain brand in the world at
the same time. If a standard cryptosystem is broken, every house in the
entire world that is protected with it can be opened without additional
effort. Hence, while it may be justified to obscure a system to establish
an additional reverse engineering obstacle for the adversary, one always
has to keep in mind that the benefit from doing the reverse engineering
is higher by many orders of magnitude than in a traditional context.
This is the reason security by obscurity has such a bad reputation in
the computer security community.

Remote attacks. The adversary need not be physically present at the
site of the attack. Also, the goods stolen in data networks are not re-
ally stolen in a physical sense, but interception usually goes unnoticed.
This has a number of negative effects on the effectiveness of traditional
security heuristics. (1) A lower motivation is sufficient for an adversary
to decide to engage in an attack, since the risk of getting caught is low.
(2) The attack against a crypto scheme can be more resource intensive
than an attack against a vault, since the ciphertext can be attacked
in a hidden laboratory, and the attack may take many weeks and still
be worth it. Finally, (3) it amplifies the effects of scalability effects
weakening the effect of system obscurity on system security.

39

e Monocultures and centralization. Centralization promises synergy ef-
fects. Operating systems and mass application software arguably form
natural monopolies that are hard (and probably undesirable) to counter
on a political level. Unfortunately, both work together to increase the
threats to the data that is processed by these systems. Centralization
in computing centers run by service providers multiply the value of an
attack target, while monocultures improve the scalability of automated
attacks. Furthermore, so called bot networks (see e.g. (LAAA06)) can
be set up by spreading malware, yielding exponential size/effort ratios.
The computing resources available from these stolen networks can then
be used to successfully launch attacks of intimidating complexity.

All these observations disembogue into the conclusion that we need to
think harder about what we mean if we say an I'T system needs to be secure,
or confidential. New intuitions have to be developed for the capabilities of the
adversary and the nature of the threats in general. The security definitions
presented in this section span the current state of the art, but certainly do
not mark the end point of the debate.

2.3.5 Other Cryptographic Building Blocks
Public Key Encryption

Encryption schemes (G, E, D), as introduced in Section 2.3.4, are more ac-
curately called a symmetric encryption schemes. Symmetric encryption is
characterized by the symmetric nature of K: Both encryption and decryp-
tion algorithm are fed the same secret key, and once this key is revealed to the
adversary, she can use it both for encrypting new plaintexts and decrypting
intercepted ciphertexts.

Asymmetric encryption, or public-key encryption, has a key generation
algorithm that generates key pairs (e,d) € K. Encryption

E :{e|(e,d) e L} x M —C
relies on the public part only, only decryption
D:KxCr—M

relies also on the secret part as before. In order for the system to be secure,
knowledge of e must be useless for recovering the corresponding d.

An asymmetric system allows for the public key e to be known to the
adversary, but does not require it. An adversary with strictly less information

40

can only be less successful. On the other hand, because they are based on
mathematical structures that allow for functions that are hard to compute
given some (m,e), but become easy given some (m,e,d), the performance
of public-key cryptosystems is worse than that of symmetric key systems:
The latter are based on relatively small circuits and highly efficient boolean
operations. Therefore, even in applications that depend on the fact that key
distribution is easier and therefore use public key cryptography, the bulk of
the message is usually encrypted with a symmetric session key that is then
encrypted in an asymmetric fashion (hybrid encryption).

Asymmetric cryptography is used in industry standards like SSL/TLS
(DA99) and PGP (Zim95). The most prominent underlying algorithms are
RSA (RSA77) and ElGamal (Gam85) on residue class rings.® Considerably
younger but maturing rapidly are a number of computationally more efficient
schemes based on elliptic curve groups (Was03). An efficient and provably
secure system has been proposed (CS98), but we know of no widely used
implementation.

Public-key cryptography is simplifying key distribution enormously. This
has made it popular for e-commerce applications and given way for a large
industry providing public-key infrastructure (PKI): If every client of a bank
would need to negotiate a symmetric key before being able to use online-
banking, not only would enormous computing and administrative resources
be required by the bank to manage the vast number of keys make the busi-
ness prohibitively expensive, but acceptance in the user base would likely
deteriorate even independent of the increase in cost, solely because of the
effort to handle the technology.

Homomorphic encryption (see Section 2.3.6) has been discovered on asym-
metric encryption schemes, namely RSA (RAD78); symmetric schemes usu-
ally display no homomorphic structure. To our knowledge, we are the first to
have used the term for schemes and applications outside asymmetric cryp-
tography. This has proven a good idea in several ways. When looking at
privacy of information stored in outsourced databases, there is usually no
point in allowing the adversary access to the encryption key in our model:
All encryption and decryption is carried out within the security realm of the
database client (or several clients), and the adversary has only access to the
server. The investigation into symmetric cryptography has resulted in effi-
cient practical results that would have easily been overlooked otherwise (see
Section 4.3). Finally, note that the move from the asymmetric to symmetric
model is not a restriction, but a generalization: If the application requires

9We will explain the working of RSA in Section 3.1.2, since it turns out that RSA can
be turned into a homomorphic encryption scheme very easily.

41

an encryption scheme that is secure in the symmetric case, any asymmetric
scheme will do (even though it does not provide any additional benefits).

Pseudo-Randomness

Later in this thesis, we will make use of a class of symmetric encryption
schemes called stream ciphers. These require a device that creates a long
sequence of pseudo-random bits from a small fix number of input bits. This
device is called a pseudo-random generator.

Definition 2.11 (Pseudo-Random (Bit) Generator). A pseudo-random (bit)
generator is a (deterministic) PTM

R:{0,1} — {0,1}™
where m = O(2).

Examples for pseudo-random generator algorithms are linear shift feed-
back register constructions (see cf. (Sch96)) such as used in the global
positioning system GPS, or the less efficient and little used, but also more
secure Blum-Blum-Shub algorithm (BBS82; BBS86).

Again, security of pseudo-random generators is defined in terms of an
indistinguishability game. A good pseudo-random generator makes it impos-
sible for an adversary to tell the output apart from true randomness:

Definition 2.12 (Pseudo-Random Generator Security). A pseudo-random
generator R : {0,1} — {0, 1}™ is secure if for every adversarial PPTM A:

Pr[A(Ry) = 1] — Pr[A(r) = 1] < neg(m)
where k € {0,1} and r € {0,1}™ are chosen uniformly at random.

From the perspective of the engineer, this raises the question of how a
PRG is seeded, or how the seed k is chosen in a truly random process. This
touches a rather philosophical question: What makes a sequence random in
the first place? The problem of deciding for an individual sequence of bits
whether it is random or not seems paradoxical — is 111111 more random
than 1011017 But even the problem of determining the level of randomness
of languages (i.e., sets of sequences of bits rather than individual words), has
puzzled mathematicians for centuries ((Vol02) is an excellently written sur-
vey, covering and exceeding the foundations of randomness laid in (Gol01)).
However in practice, good sources of true randomness exist.' We will con-
tend ourselves with assuming there is such a thing as a uniformly random

OExamples: Intel RNG, VIA PadLock Security Engine.

42

choice, without proving for any particular device that it falls into this cate-
gory.

The following important result states that the number of samples (as long
as it remains polynomial) does not affect the distinguishability of a PRG:

Theorem 2.4 (Pseudo-Random Generator Security for Multiple Samples).
Given a PRG R and a PPTM A. If

Pr[A(Ry) = 1] — Pr[A(r) = 1] < neg(m)
for uniformly chosen k € {0,1}" and r € {0,1}™, then
Pr[A(Rg,), ..., Ri.)) = 1] — Pr[A(ro,...7r,) = 1] < neg(m)
for any z and uniformly chosen k; € {0,1}" and r; € {0,1}™.

(There is no need to restrict z, since A is polynomial and can therefore
only process polynomially sized input.) A proof based on probability en-
sembles can be found in (Gol01). This result allows us to re-use the same
algorithm in the same application with different keys, without sacrificing se-
curity. We will need this in the construction of our homomorphic database
encryption schemes in Section 4.3.2.

We will also require the notion of pseudo-random functions and pseudo-
random permutations that can be easily obtained from the definition of
pseudo-random generators.

Definition 2.13 (Pseudo-Random Function). A pseudo-random function is
a function f:{0,1} — {0,1}™ for some I, m.

Definition 2.14 (Pseudo-Random Function Security). A pseudo-random
function f: {0, 1} — {0,1}™ is secure iff for every adversarial PPTM A,

PrlA(f(k)) = 1] = Pr[A(r) = 1] < neg([k|)
where k € {0,1},r € {0,1}™ are chosen uniformly at random.

Definition 2.15 (Pseudo-Random Permutation). A pseudo-random permu-
tation s a permutation f : {0,1} — {0,1} that is a pseudo-random func-
tion.

The main purpose of pseudo-random functions (and permutations) in a
cryptographic scheme is to generate outcomes that surprise the adversary
from input that she knows of. This is impossible if the function is defined in
the scheme and the adversary knows the scheme, so we need to key them. We
omit the technical details (which differ only subtly from keying of encryption
schemes that we have explained more thoroughly) here. We simply write fj
for a secret pseudo-random function (or permutation): k is a secret uniformly
chosen key whose size is as usual determined by the security parameter, and
f is known to the adversary.

43

One-Wayness

Cryptographic schemes always boil down to enforcing situations in which
one agent is capable of doing a computation efficiently, and another one is
not. Often, these situations can be described by a function that is easy to
compute, but whose inverse is hard to compute. These functions are called
one-way functions.

Definition 2.16 (One-Way Function). A one-way function is a function
f+A— B such that

e There is a PPTM M such that for uniformly chosen a € A,

Pr[M(a) = f(a)] = 1 —neg(lal)

e For every PPTM A and uniformly chosen a € A,
PrA(f(a), 1) € f7'(f(a))] < neg(|al)

In analogy to the grand open question of complexity theory whether P =
NP, the grand open question of cryptography is whether there are functions
that satisfy Definition 2.16.

And as in complexity theory, where many theorems begin with unless
P = NP, ..., many fundamental results in cryptography have the form if
one-way functions exist. . ..

For example, an encryption function £ can be thought of as a one-way
function if both key k and message m are taken as its input: If it is provably
infeasible for an adversary to compute any valid (k, m) from Ej(m), then the
message is provably safe.

Further applications are numerous, such as producing a secure small fix-
sized witness or cryptographic checksum for some large message. For exam-
ple, the message could be a large contract in an electronic format, and the
witness would be the input to a signature scheme (see Section 2.3.5) that can
only handle small inputs. If the witness that comes with the document is
intact and produced by a one-way function, the document is intact as well.

A function that computes witnesses from arbitrary-sized documents and
that is hoped to be one-way is called a hash function.

Definition 2.17 (Hash Function). A hash function is a one-way function
h:{0,1}* — {0,1} for some fized | € N. (A common value is | = 160.)

Since one-wayness is out of reach, security of hash functions can be defined
in several ways. For example, collision resistance states that for any given

44

x such that h(z) = y, it is hard to find an 2’ # z such that h(2') = y. (2’
is called a collision.) An orthogonal notion is pre-image resistance, which
states that for any y it is hard to find an x such that h(x) = y.!!

Widely used hash functions are MD5 (Riv92) and the SHA family (rJ01;
rHO06). Cryptographic hash function research has been in some turmoil re-
cently. Theoretical weaknesses in SHA-1 indicate that it may soon be broken
entirely (WYY05a; WYY05b), while MD5 has been known to be insecure for
a long time (Ber92; Dob96). This has incalculable consequences — these func-
tions are used in industry standards and legislation for electronic banking,
electronic contracting, electronic passports and visa, and many others. Fur-
ther, they are crucial for the security of virtually all larger cryptographic
applications. In particular, SSL/TLS, PGP, SSH are directly affected.

Block Ciphers

There are essentially two classes of symmetric encryption algorithms: Block
ciphers and stream ciphers. Before explaining the latter in the next section,
we will now give an account of block ciphers.

Definition 2.18 (Block Cipher). A block cipher is a (symmetric) encryption
scheme (G, E, D) with M = C = {0,1}*. Le., ciphertext space and plaintext
space consist of bit words of fized block size k.

In practice, the block size usually varies between 128 and 512 bits (16 and
64 bytes). The most famous block cipher today is the advanced encryption
standard (AES) (DR02). Its predecessor DES (ACF*77) is slowly removed
from the production cycle mostly due to key sizes that have grown insufficient
to protect against vastly more powerful hardware.

We can make two observations on block ciphers:

1. The plaintext and ciphertext space are equal in size and every cipher-
text needs to be mappable on the plaintext used to compute it. Hence,
a block cipher must be a bijection from M to C. In fact, this means it
is a permutation on {0, 1}

2. For an adversary who has access to an encryption oracle Ej, but not
to the key k, every newly encrypted message yields a ciphertext that
surprises her, or appears to be random.

11 Pre-image resitance makes hash functions look a little like encryption schemes, only
there is no decryption operation. In fact, many pre-images map to the same hash value,
so there is not even a decryption.

45

The former means that block ciphers cannot be probabilistic (with more
than non-negligible probability). If the same plaintext would map on a dif-
ferent ciphertext each time FE) is invoked with the same k, there would not
be enough ciphertexts to map to all plaintexts.

The latter observation is not implicit in Definition 2.18, but in a suitably
chosen security definition. However, it has a useful implication: A pseudo-
random permutation can be modelled as an encryption oracle to a block
cipher. (Since the key is hidden from the oracle client, if the block cipher
is indistinguishably secure the client cannot make any predictions on the
outputs.)

One-Time Pads and Stream Ciphers

Consider for a moment plaintexts of length 1. The operation ¢ = m @ k of
xoring a plaintext bit with a key of length 1 is a perfect encryption operation
in the sense that no trace of the plaintext is left in ¢. The adversary knows
that if £ = 1, then m = 0, and vice versa. And since she knows nothing about
k, she knows nothing about m. By extension, in order to encrypt plaintext
bit streams of arbitrary length, there is a class of encryption schemes that
“zip” a stream of seemingly random bits into plaintext bits. This scheme has
interesting implications and deserves its own name and definition.

Definition 2.19 (One-Time Pad (OTP)). Fiz a message length | € N. A
one-time pad (OTP) is an encryption scheme (G, E, D) with K =M =C =
{0, 1}, where encryption and decryption are defined as

Ex(m) =m @k, Di(c) =c@k
(@ is bit-wise XOR.)

Since the unary operation - @ k is its own inverse for any k, decryption
inverts encryption. The idea was originally developed for a non-binary al-
phabet by Gilbert Vernam in 1917 in order to protect communication over
teletype machines. That one-time pads, if used properly, can be ultimately
secure is stated in the following

Theorem 2.5. If G chooses keys from K uniformly at random, OTP is
single-message adaptive chosen ciphertext secure. This is even true if the
adversarial algorithms A, A" are not computationally bounded.

(Security against computationally unbound adversaries is called informa-
tion-theoretic security, as opposed to complexity theoretic security. Being
the stronger notion, security against unbound adversaries is hard to achieve

46

in practice. Achieving either one is usually considered good enough for all
practical purposes.)

A proof to Theorem 2.5 can be found in (Sha49). Note the restriction to
the single-message case, i.e., the case that each key is discarded after having
been used once. Since key size equals message size, this makes the scheme
quite impractical. Further, the insecurity in the multiple-message case is very
acute: If a key k is used to encrypt two messages mg, my, an eavesdropper
can compute

00@01 :k@mo@k‘@ml :mo@ml

In other words, she can compute the sum of the two plaintext, and thus
decide for each bit independently whether it is the same in both messages or
not!

On the other hand, the single-message security of this scheme is not only
the theoretical optimum in the sense that no information at all is contained in
the ciphertext (whether extractable or not) as long as the key remains secret.
It is also the only scheme (up to trivial variations) that has such a strong
security. In particular, every scheme in which ¢ key bits are used to encrypt
J plaintext bits for j > ¢ is strictly weaker than OTP in the single-message
case.

So a trick to overcome the key management problem of OTPs and make
them practical as an encryption method would be very valuable: We are
looking for an algorithm that computes a large amount of key bits from a
small truly random seed key that are random enough to fool the adversary,
and use these pseudo-random key bits in the construction of a “fake” one-
time pad. In other words, instead of using G to generate the full OTP key,
we use it to generate a small number of key bits for a PRG, and use that
PRG to feed the OTP. The resulting encryption scheme is called a stream
cipher.

Definition 2.20 (Stream Cipher). Let (G*,®,®) be an OTP, let fi be a
pseudo-random permutation, and let R be a pseudo-random generator. The
stream cipher (G, R, fx) is the encryption scheme (G, E, D) with

Ex(m) = v || Ry,) &m
v Di(e) = Ry ® ¢
where v is chosen uniformly at random for each encryption. (v is called an

initialization vector and is published to all involved parties, including adver-
saries.)

(|| - is stream or sequence concatenation.) There are other constructions
of stream ciphers such as (Gol01), but ours has the advantage that its security

47

can trivially be reduced to the security of OTP, R, and f: The PRG R allows
for short fix-sized keys, while the uniform distribution of the initialization
vector v guarantees multiple-message security.

Theorem 2.6. Let (G, R, fi) be a stream cipher. If R is secure in the sense
of Definition 2.12, and fy is secure in the sense of Definition 2.1} for some
encryption operation -, then (G, R, fi) is secure in the sense of Definition
2.10.

Proof. The probability that v is chosen twice with the same value is negli-
gible, and so is the probability that R is invoked with the same key twice.
Hence, the security of f; ensures that knowledge of v does not help the
adversary in learning anything about R’s actual key. O

Since R’s key fi(v) is generated anew for every run of the stream cipher,
we also call it a session key. Sometimes we omit the session key generation
issue for the sake of simplicity of notation and simply write (G, R) instead
of (G, R, fr).

Integrity and Authenticity

So far, we have encountered cryptography as a discipline to keep information
secret from an adversary. However, there are many other security require-
ments that can be met by using cryptographic building blocks. Perhaps the
second most prominent one after confidentiality is information integrity or
information authenticity.

A message is authentic if the recipient holds a sender ID together with
the proof that the sender with that ID actually sent it. It is intact if, no
matter who sent it, nobody else modified the document after it was sent on
its way.

There is a very simple argument why there cannot be a reasonable dis-
tinction between the two:'2 If a message is not authentic, integrity loses all
meaning, because integrity now means that the message arrives exactly in
the state in which it left the adversary rather than the legitimate sender. A
message that is not intact is not authentic because it does not apply to the
message as it was sent, but to whatever the adversary makes of it. In both
cases, there is an adversary that can mislead the recipient about what the
sender wrote or not.

12The author of this thesis has made this argument before (http://www.

etc-network.de/blog/fis/crypto_metaphors.html), mostly reiterating a note
by Phil Rogaway earlier (http://www.cs.ucdavis.edu/~rogaway/papers/
draft-rogaway-ipsec-comments-00.txt).

http://www.etc-network.de/blog/fis/crypto_metaphors.html
http://www.etc-network.de/blog/fis/crypto_metaphors.html
http://www.cs.ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txt
http://www.cs.ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txt

48

Subtle and esoteric differences could be made: An authenticity-preserving
scheme may under additional assumptions prevent an adversary from sending
messages without the legitimate sender having sent one first. If the message
is a physical object like a CD or a Prada purse, some may argue that the
CD itself is still authentic, even if the contents is overwritten with data
by an adversary. Or that the purse is still authentic, even if somebody
patched it with a non-brand piece of cloth. Or one could simply argue that
the department of homeland security would see the difference between an
adversary originating the message and another one messing with it on the
way.

On the other hand, there are very good reasons to not make this dis-
tinction: Designing secure systems is an intricate task, and there are enough
traps if things are kept as simple as possible. Fighting complexity is essen-
tial to minimize risks. Leaving two redundant concepts dangling in a design
process is a good recipe for disaster. Engineers are bound to start arguing
about which of the two should be given up in favor of the other, or just plain
forget one of them, and thus unknowingly sacrifice the other.

The following definitions span the cryptographic primitives for message
integrity. We distinguish between the asymmetric signature schemes and
the symmetric message authentication schemes. Apart from key handling
(which due to the differing mathematical structures available has considerable
implications for implementation performance and proofs of security), the two
are identical.

Definition 2.21 (Signature Scheme). A signature scheme (G, S, V) is a tuple
of three PPTMs for key generation, message signing, and message verifica-
tion, respectively such that

G: 1Y =K

S:H{d|(e,d) e K} x M — S

V:{e|(e,d) e K} x M xS — {ok,error}
and such that for all (e,d) € K and m € M,

‘/e(m7 Sd(m)> = ok

Definition 2.22 (Message Authentication Scheme). A message authentica-
tion scheme (G, S, V) is a tuple of three PPTMs for key generation, message
authentication, and message verification, respectively such that

G: 1V =K

S KxM—=S

VK xMxS — {ok, error}

49

and such that for all k € K and m € M,
Vi.(m, Sk.(m)) = ok
Sk(m) is called a message authentication token.

Note that these definitions only rule out false negatives, i.e. require that
legitimate signatures or message authentication tokens are always accepted.
False positives, i.e. cases in which illegitimate ones are accepted, are treated
in the security definitions:

Definition 2.23 (Integrity (or Authenticity) in the adaptive chosen cipher-
text model). A message authentication scheme (G, S,V') provides integrity
(or authenticity) iff for any adversarial PPTM A and any message m,

k

G(1M)
P Vi(m, ASeVe(m))

P ok

< neg(N)

Security of integrity schemes in other models in the attack hierarchy and
of signature schemes are defined analogously.

2.3.6 Homomorphic Cryptography

Recall that the application that interests us most is not encryption of mes-
sages for transport over an insecure channel, but protection of the contents
of a database against the database server. In other words, there is a player
in the game that has a role in the desired functionality of the system, but at
the same time attempts to make the system deviate by decrypting some of
the ciphertexts that she holds.

Throughout this thesis, we will call this player, the service provider, Chan-
tal. The client, or the user, is called Murat. The challenge consists in choos-
ing an encryption transformation that allows Chantal to produce the result
of some computation f on the plaintext hidden in the ciphertext, but does
not allow her to learn anything (or at least: not too much) about the plain-
text. An encryption scheme that delivers to these requirements is called a
homomorphic encryption scheme, or a privacy homomorphism. Although the
latter term is still used in database research, the former has become more
common in cryptography. We use the two synonymously, tending towards
the cryptographic terminology.

Definition 2.24 (Homomorphic Encryption Scheme). Let & : M — M
be a set of operations on the set M of plaintexts (plaintext operations), let
U . C — C be a set of operations on the set C of ciphertexts (ciphertext

20

Figure 2.2: Homomorphic encryption.

operations), and let E* : JC x ® — U be a mapping of plaintext operations to
ciphertext operations.

If (G,E, D) is an encryption scheme, then (G, E, E*, D) is a homomor-
phic encryption scheme (with respect to ®) iff for anym € M,k € K, € ®:

Er(p(m)) = (Ei(9))(Ex(m))

A homomorphism is a structure preserving mapping between two alge-
braic structures: Plaintexts (M, ®) and ciphertexts (C, ¥). The structure is
preserved with respect to a set ® of operations on M. This means that every
computation that is carried out on a plaintext has an equivalent computation
that can be carried out on the corresponding ciphertext. Figure 2.2 contains
an illustration.

Contradictory a creature as it may seem (encryption should hide all plain-
text structure in the ciphertext, not maintain it!), the first homomorphic en-
cryption scheme has been proposed in the early years of civil cryptographic
research in 1978 (RAD78),!3 shortly after the discovery of public-key cryp-
tography and the development of the first public-key encryption scheme RSA
(RSATT).

13The term privacy homomorphism has been coined in this same article.

o1

Rivest, Adleman and Dertouzos discovered that if used properly, RSA is
homomorphic with respect to multiplication of plaintexts: For every pair of
integers my,my < (p — 1)(¢ — 1) (p,q are two large primes that have been
generated by G):

Ex(mq)Ex(ms2) = Ex(mimsy) mod (pq)

This is covered nicely by Definition 2.24: If (G, E, D) is traditional RSA
and E* : {-} — {-} is the identity mapping of residue-class ring multiplication
on M to itself, then (G, E, E*, D) is a homomorphic encryption scheme.

This allows Chantal to offer multiplication in residue class rings (or on in-
tegers with client-side overflow detection), with some hope for privacy. How-
ever, the overhead for Murat of doing the relatively complex RSA encryptions
and decryptions locally is considerably bigger than the multiplication task
that is outsourced. Also, note that the definition of homomorphic encryption
still lacks a notion of security similar to those for non-homomorphic encryp-
tion discussed in Section 2.3.4. (See also Section 3.2 and Chapter 3). For now
we only point out that the basic form of RSA that has the homomorphism
property is insecure in most adversary models. For instance, since it is de-
terministic, Chantal can decide for two encrypted operands whether they are
identical or not, breaking indistinguishability in the multiple-message case.

Are there any other homomorphic encryption schemes? A few articles
have been published on this topic since 1978, many of which have been broken
again (Section 3.1 gives a summary of the state of the art). Proposals to
apply the notion of homomorphic encryption to relational algebra are quite
recent (EFG06; FGO03; BG02), and despite many open questions and tight
theoretical limits, a few positive results are beginning to emerge, such as the
encryption scheme developed in Section 4.3.

Usually, M and ® are relatively simple, such as groups or rings, but this
is not required by Definition 2.24. In fact, ® does not even have to be finite.
This observation is essential for capturing the idea of homomorphic encryp-
tion of relational algebra or its subsets, where ® is an infinite enumeration
of all query terms that the client is allowed to apply to any relation.

Definition 2.25 (Homomorphic encryption scheme for relation algebra). A
homomorphic encryption scheme for relational algebra (or Hom? for short)
is a homomorphic encryption scheme (G, E,E*, D) as in Definition 2.24,
where M is the set of relations and ® is (a subset of) relational algebra.

Data Integrity in the Service Provider Model

The problem of maintaining confidentiality against a service provider by
means of homomorphic encryption is hard, since the two goals of allowing the

52

service provider to process the data and keeping her from learning anything
about it are in conflict.

Integrity does not conflict with the service provider model as severely.
In order to establish that the data at the service provider’s site has been
compromised, the service provider does not need to transform the ciphertext
as if he wants to compute functions on it. Traditional, non-homomorphic
integrity-preserving methods can be applied without much change:

\begin{algorithm}

\caption{Trivial Data Integrityl}

\Begin{

download the entire database from Chantall;

compute message authentication token and store it locally\;

repeat from time to time\;

\If{authentication token has changed}

{file a lawsuit against Chantal.}

}

\end{algorithm}

Further, there are incremental algorithms and data structures such as
hash trees (Mer80; Bau04; MRKO03) that improve on the above.

Note that there is a difference between enforcing integrity and being able
to detect whether there has been a security breach. When meeting confi-
dentiality requirements, detecting a security breach usually is not enough.
Once the breach has occurred, nothing can be done any more, so one wants
to make very sure it simply does not happen.

Fortunately, as we have seen there are efficient schemes to do that. En-
forcing integrity, however, is hard: If Chantal destroys some parts of the
database she is holding, she cannot be forced to undestroy them. Hence,
Murat is forced to be content with a proof of integrity. This reduces Chan-
tal’s incentive to destroy information in the first place, because she is aware
of the legal consequences. Also, Murat may store a number of backups with
different independent services providers, and if he realizes one of them has
corrupted the database, he can restore it using those backups.

A Taxonomy of Security Requirements

The symmetric non-homomorphic security notions do not map very smoothly
to homomorphic encryption. First of all, there is a new encryption operation
E* that is not treated by any of those. If the only operation carried out on
ciphertexts is multiplication, E* cannot hide any information (the attacker

93

knows that any encrypted operator is always multiplication), and this may
not be a problem at all as long as the actual numbers that are processed
remain secret. However, the more complex ® gets, the bigger the danger
grows that the operations to be run by Chantal may contain secrets of their
own.

Assume Chantal knows everything about Murat’s database scheme (re-
member that she is allowed all context knowledge up to the last bit she is
required to guess in order to win the attack game), and she is recording
Murat’s query stream. Murat is first browsing the revenues of a particular
branch of his company, and then starts mining into his employees database
submitting queries about all the income distribution and sick leave statistics
in that branch, she might consider, given the right adversarial motivation,
passing that information on to the employees of that branch, and Murat
might not be very happy about that. Hence, at least sometimes, E* should
be a good encryption algorithm, too. (As we will see in the following Chap-
ters, in order to make the overall system secure in a meaningful sense of the
word, we need more than that.)

So whereas in non-homomorphic encryption we have one stream of bits to
protect, now we not only have an arbitrary set M of operands to protect, but
there may be confidentiality issues with the operator set ®, too. Integrity
taken into account as well, this yields the following taxonomy of possible
security requirements for homomorphic cryptography in the service provider
model:

data code
integrity (1) (2)
confidentiality (3) (4)

In the last section we have made the point that (1) is not as challenging
as confidentiality requirements, so we give the latter a lot more room. This
also applies to (2), only the problem is more damaging to performance here:
If Murat does not trust Chantal to return complete and sound results, he
has three options:

1. Do everything locally, and compare the results to those returned by
Chantal (not very attractive).

2. Do something locally every now and then and sample Chantal’s relia-
bility. If an error occurs, file a lawsuit.

3. Deploy a number of redundant service providers and compare their
results.

(3), (4), and the interdependencies between the two are the main subject
of this part of the thesis.

o4

Chapter 3

Related Work

In the last chapter, we have established the basics of database theory and
cryptography to express the problem. The following is a survey of related
work relevant for our results.

3.1 Homomorphic Encryption Schemes

A number of homomorphic encryption schemes have been proposed, for rela-
tional algebra as well as for other structures. We will now sketch their most
important ideas and shortcomings.

3.1.1 ATE: Homomorphic Encryption in Databases

In 2002, Hacigiimiis et al. have proposed an encryption scheme for relational
algebra (HILMO02), although neither a notion of homomorphic encryption
nor the term “relational algebra” are mentioned (the scheme refers directly
to SQL). The paper is important for three reasons: First, it has been quoted
extensively, mostly due to the practical relevance of the claimed results and
the high performance and completeness of coverage of relational operators.
Second, although the authors where not aware of it, it is the first that we
know of to attack the problem of secure database outsourcing in a way that
looks like a homomorphic encryption scheme. And finally, its flaws make it
an almost perfect counter-example by demonstrating how not to solve the
problem at hand.

We call this encryption scheme aggregate-then-encrypt (ATE). ATE pro-
ceeds in rows and in two phases: First, it securely but non-homomorphically
encrypts a row with a symmetric encryption scheme (G°, E°, D°) called hard
encryption in the following. Then, it adds additional data to each row that

95

26

allows for computation of relational algebra terms on the resulting encrypted
table. We call this additional information soft encrypted. Hard encryption
hides all the necessary information, and this is where new means of encryp-
tion need to be developed that reveal just enough information, but never too
much. Since hard encryption (G°, E°, D°) does not need to be homomorphic
and can be implemented using traditional cryptography,! all security relies
on soft encryption. Hence, the latter deserves further elaboration.

To recall the notation introduced in Section 2.2, the plaintext set M
consists of relations R that in turn consist of rows r;, which are tuples of
attributes (ag,...) € (Ag X ...). On the other hand, ciphertext in ATE
consists of relations R € C that in turn consist of one ciphertext row r¢ for
each plaintext row r; € R. Ciphertext rows contain the strongly encrypted
plaintext row Ej(r;), plus a number of soft encrypted attributes A;.

For a given attribute A;, we are now going to describe how a correspond-
ing soft encryption function h; : A; — A? is defined. Note that h; does not
depend on any key known only to Murat, so Chantal can compute h; on any
given plaintext value by herself. For a relation R € M, an encrypted row
r¢ € RC € C will look as follows:

TC = (Ez(T), hj1<aj1)7 hj2(aj2)7 .)

First, h; splits the attribute domains A; into partitions and maps each
attribute value a; to its partition.

Definition 3.1 (Partitioning). A partitioning Q4 : A — N of any finite set
A maps each element of A to a natural number (its partition) such that a,b €
A are in the same partition iff Qa(a) = Qa(b). A partitioning is ordered
iff a; < ap whenever Q4(a;) < Qalaxr). Qa provides order-preserving, but
inaccurate identifiers for elements of A (the identifier Q4(a) of a € A does
not reveal a in full, but its interval in A).

(A partitioning of A establishes an equivalence relation on A.) Soft en-
cryption h;(a) of an attribute value a € A; consists of (at most) two opera-
tions:

1. An ordered partitioning Q) 4, : A; — N. (If there are no user preferences
from the semantic point of view, use the lexicographical order over the
bit representations of the attribute values.)

LOf course, this does not imply that the implementation should not be carried out
carefully. For instance, if one is as unaware as the authors of the fact that RSA is not a
block cipher or of the difference between randomness and pseudo-randomness, one risks
to make other mistakes as well that open vulnerabilities even in parts of the system that
can easily be secured in principle.

57

2. A hash function H that maps partitions to hash values such that Chan-
tal may be aware of the hash of a partition, and still cannot (in any
straightforward way) compute the partition itself.

Two types of soft encryption are described by the authors (and we will dis-
cuss further variants later on): h°™d = Q,, is order-preserving and hrandem =
H o @4, is pseudo-random.

Which one is used depends on the privacy requirements for the attribute
in question. Whenever h°™ is used, it is obvious to the server which of a, a’ is
bigger just from looking at h°*(a), h°d(a’). If hrandom js used, the server can
only identify rows that fall into the same partition, but not a useful order on
the partitions. Wherever it is obvious or irrelevant which one is meant, we
simply write h.

In the following, we write h for soft encryption of arbitrary attributes,
attribute names, conditions on attributes, terms of relational algebra, and
complete relations. This puts aside the question of which partitionings should
be used and whether A should be random or ordered on any specific attribute,
and makes the crucial concepts more transparent.

The definition of translation functions that map a query on a database
U R; to a query on the encrypted counterpart |J RS is now rather straightfor-
ward. Two transformations are defined, one for conditions and one for the
relational query operators. In order to access the database, the client first
transforms the query into a less precise query suitable for |J RS rather than
U R;. The server processes this transformed query on the encrypted relation
and returns the relation consisting of the w encrypted rows (Eg(r;,), ...) that
approximates the results to the query (projecting away the soft-encrypted
key attributes). Finally, the client decrypts the rows and runs the plain-
text query on (7, ...) once more, which is hopefully much smaller than the
original relation.

Figure 3.1 shows the transformation of conditions. If an attribute is
required to have a given value, the client soft-encrypts that value and makes
the server compare the result with the soft-encrypted values in the encrypted
relation (3.1). To refer to all values smaller than a given value v, a set of
partitions that contain values smaller than v is computed, and thus all rows
on the server side with soft-encrypted values in that set will match (3.2).
(Note that if we were using h°™ instead of A™°™ inequality relations could
be used on soft encrypted attribute values just as on the plaintext, resulting
in better performance and lower security). To probe two attribute values for
equality, the client enumerates all pairs of partitions that contain pairs of
equal plaintext values (3.3). The rules for comparison operators are defined
analogously (3.4). The logical operators A and V are not affected by soft

o8

encryption. Negation is not considered in the basic scheme.

B(Ai=v) = h(A) = hi(v) |
h(AZ < U) =]’L(Al) € {hi<U,)|U, < U} (32)

h(A; = A;j) = N \/ - ,(h(Az‘) = hi(v) A h(Aj) = hi(v") (3.3)
h(A;i < 4j) = N /\/A_ ,(h(Az‘) = hi(v) A h(4;) = hy(v')) (3.4)
WO ACY) = h(C)AR(C) (3.5)
WOV = B(C)VR(C)
h(=C) = n/a

Figure 3.1: ATE: Transformation of conditions (h = prandem),

Figure 3.2 formalizes the transformation of relational algebra terms. Se-
lection is quite straightforward (3.8). Relation and condition are transformed
as described in Figure 3.1, the server computes a conservative approximation
of the outcome, and the client runs the query on the decrypted outcome in
order to obtain the exact result. Nothing can be done to help Murat when
performing a projection (3.9): The hard encrypted tuples are out of reach for
Chantal, and the full relation needs to be downloaded and projection applied
locally. An unconditional join would be the same on h(R),h(T') as on R, T
(simply compute all possible pairs of rows from the two relations). If a con-
dition is given, the server can filter out those row pairs that do not match the
ciphertext condition (3.10). Groups with respect to attribute set I can be
formed by the server on the ciphertext attributes h(I) = {h(A;)|A; € h(I)},
so that the client only needs to group each partition locally. (3.11, 3.12).
Sorting only makes sense for ordered soft encryption (3.13). If the soft en-
crypted attributes are still in order, the sort operation in the post-processing
step may become considerably faster. However, when h**4°™ in place of h°
is used, sorting on the server side has no positive effect.

One year after (HILMO02), another research group has published a follow-
up article that improves on its results (DAVJT03). A method is proposed
that is based on ATE, but supports a metrics for quantifying the information
exposed to the server and deals better with interval queries. Our analysis
covers variants of ATE like this one.

We conclude this section with an example of using ATE, a discussion of
its performance and a brief assessment of its security. In Section 4.1, we will

29

h(o,R) = Uq(h_l(ah(q)(h(R))))
h(mzR) = mz(h™'(h(R)))
MR w,T) = O‘q(h_l(h(R) M) h(T))
h(viR) = vr(h™ () (A(R))))
h(vrrR) = Y10 (Y ey (M(R))))
WrR) = 7i(h™ (ma) (h(R))))

N N N N
R o
— = = = W
N = O O o
S N e N N

Figure 3.2: ATE: Transformation of relational algebra terms.

give an extensive discussion of its (in-)security.

A Simple Example

Consider a relation of employees with three attributes id, name, and salary
(similar to the one in (HILMO02)):

’ ‘ id ‘ name ‘ salary ‘

71 323 | Tom | 91,130
T 860 | Mary | 63,200
r3 320 | John | 50,000

Presume that id and salary are the only relevant attributes, i.e., the
server does not even know about the existence of the names, and cannot
compute any query conditions on them. (Note that the client could still run
queries on the names locally after decryption.) The partitionings are the

following:

Qid(a)

Qsalary (CL) -

0 if + < 100
1if 100 < a < 200
9 it 900 < a <999
0 if a < 20,000
1 it 20,000 < a < 40,000
2it 40,000 < a < 60,000
3 it 60,000 < a < 80,000

4if 80,000 < a

60

Further, chose id soft encryption hiq = (14 (in the hope that an id being
in a specific partition does not tell Chantal anything interesting) and salary
soft-encryption hgalary = H © Qsalary, and assume

H={0—1,1—-42-03—24—3} (3.14)

(Chantal may very well be curious about an approximation to the em-
ployees’ incomes). Thus, 71 is becomes:

h(r1) = (EZ(r1), hia(323), hsalary(91,130))
= (E12<T1)7 37 3)

The other rows are encrypted analogously. Having processed R this way
and passed h(R) to Chantal, Murat can start having Chantal run queries for
him. Consider the following plaintext query:

O (salary>55,000Asalary<65,000) R

With the selected soft-encryption methods, this translates to:
o h(R)
salary € {hsatary(40,000), hsatary (60, 000), hsatary (80, 000) } A
Salary € {hsalary(o)a hsalary(207 000)7 hsalary(407 000)7 hsalary (607 OOO)}

Of course, there is an obvious optimization:

Tsalary € {haatary (40, 000), haiary (60,000} (17)

This can be processed by Chantal and yields {h(rs), h(r3)}, and by de-
cryption Murat obtains {ry, 73}. Now the preliminary result contains the two
employees Mary (which is good) and John (which is not so good, because
John does not match the non-aggregated query). Therefore, Murat needs to
re-run the original query on the smaller result relation to produce the correct
and accurate result {ry}.

Performance

ATE has been tested using the TPC-H benchmark?® on databases of size
10MB and 100MB. Although the slowdown appears reasonable at the first
glance, there are a number of caveats.

If an encryption scheme does not scale to hundreds of Gigabytes or more,
its use in practice for outsourcing database services is quite limited — every

Zhttp://www.tpc.org

http://www.tpc.org

61

cell phone today is capable of hosting Gigabytes of data. As long as we are
attacking the problem with the service provider model in mind, the provided
benchmarks are meaningless.

As long as we do not talk about security, there is no trade-off between
performance and security, but only performance. But the authors of ATE
make no claims about the security of their scheme. In particular, there is no
model of the adversary, and no notion of what it means for the scheme to be
broken. So to be perfectly fair, the benchmark should be compared to not
using any security precautions at all.

Finally, some of the query transformation cases, e.g. the case A; = A;,
can get quite bulky. Since all the intersecting partition pairs need to be
enumerated, the size of the encrypted query is

O(1Qu,1 - 1Qa,)

for given partitionings Qa, and Q4,, i.e. quadratic in the number of parti-
tions.> This not only has disastrous effects on the performance, but it also
allows Chantal to compute more fine-grained partitionings on the ciphertext.
So in contrast to the performance / privacy tradeoff observed everywhere else,
increasing the number of partitions not only reduces the effectiveness of the
encryption, but also has a negative impact on performance in the presence
of conditions of the form A; = A;.

Security

So far we have only explained how the scheme serves its purpose as long
as Chantal cooperates. As already mentioned, the authors say very little
about the security. Ome of the contributions of this thesis is to examine
ATE security in great depth and point out several flaws together with repair
strategies, as well as some that cannot be fixed.

We present our results in Section 4.1. For now we merely point out that
ATE is trivially secure as long as no soft encrypted attribute contains any
confidential information. Without loss of generality, fix a database schema

MM =(Agx - XAy X Ay x - x Al)

where attributes A} are soft encrypted, and attributes A; are not. We write
R||R € M x M for the row-wise concatenation of R € M, R’ € M'. Tt
holds that |R| = |R'| = [(R|| R")|. As above, we write h for encryption of
queries. Further, we write h; for encryption of complete relations, including
the hard encryption of the entire tuples for which we require a secret key k.

3pord which we suspect has been used for the benchmarks, does not have this problem.

62

Theorem 3.1 (Security of ATE). If (G°, E°, D°) is indistinguishable, then
ATE is secure in the following sense: For any adversarial PPTM M, any two
relations Ry, Ry € M, any relation R' € M', any function f: M — {0,1},
and any sequence of terms of relational algebra t,

| Pr[M(Ro, Ry, hi(Ro || R'), h(t)) = f(Ro)]
- Pr[M(ROa Ry, hk(Rl H Rl)» ?L(t_)) = f(Rl)] | < neg(n)

where k = G(1V).

Proof. The soft encrypted attributes in the output of A, are independent of
R;. Furthermore, the output of A only depends on soft encrypted attributes
in its input by construction. Therefore, the query results are the same in
both probability terms:

Pr[h(t)(hi(Ro | R')) = h(#)(hu (B | B))] = 1
Therefore, if M can distinguish between
(Ro, Ry, hi(Ro || R'), h(1))

and o
(Ro, Ry, hi(Ry || R'), (1))

it in fact distinguishes between Ep(Ry) and E}(R;). However, (G°, E°, D°)
is indistinguishable.]

Unfortunately, the odd separation of soft encrypted from hard encrypted
attributes makes this result quite impractical. If we want to be sure that it is
safe to use ATE for a particular database schema and a particular relation,
we first need to make sure that hard encrypted attributes do not depend
on soft encrypted ones, however noisy. If that was the case, Chantal could
simply compute the distinguishing bits of the hard encrypted data from the
soft encrypted data. We will return to the security of ATE in Section 4.1.

3.1.2 Field Arithmetics

We have briefly sketched the concept of public-key encryption in Section
2.3.5. Let us now have a brief look at RSA (RSAT77), the first and most
famous public-key encryption schemes. As already discussed, keys consist of
a public part e and a private part d, such that

E :{e|(e,d) e L} x M —C
D:KxC—M

63

RSA is based on Z,, the residue class field* of order n = pq for two large
prime numbers p, q. Intuitively, all operations in Z, are the same as in Z,
except that numbers that yield the same residue when divided by n fall into
an equivalence class and represent the same element of Z,,. More simply put,
in Z,, everything is implicitly computed mod n. Z, has a few interesting
properties for our purposes. For a,b € Z,, it has proven easy to compute
products ¢ = ab. But integer factorization, the problem of computing the
prime factors a,b from ¢ without knowing either, is generally assumed to
be infeasible. Further, since the multiplicative subgroup of Z, has order
(p —1)(¢ — 1), we obtain a®»~D=1) = g,

Now if the public key is a small constant, say, e = 3, then if we can
compute a secret key d from e, p, ¢ for which de is a multiple of (p—1)(¢—1),
write:

(p—1)(g—1)|ed

then we have our encryption and decryption:

E(n,e)(m) . me

D(n,d) (C) = Cd — m@d — mx(p—l)(q—l) —m

d can be computed from e, p,q using the extended Euclid algorithm for
finding the greatest common divisor (see Algorithms 1 and 2). Note that
since the ged is computed in the multiplicative subgroup, we have

ged(e, (p—1)(¢—1)) =1
vip—1)(¢g—1)=0 foranyveZ

Therefore, eu = 1 for the u that is returned by the extended Euclid
algorithm, and we can set d := u.

By the RSA assumption that has been widely accepted after almost 30
years of academic scrutiny, there is no efficient algorithm to compute d from
n,e alone, without knowledge of ¢,p. Therefore, as long as p,q and the
private key d are kept secret from an adversary, she will be unable to apply
the decryption function to some ciphertext ¢ € Z,, even if she knows the
public key.

In this simple form, RSA is homomorphic. Decrypting the product of two
ciphertexts yields the product of the two corresponding plaintexts:

D(E(m1>E(m2)) = T11M3y

4In the following, we will need a few basics in algebra and number theory. One of the
many suitable text books to read up on these would be (Kob94). The impatient reader
can skim through the rest of this section without missing anything that is essential later.

64

Algorithm 1: xFuclid: A recursive definition of the extended Euclid
algorithm for computing the ged of two integers. (For an iterative con-
struction and further discussion see (CLRS01).)

Input: a,b € Z, such that a <b

Output: z,u,v € Z, such that
x is common divisor: z|a A z|b
x is maximal: Vo' >z : 2’ faVa' fb
au+bv =1

d:=a/b (divisor)

m :=a%b (remainder)

if m =0 then
| return (a,1,0)
else

L (x,u/,v") := xEuclid(m, a)

return (z,v — du’,u’)

This has been discovered shortly after the development of RSA by the
authors (RAD78), who also have coined the term “privacy homomorphism”.
To re-iterate, RSA being homomorphic allows Murat to deliver arithmetic
jobs to Chantal, and Chantal to perform the jobs on her hardware, delivering
the output to Murat without learning anything about the numbers involved.

A number of the cryptosystems in (RAD78) have been broken subse-
quently (BY87) (although not the basic one outlined above). Much later,
Domingo-Ferrer and others have attempted to extend the results to full field
arithmetics, including addition, subtraction and division (DF96; DFHJ98;
DF02). We have applied these ideas in a preliminary feasibility study for
application service providing (BF03), and others have tried to use them in
the protection of software agents on untrusted hosts (LAFHO04). However,
attacks against these extended schemes (Wag03; CKN06) have emerged since
then.

The status quo is not very encouraging: RSA stands undefeated, but
only for weak security definitions. All solutions for other operations have
been broken, and simple indistinguishability for addition has been shown to
be impossible (ALN87). Plaintext numbers are chosen from a finite alge-
braic structure, requiring expensive overflow checks. Finally, encryption and
decryption alone are computationally more expensive than the alternatively
of performing the field arithmetics on the plaintext locally, which rules out
savings in client hardware as a possible motivation for using it in applications.

65

Algorithm 2: RSA key generation. (d is directly returned by the
extended Euclid algorithm, since (p — 1)(¢ — 1) =1 mod n.)

Input: key size k in bits
Output: public key n, e and private key n, d

while ! (p,q are both prime) do
| Choose p,q € [0,2" — 1] uniformly at random

q

n p
e:=5H
d:=u

(where (z,u,v) := ged(e, (p—1)(¢ — 1)))

It is nevertheless instructive to consider Domingo-Ferrer’s novel and cre-
ative (if ultimately invalid) way of looking at security of homomorphic en-
cryption. Therefore, we conclude this section with a discussion of his scheme
for full-fledged field arithmetics, called (G4, 4, D) in the following (DF02).
Later in Section 3.2.1 we will return to his security definitions and proofs.

As in many other public-key encryption schemes, the plaintexts of (G,
E4. DY) are chosen from a finite ring Z,, for some integer n.> The ciphertexts
are chosen from a much larger ring of polynomials over Zy of degree d,
Z%. N is an integer with many small divisors, one of which must be n.
EY attempts to conceal a given plaintext from Chantal by mapping each
plaintext at random to one of many different ciphertexts.

To be more specific, the parameters of the encryption scheme are d, N, n, r
such that:

l.deZ,eg. d=3

2. Ne€Z,eg. |[N| =512

3. n > 1 such that n|N

4. r € Zy such that r—! € Zy

In order to encryption a plaintext m € Z,, we create a polynomial of
degree d at random that we will show has the desired properties:

Egi(m) = (mqr, mor?, . .. ,mdrd)

5Note however that the structure is more similar to private-key encryption schemes:
In contrast to public-key encryption schemes, in (G, EY D) the public parameters
available to the adversary are not meant for encrypting plaintexts.

66

where my, ..., mg are chosen at random such that > ,_; ;m; = m. Ob-
serve that the ciphertext is not a polynomial function, but a sequence of
terms of a polynomial function that have been evaluated with argument r.
And this is what Z% really is. We will see why we need to think about
polynomials when we look at ciphertext arithmetics in a second.

But first, decryption:

Dgfn(cl,cg, ceyCq) = Z cr = Z mi(r'~") =m

i=1..d i=1..d

Since we know the secret parameter r, we can compute a number in Zy
that is congruent to m, and can thus easily coerced into Z,.
Addition and subtraction of two ciphertexts is carried out component-
wise:
(c1y..yca) + (), ic)) = (1 + ¢,y cat)

Multiplication is performed according to the laws of polynomial arith-
metics:

/ / / / / / / /
(c1y..oyca)(cyy - oycy) = (0,016, c1cy + cadl, ...y Cam1Cy + CaCly_y, CaCly)

For these operations to work, the elements in the sequences need to be
ordered (or labelled) according to their degree. Empty places need to be
padded with zeros. During generation of a product, all elements of one
degree are collapsed in a sum in the corresponding place.

The laws of arithmetics valid in Z, and Z<, make sure that the homo-
morphism property is maintained throughout all operations, i.e. that:

Ddf(Edf(m) —l—Edf(m,)) — m+m/

and likewise for subtraction and multiplication. Since Zy is a ring, and
not a field, the ciphertext space has elements that are not contained in the
multiplicative subgroup of Zy, i.e. do not have an inverse. This does not
render division impossible, but complicates it a little. We omit the answers
to these complications for the sake of compactness.

Again, there is an attack against (G4, B4, DY) that both breaks the
security in the definition claimed in the paper as well as intuitively weakens
the system to practical uselessness. We will discuss this further in Section
3.2.1.

3.1.3 Full-Text Search

Assume we are running an online e-mail service on which users can store their
archives in encrypted form. The interface allows for downloading encrypted

67

e-mails into the browser where they can be decrypted (e.g., by a JavaScript
function embedded into the page) and displayed.

This setting seems to conflict with full-text search on the archive: Either
the client needs to download all e-mails and search them locally, or the server
needs to be provided with the cryptographic key to look into the encrypted
archive. Or, of course, we can use a secure encryption scheme homomorphic
with respect to full-text search, if one exists:

Definition 3.2 (Homomorphic Encryption for Full-Text Search). Let [be the
global word length, and let W = {{0, 1}'} be the set of all words of that length.
A homomorphic encryption scheme for full-text search is a homomorphic
encryption scheme (G, E, E*, D) as defined in Definition 2.24, where M =
{(W™*)*} is the set of all sets (archives) of word sequences (documents), and
O = {y,|w € W} is the set of full-text search queries. 7y, yields all documents
containing w: If v, € ® and m = {mg,mq, ...} € M, then v,(m) = {m; €
mlm; = (wo,wy,...) A Jjw; = w}.

For example:

{(ab,ac,bc)}

i {(ab, ac, bc)}
it U=1{ {(a,cba,c)} CW, then 7, (U)=
{(ac, ca,aa)} { {(ac, ca,aa)} }

The globally constant word length will prove useful in the construction
of schemes that satisfy this definition. Luckily, it does not restrict the appli-
cation range, as we can use padding and chopping to allow for shorter and
longer words, respectively. When a word is too long, simply chop it into
[-sized pieces and count them as separate words. Then, search for each word
separately, and intersect the results.%

(SWPO00) introduces a scheme for homomorphic encryption for full-text
search. In the following, we will refer to this scheme as Ftsl!. In order to
do introduce it, we need to make use of a few building blocks introduced in
Section 2.3.5. In particular, we are going to talk about stream ciphers, block
ciphers, and pseudo-random functions (or hash functions). At the core, the
scheme consists of a stream cipher, only Chantal, given a properly encrypted
query, can decide which locations in which documents match the query. The
search word is encrypted not only in the searched text, but also in the query.

For this, the pseudo-random stream needs to have some additional struc-
ture that can be obtained by interleaving an ordinary pseudo-random bit
stream with suffizes of bits that depend on (among other things) a fixed

6Performance needs to be taken into account, but many schemes have straightforward
extensions in which the overhead in computation and communication is a small constant.

68

number of preceding bits. We start by listing a number of requirements
for the function generating these suffixes. Then, following the structure of
(SWP00), we introduce a simplified version of the scheme and improve on it
step by step. For illustration of the full scheme, see Figure 3.3.

Let [be the word length in bits, and let m < [. (For instance, | = 512, m =
96.) The stream cipher uses a pseudo-random bit stream as usual. But for
each word wj, it generates only [— m pseudo-random bits, s; € {0, 1}=™,
and concatenates them with m bits generated by a pseudo-random function
F, and xors the resulting concatenation s; || F' (s;) onto w;. But how is
F keyed? Before we elaborate on this, observe that I’ needs to have the
following properties:

1. If the pseudo-random generator R is secure, then R* must be a secure
pseudo-random generator, where

R (k) = so || F.(s0) [s1[[FL.(s1)]| -

2. Murat must be able to efficiently compute F' during encryption.

3. Loosely speaking, it must be infeasible for Chantal to compute F' on
her own.

4. Search needs to work: Given an encrypted query for word w; and a
ciphertext word ¢;, Chantal must be able to decide whether ¢; = w; ®
(s;]| F'.(s;)) for some s; or not. (If and only if it is, an occurrence of
the search word has been found.)

Requirements (2) and (3) imply that F' needs to be keyed with something
only known to Murat. The obvious candidate is w;, but then Chantal could
find all occurrences of words of her choice in the encrypted text base, even
before receiving any queries from Murat. For each ¢;, she could simply com-
pute s; as the prefix of ¢; & w;, compute F,,(s;), and see whether remaining
bits in ¢; & w; match. If Chantal is an e-mail service provider, by using an or-
dinary English dictionary for options of w; she quickly would have decrypted
the entire text base up to typing errors!

Therefore, instead of using w; to key F, we introduce a second pseudo-
random function f that maps w; on fi(w;). So in addition to the key k €
G(1™) for the pseudo-random generator R, Murat generates an additional
key k' € G(1™) that keys the suffix key generator f. This way, the suffix for
encryption of not only depends on w;, but also on &’. Since Chantal does not
know &', she cannot compute fi(w;) herself, and the search query for word

69

w; must now contain both w; and fi(w;) for Chantal to be able to process
it. This means that Chantal can only run queries crafted by Murat.

But Chantal can still learn all those words that Murat lets her search for,
plus their positions in the plaintext! Since the scheme should satisfy a strong
security definition, this is clearly a big disadvantage, even if Murat considers
the non-searchable parts of his text base secret and cannot think of a reason
why Chantal should not learn occurrence of the search terms.

To improve the secrecy of search words, we chose a deterministic encryp-
tion scheme (G, EP™, DP™) and encrypt each word w; before feeding it to
(G, R*). This new layer of encryption requires a third secret key, k" € G(1").
(G, EP™, DP*) has to be deterministic: If Murat encrypts a word that he
wants to search for, he must obtain the same encryption as when encrypting
words in the text base. See discussion below.

Queries of this new form, (EL.°(w;), fir(w;)), do not reveal the words that
are searched to Chantal any more. But they cause a new problem: If Murat
receives an encrypted document from Chantal and wants to decrypt any
ciphertext word c¢;, he needs to compute the stream cipher bits to be xored
off ¢; to yield EJ (w;). But since the suffix has been generated using the
plaintext w;, he can only decode ¢; if he already knows w;. This threatens
to render the whole exercise of encryption meaningless.

To allow for recovering of w; without knowledge of w;, we need to fix
keying of F' one last time. Observe that Murat is able to generate s; from
Ry, so he can retrieve the first [— m bits of E},(w;) without computing
F(s;). Therefore, if the key of F' only depends on those bits, Murat can
compute F(s;) from the ciphertext and k and &’ alone. To obtain such a key,
we split up ES(w;) = L; || R; such that |L;| = |s;|, and the final suffix of s;
for encryption of plaintext word w; is

ka’(Li)<Si)

During decryption, L; is computed via s; from the first [—m bits of ¢; and k;
the suffix is computed from s;, L;, k’; R; from this suffix and the remaining
m bits of ¢;; and w; from k" and L; || R; by means of DP™.

When encrypting a query w;, Murat pre-encrypts w;, takes the first { —m
bits L; and computes fi/(L;), and submits (E}(w;), fir(L;)) to Chantal.

Other approaches

Bloom filters (Blo70) can be used as searchable index data structures and
attached to the encrypted documents (Goh03).

Also, public-key encrypted databases have been considered: If Chantal
stores all of Murat’s e-mail, and all of Murat’s contacts encrypt their corre-

70

Figure 3.3: Ftsll: Homomorphic encryption for full-text search as in

(SWP00).

71

spondence with Murat’s public key, there is a scheme that allows Murat to
retrieve only those documents that contain a given keyword, without allowing
Chantal to decrypt his e-mails (BCOP04).

(CMO05) has proposed an incremental encryption scheme that maintains
a separate index data structure and is thus independent of the encryption
scheme used. Since search takes place on the separate index structure, this
scheme does not give away locations of found keywords to Chantal, which
provides for stronger security in a theoretical sense. Further, it allows for
compression of the documents to be stored. However, if many search terms
are to be stored for each document, performance in space and computing
time degrades considerably.

During completion of this thesis, two new schemes have been proposed
that show better server efficiency (CGKOO06). Interestingly, they also satisfy
more robust security definitions than Ftsl! (see Section 3.2.2). These schemes
create search data structures on the client side that allow the server to process
queries in time constant in the size of the searched data. The structure of
the index data is highly specialized for text search purposes.

3.1.4 Homomorphic Signatures

In contrast to encryption schemes, signature schemes are used to enforce
message integrity (see Section 2.3.5). It seems odd to think about homo-
morphic signature schemes. Given two messages mq, ms with signatures
S(my), S(msy), this means we can compute the signature S(m; o mg) =
S(my) o S(mg) for the message m’ = my o my, and we can go on combin-
ing resulting message / signature pairs to obtain new ones (m” = m’ o my,
m” =m” omy, ...) recursively. But none of the resulting messages was ever
intended to be signed by the signer of m; and m..

However, there are applications. For example, in some hierarchical rout-
ing protocols, routers are faced with the problem of aggregating routing in-
formation. If routing information is signed to counter redirection attacks, the
signatures need to be aggregated as well. It is possible to represent the rout-
ing information in a binary tree such that the aggregations are parent nodes
of their unaggregated components. In (CRR02), a digital signature scheme
on such binary trees is presented that allows for the signature of a node to
be computed from the signatures of its children (or, by recursion, from the
signatures of all leafs under that node), without the private key. The security
definition states that no signature of any node can be computed without the
knowledge of the two child signatures (recursive or direct).

A more academic problem is the computation of transitive hulls on dis-
crete finite graphs: Given the signatures of two edges (u,v), (v, w), can it be

72

possible to compute a valid signature for (u, w) without the private key, but
not for any other edge in the graph for which no signed path is available?
A solution for undirected graphs is proposed in (MR02). Applications could
lie in the field of military hierarchy management. However, a scheme for
directed graphs would be more suitable here, but such a scheme does not ex-
ist. Also, a simpler approach usually works that relies on non-homomorphic
signature schemes: In order to check legitimacy of an edge (u,v), search for
a path from u to v, and collect signatures for all edges on that path. If all
those signatures are valid, so is the (non-existing) signature for (u,v). (If
signatures are missing, search all other paths from u to v.)

(JMSWO02) describes two further applications: Text redaction (the pro-
cess of replacing parts of a text document with a special censor symbol) and
set union and subsets, presents security definitions and schemes for solving
these application, and proves that there is no solution for the problem of
homomorphically signing integer addition structures.

Service outsourcing does not usually require homomorphic signatures for
integrity enforcement. Murat can use conventional message authentication
techniques on the database and on each incremental change to it. In fact,
homomorphic signatures are less suitable than conventional ones: If Murat
has to use the former for some reason, Chantal has subtly more freedom over
the database states that have legitimate signatures (although if the schemes
presented in (JMSWO02) is used, all redacted data is clearly marked so).

3.2 Homomorphic Security Definitions

Homomorphic encryption schemes are encryption schemes, so the security
definitions for the latter technically can be used on the former without
change. Unfortunately, now there is additional information for the adver-
sary in the form of encrypted queries and matching encrypted query results.
In this section, we look into the consequences, and summarize existing work
on dealing with them.

3.2.1 Small and Finite Operand Domains

The first homomorphic encryption scheme, plain RSA (RAD78), has only
one operator, namely multiplication in the RSA residue class field:

@ ={}

This means that confidentiality requirements for operators make no sense —
the adversary knows the decryption of any E(-) € U, independent of the size

73

of W or of the encryption algorithm F.

All confidentiality requirements for algebras with |®| = 1 are about the
operands, so if Murat passes two messages mg, m; € M to Chantal, we can
reuse any security definition from Section 2.3.4 without change.

However, note that the homomorphicity requirement introduces new ob-
stacles for security: As we have mentioned earlier, there is a tension between
the wish to allow Chantal to process ciphertexts in a meaningful way and
the wish to keep her from being able to gain knowledge about the plaintext.

For example, RSA is not chosen plaintext secure (see Definition 2.6).
Since two plaintexts are equal iff two corresponding ciphertexts are equal,
the adversary can work around her problem that the oracles do not give
away the plaintext under attack: First, Chantal simply generates four plain-
text messages my, Mo,1, M1,0, M1, at random and has Murat encrypt them
into the ciphertexts ¢, co1,¢1,0,¢1,1- To prompt for Murat’s challenge, she
computes my = mop - Mo and m; = mio - my,1, obtains ¢;, and has to
guess ¢ € {0,1}. But no matter what ¢, Chantal can compute ¢; = ¢;o¢; 1.
She merely has to do two multiplications and two comparisons to achieve a
winning probability of 1. Hence,

Theorem 3.2. No deterministic encryption scheme homomorphic over a
multiplicative group is secure in Definition 2.6.

Small |®| > 1, such as in complete field arithmetics, are similar in their
security characteristics. Consider a security definition game in which the ad-
versary receives two ciphertext operands and one ciphertext operator. Under
the best circumstances, the number of bits the adversary needs to guess cor-
rectly for retrieving the operator is increased by O(log|®|) with respect to
a successful attack against a scheme with |®| = 1. If the adversary manages
to get these guesses right by chance, she will know which operator has been
used. However, since we are only interested in asymptotical performance,
the effect of decreasing the odds of the adversary by a small constant factor
will not suffice to satisfy harder security definitions. (In Section 4.1, we will
consider several wrong ways of hardening cryptographic schemes that cover
this one.)

Operand Confidentiality

In (DF02), Domingo-Ferrer claims to have found a homomorphic encryption
scheme and a suitable security definition that satisfies it. We have already
outlined the encryption scheme in Section 3.1.2; the following definition is
used in an attempt to establish its security:

74

Definition 3.3 (Domingo-Ferrer Security (DF-Security)). An encryption
scheme (G, E, D) is DF-secure if, for any fized number k of plaintext-cipher-
text pairs my,cy, ..., My, cx known to Chantal, and any probability €, there
is a suitable choice of parameters such that Chantal cannot infer m = D(c)
for any ciphertext ¢ with probability higher than €.

In case of (GY, B D) the parameters to calibrate to the desired secu-
rity level are d, N, n,r. We can assume a globally constant k: The easiest way
to achieve this is for Murat to change the key every k encryptions, thereby
rendering all previously captured plaintext-ciphertext pairs useless for any
attack on future ciphertexts.

This is an information theoretic security definition, meaning it does not
restrict Chantal’s computing power. Instead, it limits the level of certainty
she can possibly have over the correctness of the result of any attack.

Note one peculiar gap, though. Traditional information-theoretic security
(see Section 2.19) always bounds adversarial success probability as the inverse
of a super-polynomial function in some security parameter that increases
linearly with the increase of work required by the honest parties involved. SF-
security, on the other hand, defines € as just any function in the parameters.
It does not require the function to be in O(1/p(...)) for every polynomial in
these parameters. As a consequence, feasibility in terms of performance and
security have been merged in one definition: An encryption scheme may be
secure, but only at the cost of an inacceptably high workload of the honest
parties in order to achieve the desired e.

This may be a mere inconvenience, and does not invalidate the security
notion. Furthermore, it is unclear to us to what extent (G, E4, D) has
this problem. Inefficiency is not a necessary consequence of Definition 3.3,
but it is consistent with it: The usual upper bound on the complexity of
the encryption scheme that grows polynomially in the parameters is simply
missing.

A more severe problem is that for all practical purposes, one would like to
have a way to derive actual parameters for any given €, or at least vice versa.
The abstract knowledge that parameters exist to render a scheme “secure
enough” is not sufficient.

Domingo-Ferrer’s proofs attempt to provide such a relation for (G4, B4,
D), but has been proven to be far too optimistic (Wag03). To our knowl-
edge, no fix for the original scheme has been proposed since then. Hence,
at least for all practical purposes, we have to leave the question whether
Definition 3.3 has an instance or not unanswered for the time being.

The (flawed) argument for the security of Domingo-Ferrer’s encryption
scheme follows the following form: (1) For any single plaintext-ciphertext

5

pair, there are many possible keys (r,n); (2) only a small fraction of these
keys is equivalent to the real key; (3) therefore, no key can be retrieved (as
always, with sufficiently high probability); (4) therefore, plaintexts cannot
be retrieved from ciphertexts.

These steps bear one, at least in retrospect, rather crude mistake, and
a more subtle one. First, if (4) would follow from (3) without further as-
sumptions, the best encryption scheme would be the identity “encryption”
mentioned from Example 2.1: Since the key is completely ignored during
encryption and decryption, it is perfectly safe from Chantal, who has only
access to plaintexts and ciphertexts. Hence, although ¢ = m, she cannot
compute ¢ from m. The missing assumption is that there is no other way to
retrieve the plaintext from the ciphertext that does not require knowledge of
the key.

The more subtle mistake is rooted in the implicit assumption that every
bit of the key (r,n) is required for a successful decryption. However, since
r € Zy, and the plaintext m € Z, with n being much smaller than N, the
key space collapses into equivalence classes that are considerably fewer in
numbers. Using well-known properties of resultants, ' can be chosen such
that

" =r modn

In other words, such that ' and r are both representatives of the same
equivalence class of keys. (7’,n) can then be used instead of (r,n). We
are omitting the actual algorithm for inferring (r,n). The curious reader is
referred to (Wag03).

3.2.2 Full-Text Search

The appendix of (SWPO00) contains a proof of security, where security is
implicitly defined in the following theorem (rewritten to fit our notation):

Theorem 3.3. If f, F are secure pseudo-random functions in the sense of
Definition 2.1} and R is a secure PRG in the sense of Definition 2.12,
then the PRG component of Fts!! that outputs (Sp, F(So), S1, F(S1),...) (the
lower half of Figure 3.3) is secure in the sense of Definition 2.12.

In other words, instead of indistinguishability (or some variant thereof)
of the full-text search encryption scheme, the proof establishes security of
the underlying PRG. What the paper does not make very explicit is that
deriving security of the full-text search encryption scheme from this result
requires a considerable relaxation of the security definition.

76

This leaves a number of open issues. For a start, multi-message secu-
rity needs to be established explicitly, which is doable but yields a few key
management issues that need to be solved as well.

Further, each occurrence of some word w in the corpus that has been
searched for is available in the raw pre-encryption E}°(w) to the adversary.
Each query pokes holes into the stream cipher, and in the extreme case
that all words have been searched for at least once, the security provided by
the stream cipher, no matter how provable, has been completely annihilated.
This issue can be addressed by sporadic re-encryptions, but it is much harder
to talk about provable security in its presence.

The key shortcoming of the treatment of security is the failure to take the
full homomorphic structure of the ciphertext, both data and operators, into
account. Since both interact in some meaningful way even when encrypted,
this leads to the revelation of confidential data. This is a common pattern in
this area of research, and we will uncover more of its instances in the follow-
ing. Independently of our work (EFG06; EFGOT), new security definitions for
full-text search have been proposed together with encryption schemes that
satisfy them (CGKOO06). Adaptive indistinguishability is equivalent to our
Definition 4.4, and we will compare our results to theirs in further detail in
Section 4.3.2.

3.2.3 Relational Algebra

Consider a database PH (G, E, E*, D) such that the encryption scheme (G, E,
D) is indistinguishably secure and such that E* is the identity function on
queries, i.e. for all ¢, £*(¢) = ¢. (Remember the main concern of homomor-
phic encryption is data confidentiality, not query confidentiality.) Assume an
adversary Chantal runs the query o,,.q, = E*(04,.q,) on the encrypted table.
As result of her computation, Chantal obtains a set of encrypted tuples. Al-
though she cannot decrypt them, she can infer that the value of the attribute
a; of these tuples is d; merely from the fact that they are in the query result.
So even though we used a rigorous security definition and assumed a scheme
that meets this definition, in a way (G, E, E*, D) is considerably less secure
than ATE (see Section 3.1.1).

How is it possible that a database PH based on a perfectly secure table
encryption scheme can still leak so much information? What tricked us here
is an ill-applied adversary model. The classical model does not consider
that the adversary gains additional information about the plaintext data
when receiving and processing the queries. The above example shows that
these computations can cause unsuspected leaks. In order to capture this
new situation, we need to craft new security definitions that are aware of the

7

adversary’s new capabilities. In other words, we need to take £/* into account.
(KC04) propose a definition that addresses this problem and requires that,
in addition to encrypting tables, the queries should be securely encrypted as
well:

Definition 3.4 (Kantarcioglu-Clifton security for databases). A database
PH is secure according to the Kantarcioglu-Clifton model (or KC-secure) if

1. Any two tables of the same size are indistinguishable (i.e., secure in the
sense of Definition 2.4).

2. Two queries that run on the same set of tables and return results with
the same number of tuples are indistinguishable.

Kantarcioglu and Clifton suspected that their definition may already be
too strong for any scheme to exist that satisfies it. Although we show that
this is not true, there is another more serious problem with it. It is in fact
still too weak to match our intuition of what security means: A scheme that
is KC-secure may still reveal some information about an encrypted tables.

Example 3.1 (Attacking Homomorphic Database Encryption). Suppose a
KC-secure homomorphic encryption for relation algebra with exact select
queries only (See Definition 4.7), and a patient database with statistics for
three hospitals. For each patient, we store HIV status and the hospital they
are assigned to:

’ id \ hospital \ hiv ‘

Now suppose that Chantal knows the database schema, the number of
hospitals, has good estimates of the distribution of patients among hospitals
(0.2,0.3,0.5, resp.) and the percentage of HIV-positive patients (say, 8%).

Murat issues the following queries:

SELECT * FROM table WHERE hospital = 1;
SELECT * FROM table WHERE hospital = 2;
SELECT * FROM table WHERE hospital = 3;
SELECT * FROM table WHERE hiv = "positive";

Since the results are different in size, Chantal can guess the queries with
high confidence from the size of the output they produce. This is not in itself
a problem, as long as our concern is privacy of the database, not privacy
of the queries.” But by intersecting the answers to the first and the fourth
query, Chantal can now infer the ratio of HIV-positive patients in hospital 1!

"Query privacy without data privacy is called private information retrieval (PIR), and
is treated in Section 3.4. As we will see, the two affect each other in many ways, so
constructing hybrids will prove worthwhile.

78

Note that in this scenario, Chantal is a passive adversary with some back-
ground knowledge. Because exact selects are allowed (See Definition 4.7), she
knows enough about the queries from the known-ciphertext perspective. The
problem of Definition 3.4 is that the indistinguishability requirement for en-
crypted queries is restricted to those that return results of the same size.
Queries violating that restriction are still likely to leak information.

ATE (see Section 3.1.1) does not come with a security definition. We have
published an extensive list of alternatives, plus a number of modifications to
the original scheme, and shown that ATE is inherently insecure, and repairing
it is exceedingly hard (if possible) (FG03). We will present our results in
Section 4.1.

3.3 Code Obfuscation

In mobile agents research, we are confronted with the problem that a program
(an agent) is run on a system (a host) that may act in conflict with the
legitimate agenda of the agent. It is easy to see that protecting hosts against
malicious agents is far easier than protecting agents against malicious hosts
since ultimately, the host is always in charge. It may simply refuse to run
the agent if it is not convinced that the agent will behave well, or grant it
access to only those parts of the system that are not sensitive (the latter is
called the sandbox approach). On the other hand, an agent that has reached
the host can do nothing to prevent inspection of its code, arbitrarily many
re-runs, timing attacks (an example involving smart cards is Kocher’s attack
against a number of public-key cryptosystems (Koc96)), and so forth. This
may provide the host with information about the agent’s code that is (a) not
needed for serving the agent, and (b) confidential.

Code obfuscation promises to prevent malicious hosts from learning the
agent’s secrets. Intuitively, an obfuscator transforms a program into another
program with equivalent functionality, but so that nothing can be learned
from an obfuscated program except what can be learned from oracle access
to it (see Section 2.3.2). An obfuscated agent on a malicious host is worse
off than a host running a malicious agent: The host can still decide on which
input to run the agent, where to interrupt it, and has still a range of analysis
techniques at its disposal. Hence, this is as far as we can hope to possibly
get in mobile agent applications security.

The same problem arises in other contexts such as intellectual property
protection. Code obfuscation does not only help against patent theft be-
cause the latter usually requires reverse engineering, but is similar in nature
to techniques like watermarking, where the code hides a message of authentic-

79

ity that is hard to find or remove, and fingerprinting, where the authenticity
message contains an additional serial number that can be linked to the legit-
imate owner of a specific copy, who can then be charged with the copyright
infringement.®

What is more interesting to us, homomorphic encryption and code ob-
fuscation are closely linked, too. If we can generate a secure obfuscation
O(M) of an arbitrary program M, homomorphic encryption with respect to
arbitrary operator sets becomes very simple. For pair (M, ®) of operand
set and operator set, simply take a symmetric non-homomorphic encryption
scheme (IC, £/, D), generate a secret key k, and define the secure equivalent
of any operation ¢ to be ¢* = O(E}, o ¢ o Dy,). Trivially, ¢* (on ciphertexts)
is equivalent to ¢ (on plaintexts). By the security of (IC, F, D), the key k
cannot be observed from the IO-behavior of the program. Because the ob-
fuscation operation is secure, the obfuscated ¢* does not tell any more than
that. An adversary having access to ¢* can perform the operation ¢ on ci-
phertexts chosen from M without learning anything about them. Hence, we
have a homomorphic encryption scheme that is as secure as the symmetric
(non-homomorphic) encryption scheme that we used in the construction.

In the opposite direction, given the dual nature of code and data captured
in the idea of universal Turing machines, any language for which we can find a
homomorphic encryption scheme can be securely obfuscated. In particular,
if we could find a homomorphic encryption scheme for a Turing-complete
language of operators, we would have a general solution for the problem of
code obfuscation.

Unfortunately, no such general solution exists. More seriously, it turns
out that finding useful language classes that can be securely obfuscated is
extremely hard. In this section, we will give a brief example for a code
obfuscation technique that (like all the proposals we are aware of) has been
proposed as a pragmatic solution to intellectual property issues rather than
with a rigorous cryptographic security notion in mind. Then, we elaborate
on the what can not be done in principle. This will have to be done in some
detail, since we will need the theoretical devices developed in the proofs for
our results on homomorphic encryption of relational algebra.

8 Although we are not concerned with sociology here, for the sake of completeness we
would like to point out that these technical solutions to a social problem have problem-
atic economical, ethical and legal implications. For example, a law-abiding owner of a
fingerprinted software is vulnerable to weaknesses in the fingerprinting scheme that allow
an adversary to blame her for illegal copying, and weaknesses in software are common
enough to worry about this. While the client has a strong interest in the fingerprinting
scheme to be secure, the vendor (whose responsibility it is to guarantee its quality) has
the (at best) orthogonal interest of finding a culprit for the crime.

80

3.3.1 Proposed Solutions

There is an abundance of techniques for code obfuscation. Many are ad-hoc
and only available in the form of software products, but some have been given
a more scientific treatment (CTL98a; CTLISb; BDK*01; Wro02).? Let us
have a closer look at a prominent example. (CTLI8b) propose to use opaque
predicates in branches that are added to the control flow of the code. The
value of an opaque predicate is known to the obfuscator, but not to the
reverse engineer. This allows the obfuscator to add misleading code that is
never reached during any execution of the program.

Opaque predicates are constructed using dynamic pointer-based data
structures that are hard to understand using static code analysis techniques
such as abstract interpretation (NNH99). These structures are nested into
the live data structures (those required by the function that the code com-
putes) in a way that makes them hard to identify as dead data (added merely
for the sake of obfuscation). An opaque predicate may have the form “pointer
1 and pointer xy point to the same address”, for two dead pointers some-
where on the heap, and dead code can be added to modify those two pointers
every now and then during the program run. This allows the obfuscator to
modify the branch pointers in sync with the opaque predicate such that as
long as the predicate’s value is unknown, the two branches are made sure
to be functionally equivalent, but as soon as it is known, the branch that
becomes dead may contain deceptions.

This technique was proposed in 1998, two years before the discovery that
code obfuscation is not only hard, but in fact unsolvable (see Section 3.3.2).
However, in 2002 in a survey on intellectual property protection technology
(CT02), the authors still claim that their solution provides “some degree of
protection”. Although such a soft claim is safe from outright refutation, we
argue that it is at least dubious.

The assumption that the reverse engineer is restricted to static analysis
of the code is wrong: Since she has access to the (obfuscated but still op-
erational) code, she can run it on arbitrary inputs, produce large amounts
of traces, and analyze those instead of abstract representations of a superset
of all traces theoretically possible. If the input distribution is random, an
obfuscator that is aware of this attack algorithm may be able to find a way

90ff-topic and on a more humorous note, there are several competitions that re-
ward manually obfuscated code: The International Obfuscated C Code Contest (http:
//wwu.ioccc.org/) demonstrates the value of a transparent programming style by counter
example, and the Underhanded C Contest (http://www.brainhz.com/underhanded/)
challenges its participants to write code that appears to implement an innocent algorithm
but contains malicious code. See Figures 3.3.1 and 3.3.1.

http://www.ioccc.org/
http://www.ioccc.org/
http://www.brainhz.com/underhanded/

81

char*d=")35E!’1cA,, ! ""2KE ‘*1-s@d (! (k(f//gk!)f.e5’ £ (1 +a+) £%2g* | 7£5f, | =f-*e/1<d"
"6el1!9e0’°£3!6f)-g" "514d*b+e6!0£%k)d7!+~"2c7!)z/d-+!’n%a0(d5! cla+/d4"
"12)c9e2!9b;e1!8b" ">e/!7cAd-!5fAe+!7fBe(!8hBd&! :1Ad$! [7S,Q" "O!1bF7"
"11b?7’_6!1c,8b4!2" "bxa,*d3!12n4f2!${4f . 1ydeb&fY%d-"-d7!4" "c+b) "
"d9l4c-a’d: /i’ ‘" "&d; !+1’a+d<!)1*b(d=!’m-a&d>'!&d’ ‘0_&c" e
"$dAc@! $cBc@! $b<" " "gd$‘: 1$d9_&1++"$1%E3" "a’n"
" "$1&f/c(o/_h! (£+c) gxci" "xfgd"
"+Eg" "s&!-n,d)n(!0i-c-k)!3d/" "bOhx !H "
"Ta, ! [" "7X0[!4cM, '4cK‘*!4cIc(!4cHgk!4" "c$j8frg~"
"J9e)!" "|:d+!)""rAc-!*m*:d/'4c(bde0!1r" "2e2!/t0e4!-"
"y-c6!+],c6!)E$b(" "h*c6" "1(d°b(i)d5! (bxa’" "&c)ch! b+ &"
"b’c)ca!éb-_$c" ">d*c3!&a.h’d+d" "11%a/g’e+e0!%b"
"-g(d.d/ ' &cx" "h’d1d-!(d%g)" "d4d+!*1,d7d) ! ,h-"
"d;c’!.boc" ">d%!'A‘Dc$" "1 [7%1]15471 [=ohr&o*"
"t*q*‘*d" "kyxr; 027" "x~=h./}tcrsth&t:r9"
"b].,b" " "-725" -t/ "/#r [<t8-7527937< . ~"
"sb]." =" "tr/#" "B37-r" "[/9~X.v90<6/<.v;="
"52/=" "{kgoh." "/}q" "t "vtohr" "¢, i*x$engt$$,b;$/="
"yv nie=cit.n megn ng=cn "L beTn "25=/0¢..d;b] ‘== ["
s "85/}o¢.d:" " n-75" "/ot.om "v/ilq--[;52=it"
"o ";53-.v96<T" "/=o" ":d=o--/" "i]q--[;h./=i]"
g "-=[;v9h. /<" "5o=" "{cjuce " "it.o;74=0:d="
"o" "-=/ilq--[" ";54=" "{cjuc&ilqg-" "-[;76=ilq[;"
ng=" "vsTu.i" /= "=),BihY_gha,)" "",0[3217];
int i, r,w ,£,b,p, t=641,x;n(){return r<t?d [(*
d+143+(r ++))%tl > +1341759: (x=d [(r++-t) %351+t]
)?7x” (p?6:0): (p=+34);} main(){w=sprintf (o, "char" "xd="
) ;T=p=0;for(f=1;f<*d+143;) if ((b=d [£++])-33){if (b<+93){ if(
'p)o[w++]=34;for(i=35+(p?70:1) ;i <bj;i++)o[w++]=n() ;o [w++]1=p?n() : +34 5}

else for(i=92;i<b;i++)o[w++]=32;}else o[w++]=10;0[w]l=0;puts(o);};/*Don_Yang*/;

char*d="S,Q0!1bF7!1b?’_""6!1c,8b4!2b*a,*d3" " !2n4f2! ${4f . |)y4eb!&f)d-"-d7 ! 4c+"

"b)d""9l4c-a’d: ! /i(" "2 ¢gd; 1+1’a+d<!)1xb(d=!’m-a&d>""!1&d’ ‘0_&""c?!$dAcQ"
"1$cBc@! $b<"&d$" "C1$d9_&1++7$1%f3a’nl_$1&f/c(o/_%" "1 (f+c)"
"gxch ! *£&d" "+f$s&!-n,d)n(!0i-c-k) !3d/bOh" "xIH
"Ta,!" " [7x0" "[14cM, 14cK""*!14cIc(!4cH" "g&"
"14c$i" "8f’ 1&~]9e)" "1 id+) rAc-kmk: " d/ " "4c(b"
"4e0!1r2" "e2!/t0e""4!-y-" "ctrel+],c6!)E$b(h" "xc6!(d"
"’b(i)d5! (b*a’ ‘&c)chb! b+ &b’ " "c)c4!&b-_$c’d*c3!" "&a.h’d+d"
"11%a/g’e+e0!%b-g(d.d/ ' &c*" "h’d1d-!(d""%g)d4d" "+1%1,d47d)!,"
"h-d;c’!.b0c>d%!A‘Dc$! [7)" "35E!’1cA,,!2KE‘*!-" "s@d (! (k(f//g&"
"1)f.eB’f(1+at) f/2gx 17" "f5f, 1=f-*e/!""<d6" "e1!9e0’£316f)-g"
"514d*b+e6!0£%k)d7! " "t~ T) Z/d-H " "’n%a0(d5!%cla+/d4"
"12)c9e2!9b;e1!8b" ">e/!17c" "Ad-!5fA" "e+!7fBe(!8hBd&! :iA"
"d$! [7*1]5471" " "=ohr&" "oktxqk kdkvHr; 027%~"
"=h./}tc" "rst" "h&t:rob].,b-725-.t-"
"~//#x" " [<t8-752793" "< ~;b] . t" " ——+r/#5"
"37-" "t "[/9~X.v90<6/""<.v;" "-52/={kgoh./}q;uv"
ngh "ohr‘.i*$engt$" "$,b;$/=""t;v;6="dit. " " 7=¢:,b-725=/0¢."
".d;b] ‘--[/+65/""}o¢.a" ":-?6/}o¢.’v/ilq--[;52" "=‘it.0;53-.v96"
"<7/=o0:d=0--/ilq--[;h." "/=ilq--[;v9h./<-52={cju" "c&‘it.o;74=0:"
"d=o--/ilq--[;54={cju" "c&ilq--[;76=ilq[;6=vsru.i/" "={=),BihY_g"
"ha,)",0[3217];int i, r,w,f,b,p,t=641,x;n(){return r< t?7d [(*d+143
+(r++))%t] :r>+13417 59: (x=d [(r++-t)¥%351+t]) 7x~ (p76: 0): (p=+34
);main(){w=sprintf (o ,"char""*d=") ;r=p=0;for (f=1;f<*d +143;)
1f ((b=d[£++]1)-33){if (b <+93) {if (!p)o[w++]=34;for (i=35+(p?0:
1);i<b;i++)o[w++]=n() ;o[w++]=p?n() : +34;}else for(i=92;i <b

Figure 3.4: Don Yang’s submission to the 2000 Obfuscated C Contest is a
self-replicator. Each picture is a valid C program that prints the next one to
stdout. There is also a third block (not shown here) produced by the second,
which in turn produces the first block again.

82

size t hash(wchar t* word) {
char* s=(char*)word;
size_t x;
ssize_t 1i;
/* looping backwards is more efficient */
for (x=i=wcslen(word)*sizeof (wchar t); i>=0; i--) {
x += ~(s[i+1]) + s[il;
}
return Xx;

}

Figure 3.5: Felix von Leitner’s submission to the 2006 Underhanded C
Contest illustrates a problem related to code obfuscation: Obfuscation of
a specific aspect of a piece of code, or of a private agenda of the authors
of the code. The challenge was to write code that runs extremely slow on
a “competitor’s platform” of choice, while efficient on another. This hash
function can be used to implement poorly balanced hash tables. The value of
x subsequently adds and subtracts each character in a string once, ending up
with the first character of a file as the hash value. On little-endian systems
this yields a poor distribution, but for English texts there should still be
around 60 possible return values (one for each character used). However,
since the return value is 32 bits, on big-endian systems, the return value is
the constant 0.

83

to trick it. However, the reverse engineer has many ways to produce input
of higher relevance to her problem at hand (e.g., by examining the control
structures in the code or by analyzing the heap and the traces of preliminary
program runs). Furthermore, we suspect that security is increased linear in
the security parameter since these attack techniques are incremental, i.e., the
reverse engineer may be able to remove one opaque predicate after the other,
simplifying the code step by step.

Other obfuscation strategies have proven to be similarly weak. A recent
NAI report comes to the conclusion that previous work has been not as
successful as hoped (DMR03) (although expressing the new hope that there
may be certain useful subsets of programs for which obfuscation is possible).
Therefore, in the following section, instead of refuting particular (classes of)
obfuscation techniques individually, we will present the strictly more general
and, in our eyes, more convincing result that any possible code obfuscation
technique is necessarily insecure.

3.3.2 Impossibility Results

In this section, we give a summary of the results of (BGIT01). It consists of
a notion of what an obfuscator does and under what circumstances it does it
securely, and of a proof that the existence of obfuscators is impossible. We
start with the definition of an obfuscator.

Definition 3.5 (TM Obfuscator). A TM obfuscator is a TM O such that
for any TM M :

1. (functional equivalence) For every input x, O(M)(z) = M (z);

2. (polynomial slow-down) There is a polynomial p such that |O(M)| <
p(|M|) and if M(x) terminates in <t steps, then O(M)(z) terminates
in < p(t) steps;

3. (black-box property) For every PPTM A, there is a PPTM S such that:

| PrlA(OM), 1) = 1] = Pe[$Y (1) = 1]| < neg(|M])

A TM obfuscator is called efficient if it is in P.

(Note that A and S have not only access to an oracle, but also are provided
with the size of the unobfuscated TM. If that was not the case, A could try
to use its knowledge of the size of O(M) to gain an advantage over S.)

Given there is no TM obfuscator, perhaps it is possible to securely obfus-
cate a class of algorithms that can be expressed with a computation model

84

less powerful than Turing machines? A far simpler computation model is
that of boolean circuits: They have input and output of fixed finite length,
the halting problem for circuits is decidable, and there is even an efficient
algorithm to compute the running time of a circuit that is the same for any
input. For instance, if we (falsely) assume for a moment that any obfuscator
always fails on some TM, then there still might be circuit obfuscators. The
reason for TM obfuscators to fail may be that it fails to conceal halting prop-
erties of those TMs, and since the halting proprerties of circuits are much
simpler, in their case there is simply nothing to conceal, so the existence of
circuit obfuscators was not ruled out yet. because it is impossible to conceal
halting properties of Turing machines,

Therefore, two independent proofs are required for the two computation
models, the very restricted one using circuits and the most general one using
TMs, that no obfuscators exist. The two proofs together then indicate that
obfuscation is impossible in general independently of the class of algorithms
to be obfuscated.

Definition 3.6 (Circuit). An n-m circuit is a boolean function C': {0,1}" —
{0, 1}™ with n input bits and m output bits. C' can be expressed as a boolean
expression composed of the operators V, \,— on the input bits.

Definition 3.7 (Circuit Obfuscator). An (n-m) circuit obfuscator O is an
algorithm such that for any (n-m) circuit C':

1. (functional equivalence) For every input z, O(C)(x) = C(x);

2. (polynomial slow-down) There is a polynomial p such that |O(C)| <
p(IC);

3. (black-box property) For every PPTM A, there is a PPTM S such that:

| PrlA(O(C), 1) = 1] = Pr[SE(1l) = 1]] < neg(|C])

In order to prove that neither of the two definitions can be satisfied,
i.e., that there are no TM obfuscators and no circuit obfuscators, a few
preliminaries are needed. As they are crucial for the understanding of our
results in Chapter 5, they need to be developed in more detail.

We start by introducing the concept of 2-TM obfuscators (or 2-circuit ob-
fuscators), and prove that no such thing exists. The counter example makes
use of the circumstance that even under the (false) assumption that both are
securely obfuscated, one TM (circuit) can use the other as input. On the
other hand, with polynomially many oracle queries only, a carefully chosen

85

first TM (circuit) cannot be guessed with non-negligible success probability,
and thus no input can be provided for the second.

After that, by explaining how two TMs (circuits) can be composed into
one we will extend this result to 1-TM (or 1-circuit) obfuscators in Theorems
3.5 (easy) and 3.6 (complicated by the fixed input size of circuits).

Definition 3.8 (2-TM Obfuscator). A 2-TM obfuscator O is a TM obfus-
cator such that for every pair M, N of TM and every PPTM A, there is a
PPTM S such that:

| Pr{A(O(M), O(N), 1IN = 1]
— Pr[SMAN (1IMHIND = q]] (3.15)
< neg(min{| M|, [N]})
Definition 3.9 (2-Circuit Obfuscator). A 2-circuit obfuscator O is a circuit

obfuscator such that for any pair C, D of circuits and for every PPTM A,
there ©s a PPTM S such that:

| Pr{A(O(C), O(D), 119171) = 1] — Pr[sP(1191P1) = 1]]
< neg(min{[C|, [DI})

Lemma 3.4. Neither 2-TM obfuscators nor 2-circuit obfuscators exist.

Proof. For the case of Turing machines, we assume a 2-TM obfuscator and
construct three Turing machines M, M*, N. Then, we show that either M, N
or M*, N will necessarily violate Equation (3.15).

First, for any given a, 3 € {0,1}*, let

1] r=a«

0Fotherwise

Mo p(z) = {

M (x) = 0F

That is, M and M* can be distinguished on their output only in «, and
behave equivalently on all other inputs.

As we want to obfuscate pairs of TM, we need a second TM to pair with
both M and M*, respectively: Let N, 3 be the TM that checks whether its
input is a TM that implements the same function as M, g in the domain
point «:

1 Misa TMA M(a) =0

Ootherwise

Na,ﬁ(M) = {

86

The trick is that N is configured with the parameters o, # matching those
of M a priori to the obfuscation. (If you are beginning to suspect a gap in
the argument here you are correct: N has a halting problem. However, this
can be easily fixed. We will deal with it in the end of this proof.)

We have designed M, M* such that their behavior can not be learned from
interpolating oracle answers in polynomial time with non-negligible proba-
bility: The value « is unknown and can only be guessed with probability
27%_ Formally, for every PPTM S, if o, 3 and the coin tosses of S are chosen
uniformly at random, we have:

| Pr[gMe.sNes (17) = 1] — Pr[SMe-Nes (1%) = 1]| < neg(k) (3.16)

In order to complete the proof, we need to show that the respective ob-
fuscated representations (O(M), O(N)) and (O(M*), O(N)) are more infor-
mative than the oracle access given to S. To be more precise, that there is
a PPTM A to distinguish the two with non-negligible probability. And here
it is:

A(O(M),O(N)) = N(M)

That is, A simply invokes N with input M. Because obfuscation does

not change the behavior of a TM, we have:

PrlA(O(Maz5), O(Nuog)) =1] =1 (3.17)

and:

Pr[A(O(M;), O(Ny5)) = 1] = 0 (3.18)

Equations (3.15) and (3.17) imply that Pr[SMesNes(1%) = 1] = 1, and
Equations (3.15) and (3.18) imply that Pr[SMsNes(1%) = 1] = 0 (both up
to a negligible error). But Equation (3.16) cannot be consistent with both.
Hence, (3.15) must be false, and the assumption of the 2-TM obfuscator O
is invalid.

The refutal of 2-circuit obfuscators as described in Definition 3.9 is com-
pletely analogous. Two technicalities conclude the proof.

The TM case and halting issues. N does not terminate in general, because
question whether a TM returns (on input « is undecidable. To take this
into account, we introduce a timeout ¢ such that O(N,) is terminated with
output 0 after ¢ steps. t is chosen greater than the time it takes for O(N,)
to terminate on input O(M,g). (If there is no other way to estimate ¢,
simply run O(N, 3)(O(M,) and measure the time before submitting it to
the adversarial algorithms.)

The circuit case and input size issues. Because we want to feed the circuit
M to N as input, there is a lower bound on the number of input gates of

87

N. Furthermore, we want to feed O(M) to the (obfuscated, but functionally
equivalent) N, so the lower bound is increased by the polynomial that bounds
the growth of M during obfuscation. This is easy to achieve, since O(M)
is known at the time of construction of N, and because of the polynomial
slow-down property of O. (Note that smaller input can always be fit into
bigger circuits by using padding.) U

In order to extend this result to the non-existence of TM obfuscators, we
introduce a simple composition device: For two functions, TMs, or circuits
fo, f1: X = Y, we define the function, TM, or circuit

fo#f1:{0,1} x X =Y
(fo#f1)i(z) — fi(z)

Access to a composition gives direct access to its components by simply fixing
the first input bit. Therefore, we may hope that situation in which we are
in possession of one composite TM is equivalent to the situation in which we
are in possession of the two components. This can easily be proven for TMs.

Theorem 3.5. TM obfuscators as in Definition 3.5 do not exist.

Proof. Assume there is a TM obfuscator O. Then we can use O to obfus-
cate compositions of the TMs M, 3, M}, N, s as constructed in the proof
of Lemma 3.4. In particular, there are no successful adversaries against
Mawg#Na”g and M;:#Na’ﬁ.

However, for an adversary

Equations (3.16), (3.17), and (3.18) from Lemma 3.4 apply, and thus A wins
the game in the same way as it wins the game against any 2-TM obfuscator.
O

Unfortunately, establishing the equivalent result for circuits requires quite
a few afterthoughts. Also, we can only achieve the impossibility result for
efficient (not for computationally unbound) circuit obfuscators. (Note, how-
ever, that since we reasonably assume computationally bound adversaries in
the rest of this thesis, the two are equivalent for all practical purposes.)

Theorem 3.6. Efficient circuit obfuscators as in Definition 3.7 do not exist.

Proof. (As before, unless specified otherwise see proof of Lemma 3.4 for def-
initions of the parameters used here.)

38

If we simply try the composition trick that worked for TMs, the proof does
not work: The two circuits (M#N)y and (M#N); both have (at least) the
same size as M#N, so the fixed-size input of (M#N); cannot consume all
of (M#N)y. Further, since the adversary has only access to the obfuscated
composition O(M#N), any trick that can be used to compress (M#N)y can
be used in a successful attack against O. However, O is secure by assumption,
and our aim in this proof is to derive a contradiction (and not cause one by
introducing more assumptions).

Somehow, we need construct a more sophisticated N such that we can
pass M to N (or an N-oracle) in chunks without learning anything about
M from its chunks or from the partial results of the computation. This N
needs to be a composition of three algorithms: One to prepare an input for
M and pass it to the adversary; one to do a gate-wise encrypted evaluation
of M on an encryption of its input «, yielding an encryption of M («); and
one to decide whether M («) = 3 without revealing either.

Given a bit-wise encryption scheme

(GM: {1} — K, B {0,1} — {0,1}, D" : {0,1} — {0,1})

that is (a priori) chosen ciphertext secure and chosen plaintext secure. It
is safe to assume the existence of such a scheme (see the last paragraph
of this proof). Notice that in order to be secure in such a strong sense,
(GP*) EPt) DPY) needs to be highly non-deterministic. Each time we encrypt
a single bit of plaintext, the output must appear completely random to the
adversary, even if she is allowed access to encryption and decryption oracles.

Now define three circuits: N'™ encrypts a given input o, N*"™ computes
an encryption of the output of one gate of M(«), and N decides whether
the output of M («) = [using only an encryption of M(«).

Nin<040, e ,Oékfl) = (Ebit(Oéo), NP Ebit<04k,1>>
Nthru<x0,l’1, ®) — Ebit(Dbit(xo) o Dbit($1>>
1 if Dbit($0> = ﬁo VAN

Nebek(go By mo, . T) = ADY () = f3;
0 otherwise

To be able to fix «, 3, we need a circuit that just outputs its input:
Nd(z) =2

Let
Na,ﬂ — (Nin o Nid(a))#Nthru#(NCheCk o Nld(ﬁ))

89

where the first component is a function composition that returns an encryp-
tion of a when run with no input, and the third is the test whether a given
input is an encryption of 3 without revealing [3.

Consider two inputs in analogy to the proof of Theorem 3.5 (only that
they are now implemented as circuits), namely M, g#N, g and M;#N, g.

Now we construct an adversarial PPTM A(O(M#N, g), 1M#Nasl) such
that no PPTM SM#Nes (11M#Na.sl) exists as described in the last condition of
Definition 3.7. In other words, we show that oracle access to the obfuscated
circuit reveals strictly less information about the algorithm than the circuit
itself.

In fact, A works just like in the previous proofs in this section, only that
it utilizes the decomposition of N, g to compute M gate by gate: First, it
retrieves an encryption of a from (IV)g, then it splits M up in its individual
gates and runs them one by one on the encrypted intermediate bits using
(N);. Finally, it passes the encrypted result to (V) and outputs the result.

This allows A to distinguish reliably between M, s# N, g and M;#N, g.
However, any S that has mere oracle access to its input circuit can not split
up M in its individual circuits; all it can do is probe M for polynomially
many inputs of its choice. The argument is analogous to those above in this
section. See (BGI*01) for the full proof. O

Curiously, this proof uses a homomorphic encryption scheme with respect
to circuit evaluation with ® = {V,A, =}, ¥ = {N®(. . ©®) | ® € ®}. This
seems like exciting news: Can a homomorphic circuit encryption scheme be
used as a circuit obfuscator?

Unfortunately, the answer is no. The proof introduces a homomorphic
encryption scheme, but its application context and the resulting security
notions are quite different from what is required to deploy it in the service
provider model. The function that performs the operation is in possession
of the secret key used for encryption of operators and operands in the form
of keyed decryption and encryption functions. This conflicts with everything
that has been said about security so far: If Chantal is allowed to decrypt the
operands, perform the computation on the plaintext, and then encrypt the
result, nothing has been gained for Chantal being adversarial. But this is
not how the proof uses the homomorphic encryption scheme. Security in our
sense is not an assumption but absence of security for this particular scheme
is the reason why circuit obfuscation cannot work in general.

However, the way in which a notion of homomorphic encryption is used
in the analysis of code obfuscators suggests that the two are closely related.
We will use this fact in the other direction by proving the non-existence of
secure homomorphic encryption schemes based on the non-existence of code

90

obfuscators in Section 5.2.

3.4 Private Information Retrieval

The problem of secure outsourcing of database services on confidential data
has close connections to the problems of oblivious transfer (OT) and private
information retrieval (PIR).

Oblivious transfer (NP00; NP01) is a very generic cryptographic primitive
in which Chantal maintains an unencrypted bit sequence, and Murat sends
queries to retrieve parts of it. A secure OT protocol ensures two things: (1)
Chantal does not accidentally reveal more than the requested parts of the bit
sequence, and (2) Murat does not reveal which part of the data he learns.!”
Private information retrieval (CGKS95; KO97; AF02) is a relaxation of OT
in which Chantal is not interested in protecting her data any more: A trivially
secure (but infeasible) PIR protocol is that there is only one query Murat
can send, and he always obtains the entire database in response.

There are two interesting entanglements between these two: (a) coming
from homomorphic database encryption as we have defined it in Definition
2.25 and with secure outsourcing of processing confidential information, the
privacy requirement is turned around in that no longer is the data protected
from Chantal, but the query; and (b) both problems are computationally
hard.

Oblivious transfer is needed in a variety of cryptographic protocols. A
simple motivational example is the online movie retailer. Chantal maintains
a database of movies, and Murat retrieves his favorite selection by passing
their offsets in the bit stream to Chantal (all movies have the same length,
which is one DVD). For business reasons, Chantal does not want to deliver
more movies than have been paid for. On the other hand, for privacy reasons
Murat does not want to reveal which movies he is interested in.

In applications in which Murat has access to the entire database before-
hand, such as when he outsources his own data to Chantal, the requirements
of OT are too strong. We are therefore more concerned with PIR, which is
the exact equivalent of homomorphic encryption with confidentiality required
for queries, not relations.

Definition 3.10 (Querying Protocol). A querying protocol is a language T
of tables and a language Q of queries such thatVg e Q : q: 7 — T.

10Note that any participant in an OT protocol can be considered the adversary. This is
different from symmetric encryption schemes, where the adversary is a dedicated partic-
ipant that has no legitimate interests, but also from the service provider model in which
only one of the seemingly legitimate parties is adversarial.

91

Querying protocols model a client-server context: A query q € Q is sent
by a client to a server to retrieve a part of some given table ¢t € 7 stored on
that server.

Relational algebra is a special case of a querying protocol, relations be-
ing tables and queries being terms. But the concept is more general, since
nothing is said about the structure of table or query language in this defini-
tion. In most of the literature on PIR, the tables in 7 are simply bit arrays,
and Q is the range of those arrays. (This very simple setting already proves
astonishingly challenging.)

Private information retrieval is defined on arbitrary querying protocols,
so as we will see later it is directly applicable to relational algebra.

Definition 3.11 (Private Information Retrieval). Given a querying protocol
(Q,T). A pair of PPTM f: Q — Q, g: 7 — T provides private information
retrieval (PIR) iff

1. (information retrieval) Vg € Q,t € T : g(f(q)(t)) = q(t)

2. (privacy) For any adversarial PPTMs A, B

i « RNDOU
teT,qo,1 €Q « B(t) 1
Pr e - __mon | S5 el
1 — A(t7q07q1af(QZ)) 2 (’ D

” %k

=1

Chantal (the adversary) selects a table and two query batches to her
liking, then Murat chooses one of the two query batches and “encrypts”
them (although this term is not used in the context of private information
retrieval, it gives a rather accurate account of what f does), and passes
it on to Chantal. Now Chantal has to guess which query batch has been
“encrypted”.

By putting condition 1. of Definition 3.11 and Figure 2.2 together, one
can see that the transformations f, g look suspiciously homomorphic. In
fact, it will turn out to be instructive to use PIR as a building block for
constructing database encryption schemes. We will come back to this in
Sections 4.3 where we use it to construct a secure encryption scheme.

PIR is hard. The trivial solution of passing the entire table as the result
of any query to Murat is hard to improve upon. Poly-logarithmic complex-
ity has been achieved in (KYO01), but the hidden constants are likely to be
rather large. Multiple servers that can not share information for a con-
certed attack can be used to obtain schemes with communication complexity
O([t|'/?) (CGKS95). However, the assumption that servers do not collude is

92

arguably fragile, and the communication complexity and the administrative
and legal overhead of this approach are rather large. An efficient solution
using secure co-processors (see next Section) is presented by Asonov et al. in
(AF02). We should stress that efficiency is essential when using PIR in
the context of database outsourcing, so any scheme with an overhead above
constant is likely to be too costly for our concerns. Further, the querying
protocol for all these results is simple bit array lookup rather than full-fledged
relational algebra.

3.5 Secure Co-Processors

So far, in addressing the problem of untrusted service providers we have
focussed on cryptographic solutions. But there is a pragmatic solution that
has proven quite useful in a few applications: Build a tamper-proof device
into the service provider’s host that does all the confidential part of the
computation.

Such devices are called secure co-processor (SCP) and can be obtained
from a number of vendors, e.g. IBM’s 4758 (DLP*01). SCPs serve the same
end as ordinary processors, i.e. they have a small constant size memory and
perform computations on the data that is made available to them via the
system bus. They differ from ordinary processors in two ways:

e An SCP cannot be opened or tampered with without being destroyed.
Therefore, the service provider, or any adversary with physical access
to the running system containing an SCP, has no access to the SCP
other than via the specified interface.

e A SCP has built-in crypto functionality to establish a secure chan-
nel between its secure perimeter and the client host. This is usually
achieved by a pair of private and public server keys. The public key is
delivered to the client in a certificate signed by the manufacturer, and
the private key stays on the processor. This way, the service provider
cannot replace the SCP by an ordinary one that merely claims to be
secure. She does not have the secret key to sign its output, so the
client would notice the replacement immediately. Analogously, a pair
of private and public keys can be used by the client to ensure exclusive
access to the SCP.

These two features, cryptographic protection of the communication be-
tween client and SCP, and tamper resistance, extend the perimeter of trust
into the service provider’s hardware.

93

The claim that tampering is impossible is not to be understood in an
absolute sense. For unlimited financial resources and with sufficiently lax
time constraints, there are a number of techniques like timing analysis, power
analysis, or electromagnetic radiation analysis for inferring the secrets hidden
in the chip from subtle physical characteristics (AK97; KJJ99). An adversary
can even build a laboratory, steal the chip, and dissect it using microscopic
layout analysis or physical on-chip wiretapping. But these threats do not
invalidate the approach in general. They simply constitute an additional
security requirement:

A system relying on a SCP that defeats all attacks that cost less
than x is secure if an adversary that can make a profit of at most
x from attacking it.

This means that before a system can be designed to be secure using SCP,
the potential profits of the adversary must be bounded, and the paramters
of the SCP must be set according to this bound.

SCPs have been considered for content protection measures in standard
PC hardware and entertainment electronics, but the PC industry has a much
higher inertia than the market for server hardware, and there have been
strong privacy concerns about the consumer giving up control over his laptop
to the content providers, so progress has been slow on that front.

We conjecture that the most promising applications, although also the
least widely distributed, are in hardware-enhanced homomorphic encryption
protocols. SCPs have been used for several years in high-security web services
like online-banking to manage cryptographic keys. The next step would be
to examine more advanced problems, and find new algorithms that exploit
the existence of a trusted processor in the realm of the adversary.

Private information retrieval, as introduced in the last Section, is (to our
knowledge) the first problem that has been attacked in this way. In (SS01),
an algorithm for PIR with simple array access using an SCP is proposed that
has constant communication and client computation complexity.'! However,
it achieves these at the cost of linear complexity in the size of the array on
the server side.

The algorithm is quite simple: The array is not modified in any way. FEach
query is received by the SCP in encrypted form, inaccessible to Chantal.
The co-processor then retrieves each element in the array once, storing the
one that is requested by the client, and discarding all the others. Once all
elements have been touched once, the one to be returned is encrypted and
sent to the client, again outside the reach of Chantal.

1 An array is a database with one table that has only attributes index and contents.

94

A considerable improvement, rendering this basic approach useful for
practical purposes, has been proposed in (AF02; Aso03). By encrypting the
entire array and permuting the elements into an encrypted index in O(n?)
server computation time, the server does not know which element is stored
where in the array: Let s be a secret permutation only known to client and
SCP. If the client requests array element ¢ from the SCP, the SCP requests
array element s(i) from the server, decrypts it, and forwards it to the client.
Since s is secret, the server learns nothing about ¢, or the element stored in
the array under 1.

Of course a PIR system should support multiple queries throughout its
life time. This requires a little sophistication for the algorithm to remain
secure. With the system implemented like this, Chantal could keep track of
which element has been downloaded how many times, yielding opportunity
for statistical attacks. Both problem and solution are similar to what surfaced
in the discussion of Ftsl! in Section 3.2.2: In order to remain secure in the
presence of multiple queries, the data must be re-shuffled in regular intervals,
and a threshold for the desired security needs to be decided upon. For more
details on the algorithm see (AF02).

Can SCPs help us in our goal to find homomorphic encryption schemes
for relational algebra? A positive answer cannot be ruled out. In fact, a
connection between PIR and a reduced flavor of relational algebra can be es-
tablished that yields at least a theoretically sound Hom?-scheme (see Section
4.4). But there is good reason to be pessimistic.

First of all, Hom? is a query language much more powerful than the one
used for the PIR-schema just outlined. What a co-processor can do is move
expensive computations offline, i.e. have them done by the server side instead
of burdening the network connection and client resources. However, the basic
problem remains that secure realm covers only a small constant amount of
memory, whereas the data to be queried is potentially huge. Hence, from
a complexity point of view, the situation is not all that different: We still
need to find a way to transform the data such that we can run transformed
queries on transformed data, and the transformation still needs to effec-
tively destroy all information for an adversarial observer. Pre-computation
and trade-off schemes are conceivable, but with increasing query complexity,
trade-off schemes are becoming less and less likely.

But most importantly, research for Hom?-schemes has not even matured
to the point where we really know what we are looking for. We are still
investigating preliminary security definitions, and most of those published so
far have turned out to be unsatisfactory. In this thesis, we attempt to make
a contribution to laying out the foundations of the field. Optimization of
existing schemes can only come when such schemes (a) exist and (b) have

95

proven to satisfy a reasonable notion of security.

Cryptographic hardware may be facing a bright future, and be used ubiq-
uitously in twenty or thirty years, but some important open questions have
to be addressed before that.

3.6 Data Mining and Privacy

We will now have a very brief look at another related field of research
that touches both cryptography and database theory. Consider an address
database of all customers of an online retailer. In order for the retailer to
process orders and ship goods, he needs to be able to retrieve the address
matching a given customer identifier. On the other hand, for privacy reasons,
he should not be able to mine the database for a list of all customers with a
certain item in their purchase records.

Orthogonally, consider two banks that want to compare their transaction
logs to make sure that every transaction between the two has been noted
and processed by both ends and no money has been lost. The challenge is
that the transaction logs are sensitive trade secrets, so neither bank wants
to hand over theirs to the other.

3.6.1 Negative Databases

These are examples of databases that are not privately run by a single orga-
nization, but shared between different organizations that do not necessarily
trust each other. The problem consists in allowing clients to answer some
questions, e.g.

Is record X contained in the database? (1)
while ruling out others, e.g.
Give me all records in the database that have property C'! (2)

For this specific example, an elegant solution has been proposed: Define
a finite set U of all possible records, and store the complement set of all
records in a table, i.e., the set that is not in the database. The result is
called a negative database (EFHO04; Esp05; EAH'06). Query (1) can still
be answered by simply sending it to the negative database and negating the
result, but query (2) has no straightforward equivalent other than subtracting
the entire negative database from U/, and running a select operation on the
result.

96

There are two challenges in implementing negative databases: How can
we store a set that is almost as huge as U efficiently? And how can be make
sure it is secure, i.e. there is no more efficient way to process queries like (2)?

The first one is addressed with a compression scheme that exploits the fact
that the set is extremely dense. Almost all records are stored in the negative
database if its complement has any realistic size. Automatically derived and
updated regular expressions can be used as a compressed representation.
The negative database thus has roughly the same size as its complement.
To consider an extreme example, if £ is the fixed length of all records, the
negative of the empty database {} is simply {{0,1}*}. Existential queries
are then mere pattern match operations.

The second question: How do we rule out privacy-breaching queries?, is
addressed with reduction the N P-hard problem of deciding whether a given
boolean formula is satisfiable or not. This problem is known as SAT, and
instances of the problem that are in fact hard to solve can be constructed
efficiently (JMS05). By deriving database representations from hard-to-solve
SAT instances, hard-to-invert negative databases can be constructed that
represent any given complementing positive database.

3.6.2 Privacy-Preserving Data Mining

There is a number of related problems and solutions, directly expressible
in relational algebra or not, that all have in common that a set of users
wants to process some pool of information, while certain partitions of that
pool, and certain computations on those partitions, need to be infeasible
due to confidentiality goals. These problems have been subsumed under the
label privacy-preserving data mining (PPDM) (AS00), and a lot of research
has been done, identifying a huge number of problems and a few possible
solutions, e.g. (DA00; EGS03; XT06).

How does PPDM relate to homomorphic encryption? As we have argued
in 2.3.4, it is dangerous for a database user to commit to a class of harm-
less queries that the service provider can run on the data without violating
confidentiality requirements. The risks that the released parts of the data,
together with the adversary’s context knowledge, allow for inferring (parts
of the) confidential information are too hard to estimate and control. For
all practical purposes, we need absolute privacy, i.e. the amount of leaked
information must be 0.

PPDM is addressing an orthogonal class of problems in which the clients,
despite their confidentiality concerns, have a need to share their data in
order to accomplish a common goal. The default solution of the database
outsourcing model: do not outsource and keep your data locked up in your

97

basement, does not work in PPDM.

The results in PPDM that have been published so far, or that are likely to
be published in the foreseeable future, all involve not only a deterioration of
privacy and increase in complexity of risk and threat management, but also
considerable performance penalties. The benefits from pooling information
in a controlled way may be worth those penalties. But database outsourcing
does not provide these benefits, so both performance and rigorous security
are essential for a cryptographic scheme to be of practical value.

Consequently, despite is intellectual elegance and practical relevance in
related applications, PPDM in its current state does not provide us with sat-
isfactory tools to build strong homomorphic encryption schemes. Although
the structure of the data and query languages are very similar, the require-
ments differ considerably.

98

Chapter 4

Adversary Models and Analysis

In Section 3.2, we have presented the state of the art of security definitions
for homomorphic encryption. In this chapter, we are going develop our con-
tributions to this field.

4.1 Heuristic Security: Analysis of ATE

We will now see that the homomorphic database encryption scheme ATE! is
insecure if we use even weak traditional notions of security (or KC-Security,?
for that matter). We also develop a follow-up to the discussion in Section
2.3.4 on what constitutes a good security definition by demonstrating how a
number of appealing, but not very suitable candidates fail to yield intuitive
security for (variations of) ATE. An earlier version of this discussion has been
published in (FGO03).

Before we start, we introduce a rather odd security definition that we
will need for both lower and upper security bounds in the following. o-
indistinguishability is defined in analogy to indistinguishability (see Defini-
tion 2.4), but security is already given if the adversary wins in at most a
fraction z < ¢ of all cases.

Definition 4.1 (é-Indistinguishability). Let 0 < § < % An encryption
scheme (G, E, D) is d-indistinguishably secure (has d-indistinguishability)

1See Section 3.1.1.
2See Definition 3.4.

99

100

iff for any adversarial PPTM A and any mg, m; € M,

k G(1N)
i RND 1
< =
i Amgm, Bimg)| =2 TN
i =it

Transforming any other security definition into its d-analogon is straight-
forward. A crucial difference between the adversarial winning probability
threshold ¢ and the security parameter N is that the former does not take
security to be a function asymptotic in N. We can increase the security of
the encryption scheme (usually this is done by increasing the size of the key),
but this does not affect J-indistinguishability non-negligibly.

To our knowledge, this is the first proposition of §-security in the research
literature. In most cases, 0-indistinguishability (which is just plain indistin-
guishability), i.e. a scheme that reduces adversarial success probability to
negligibility, is what one wants. However, d-indistinguishability for greater o
has at least two potential uses:

1. Tt is useful for applications in which something can be gained from
rendering even only a fraction of all attacks useless. For instance, con-
sider a database that contains intellectual property, and users that are
only granted 30 access operations a day. If they can only corrupt the
system in one out of thousand access operations, the number of secu-
rity breaches will be reduced considerably, which may have a positive
impact on legitimate sales and thus profits.

2. It can be used to establish lower security-bounds: Instead of the rather
abstract and unintuitive result that some scheme is asymptotically in-
secure, we can often find large ¢ values for which the system is always
insecure, no matter what the key size, thus giving a measure to compare
the severity of different security problems.

In the business of database service outsourcing, security is an all-or-
nothing thing: The risk of revealing data to adversaries if the service is
run in-house at the client site is minimal, and must not be increased by an
outsourcing move. Hence, although potentially interesting in the long term,
for our purposes, d-security is mostly good for establishing explicit lower
security bounds.

ATE is insecure in almost every applicable definition contained in this
thesis. However, this does not follow directly from our infeasibility theo-
rems (see Sections 5.1 and 5.2), because Chantal never gains access to the

101

unaggregated information necessary to compute an exact query result. In-
stead, Chantal can only compute a conservative approximation (conservative
meaning “no false negatives”) of the result, and Murat needs to participate
a round of post-processing himself. The pattern in Figure 2.2 is therefore
subtly violated: For exact homomorphic encryption schemes, Chantal is re-
sponsible for the right half of the picture (and capable of handling it all by
herself), and Murat is responsible for the left part. For ATE, Dy, has the form
$o Dy, where Dy, is a decryption function that only inverts Ej, approzimately,
and ¢ € ® is the plaintext query for which the encrypted result contains a
conservative approximation.

As it is not a direct implication of our proof sketch, we now demonstrate
that ATE is not secure, and give a sense of the severeness of the threat.
We first expose order revelations through range queries, then small attribute
domains, and then the impact of aggregation on security in general.

As an afterthought, the last point, an argument that aggregation does not
provide security in any reliable sense, can be considered a third application
of the notion of d-security, which is closely related, but not identical, to the
second one. It goes roughly like this: The aggregation before encryption
turns out to have a multiplicative effect on §. Therefore, if a scheme is is
not d-secure without aggregation for some o > 0, then for any aggregating
enhancement of that scheme there is some ¢’ > 0 such that it is not §’-secure.

4.1.1 Order Revelation through Range Queries

Assuming the database schema is confidential in itself, Chantal can get con-
siderable insight in the number and types of attributes in the plaintext
database relations. In particular, each soft-encrypted attribute reveals at
least:

e The fact that there is an attribute, and how many bits are needed at
most to store an attribute value.

e The number of partitions of a given attribute. (In principle, there may
be empty partitions, but the configurations on which ATE has been
tested set number of partitions to very small numbers, and the figures
suggest that this is in fact necessary for performance reasons.)

herd is used).

e The rough size of a given partition value (if
e Which rows have attribute that are similar (if hr2°m is used).

e If the database service is embedded in an application service known
to (or run by) Chantal, then she is likely to guess the semantics of

102

the attributes (e.g. Employee Name, Type of Position, Salary, ...),
and even if that does not reveal the actual values for given encrypted
rows, it makes guessing and certain types of cryptographic attacks much
easier.

We shortly sketch an example for an attack revealing the order of plaintext
values despite pseudo-random soft encryption A*®9°™ and then give a formal
account of it.

Example 4.1 (A Simple Attack Against ATE). Consider the example in
Section 3.1.1 again. The conditions:

salary > 55,000, salary < 65,000

which do not trivially reveal anything about hsgar, (which is pseudo-
random), are transformed into

salary € 1) ={0,2,3}, salary € I, ={0,1,2,4}

(Using Equation 3.2.) FEach of these two set member tests turns out to
tell a great deal about the secret permutation, assuming that Chantal guesses
correctly that the expressions have been transformed from comparison oper-
ations: Chantal can derive from Iy that partitions 0,2,3 are all smaller (or
greater) than partitions hsyar(salary) — I = {1,4}.* Similarly, she can de-
rive from Iy that partitions 0,1,2,4 are smaller (or greater) than 3. Guessing
> for Iy and < for Iy correctly, she obtains:

{ Prange(@) 2 Prange(b) | @ € {0,2,3},b € {1,4} }
M Prange(@) 2 prange(b) | @ € {3},b € {0,1,2,4} }

which enables her to define:

Iy = {1,4}
I; ={0,2}
Iy = {3}

And know that all partitions in I} have smaller plaintext partitions than
any partition in I7 for all i < j.

In other words, the order of partitions hidden by h™™%™ has been revealed
partially, but to a great extent, by a single range condition and two correctly
guessed bits, without even looking at the encrypted data!

3As usual for denoting the set of all values of a function for some domain, we use
hsalary (salary) to refer to the set of all soft-encrypted salary attribute.

103

In this example, Chantal had to guess two bits: The decisions where to
use which of <, >, because the interval does not necessarily reveal towards
which end of the attribute domain it is open. We now demonstrate that there
is a way for Chantal to recover all of a set of operators up to one bit which
she has to guess, and we make a first attempt at gauging the strength of this
attack by using the newly introduced notion of §-indistinguishability.

Recall that a comparative query condition of the form C' = A < v is soft-
encrypted into h(C) = h(A) € I, where I = {h;(v') | " < v} C h(A) is the
set of all partitions that contain at least one value smaller than v (see Figure
3.1). We now estimate the information leakage from one such condition.

If we had only one comparison operator <, each I C h(A) would provide
Chantal with the constraint

Va,be A:h(a) e INh(b) €I =a<b

What remains to be shown is that Chantal can recover this information
up to one bit despite the fact that she is not told which comparison operators
are used.

First, assume that we only have <, > and consider this example: Given
6 partitions with encrypted partitions 0,...,6. If Chantal has seen two sets
{0,1,2,3},{0,1,2} and guesses {0,1,2,3} < {4,5} and {0,1,2} > {3,4,5},
then she can derive an inconsistency: Both 0 < 4 and 0 > 4 are implications
of these guesses. Hence, if the first operator is <, the second must be < also.

More generally speaking, for each pair I, I’ extracted from a valid pair of
inequality conditions on the same attribute, we can find a pair of values that
tells Chantal whether the two inequalities are different or not:

drel,z’ eh(A)—T:zel' N2’ € h(A)-T

This means that in a larger number of inequalities, we only need to guess
once whether an operator is < or >, and the decryptions of the other opera-
tors follow. This gives Chantal the one bit of uncertainty about her success.

As for <, >, let v/ = v+ 1 and Q4(v') = Qa(v) + 1. (If the attribute
type from which v, v’ are picked is not numeric, use the bit representation.)
Then the two queries A < v and A < ¢’ are indistinguishable from Chantal’s
perspective, and they both provide her with a precise split in hA(A). Further,
observe that Chantal can at best reveal the order of the partitions — the
actual contents never leaves Murat’s part of the system. Since Chantal is
not interested in the exact values but in revealing the partition order, and
assuming that the range bounds are suitably distributed, the attack is equally
effective for operators <, >, <, > and for operators <, > only.

As a preliminary attempt to summarize the conclusion from this example
attack, we formulate the following

104

Conjecture 4.1. Assume A is soft encrypted with some h™%°™ (order rev-
elation trivially holds for h°™®). If |A| > 1, then security of ATE deteriorates
rapidly with the number of distinct range queries of the form oa., (where
- € {<,>}). After |A| distinct range queries, the order of Q4(A) is revealed
but for one bit.

The problem with finding a proof is that we have not found a satisfactory
security definition for homomorphic encryption with relational algebra yet.
We will make up for this in the following, and establish more rigorous and
general results after that. These general results will be applicable to this
analysis of ATE.

The most straightforward fix of order revelation would be to not allow for
the comparison operators <, <, >, > in query conditions, sacrificing expres-
sive power for security. However, this would only prevent order revelation by
the specific attack technique outlined here, while there may be more sophis-
ticated attacks that still work and can be found with little more dedication.
Also, this does not help against the more severe flaws we are going to explore
below.

Is there anything else that can be done, short of reducing expressive
power of the application of our scheme? Noise queries, or queries that have an
invalid form and thereby mislead Chantal when she takes them for legitimate
range queries, are not an answer (see Section 4.1.4). PIR would be, but our
infeasibility results (see Chapter 5) suggest that there are no schemes that
are flexible enough to allow for homomorphic range query encryption.

So we seem to have tracked down a principle privacy limitation here:
Prompted accordingly, Chantal must be capable of returning all rows with
values h(a) such that a < v and not too much noise, so she is bound to learn
the answer, even if she does not know v. But gathering answers for many
vs, the order becomes necessarily apparent to her. In conclusion, Arardom
appears to be no stronger than h°'¢ in the presence of range queries.

4.1.2 Small Attribute Domain Size

One of the primary purposes of aggregating plaintexts into partitions is to
make it hard to decide equality (or inequality) of two attributes given just
their soft encryptions. We now demonstrate that if the domain size of an
attribute is very small, this technique is ineffective.

To consider an extreme example, a boolean attribute type has only two
partitionings and both are trivial: {{1,0},{}} and {{1},{0}}. The former
is as efficient as no soft encryption at all, so the only option is to create one
partition per plaintext value. Since soft encryption needs to be deterministic,

105

this has the effect that the set of all values of a boolean attribute in a relation
are known to Chantal except for the last bit (the one that decides which
is 1 and which is 0). Taking into consideration that Chantal should be
granted all but one bit of knowledge of the plaintext, soft encryption for
boolean attributes is clearly and fatally insecure. Similar arguments hold for
attributes with marginally more than two values, although the problem gets
less severe with growing domains.

In order to obfuscate values of this type effectively and avoid attacks that
decide a =" b given only their soft encryptions h(a),h(b), more than one
partition can be assigned to each partition ID. As a range of plaintext salary
values could be mapped on one partition, now one partition can be mapped
on a range of partitions, which, if encrypted, can not trivially be associated
with the same partition.

A probabilistic partitioning

QEZ) AN

has more than one partition for each partition, and QEZ)(CL) is picked
uniformly at random from a set of 7 partitions assigned to a. If 7 = 1, the
partitioning is deterministic. Note that Figure 3.1 must be modified slightly.
h(v) is not a unique value any more, but one of a set of values. Instead of
testing for equality, we need to test for set membership.

This approach has a fatal weakness, however: Every select with equality
condition causes Murat to consistently request one of a number of unique
and disjoint sets of ciphertext partitions (two such disjoint sets total exist
in the case of booleans), so Chantal can conclude that members of those
groups represent the same plaintext partition. We now outline an algorithm
to reveal these partition groupings.

Let A be any attribute with “small” domain size and hy = H o Q(AT)
probabilistic.* If hu is deterministic (7 = 1), the attack is trivial, as the
only useful partitioning is a one-to-one mapping from plaintext values to
partitions. For probabilistic h4 (7 > 1), Chantal needs to be more intelligent.
The idea is to scan the available queries for clues to the partition sets, and
to collect all clues in a matrix

Clue : h(A) x h(A)

Whenever a clue is found that =,y € h(a) for some x,y € h(A),a € A,
increase Clue,,; if a clue is found that x € h(a),y & h(a), decrease Clue, ,,.
Note that Clue is symmetric, or triangular.

4 There is no need to specify “small” any further here. Security will simply be a function
of |A].

106

Algorithm 3: Feeding the Clue matrix.

/* initialization */
begin
| Initialize all cells with 0
end
/* range heuristic */
begin
for every (sub-)condition of the form h(A) € I do
for x,y € I do
| Cluegy = Clueg, + 1

forxel,y¢ I do
| Cluegy = Clueg, — 1

end
/* exact select heuristic (A =v) */
begin
if |I| = 7 then
/* all elements in I are ciphertexts of the same plaintext. */
for x € I,y € h(A) do
if y € I then
| Cluey y = +00
else
| Clueg,y = —o0
end

The attack consists of two steps: Feeding the Clue matrix (see Algorithm
3), and consulting it for deciding plaintext equality for two soft encrypted
ciphertexts (see Algorithm 4).

Since it is meaningless to retrieve only an unspecified subset of all tuples
in a relation that satisfy a given query condition, |/| is always divisible by 7.
The smaller |I|, the greater the odds that two tuples have identical values if
their soft encryptions are both in 7. In the exact select heuristics, Chantal can
make a definite statement and not investigate any further: All of I encrypts
the same plaintext attribute. If |I| grows, the range heuristics kicks in and
computes probabilities that depend on the number of clues encountered so
far. (There is a more accurate algorithm that increments Clue, ,, by |TT|, taking
the probabilities into account that change with |I], but for our purposes the
above version will suffice.)

Both update steps in Algorithm 3 are heuristic, so in some cases, Al-

107

Algorithm 4: Consulting Clue for equality decision problems.
Input: z,y € h(A)
if Clue,, > 0 then
| output identical

else
| output different

gorithm 4 does not produce accurate results. However, if Murat does not
submit noise queries, we obtain the following

Lemma 4.2. Let ATE with a deterministic partitioning operation (Qa is
d-insecure for some 6. Then ATE with probabilistic partitioning Q(AT) is O-
insecure after |A| distinct exact select queries,

It is easy to see that it is true independent of the actual security definition:
After |A] distinct exact selects, Qg) has been completely determined, i.e. all
equivalence classes of its domain have been determined by the adversary, so
no additional security can be provided by probabilistic partitioning.

4.1.3 On the Impact of Aggregation

In this section, we will consider the order over the plaintext domain A as a
source of information for Chantal. We will only consider A"d°™ here, but
a similar argument trivially holds for h°™. Assume that Q4 is deterministic
and that all partitions in the partitioning () 4 have the same size:

37 Ve e Qa(A) : {a€e A| Qala)=2x}|=2

Further, we define a predicate p : A — {0,1} that Chantal wants to
compute from the ciphertext alone:

(a.b) 1 ifla—bl<Z
a,b) =
P 0 otherwise

This may be interesting for salary attributes, or any other attribute for
which any one or more of the following conditions hold:

1. Partial information on the plaintext is already available.

5Note that this is not an assumption, but a fact. Even if ATE was perfectly secure, it
was still %—insecure.

108

2. Approximations of plaintext values are of some value already. (An
approximate salary is more likely to be of value than an approximate
customer id.)

3. Classification of encrypted tuples is more interesting than decryption
and recovering actual values. (If a boolean attribute states, say, HIV
test results, a distribution of 1/1 is different from 38/1, even if the ad-
versary does not know in the latter case which boolean value has which
of the two relative frequencies. Further, one of the two alternatives can
often be ruled out by context knowledge, such as that there are more
negative outcomes of HIV tests than positive ones.)

We can now derive a very low upper bound for the protection of ATE-
encrypted data against revelation of p:

Lemma 4.3. Given a relation with Qa, Z as introduced above. For

L 204-2)
T T p

p can be recovered from an encrypted relation with probability d. Furthermore,
forall Z,|A|, 6 > 1.

Proof. The attack is very simple: When faced with a challenge h(a), h(b) €
h(A), Chantal simply returns 1 if h(a) = h(b), and 0 otherwise. Let « the
Chantal’s answer.

The success probability is 1 in the case of h(a) = h(D), as the maximum
distance of two members of one partition is Z—1. If a, b are in two neighboring
partitions, and a is the upper half of the lower partition and b is in the lower
half of the upper partition (or vice versa), then the adversary loses, since she
returns 0 although |a — b| < Z. Otherwise, |a — b| > Z, and the adversary
correctly returns 0.

Hence, the adversary loses if and only if a, b are inhabiting two neighboring
partitions with a distance smaller than Z. The probability of this event, i.e.,
the probability with which the attack fails, is computed as follows:

|A|/Z is the number of partitions, so Z/(2|A|) is the probability of a
plaintext lying in any specific partition half. For each partition except the
last, the probability that a lies in its upper half and b in the upper neighboring
partition’s lower half is (Z/(2]|A]))?, and as the condition is symmetric (b
may be in the smaller partition and b in the upper), we need to double this
probability. There are |A|/Z — 1 occurrences of this event (each partition
except the last one has an upper neighbor). Hence, we need to multiply

109

again and obtain as the success probability of the attack

6 :=Prla=p(a,b)]
—1—(|A]/Z = 1) -2(Z/(2|A])?

A7
=17 ~U5ap
1 7 72
RS RVTRVTEL
_,_Z0A1-2)
2|A?

For Z = |2ﬂ (we need at least two partitions, otherwise there is no risk,
but also no virtue in soft encryption), we have

A A
_Bla-5h 7

=1 =
) 2| A2 8

0 grows monotonously with decreasing Z. This concludes the proof. Il

Conjecture 4.4. If the relation contains a soft encrypted attribute A with
Qa, Z as in Lemma 4.3, then ATE is not %—secure for o = %.

Intuitively, this means that ATE is inappropriate for keeping a rough
similarity of attribute values private. The only thing that Alice can achieve
is enforcing a “level of roughness” that suits her by choosing a large enough
partition size Z. Note that this problem arises from the partitioning alone,
so better query or data encryption cannot be used to overcome it.%

As an interesting aside concerning e.g. equi-joins, even if an feasible trade-
off between performance and security can be found, query conditions of the
form A; = A; can get quite bulky when encrypted. Since all the intersecting
partition pairs need to be enumerated, the size of the encrypted query is

O(max{|Qa,[,1Qa,l}

for given partitionings 4, and Q4,, i.e., linear in the number of parti-
tions. The consequences of this seem paradoxical at first: In contrast to
the performance-privacy tradeoff observed elsewhere, increasing the number
of partitions not only reduces the effectiveness and security of the encryption
scheme, but also has a negative impact on performance in the presence of
conditions of the form A; = A;.

SKeeping the partitioning secret is a bad idea. The partitioning is part of the scheme,
not part of the key. Choices affect security in non-trivial ways, so they have to be made
available for scrutiny and auditing to a wide audience.

110

4.1.4 Noise

Recall the clue matrix attack algorithms in Section 4.1.2 once more. One
possibility to prevent this sort of attacks is to inject noise into exact select
queries that trick Chantal into false conclusions about the contents of soft
encrypted attribute values. (Similar strategies as proposed here for clue
matrices can be deployed against other forms of attacks outlined above, with
similar limitations.)

ATE with noise queries: A query of the form o4—,(R) is split up into p
different queries as follows:

1. Let I = {xq,...} be the domain of hy(a), i.e.

hA(A:a) = Ael

2. Let I; = {zi,Xi1,-- Xir—1},% € [1,p], where x;; are uniformly dis-
tributed (pseudo-)random values.

3. Instead of the noise-free
UAeI(R)

submit the queries
UAGL‘(R) Vi€ [1>p]

However, the additional effort that Murat has to put into computation
and communication is too high, even under the (rather strong) assumption
that Chantal has no way of heuristically connecting queries that occur in the
same burst and recovering the original (noise-free) query from the burst.

Lemma 4.5. Given a notion of security that states that the clue matrizc
attack outlined in Section 4.1.2 is ineffective.

Consider a database schema with a soft encrypted attribute A. Let ATE
without probabilistic soft encryption and noise be §-insecure for some d. Then
there exists a function

F10, 1] (1 AT > [1, JA]l — [0, 1]
that maps values of d,7, p to new values of § such that
1. f(5,]14],1A]) = 0.
2. f(0,1,1) =9.

3. [is monotonously growing with T and p: If 7/ > 7 and p' > p, then
f(0,7,p) > f(0,7,p) and f(6,7,p") > f(0,7,p).

111

4. ATE with probabilistic soft encryption with randomness T and noise
level p is f(9, T, p)-insecure.

Proof. Queries in ATE with randomness and noise levels both |A| does in fact
not reveal any clue that could be used for the attack: Every query explodes
into |A| queries for the entire domain of |A|, so the encrypted condition
contains no information about the plaintext condition. On the other hand,
if p = 7 = 1, the probabilistic noisy enhancement of ATE collapses to the
original scheme. The observation that f grows monotonously in 7 and p is
straightforward. O

In this result, we are not interested in other potential attacks. We merely
want to assess the effectiveness of noise as a countermeasure against this
particular attack. Unfortunately, the additional security comes with a super-
linear increase in communication costs: If ¢(p, 7) is the bit size of the set of
queries a non-probabilistic noise-less query is compiled into, then ¢ € O(7p).
This is prohibitively expensive.

This is in fact the primary benefit of the notion of d-security: It establishes
that there is no easy way around asymptotic security, i.e. the notion that
linear growth in the security parameter and the costs for the legitimate user of
a cryptographic scheme should result in super-polynomial growth of the cost
for a successful attack. Any attempt to increase the security polynomially
by making it polynomially more expensive results in infeasible cryptography
for all practical purposes.

To conclude this section, we have found a number of fatal security issues
in ATE and shown that most options to fix them, or at least alleviate their
impact, are either ineffective, or overly costly, or both. The generality of our
arguments suggests that the idea of security by aggregation is fundamentally
flawed and should not be pursued any further.

4.2 Partial Security: Analysis of Full-Text
Search

In Section 4.3.2, we will develop a homomorphic encryption scheme for
databases based on homomorphic full-text search encryption schemes, and
we will establish two relaxed security properties. In this section, we assess
the security of Ftsl! and a new variant called Fts{}, reveal an important
gap in its security proof, and provide a new security definition that can be
satisfied nevertheless.

112

4.2.1 The Problem

In the brief discussion of the security of Ftsl! in Section 3.2.2, it became ap-
parent that there is a problem with queries: Each time an encrypted query
~Yw is sent, Chantal can decrypt all occurrences of the word w in the docu-
ment base down to EP™(w). For the scheme to work at all, EP™ needs to
be non-probabilistic, i.e. the same input always yields the same output, no
matter what the location of w in the document or document base. But non-
probabilistic block-wise encryption of plaintexts breaks indistinguishability.
There are two straightforward attacks that demonstrate this. The first
makes use of unsafe queries to identify the encrypted result by its size.

Example 4.2 (Attack using Result Size). Let Uy = U; = {{rosebud}},
qo = Vrosebuds ONA Q1 = Ywinter- Lhe size of the encrypted result fully reveals i.

The second is stronger in the sense that it does not rely on the significance
of the size of the result, but identifies it by the location of the match.

Example 4.3 (Attack using Match Positions). Let Uy = {(rosebud, spring)},
Uy = {(spring, rosebud)}, and gy = ¢1 = YVrosebud- Then the position of the
match, which is revealed to Chantal by the algorithm, reveals 1.

While the first problem is intuitively hard to fix without having fixed
output size, for the second there is a solution: Assume the position of words is
destroyed during encryption, or speaking more abstractly: Define documents
to be sets, not sequences of words.

Definition 4.2 (Homomorphic Encryption for Search in Sets). Let [be the
global word length, and let W = {{0,1}'} be the set of all words of that
length. A homomorphic encryption scheme for search in sets is a homomor-
phic encryption scheme (G, E, E*, D) as defined in Definition 2.24, where
M = {{W*}*} is the set of all sets (archives) of word sets (documents),
and ® = {v,|lw € W} is the set of full-text search queries. =y, yields all
documents containing w: If v, € ® and m = {mo,my,...} € M, then
Yw(m) = {m; € m|m; = {wo, wn, ...} AN Jjw; = w}.

A homomorphic encryption scheme on set documents can be derived from
Ftsll: Before encrypting a document m; = {wg, w1, ...}, store the words in
a sequence in arbitrary order (the canonical way to do this is to merely keep
the words in the order in which they are already stored on the computer that
runs the encryption algorithm), and apply a (pseudo-)random permutation
Km, to that sequence. Since documents are sets, the destruction of any order
by k(m;) does not affect the contents. Since the order appears random to

113

the adversary, implementation details about set representation cannot be
exploited for an attack.

We call the resulting set document encryption scheme Fts{}. It is easy
to see that the attack in Example 4.3 fails against Fts{'}. Unfortunately, the
attack in Example 4.2 is still effective. We will consider countermeasures in
our construction of secure Hom=/?-schemes in Section 4.3.

The security of both Ftsl! and Ftst? is so weak for a deeper reason that is
crucial to understand: The rule that same plaintexts yield same ciphertexts.
This touches on a basic notion called mode of operation that is used to
reason about symmetric encryption schemes. Before we proceed to establish
a limited level of security for these schemes, we will now explain this in more
depth.

Since symmetric encryption schemes are often circuits with a fixed number
of input and output bits, strategies are needed to build encryption schemes
from them that work on plaintexts of arbitrary length. These strategies are
called modes (of operation of a block cipher).”

The simplest mode of operation is called ECB (Electronic Code Book) and
works as follows: Given a block cipher (G, E, D) a plaintext (my, ..., m,) of
arbitrary length divisible by the block size,® and encrypt each block individ-
ually:

ECBk(E7 (m07 s 7mn)) = (Ek(mo)v s 7Ek(mn))
ECBi(D, (cos -, ea)) = (D(co). - ., Dicen))
A more secure variant called CBC (Cipher Block Chaining) seeds each

plaintext block with the preceding ciphertext block in order to destroy ho-
momorphicity with respect to block equality:

CBCL(E, (mg,mq,...,my)) =
(r, Ex(mo @ 1), Ex(my & Ex(mo)), ..., Ex(my, ® Ex(m,_1)))
CBCk(D, (r,coy ... ¢p)) =
(Di(co) ® 1, Di(c1) @ co, - - -, Di(cn) & ¢q)
CBC is probabilistic and precedes each ciphertext block sequence with
an initial random initialization vector r. If the plaintexts with identical first

blocks my = my, are encrypted, this makes sure that the corresponding en-
cryptions ¢ # ¢, (probabilistically). It is easy to see that this is a necessary

"Block ciphers are introduced in Definition 2.18. Since we will not need modes of
operation anywhere outside this section, we only introduce them now.

8Modes of operation usually come with a padding scheme with which the plaintext can
be extended to a length divisible by the block size in a way that can be reversed during
decryption.

114

(a) Original (b) ECB (c) Other modes

Figure 4.1: ECB is weak: Even if every block is encrypted using a secure
scheme, the full picture remains visible because identical plaintext blocks
yield identical ciphertext blocks. (Source: http://en.wikipedia.org/)

condition for indistinguishability of encryptions. Newer modes provide in-
tegrity and confidentiality at the same time and are thus more robust against
advanced active attacks (Jut00; Rog00; Hal01; BKN02).

Figure 4.1 gives an impressive demonstration of the weakness of ECB,
and how CBC can overcome this weakness: While (c) apparently does not
contain any structure at all, in (b), the original unencrypted image (a) is
clearly recognizable.

Unfortunately, (GP™, EP*, DP™) in our full-text search scheme of choice
cannot implement any mode other than ECB, as those all have the (usually
desirable) property that encryption of the same block in two different loca-
tions in the plaintext block sequence yields two different ciphertext blocks.
But two occurrences of the same word w need to result in identical pre-
encryptions EP™(w). (If not, which one would be the encryption of w pro-
vided with the query?) This is the reason why a stream cipher needs to
properly encrypt the already pre-encrypted words.

Trade-offs

In (SWPO00), the authors propose to fix this problem by periodic re-encryp-
tions of the entire database: Every time “too many” pre-encrypted words
have been unwrapped from the stream cipher layer of encryption by Chan-
tal, the entire document base is downloaded, re-encrypted, and uploaded
again. Note that even with a sophisticated key management, it may be im-
possible in general to do this incrementally for those documents that have
been matched only. Such a scheme would need to prevent Chantal from
annotating a newly encrypted document with the information she already
learned before re-encryption, which seems ambitious to say the least.

115

This is similar to the trade-off tricks discussed in Section 3.5, but there
are three obstacles to consider:

e Even if re-encryption is done at high frequency, it will not resurrect
security in any of the definitions in which it was broken without it.
(This flaw is also immanent in the trade-offs for secure co-processors.)

e The client has to contribute considerable communication, computa-
tion, and storage work. Since one of the most prominent motivations
for database outsourcing is the more efficient use of these resources,
this disadvantage can be quite prohibitive. In particular, mobile appli-
cations are ruled out by this restriction, or require a trusted stationary
host with more resources than a mobile device that supports the mo-
bile user. To an extent, however, this problem can be addressed with
trusted hardware (see Section 3.5.)

e The computing resources that the server needs for performing its task
are considerably higher than the resources needed for the alternative
local solution without any outsourcing. This puts a weight on the hard-
ware prices needed per customer, and makes outsourcing less profitable
and competitive.

4.2.2 Partial Security

The weakness of Fts'} and Ftsl! suggests a relaxed security definition that
captures and dismisses the attacks we have outlined above. In particular, we
want to allow for the adversary to use the query result sizes in her attack, and
only rule out attacks that recover more information than can be recovered
from those sizes. This idea is expressed in the following

Definition 4.3 (Full-Text Search Indistinguishability up to Result Size).
A homomorphic full-text search encryption scheme (G, E, E*, D) is indistin-
guishably secure up to result size if for any adversarial PPTM A there is a
corresponding adversarial algorithm A’ such that for any set of document sets
U, any two document sets Uy, Uy € U with |Uy| = |Ui|, and any two query

116

sequences qo, q1 with |go = q1|:

i < RND®"Y
| Pr it — AU, Uy, Uy, qo, q1, Ex(Uy), Ei (@)
1 =1"
i < RNDU
— Pr it — AU, Uo,Uv, o, qr, Ee(Us), | Ei(qi0) (Ee(Us))|, ..)| |
1 =1
< neg(N)

The following conjecture states that Ftst?} is secure beyond the notion
that has been established in Section 3.2.2.

Conjecture 4.6. Fts{/ is secure in the sense of Definition 4.3.

4.2.3 A Note on Multi-Message Security

In Section 3.2.2, we have mentioned that there are issues with key manage-
ment and multi-message security. We will now elaborate on this. As we have
hinted, the argument applies easily to the Hom?-schemes derived from Fts{}.

Have another look at Figure 3.3. Note that so far, the PRG ((R)) takes
a key k that is constant over all documents. However, this allows for trivial
distinguishing attacks: If every document is encrypted using the same PRG
stream, then two identical documents will yield two identical encryptions.
But since the homomorphism is about document sets and not documents,
multi-message (i.e., multi-document) security is necessary (SW05).

If each document has a different key k(gocument), then multi-message indis-
tinguishability of the stream cipher is preserved, and the search operation is
still computable by Chantal alone. From her perspective, the S; cannot be
distinguished from true randomness, but further knowledge about the S; is
not required for performing her task. Given the pre-encrypted search word,
she merely has to check whether some potential S; generates the right suffix
F(S;).

Different k for each document require us to maintain a mapping from
documents (or some sort of document identifiers) to their corresponding keys.
There are several standard techniques to achieve this. The simplest one is
to use a multi-message secure symmetric encryption scheme, encrypt each
document key with that scheme, and attach the ciphertext to the encrypted
document. Since K(dgocument) is only needed during decryption, after match
retrieval, this is both safe and convenient, and reasonably efficient. A variant
would be a PRF that computes the key from the document identifier. (This
requires the application to guarantee uniqueness of document identifiers.)

117

4.3 The “Good Server Going Bad” Model

It is time for some constructive results. In this chapter, we will develop novel
security definitions that are, although relatively weak in some applications,
both intuitively sound in others and satisfiable in general. Further, we will
instantiate the main new notion of security, the good server going bad model,
with a class of schemes that satisfies it.

We start with the motivation behind the good server going bad model.
Assume, as before, that Chantal is a database service provider, and Murat
is a company that outsources (parts of) his database operations to Chantal.
Both have come to an agreement that requires Chantal to not do any analysis
on the data, and Chantal will honor this agreement. So far, no cryptography
would be necessary in the first place for the situation to be secured for Murat.
However, at some point in time, Chantal makes an announcement to turn
adversarial to Murat. From that point in time on, Chantal is a traditional
adversary as developed in Section 2.3.4. In particular, Murat cannot choose
to force Chantal to delete his database, since by the time Murat makes
his first move knowing that Chantal has turned adversarial, she already has.
What Murat can do is not provide any specific queries to Chantal that would
allow her to launch an attack. Roughly speaking, this implies that for a
Hom?-scheme (G, E, E*, D) to be secure in this model, it is enough to require
(G, E, D) to be secure, and to require Murat to not send any queries after
Chantal’s announcement to turn adversarial.”

There are at least two interpretations for this model:

e On page 10, we have already used the take-over of PeopleSoft by Oracle.
If we assume for a moment that PeopleSoft is honoring its contracts,
but Oracle argues that contracts closed by PeopleSoft do not apply
to the newly merged company, the service provider may have to be
considered an adversary under this new model in the eyes of Murat.
If the two companies involved are located in different jurisdictions, the
situation is complicated further.

e If a server is hosted in a country with poor (implementation of) civil
rights standards, it may be seized by the authorities and analyzed off-
line. In this case, Chantal’s announcement assumes the form of denial
of service: When Murat connects to the server the first time after the
adversarial turn, the server simply will be down. Examples of this

9Murat can still download the entire database, decrypt it, and move his business else-
where. This can be considered a query of the form oyrue(R), but we will see that it is still
safe.

118

case can be found even in countries with a good reputation for legal
standards. For instance, Cicero, a conservative political and lifestyle
magazine, has been illegally raided by the German police authorities
after allegations of treason.'®. Further police raids have been targeted
against operators of the Internet anonymization network TOR.!' In
countries like China or Singapore, stories like this one are likely to
be more numerous. Commentators disagree on the question whether
the Cicero raid was consistent with legislation or not, but it certainly
would make Murat’s life easier if he did not have to worry about this
distinction in the first place, and simply keep his secrets secret by means
of cryptography rather than contracting and legislation.

Further, if for some limited time the server hosts an intruder that Chantal
knows nothing about, our model is not directly applicable, but the effort for
launching a successful attack is significantly increased: The intruder cannot
simply walk away with the entire database, but needs to intercept communi-
cation between Chantal and Murat, gathering enough information to launch
an attack. (Murat not running any queries always turns good-server-going-
bad-security into the equivalent server-always-bad-security.)

We will now develop this new adversary model, and then proceed with a

scheme that instantiates it. An earlier version of the material in this Section
has been published in (EFG06; EFGO07).

4.3.1 Definitions

Recall the definition of KC-Security in Section 3.2.3. We have exposed a
weakness in the definition that stems from the independent treatment of
relation and term, although terms can be used to partially reveal a relation
they are applicable to. The following definition binds terms and queries into
one ciphertext structure, thus repairing this flaw.

Definition 4.4 (Hom?-Indistinguishability). A homomorphic database en-
cryption scheme (G, E, E*, D) is indistinguishably secure iff for any adver-
sarial PPTM A and any database schema R, any two relations Ry, Ry € R

104Razzia bei Cicero.”, http://www.faz.net/, September 29th 2005. On February
27th, 2007, the German Constitutional Court ruled the raid to violate the right to
freedom of press (http://www.bundesverfassungsgericht.de/pressemitteilungen/
bvg07-021.html)

1« Anonymisierungsserver bei Razzia beschlagnahmt”, http://www.heise.de/
newsticker/meldung/77915, September 8th 2006.

http://www.faz.net/
http://www.bundesverfassungsgericht.de/pressemitteilungen/bvg07-021.html
http://www.bundesverfassungsgericht.de/pressemitteilungen/bvg07-021.html
http://www.heise.de/newsticker/meldung/77915
http://www.heise.de/newsticker/meldung/77915

119

such that |Ro| = |R1|, and any two query sequences o, @1 such that |qo| = |q1]:

i « RNDOD
Pr| " « A(R,Ro, R, do. @1, E(Ri), Ep(@))| <

-k

1 =1

+ neg(N)

N | —

This provides Chantal with all the information that Murat cannot guar-
antee to keep from her in the worst case, namely all context knowledge about
the ciphertext but the last bit, plus an encryption of a fitting pair of rela-
tion and query term sequence. Although this definition is not the strongest
possible, any scheme that satisfies it will be sufficiently secure for many ap-
plications.

The trivial scheme based on an indistinguishable encryption scheme (G,
E, D) with E* : & — {0} that maps every query to some singular constant
ciphertext and forces Murat to retrieve the entire database for each query
(doing the actual computation in the post-processing step) satisfies indistin-
guishability for Hom?. But is there a practical scheme that does so, too?

As in our analysis of Ftsl!, if we put reasonable restrictions on the queries
that are submitted to the adversary, a tradeoff can be established with tra-
ditional security in the one extreme. We now give a security definition anal-
ogous to Definition 4.3 that accounts for certain attacks, and then define a
class of unsafe queries that spans the gap between the two notions: As long
as Murat does not submit unsafe queries when using a scheme being secure
in the latter, the scheme is secure in the former.

Definition 4.5 (Hom?-Indistinguishability up to Result Size). A homomor-
phic database encryption scheme (G, E, E*, D) is indistinguishably secure up
to result size if for any adversarial PPTM A there is a corresponding ad-
versarial PPTM A" such for that for any database schema R, any two rela-
tions Ry, Ry € R with |Ro| = |R1|, and any two query sequences Gy, q; with
130 = a1

i «— RNDY
|PI' it A<R7 R07R17607d17Ek(Ri)7 Z(@))
i =i
i « RND"U
—Pr it — A(R,Ro, Ri, o, ¢, Br(Ri), | B (qi0) (Ee(R:))], -2)| |
i =it
< neg(N)

As long as Chantal merely used the size of the output in her attack, she
has no advantage from running (A, B) over merely running (A’, B’), since

120

both are provided with those sizes. We now can search for schemes that have
no further weaknesses beyond the one described above, which is a good start.
Also, it gives us this

Lemma 4.7. Hom? -indistinguishability implies Hom? -indistinguishability up
to result size.

Proof. Let
i « RNDU
vai=Pr| " — AR, Ry, Ry, o, ¢, Ex(Ri), Ef(@))
1 =1"
and
i « RND!Y
fa = Pr . z* — A(R, Ro, R, qo, q1, Ex(R;), | Ef(qio) (Ex(R))], - .)
1 =1"

Definition 4.4 states that v4 < 1 4 neg(N). for all A. This implies that
va > 1 —neg(N). (Otherwise, an algorithm A’ that outputs the inverse of A
would violate the first inequation.)

If there was an algorithm A* such that pia« > 1 + neg(N), then there
would be an algorithm A* such that v+ > 3 + neg(N): Since the scheme
is homomorphic, the sizes of the query results can be computed given the
encrypted queries and the encrypted data, so the input to A* contains strictly
less information than the input to A™.

Hence, both probability values in the definition of indistinguishability up
to result size are % with negligible error, and therefore

pa— ual < (5 — 5) + (neg(N) ~ neg(N))

for all A, which means that the scheme is secure in Definition 4.5. 0

However, for Murat to comfortably use such a scheme in practice, he
needs to make sure that he is actually willing to dismiss all attack algorithms
(A’, B') as acceptable, which would require an assessment of what harm can
actually be done by such attacks. Since this in turn requires to limit the
context knowledge of Chantal significantly, we are faced with the plethora of
obstacles on the way to reasonably relaxing traditional security definitions
that we have listed in Section 2.3.4.

Definition 4.5 can be further strengthened by means of the query lan-
guage. By carefully restricting the class of queries whose encryptions are
exposed to Chantal, we can close the gap between indistinguishability up to
result size and plain indistinguishability.

121

Definition 4.6 (Safe and Unsafe Queries). A safe query with respect to some
subset R' C R of all possible instances of R is a query that yields always
exactly 1 output tuple r if run on any instance R € R’'. Unsafe queries are
queries that are not safe.

To simplify notation, we omit the subset R’ in the following. The reader
may interpret this as treatment of the special case of safe queries that are
safe for all of R’ = R, but all the theorems directly extend to true subsets.

The class of safe queries allows for upgrading security in the sense of
Definition 4.5 to security in the sense of Definition 4.4:

Theorem 4.8. Let (G, E,E*: ® — U, D) be a Hom?-scheme, and let

Et:{¢ed| ¢ isasafe query} — W
E*(¢) = E*(9)

be encryption of safe queries only. If (G, E, E*, D) exists and is Hom?-indis-
tinguishable up to result size, then (G, E, E™, D) is Hom?-indistinguishable.

Proof. We show that falsity of the implication implies falsity of the assump-
tion. Let A be an adversarial PPTM that breaks Hom?-indistinguishability
for the scheme (G, E, E*, D), and let R, Ry, R1, ¢o, @1 be the attack parame-
ters for which A can guess i with non-negligible probability.

Let va, ua be defined as in the proof of Lemma 4.7 (with E} replaced by
E;"). Since all queries are safe, the result sizes that are passed to A in pa
are all 1, and therefore the attack algorithm A has strictly less information
in the probability p4 than in v4.

Let A' = RND!*! be an algorithm that outputs bits uniformly at ran-
dom, no matter what the input. Then the distinguishing attack algorithm A
together with A’ satisfy

|va — pal < neg(N)

and thus constitute a distinguishing attack up to frequency against (G, E, EY,
D). Finally, since E* = ET on all queries used in our attack, by being suc-
cessful against (G, E, E1, D) it is also successful against (G, E, E*, D). O

Safe queries are rather common. For instance, consider an RFID reader
that reads a unique identification code from an tag attached to some item
and extracts information associated with this code (name, price, etc.) from
an encrypted outsourced database. Since for every item the code is unique
and the reader sends requests only for existing codes, the reader issues only
safe queries.

122

Are there queries that are intuitively safe, but are not covered by this
definition? In other words: Is there a way to safely extend the class of safe
queries?

First, assume deterministic encryption, at least in the places that match
some query. (This is the case for a wide class of encryption schemes, including
the one we will use in the next section to establish indistinguishability up
to result size.) If the number of resulting tuples varies freely, Example 3.1
demonstrates how Chantal can run a successful attack on the encrypted
database and infer some sensitive information. (A variant of this attack also
works if only empty results and results of size 1 are allowed.) If all the
queries return exactly k£ tuples for k£ > 1, it is possible to craft tables with
two attributes ag and a; and queries qq, ¢; such that for one table the queries
produce intersecting and for another non-intersecting result sets. This allows
Chantal to infer dependencies between values of different attributes and use
them for an attack. For example, if the adversary suspects that attribute ag
contains names of the hospitals and a; contains family names of the patients,
by observing such intersections she can try to estimate the number of family
members that were treated in the same hospital. Finally, although if all
queries are guaranteed to return no tuple rather than one, Murat would also
be safe, our definition is clearly more useful.

4.3.2 Cryptographic Schemes

We now finally present a class of Hom?-schemes for the restricted query
language of exact selects. We start with a definition of a term that we have
casually used a few times already:.

Definition 4.7 (Exact select relational algebra and Hom=/?). Exact select
relational algebra, or relational algebra with exact select, is the subset of
relational algebra in which only queries of the form o,— and the usual boolean
and set operations are allowed. Such queries are called exact select queries.
A Hom=/?-scheme is a Hom?-scheme for relational algebra with exact select.

Our approach is based on the intuitive analogy between running exact
selects on a database relation and searching a set of documents by keyword
(see Section 3.1.3). A relation can be seen as a set of documents: Each tuple
is one document, and the attribute / value pairs of the tuples are the words
of the document. We formally establish a structure-preserving mapping from
a database table to such document sets. A scheme for full-text search as in
Definition 3.2 can then be used to construct a Hom=/7-scheme. We use a
variant of the full-text search encryption scheme Ftsl! to demonstrate the

123

practical effectiveness and efficiency of our results, but any other scheme
satisfying Definition 3.1.3 can be used as well.

Mapping

First of all, we define a mapping from relations to sets of documents. Given
some relational schema (or relation domain) R = Ag X - x A;_1, let D =
{i:di; |1 €10.l—1],d;j € A;} be the set of all attribute-value pairs in
R, and let W = {w;} be a set of words of globally fixed length such that
the total number of words |W| = |D| = >,_; ;|Ai|. Then there is always a
bijective mapping from attribute-value pairs to words:

D= W,
Q(aiidz’j):wm

For any tuple r; = (1 : dyj,...,l : dj;) there is a corresponding sequence
Vi = (O(1 = dyj),..., O« dij)) of corresponding words. V; is called the
document corresponding to tuple r;. For every relation R = {ro,...,rm},

there is a corresponding document set U = {Vi,...,V,,}. Analogous to R,
we write Y = {U} for the set of all document sets. Using the bijection ¢,
we obtain a mapping & of relations to document sets:

O:R—U
QU@ s dig, ..., l:dy) |0<i<m})={(O(1:dn),..., 0 dy))

Since { is bijective, © is also bijective.

Homomorphism

Next, we use ¢ to map a full-text search problem on a document set U to an
equivalent Hom=/?-problem on a relation R = ©~'(U). In other words, we
define a homomorphism which projects keyword searches into exact selects.
No claims about security are made yet. In this section we only establish
the connection between the two problems, in the next we add encryption
and thus obtain a complete Hom=/? scheme, and after that we present the
security proofs of this scheme.

Consider the structures (R, {04,:q,}) on the one hand and (U, {¢y,, }) on
the other. Using the bijection < between attribute-value pairs and words,
we can define a mapping between the two search operations (again, note that

124

this mapping is bijective):
* : {Oaiidj} = {@wij}
*(Ualdj) = @O(aldj)

© is homomorphic with respect to (R, 04,.q;) and (U, ¢ (a;:a,)): If R € R,
then
@(O-aiidj (R)) = *(ga#dj)(@(R))

Adding Encryption

Using the above mappings, we can now construct a Hom=/?-scheme using an
arbitrary homomorphic encryption scheme for full-text search.

Lemma 4.9. If (G, E, E*, D) is a homomorphic encryption scheme for full-
text search, then (G,E o, E* o &, O~ o D) is a Hom=/?-scheme.

Proof. Directly follows from construction. 0

Note that this Lemma is constructive: It provides an algorithm to trans-
form any homomorphic encryption scheme for full-text search (G, E, E*, D)
into a Hom=/?-scheme as depicted in Algorithm 5.

Algorithm 5: Constructing Hom=/?-schemes.
Input: Relation R; encryption scheme for full-text search
(G,E,E*,D)

begin
Choose a set W C M such that |W| = |DJ;
Choose a bijective mapping : R — W;
Define © and & as in the text

end

Output: (K,EoQ E*o&, O 1o D)

Security Proof

It remains to be shown that this Hom=/?-scheme inherits the security char-
acteristics of the underlying full-text search encryption scheme, i.e. that it
is indistinguishable up to result size, and by Theorem 4.8 therefore secure if
Murat is not making Chantal process any unsafe queries.

This yields our main

125

Theorem 4.10. Let " = (G, E, E*, D) be a secure (in the sense of Definition
4.8) searchable encryption scheme. Then the Hom=/7-scheme A = (G, E o
O,E* o &, V1o D) as constructed in Lemma 4.9 is secure (in the sense of

Definition 4.5).
Proof. Directly follows from construction. O

Corollary 4.11. If I is secure in the sense of Definition 4.3, then the re-
duction of A to safe queries is secure in the sense of Definition 4.4.

Proof. Directly follows from Theorem 4.8. U

A Partially Secure Example

In Section 4.2.2, we have presented Ftst?, a set-based variant of the full-text
search encryption scheme Ftsl! that satisfies Definition 4.3. We will now use
this scheme to construct our first concrete solution to the Hom? problem.

Let word length [and document length m be global constants. (There
are simple extensions that allow for variable-length words and documents,
but this is more essential for the practical utility in the context of text search
than in the context of pre-specified database schemas, and we skip it here
for the sake of clarity.) Remember that we write a|| b for concatenation of
strings @ and b. ’#’ is the padding symbol.

For our example we use the database schema

Emp(name : string[9], dept : string[5], salary : int)
The privacy homomorphism is defined as follows:
W = {dl H NM, d2 H DP, d3 H SL ‘ dl, dg, d3 S str1ng[9]}
& (name:d) = pad(9, d) || N\M
O (dept:d) = pad(5, d) || ###+ || DP,
O (salary:d) = pad(4, toString(d)) || ####7# || SL, where d € int

(pad(i, s) for any string s is guaranteed to have length i.) Then, © maps
tuples to documents as follows:

Vi. = O({name:Montgomery, dept:HR, salary:7500})
= {{(name:Montgomery), {(dept:HR), {(salary:7500) }
= {MontgomeryNM, HR######44DP, 750044 ###+SL}

Remember that sets are represented as secure (pseudo-)random permu-
tations, and thus without order from the perspective on an adversary. The

126

actual string that is stored on Chantal’s host is obtained by making this
permutation explicit:

r({MontgomeryNM, HR #-4 -4 4t#4DP, 75004444 #SLY)
— HR#H#HH#HH#H#H#HH#DPMontgomeryNMT7500H#HHH#H##SL

Now all that’s left to do is encryption of the resulting document strings
using the searchable encryption scheme, and the ciphertexts can be shipped
to Chantal’s server.

&, connects exact select and keyword search. For opame:Montgomery; We get

* (O name:Montgomery) = ©MontgomeryNM

which is encrypted using full-text search query encryption, and the encrypted
query is run by Chantal to produce a set of encrypted strings. This set is
then decrypted using ©~! and mapped to the corresponding tuples.

By Conjecture 4.6, the full-text search encryption scheme we used indis-
tinguishably encrypts sets of documents and reveals nothing but the number
of documents sharing the queried word. Hence, according to Theorem 4.10,
the resulting Hom=/?-scheme is secure in the sense of Definition 4.5, and its
restriction to safe queries is secure in the sense of Definition 4.4.

A Hom=/?-Scheme with Hom?-Indistinguishability

Independent of us (EFG06; EFGOT7), a security definition very similar to
Definition 4.4 has recently been proposed (CGKOO06). It is based on the
history of a query protocol, consisting of data, queries, and corresponding
results, and defines the input for the adversarial algorithm as the view on
such a history. The view is composed of all the encrypted information passed
to her during the protocol. Together with the definitions, two homomorphic
encryption schemes for full-text search are proposed. The nature of these
schemes rules out both attacks discussed in the examples in Section 4.2.1.

Neither of these attacks invalidates Conjecture 4.6, but they demonstrate
a weakness in both Ftsl! and our improvement Fts{?}. In particular, we can
show that using either scheme in our construction of a Hom=/?-scheme breaks
Hom?-indistinguishability:

Lemma 4.12. Hom=/? based on Fts{'? or Fts! is insecure in Definition 4.4.

Proof. The attack outlined in Example 4.2 can be adapted to the database
case. U

127

However, both schemes from (CGKOO06), namely SSE-1 and SSE-2, can
be shown to satisfy Definition 4.4 by straightforward modifications of the
proofs in the paper. Giving an account of the details of these schemes here
would not provide any new insights, and we refer the reader to the paper.
However, this gives us the much stronger

Theorem 4.13. Hom=/° based on SSE-1 or SSE-2 is secure in Definition
4-4.

Proof. Follows from the security definition outlined in (CGKOO06). O

This is an impressive demonstration of the virtue of our abstract con-
struction connecting Hom? and full-text search: By using this construction
on novel, improved results on one problem, we can directly and mechanically
obtain equivalent new results for the other.

4.3.3 Discussion

Performance. The performance of Hom=/7 (Ftst}) is rather promising: All of
stream cipher and pre-encryption and the search operations come at the cost
of running comparably small boolean circuits for both Murat and Chantal.
The overhead in terms of storage space is a small constant. Finally, there
are simple and efficient solutions for key management. So the main part of
the cost in run-time is due to the actual select (or full-text search) operation.
Depending on the underlying scheme being used, this may take between
linear time in the number of documents (Blo70; Goh03) and, noticeably
worse, linear in the total number of words in the document set (SWP00).

From the complexity theoretic point of view, Hom=/?(SSE-*) performs
even better. Due to its independent and very efficient indexing structure
(similar but superior to the one proposed in (CMO05)), it consumes constant
server complexity as opposed to the linear server complexity required for
Hom=/7(Fts{}). However, it is not clear how the structure of the searchable
encrypted data in Hom=/?(SSE-*) performs in the special case established
by our construction, where the search and result patterns diverge from those
for, say, search of keywords on e-mail. In particular, in many database appli-
cations the entire document (or tuple) consists of words that occur equally
likely in queries. This reduces the advantage an independent index structure
has over true searchable encryption, and increases the severity of imposed
space overhead. Comparing the two approaches in practice would make an
intriguing goal for an experimental setup.

Unfortunately, there is no straightforward way to implement indexing
data structures and algorithms without losing security. We are not aware of

128

any homomorphic encryption schemes for databases that take indexing into
account. Without further research, this shrinks the realm of applications to
the few that have very low performance requirements and those where the
index can be maintained on Murat’s host.

Applications. There are few differences between exact select relational
algebra and file systems. Both allow for retrieval of data items given a handle
to that data item. Only the structure of files may differ from a relational
tuple. On modern workstation and PDA operating systems, files usually have
very little structure other than the order of bytes, whereas on main frames
they may be data structures far more complex than common relational tuples.
Further, a key (or file path) is a unique identifier for a file, whereas in exact
select relational algebra it is possible to obtain more than one tuple for one
key. (In a way, exact select relational algebra could be called a multi-set files
system.)

Other systems that match the structure of exact select are e.g. DNS
(Moc87a; Moc87b), LDAP (KDZ06), the less well-known, but potentially

much bigger ONS devised by EPCglobal (Mea04; FGS05), and certainly
many others.

Theorem 4.10 can be adapted to file systems and all these applications. If
Murat has a local index of all existing file paths to be able to resolve file-not-
found errors locally (in order to avoid the unsafe 0-tuple query results), exact
selects on primary keys are always safe. Hence, Definition 4.5 is satisfied by
all queries, and we obtain the following

Corollary 4.14. There is a homomorphic file system encryption scheme
secure in the sense of Definition 4.5 given the client makes sure all file look-
ups are safe.

The problem with files of widely differing size can be dealt with by split-
ting and padding schemes (similar to the concept of i-nodes in Posix file
systems). Alex would retrieve the first block of a file, which then contains
the key to the second block, and so on, until he has retrieved the entire file
and assembled it locally.'? More advanced data structures such as specialized
search trees would also allow for a seek operation to reach arbitrary locations
in files of size n in O(logn), or even O(1).

12Note that this raises the issue of traffic analysis attacks, since the query sequence
will develop patterns that can be used by Chantal to guess which tuples are part of the
same file. How to address these issues in a provably secure way is another open research
question.

129

4.4 Private Information Retrieval, revisited

Private information retrieval (see Section 3.4) is useful even in the setting
where the database is secret and the query public. Because of the entan-
glements between queries and database, by keeping the queries private from
Chantal, Murat can keep the encryption of the data securely confidential,
too. The following theorem establishes a sufficient condition for Hom?-
indistinguishability.

Theorem 4.15. A Hom?-scheme (G,E: M —C,E*: ® - ¥, D :C — M)
is Hom? -indistinguishable if (1) the encryption scheme (G, E, D) is indistin-
guishable and (2) the transformations (f,g) such that

f(@)(t) = E;(q)(Ex(t))
g = Dy

provides PIR for the querying protocol (M, ®).

Proof. For each condition, we construct a direct contradiction to Definition
4.4 from assuming its violation. (1) Assume (G, E, D) is not indistinguish-
able. Then there exist Ry, R; such that Chantal can distinguish between
Er(Ry) and Ej(R;) with non-negligible probability. This allows her to dis-
tinguish between (Ej(Ro), E*1(q)) and (E(T1), E*1(q)) by simply ignoring
the query sequences. (2) If (f,g) is not PIR, then Chantal can use the re-
lation R and two query sequences qg, ¢; from any PIR attack to distinguish

between (Ej(R), E*1(q)) and (Ex(R), E*1(q1)). O

This is clearly an interesting subject to future research, in particular with
PIR schemes such as the one using SCPs mentioned in 3.5 whose performance
may be enough for some applications. On the other hand, PIR has very hard
lower complexity bounds: Even with secure co-processors, the overall work
load of the system is amortized quadratic — too for most everyday database
applications.

Although not strictly constructive, this theorem also suggests the con-
struction of secure Hom?-schemes for array access. (Hom? for array access is
the restriction of Hom=/7 to the setting where the only searchable attribute
is integer and continuous.)

Let (f, g) be a PIR-scheme for array access, i.e. for operations ¢; : M4 —
M on arrays from M# over an element set M. Further, let (G, E : Kx M —
M, D : KxM — M) be an encryption scheme providing indistinguishability
on the element set M. Also, let (G, E4, D) be the extension of (G, E, D)
to entire arrays such that each element is encrypted individually.

130

From the first part of Definition 3.11, we know that for all ¢; and for
all a € M4, g(f(¢:)(a)) = ¢3(a). From the second part, we know that i is
private, or intuitively, that Chantal will not know which elements Murat has
retrieved.

This gives us everything we need to construct our Hom?-scheme for array
access: For data encryption, simply use E4 to encrypt all array elements
individually. For query encryption, transform ¢; into f(¢;) such that Chantal
will not know ¢, but will still be able to compute some x from an array a with
it such that g(z) is the i-th element of a. Finally, decryption is transformation
of that z into the proper array element by means of g, plus array element
decryption. In total, our Hom?-scheme for array access is

(G,E,f,D"0og)
and from the definitions we obtain

Theorem 4.16. If (f, g) is PIR for querying protocol (M, {$}), then (G, E,
f, D¢ o g) provides Hom? -indistinguishability.

Proof. The two conditions from PIR and Hom?-indistinguishability can be
directly transformed into each other. ([l

4.5 A Note on Data Integrity

On the last roughly one hundred pages, we have slowly developed an aware-
ness that confidentiality on outsourced databases has proven to be surpris-
ingly hard. We have developed definitions that are not entirely satisfactory,
reduced the set of operations that we expect to run on the encrypted data,
and still there are many caveats about performance, feasibility, and remain-
ing threats by malicious service providers.

The other famous problem of cryptography, establishing not data confi-
dentiality but integrity, has only briefly been touched in our introduction to
cryptography. This is partly because in contrast to confidentiality, integrity is
rewardingly simple to achieve. In fact, we almost get it for free, without any
restrictions on indexing algorithms, and with small space or communication
overhead.

The easiest integrity-preserving scheme simply attaches an additional at-
tribute to every record stored on the database server containing a message
authentication code (or MAC, see Definition 2.22). If a record is altered,

131

the MAC will not match the contents any more, and a small efficient MAC-
verification routing will trigger an alert.!?

When using full-text search schemes that establish index structures in-
dependent of the stored documents, we are free to choose any record en-
cryption scheme that suits us, and we could use one that provides mes-
sage confidentiality and integrity at the same time, such as for example
(Jut00; Rog00; Hal01; BKN02). There will still be a few bits of overhead per
record, but encryption and decryption will be faster since there is no need
for a separate MAC verification routine.

These methods will be sufficient if Murat has an easy way to decide
which records should be present in the database and which not, for instance
because there is a simple algorithm to compute all serial numbers that have
been allocated. In this case, if Chantal silently drops a record, an alert will
be triggered by that algorithm.

If there is no way for Murat to efficiently decide which records are simply
not there and which have been “lost” by Chantal, the simplest solution would
be to compute the MAC of the ordered list of all record MACs. But even for
databases with low dynamics, this would constitute an excessive workload
for both Murat and Chantal, since the entire database needs to be touched
every time a single record is modified, removed, or added.

Fortunately, there are more advanced data structures that serve the same
purpose as the MAC over the list of all MACs, but they are more efficient
to handle by orders of magnitude. An early one is known as Merkle hash
trees (Mer80), and has subsequently been improved many times. The most
recent and efficient solution we are aware of is (Bau04; MRKO03), which also
contains an introduction to the history of the problem.

We strongly believe this is more or less all there is to say about data
integrity in the database outsourcing scenario. Efficient, effective solutions
exist, and any application considering enforcing confidentiality by crypto-
graphic means could be doing this as an aside, with no significant further
cost.

BAnd being notified about an integrity violation after it has happened is the best
possible outcome for Murat: There is no way for him to force Chantal to leave his data
intact, once he has handed it over to her. However, usually this is sufficient, too. For
example, if there is an integrity breach, Murat can retrieve a backup from a low-bandwidth
system unsuitable for the database application and move to another vendor.

132

Chapter 5

Security and Performance
Bounds

Up to this point, we have developed a formal notion for the problem of
database outsourcing, Hom?, layed out solid cryptographic foundations to
tackle it, and proposed a novel set of solutions for a subset of relational
algebra. In this chapter, we conclude this part of the thesis by establishing
solid theoretical feasibility bounds.

5.1 Strong Security Definitions

We start with a new security definition that encompasses what would be nice
to have.

Definition 5.1 ((Adaptive) Semantic Chosen Plaintext Query Security for
Hom?). A Hom?-scheme (G, E, E*, D) is semantically secure (has semantic
security) in the chosen plaintext query model iff for any plaintext relation
R and any probabilistic polynomial-time adversarial algorithm A, there is an
adversarial PPTM S such that

| Pr [AZE (B (R), 1Py = 1] — Pr [S5 (150 = 1] | < neg(N)

where k = G(1V).

This is a variant of semantic security (Definition 2.3), and of course there
is a corresponding variant of indistinguishability:

Definition 5.2 ((Adaptive) Chosen Plaintext Query Indistinguishability for
Hom?). A homomorphic database encryption scheme (G, E, E*, D) is indis-
tinguishably secure in the chosen plaintext query model iff for any adversarial

133

134

PPTM A and any database schema R, any two relations Ry, Ry € R such
that |Ro| = |Ry|, and any two query sequences o, 1 such that |qo| = |q1|:
i « RNDUU
Pr 1 — AE;(R7 ROaRlvq_an_laEk(Ri)? Z(q_l)) S
1=1"
where k = G(1V).
Using an adaptation of the standard proof for Theorem 2.1, the two can
be shown to be equivalent:

+ neg(N)

N | —

Corollary 5.1. In the chosen plaintext query model, a Hom?-scheme (G, E,
E*, D) has semantic security iff it has indistinguishability.

This notion of security accounts for the fact that Chantal can do compu-
tations on the ciphertext in an extreme sense: Any computation that Chantal
might come up with during the attack is encrypted for her using a the query
encryption oracle Ej.

As we have explained in Section 2.3.4 in the discussion of Definitions 2.7
and 2.8, encryption oracles are standard in many security definitions and can
be motivated with scenarios in which the honest party is a software agent
tricked into revealing oracle replies. Even if these replies are partial and
require sophisticated analysis by the adversary, they may reveal the data
needed for an attack. Oracles are especially likely if the adversary is not an
intruder, but extensive communication with her is required by the protocol,
as in our case here.

However, despite the fact that this definition looks highly useful from the
perspective of the requirements engineer, it can be shown that there is no
Hom?-scheme that satisfies it:

Theorem 5.2. There is no Hom?-scheme secure in Definition 5.2.

Before we can prove this result, we make a restriction to the Hom?-
schemes: We only consider those schemes that allow Chantal to distinguish
between empty and non-empty output. We justify this restriction with a
lemma that states no schemes violating this restriction are significantly more
secure.

Lemma 5.3. If there is a secure Hom?-scheme (in the sense of any of Defi-
nitions 4.5, 4.4, 5.1, or 5.2)), then there is a secure Hom?-scheme (G, E, E*,
D) in the same Definition such that Chantal can compute the function

empty: E(R) — B
0 ifR=10

lotherwise

empty(E(R)) = {

135

In particular, all schemes that encrypt tuple-wise fall naturally into this
class. The only existing schemes we are aware of that do not encrypt tuple-
wise are newer full-text search schemes that maintain a separate index, such
as the already mentioned (CMO05; CGKOO06). Not surprisingly (given we are
about to establish a Lemma that says so), even these allow for Chantal to
identify empty query results, or even the precise size of the output (at least
probabilistically, which will prove enough for a successful attack). If the
homomorphic index processing returns a list of document IDs, then these
documents still need to be retrieved in a second step, and this second step
usually reveals the number of documents retrieved.

The proof of Lemma 5.3 is founded on the fact that we can not hope to
gain much from spreading one plaintext tuple over many ciphertext bits:

Proof. For Definitions 4.5 and 4.4, we have already delivered schemes that
encrypt tuple-wise and thus allows Chantal to compute empty on ciphertexts.

Note that as long as Murat does not provide Chantal with any queries,
it security of the Hom?-scheme (G, E, E*, D) collapses to the corresponding
security of the underlying data encryption scheme (G, E, D).

Now assume a Hom?-scheme that conceals the size of the plaintext output
in the encrypted output of a computation that is available to Chantal. In
order to process queries in this scheme, either Chantal has to apply some
transformation on the ciphertext to shrink it into the size of the plaintext,
or communication complexity, which is the bottleneck of most distributed
algorithms, is increased. Either way, the complexity of the attack can only
be grown linearly in the communication overhead imposed on Murat for
additional security. This violates the nature of the security definitions, which
requires an exponential increase in attack complexity.

Consequently, the size of the encrypted output that Chantal produces
must be within a (small, if the scheme is to be practical) constant factor of
the size of the plaintext output. So no matter how the bits are distributed
over the ciphertext data, each result will allow Chantal to transform this
distribution into one that is still encrypted, but that is also row-wise. By a
similar argument for the communication complexity, security of the scheme
grows only linearly with the server computation complexity of the scheme,
which (given that in a service provider setting ultimately Murat will have to
pay for the consumed computing resources himself) is unacceptable. Il

In analogy, consider one-way functions, which are used in the theoretical
foundations of cryptography to define concepts like encryption and authenti-
cation (see Section 2.3.5). A (trap-door) one-way function is a function that
can be computed in polynomial time, whereas its inverse can not (unless

136

one has the key to the trap-door). If encryption is a function that can be
proven to be (trap-door) one-way, then the adversary can not compute the
plaintext from the ciphertext in polynomial time (unless she has the key).
This means that if the lower bound on the attack complexity against an en-
cryption scheme is only doubled by doubling the effort of Alex to perform a
round of encryption and decryption, the underlying function is not one-way.

With this result at hand, we can prove Theorem 5.2, or the impossibility
of query-oracle-security:

Proof. Let (G, E, E*, D) be any Hom?-scheme for any subset of relational al-
gebra that allows for a relation R and two queries qq, ¢; such that go(R) = ()
and ¢;(R) # 0. Then, by homomorphicity, Chantal can compute C’ :=
Ei(q:)(R;), and by Lemma 5.3, Chantal can compute empty(C’). The out-
come of this computation is her guess in the attack game, and her winning
probability is 1. O

5.2 Relational Algebra, Code Obfuscation

In this section, we consider Hom?, i.e. full-fledged relational algebra includ-
ing projections, joins, exact select, and negated exact select. We propose a
suitable security model and present two variants of a novel reduction proof
that there is no secure Hom?-scheme in that model.

This does not follow from our insecurity results for Hom=/?. Since Chan-
tal is always aware of the involved language, the two are in fact orthogonal: If
Hom=/ is used, she can make use of the knowledge that only specific plain-
text queries are possible due to the restrictions in the query language, and
thus the ciphertext result can only assume the form of exact selects; if Hom?
is used, there may be a way to exploit the additional structure necessarily
revealed in the encrypted queries as well as relations in order for Chantal to
be able to process a query.

Therefore, the impossibility of secure Hom?-encryption gives us some-
thing new. Those who suggest that the impossibility results for exact select
relational algebra are only due to an over-restricted query language are now
confronted with strong evidence that lifting these restrictions will not help.
In particular, any relaxation beyond the languages used in our proofs of
Theorems 5.4 and 5.5 are ruled out.

Roughly speaking, our argument goes as follows: We can encode a cir-
cuit (a TM) into a relation and construct terms in relational algebra such
that an evaluation of those terms yields the outcome of a run of that circuit
(TM). Now assume there was a homomorphic encryption scheme for rela-
tional algebra, this would allow for a scenario in which Chantal can evaluate

137

an encrypted circuit (TM), obtaining an encrypted output, without learning
anything about the plaintext circuit (TM). In other words: Our implemen-
tation of circuits (TMs) in relational algebra together with the assumed ho-
momorphic encryption scheme yields a code obfuscator O. However, we have
presented a proof from (BGI*01) that such a code obfuscator does not exist
in Section 3.3, so any subset or superset of relational algebra that allows for
our encodings rules out secure homomorphic encryption.

This reduces the search space for existing, feasible, and secure schemes
to languages strictly smaller than Hom? and strictly larger than Hom=/.
The problem space in which solutions can be hoped for is thereby reduced
considerably with respect to the space that is still currently explored.

We will start with two sections treating implementations of circuits and
TMs in relational algebra, respectively. Then, in the third section, we will
derive a reduction of homomorphic encryption of relational algebra to code
obfuscation.

5.2.1 Circuits

We are now establishing the fact that we can encode circuits in relational
algebra. Corollarily, if we have access to a database service provider, we can
have her evaluate circuits for us.

Theorem 5.4. There is a pair of transformations p from n-m circuits to
relations R and p° from circuit inputs x € {0, 1}" to queries Q) such that:

1. Chantal can efficiently compute C(z): For any circuit C, input x, re-
lation R = p(C), and query Q = p°(x), running time of Q(R) is linear
in |C|. the bit string C(x) can be extracted from Q(R) in time linear
m .

2. Q) does not reveal any information about C other than the number of
gates, the number of input bits n, and the number of output bits m.

3. Running time and output size of p, p¢ are linear in the size of C' and x,
Tesp.

Proof. The relation generated by p assumes the following form:

| R | (circuit) | |

X | Int gate number

T | String gate type (one of {in, out, and, or, not})
V' | Bool input bit

I; | Int gate number of input gate 1

Iy | Int gate number of input gate 2

138

Each gate is represented by a pair of rows with gate number X and gate
type T set appropriately. The two rows are identical except that V is 0 in
the first row and 1 in the second. Evaluating a gate does not require any
insertions or updates in the query @Q): Instead, the row with the correct V'
is already there, and o-operations will serve to filter out the row with the
incorrect V' value. The input gate numbers [;, I, point to the gates that
provide it with input bits. They point to random gates wherever they are
not needed. (Otherwise an adversary may be able to distinguish in from and
later in the encryption.)

For example, if gate 319 is an and computing the conjunction of the
output bits of gates 2 and 196, its unevaluated form is

{(319,and, 0,2, 196), (319, and, 1,2, 196)}

This completes the representation of a circuit constructed by p. The
meaning will become clearer while we construct the query that actually loads
it with an input word and runs it. Note that the rows can be sorted using
key X in a way that avoids forward references in I; and Is, since a circuit is
a directed acyclic graph.

Now for the query (). First, we need to load the actual input bits that
are chosen here. Let ¢ = (co,...,c,_1) be the input vector. Then for each
input bit z;, compute

R :=0xzivv=c(R)

This removes all input bit rows that have a value of V' inconsistent with
the actual input.

By the same trick, we then continue evaluating every gate: Consider
evaluation of the ith gate in R, and assume that all previous gates have been
evaluated, i.e. all possible input bits for gate ¢ are available in R. We now
compute a relation R’ from R in which the value of gate i is available, i.e. only
the row with the correct value of V' is left in R'.

We start by constructing three relations R;, Ry and R3 that will be used
to look up the input bits from the references:*

Ry = UX:i,V:lR
Ry := Ry Xp, 1,=rx R
Rs = Ry MR, ,—rx I

!'Notation: When joining two relations R; and Ry, attribute type A; of R; becomes
R.Rj.Ai in R= R1 X R2.

139

In Ry, we isolate the gate that is currently being processed (the condition
arbitrarily discards the one with V' = 0 because we are not going to use R;.V
anywhere). In Ry (Rj3), this row is concatenated with the row representing
the row that provides its output bit as first (second) input bit. R;, Ry and
R3 thus all contain one row only.

Next, this information is attached to each row of R, then it is used on the
current gate for the filtering step. Finally, we project the result back onto
the original attributes of R:

R4I:RNR2NR3

Rs := o(r.x#ivc R4
R = TR+ Is

R5 looks like the update step by which the input bits have been initialized,
except that there is now a condition C'. C'is the core of our construction. It
encodes the truth tables defining the gate types. For gates of type not, C
looks like this:

Chot = (R2. RV =0ARV =1)
V(R2.RV =1ANR.V =0)

For and, two input references must be resolved:

Cond = (Re.R.V =0 A R3.RV =0A RV =0)
V(Ry.RV =0AR3.RV =1 ARV =0)
V(Ry.RV =1AR3.RV =0A RV =0)
V(Ry.RV =1AR3.RV =1ARV =1)

or, and out are treated similarly

Co = (Ro.RV =0AR3.RV =0A RV =0)
V(Ry.RV =0ARs.RV =1ARV =1)
V(Ry.RV =1AR3.RV =0ARV =1)
V(Ry.RV =1AR3.RV =1ARV =1)

Cout = (Re.RV =0 ARV =0)
V(Ry.RV =1ARV =1)

140

Finally all four gate types can be combined with a case switch:

C:=(R.T =and A Cypa)
V(R.T =orACy)
V (R.T =mnot A Cpet)
V (R.T = out A Cyyt)

Let Q; be the query sequence that evaluates gate i and computes R’ from
R. Further, let Qiitialize be the query that computes the table with input
bits all set from the raw uninitialized circuit. Finally, let

Qﬁnalize ‘= OT=out

be the query that isolates the output bits. Finally, let N be the number
of gates of C' (input and output gates included). Then the query

Q = Qﬁnalize o QNfl ©6:-+0 Qn o Qinitialize

Stores an input into the circuit, computes the output, and returns it. Without
any optimization, () creates a constant number of intermediate tables the size
of the original circuit. Therefore, running time of the whole transformation
is quadratic in the the size of the circuit. Output size is linear of Q(R) in
the size of C(x).

In fact, a simple optimization of the functional structure of our construc-
tion yields that running time is linear as well. However, for our reduction
proofs, polynomial complexity is sufficient. O

5.2.2 Turing Machines

We are now doing what to TMs what we just did to circuits. We define one
relation R, for the tape, one R, for the transition graph, and one R, for the
cursor:

’ R, ‘ (transition) ‘
] R, \ (tape) ‘ from | Int] R, \ (cursor) ‘
- read | Bool -
location | Int location | Int
to Int
value Bool } state Int
write | Bool
move | {+1,—1,0}

Before the TM is run, the tape R; is initialized with the input contents.
The cursor R, is set to the start state and start position on the tape.

141

There is one crucial difference between the set of queries that interprets
these three relations as a TM and the analogous set for circuits: Our trick to
start with all possible values on all gates of a circuit and then subsequently
eliminate false values helped us to stay within the purely functional part
of relational algebra. However, with potentially infinite tapes, this does not
work any more. We need to do real updates to both tape and cursor relations
here.

We start with the definition of a few “macros” The first two simply
extract the current state from the cursor relation, and third reads the bit on
the tape currently under the read/write head, and finally, the fourth is for
looking up the transition about to be taken determined by the current state
and tape contents.

LOC(R.) := Tocation(Fc)
STATE(R,) := Tetate(Re)
READ(R,, R;) := Tyalue(TlocationeLoC(R.) (Ft))
TRANS(R., Ry, R,) := Otrom=STATE(R.) A read:READ(RC,Rt)(R_q)

Since relational algebra is purely functional, an update operation is mod-
elled as the construction of a new table from an old one. We use an update
operation that is a little simpler than the one provided by SQL. Ours inserts
a tuple t and removes all tuples with the same values for attribute k. (If &
is a primary key, then at most one row is removed for each insertion.)

UPDATE(R, k,t) := Optm, 1) (R) Ut
The updated table R’ is obtained by function assignment
R' := UPDATE(R,...)
For example:
R., := UPDATE(R,, (location, state), (15, STATE(R,)))

sets the new current location to 15, leaving the pointer to the current state
in the transition graph intact.
Now we can carry out one full state transition:

z := TRANS(R,, R:, R,)

R} := UPDATE(R;, location, (LOC(R,), Twrite()))
R!. := UPDATE(R,, (location, state), (LOC(R,) + Tmove(Z), To()))

142

Algorithm 6: Looping over a TM transition sequence in relational
algebra.

Input: R, Ry, R., R as constructed above

while |R.| > 0 do
x := TRANS(R,, R, Ry);
R; := UPDATE(R;, location, (LOC(R,), Twrite()));
R. := UPDATE(R,, (location, state), (LOC(R.) 4+ Tmove (), Tto()));
Rc -— OstateRs (Ri;)a

Output: R;

There is only one little technicality to be taken care of. The tape of a
TM can be thought of as initialized with in infinite number of 0 bits. Short
of constructing a relation of infinite size, we need to treat a failed lookup
(“this location on the tape has never been visited before”) as a 0 bit. This
can be done by modifying the READ macro. If the tape contains 1, READ*
returns 1, otherwise it returns 0.

READ*(R,., R;) := max(READ(R,, R;) U {0})

Note that this is the only place that requires boolean comparison (or any
other). If there was a way to initialize the tape with enough 0 bits before the
machine is run, our encoding would work with relational and set operations
alone.

How does it all end? If a dedicated stop state is entered, then no further
step is taken, and the current contents of the tape is the output of the TM.
Stop states are listed in a fourth relation that is simply a set:

’ Rs ‘ (St0p> ‘
’ stop__state \ Int ‘

When a stop state has been reached in R., the next state R, is the empty
relation, so as the next current state we simply select all non-stop states from
R.:

RIC/ -— Ostate¢Rs (RIC)

Finally, we need to construct a loop that starts from an initial state and
traverses a sequence of transitions that is either infinite or terminates with a
stop state eventually.

143

Relational algebra lacks the expressive power to express such a loop re-
cursively as one closed expression. Instead, we carry out Algorithm 6. There
are two things to note about this algorithm.

1. Since it assumes the tape has already been loaded with the TMs input,
it is completely independent of that input. Furthermore, since transi-
tion graph, start state and stop state are all encoded in the relations,
it is also independent of any specific TM, and runs on all TMs without
change or calibration.

2. In the next section we are going to face the question whether the algo-
rithm works on encrypted tables, too. To answer it, it is important to
see that there is only one place where the plaintext result of an oper-
ation on the data is needed by the algorithm: The loop condition that
requires R, to be non-empty. All other operations could be encrypted
by Murat in constant time to fit the encrypted data and produce en-
crypted intermediate data and output.

We are now ready to state the analogous to Theorem 5.4.

Theorem 5.5. There is a pair of transformations p from TMs to relations
R and p¢ from TM tape contents x € {0,1}" to queries QQ such that:

1. Chantal can efficiently compute M(z): For any TM M, input x, let
R = p(M), and Q = p°(x). Running time of Q(R) is linear in x.
Algorithm 6 can be used to load the tape with the outcome of M(x)
with polynomial overhead. Algorithm 6 terminates if and only if M (z)
terminates. The contents of the tape can be extracted in time linear in
1ts current size.

2. @ does not reveal any information about M.

3. Running time and oulput size of p, p° are linear in the size of M and
x, resp.

Proof. The second and third item are straightforward. To see why p¢ to-
gether with an empty tape relation R; can replace a loaded R;, return to
the proof of Theorem 5.4 in the last section, where we simply transformed
every record into an insert statement. This can be done in linear time,
as can the inverse operation to produce the desired output in its original
form. That Algorithm 6 is a generic TM interpreter has been established
during its construction above. None of the operations involved that imple-
ment constant-time operations on TMs have super-polynomial complexity.

4

144

5.2.3 Reduction Proofs

Given a secure Hom?-scheme, Chantal can now evaluate encrypted circuits
(or TMs) given encrypted input and producing encrypted output, without
learning anything about what she is doing. This does not establish a code
obfuscator yet, though. Chantal still needs to have the means to feed a
plaintext input of her choice to the circuit and retrieve the plaintext output.
For now, both are safely encrypted and out of her reach.

We tackle this issue by introducing encryption oracles for queries. Chantal
is allowed to choose an input, transform it into a query using p¢, and hand
that query over to the oracle for encryption. Then, she can run the circuit
without further help by Murat.

In this section, we define a reduction of Hom?-schemes to code obfuscators
using such oracles. This directly yields to further proofs for Theorem 5.2,
i.e. that one using circuits and one using TMs that no Hom?-scheme can be
secure in Definition 5.1 (which is equivalent to 5.2). Then we propose two
new security definitions that are restrict the powers of the adversary, and
extend the reduction proofs to those.

We start with two proofs for Theorem 5.2, one based on circuits and one
based on TMs. (Since the two use slightly different subsets of Hom?, they
are both interesting in their own right.)

Proof. We prove Theorem 5.2 using Theorem 5.4. We show that if there is
a Hom?-scheme secure in Definition 5.2, then there is a circuit obfuscator
secure in Definition 3.7.

Assume the existence of a secure Hom?-scheme. By Lemma 5.3, the
encryption of a result alone suffices to decide whether it contains 0 tuples or
more.

We use this assumed scheme in the construction of a circuit obfuscator
according to Theorem 5.4. Murat encrypts his circuit, without input, and
hands it over to Chantal together with the query that will interpret it after it
has been loaded with input. Chantal, with her access to the query encryption
oracle, obtains a suitably encrypted input of her choice and evaluates the
circuit.

Now the result is available in encrypted form. Chantal probes the oracle
with 2|R| more queries (two for each tuple in the encoded circuit):

q2i = OX=i ANT=out A\V=0 (R)

G2it1 = OX=inT=out AV=1(R)

There will be exactly m non-empty results, one for each output gate.
From the queries that have provoked those, Chantal can deduce the output

145

bit sequence. The entire process of recovering the result takes O(|R|) time.
Hence, the obfuscator is efficient, i.e. runs in polynomial time.

Let the obfuscation O(C) := (Ex(p(C)), Ef) be the pair of the encrypted
relation representing the circuit and the query encryption oracle, so for the
obfuscator O we have just constructed, any algorithm A(O(C),...) that
receives such an obfuscation as input can be rewritten as

AP Ei(p(C)), -

(We have not discussed obfuscated code with oracles in Section 3.3, but
the extension is straightforward. For instance, in the proof of Lemma 3.4,
we construct two circuits, and we demonstrate that any obfuscation yields
more information than pure oracle access to the implemented functions. We
allow the obfuscator to output circuits that come with an oracle. But the
argument of the proof, namely that two circuits can be designed to recognize
each other while independent oracle access to both circuits does not allow
for this recognition, would remain valid.)

It remains to be shown that from the security of Hom?-scheme in Defi-
nition 5.1, it follows indeed that our obfuscator satisfies Definition 3.7. Or,
equivalently, that violation of Definition 3.7 by our obfuscator implies viola-
tion of security of the underlying Hom?-scheme.

Assume the obfuscator violates Definition 3.7. The first two conditions of
the definition are met by construction, so it must be the black-box property
that is violated: There must be a circuit C' and a TM A such that for any S:

| PrlA(O(C), 119) = 1] — Pr[SE(1!) = 1] | > neg(|C)

Let R := p(C). By construction, we know that |Ex(R)| = O(|C|). Since
O(C) = (Ex(R), Ef), we have

| PrAPE (B (R), 117:00) = 1] — Pr[sC(11PH)) = 1] | > neg(| Ex(R)])

Note that by padding C' with gates that do not affect the output, we
can obtain a circuit whose size |C| > O(N) is at least linear to the security
parameter. This way, for any negligible function f, we can make sure that
#CI) > £(V)

Finally, observe that no matter how sophisticated the choice of ¢, F{(q)
in itself does not yield any information about R, but only allows to extract
it from Ey(R). Since Ej(R) is unavailable to S, whatever S¥ can do with
1B §C can do as well.

In other words, S€ (117} is strictly better than S (117} in emu-
lating A, and in conclusion we obtain

| Pr [AP (B (R), 15+ P)) = 1] — Pr [$5 (115« = 1] | > neg(N)

146

which is a direct contradiction to Definition 5.1. O

In order to show that if there is a Hom?-scheme secure in Definition 5.1,
then there is a TM obfuscator secure in Definition 3.5, we use the same
argument.

Proof. We prove Theorem 5.2 using Theorem 5.5. We construct a TM ob-
fuscator according to 5.5. Injection of input and extraction of output follows
the same idea as in the circuit case. Algorithm 6 can still be run on the
obfuscated circuit without change: All steps are terms in relational algebra
that translate directly into the encrypted case because Hom? is homomor-
phic. The only exception is the condition |R.| > 0, which can be decided
from knowledge of |Ej(R.)| alone because of Lemma 5.3.

As in the circuit proof above, it merely remains to be shown that from
the resulting obfuscator O violating the black-box property in Definition 3.5,
it follows that the Hom?-scheme violates Definition 5.1: Choose M such that

| Pr{A(O(M), 1) = 1] — Pr[SM (1) = 1]| > neg(|M])

(As before, we know such an M exists, since no obfuscators exist.) Let R :=
p(M). By construction, we know that |Ex(R)| = O(|M]). Since O(M) =
(Ex(R), E}), we have

| Pr[AB (Ey(R), 150]) = 1] — Pr[$Y (1F:0]) = 1] | > neg(| Ew(R)])
and by the same arguments as before, this yields
| Pr | AP (B (R), 15+ = 1] — Pr [$5 (1P = 1] | > neg(N)

which is the same contradiction to Definition 5.1 (only using a slightly dif-
ferent set of operators from the relational algebra). O

So far we have presented new and more complex proofs for what we
already know from Section 5.1. In order to make this result more meaningful,
we can exploit the fact that the attack does not require adaptive access to
the query oracle: Since the algorithm under de-obfuscation attack is chosen
by the adversary, the attacks can be pre-computed as well, and provided as
queries together with the circuit. This suggests a new definition with a less
powerful adversary:

Definition 5.3 ((Non-Adaptive) Semantic Chosen Plaintext Query Secu-
rity for Hom?). A Hom?-scheme (G, E, E*, D) is semantically secure (has
semantic security) in the chosen plaintext query model iff for any plaintext

147

relation R, any sequence of queries q, and any probabilistic polynomial-time
adversarial algorithm A, there is an adversarial PPTM S such that

| Pr |A(ER(R), 1" B (g) = 1] = Pr [SAPP) By (@) = 1] | < neg(N)

where k = G(1V).

Note that the ciphertext containing the query is provided to both algo-
rithms. It does not help the adversary to attack the query encryption E*,
since we are only interested in hiding the data.

By the standard technique used in the proof of Theorem 2.1, non-adaptive
semantic chosen plaintext query Hom?-security can be shown to be equivalent
to Hom“-indistinguishability (Definition 4.4). We will conclude this section
by extending our reductions to code obfuscation to these two security notions.

Theorem 5.6. There is no Hom?-scheme secure in Definition 4.4.

Proof. We prove semantic insecurity (insecurity in Definition 5.3); distin-
guishability follows from the equivalent of the two definitions.

A reduction proof has been carried out above for the case where A has
access to a query encryption oracle. However, the use of this encryption oracle
is unnecessary. The adversary can choose R, ¢ in advance, and so she can
play through the attack against the obfuscator before the game starts. When
she is presented with the obfuscated circuit, she has already pre-encrypted
all the input and output operations that she needs. O

How many proofs for one theorem should there be?

In Chapter 4 we have developed solutions for homomorphic encryption of
databases where the homomorphism property was restricted to exact select
queries. In this Chapter, we have provided evidence that for more complex
query languages, no such results exist in principle. In retrospect, Hom’-
indistinguishability seems to be the most fruitful definition of homomorphic
database security: Equivalent non-homomorphic indistinguishability defi-
nitions have proven to be strong enough to be of practical relevance and
to be accepted by the requirements engineer, and we have shown Hom?-
indistinguishability to be satisfiable for the restricted Hom=/. Above, we
have proven it to be out of reach for a richer subset of relational algebra.

But why have we presented so many different proofs of impossibility?
First, every proof makes use of a slightly different subset of relational algebra
(one based on circuit emulation, one based on TM emulation, and a very
simple one based on the result emptiness operator alone).

148

None of these query languages constitutes a core language for all super-
sets of which impossibility of indistinguishable homomorphic encryption is
established. Instead, it is possible that by making the query language more
complex and query encryption more opaque, the possibilities of what the
encrypted query result might contain multiply, and the adversary gains less
information from analyzing them. Therefore, the use of three proofs using
three different sets of query operations in the attack is instructive.

Second, a vast number of publications exists that propose Hom?-schemes
of one kind, some of them very recent, and many of these solutions fail to
provide a rigorous demonstration of their security for the very reason that
the schemes provide none. By developing different arguments along different
lines, we hope to convince the casual reader that many of the options are
simply unavailable, and to give a better intuition of what might still be
possible. With this thesis, we hope to help the community to save a lot of
futile effort to invent the perpetuum mobile.

Third, the impossibility of code obfuscation is a very deep result with
many side tracks proving impossibility of obfuscation various special sub-
classes of algorithms such as signature schemes, encryption schemes, and
pseudo-random functions. This means that even if the counter-examples we
used to establish our results look highly artificial, for many patterns that
may occur in a concrete database application there are adaptions of our
counter-examples so that these patterns are instantiated, and the impossi-
bility extends to these applications. (This is to deal with a line of reasoning
that we have already debunked in Section 2.3.4, namely that security should
only be necessary for those inputs that actually occur in practice.)

And finally, the connection of two important problems in cryptography
by reduction of one to the other is of theoretical interest. Note that the
reduction of TM-obfuscatability to Hom? (with any subset of relational alge-
bra) is trivial. Databases, like any other system in computer science, can be
implemented on a Turing machine. Hence, assuming suitable security defi-
nitions, by our reduction proof we have established an equivalence between
code obfuscation and homomorphic encryption of relational algebra.

5.3 Open Problems

Despite the class of practicable Hom=/?-schemes we have constructed in the
last Chapter, the question whether homomorphic database encryption has
the potential to ever become commercially viable is still open. We have
approached the question mathematically, and presented various novel proofs
that there are tight bounds for feasibility even on the level of complexity

149

theory. We will conclude this part of the thesis with the discussion of a few
more practical reasons why the problem is so stubbornly resisting elegant
solutions.

5.3.1 Performance

Databases are some of the most demanding applications conceivable in terms
of computing resources. The amounts of data are huge even for modern
hard drives, and systems have to cope with frequent complex changes in the
data. It has become the exception that one user accesses a single private
database. Even e-mail has been integrated in groupware systems in which
many users share their data, which makes sophisticated role user and role
management and access control necessary, further complicating the applica-
tion, and adding to the challenge of getting the system running fast enough.

Certainly the majority of systems is not as extreme in all of these respects
as we picture, but it is a fact that databases in real life require considerable
hardware resources, despite the fact that decades of research have resulted
in algorithms with surprising performance characteristics.

Now when we consider two alternative system designs:

1. The server sits in a trusted realm (e.g., on Murat’s company premises),
and no cryptography is involved in database access beyond protection
of the communication between client and server.

2. Server time is rented from an untrusted service provider run by Chan-
tal, and the application is hardened by the cryptographic machinery
presented in this thesis.

1. has the disadvantages we have discussed in Section 2.1. But being
realistic, we have to worry that 2. may have serious performance issues.

Even the Hom=/?-schemes presented in Chapter 4, although featuring
good complexity characteristics, have a constant overhead, and constant over-
head may already be fatal to our applications, since there simply is no money
for a machine ten times as fast, or with ten times as much storage space, or
both.

And even if there is, or if the numbers are better, there is the question of
how much overhead is caused by the impossibility of optimization. Chantal
deals with encrypted data and has a very limited understanding of what she
does. This is a requirement, and we have struggled hard to satisfy it. But
its down side is that optimization techniques like caching, query planning,
or advanced indexing algorithms have to be re-examined from scratch. In
the end, they may turn out to be considerably less effective. Indexing in

150

particular is only in its infancy for Hom?-schemes (as is the field of Hom“-
schemes itself, to a slightly lesser extent), and the theoretical optimum in
slowdown may be quite significant.

In light of these thoughts, the parameters and interpretations of the exper-
iments to gauge the performance of the often-cited ATE algorithm (HILMO02)
appear overly optimistic. The databases of size 10MB and 100MB can be
held and processed on almost any embedded device. This would arguably be
cheaper than the hardware required to handle the cryptographic and com-
munication overhead.

There may be applications for which the state of the art is suitable, but
it is one of the challenges of the field to point them out. For that, more
research needs to be done in several directions:

e Performance, not complexity: What is the concrete performance on
existing database engines that have been enhanced with homomor-
phic database encryption? How do the different schemes compare, and
where are the bottlenecks?

e Applications: Which benchmarks and parameters are suitable for as-
sessing the utility of new encryption schemes? In other words: What

are the conceived applications the technology is expected to one day
benefit?

People have attempted to look in these directions, and (HILMO02) is one of
the preliminary results. Now, with the cryptographic theory of homomorphic
database encryption developed in this thesis, it may be time for their agenda
again.

5.3.2 Covert Channels and Advanced Cryptanalysis

In Section 3.5, we have briefly mentioned that there are advanced attacks
against secure co-processors that make use of the information gained by ob-
serving the co-processor in operation, such as electro-magnetic radiation, the
precise time it takes the processor to perform a certain operation, or power
consumption.

Similar issues may occur in distributed scenarios where the adversary has
access to part of the networked hosts, observes communication and com-
putations, and deduces confidential information from measuring the wrong
thing.

For example, timing attacks (EH96) can be used to compute the exponent
d from some ¢ and the time it takes some player to compute g¢. The algorithm

151

relies on the fact that exponentiation by d is almost always implemented as
a series of shift operations on ¢ for the individual bits in d, and that the
amount of CPU cycles treatment of one bit of d takes depends on the value
of that bit. This can be used by a malicious agent with sufficient capabilities
to trick a person into revealing her secret RSA key by making her either sign
or decrypt several messages.

The timing information that the adversary makes use of in this example
is called a covert channel. Covert channels have received some attention for
a number of years now, and are generally considered to be exceedingly hard
to detect and eliminate. Covert channels usually involve an eavesdropper on
a connection who uses traffic flow characteristics to infer information about
the contents of a communication.

For instance, the SSH protocol for secure remote Unix shell operation
has suffered an attack recovering passwords typed in by hand to log in on
a remote host. The attack exploits the fact that characters are transmitted
in individual packets, and password characters can be recognized from the
ciphertext stream because they are not echoed. Given enough timing infor-
mation and a machine learning algorithm that predicts locations of keys on
the keyboard from delays between key presses, the password can be recovered
with astonishing accuracy.? Generally speaking, the more complex a proto-
col or application becomes, the higher the risk of covert channels leaking
information about secrets held in some part of the system that is considered
protected.

When a cryptographic algorithm is defined and analyzed, and ultimately
proven secure, the abstract representation of the algorithm is an extreme
simplification of its implementation and run-time characteristics. For exam-
ple, in theory there is no run-time or power-consumption behavior associated
with exponentiation. There is just an atomic operation that has no charac-
teristics besides mapping certain inputs to certain outputs. Only later, when
the provably secure algorithm is implemented, the covert channels emerge,
and operations that are absolutely and positively secure in the research paper
suddenly start leaking secrets.

This is not to say theory is futile. It is a vital first start to establish
a system that is worth being protected against covert channels in the first
place. It just is not enough yet.

Homomorphic encryption for complex languages appears to be particu-
larly vulnerable to covert channels. The adversary has an excessive amount
of information about data, operations, results, has an active part in the
communication, and can often observe automatic responses of the client ap-

2http://www.dailycal.org/sharticle.php?id=19585

http://www.dailycal.org/sharticle.php?id=19585

152

plication in real time. Such an adversary has a huge advantage over a passive
eavesdropper on an encrypted communication channel, so there are likely to
be more holes to plug as well.

Should we elaborate further on this issue then? Unfortunately, the status
quo of homomorphic encryption poses many problems with which we would
have to struggle first. Covert channels change nothing about the fact that
we need rigorous definitions of what we mean when we say we want a system
to be secure. Algorithms that do not deliver to these definitions need not
be protected against attacks based on implementation glitches. And as long
as there are no algorithms in the first place for many of problems, it makes
little sense to protect them. But given that the technology will mature to a
point where it meets its first production systems, it will be essential to keep
in mind that Chantal has excessive control over the application run, and to
think hard about what she can do with it.

Chapter 6

Conclusions

If a database production system is deployed, nobody questions the virtue of
a sound theory of databases that the system is based on. If an insecure net-
work connection is used between client and server for sensitive applications,
reliable encryption and authentication mechanisms are used to protect the
user against attacks. However, solutions for the problem that the database
server itself goes adversarial have so far often been based on much lower stan-
dards: Rather than focusing on robust worst-case scenarios, some (not all)
researchers have been more concerned with minimizing performance overhead
or increasing expressive power of the query language.

This thesis is an effort to change this. We have rigorously approached
the problem from a theoretical angle, and made an attempt to put a problem
that has been generating research publications for several years on a solid
foundation.

Foundations and Definitions

In Chapter 2, we have given an original account of the foundations of cryptog-
raphy that we feel is unique in its emphasis on giving intuitive and motivating
examples. Most of the arguments we elaborate on in great detail are not con-
sidered worth mentioning even in basic cryptographic text books, which has
often led to misunderstanding between the security and the database com-
munity. We have contributed to resolving these problems and given readers
with a strong background in databases a new perspective on security. In
Chapter 8, we will re-apply these foundations to the field of P2P network
security.

In Chapter 3, we have given a survey of the state of the art in homo-
morphic cryptography, with a classification of operator languages and an
extensive enumeration of encryption schemes and security definitions from

153

154

the research literature. We also have covered the context in which research in
homomorphic security is located, and from which we have used results later
to advance it.

In Chapter 4, we have developed new security definitions. The two most
important ones are the good server going bad model that models situations
in which the client knows if the server is to be trusted or not, and can
take action accordingly; and the strictly more powerful (and thus harder to
achieve) Hom?-indistinguishability.

In (KMO04), the question what security proofs can do for practical security
is given some thought on a more philosophical level. Our thesis contributes
a few insights that complement this paper nicely. We have discussed the
full-text encryption scheme Ftsl! that is “provably secure”, and for all we
can tell the proof is sound and complete. Nevertheless, we have found that
a correct implementation may provide very little actual security, since the
notion of security underlying the proof is inadequate. We have strived for
contributing to the search for better security definitions, where better can
mean any of (1) better matching our intuition of what “secure” means; (2)
easier to instantiate; (3) more suitable for disqualifying schemes with poor
security.

We believe we have achieved all three of these goals. At the core of our
collection of new security definitions lies Hom?-indistinguishability, which has
been independently proposed by us (EFG06; EFG07) and others (CGKOO06).
We have used this basic model to span a family of relaxations and restrictions,
which have lead us to a range of insights, both constructive (by inspiring
new solutions) and destructive (by inspiring proofs that other solutions are
impossible). In our analysis of ATE and in an effort to establish a limited,
but reliable level of security, we have developed the notion of d-security that
we hope will be of independent interest for analysis of homomorphic crypto
schemes in the future.

Solutions and Limits

The observation that full-text search and a limited set of database opera-
tions can be mapped into each other has led us to merging two independent
fields of investigation. We have proposed a construction that transforms any
homomorphic encryption scheme for full-text search into a Hom=/?-scheme
for database encryption. Using two exemplary full-text search schemes, we
have obtained two secure solutions for a restricted query language, one of
them with good server going bad security, and one satisfying our core notion
of Hom-indistinguishability.

We also have developed a reduction of PIR schemes to Hom?-schemes.

155

The encrypted query (and in particular the result obtained by it) is often used
by an adversary to derive information about the encrypted data. This has
led us to the insight that if we encrypt the query in a PIR way, i.e. such that
the adversary cannot see what the query does, the data becomes more secure
by extension. We have used this insight to construct a simple Hom?-scheme
for array access from an arbitrary PIR scheme.

Last but not least, we have covered the orthogonal question of data in-
tegrity in the database outsourcing scenario in a few paragraphs as an after-
thought to Chapter 4. Perhaps because it turns out to be so easy to address,
to our knowledge this is the first account of this matter.

There are limits to what can be done. In Chapter 4, we have exposed two
very popular results from related work, namely ATE (HILMO02) and Ftsl!
(SWP00), to extensive scrutiny, uncovering several flaws and inconsistencies.

In Chapter 5, we have provided three independent proofs of impossibility
for two of our stronger security definitions, covering three different subsets of
relational algebra. Since PIR can be reduced to Hom?, this yields a previously
unestablished lower bound for the related problem of private information
retrieval as well.

Also, our reduction of homomorphic encryption to code obfuscation, plus
the trivial reduction of code obfuscation on homomorphic encryption,! yields
equivalence of the two problems. This may be of great value for future
infeasibility proofs.

The field is still very young and the challenges hard. With our new the
assembly and additions to a formal treatment of the field, new constructions
of homomorphic encryption schemes, and an extensive assessment of what
cannot be done, we hope to have given it a small jolt in the right direction.

IIf there is code obfuscation, modify the database engine so that it decrypts all
data from client or database and encrypts all output to client or database with a non-
homomorphic symmetric scheme. The key is stored inside the code, so obfuscation will
keep it safe. Since this engine can be obfuscated, its non-homomorphic symmetric scheme
and key can be used for a database privacy homomorphism.

156

Part 11

Trust and Reputation in P2P
Networks

157

Chapter 7

Introduction

Whenever individuals or organizations, or nodes in a social network, engage
in resource transactions, whether in a file-sharing network, on NYSE, or
in a kibbutz, trust plays a crucial role in the decisions they make. This
is independent of whether the underlying economic rules impose monetary
incentives, rely on altruism or on a general willingness to play by the rules,
or other behavioral drivers. If the nodes do not know each other and change
business partners often, a small number of adversarial nodes can do a lot of
damage to the functioning of the overall system. However, the trust that
is necessary to identify and exclude adversaries is hard to earn because the
only a priori reliable source of information of any node on the behavior of
others is itself. Hence, reputation distribution in form of rumors is common,
if not ubiquitous, in most social and economical systems.

In this part of our thesis, we focus on P2P resource pooling networks as
a large and growing class of distributed information systems. We propose
an abstract network model that keeps track of the cooperation level of the
participating peers (or nodes) that helps to grasp those aspects of rumor-
spreading agent systems relevant for reputation.

This model is based on state-of-the-art cryptographic research and makes
explicit, plausible assumptions on the honesty of the users. Using this model,
we examine a number of methods for reputation tracking using simulations
to obtain comparable utility results.

7.1 Concepts and Outline

The Merriam-Webster Online! defines

thttp://www.m-w.org/

159

http://www.m-w.org/

160

Trust: firm belief in the integrity, ability, effectiveness, or gen-
wineness of someone or something.

Reputation: overall quality as seen or judged by people in general.

We are going to follow a similar slightly more formal notion.

Definition 7.1 (P2P Network, Trust, Reputation). A P2P network (or an
economy) is a graph (V, E) in which the nodes (or vertices) i,j,--- € V are
peers, or individuals, and the edges (i,j), -+ € E are channels of resource
exchange between those nodes. Every node can have both incoming and out-
going edges, i.e.both contribute and consume resources. In a fully connected
P2P network, every node can provide (or consume) resources to (or provided
by) every other node.

Assume (i,j) € E. Then the trust of node i in node j is any real number
7,; € R (at a given time). The higher 7, j, the more trustworthy i considers
J-

The reputation of node j as observed by node i is an aggregation ; ; 1=
fil{me; | kK € V}) (at a given time) for some suitable aggregation function f.

What resources are exchanged strongly varies from application to appli-
cation and is not subject of this general definition (see Section 7.2 for an
incomplete list).

Trust is a subjective concept. Two nodes may disagree on the behavior of
a third node, based on the different experiences they have made. Reputation
is the aggregation over all subjective reputations, and represents the view
on a node of the network as a whole. P2P networks can exist without any
technical notion of trust or reputation. However, the introduction of these
concepts can affect the behavior of the network positively by giving nodes
incentives to cooperate more.

A reputation scheme is a method for computing the reputation of a node j
from (possibly incomplete or inaccurate) trust data on j. A robust reputation
scheme is a necessary condition for effective reputation-based incentives, and
should withstand as wide a range of types of adversarial behavior as possible.
This part of this thesis is about the construction, comparison, and evaluation
of such reputation schemes.

Reputation schemes have been around as long as economics. In the 15th
century, informal trade networks between merchants across Europe estab-
lished a vital backbone of the Hanse (GMW94; Ogi00; Str04; ES06; Thr4l).
These networks provided the infrastructure of simple multilateral reputation
mechanisms, in which a traitor was excluded from trade with anybody in the
network. A traitor is any node, whether market place in a town or individual

161

merchant, that has achieved a negative trust level with any trusted node.
Formally (and slightly simplified),

J—1 if 3k : 75 <0 and there is a path in F from i to k
710 otherwise

The nodes inside one network could trust each other to a large extent, because
belonging to a large network of trust was exceedingly profitable, and that
any member would risk being excluded was unlikely. Hence, these networks
could also be used by others as shortcuts for long-distance transactions which,
because of the security overhead, would have been prohibitively expensive to
carry out between untrusted parties.

A related phenomenon from today’s highly specialized economy is the
computation of reputation by financial analysts such as Standard & Poor’s
or Moody’s that base their judgements neither on personal experience from
previous transactions nor on claimed experience of others, but on objective
rating criteria. However, since these ratings are necessarily incomplete and
noisy, neither personal experience nor rumors have ceased to play an essential
role in most business decisions.

Despite their perseverance and apparent superiority as a basis for decision
making, reputation mechanisms tend to be excessively under-specified and all
subject to the intuition of the individual nodes. Trust values 7; ;, aggregated
reputation values 2; ;, and the rules according to which decisions are derived
from those values have usually been poorly studied, if available at all.

With the rise of distributed file sharing and the notion of P2P networks
(MHST01; SE05), reputation systems have received a more technical treat-
ment. However, an ideal solution in which a new node enters a completely
unknown network and can efficiently and accurately compute whom to trust
clearly does not exist for principal reasons: No matter which rumors are
taken seriously, they might be wrong, so if no further assumptions on the
system can be made, a malicious node can hurt every new node in the net-
work at least once before being effectively excluded from the resource pool.
Since in most cases the network allows new nodes to join at any time, there
will always be somebody to cheat.

All solutions so far proposed have made daring assumptions on the limits
on adversarial power and creativity. Worse, many consistency guarantees
that can be achieved by using recent cryptographic protocols for distributed
computing have not been taken into account. So previous work is often both
too lax and too restrictive. Furthermore, a large number of solutions at-
tempts to achieve game theoretic equilibria (BAS03; OR94), i.e. enforce a
situation in which it is rational for any individual node to cooperate, even

162

if all other players are willing to defect as soon as it gives them an advan-
tage. A large number of successful file P2P networks (see Section 7.2) proves
this assumption wrong, and suggests that game theory, at least in its most
common interpretation, is too pessimistic about the behavior of nodes.

We approach the problem from a different perspective. In Chapter 8, we
extend the cryptographic framework established in Chapter 2 and assemble
a set of building blocks that allows us to enforce as many data consistency
properties on the reputation values stored in a distributed fashion on the
nodes of the network. This yields a basic model that is much more robust
than the ones underlying almost all P2P reputation mechanisms we are aware
of. We review a few selected reputation schemes previously published to
demonstrate this point. In Chapter 9, we abandon the assumption that all
players behave rational and that any situation that is not an equilibrium will
rapidly spiral out of control. Instead, we assume that

1. a fraction of the network sticks with the rules, even if they mean a
limited deviation from the rational behavior (in the game theoretic
sense); and that

2. malicious nodes have a well-defined agenda. In other words, there is a
security definition that explains what it means for an adversarial node
to successfully attack the network.

We then run simulations to examine the impact of the remaining adversar-
ial nodes on the performance of the entire network, and the performance
experienced by the honest nodes in particular. I.e., an attack is not either
successful or not, but it is successful to a certain degree that can be measured
and bounded.

Are reputation schemes relevant? Sometimes, such as in well-established
business contexts that rely more on complex legal devices and informal bond-
ing to enforce good behavior, or in open source software projects where the
feeling of having made a contribution is enough incentive for many partic-
ipants, reputation is not essential to make an economic system work. Al-
ternative to reputation have been considered as well, monetary ones being
the most popular idea (see Section 7.4). But neither constitutes a reason
for not being interested in reputation schemes. Both systems free of explicit
internal incentives and monetary economic systems can benefit from repu-
tation schemes and become more robust against an increase in hostility and
egotism. As long as the computational and communication overhead is ac-
ceptable, this should always be a good reason to built trust and reputation
into a system early on.

163

7.2 Application Scenarios

So far we have left the question of what constitutes a resource very much
in the abstract. This is intentional, as it allows us to model a wide range
of different applications that only have a few crucial properties in common.
Yet in this section, we will motivate our work by listing a number of more or
less concrete applications that can potentially benefit from it. Having these
applications in mind should make it easier to follow the construction of our
model.

Due to the high volume of research and development in this field, our list
has to stay incomplete.

e File sharing. Certainly the most famous application of P2P networks,
despite the legal and ethical controversy it ignited (OGS07). Started
with Napster? by Fanning and Parker in the summer of 1999, it has pro-
duced a confusing abundance of competing protocols, software projects
and products, and companies such as Gnutella?, LimeWire*, BitTor-
rent®, eMule®, KaZaA", and many others.

There has been some controversy in academia as to what constitutes a
resource in these networks. Traditional economics interprets the files
that are shared as electronic goods with similar scarcity properties as
rice or TV sets. This would mean that giving a file to a peer causes
costs. However, files shared in P2P networks often have paradoxical
scarcity properties. As soon as part of a large file is downloaded to a
node, that node starts to upload this part to others. Therefore, the
more often a file is downloaded, the more people are offering parts of
the file, and consequently the easier it becomes available to everybody.
A better way to model the resources pooled in a P2P network is to
consider the bandwidth that is allocated for file transport. This is done
in many practical reputation systems, most prominently in BitTorrent
(see Section 8.4.2).

e Distributed backup and storage systems. In contrast to file sharing
networks, where files are of common interest and downloaded to make
them accessible to new nodes, in P2P backup solutions the participat-
ing nodes give parts of their mass storage space away to other nodes,

’http://www.napster.de
3http://www.gnu.org/philosophy/gnutella.html
‘http://www.limewire.com
Shttp://www.bittorrent.com
Shttp://www.emule-project.net
"http://wuw.kazaa.com

http://www.napster.de
http://www.gnu.org/philosophy/gnutella.html
http://www.limewire.com
http://www.bittorrent.com
http://www.emule-project.net
http://www.kazaa.com

164

and store their own data in turn on those nodes for backup. The data
is usually encrypted, so the only risk involved in this backup strat-
egy is data loss due to unreliable or malicious nodes, not breach of
confidentiality.

Products like Pensamos Magic Mirror Backup® are intended for set-
ting up an intra-office P2P network such that if a small number of
PCs fail, others in the same office have all the data necessary to recon-
struct them. Larger solutions in which the data is stored in other office
buildings, ideally on other continents, are conceivable.

This application is interesting because it is one of the few in which
the valuable resource is not bandwidth, but storage space. This subtly
changes the nature of how reputation is established.

e Grid computing. Grid computing is a related and equally vivid field
of research as P2P networks (FK98; BFH03; LB05). It is hard to find
clear criteria to tell the two concepts apart, but while P2P networks are
usually pictured a loose assembly of nodes that know little about each
other, such as global file sharing networks, grids are more organized. A
typical example is the Enabling Grids for E-Science (EGEE) project?, a
network of over 90 organizations that provides and utilizes resources for
computation-intensive research projects such as the Centre Européenne
pour la Recherche Nucléaire (CERN)!°.

Since the values invested and expected from individual participants in
grids are considerably higher than in P2P networks, monetary incentive
systems or legally binding service level agreements are usually more
attractive, but there may be exceptions or hybrid solutions that trade
reputation for resources like CPU cycles, bandwidth, and storage space
(see Section 7.4).

e Anonymizer networks. Onion routing, or miz networks schemes (Cha81),
are distributed cryptographic algorithms for keeping communication
links in a network secret from an eavesdropper. The message is re-
routed via a path that is (with high probability) hard to observe from
an eavesdropper’s perspective, and encryption ensures that the inter-
cepted communication on different edges on the path through the net-
work can not be linked.

8http://www.pensamos . com/mmb/
http://www.eu-egee.org
Onttp://www.cern.ch

http://www.pensamos.com/mmb/
http://www.eu-egee.org
http://www.cern.ch

165

Assume node ¢ wants to send a message m to node j via routing nodes
ro,71,72. Every node has a key pair for public-key encryption, ¢ en-
crypts m in layers:

¢ = Ey(r1, By (r2, B, (4, Ej(m))))

and sends the result ¢ to 7y, the first node on the route. ry decrypts
the message and obtains

d = (r1, Ev (ra, Ery (7, E;(m))))

so it knows the next recipient is r1, and it forwards ¢ accordingly. 7
repeats the process, decrypts ¢

" = (ry, B, (7, E;(m)))

and forwards the (still encrypted) result ¢’ to ro. ¢ and ¢ are en-
crypted using two different keys. Given there is a large number of
messages going through the network, an eavesdropper who has neither
of the two keys will find it infeasible to link the two to the same commu-
nication link. In some schemes, the nodes accumulate a certain number
of incoming messages, permute them, and forward them in a new ran-
dom order. This prevents timing attacks in which the adversary simply
assumes that messages take a certain time to be processed, and link
incoming and outgoing messages based on the times they are coming
in and out of an observed node.

There are competing adversary models for mix networks, and the so-
lutions depend on which adversary they defend against. If the entire
network is under surveillance by a powerful government, a network with
very few paths of highly trusted nodes that process a large number of
messages is the best solution. On the other hand, if any adversary only
has access to a small fraction of the nodes in the network, a distributed
routing infrastructure in which each client picks random paths that
change every few minutes is more secure.

The former model is assumed in the JAP!! project for web anonymiza-
tion, the latter in the TOR!? TCP anonymizer and the older e-mail
anonymizer Mixminion!3. A large collection of research papers can be
found on the homepage of the FreeHaven project!?.

Uhttp://anon. inf.tu-dresden.de/
2http://tor.eff.org
Bhttp://mixminion.net
Ynttp://freehaven.net

http://anon.inf.tu-dresden.de/
http://tor.eff.org
http://mixminion.net
http://freehaven.net

166

The resources provided by nodes in an anonymization network are
bandwidth, and to a lesser extent CPU cycles (on high-volume nodes,
the cryptography requires a noticeable fraction of the CPU). Another
resource that could be taken into account is trust itself: A node that
has either auditing certificates or a recorded history of good behavior
is more valuable than one that is unknown, or even known to attack
the anonymity of other nodes. However, when designing reputation
schemes for anonymity networks, we face a new obstacle: There is a
conflict between the interest of a node to record its good behavior for
others to trust it, and the interest of other nodes to remain unobserv-
able when routed through that node. The question whether reputation
systems can possibly be used here at all is still open (ADS03).

Messaging systems, groupware, server-less web servers.

Several technologies have been developed and suggested as alterna-
tives to the SMTP protocol (Pos82) underlying our everyday e-mail
communication (KRT03; MHPDO05; SMPDO05). Internet telephony ap-
plications like Skype!® or Gizmo'® often use P2P networks for routing
tasks to enable large networks with low-cost server hardware. Groove
Networks'? is a groupware suite that allows an organization of users
to collaboratively process office documents, e-mail, schedules, and so
forth. It is based on P2P network technology as well, and enforces
simple confidentiality and integrity properties and role-based as well as
user-based access control policies using cryptography.

In principle, every application that is based on a Web server today
could be redesigned to be based on a P2P network and a local client
delivering that network to the same Web Browser-based user interface.
Resources traded in such a network could be any of bandwidth, storage
space with different persistence requirements (ranging from caching
small data packets for a few minutes to integrated backup services for
many months), or processing power.

Recommender systems, friends and business networks.

All the above applications are arguably possible without P2P technol-
ogy. The reasons for choosing a distributed infrastructure are perfor-
mance and scalability considerations and trust. However, if the resource
units that are traded involve human interaction, P2P networks are not

Bhttp://www.skype.net
Yhttp://www.gizmoproject.com
"http://www.groove .net

http://www.skype.net
http://www.gizmoproject.com
http://www.groove.net

167

an alternative to a centralized system, but intrinsic to the application:
Every human becomes a node, whether maintaining her profile on a
centralized server or in a distributed application.

In fact, examples of networks where humans trade their attention, com-
petence, time, and so on can be found on top of decidedly centralized
technical infrastructures. Every large online bookstore allows users to
publish reviews. Automatic recommender systems (SM95) correlate
books that are often purchased by the same users, and suggests new
books that have a high correlation with those purchased before.

Recommender systems can be used for any class of goods, not only
books, music or movies. Adapted to e-mail, they can serve as collab-
orative spam filters (“those e-mails that have been labelled as spam by
many others are likely to be labelled spam by you as well”). Friends
and business networks such as friendster'®, XING!'?, or LinkedIn?’, or
online dating sites could provide recommender systems that decide how
likely two users are to want to get together before they are even aware
of each other.

If experts form groups to author a shared document set (Wikipedia?!)
or to pool their knowledge and answer each others’ questions (Lycos-
1Q??), they need to assess and register the quality of each others’ con-
tributions.

In all these applications, computing and communication resources play
a role to the extent the network infrastructure is P2P. However, note
that many collaborative projects are based on a traditional, centralized
infrastructure and yet form a P2P network on the user level. This
brings other resources with different characteristics into play, such as
high connectivity and strong trust relationships (if a person needs to
be found on XING that can do a consulting job at hand), or user time
(if knowledge is to be shared).

7.3 The Adversary

The goals of the opponent are as diverse as the application scenarios. Some
users might simply oppose the idea of having to contribute their own re-

Bhttp://www.friendster.com
Yhttp://www.xing. com (formerly OpenBC)
Onttps://www.linkedin.com/

Hhttp: //www.wikipedia.org
Znttp://wuw.lycos-iq.de

http://www.friendster.com
http://www.xing.com
https://www.linkedin.com/
http://www.wikipedia.org
http://www.lycos-iq.de

168

sources in order for the network to provide utility for all. This is called free
riding.

If the resources are scarce and free riding is common, resource starvation
may cause the death of the network. Fortunately, there is a simple solution
to it: Make sure free riders starve first, and the network containing only good
contributors will heal quickly.

But how do we decide who is a free rider and who is a contributor? The
problem of free riding can thus be stated as follows:

Preventing free riding: Given a network of peers in which each
peer only knows few other peers (if any), how can we contribute
resources with higher priority to those peers who contribute more?

This is where reputation finds one of its two main applications: If we can
attribute a reputation to each node proportional to its contributions to other
nodes in the network, we can give more to nodes with high reputation, or
give to nodes with high reputation only, and free riders will starve.

One adversarial strategy in a network like this will be to tamper with the
reputation schemes. So the scheme needs to protect against adversaries that
attempt to boost reputation of one or several specific nodes.

But there are malicious users that have other goals than drawing resources
for free. For instance, the editors of Wikipedia?® have to deal with malicious
content on a regular basis that is injected as advertisement for a person, a
company, or a political cause, or simply for purposes of defamation. In file
sharing networks, files containing viruses are distributed by hackers in order
to create bot networks, or movies of poor quality are provided by the content
industry to frustrate users into abandoning downloading copyrighted content
and going to the store to make a traditional purchase. This problem becomes
essential in applications where resources are costly to retrieve, whether be-
cause they are large files downloaded via a narrow channel, or whether there
is an exchange of money at the same time.

Suitable reputation systems can help here, too: If by looking at a node,
or a resource, we can estimate its quality with high accuracy, no adversary
will be able to inject virus-infected files. (In fact, existing anti-virus software
can be viewed as a simple, centralized reputation system: Patterns that are
known to be malevolent are labelled with reputation —1, and all other pat-
terns are implicitly 0. Files that have patterns with negative reputation are
removed from the system, or otherwise contained.) Opinions or content con-
tributions of low quality will be marked as such, and ignored, thus improving
the overall efficiency and effectiveness of the system.

Bhttp://www.wikipedia.org

http://www.wikipedia.org

169

And as before, a node compromising the reputation scheme and illegit-
imately increasing its reputation can render the reputation scheme useless.
In summary, the question is this:

Assessing resource quality: Given a network of peers in which
each peer only knows few other peers (if any), how can we es-
timate the available resource contributors’ reliability levels and
choose a reliable contributor?

These two goals of the adversary, free riding and resource poisoning, are
the motivation for reputation schemes and determine the nature of the secu-
rity notions those schemes have to satisfy.

7.4 Monetary Incentives vs. Reputation

Why are we even considering reputation? Our civilization has made an ex-
cessive amount of experience with monetary incentive systems (i.e., resources
are contributed only in exchange for money) as tools for optimizing resource
allocation. Money has been subject to many theoretical treatments of P2P
networks (BKO02; BAS03; JF05). In practice, attempts have been made to
grow P2P networks that run their own currency (e.g. MojoNation®*). Alter-
natively, one could of course always connecting any national currency to the
system via an Internet banking service such as PayPal?>. Research suggests
even anonymous digital cash is feasible (Cha91) (although so far it requires
a trusted third party as well).

The volatile nature of the Internet makes it crucial for user acceptance to
think about trust. This is the reason why online auction sites, being about
trading goods for money, have made positive experiences with reputation
systems (or feedback systems).

Often the resource in a network does not behave like gas used up by a
car, but rather like radio broadcasts that are available independently of the
number of radios that tune in. In auction feedback schemes, the resource is
node honesty, which clearly does not diminish with higher utilisation. In file
sharing networks, consumption and production are inseparably connected.
Every consumer is also a contributer, and thus the files paradoxically suffer
inverse scarcity, i.e. scarcity decreases with increasing consumption.

In these cases, to pay in exchange for a piece of a good does not provide
the right incentives, if it makes sense at all. What we really want to know

Zhttp://www.mojonation. com
Phttp://www.paypal . com

http://www.mojonation.com
http://www.paypal.com

170

is which nodes act cooperatively, in a much more general and flexible sense
than that its production is high and its consumption is low.

Market-based mechanisms have theoretical limitations (MS83): Finding
optimal prices for both buyers and sellers is at least in NP, even if a trusted
third party is available.

In his case against micropayments (Odl03), Odlyzko argues that Internet
economics will have to exist without ubiquitous inexpensive payment schemes
for small amounts of money for the foreseeable future. As reasons for this
claim he lists the benefits of bundling and flatrates that are established both
in economic theory and by their popularity; wrong incentives justified by
wrong scarcity assumptions and in spite of economies of scale; and the long
time it takes for payment schemes to penetrate society compared to other
technologies.

Reputation schemes do not have these disadvantages. Systems can be
designed to also benefit users poor in reputation. Therefore, they can be
easily erected and dismantled. And utilization of resources can be encouraged
by simply not decreasing reputation for it.

Finally, a more principal aspect is that of control. Reputation owned by
node j is collaboratively controlled by all the surrounding nodes, while money
is controlled by j itself. The latter makes capital and power accumulation
effects, which are undesirable for public welfare, harder to prevent. In our
opinion, this relocation of control over the wealth of an individual into its
economic environment is at the root of all the benefits of reputation over
monetary incentives. Even if this strong claim is not shared by the reader,
it makes for an interesting subject of economic research.

7.5 Game Theory

Economic and social systems that involve interactions of several players and
can have good or bad outcomes for each are often formally described as
games. Game theory (vVNMO07; OR94), initially developed by Morgenstern
and Neumann in 1944, is the mathematical discipline of these games. It is
widely used in economics, but computer science makes use of it in distributed
systems research to a lesser extent as well. In the following it is not strictly
required, but awareness of the basic concepts will help the reader to better
understand some of the related work as well as the rationale behind the
simulation model developed in Chapter 9.

A game consists of n players pg,...,pn_1. Every player p; has a set of
actions A; = {a;,...} to choose from, and a strategy S; : I'; — A;, where
I' is the context knowledge the player’s action is based on. The outcome

171

-3

Coo *
) f

Figure 7.1: The Prisoner’s Dilemma.

of round k is a set O = {aojy, @14, ---,0n-1,, .} of actions chosen by all
players.

In one-round games, I'; = (). Each player chooses an action before the
game starts and once the game starts each player makes her move indepen-
dently of what the other players do. In multi-round games, each player can
learn from the previous outcomes and adapt her own behavior to the social
context: In round k, T'; = (O, . .., Ok).

Each outcome yields a certain wtility U; : O, — R for each player p;.
Utility is a measure of the happiness of the players, and every player is
assumed to act only to maximize its expected utility.

Perhaps the most famous example of a game in this sense is the Prisoner’s
Dilemma (PD). Two players suspected of a bank robbery are interrogated in
separate rooms so that there is no negotiation between them. Each inter-
rogator tells his suspect that there is evidence to convict one of the two,
but it is not clear which one, so he offers the following deal: If py witnesses
against py, but p; does not witness against pg, p; goes to jail for a long time,
while py goes free, and vice versa. If both talk, jail time is still long for both.
If neither talks, both go to jail for a short time.

Figure 7.1 contains the possible combinations of actions (where defection
is the act of witnessing against the other, and cooperation is remaining silent).
In this simple scenario, U; is simply the number of years in jail multiplied
with —1 (highest utility is always best).

Assume py cooperates. Then p; goes to jail for one year if he cooperates
as well, but he goes free if he defects, so in order to maximize utility, he
should defect. On the other hand, if p, defects, the choice is to cooperate
and go to jail for five years, or to defect and go to jail for three years, so the

172

utility-maximizing choice is again defection. This game is symmetrical, so
the choices, outcomes, and utilities are the same for py.

This is where the dilemma becomes apparent: No matter what the other
player does, each player should choose to defect. If there was a way to make
a deal for the two players, both would be better off, but game theory assumes
that each player always maximizes utility for the outcomes in which all other
players do so as well.

This insight is captured by the term Nash Equilibrium. A Nash equilib-
rium (or simply equilibrium) is a set of strategies Sy, ..., S,_1 that no player
has an incentive to deviate from. In a slight abuse of notation:

VS; : Ui(So,...,Sg,...,Sn_l) < Ui(So,...,Si,...,Sn_l)

Any change in strategy would, given all other players keep theirs, re-
duce the individual utility of the deviator. In the PD game described above,
(defect, defect) is an equilibrium, but (cooperate, cooperate), despite its bet-
ter total utility, is not. Either player would be better off when switching
strategy.

Equilibria are closely linked to Pareto optimality. A strategy set So, ...,
S,_1 is Pareto optimal if no change in strategies can improve the total utility
over all players:

VS; Z Ui(So,...,S;,...,Sn_l) S Z Ui<SO,...,Si7...,Sn_1)
i=0..n—1 i=0.n—1

While equilibria are the most likely strategy sets to be witnessed in real
life (as long as the assumption that players always act selfish is not falsified),
Pareto optimality represent the most desirable strategy sets. Games with
a Pareto optimal equilibrium are ones in which selfish play yields outcomes
that are optimal for all players (on average). PD is not such a game.

There is an n-player variant of PD called tragedy of the commons (TC).
It is about a village of shepherds that share a single pasture ground that
can only sustain a maximum number of sheep before it is over-grazed and
all sheep starve. Each shepherd benefits from any other shepherd not over-
grazing, but benefits more from overgrazing himself: The profit from having
sustained more sheep goes to the individual shepherd, while the damage to
the common resource is distributed evenly among all. The formalization of
this game has first been developed in (Har68).

The multi-round case looks better than the single-round case: Now it
makes sense for a single player to play tit-for-tat (always copy the move of
your opponent / some threshold of your opponents, starting with coopera-
tion). If all other players do so as well, total utility will be maximal, while

173

individual outcome will be far from minimal and impossible to improve any
further by defection (because it will make others defect). If not, he will
only loose one round of defection, which is negligible for the total individual
outcome over time.

Note that tit-for-tat does not represent an equilibrium. If all other strate-
gies remain unchanged over time (no player adapts to the other player’s
actions), any player can improve its utility by at least this first round of
defection bonus (if all other players constantly defect), and potentially much
more (if other players cooperate to a certain extent). This is arguably a de-
fect of the theory, and not the world it has been developed to describe. But
on the other hand, tit-for-tat, or other forms of negotiation, require a high
degree of organization. In a P2P network where it is hard to see whether
one is talking to the same player under many different aliases, or to different
players under the same alias, this degree may be out of reach. And if it is,
the PD may turn out to be the most suitable model after all.

Game theory is often criticized for its assumption of the homo economicus,
an unconditionally rational and selfish player. There are countless situations
in which individuals act against their selfish interest, and game theory does
not account for that (unless what looks like acting for the benefit of others is
in fact just optimizing the game’s outcome according to some highly unusual
utility function). P2P applications in particular are a great source of such
examples.

But game theory can be interpreted in at least two different ways. The
first one, that no individual would ever act other than selfish, is not very
plausible. But the second one, that there are certain forces that drive systems
of social and economic interactions into certain stable states, is easier to
believe. That there may be other forces possibly reduces the predictive power
of a game theoretic model (since it only explains a system to a certain extent),
but does not invalidate any of its assumptions.

Game theory and P2P networks

Game theoreticians have tried to design adversary-proof P2P systems, usu-
ally with disappointing results. We now look at two symptomatic examples,
one that attempts a constructive result and one that claims defeat of the P2P
paradigm, and reason that game theory is not suitable because a theoretical
solution is out of reach, just like theoretical solution for secure outsourcing
of database services to an adversarial service provider is impossible. In the
remainder of this thesis, in contrast to what we did in Part I, we will see
that satisfactory solutions do exist in a weaker sense: We do not build a
system that is secure under the game theoretic assumption that everybody

174

always acts selfish, but instead we build what-if machines (RKCGO02) that
allow us to select plausible levels of hostility and then assess the impact on
the performance of a system.

Equilibria. A model of a P2P system based on TC is used in (FLSC04) to
examine several variations over tit-for-tat games. A node decides whether to
cooperate or defect with a given node based on the complete and noise-free
history of previous actions of that node. This essentially assumes a solution
to the problem we are addressing in this part of the thesis since the biggest
challenge in designing reputation systems is that nodes have no way of being
sure which reputation information is signal and which is noise. While this is
a legitimate approach, the P2P networks used here suffer from unnecessary
as well as from implausible assumptions:

1. Tt has untraceability not only of players (IP addresses can change any
time), but also of resources: A resource that reaches a node does not
allow for reliable identification of the sender. As we will see in Chapter
8, this is unnecessarily pessimistic and rules out many obvious incen-
tives. In particular, it does not allow to punish sabotage directly, since
it is impossible to identify the source of malicous communication.

2. As a consequence, adversaries need to be weakened to an extent that
is not very convincing. In particular, the fact that nodes are capable
of lies is considered, but essentially rejected as irrelevant. But while
it is true that both liars and untraceability of defection provide an
insufficient basis for game theoretic equilibria, inconvenience is in turn
an insufficient justification for denouncing a scientific assumption.

PD/TC. In (AHO00), Adar and Huberman try to give empirical evidence
that P2P applications are subject to TC and that free riding is the most
popular strategy. They provide statistics of node responses to different types
of requests in an early version of the Gnutella network (RFI02), and argue
that negative responses are due to defection.

This approach suffers from several flaws ranging from errors in the repre-
sentation of the Gnutella protocol up to misconceptions about the nature of
the application. We only name a few. (1. has been pointed out independently
in (GF03), along with a number of interesting philosophical arguments.)

1. Unrealistic utility function. The authors claim that

. it appears rational for people to download music files
without contributing by making their own files accessible to
other users.

175

However, it is more realistic to assume that upload does not decrease
the utility of a player, but in fact slightly increase it, because the node
that I upload to does not have to download from somewhere else, so
there is a chance that I will get better download performance because
there is one competing client less.

2. IP addresses are used as identity tokens. Most Gnutella clients use
dynamic DSL connections and change their IP every few hours, but at
least once every day. IP addresses are therefore no suitable identity
token for assessing cooperation, especially not if there is no clear dis-
tinction between node unavailability and node defection: A node may
still be available after having obtained a new IP address, but the figures
will mark it as defective.

3. Quer-generalizations. Gnutella is an old system, and one of its many
shortcomings is that it does not have an incentive mechanism. However,
there are systems like BitTorrent that do (see Section 8.4.2). A flaw in
a protocol is not the same as a flaw in any possible protocol serving a
specific purpose.

In Section 9.2.3 we will see how PD-like settings can lead to altruistic
behavior under certain conditions. So not only is it difficult to establish that
an existing P2P applications is subject to prisoner’s dilemma / tragedy of
the commons, but it may be feasible (although very challenging) to design
novel P2P networks for which it can be established that they are immune.

176

Chapter 8

Building Blocks and Related
Work

Integrity of reputation information in distributed, unreliable information sys-
tems poses a few peculiar problems. In this chapter, in analogy to Chapter
2 in Part I, we collect the building blocks to solve these problems.

Some of these building blocks have been well-known for many years, but
some are quite recent, and have therefore enjoyed little consideration in the
design of existing P2P networks. The extensions to the blind signature
schemes in Section 8.1.2 are original results first published in this thesis.

In the first part of this thesis, we have already given a comprehensive
introduction to the field of cryptography. Back then, we were mostly inter-
ested in data confidentiality, whereas now we have to put a stronger empha-
sis on data integrity. Nevertheless, the material presented there remains the
groundwork of what we are going to do in the following, so at this point,
those readers who have skipped Part I may want to have a quick a look at
the material in Section 2.3.

8.1 Identity

In every distributed system, the communicating parties need identities, and
these identities can best be established by cryptographic means. In Part I of
this thesis, we have considered two parties, Murat and Chantal, and based
our considerations on SSL/TLS (DA99) as a solution that is both robust and
readily available in existing I'T systems.

The cryptographic structure of TLS is that of a two-layer (public-key)
digital signature scheme (see Definition 2.21). Both Murat and Chantal have
a pair of private and public key. The own private key is used to sign all

177

178

outgoing data, and the other party’s public key is used to verify all incoming
data.

Since Chantal and Murat have a long-term relationship, we have said
little about key agreement. In the database outsourcing scenario, we can
safely assume that during contract agreement, finding some secure means of
exchange of public keys will not be the biggest obstacle. If no other means
can be found, there are companies that provide this service known as Public-
Key Infrastructure (PKI). A PKI is a network of service providers and parties
holding or verifying keys in which the service providers make sure that all
public keys are held by the organizations and individuals that claim to hold
them. This is done by means of certificates, or documents containing a public
key and the name and address of the key holder. These certificates are in
turn signed by the PKI service providers.

In the case of P2P networks, however, this is infeasible for at least three
reasons:

1. Too expensive. Certificates require manual verification of identity doc-
uments, which results in high fees compared to the expected benefit of
running a P2P application.

2. Too cumbersome. The P2P application software should be able to
run out of the box, without the need to purchase PKI certificates,
submission of other identity documents, etc.

3. Not anonymous. PKI services usually bind the public key to a person’s
or organization’s true identity. However, in many P2P applications this
is neither technically necessary nor desired. There are not only the obvi-
ous reservations of users of file sharing networks regarding legal hazards
caused by intellectual property rights issues. The P2P applications we
are having in mind here cover a far larger class of applications, includ-
ing community portals covering health issues, communication networks
for political activists, online dating networks, and many others. All of
these allow for a legitimate desire of its users to remain anonymous, or
at least pseudonymous.

Therefore, although it may be applicable in some selected applications,
in our work we reject PKI as a solution for equipping P2P applications with
identity. Instead, we impose the following requirements:

1. A user can choose to link several of her actions to each other under an
assumed name, or pseudonym. These links between pseudonym and
actions can be verified by others.

179

2. A user can decide to discard a pseudonym at any time, and create a
new one that can not be linked to the old one.

3. Despite these facts, free riding can be kept low, and lemon (i.e., defec-
tive) resources can be identified before costs arise by consuming them
(see Section 7.3.)

Requirements 1. and 2. are easy to satisfy. All we need is a digital sig-
nature scheme without PKI. Each message that is sent through the network
is signed by the sender, and the network provides some means of looking up
the public key that belongs to the signature of a packet. This can be done
using a subset of TLS. That this is feasible has been demonstrated in many
applications, see e.g. the TOR network that provides TCP-level sender and
recipient anonymity (DMS04).

The challenge consists in the third one, namely that despite the fact that
there are no visible links between actions and users, no adversary can effec-
tively launch any attack against the P2P application that could be prevented
if such links existed. In the following, we give a list of counter measures
against such attacks. But before we can discuss these, we need to talk about
the attacks first.

8.1.1 Forms of Identity Abuse

Pseudonymity implies that nodes are anonymous, i.e. that no pseudonym can
be linked to any other, or to a “true identity” such as a passport number or
residential address. We now present a categorization of attacks made possible
by pseudonymity-preserving identity management.

Dropping unpopular pseudonyms

This is the easiest and most basic form of attack. If a user has established a
reputation as an adversarial peer, she simply drops her present pseudonym
and creates a new one. To all other players, it now appears as if there was
a new user who has done nothing wrong, and the rogue user will have the
opportunity for further misbehavior. An extensive game theoretical analysis
of the effects of this freedom under various assumptions has been delivered
in (FRO1).

To prevent identity drop, one could treat new peers as rogues, waiting
for them to make an effort and convince everybody of their honesty. The
problem with this approach is that new nodes will experience poor quality
of service, which may result in a low acceptance of some new application
and ultimately cause its death. Furthermore, some applications, e.g. the file

180

sharing tool BitTorrent (see Section 8.4.2) would be entirely dysfunctional
if new peers would not be given some credit: If all server peers wait for a
new client peer to provide a piece of a large file that it wants to download
because it does not have it yet, no data will be distributed at all!

In BitTorrent, the problem is solved by setting the absolute lower trust
bound to € for some small € > 0 (where 0 means that the node has no trust at
all and does not deserve cooperation). Every new peer thus obtains for free
a small piece of a file it wants to download, and can use it to start trading
for more. This way, new nodes can gather positive reputation quickly. This
works well for high-performance file sharing, but in other applications, more
advanced protective measures may prove more effective.

Sybil attacks

Instead of creating a new pseudonym each time the old one becomes unpop-
ular, an adversary may also create a huge army of pseudonyms that act in a
concerted attack like they belonged to an equally huge number of indepen-
dent users. The act of a single user (or small group of users) creating such
an army is called a Sybil attack (Dou02). Formally,

Definition 8.1 (Sybil Attack). Let (V, E) be a P2P network (at a certain
point in time). Further, let U be the set of users, and let f :'V — U be
a mapping of nodes to the users that control the nodes (respectively at that

same point in time). Then, a Sybil adversary is a user w € U such that
|f~Y(u)| > 1. The nodes in f~'(u) are called Sybil nodes, or Sybil.

Sybil attacks have become common since file sharing networks are sabo-
taged by the content industry and used to spread malware. If a P2P network
is designed under the assumption that there is a bijective mapping between
users and nodes, an adversary can easily convince the community that a re-
source is highly popular because of its integrity and high quality, whereas
really it is only provided by a single malicious user.

Reputation systems can suffer particularly from Sybil attacks. If an ad-
versary commands a large number of nodes, the effect her claims have on the
reputation of any node is likely to be considerably higher than that of an
honest user (see the next two forms of abuse).

A simple and very popular defense against Sybil adversaries is to use the
address space of the underlying network as a name space for the nodes in the
P2P network. For example, if the P2P network is based on TCP/IP directly,
then each node assumes its [P address as its pseudonymous identity. This
violates the requirements we have listed in the introduction to this chapter
in two ways. First, it does not account for anonymity, since IP addresses can

181

often be mapped to the real identity of a user. Second, this mapping can
be easily corrupted by an adversarial user by launching the attack via a bot
network (see e.g. (LAAAOQG)), rendering the defense ineffective.

In principle, Sybil attacks can only be prevented if the adversary’s re-
sources are bound in some way (Dou02). Just as when considering outsourc-
ing of encrypted databases, there is very little to be done in the model that
we would [ike to use to define our notion security.

However, in P2P networks, we will show that it is much easier to find
models that provide heuristic security that is still acceptable. Recently, an

anonymity-preserving, robust defense against Sybil attacks has been pro-
posed (YKGFO06). We will describe this solution in Section 8.1.4.

False lack of trust and denial of service

Naturally, in any robust and secure reputation system we must assume that
nodes can lie about the events they witnessed. In particular, it is possible that
a node attempts to reduce the reputation of another node by complaining
about its performance. In a tit-for-tat style reputation system that correlates
reputation with service quality, this may result in resource starvation of the
attack target, better known in computer science as denial of service attacks.

The effect of lies is increased if the adversary launches a Sybil attack at
the same time. But it may also be effective if there is a large enough group
of uncoordinated adversarial users. For example, a portal for libertarian
political discussion may be sabotaged by a large number of users under the
command of a fundamentalist religious leader.

False trust

Equally damaging, users can trade undeserved positive reputation. In some
cases, the user has to tolerate some cost for providing resources to others.
This may not be the case in file sharing networks, where upload bandwidth
is free and unused for the most part. But in others, such as distributed
knowledge bases such as Wikipedia,! resource contribution may cause a user
to spend considerable amounts of his spare time doing research and authoring
documents.

If resources are costly, and reputation is linked to the amount of resources
provided to others, there is an incentive to lie about one’s resource contribu-
tions.

Again, a single adversary can do this by launching a Sybil attack first,
and then having her Sybils claim to have received resources from each other.

"http://www.wikipedia.org/

http://www.wikipedia.org/

182

In a minority of applications (Wikipedia being one), resource contribution
is public and can be witnessed by all peers. This makes it harder to establish
false trust. However, if Wikipedia was extended such that expert opinions can
be requested on confidential topics, resources would be delivered from server
peer to client peer in private. This is what happens in file sharing, backup
systems, or social networking applications. In those cases, confidentiality
requirements, but also performance considerations alone, make it hard to
render resource contribution events publicly observable.

8.1.2 Blind Signatures and Trusted Third Parties

To reiterate: Identity is based on a public-key signature scheme. Every user
exclusively owns a private key, and proves possession with the associated
public key. In this way, the actions of a single user can be all associated
with the same public key, and trust relationships can emerge as long as the
owner of the secret key desires it. If he has accumulated bad reputation,
he can choose to drop the identity at virtually no cost, rendering negative
reputation ineffective (FRO1).

Fortunately, there is a simple way to prevent this from happening using
standard cryptography and a trusted third party (TTP). To our knowledge,
it has been proposed first in (FRO1) (but it is very straightforward and may
have been mentioned earlier).

Before we can define the solution, we need another cryptographic building
block derived from signature schemes (see Definition 2.21): Blind signatures
(Cha82).

Definition 8.2 (Blind Signature Scheme). A blind signature scheme is a
tuple (G,S,V,b,b=Y) of five PPTMs for key generation, message signing,
message verification, message blinding, and message unblinding, respectively,
such that

G: 1V =K
b: KX M—-M
bl xS —S
S:{d|(e,d) e L} x M — S
V:{e| (e,d) € K} x M xS — {ok, error}

and such that for all blinding keys k € K, signing keys (e,d) € K, and
messages m € M,
Ve(m, b (Sa(br(m)))) = ok

183

To get an intuitive grasp of what blind signature schemes do, we return to
Murat and Chantal, our protagonists from Part I. Murat now has a message
m, and wants Chantal to sign it. But he does not want her to look at it. If
the two where doing business in the year 1928, Murat could write m on a
sheet of paper, cover it with a sheet of carbon paper, and put the two sheets
in a sealed envelope. Chantal would sign the envelope and hand it back to
Murat without breaking the seal. Murat could retrieve a piece of paper that
states m (in ink) and is signed by Chantal (in carbon), and Chantal would
never know what she signed.

The cryptographic construction is of course slightly different. Murat uses
a function to blind m. The signature function produces a blinded signature
from a blinded message. By unblinding the signature using b=!, Murat ob-
tains a pair of unblinded message and unblinded signature. Verification then
works just as in unblind signature schemes.

To construct a blind signature scheme, we can use RSA again once more
and simply swap encryption and decryption. Let (G, E, D) be RSA encryp-
tion as introduced in Section 3.1.2. Then (G, S, V) is a signature scheme
with

S(n,d)(m) = D(n d) (m) =m
Vine (8) == Ene(s) = s =m™ =m

d cannot be computed from the public key (n,e). Hence, just as decryp-
tion is impossible without d, no valid, verifiable signatures can be created
without d.?

For blinding, we once more exploit the fact RSA is homomorphic with
respect to multiplication:

(rm)¢ = r'm? mod n

Let Murat pick a random number r (such that ged(r,n) = 1), keep it secret
from Chantal, and compute

b.(m) =7°m mod n

Chantal cannot compute m from b.(m). She knows e, but lacks r, so she
needs to compute factors from the product r¢m, which is hard by the RSA
assumption. However, she can blind-sign anything:

s = (r*m)?

2Technically, in order to satisfy our definitions V' would have to accept m, s as argu-
ments and decide whether m = s°. We chose this representation for compactness and
clarity.

184

Algorithm 7: Secure pseudonyms using a T'TP.

Input: A blind signature scheme (G, S, V,b,b™1); a true identity i; a
pseudonym v; a set I of previously served users
Output: A signature s for v; an updated user set [

Murat sends (i, b(v)) to Chantal

if i€ I then
| fail

else
L Chantal computes I := T U1

Chantal sends S(b(v)) to Murat
Murat computes s := b1 (S(b(v)))
return (s, /)

Further, Murat can unblind the signature because he knows r:

bl(s) = (r'm)®-r7t = rmd .7 = m? modn

So without Chantal having seen m, Murat has received a valid RSA signature
for m.

A formal treatment of security of blind signatures can be found in the his-
torical research article (Cha82). Roughly, a blind signature scheme (G, S, V, b,
u) is secure if (G, S, V) is a secure signature scheme and (G, b, u) is a secure
encryption scheme. In an interesting recurrence of the leitmotiv of Part I,
observe that (G, S, V) is homomorphic with respect to (G,b,u).?

Blind signatures have been introduced for untraceable payment schemes
(Cha82; Cha85; Cha92), but have turned out have many other uses as well.
One of them is the one we are interested in: To have a T'TP sign an identity
token for a P2P network without revealing it. Chantal receives a pair of true
identity and blinded pseudonym, and records the true identity as already
served in order to avoid signing multiple signatures for the same user. Murat
can unblind the signature and thereby obtains a certificate by Chantal that
his pseudonym is not Sybil. Algorithm 7 summarizes this procedure. The
condition in Definition 8.2 ensures that the resulting signature is valid.

3Turning this understanding into definitions is complicated by the fact that (G, S, V)
is not necessarily a signature scheme. Without the blinding operations, it may violate the
condition that valid signatures are verified successfully.

185

Extensions

As one of the contributions of this thesis, we propose several extensions and
variations of this basic algorithm. First of all, the user set I need not be
permanent. If a user lost her pseudonym due to carelessness or identity
theft, her demand to have another pseudonym signed would be legitimate.
However, the overall scheme needs to make sure when accounting for this
legitimate requirement that security is not compromised. This can be done
in two ways:

e The signing authority could include a time stamp with the pseudonym
in the signature and thereby expire the pseudonym after a certain
amount of time. This would require all peers to occasionally re-re-
gister for new pseudonyms, but it would both make sure that no two
pseudonyms are ever held by the same person and that pseudonym loss
only causes temporary exclusion from the network.*

e Additional pseudonyms could be signed for a fee that grows exponen-
tially larger with each additional pseudonym. Instead of money, proofs
of work are conceivable as suggested in the next Section.

This idea is inspired by a popular, if rather utopian, approach in spam
prevention: If each e-mail costs an insignificant amount of money, nor-
mal users might be happy to pay while spammers will not see any return
on investment due to the large volumes of ineffective spam mails they
have to send in order to get one hit. Variants of this scheme have
been proposed in which the receiver of an e-mail can decide to send the
money back to the sender if he does not consider it spam.

Alternatively to the hybrid approach in which the first pseudonym is
free and all others are priced based on the track record of the user, a
purely monetary solution could be used and the registry I abandoned
entirely. This would provide better anonymity and require no user data
management on the side of the TTP.

The drawback is that it involves either real money, which complicates
IT systems enormously and comes with a plethora of new security re-
quirements. Alternatively, if no real money but hash cash or captchas
are used, the question of effectiveness has not been agreed on by the
community (see below).

4The former assumes that users do not deliberately give away their pseudonyms to
others who already have one. For more on this, consult Section 8.5.

186

Another extension allows for using the TTP for a number of different
pseudonyms for different purposes. Some applications may account for differ-
ent roles that require different identities held by the same user. Even desktop
operating systems know different users and roles, e.g. “administrator” and
“user”. Further, the TTP could be run by a governmental, administrative,
or profit organization and provide pseudonyms for any P2P network that is
designed to use its service.

Partially blind signature schemes (AF96; MB02; CZL0T7) are schemes for
signing a message (m,m’) such that the signing party learns m, but not
m’. This allows for a TTP that records pairs (i,m) of true identity and
application context, and that issues one unique pseudonym per such pair,
not per identity.

Partially blind signatures also give way to quality of service constructions:
The TTP can let the user decide which payment scheme to use and how
much to pay, and the pseudonym used in the P2P network can then contain
a signed record of the user’s choices. The more a user has paid, the better
he is treated by the other peers. ®

Note that the basic system and all its variants can be used as incremental
extensions of a plain unprotected pseudonym system. They introduce a su-
perior type of pseudonyms, and pseudonyms of this type are more valuable
to the holder because others can see that the trust established with it is more
meaningful. However, there is no reason not to allow for the common, uncer-
tified pseudonyms at the same time, in the same system. The choice whether
to upgrade or not on the one hand, and how to treat ordinary pseudonyms
compared to certified ones on the other, can be left to the user.

A Case against TTPs

TTPs have several disadvantages. Unless carefully designed, they represent
single points of failure, or at least a small number of hot spots, that can be
attacked in order to tear down the entire network. Further, the operation of
TTPs often implies that users need to pay for it (either in terms of consuming
advertisement or in terms of membership fees). This erodes two of the main
benefits of P2P networks.

Failure of a TTP can happen in two ways: It may have down times due
to an attack, or it may be corrupted by an adversary, and participate in an

5If such a record was one-shot, i.e., good for a single transaction only, it could be
considered electronic cash. What we want is a re-usable identity token that gives a certain
level of confidence to the verifier. Electronic cash is more complicated than that and often

reduces anonymity, since it needs to be make sure that no such record is spent more than
once (Cha9l).

187

attack, giving the adversary the power to hand out certificates with contents
of her choice. On the other hand, if the system is fully distributed, its security
can often be based on a majority of honest nodes, so the adversary needs to
corrupt a large number of nodes instead of just one.

While it is still interesting to understand hybrid systems in which certain
high-security tasks such as provision of unique pseudonyms are delegated to
a centralized sub-system, our ideal is a purely distributed network. Luckily,
there are distributed alternative approaches for robust identity management
that only require local a priori trust. In Section 8.1.4, we will describe such
a method to enforce tight bounds on the number of Sybil nodes based on the
assumptions about the number of honest users, not the nodes. Also, future
advances in cryptography and distributed algorithms research may generate
means of removing the need for a TTP from the above schemes altogether.

8.1.3 Hash Cash and Enforcing Exclusivity

A reputation value 2; for some node j of 0 means that the network is unde-
cided on j, or knows nothing about it. Positive {2; means that j has earned
some respect and above-average treatment, and negative {); means that j
has defected in some way and should be punished.

Let us return to the setting without TTP, and consider a different ap-
proach: If 7 can not be punished, because each time its reputation drops
below 0, it simply disappears, and the user creates a new pseudonym, then
an option is to simply punish everybody in advance, at network entry time,
by decreasing reputation of new nodes by an amount corresponding to the
severity of the punishment. This way, a user whose pseudonym j ends up at
0 can still discard 7, but that means it has to take punishment again. There-
fore, users have an incentive to stay in the network even when they enjoy
moderate negative trust, because they are worse off with a new pseudony-
mous identity. See Figure 8.1 for an illustration.

Proofs of Work

Hash cash (Bac02) has been proposed as one such punishment method that
new nodes can take at startup time. As the name suggests, it is a method of
“paying” not with money but with solving a challenge based on hash functions
(see Definition 2.17). The challenge is easy to impose on a new node by the
others and the solution is easy to verify, but it is hard to compute. This way,
with little effort for the nodes already in the network, the new node is forced
to spend computing resources and, more importantly, time, before it is let
in.

188

tine

//

)

Figure 8.1: Proofs of work. With initial reputation 0, identities with nega-
tive reputation are dropped by rational users (a). If the initial reputation is
increased to J, an incentive is imposed on the holder to keep the pseudonym
until its reputation has dropped to —d (b). This makes it possible to punish
rational users by giving them negative reputation.

The hash cash challenge uses the fact that hash functions are hard to
invert: For a given hash function A and output x, brute force search over
all inputs is the best known method to come up with an input y such that
h(y) = x. The challenge consists in finding such a y for any z’ that has a
prefix of length [in common with z. The amount of work can be set by the
challenger by choosing an appropriate [.

Challenges based on other mathematical structures have been consid-
ered, for example factorization of the product of two primes chosen just large
enough to keep the user busy for the desired amount of time, or discrete log-
arithm problems are most popular. In principle, every problem in computer
science that is considered infeasible, but that has an algorithm to efficiently
verify a given solution, can be used. A large number of such problems can

be found in NP (HU00).

In some articles, the outcomes of these challenges are called proof of
work, since their point is that everybody can see that the new node has
accepted its punishment. Among other things, proofs of work have been

used to build incentives for cooperation in P2P routing protocols (BB03;
Buc06; BBvdW06). We will come back to this in Section 8.4.1.

189

Captchas

Proofs of work can be carried out in a P2P network without any human
intervention. In order to solve a challenge, a new node requires system
resources, mostly time, and this alone is hoped to reduce the amount of
one-time pseudonyms created by a single user.

There is a slightly different kind of challenge that does not require com-
puter resources but human interaction. These challenges are Turing tests
(Tur50), or AI problems that are considered hard and can be used to de-
cide whether the agent accepting the challenge is human or machine: If the
challenge is solved correctly, the agent must be human.

These challenges are known as captchas (VABLO4), or Completely Auto-
mated Public Turing Test to Tell Computers and Humans Apart. The most
prominent captchas can be found on e-mail web services to prevent spam
bots from registering new addresses automatically, and often consist of a few
distorted characters that cannot be identified by today’s OCR, software.

In P2P networks, captchas can often be used as generic proof-of-work
schemes. A user that wants to create an army of Sybil nodes has to go
through the manual work of solving many captchas, and might decide to
rather cooperate and obtain the good reputation. Further, it has been sug-
gested to use captchas to prevent access to sites for search engine bots. This
may be desirable in some P2P applications as well. Spam will likely to be a
problem in all data networks of sufficient size and popularity, and captchas
have effectively been used in various ways to reduce the effectiveness of spam
attacks.

Putting it into Perspective

Captchas have one severe weakness: Users are willing to solve them to get
access to services on the Internet. Therefore, an adversary that is dedicated
enough to set up a service (fake or real) can proxy the captchas she receives
from the attack target to this site, and have them solved by her own users.
This can be done automatically, and if the site has a sufficiently high traf-
fic volume, with only insignificant delay. This reduces the applicability of
captchas to low-security situations in which no dedicated adversaries have to
be expected.

When using computer-solvable challenges, there is another, more subtle
problem. The parameters of the challenge have to be chosen such that (a)
the honest verifier (or group thereof) does not need to work too hard to verify
all the challenges that have been solved, and (b) the solver still needs to work
hard enough. These parameters vary between applications and implementa-

190

tions, but this window of useful parameters is arguably empty in the scenario
where each e-mail is only forwarded if the sender presents a proof of work
(LCO04): Either honest users are punished too much, or malicious users are
not punished enough. This is not necessarily true for other applications, but
makes the point that choosing parameters is a tricky business.

This extends to techniques of outsourcing the creation of the proofs of
work from adversarial solvers to unsuspecting third parties. However, solving
hash cash challenges is easier to outsource than solving captchas, since the
adversary only needs to purchase a bot net instead of making humans do his
bidding.

We believe that proofs of work techniques, both those based on compu-
tational and those based on Al problems, are interesting tools. If used with
care, they can amplify the effectiveness of other security precautions without
imposing too much cost on honest users. (Buc06) gives evidence for this
belief and suggests interesting applications.

8.1.4 Graph-Theoretical Approaches

Younger approaches to hardening identities are based on graph theory. They
do not require a TTP, and do not have the problems of proof of work schemes.

In (BKO05), instead of allowing peers to issue their identity tokens indi-
vidually, a distributed PKI is erected that validates identities based on data
derived from the physical location of the assigned peer. This provides a lim-
ited defense against Sybil attacks, but its effectiveness is reduced even by
minor node mobility (such as laptops moving between office, customers, and
an apartment). Worse, it assumes that an adversary controls a small number
of nodes in the network. As long as bot nets are readily available, this is a
major deficiency.

(CF05) goes one level up and proposes a way to limit the damage that
can be done to the reputation scheme by Sybil nodes, without attempting to
limit their number.

As the most recent and one of the most powerful defense known to us,
we discuss SybilGuard in a little more depth in the following (YKGF06).

The Idea. SybilGuard is based on a strong but sparse social network. A
social network is a graph (U®, E®). The nodes represent users of the P2P
network, and edges represent personal, off-line acquaintances. A small frac-
tion of the users in U? is malicious and attempts to launch a Sybil attack in
order to outvote the majority. Assume there is exactly one adversarial node
u* € U® (SybilGuard does not impose this restriction on its applications).

Social networks have certain interesting properties (New(03; NBWOG).
In particular, they tend to contain no or few “small cuts”, i.e. clusters of

191

nodes with many internal edges between each other, but few external edges
connecting them to the rest of the graph.

Let (V, E) be the projection of the social network into a P2P network of
nodes V. If all users in the social network are honest, then (V, E) is isomor-
phic to (U®, E®) (there is a bijection between users and nodes). Therefore,
the nodes span a small world graph just as the users do. On the other hand,
assume u* creates a large number of Sybil nodes V* C V' and creates edges
between them. Since honest users only accept one node key from every ac-
quaintance, the nodes in V* can have only g trust relationships to honest
nodes, where g is the number of acquaintances of u*. Therefore, (V| E) has
a small cut between V* and V' — V*: Honest nodes are acquainted with each
other with a certain density following a uniform pattern, and Sybil nodes
among themselves can model this pattern. But paths from Sybil nodes to
honest nodes all go through a small number g of bottlenecks, so called attack
edges.

SybilGuard is a distributed algorithm that establishes an equivalence re-
lation on a subset of V' of accepted nodes with the following properties:

1. Nodes that are accepted are likely to be honest. Nodes that are not
accepted are likely to be Sybil.

2. The number of equivalence classes containing Sybil nodes is limited by
the number of attack edges g.

3. The size of any equivalence class is limited by a small constant w that
is defined as a system parameter. (For one million nodes, the authors
suggest w = 2000.)

The algorithm assumes the perspective of a node that attempts to fight
Sybil nodes. The equivalence classes differ from node to node (and so do
the few false positives, and therefore no node suffers considerable loss of
quality of service due to probabilistic errors). Nevertheless, the above two
requirements hold for all nodes.

Application. In voting schemes, if the total number of equivalence classes
is more than twice as large as g and all honest users agree on which vote to
cast, a majority vote will always produce the desired result. Such votes
could be called on unambiguous questions, e.g. whether an observable event
has taken place or not. If not all honest users agree, the ratio of honest to
Sybil equivalence classes must be larger.

For instance, in distributed backup applications, if there are at most g
corrupted equivalence classes, it is enough to store g + 1 backups in order
to be able to retrieve at least one later on. (If integrity of the backup is not

192

apparent from an intact copy, it needs to be established by a majority vote,
and the number of copies needs to be 2g + 1.)

In Section 9.2, we will use SybilGuard as a justification for imposing
bounds on the fraction of adversarial nodes in our model. If Sybil attacks
were possible, this assumption could be violated easily.

Equivalence class construction. In a nutshell, a node establishes the
equivalence classes by projecting a random route of onto (U®, E®). A random
route is similar to a random walk, i.e. a path that is initialized by the source,
and extended by every next node choosing an outgoing edge (and thereby
successor node) at random. The difference is that in order to generate a ran-
dom route, a node does not choose edges at random, but based on a random
permutation chosen at system boot time.

Let (V, E°) be the extension of (V, E) that contains all edges along which
communication takes place in the P2P application. Since E° is considerably
larger than E (which is isomorphic to E*), there are a lot of nodes to which
no direct acquaintance has been established. These nodes are called suspects,
and the node that runs the SybilGuard algorithm to establish an equivalence
relation on suspects is called the verifier. In order to do that, the verifier first
contacts all nodes on a random route of length w.® With high probability (see
the remarks on loops and attack routes below), the route contains neither
loops nor attack edges and remains entirely within the set V' — V* of honest
nodes. This means that although the verifier has no control over the other
nodes on the route, he can trust that they will behave according to protocol.
Only attack nodes deviate from that behavior, but no attack nodes will be
reached.

If the verifier wants to determine the equivalence class of some suspect,
it searches for a crossing in the two respective random routes. If a crossing
is found, the nature of random routes imposes a number of useful invariants
on the state of the network (see Figure 8.2).

1. Convergence. Random routes are converging, i.e. two routes that enter
an honest node over the same edge will leave it over the same edge as
well (they are both treated by the same fixed, if random, permutation).

2. Equivalence classes. Let vg,v; € V be two nodes (honest or Sybil).
v, v are said to be equivalent (belong to the same equivalence class)
if vy lies on the random route of vy or vice versa. If vy, v; are suspects,
a verifier v € V — V* decides whether they are equivalent by looking at

SFor redundancy, it may be indicated for a node to have multiple random routes (up
to the number of outgoing edges). We are ignoring this complication and assume a unique
route in the following where not stated otherwise. See the paper for further details.

193

the crossings between their random routes and its own: If v’s random
route is touched in the same node via the same edge by vy, v1, the two
are equivalent.

3. Total number of equivalence classes is d-w. Let ro,..., 71 € V =V~
be the random route of verifier o, and let deg(-) be the node degree (the
social network and therefore (V) F) are undirected and in-degree equals
out-degree). The number of ry’s equivalence classes is 3, ,_1 deg(r;).
In an approximation, assuming equal degree d for all verifiers, the num-
ber of equivalence classes is d - w.

4. Number of Sybil groups is g. An equivalence class that contains Sybil
nodes is called a Sybil group. Because of the convergence property, each
Sybil group requires an edge in the social network between u* and some
honest node u: If two random routes reach the same u # u* over the
same edge, they converge and are considered equivalent by all honest
nodes. Hence the number of Sybil groups is bounded by ¢. (This bound
exploits the assumption that the verifier’s path lies entirely in V' — V*.)

5. Size of equivalence classes is w. The only way for two nodes to fall into
the same equivalence class is to lie on the same random route. Since all
such routes have length w, the size of equivalence classes is bound by
w. As soon as w + 1 Sybil nodes attempt to use the same attack edge
to cross the cut with their “random” routes, the honest node located
at the attack edge knows that something went wrong and its neighbor
must be Sybil. Therefore, this bound holds for both honest and Sybil
equivalence classes.

The authors dedicate a section of their paper to the treatment of dynamic
networks. This is beyond the scope of our models, so we will not discuss this
here. But we have to sketch how certain undesired forms of random routes
can be dealt with.

Loops. It is possible that a random route enters a certain node via a
certain edge twice, with the effect that the route is less then w nodes long.
Luckily, due to the convergence property, any loop must contain the source
of the random route. If the outgoing edge is identical for two places in the
route, then the incoming edge must be, too. By a recursive argument, this
proves that if any node in the route lies on the loop, then so does its source
node. Therefore, loops are both unlikely and easily detectable and can be
avoided by the source choosing an other outgoing edge to start the random
route with. (Also, the only harm that is done by loops is that intersections

194

(<)

Figure 8.2: Random routes in SybilGuard. (a) Convergence: The two
routes a = (1,3,5,6),b = (4,3,5,6) share edge (3,5). If a proceeds to 6, b
cannot proceed to 2; (b) equivalence classes: The equivalence class for node n
and incoming edge (m,n) contains the w last hops on (the infinite extension
of) the random route uniquely determined by (m,n); (¢) maximum number
of Sybil groups: Dashed lines are attack edges. All nodes having a given
attack edge in their “random” route are equivalent.

195

with suspects are becoming less likely. This only reduces quality of service
for some suspects, not the effectiveness of SybilGuard against attacks.)

Attack routes. An attack route is a random route that contains an attack
edge, which implies that it also contains at least one Sybil node. Since
Sybil nodes will deviate from the protocol in any way u* finds beneficial,
this node may then claim to have acquaintances to arbitrarily many sibyl
nodes. Consequently, a verifier using an attack route for verification accepts
a number of Sybil nodes only bound by plausibility considerations. Since
attack edges are very rare, a wise choice of w can help reducing the probability
of this happening. Furthermore, since a verifier usually has more than one
acquaintance to start random routes over, it can replay via several routes,
and use a threshold parameter to decide how many routes need to clear the
suspect for an accept. An accepted node is then assigned an equivalence class
based on some default route.

Implementation. Initially, all nodes forward their random permutations
to their neighbors. If a node “projects” a random route, it contacts all
nodes on that route and exchanges identity tokens based on a public-key
authentication scheme. If a node v € V — V* wants to verify some node
v’ € V, v’ sends the node lists of its routes to v, and v can contact the
node on the crossing to verify whether v” is listed with the route it claims to
be. An honest nodes only allows the projection of a random route through
itself if it is convinced that the route so far is not corrupted (e.g., longer
than w hops to the source, or containing invalid hops). This ensures that all
properties of random routes such as convergence hold even if the source of a
route is under control of the adversary.

8.2 Routing

At the core of every distributed application with dynamic node set lies a
routing algorithm that enables the nodes to find each other and establish
contact. In IP networks, this is done in a relatively static way and with
a considerable amount of manual intervention. Each Internet router needs
to be given rules in form of finite state automata that decide where to find
which classes of IP addresses. In P2P networks, manual intervention is highly
undesirable, and nodes can change location (at least in the IP topology) all
the time, so novel solutions are required.

In this section, we will show that routing in decentralized environments
is practically feasible. We will give examples for routing algorithms from
different categories and compare their strengths and weaknesses. The model
we develop in the next Chapter will abstract away from the routing problem

196

& .
/(\. L _
\\ ,]l‘\\\.

Figure 8.3: Flooding with super nodes.

discussed here. Nevertheless, in order to interpret the results that it produces,
it is necessary to have an idea of the technical realities that lie behind it.

8.2.1 Flooding Strategies

To keep it simple, some applications use broadcast or flooding schemes. Each
node obtains a set of IP addresses before joining the network (from a web
page, hard-wired into the client, or similar), and simply sends every data
packet to all nodes that it knows, hoping that those recipients that are sup-
posed to act upon it will receive it. The Gnutella network is the most popular
representative of this approach. As broadcasts are forwarded from all of v’s
neighbors to all of v’s neighbors’ neighbors, the number of nodes grows ex-
ponentially in the TTL (time to live, or number of forwards before the last
recipient gets impatient and drops the packet).

The simplicity of understanding and implementing broadcast schemes
comes at a cost: Whereas the computation and storage cost for any given
node is O(1) (just maintain a small table of neighbor IPs), the cost of sending
a single packet to a single recipient that is not a direct neighbor of the sender

O(|V]), since in the worst case every node in the network needs to be
contacted before the target node is found. This may lead to the overwhelming
majority of all data packets transported being routing requests rather than
payload. Gnutella suffers greatly from this: According to some studies, 88.8%
of its traffic volume consists of query messages, which leaves less than 12 for
the actual payload (IEPN04).

Furthermore, if it becomes necessary to drop the requests early on in order

197

to avoid network suffocation, fewer and fewer of the theoretically available
resources can actually be found, leading to further decrease in quality of
service.

There are several ideas to make flooding schemes more scalable. One is to
introduce a second layer of super nodes that segment the network (see Figure
8.3). Each super node is responsible for many (sub-)nodes and maintains
routing information for them. Queries only need to be broadcast among super
nodes, but will be sent directly to the sub-nodes that are actually interested.
This reduces intra-segment traffic significantly at the cost of introducing a
weak form of trusted third parties, or central servers.

Semantic routing algorithms adjust routing tables (or edges in the net-
work graph, or the neighboring relation) to suit the communication needs of
the nodes better. If two nodes need to talk more, such schemes try to ensure
a direct link between them (LST05). While this works well on paper, appli-
cations using it need to have highly local traffic patterns. Expert networks
where nodes are humans that bounce ideas off each other may have this prop-
erty: An expert on tropical fish is likely to talk more often to other biologists
rather than to political scientists. However, even in this scenario it may be
desirable to switch disciplinary boundaries, but this is harder than in plain
broadcast networks if semantic routing is effective and edges are lumped
in the local environment. Other applications such as anonymous routing
or distributed backup systems have near-uniform distribution of traffic as a
requirement,” and are not suitable for semantic routing.

8.2.2 Distributed Hash Tables

These deficiencies of the flooding approach have led to advanced routing
algorithms that span suitable data structures over the network that allow for
fast lookup of any node in the network. These data structures are virtually
always based on the notion of a hash table.

A hash table allows for O(1)-time storage and lookup of values under
keys of arbitrary type. The keys are mapped to array indices using a hash
function. These array elements contain sets of values that have constant
size and thus can be searched in constant time. Constant set size of array
elements is ensured by adapting the array length to a growing number of
elements contained in the table.

Other than plain arrays, hash tables do not restrict the application to
dense numeric key types. Keys can have large gaps between them or be

"Backup systems need to minimize probability of content loss, and anonymity networks
need to minimize the observable structure of the (link-encrypted) network traffic.

198

non-numerical, and the good time and space characteristics of arrays still
hold.

The hash function needs to guarantee probabilistic uniform distribution
of its values. This is a necessary (although not sufficient) requirement for
good cryptographic hash functions that were introduced in Section 2.3.5, so
any cryptographic hash function can be used to construct hash tables. See
cf. (CLRS01) for more details on this data structure in the non-distributed
case.

A distributed hash table (DHT) distributes the elements of the array to a
network of nodes such that each node is responsible for maintaining a subset
of the elements. If one of the nodes has a key and wants to look up (or
update, or insert) the corresponding value into the table, it computes the
hash of the key, finds the node responsible for that hash using a distributed
routing algorithm, and sends a query (or update, or insert command) to that
node.

In the non-distributed case, finding the target array element is a matter
of a simple direct memory access operation. In a DHT, this step is replaced
by a routing algorithm that allows each node to maintain partial information
about the network and still construct a route to any node faster than by a
broadcast. Every DHT needs to provide algorithms for

1. establishing the routing tables on each node that (implicitly) assign a
different range of DHT addresses to every node such that the entire
DHT address space is distributed among all participating nodes;®

2. forwarding a packet with given DHT address to the neighbor closest
to the target node (The DHT itself is not concerned with whether
this packet contains a write or read operation or something else — the
payload is processed on the higher architectural levels);

3. and adapting routing structure to cope with joining and leaving nodes.

We will now look at two example DHTs that differ in their structure and
performance characteristics. Many more could be listed and studied here,
but are left unmentioned instead since they do not contribute greatly to our
agenda.

8This step can often be ignored in the introduction of a DHT because it follows from 3.
below: Initially, the network consists of one node that covers the entire network. Network
build up is done incrementally from there, following the rules for node joins.

199

CAN

The first distributed hash table that carried this name was the content-
addressable network (CAN) (RFH'01). The address space of CAN is a d-
dimensional torus of size [0,1] X - -+ x [0,1].” Each node allocates a (hyper-
)square and registers size and location of all neighboring squares, together
with the IP address of the responsible node. Two squares are neighbors if
they fully or partially overlap in all but one dimension. Keys are hashed
to points on the surface of the torus. We call the torus fully partitioned if
exactly one node is responsible for any possible key.

Routing. Routing is localized, but approximates the shortest straight line
from source to target (see Figure 8.4): For a given packet with DHT address
x, a node forwards among its neighbors to the one whose address range is
closest to x. If that neighbor’s range actually contains x, the packet has
reached its target. If it does not, that neighbor re-iterates. If that neighbor
is unavailable, localized flooding is used until a node is reached that is closer
to x than the last sender, and forwarding along the shortest straight line to
x is resumed.

Maintenance. If a new node enters the network, it contacts an arbitrary
node and asks that node to send a join request to a node that is chosen uni-
formly at random. (This double-step approach prevents clustering of nodes
around the neighborhood of bootstrapping nodes.) The node that receives
the join request splits its area up in two halfs and hands one over to the new
node, updating both its own and the new node’s routing table appropriately.

Node exit is a little more complicated. If a node leaves, it may be impossi-
ble to combine the abandoned area with a neighboring area into a rectangle,
because along no dimension the overlap is total (black area in Figure 8.4).
In this case, a neighboring node must take up maintaining two areas for a
while, which complicates routing table maintenance.

CAN has problems with spontaneous node failures. If too many nodes
in one place fail, the remaining neighbors’ negotiation algorithm can under
certain circumstances lead to inconsistent routing tables. To avoid this, ad-
ditional repair algorithms need to be put in place that are explained in detail

in (RFHT01).
Chord

Chord imposes a much simpler circular structure on the network (SMK*01).
When using hash function H with domain {0, 1}", the nodes are arranged in

9A 2-dimensional torus is merely a rectangle with top and bottom edge touching and
left and right edge touching, like a Pac-Man world.

200

0.%

0.5 If«..

2.%F

\
0 ox os

Figure 8.4: The distributed hash table CAN.

a routing circle (increasing clock-wise). All computations are done modulo
2™ ie. 0 is the successor of 2™ — 1. A node i assumes position H (i) on
that circle. If j is i’s counter-clockwise neighbor, i.e. H(j) < H(i), then i is
responsible for all keys x such that H(j) < x < H (i) (see Figure 8.5b).

If a new node k enters the network, it assumes its position on the circle
according to H as any other node and takes over its partition of the key space
from its successor (see Figure 8.6). If k leaves, i takes over k’s partition.

Routing. Each node maintains a routing table with entries consisting of
key H(-) and IP address for a direct communication link. This table has
two parts: The neighbor table with one pointer each to its direct successor
and predecessor, and the finger table with shortcuts to distant nodes. The
constant-size first part would be sufficient to find the responsible node for
any given key by hopping along the circle in at most |V| steps of length 1.
Only this is no better than flooding.

Therefore, in the finger table each node ¢ maintains a list of nodes whose
distance from ¢ grows exponentially that can be used as shortcuts. To im-
prove on the direct successor succ(H (i) + 1) from the neighbor table, the
finger table contains the nodes

201

succ(H (i) + 2'
succ(H (i) + 2?

~— —r

succ(H (i) + 2™

This results in a finger table of size O(log |V]) (see Figure 8.7).

If ¢ wants to contact the node succ(H (q)) responsible for storing the value
of some key ¢, it looks up the node j in the finger table that directly precedes
H(q). If j’s successor succ(H(j) + 1) is responsible for ¢, j sends i the IP
address of succ(H(j) + 1). Otherwise, j consults its finger table, and the
algorithm is re-iterated.

This routing table is not only small, but it also guarantees a bound of
O(log |V']) on the length of routing paths. To see why, note that every step
of length, say, 2 is chosen maximal. Since it is not of length 2°!, the next
step cannot be 2” (which would reach the same target node, only with one
superfluous intermediate step), but must be shorter. Hence, each step is
shorter than the last one. Since there are only m possible choices in a finger
table and the relative distances are the same for all nodes, the route must
reach the target after at most m = log|V/| steps.

Maintenance. For an entering node k to take over its partition, it must
initialize its routing table and update the routing tables of existing nodes in
accordance with its new presence. For finding its own neighbors, it merely
needs to run a lookup on H(k), and ask the answering node (say, i) for its
predecessor (say, j; see Figure 8.6 again). j,k,¢ all update their neighbor
tables to represent the new situation, and all other neighbor tables are still
valid. To initialize its finger table, £ can use a simple trick: Because the
relative distances of the nodes in the finger table are the same for every
node, each node to be found and included in £’s finger table is very close to
the corresponding node in j’s finger table. So k£ merely needs to ask j for its
fingers and do a local search of constant cost for each. This takes O(log |V]).

In order to find out which nodes need notification to replace i by k in their
finger tables, k needs to route backwards: Iff the node preceding H (k) — 2V
contains ¢ in entry 2Y, it needs to be updated. The straight-forward way
to do this would do log |V| many updates that take time in O(log|V|) each,
resulting in a total time of O(log® |V|). However, there is a non-trivial scheme
to do it in total time in O(log [V'|). A variant of this scheme can also handle
concurrent node failures.

Note that strong variance in node or query target density would kill per-
formance. For Chord to work as described here it is crucial that both nodes

202

1n.... ou
o D

()

©

Figure 8.5: The distributed hash table Chord (1). The nodes assume po-
sitions on a circle of all hash values. Each node answers to queries sent to
keys in the interval between his own and his predecessor’s.

and queries are uniformly distributed. This is ensured even for non-uniformly
distributed node or target names by using a cryptographic hash table.

8.2.3 Discussion

Which data structure is the best heavily depends on the structure of the
application in question. The flooding approach was used in earlier stages
of the development of purely distributed P2P networks, since its theory as
well as its realization is much simpler than that of DHTs. Flooding performs
relatively well on small networks, or if nodes are very unreliable and the
network is in heavy motion, with nodes joining and leaving and changing
their name all the time.'® DHTs need to update routing tables and propagate
these updates for every change in topology, and the overhead caused by
this in computation and communication can exceed the benefits of higher
routing performance. Furthermore, routing performance may be impossible
to maintain if updates are slower than the actual changes in the network and
routing tables are constantly out of date.

However, the benefits of DHTs are so high that most applications are
likely to be better off with one. Although flooding imposes no restrictions
on the queries sent and thus appears more suitable for complex application
protocols, it turns out that with a little care, most common applications

10Changing names is not necessarily an attack: In Gnutella, IP addresses are used as
identifiers. If a node connected via a DSL modem gets cut off, it will lose its dynamically
assigned IP address and is forced to re-enter with a new identity.

203

Figure 8.6: The distributed hash table Chord (2). If a new node k joins the
network, its successor’s range is cut into two, and k assumes responsibility
for its part.

LX)

Figure 8.7: The distributed hash table Chord (3). Routing takes place
along the finger table entries to ensure logarithmic routing path length.

204

can be implemented on DHT as well. For example, full-text or database
search queries are conceivable in DHTs if appropriate index structures are
maintained. To give a very simple example, document tagging can be im-
plemented in a DHT as follows: A tag is a document containing the keys of
all documents matching that tag. In order to tag a document, lookup the
document representing the tag in the DHT, and append the key to the new
document to it. In order to retrieve all documents matching a tag, retrieve
the tag first, and then all the documents whose keys are stored in it.

The differences between the two approaches boil down to a shift of some
of the work from the point in time when a node actually sends out its first
request (this is where flooding starts causing costs by exponential increase
in messages) to the point where a node enters the network (this is where a
DHT is expensive by establishing the node’s routing table). If nodes stay
in the network sufficiently long, DHTs can be used with benefit. Hybrid
approaches are conceivable, but we are not aware of any considerable work in
this direction. Given the potentially enormous overhead of both approaches
and the worst-case duplication in effort if a flooding algorithm and a DHT
are used in parallel, this should be an interesting line of applied research.

As to the question of which DHT to use: It is hard to look at a distributed
algorithm and have an intuition of how expensive it is under a given set
of system parameters without extended experimentation. And it is more
difficult to establish realistic parameters without seeing an application in
wide spread use.

CAN seems to suffer from overly long routing tables that are therefore
expensive to keep up to date. The bound on routing path length is v/ N, which
outperforms flooding in terms of complexity, but at the a relatively high cost:
First of all, the constants in the complexity class are much higher than in
straightforward flooding, and second, d constantly needs to be adapted to
changing N for optimal results, but large d causes the number of neighbors
to explode, which again is bad for performance.

Chord has a much simpler design with fewer rules and exceptions. Path
lengths are bounded by log N steps, at a routing table size of log N. Log-
arithmic path length is usually better in practice than polynomial already
for small network sizes, but some applications may turn out to be excep-
tions to this rule of thumb. Other distributed routing algorithms, e.g. Pastry
(RDO01), Tapestry (ZHS*04), MadPastry (ZS05), or Kademlia (MMO02), are
competing with the options outlined above.

Our concern has been to establish that solutions for the problem of routing
in decentralized environments do exist. Our focus on reputation allows us
to abstract away from any particular solution in the following, and leave
selection of the proper algorithm to others.

205

8.3 Deletion-Proof Data Structures

If reputation information is stored in a distributed datastructure on untrusted
nodes that have a direct, selfish interest in this information, several things
can go wrong:

1. A node may have not received a message for storage, but present a
forged one claiming to have received it. This way, good reputation can
be generated without transactions ever having taken place that would
justify it.

2. A node may change a message that it has received. Say, it could change
a claim that a transaction went wrong into the claim that the same
transaction went well.

3. A node may drop messages received for storage. This is a convenient
strategy to get rid of bad reputation.!!

1. and 2. can be prevented by message authentication and signature
schemes, depending on the application scenario. (In applications where only
the node that submitted a message for storage needs to verify its authenticity,
symmetric key management and message authentication is enough; in repu-
tation systems, every node needs to be able to verify what any other node
has stored, and thus a public-key signature scheme is likely to be necessary.
Both are practicable and require little treatment beyond what has already
been said in Chapter 2.)

Countering 3. is more challenging: If node 7 sends a message m to node
j (and forgets about the process, since keeping track of all transactions for
later verification is as costly as the transactions themselves), but j drops
the message plus signature, signature schemes are useless. j claims to never
have received m, which is consistent with there being no signature in the first
place.

Reputation systems are highly vulnerable to such erasure attacks: If a
number of nodes cooperate to drop (or erase) all negative reports on their
behavior, their reputation will increase significantly. Clearly, we need a trick
to make this impossible, or at least easy to detect and punish.

The simplest solutions is to fall back to a trusted third party. TTPs do
not act against the protocol, so no information that is ever stored there in

1 Similarly, if a message is deleted by the author, the node may keep it and pretend it is
still valid. In reputation schemes, we assume that messages are permanent and are never
deleted, so we ignore this attack. If occurring, it can be addressed using the methods
effective against message drop.

206

the first place will ever be lost. However, we have rejected TTPs in Section
8.1.2 as a last resort, and would like to find something that works in a pure
P2P network.

There is a class of signature schemes for creating undeniable signatures
(CA89), but they require online interaction with the signer during the ver-
ification process. Alternatively, each message could be stored on the node
that created it, basing consistency of the available information solely on the
originator of the information. However, in both cases, whenever some ¢ wants
to compute the reputation of j, every k who knows some j needs to be online
and be available for communication. Node availability is even harder to guar-
antee than node cooperation. Therefore, we are rejecting these approaches
as infeasible.

The next-best solution is to choose a finite set M of messages, and register
all messages on every node: Both those messages to be stored and, in a
different way, those not to be stored. An enumeration function that maps M
to N and a bit array could be used for that. If m is to be stored on j, the
bit under the index representing m in the array on j is set to 1. Otherwise,
it is set to 0. Signatures can be used to enforce integrity of the array. Since
the array makes an explicit claim about whether a message is there or not,
if node j drops a message, any other node can detect this by verifying the
array signature.

The array is called a state credential, and it can used as a replacement
for individual message signatures. Its advantage over individual message
signatures is that it not only allows to verify integrity of existing messages,
but also claims of absence of messages.

The idea of using a bit array ranging over the entire message space is of
theoretical interest. For most message domains, it is prohibitively expensive.
But it is the idea underlying a number of more sophisticated schemes that
are practicable and provide the same consistency guarantees. In order to
develop them, observe that the array is usually extremely sparse. Using
hash functions (see Definition 2.17), we can easily develop very compact
state credentials: Given a hash function h and signature scheme (G, S, V),
the state credential for message set M C M is

¢ = S(h(M))

However, if a node claims that m & M, the verifying node still needs to down-
load M, ¢, check that m ¢ M by hand, and then check that V(h(M),c) =
true. Further, each time a new message is added to M, M has to be down-
loaded in order to create a new state credential. So the challenge consists
in finding a state credential scheme that allows for efficient verification and
incremental update.

207

ﬁ‘n,) ((u,) l(&,) L(A,)

\/
QM) LERIILE)

N/

c:l (..ﬂ)

Figure 8.8: Merkle hash trees.

A scheme that allows for incremental update has been proposed in (Mer80)
(see Figure 8.8). It sorts M C M, and computes individual hashes for every
m; € M (starting with a hash for the empty database, since if there are no
messages at all we need proof for that, too), and then constructs a binary tree
with those hashes as its leaves. Assume for a moment the number of messages
is always a power of 2. Then the hash tree H has depth [:= [log,(|M])]
and is constructed bottom-up, and the credential ¢ = H(1, 1) is the root of
the tree. Assume for a moment that |M| is a power of 2. Then the H is
constructed recursively as follows:

H(l,i) = h(m;)¥i € 1..2"
H(j,i)=h(H(+1,2i) || H(Gj+1,2i + 1))Vj € 1..l, i € 1.2/

If | M| is not a power of 2, a bigger number of roots needs to be maintained
instead of the single root H(1,1) (the idea should get clear from Figure 8.9
much easier than from the more complex algebraic definition, so we omit
the latter). Each time a message is added to M, at most [nodes need to
be reconstructed, and thus at most [hashes signed in order to compute an
updated state credential.

To confirm set membership for m € M, node j presents all pairs of
hashes from leaf m to the root, together with the root signature (created by
some other node i who feeds M with messages). If (a) the root signature
matches and (b) all pairs of hashes are consistent with the hash on the next
level, then m € M indeed. Since the tree is binary, this makes for logarithmic
communication complexity. On the other hand, if m & M it is still necessary
to completely retrieve M and re-compute the state credential, just as in the
naive approach described above.

In (Bau04), a scheme is presented that has both efficient update and
verification, and provides protection against all four attacks listed in the

208

L) Le) L) Lisy)

<
<<

L(c-.,) '-(t,) () L(l.’) 'l(k,) L(&.‘)

Figure 8.9: Extending Merkle trees.

209

beginning of this section. The state credentials created by this scheme are
called keyed hash trees.'?

As a Merkle tree, a keyed hash tree is a binary tree, but it is not con-
structed based on the ordered sequence of elements of M, but on the elements
themselves. In fact, it is much closer to our original array construction, with
three important differences: (1) Instead of storing messages directly, it stores
their hashes; (2) instead of an array, the binary search tree is used to find
the 1s and Os that signify presence or absence of m, respectively; (3) it comes
with a representation linear in size to M.

As an ordinary binary search tree, to decide whether a given message m
is present or absent, we construct a path through the tree based on the bits
in h(m) as sketched in Figure 8.10: For each 0, make a left, and for each 1,
make a right, until a leaf is reached. If the leaf is 1, m is present, otherwise
it is absent. Update works analogously: Find the leaf corresponding to h(m)
for a newly inserted m, and flip its value from 0 to 1.

Similar to Merkle trees, the node values are computed incrementally as
follows: Each leaf contains the presence bit for the corresponding (hash of)
message m. Each internal node assumes the hash of the concatenation of the
hashes of its two children. The (signed) root of the keyed hash tree is the
state credential.

Assume node j maintains some set M of messages and node ¢ wants to
know whether m € M for some m. If m € M, then j presents pairs of
signatures as in a Merkle tree. But in keyed hash trees, this is also true if
m & M. The difference is that we end up at an “empty” leaf, not at a “full”
one.

For hash values of 160 bits (which is rather common), this tree has depth
160 and 2'%° leaves. Storage of keyed hash trees only is practical because
there is a compact representation for the vast regions of the tree that only
have empty leaves.

Let H* be a keyed hash tree (as in the description of Merkle trees above
represented as the function mapping nodes to their values). An empty subtree
is a sub-tree of H* that has only empty leaves. A maximum empty sub-tree
is an empty sub-tree whose sibling is not empty. Note that empty sub-trees
of the same depth all are identical: All leaf values are h(0), all values of leaf
parents are h(h(0) || 2(0)), and so on. Further, note that if a path points into

12(Bau04) solves the slightly more general problem of finite maps from arbitrary keys
to arbitrary values. Our application is the special case where keys are our messages and
values are set membership bits. Independently of (Bau04), (MRKO03) proposes a very
similar data structure for a signature scheme that has far stronger security properties. In
particular, it allows for verification of claims of the form m ¢ M while keeping all other
information on M secret from the verifier.

210

R
YA NG XA NS XS NA Y N
Y

Figure 8.10: Keyed hash trees for |h(-)| = 4. Initially for M = (), all leaves
are 0. To insert some new m with h(m) = 0110, set leaf * to 1.

an empty sub-tree, there is no need to know at which leaf it ends. The hash
of the root of that empty sub-tree and the pairs of hashes up to the root of
HP* alone allow for verification of a state credential: If all hashes add up, the
root is a proof that m ¢ M.

Note that since empty sub-trees are not stored explicitly and thus their
internal node values are unavailable for look-up, this requires every verifying
node to maintain a table of |A(-)| pre-computed hash values — one for each
possible size, and thus root node value, of an empty sub-tree. This imposes
a memory overhead logarithmic in the length of the output of h on every
node, which can be considered a small constant.

Finally, h is collision resistant. Modifying any one sub-tree or flipping
any two sub-trees always yields a new root value:

Va # b : ha) # h(b) N h(al[b) # h(b]|a)

Therefore, keyed hash trees are secure against the three attacks described in
the beginning of this section.

8.4 Reputation

To conclude this Chapter, we have a quick glimpse at three reputation
schemes previously proposed.

8.4.1 CAN with Feedback

In (BB03; BBvdW06; Buc06), an extension to CAN is proposed that main-
tains and spreads track records of the behavior of neighboring nodes.

211

Gathering feedback. A node obtains feedback information by (1) direct
experience in routing service quality, by (2) collecting proofs of work, and by
(3) participating in rumor spreading.

(1) A node that performs a packet forward according to protocol instead
of silently dropping the packet gains reputation.

(2) New nodes that have not had a chance to gather any reputation can
be forced to present proofs of work (see Section 8.1.3). This is meant
to disencourage identity replacement by lazy nodes.

(3) Incoming rumors on neighbors are cached for a certain amount of time
and then flushed to make room for newer feedback. There are a num-
ber of caching rules, such as discarding feedback from untrusted nodes
immediately, and replacing old feedback if an update from the same
node on the same node arrives.

Making use of it. There are two ways in which a node’s reputation
level affects its experience of the network. First, packets from nodes with
high reputation are forwarded with higher priority than packets from low-
reputation nodes. The latter may in fact be asked to perform a proof of work,
which in many applications may render the data to be sent obsolete before it
can be done. Second, in order to increase expected quality of service, nodes
with low reputation are avoided by the routing protocol.

Properties. CAN with feedback discriminates between cooperative and
defective nodes such that the cost for defective nodes to obtain the same level
of service quality is higher than that for cooperative nodes. Furthermore,
since this affects node behavior and reduces the number of defects as nodes
learn that cooperation leads to better results, overall performance increases.
This has been demonstrated both in an analytical model and with simulations
on networks of robot nodes (BBvdW06).

The semantics of reputation is complicated, since it both involves aspects
of service quality and truthful reputation propagation. This leads to the dan-
gerous assumption that a cooperative node will never lie. But it is possible
that lying while cooperating yields better results than both telling the truth
while defecting and telling the truth while cooperating. If this was the case,
the majority of lazy nodes would choose to lie and cooperate, rendering the
assumption faulty.

A more tricky incentive issue that is very hard to avoid evolves around the
question of how to act on reputation. If a node chooses to burden popular
cooperative nodes with more work, there is an incentive to achieve a low
reputation. This can only be helped by assuming that cooperative nodes

212

g
<
=
P
|

ecdl

Figure 8.11: The BitTorrent architecture.

cooperate out of their intrinsic non-economic motivation. (Fortunately, this
assumption finds ample support in the real world.)

A minor defect of CAN with feedback is that it relies on proofs of work,
which decrease total benefit of a network by artificially increasing the amount
of necessary effort. This reiterates the discussion in Section 8.1.3.

Finally, we have reasoned that CAN is not the most efficient DHT avail-
able today, so it would be nice to have adaptations of the CAN feedback
scheme to arbitrary DHTs. It turns out this is feasible and has in fact been
done (Buc06).

8.4.2 BitTorrent

BitTorrent was born not as a theoretical result but as an application wrapped
around an elegant and powerful file distribution protocol. It addresses the
problem of distributing large files with minimum server resource require-
ments by making the downloading clients share the parts they have already
downloaded among each other (Coh03). The architecture is very simple (see
Figure 8.11). The server distributes an index file called the torrent. A torrent
contains hash values of the chunks of the files to be downloaded, together
with a URL to the tracker that provides lists of downloading nodes to new
downloaders via HTTP.

Once the torrent is distributed to everybody (e.g. via a link in a traditional
web page) and the tracker is set up, one node needs to connect to the tracker
that makes the entire file available (the seed). Nodes that want the file obtain

213

the torrent, consult it to learn where to contact the tracker, and obtain lists
of nodes to start downloading from (and uploading to) from there. These
nodes are called leeches. A leech that has completed the download but does
not log off becomes a seed, so there may be many seeds at any given time.

On each connect of a new node (seed or leech), the tracker hands out a
random subset of all nodes of constant size. This is the only thing it does.
After this, the nodes connect to each other and work independently.

Each node sends requests for some of the file chunks it does not possess
yet to its neighboring nodes. It faces two types of decisions: (1) Whom to
ask for which chunk, and (2) whom to provide with chunks that have been
requested.

(1) Selection criteria. Several heuristics are used to decide on the order
in which the chunks are downloaded. Scarce chunks have higher priority,
since every download reduces scarcity. Nodes that repeatedly refuse to allow
downloads are excluded from requests. During the end run when waiting time
for a specific last chunk should be minimal, broadcasts are used instead of
targeted requests. Finally, within all the other rules, chunks are downloaded
in random order (this avoids hot spots such as the first chunk in the file when
it first gets published).

(2) Cooperation criteria / feedback. This is the more interesting of the
two questions, since it determines the economic incentives the nodes expe-
rience and thereby the total upload (which in turn equals total download).
Each node chooses four nodes that it uploads to, and changes them occa-
sionally if it is likely to increase payload traffic. The rules are:

e Tit-for-tat. Those neighbors that provide for the fasted download con-
nections are served first. If the download gets slower and a node moves
on to download from other nodes, those other nodes will become the
new tit-for-tat partners. This is the core rule of BitTorrent and fights off
the prisoner’s dilemma (see Section 7.5) and at the same time increases
the file’s availability (faster nodes will distribute what they download
faster than slower nodes).

e Neediest first. Once a node is done downloading and stays online for a
while (as is considered polite), tit-for-tat is not an option any more. In
this case, the neighbors are served based on the upload they can con-
sume. (Again, since each chunk downloaded increases total availability
of the file, the faster the downloads now, the faster they will be in the
future).

e Perturbation. The neighbor that downloads least is occasionally re-
placed by a random neighbor from the list. This is called optimistic

214

un-choking. It yields a certain degree of change. Because it prevents
situations in which the most desperate nodes are forgotten, it gives
a better incentive for sticking with the strategy than plain tit-for-tat.
This brings BitTorrent closer to the ideal of Pareto-optimality.

e Anti-Snubbing. If a neighbor is not cooperating any more, a node moves
on to another one and stops uploading. This makes BitTorrent more
robust agains denial-of-service attacks, but it also prevents unmalicious
stalemate situations.

Discussion

BitTorrent’s simple design emphasis on high network saturation result in
near-optimal content distribution performance (QS04). The theory behind it
makes for a valuable building block for high-level P2P applications. However,
there is a list of things that BitTorrent does not (and is not designed to) do.

First, there is no concept of long-term reputation. Instead, each node
takes the current experienced upload rate of a neighbor as input for its
strategy (averaged over a 20-second window). Although this works well for
BitTorrent, it is not a reputation scheme, in the sense that no reputation
information is maintained or propagated.

Second, there are no adversaries in BitTorrent. Since reputation is not
distributed, there obviously are no liars. The most malicious thing a node
can do is to have a low (or zero) upload rate. This is far easier to counter
than nodes that upload corrupted content or disobey the protocol in other
ways to disrupt service.

Third, the resource model is very narrow (large blobs of unstructured
and atomic content such as CD images with free software), which on the one
hand yields very good results for one application, but on the other needs to
be re-invented for others.

Finally, centralized tracking is a pragmatic solution, since the original
motivation to invent BitTorrent was to allow for web server style systems
with minimum server load. But a truly decentralized P2P system would
need to use a distributed algorithm for tracking, and it would be necessary
to ask the questions of robustness against adversaries again for this new
system.

8.4.3 EigenTrust

In (KSGMO03), the FigenTrust algorithm for reputation tracking based on the
Gnutella network is proposed that targets soundness and quality of shared

215

documents. For each node 7, FigenTrust stores information on past trans-
actions with other nodes j under the index ij in a reputation matriz, and
reputation information is computed from that matrix.

The trick that renders EigenTrust efficient in its fully distributed version
is the interpretation of an eigenvector of the reputation matrix as reputation
figures. The reputation matrix M contains in each cell M;; an aggregated
figure on the experiences of node 7 with node j. If node j has uploaded
virus-free files of high quality and with correct meta-data, M;; is high; if
J has been observed to upload bogus data, interrupt uploads etc., M;; is
low. In order for node ¢ to accomplish a more objective opinion on node j’s
expected performance t¢;;, it consults its peers on their opinions:

tiy =2 My
k

159

To reduce the impact of lying peers, 7 weighs the assembled opinions of other
nodes by its own opinion on their truthfulness:

tij = Z M, My,
%

Note the implicit assumption that being truthful within the reputation sys-
tem is the same as being highly reputable. As long as we want to isolate
peers that pollute a content distribution network with false information, this
is justified. But if reputation is a performance figure that may be low for
honest but weak nodes, this assumption does not hold any more. EigenTrust
in its current form is limited to one type of reputation, namely truthfulness.

The above equation can be rewritten in matrix notation. If ¢; is the vector

of opinions of 7 on all js:
t; = M*M;

Now 7 wants to know the opinions of the peers of its peers. Each of i’s peers
k gives an opinion held by each of k’s peers [on each of I’s peers j, and that
opinion is weighted first by k’s opinion on [, and then by i’s opinion on k:

tz(;) =3 MyMyMy; = tyM;
Lk ;

Or in other words, and iterating further:
t = M7

In order for i to decide what to make of j, it would make sense to take all t()
into account, possibly weighing earlier iteration steps more because they are
closer to personal experience, and thus less distorted by untruthful nodes.

216

Because it is hard to develop an efficient algorithm for this approach,
EigenTrust takes a different route using two observations: (1) iteratively
left-multiplying M7 to tz(-o) = t; converges to an eigenvector (or to be more
specific, the left principal eigenvector) of M; (2) the outcome only depends
on M7, any t; converges to the same eigenvector, and thus all nodes perceive
the same reputation information.!® EigenTrust computes the eigenvector for
a source of global consensus on the individual nodes’ reputations, which it

can do efficiently in a distributed fashion.

Discussion

For an individual node 7 this means to discard direct evidence, or evidence
reported by nodes j that ¢ knows personally. On the other hand, the weights
put on each matrix cell in each round repair this shortcoming to an extent,
and the simulation results in (KSGMO03) suggest that this move is valid.

Gnutella as a network technology is quite outdated, and has been demon-
strated to have scalability and robustness issues (see Section 8.2.1 and e.g.
(IEPNO04; RFI102)). EigenTrust (in a refinement of the reputation function
sketched above) makes the relatively strong assumption of a small number of
pre-trusted peers. Worse, it assumes strong identity tokens. Since Gnutella
lacks cryptographic message authentication, there is no way of telling which
node sent which message, and thus any bound on adversarial nodes is dubi-
ous.

In order to make full use of an advanced reputation system like Eigen-
Trust, one would need to port it to a more modern network technology mak-
ing use of the building blocks listed above. This, however, requires intricate
changes and re-evaluation of the effectivity of the changed system. For in-
stance, the problem EigenTrust attempts to address is data quality, which
is far easier to enforce when the system makes use of hash functions (which
comes for free with DHT routing) and digital signatures. Reputation track-
ing is much more valuable when used for propagating information like upload
bandwidth.

Independently of EigenTrust, we have developed a model that is similar in
that it also stores reputation in a matrix over all pairs of nodes in the network
(see Section 9.1.1). Other than EigenTrust, our work does not include a
detailed performance analysis. On the plus side, it is not restricted to one
type of reputation. This abstraction from any real-world application allows
for a more straight-forward system with fewer artifacts and thus gives way
for more general insights into the mechanics of reputation.

13Tt is not necessary to know what an eigenvector is, or to be able to prove these two
facts. Consult any other book on linear algebra for the relevant definitions and proofs.

217

8.5 Inverse Sybil Attacks

We conclude this chapter with a slightly off-topic shift in perspective. Up to
here we have aimed at enabling P2P applications in which identities are easy
to create in abundance, and cannot be linked to each other due to a lack of
surveillance infrastructure that is a desired feature of the infrastructure. We
have then struggled to keep users of this infrastructure from abusing their
freedom through Sybil and other attacks.

In this, we always assumed that it is in the interest of honest users to safe-
guard their credentials and protect them against identity theft. Technically,
this is simple to achieve by means of public key cryptography. Identity theft
requires the thieve to get access to the private cryptographic key, but that
key should never leave the owner node. In this section, we scratch on the
surface of a complementary and much harder problem: Assume that nodes
have an interest in trading their credentials, but this violates the legitimate
interests of others. How can the system prevent identity trade by techni-
cal means, and thus make sure that the same person is consistently hidden
behind the same pseudonym?

We will start from society at large as an application. Here, requirements
such as accountability and forgery-resistance of identity tokens are widely
accepted by the “users”. And yet, the more data is aggregated by numer-
ous private and public organizations, the bigger the problems that result
from an unnecessary transparency of the individual. In order to avoid this
transparency, the notion of pseudonym systems has been introduced (Cha85).
Instead of allowing for only one identity token that is applied everywhere, a
pseudonym system allows for the individual to use different local identity to-
kens for doing business with different organizations. Pseudonym systems are
related to the blind signature schemes discussed in Section 8.1.2. However,
the security requirements are complementary: A pseudonymous identity to-
ken used to commit an online auction fraud needs to give the authorities
a proof of the fraud, so the authorities can find and prosecute the person
behind the pseudonym. The interesting property of a pseudonym system is
that the auction portal operator can only use the pseudonym for presenting
it as a proof of fraud (and, of course, for processing legitimate transactions);
she cannot contact the person with marketing campaigns, or sell personal in-
formation, or register the person’s online behavior in user profiling databases.

These requirements are too strict to be of direct interest for the goals
of this thesis. In particular, they are hard to imagine without a TTP, an
assumption we have refuted because of the benefits of a lean, anonymous
infrastructure. Still, pseudonym systems are related enough to deserve men-
tioning. In particular, it allows to consider a problem that is in a sense

218

opposite to the problem of Sybil attacks. Instead of one user creating many
pseudonyms to do business with one organization such as a P2P application,
it is sometimes undesirable that many users share a single pseudonym to do
business with an organization.

A flatrate content provider or a public transport system who decides on
a pricing policy based on the expected number of customers, experienced
maximum consumption level, and cost of providing a service or good, could
take considerable damage from involuntarily issuing multi-user pseudonyms.
The further a pseudonym system permeates society, the more severe the
possibilities of abuse. Neither medical prescriptions nor drivers licenses can
be allowed to be transferable.

But the problem can also arise in P2P networks. Consider an expert
employment agency over which users can hire consultants online to answer
questions that require highly specialized knowledge but very little time. A
low-maintenance, self-organizing network with a distributed reputation sys-
tem (and optionally a separate micropayment system) would be ideal for
this task, but it could suffer from an expert selling her pseudonym to some-
one with little experience who can then use it to earn money for inadequate
service until the reputation associated with the pseudonym drops sufficiently.

(LRSWO00) addresses this question and proposes a solution based on in-
centives. Each user has a master key that gives away all pseudonyms and
allows an illegitimate holder to impersonate the legitimate one in any pos-
sible context. The legitimate user is reasonably expected to keep this key
private for her own sake. Now, the authors propose a scheme that guarantees
that if any user transfers a non-transferable pseudonym, she gives away her
master key. Consequently, non-transferable pseudonyms can be expected not
to be transferred by anyone.

Chapter 9

Modelling Reputation Schemes

In this chapter, we will develop a novel abstract model of reputation schemes
for P2P networks making use of the cryptographic foundations established
earlier on in this thesis. We will motivate this model, and then assess its
characteristics and performance on a generic simulator we have developed
for P2P system reputation schemes.

This simulation serves two purposes: Obviously, we want to demonstrate
the strengths of the model and reputation scheme we proposed. But more
importantly, we hope to lay the groundwork for comparing a wide range of
other reputation schemes by expressing them in the same idioms, and for
exploring their strengths and weaknesses with our simulator.

An earlier version of this chapter has been published in (Fis06).

9.1 The Model

The network consists of a set A/ of pseudonymous ¢,7,..., or nodes. A
node enters the network at the beginning of time and never leaves. Node i’s
behavior is defined by

e supply v; € N
e demand w; € N
e hostility e; e {fr e R|0< 2 <1}

The hostility parameter e; determines with which probability a given
peer misbehaves in a given round. Misbehavior may assume different forms:
The node may not contribute anything at all, even if the other parameters
demand some limited degree of cooperation by everybody in every round, or
it may feed false information to the data structures for reputation tracking.

219

220

See Section 9.1.2 below. v;, w;, e; are drawn from the random variables W, V',
and FE, respectively.

Request / response: In round r, every peer i generates w; discrete resource
requests, write: i — j, where j is picked according to some fixed probability
distribution over all peers. (For now, assume uniform probability for every
peer other than the source to become the target of a request.) As soon as
all requests have been sent, each request target, considering circumstances
like v; and the reputation of peer i (see below), decides whether to respond
with 7 <~ j or not. The total of all events (requests and responses) forms the
network trace A.

Response rate: The response rate of peer ¢ is defined by the ratio

AN {i & jen il
mi(A) = ——
IAN{i = jhjen .l
between resources received and resources requested in the entire simulation.
Note the implicit validity conditions: The number of requests must be > 1
to avoid division by zero. Also, in the logarithmic case below, the number of
responses must be > 2.

Neither the cost of responding to requests nor the benefit of charging for
delivered resources is taken into account here; peers are invariant to whether
they can provide a resource or not. Our focus is not on the profit made
possible by established business transactions, but on comparing the impact
of different notions of reputation on the number of profitable transactions
established.

In order to reduce the effect of extraordinary resource hunger on per-
formance (very high w;), it may be more interesting to use a logarithmic
scale:

log (A} = log|A N {i < jlien,jzil
(2 . .

log [AN{i = j}jen izl

Network performance: We use two functions to measure the quality of a
set of network parameters from the point of view of the network designer who
has the common good in mind. First, we average evenly over the individual
response rates, taking the needs of each peer equally serious:

>ien Ti(A)
N

Then, alternatively, we put weights on hostile peers because we are less in-
terested in their needs than in the needs of honest peers:

Dien (1 —e)mi(A)
N

MY(A) =

@A) =

221

The logarithmic variants I1°8%(A) and I1°¢%(A) are defined accordingly.
Where possible, we omit explicit mention of A for the sake of simplicity.

As an alternative to hostility, individual performance can be weighted
in accord with the supply parameter v;, given that we have some means of
normalization and the normalized v; such that 0 < v; < 1:

H(?’)(A) _ Ziequi;'Wi<A)

Finally, we could consider hybrid weights:

Sien (1 — e)vimi(A)
N

MY(A) =

9.1.1 Reputation

We now outline how peers can keep track of who did what to whom, so the
effect of lazy and hostile peers on the performance can be minimized by either
sending requests to more reliable peers, or responses to more worthy ones,
or both.

The core of our reputation scheme is a matrix M™*¥ in which each row
represents the opinions of some peer on all other peers, and each column
represents the opinions of all peers on some peer. M is called the reputation
matriz. If i - j occurs, then the outcome (whether there is a response or
not) is recorded in m;;. M is a mutable data structure that changes its state
after each round.

Each cell m;; has the form (c¢,d) € Rt x R*, where ¢ is a counter on
the number of responses, and d is a counter on the requests that went un-
responded. We write ¢;; and d;; respectively for the two parts of cell m;;.
For each i = j, if i <~ j occurs, then ¢;; := ¢;; + 1; if i ¢~ j occurs, then
dij = dij + 1.

To reduce the impact of the distant past on the current reputation values,
we introduce a decay factor 0 < v < 1 to slowly erase the traces of behavior:
Before updating cell m;;,

cij = (1= 7)¢y
dij := (1 = 7)d;;

Where not stated otherwise, we consider v = 0 in the following.

The intention behind the reputation matrix is that the information stored
in M can be used by any peer ¢ to estimate the supply level v; of any other
peer j prior to the first encounter. To get there, ¢ needs to run a reputation
function ;(M, j) on the information stored in the matrix that correlates

222

with v; as closely as possible (if there is only one global reputation function
used by all nodes, we write Q(M, j), omitting the i subscript). Here are two
straightforward alternatives, average and median:

Zkelj Cj—drj .
gy =] o TLA0
0 otherwise

am(ar,) = | MPUew —dighier,) F L # D
7 0 otherwise

where I; is the set of peers that are not indifferent about j. (A peer k is
indifferent about j iff ¢x; = dy;.)

Only taking non-indifferent opinions into account is crucial, particularly
when computing the median. For instance, consider a network of 64 peers in
which 30 peers hate j, only 1 peer loves j, and all remaining 33 peers have
never met j (c; = d; = 0). Then the Q™ (M, j) would be 0 if all opinions,
indifferent or not, would be considered. As a consequence of this decision, if
I; =0, then (M, j) needs to be explicitly set to 0, meaning undecidedness
(else it would be undefined).

The output of any €2 function is more convenient to handle if its domain
is restricted to [0, 1], so we normalize.

ainy o L QT(M,)
J

. 1 QM (M,j)
J

7; is the most extreme absolute of all opinions on j. It is easy to see that
Qam(M,7) € [0, 1], and that Q¥™(M, i) > Q*™ (M, 5) holds iff Q*™ (M, i) >
Q4™ (M, 7). A reputation value of 0 means ’as bad as it gets in this network’,
1 means ’as good as it gets’, and % means ‘average’.

This normalized reputation can be used as probabilities of cooperation,
and renders Q(..) = 1 the maximal reputation at all times. Further, it
differentiates between negative reputation and indifference.

However, it still fails to distinguish “has had mixed experiences” from
“has had no experiences at all”. This distinction is covered by the following

223

Q/* that puts a weight on a reputation value that is derived from the number
of transactions that the node has been involved in (normalized versions as
above).

Ekelj (erjtdrs)(crj—dr;)
QY (M,) = 7]
0 otherwise
MD({(cx; + dij)(crj — dkj)}kelj) where I; # 0
0 otherwise

where I; # ()

[j = {k € N’ij 7é dk]}

A few idealized reputation functions will help to understand the visual-
ization of our results below:

Q° (M>]) =Y
Qw(M,]) = Wj
Pr[Q™(M,j) < x] =2 (output of Q™! is uniformly random)

Q" provides noise-free access to supply levels, which helps direct resources
to the most cooperative nodes and thereby counters free riding; * provides
noise-free access to demand levels and allows to identify greedy nodes; and
™4 provides maximum noise and returns uniformly random values that are
fully dis-correlated from any relevant features of the subject node. This is
the worst reputation system possible and can be used as the extrem opposite
to QU (or Qv).

Our reputation matrix, proposed independently of the EigenTrust matrix
(KSGMO03), differs from its competitor in a few crucial aspects. For once,
EigenTrust does not differentiate between no experience and bad experience.
Also, normalization takes place on a subjective level. QP8 TSY(Af 5y = 1
means that node j has given node i the best subjective experience, but it
does not say anything about node j’s objective quality. This allows for node-
local normalization, which gives better performance at lower accuracy. What
makes up for the loss in accuracy is the trick of finding a node’s reputation
in an efficiently computable eigenvector of the reputation matrix that gave
EigenTrust its name (see Section 8.4.3). If reputation is about anything
but truthworthiness (e.g., upload performance), there is a difference between
considering a node a reliable source of reputation information and considering
it a highly reputable node, so the EigenTrust algorithm does not apply any
more. Whether the two approaches can be combined to get the benefits from

224

both is an intriguing, but non-trivial question that exceeds the scope of this
work.

9.1.2 Hostile Peers

When it comes to understanding the adversary, different approaches can be
found in the literature, ranging from outright avoiding the problems im-
posed by the nature of pseudonymous P2P applications (Miq04), over pop-
ulating a fraction of the network with honest but lazy peers and forbidding
liars (BB03), to the rigid construction of equilibria in non-hostile strate-
gies for games where corrupting the reputation information is a valid option
(KSGMO03). In this thesis, we attempt none of these. The first is not very
useful, and the last requires very strong assumptions elsewhere in the for-
malism for the equilibria to hold, e.g., the assumption of pre-trusted peers as
in (KSGMO03). Instead, we allow for plugging arbitrary assumptions on the
hostility of peers into the model and predict their impact on overall system
performance.

Note that we still give a formal description of the adversary in the spirit
of Section 2.3. The difference to Part I is that there the system was broken
once the adversary managed to have non-negligible impact on it. In P2P
networks, we accept what cannot be helped (that the the risk of encoun-
tering adversarial nodes is non-negligible), and rather than considering P2P
networks dead, we measure the negative impact for any chosen set of system
parameters.

Remember a peer’s hostility parameter e; is defined as the probability
that ¢ “misbehaves”. As a first option for a semantics of misbehavior, we
propose the cautious liar model in which adversaries only record one event
per request sent, but may be lying about the response:

Definition 9.1. Cautious liars (CL). Peer ¢ is said to misbehave in transac-
tion i = j if instead of recording the real outcome, i records i <— k, where k
is chosen uniformly at random such that k # i,ep > 0.

This definition creates a scenario in which adversaries are organized in
a group in which everybody knows each other, and reputation within that
group is boosted uniformly instead of the reputation of the real contributors.
By modelling a less organized set of adversaries, we might obtain insights
into the performance of different hostile strategies, but we do not expect the
impact on the experience of honest nodes to be affected too much.

We assume that only peer ¢ has write access to the row vector m;. Not
even hostile peers can alter or suppress other peers’ recordings. The cryp-
tographic data structures capable of giving these guarantees if M is stored

225

and maintained in a distributed fashion by all peers are under development,
and several promising approaches are already available (see Section 9.2). Of
course, implementation is trivial if we allow for one or more centralized TTPs
(e.g., an organization that also coordinates a monetary infrastructure, given
there is one).

But another form of malicious behavior is possible: In many scenarios,
liars are likely to be lazy at the same time. In fact, the only reason for an
adversary to contribute resources may be that others are less likely to track
it down if it behaves exactly as everybody else.

Definition 9.2. Lazy liars (LL). Lazy liars misbehave just like cautious liars.
In addition, in the lazy liars setting, the supply parameter of peer i is v; =0
Zf e; > 0.

So in the lazy liars setting, misbehavior consists of both poisoning the
reputation matrix and starving the network of resources.

A hybrid variant between these two adversary types is the lazy liar that
sometimes contributes, but not quite enough:

Definition 9.3. Half-Lazy liars (HL). A Half-Lazy liar i misbehaves just
like a cautious liar. In addition, whenever an honest node would respond to
a request, the half-lazy liar only does so with probability e;.

An analogous set of liar types covers saboteur nodes whose aim is to lower
the reputation of productive and cooperative nodes for reasons of vandalism
or hostility towards the goal of the network’s application (such as the content
industry in the case of unlicensed content distribution networks):

Definition 9.4. Cautious saboteurs. FEvery hostile peer maintains a mea-
sured approximation V* of the supply level distribution V' in the network.
Peer i is said to misbehave in transaction i — j if instead of recording the
real outcome, i records i ¢~ k, where k is chosen uniformly at random such
that vy, > avg(V*).

Variants analogous to the lazy liar types are straight-forward. Despite
saboteurs being an interesting topic, we will focus on reputation boosting
liars in our simulations. We expect that our results apply equally to both
categories, and will leave the confirmation for future research.

9.1.3 Distribution Strategies

Which strategy should a peer follow when distributing its resources such
that (a) individual response rates and (b) the network performance are max-
imized? There are often several options for the network designer, or for a peer

226

during the network run, that have non-trivial consequences. We consider two
basic strategies and combinations and variants of them:

Definition 9.5. Constant resource limit (CRL). In each round, peer j reg-
isters all requests i — j received and orders them with respect to the senders’
reputation values QU(M,i). The v; senders with the highest reputation are
served, the remaining requests are ignored.

CRL is useful for describing resources such as upload bandwidth in tra-
ditional file pooling networks: The resource is limited, but the peer does not
really care how it is used, or whether it is used at all.

Definition 9.6. Constant reputation threshold (CRT®). Ifi - j, i is served
by j iff M, 0)* = Q(M, j).

a > 0 is a global threshold parameter. If o = 0, then any request is
answered; if & = 1, ¢ must have higher reputation than j for j to answer 7’s
request. For a — 00, j gets more and more picky.

That we use Q(M, j) here to approximate v;, although the latter is di-
rectly available to 7 and may contain considerably less noise, may seem a little
odd. However, it makes notation easier, since we can plug in different rep-
utation functions and always get comparable figures for both peers involved
in a transaction. In fact, in the simulations we have also experimented with
globally constant thresholds and v; instead of Q(M, 7).

CRT* is tailored towards applications in which resource limits are more
dynamic than bandwidth. For instance, a peer providing access to a virtual
machine or to a virtual hard disk may decide to leave a certain fraction of
its resources unused for times of heavy load, and thus achieve short reaction
times for peers with high supply values; or a hosted server running on a
monthly traffic limit may decide to use this traffic for peers that exceed a
given reputation limit.

Further distribution strategies will be introduced together with the re-
sulting simulations.

9.2 Motivation

Our model is both very abstract and flexible, and restricts adversaries in
ways that are not usually assumed by related research or implemented in ex-
isting P2P applications. Therefore, before the presentation of the simulation
results, we need to discuss a few aspects of realization. In particular, we need
to hint at how we will enforce the assumptions made by the model.

227

9.2.1 Routing and Identity

Often, P2P networks use merely the IP address or a cookie created by a
newly connected client (as there is no web server that can create it). This
gives room to all the identity attacks considered in Section 8.1. In contrast,
our model makes a number of assumption on precautions that are taken on
the network level (without bothering the user).

1. Each node has a strong identity established by an asymmetric key pair.
All outbound messages will be signed using this key pair, and signa-
tures on all incoming messages are verified using the public keys (for
performance, hybrid schemes are used that encrypt all traffic after the
initial handshake symmetrically). Public keys are exchanged when two
nodes connect for the first time.

This does not keep an adversary from joining a network, but it rules out
the possibility that an adversary assumes the identity of a node that
has a high reputation, since the secret key needed in order to establish
a connection under that node’s name is safely stored on the node and
never revealed.

2. To reduce the risks of Sybil attackers that create many identities, the
techniques presented in 8.1.1 such as SybilGuard are deployed.

Our model takes the number of adversarial nodes and the level of coop-
eration of those nodes as parameters. Hence, depending on assumptions
of the dedication of hostile players and on the robustness of the coun-
termeasures taken, we can use the model to describe a wide range of
scenarios.

By using SybilGuard to assume limits on the number of Sybil nodes
in the system, we also suggest that the two problems of Sybil attack
and reputation scheme are entangled (instead of orthogonal, as stated
in (YKGFO06) in the related work section).

3. If we assume a TTP, each adversary actually only gets to play one
identity. This comes at the cost that has been outlined in Section
8.1.2, but the advantages may be greater than the drawbacks.

This cryptographic infrastructure works nicely together with DHTS if the
DHT address space is spanned by the (hashes of the) public keys of the nodes.
If 7+ wants to talk to 7, it obtains the public key, uses it first to connect to j
via the DHT, and then uses it again to establish an authentic communication

link.

228

Note that since public key cryptography is used for (anonymous) authen-
ticity, confidentiality comes virtually for free, both on the design and on the
implementation level. The same cryptographic schemes can be used for both,
and most libraries provide combined functionality.

9.2.2 The Reputation Matrix

The reputation matrix is essentially a two-dimensional hash table that is
indexed with node names. This suggests using a DHT for storing reputation
as well. Since the node responsible for storing cell (7, j) may be lazy or hostile,
data can get corrupted. So in order to keep it reliable, signature schemes need
to be used. As before in establishing secure direct communication links, these
can be based on the identities of the nodes.

Assume node j wants to record the outcome of ¢ — j. In the simplest
implementation, let M be a DHT that stores the reputation matrix in form
of a collection of cell updates that all nodes can download and assemble at
any time. j writes the update record to be stored in m;; into a data packet,
signs it, and submits the result to the DHT M under the key j. If k wants
to compute the reputation of node j, its collects all the records stored in M
under j, checks the signatures, and adds up the contents.

Queries are frequent events in many applications, and the performance
is an issue. In this simple implementation, every record ever stored needs to
be signature-checked over and over again, and many signatures need to be
checked in order to compute a single reputation value. Hence, there is needs
for improvement.

Further, there is no precaution against an adversary removing records
from the DHT, since k£ knows only of those records that it can download,
and can not distinguish between a record that has been stolen and a record
that never was submitted. So a cryptographic data structure needs to be
installed to make record loss detectable.

The answer to both needs lies in finding a good hash tree structure (see
Section 8.3). If records are not signed individually, but as updates to an
already existing collection of records that has a single tree signature, then &
only needs to do one signature verification for each reputation value it needs
to compute. Furthermore, if a node in the hash tree is missing, signature
verification will fail, so k£ can act upon it.

There are many leads to be followed in order for the application designer
to find the best solution. Most of them represent trade-offs between security
and performance.

e Fully computed reputation values can be signed and cached, and if

229

enough signatures on a cached value have been stored, a new hash tree
is created with the result of the old tree as the root update.

e Backup nodes can be used to recover stolen data if hash tree checks
fail.

e A meta-reputation system can be used to give incentives to the nodes of
M to not steal any records. This is a particularly interesting challenge
to realize, and it is completely unclear how the two reputation systems
would interact. It also constitutes even better proof than the CAN
feedback scheme mentioned in Section 8.4.1 for the claim that mixing
different levels of reputation is risky business (here: reputation for being
a good peer, and reputation for taking good care of the reputation
matrix). If a node can gather negative reputation by stealing previous
bad reputation, it will probably not care, since it can steal the new bad
reputation as well.

e If an uninvolved witness node is able to observe a transaction, it can
contribute an additional signature to the record of that transaction.
This increases the robustness of the overall scheme, but open the door
to other forms of lying and complicates our assumptions on what an
adversary can do to the reputation matrix.

In our model, we have made the simple assumption that node ¢ can record
any events on outcomes of queries that it has sent itself. If ¢ tries to record
reputation on [that has been given by 7, the signature will not check, and
the DHT M will reject storage.

If a request has never been sent and i attempts to submit a record on its
outcome anyway, cryptography is ineffective. However, statistical methods
like SybilGuard can help identifying nodes that send out significantly more
records than queries. (This is another promising idea that to our knowledge
has not been tackled elsewhere yet.)

9.2.3 1Is There a Prisoner’s Dilemma?

Our model assumes unchanging node characteristics. In particular, it as-
sumes that a fixed fraction of all users is infallibly honest. This is consistent
with observation in existing P2P networks, but stands in sharp contrast
to the traditional game theoretical point of view that each individual does
whatever gives it the highest chance to achieve the highest individual util-
ity. Game theoreticians, when confronted with their inability to describe

230

cooperation-driven phenomena, argue that their models are not accurate de-
scriptions of every single state of a system in time, but a fix point into which
the system will collapse eventually. (We have touched this issue briefly in
the introduction to game theory in Section 7.5.)

This means that if game theory is correct, this could mean that Napster
was bound to fail merely because it represents another instance of the tragedy
of the commons, even without the opposition that it faced from the content
industry and the competition to more modern file sharing networks that it
eventually lost. The participants simply would have contributed less and less
content for others to download until nothing would have been left. Worse,
it could mean that newer file sharing networks, and the very idea of P2P
networks, are threatened by the real, non-transitory behavior of peers in a
matured system.

Are P2P networks bound to suffer from PD? Although no theory can
give a definite answer to this question, there are models that leave room
for optimism. One example is an evolutionary game proposed in (FZ00)
that shows an increase of cooperative nodes over time despite its PD-like
structure.

In an evolutionary game, nodes do not change their strategy over time,
but reproduce and mutate. Strategies of descendents are either the strategies
of their ancestors, or deviate from that in certain ways. In (FZ00), two
tribes of individuals are formed, and every individual is either cooperative
or defective by genetics. After each round, utility is processed on two levels.
On the intra-tribe level, nodes with low utility reproduce slower than nodes
with high utility, and due to the PD-like structure of the game, this gives
an advantage to defective nodes. On the inter-tribe level, those tribes that
have higher cooperation levels grow faster. This gives an individual in a more
successful tribe an advantage over an individual in a less successful tribe.

With the right system parameters, the inter-tribe utility counters intra-
tribe utility, as a cooperative node in a cooperative tribe is more successful
than a defective node in a defective tribe. In other words, cooperative tribes
produce more cooperative nodes than defective tribes can produce defective
nodes (although defective tribes produce even fewer cooperative nodes). This
effect is called the Simpson’s Paradox (SP), named after the statistician who
first described it (Sim51).

Can SP be imposed on a P2P network to compensate PD? There is an
apparent mismatch between an evolutionary game and a network in which
nodes can alter their strategy freely at any moment. There are intricate
psychological effects in any social context, but in P2P networks with high
anonymity, those are not usually considered particularly suitable for breeding
loyalty and altruism. How can we design a computer network that makes

231

nodes (a) stick with their tribe and (b) develop strategies over time according
to the evolutionary model?

Inspired by the game sketched here and returning to the assumption of
pre-trusted peers also made in (KSGMO03), we propose tribe seeds that consist
of P2P network nodes that know and trust each other personally. Keeping the
level of trust above a certain threshold, each tribe seed carefully admits new
and unknown nodes, and ejects those nodes whose performance deteriorates.
Tribes of this kind could leverage collective reputation and be better off than
individuals whose reputation is based merely on their own contributions. At
the same time, a good ejection algorithm would limit the amount of free-
riding in each tribe. Both this and the higher attractivity of cooperative
tribes would makes cooperation guarantee faster tribe growth.

Maintaining tribe membership is a complex, but possible task. Each indi-
vidual creates a public-key identity that is signed beforehand by its personal
contacts. An additional public-key identity is created collectively by the tribe
so that each tribe member can sign for the tribe and both boost and leverage
reputation for the tribe. Intra-tribe reputation mechanisms need to be main-
tained in order to identify and eject defective nodes. Inter-tribe reputation
can be used to decide on new admission rates.

Networks with tribes are likely to level the playing field, making under-
performers better and over-performers worse off. This may create incentives
for defection, but the incentives for cooperation (cooperators get to be part of
cooperative groups, which are more successful) may still be stronger. Cryp-
tography, existing or yet to be developed, will also play an important role in
the future in making it harder to defect undetected.

However, these are just preliminary ideas for future research. The com-
plexities of any model necessary for representing multiple reputation schemes
and multiple levels of social interaction are prohibitive at this point. In our
much simpler model, we use these ideas as theoretical evidence that high
levels of cooperation can last in P2P networks, complementing the much
stronger empirical evidence.

9.3 Simulation Results

On of the main contributions of this thesis to the subject of P2P networks
is the esim tool for exploring new and original situations in P2P networks,
and for looking at previously explored topics from a different angle. In this
section, we demonstrate what esim can do and present the output of selected
simulation runs. This will lead to a few interesting observations about the
mechanics of reputation systems.

232

We have implemented esim from scratch in the lazy functional program-
ming language Haskell'. It is based on an earlier implementation in Python?,
which in turn was an adaption of Phil Jones’ optimaes®. esim outputs
IXTEXand gnuplot® source. The results in this thesis have been directly gen-
erated and included from our simulator. esim is open source and available
for download.®.

All simulations are run on fully connected networks with 70 nodes that
run 100 rounds. For the statistics, each simulation is run 10 times, and the
average over all statistics is used in the output. We have run selected exper-
iments with larger parameters with similar results to confirm these choices
are valid. To avoid cluttering the layout, we have placed most of the Figures
in Section 9.3.5. The data displayed using gnuplot is perturbed by a factor
of 0.01 (0.005 in every direction). This keeps lines from fully overwriting
identical other lines, which makes the results in some of the outputs more
visible.

9.3.1 Idealized reputation functions Q", Q™d

The first networks we run have honest players only:
PrlE=0]=1

For illustration, we start with the pathological case that the values returned
by the reputation scheme are random, i.e. there is no information on supply
levels contained in reputation levels. The output is represented in a graph
with one point for each node in each round (see Figure 9.1, top). The game
proceeds in rounds from back to front, the vertical planes represent supply
levels, and the (much less distinct) horizontal planes are reputation levels. A
second view on the same game is a 2-dimensional projection on the average
over all rounds, visualizing the correlation between supply level, reputation,
and utility (see Figure 9.1, bottom). The lines in the 2-dimensional figure
always connect the highest y-point on one z-point with the lowest on the next
one, so diagonal lines suggest uniform randomness. In marks the extreme
points on the y-axis for each point on the z-axis, and gives an idea of the
distribution (in this case, both reputation and utility are uniformly random).
(Note that this idea is not always reliable, and the distribution may be highly
skewed and the extreme points still be the same for each x.)

‘http://www.haskell.org/

’http://www.python.org/
3http://www.nooranch.com/synaesmedia/optimaes/optimaes.cgi?HomePage
‘http://www.gnuplot.org/
Shttp://www.etc-network.de/~fis/software/esim/

http://www.haskell.org/
http://www.python.org/
http://www.nooranch.com/synaesmedia/optimaes/optimaes.cgi?HomePage
http://www.gnuplot.org/
http://www.etc-network.de/~fis/software/esim/

233

Pearson correlation values over supply level V' and reputation Q(V'), rep-
utation (V) and utility 7(V'), and supply level V' and utility #(V), are all
near 0:

’ \ avg \ sdev ‘

V) 0.00 | 0.01
), 7(V)) | -0.00 | 0.01
(V,W(V) -0.00 | 0.01

The Pearson correlation coefficient p,, is defined on two sample sets ,y
as follows:
2(zi —T)(yi — ¥)

(n—1)s,s,

Py =

where z is the arithmetic mean over set x, and s, is the standard deviation.
Pearson correlation is 1 if there is an y; € y for each x; € x such that
x; = y;; it is —1 if such a mapping exists with z; = —y;, and it is 0 if the
two sets are statistically independent. We use p on random variables and
sample sets interchangeably, and for any function f and random variable X
we write f(X) for the distribution of f(x) if x is drawn from X. The table
above shows two numbers for each pair of sample sets: Average and standard
deviation of correlation over the 10 simulation runs.

The next artificial extreme we consider is ideal supply-based reputation
v, such that each node has noise-free information on the supply levels v; of
all other nodes (see Figure 9.2). This is the ideal that any reputation scheme
wants to approximate, and that liars try to distort.

This achieves the expected correlation of 1.0:

’ \ avg \ sdev ‘

V) 1.00 | 0.00
), 7(V)) | 0.61 | 0.00
(V,W(V) 0.61 | 0.00

Correlation with utility is still less than 1 because the supply and demand
distributions allows for situations in which four nodes with v = 3 send queries
to the same node with v = 1, and three end up empty-handed despite their
optimal reputation. With more complex rules that model more sophisticated
resource allocation schemes, these figures are likely to improve, but at the
cost of simplicity of our model.

234

9.3.2 Distribution strategies: CRL vs. CRT

Now that we have seen the worst and best reputation functions possible,
we can look at how reputation matrices perform. To begin with, CRL with
v yields high positive correlation between production and reputation (see
Figure 9.3). Aslong as nobody lies, productive nodes have higher reputation,
and higher reputation means higher utility. In other words, both reputation
and utility correlate with productivity:

p(V,Q(V)) [0.940.00
p(Q(V),7m(V)) | 0.63 | 0.00
p(V,m(V)) 0.61 | 0.01

Next, to find out how robust this outcome is with respect to distorted
initial system states, we initially assign uniformly random reputation values
to all nodes (see Figure 9.4).

The following simulations have been run with such a pre-seeded repu-
tation matrix: Initial reputation (n,m) means that n cooperation events
and m defection events have been recorded. Initial reputation (X, 10 — X)
means that each cell in the matrix is initialized with two random numbers
for cooperation and defection such that ¢ + d = 10.

Due to the randomness early on in the simulation, the entire game exhibits
worse correlation values than in the above experiments where the matrix was
initialized with (0,0). However, there is a big improvement when looking only
at last third of the rounds, after the initial noise has been sanitized with some
rounds of node experience:

235

’ M = (X,10 — X), all rounds \ avg \ sdev ‘

p(V,Q((V)) 0.64 | 0.06
p(Q(V), 7(V)) 0.65 | 0.00
p(V,m(V)) 0.42 | 0.04
| M = (X,10 — X), last third | avg | sdev |
oV, Q(V)) 0.80 | 0.04
p(Q(V), 7(V)) 0.67 | 0.01
p(V,m(V)) 0.53 | 0.04
| M = (0,0), all rounds | avg | sdev |
(V. Q(V)) 0.94 | 0.00
p(QV), m(V)) 0.63 | 0.00
p(V,m(V)) 0.61 | 0.01
| M = (0,0), last third | avg | sdev |
p(V,Q((V)) 0.97 | 0.00
p(Q(V), 7(V)) 0.64 | 0.00
p(V,m(V)) 0.62 | 0.01

This proves that our reputation scheme is self-stabilizing, and that it can
recover from noise, at least if it is temporary.

Next, we will play with scarcity and abundance of resources. For ex-
tremely high demand (every node gets a request from every other node every
round, see Figure 9.5, top), correlation between supply V' and reputation
Q(V) increases, whereas correlation between reputation (V) and utility
(V) decreases due to the many defections in case of resource exhaustion.
Nevertheless, both are still quite high.

’ V =1,2,3,4], W = [70], last third \ avg \ sdev ‘

p(V,Q(V)) 0.99 | 0.00
p(QV), (V) 0.33 | 0.01
p(V,m(V)) 0.34 | 0.02

(Average utility and reputation deteriorate, but this is due to scarce re-
sources, not to the reputation scheme.)

If there are more than enough resources, but not enough to rule out
exhaustion in hotspots, reputation is less accurate, i.e. advantageous for less
productive nodes (see Figure 9.5, bottom).

’ V =[1,2,3,4],W = [1], last third \ avg \ sdev ‘
p(V.Q(V)) 0.80 | 0.02
p(QV),m(V)) 0.17 | 0.02
p(V,m(V)) 0.16 | 0.01

236

Note that utility correlations are both quite low, although still positive,
which makes free riding more attractive. In the extreme case where all re-
quests are answered, it is obvious that any reputation scheme must defeated:

o(V.0(V) 0/0 0/0
p(QUV),7(V)) 0/0 | 0/0
oV, (V) 0/0 | 0/0

(Pearson correlation on sample sets with only 1 sample is undefined, as
the definition yields 0 in both numerator and denominator. Similarly to the
case of p = 0, the interpretation is that there is no correlation.)

However, high supply and low demand lead to resources being not scarce
any more, and utility is likely to be high even without a reputation scheme.
These three example configurations give evidence that in most cases where
a reputation scheme is actually needed, they can do good.

Resource distribution using CRT is generally more challenging to config-
ure properly (see Figure 9.6). CRT has bad correlation properties for virtu-
ally any threshold. Either nodes are too picky, reputation deteriorates, and
utility converges to 0. Or nodes are not picky enough, and utility converges
to 1.

With node-local thresholds (Figure 9.7), every node serves only nodes
with reputation, say, at least as high as its own supply level (ideal reputation).
Correlation p(2(V),7(V)) is high, only unfortunately correlation p(V, Q(V))
is negative:

’ t; = v;, all rounds ‘ avg ‘ sdev ‘

o(V,Q(V)) 0.39 | 0.12
p(QUV), (V) | 051 |0.07
p(V,7(V)) -0.16 | 0.07

Paradoxically, nodes with lower supply levels are more forgiving about
low supply levels of others, so they give more and get better reputation.
CRT is effective at punishing weak suppliers, but at the price of reducing
the reputation of strong suppliers over time, ending up punishing all nodes,
independently of their behavior.

a < 1 makes nodes more generous, which makes slightly sharper correla-
tion between V, Q(V), 7(V) than in Figure 9.6 (both on the desired positive
figures and on the undesired negative figures):

237

’ a = 0.7, all rounds \ avg \ sdev ‘

p(V,Q(V)) -0.80 | 0.15
p(QV), 7(V)) 0.65 | 0.09
p(V,7(V)) -0.56 | 0.17

During our research, up to this experiment we have always been able
to explain the outcomes where we did not anticipate them. The higher
correlation figures for smaller « is the first effect that we have not been able
to explain satisfactorily.

a > 1 makes nodes act uncooperative towards nodes with higher supply
levels than their own. This has two negative effects: It makes the negative
correlation between supply and reputation deteriorate (with reputation con-
verging to zero), and it makes utility converge to zero, because no queries
are answered any more. Consequently, the figures are not very good, and we
can conclude that a should be chosen such that 0 < o < 1:

’ a = 1.3, all rounds ‘ avg ‘ sdev ‘

p(V,Q(V)) -0.28 | 0.02
p(Q(V), (V) 0.50 | 0.04
p(V,m(V)) -0.09 | 0.01

’ a = 3.0, all rounds \ avg \ sdev ‘
p(V,Q(V)) 0.00 | 0.05
p(Q(V), m(V)) 0/0 1 0/0
p(V, (V) 0/0 | 0/0

So far, CRT has not established the accuracy that we have hoped for.
To conclude the discussion of distribution strategies, we therefore combine
the two strategies CRL and CRT into a hybrid variant of CRL with local
dynamic threshold.

Definition 9.7. CRL/CRT® hybrid. Ifi = j, if Q(M,1)* < Q(M, j), i is
not served by j. Otherwise, it enters a CRL queue on node j and is served
iff it is one of the v; requesting nodes with the highest reputation.

A node playing CRL/CRT sometimes runs out of resources and fails to
cooperate with nodes with high reputation, just as nodes playing CRL. As
nodes playing CRT, it sometimes holds resources back and defects although
it is still able to cooperate.

While we can hope for stronger incentives to cooperate, the correlation
values in our experiments are unaffected by the hybrid approach:

238

’ CRL only, all rounds \ avg \ sdev ‘
oV, Q(V)) 0.94 | 0.00
p(QV), 7(V)) 0.63 | 0.00
p(V, 7(V)) 0.61 | 0.00

| CRL/CRT"7, ¢; = 0.2, all rounds | avg | sdev |
p(V, (V) 0.94 | 0.00
p(Q(V), m(V)) 0.63 | 0.00
p(V,m(V)) 0.61 | 0.00

9.3.3 Hostile nodes

We now take a closer look at hostile nodes, their strategies, and the effect
that has on the effectiveness of the reputation scheme and overall utility.

To achieve a drastic effect, we start with an overwhelming majority of 10
hostile nodes on one good node:

10 1

Pr[EF =1] = I Pr[E =0] = B

This experiment shows two things (see Figure 9.8, top): Overall correlations

deteriorate, and there are clear branching in the development of reputation,

one branch (presumably populated by hostile nodes) pointing upwards and

one (good nodes) downwards. A new projection of the simulation run con-

firms that the branching separates good from hostile nodes (see Figure 9.8,

bottom): Here, the z-axis does not span rounds, but hostility levels, so we

get one column for each pair (v;,e;) of productivity and hostility level (all
points averaged over the entire game).

’ all nodes \ avg \ sdev ‘

p(V,Q(V)) 0.61 | 0.08
p(Q(V),n(V)) | 0.61 | 0.01
p(V,m(V)) 0.51 | 0.04
]ei:O \avg\sdev‘
p(V.O(V)) | 0/0 | 0/0
p(QV),m(V)) | 0.09 | 0.07
p(V.m(V)) 0/0]0/0
’ei: \avg \sdev‘

((V) 0.83 | 0.02
p(Q(V),n(V)) | 0.62 | 0.01
p(V,m(V)) 0.55 | 0.01

239

It is obvious from the second block of these figures (honest nodes) that
a majority of hostile nodes can kill our reputation scheme: All correlation
between supply level and reputation is drowned by false data. Hostile nodes
still benefit from cooperation (last block). However, computing an additional
figure we can see that hostility gives better reputation than supply:

’ all nodes ‘ avg ‘ sdev ‘

| p(E,Q(E)) | 0.65 | 0.05 |

On the other hand, the LL strategy turns out to be a bad idea. For the
same parameters as above, but with hostile nodes that simultaneously lie
and defect, the reputation scheme is defeated once more, but both for honest
nodes and for liars:

’ all nodes \ avg \ sdev ‘
p(V,Q(V)) 0.04 | 0.10
p(E,QE)) -0.63 | 0.11
p(QV),7(V)) | 0.08 | 0.03

Q

p(V,m(V)) 0.00 | 0.02
’ei:O \avg \sdev‘

V) 0/0 1 0/0
p(Q(V),7(V)) | 0.00 | 0.06
p(V,m(V)) 0/0 |1 0/0
’eizl ‘avg ‘sdev‘
p(V,Q(V)) 0.00 | 0.08
p(Q(V),7(V)) | 0.09 | 0.02
p(V,m(V)) 0.00 | 0.02

In fact, the strong negative correlation between hostility and reputation
means that a liar can expect to be far less popular than an honest node, if
supply levels are identical. So although sabotage may still be a valid motive
for choosing LL, but for free riding nodes, CL is the only reasonable choice
in this scheme.

Despite the conclusion that LL is a bad strategy for a malicious node,
in the presence of a vast majority of malicious nodes who know that and
choose CL, our reputation system fails. But what about smaller fractions of
defectors?

If we consider two thirds, or even only one third or nodes with e; = 1, the
picture changes significantly to the better (see Figure 9.9, top and bottom,
respectively).

240

Pr[E =0] = 4 Pr[E=0] =2
Pr[Ezl]z% Pr[Ezl]:%

’ all nodes ‘ avg ‘ sdev ‘ avg ‘ sdev ‘
p(V,Q(V)) 0.48 0.12 0.67 0.06
p(E,Q(E)) 0.79 0.04 0.63 0.07
p(Q(V),n(V)) | 0.64 0.00 0.65 0.00
p(V,m(V)) 0.37 0.08 0.43 0.04

’ e; = \ avg \ sdev \ avg \ sdev ‘
p(V,Q(V)) 0.79 0.07 0.91 0.01
p(QV),m(V)) | 0.28 0.08 0.54 0.03
p(V,m(V)) 0.20 0.06 0.50 0.03

’ e; = \ avg \ sdev \ avg \ sdev ‘
p(V,Q(V)) 0.83 0.02 0.86 0.04
p(Q(V),m(V)) | 0.57 0.01 0.57 0.05
p(V,m(V)) 0.51 0.02 0.49 0.04

Hostility and reputation still correlate positively, so defecting is still at-
tractive. Correlation between supply and reputation over all nodes is at 0.67
again for one third of malicious nodes, and still 0.48 for two thirds. More
importantly, if we consider honest nodes only, these figures are similar to
those for simulation runs with no liars at all.

9.3.4 Sparse networks

All networks that we have simulated up to this point have been fully con-
nected. In practice, this is the case only in some scenarios, such as in DHTs
where the end points of each communication are determined by uniformly
distributed hash values. However, this uniform behavior is not always desir-
able:

e A system in which each node knows only a constant number of neigh-
bors independent of the network size scales better. These networks
tend to have constant routes, too, and therefore constant routing costs.

e If nodes can benefit better from each other if they share common inter-
ests or other properties, then communication local on this topology of
interests is more efficient. For example, a distributed research article
library is more useful at the same cost if each node only stores articles
relevant to its user.

For these reasons, we close this chapter with a quick look at sparse net-
work graphs. A sparse uniform simulation run has an additional parameter,

241

density 0 < S < 1. S is the probability of any edge from the fully connected
network graph to exist, so S = 1 yields fully connected graphs, and .S = 0
yields the graph with no edges.

We play the game once more with one third of cautiously hostile nodes
with e = 1, and two thirds of honest nodes. We take statistics over the last
third of the game.

| | §=10 [S=03 [S=01 |

’ all nodes \ avg \ sdev \ avg \ sdev \ avg \ sdev ‘
p(V,Q(V)) 0.67 | 0.09 | 0.74 | 0.05 | 0.61 | 0.09
p(E,QE)) 0.70 | 0.04 | 0.50 | 0.05 | 0.11 | 0.05
p(QV),m(V)) | 0.67 | 0.00 | 0.66 | 0.02 | 0.61 | 0.04
p(V,m(V)) 0.44 | 0.06 | 0.49 | 0.04 | 0.46 | 0.05

’ e; =0 \ avg \ sdev \ avg \ sdev \ avg \ sdev ‘
p(V,Q(V)) 0.97 | 0.01 | 0.89 | 0.02 | 0.67 | 0.09
p(Q(V),n(V)) | 0.53 | 0.02 | 0.61 | 0.03 | 0.66 | 0.06
p(V, (V) 0.50 | 0.02 | 0.54 | 0.03 | 0.53 | 0.06

’ e; =1 ‘ avg ‘ sdev ‘ avg ‘ sdev ‘ avg ‘ sdev ‘
p(V,Q(V)) 0.92 | 0.03 | 0.79 | 0.07 | 0.69 | 0.13
p(Q(V),n(V)) | 0.53 | 0.06 | 0.57 | 0.04 | 0.30 | 0.10
p(V,m(V)) 0.48 1 0.06 | 0.45]0.05 |0.28 | 0.12

Fewer contacts at constant traffic volumes mean more experiences with
those contacts. So our initial assumption was that sparseness would increase
the quality of the reputation information. Instead, at least if fewer edges are
still randomly distributed, and not concentrated in cliques, these results show
a decrease in p(V,Q(V)) on both good and bad nodes individually, and in
p(E,Q(E)) for all nodes, with decreasing density S. The former implies that
if all contacts are random, more contacts give a node an advantage. The latter
implies that the advantage of hostile nodes over honest nodes deteriorates
with decreasing density (possibly due to the fact that the effectiveness of the
reputation system in general deteriorates, which renders exploiting it more
difficult).

The question of an optimal sparsity parameter is relevant for finding an
optimal strategy in super-node topologies (see Figure 8.3 on p. 196). Remem-
ber that super-nodes have been introduced to overcome scalability issues by
forming a backbone network at which sub-nodes connect in one point only.
Routes to sub-nodes connected to the same super-node may be direct, but
all routes to sub-nodes connected to the backbone elsewhere lead through
their respective super-nodes.

242

It is plausible to assume that at least in some applications, the number
of direct neighbors maintained by each node is independent of the network
size. Under this assumption, the density of each network (or in super-node
structured networks: of each sub-network) is a function of its size. By con-
trolling the size of their sub-networks, super-nodes thus control their density.
This raises the question of how dense a network should be in order to yield
optimal performance.

In our case, the data suggests that optimal density is 1, which depending
on the circumstances may be impractical for super-nodes to maintain. But
an optimum that can not be reached can be aimed for, which may already
help increasing output substantially. Further, if other reputation schemes
are considered, new simulations need to be carried out that may produce
different optima.

9.3.5 Figures

On the remaining pages of this chapter, we present the figures discussed in
the preceding sections.

243

o{¥}, pi{¥}, ¥V {nornalized to [8,11}

supply - reputation
INl = 78, no., rounds = 188,
¥ =[1,2,31, H = [3]1, E = [8.08]1,

ofvy +

0*rnd, CRL
1.2
1
8.8
o{v}y 8.6
a.4
8.2
a8
-a.2
_2 -
round X =
i) T) rd 20T 3.9
¥
supply - reputation - utility
INl = 78, no. rounds = 184,
v = [1,2,31, H = [3]1, E = [8.8],
0°rnd, CRL
T T T
oy ——
pifyy ——
¥ o
i i i i
a.5 1.5 2.5 3 3.5

v

Figure 9.1: Q™

244

supply - reputation
INl = 78, no. rounds = 188,
v = [1,2,31, W = [3], E = [08.0], oy o+
0™w§, CRL

| N\

o
.

.
(- L R - - -
T

.

oy

.

.

[~ -~ N - B~ T .~ T -
.

-2 - - - o x ___
round X} =
5.9

supply - reputation - utility
INl = 78, no. rounds = 168,
¥ =[1,2,3]1, H = I[3]1, E = [8.08],
0™v$, CRL

oy ——
pifvy —»—
¥

o{vy), pit¥}, ¥ {nornalized to [8,11}

Figure 9.2: Q¥

245

o{¥}, pi{¥}, ¥V {nornalized to [8,11}

supply - reputation - utility
INl = 78, no., rounds = 188,

v = [1,2,31, H = [3], E = [0.0], oy +
0™avg, CRL, initial reputation {8,8} pitvy =
1.2
1|
| N
o{v}, pif{y) 0.6 -
+
8.4
8.2 - \
B [%
-a.2
\ .
_2 - - - v 5 ___
round X =
L i T) rd 27T F 3.9
v
supply - reputation - utility
INl = 78, no. rounds = 168,
v = [1,2,31, H = [3]1, E = [8.8],
0™avg, CRL, initial reputation {(@,8}
1.2 T T T T
oYy ——
pify¥) ——
Vo
1k i
8.8 4
8.6 i
8.4 i
8.2 4
el i
-8.2 i I i I I
a.5 1 1.5 2 2.5 3 3.5

v

Figure 9.3: QCRE

246

supply = reputation - utility
INl = 78, no. rounds = 188,

v = [1,2,31, H = [3]1, E = [8.8], ofvy +
0™awvg, CRL, initial reputation {x,18=x} pifwy
1.2
1
8.8 \
ofvy, pifv) 8.6
8.4
8,2 r
et
-8,2 \ \ %

supply = reputation - utility
INl = 78, no. rounds = 1688,
¥ = [1,2,3]1, H = [3], E = [8.8],
0™avg, CRL, initial reputation {X,18-x)

oy ——
pifvy —»—
¥

o{y}), pii¥}, ¥ {nornalized to [8,11}

-8.2 i i I i I
8.5 1 1.5 2 2.5

w

3.5

QCRL

Figure 9.4: with randomly pre-seeded reputation matrix.

247

supply - reputation - utility

INl = 78, no, rounds = 188,
v = [1,2,3,4]1, H = [78], E = [0.8], oy +
0™avg, CRL, initial reputation {@,8} pitvy =

+

+

+

+

0(v), pi(v)

LB}

+

1
=
*

o~ IS

.,
-]
=
=]
=%
1
:
f/«”
*
X :
=
=
:
(&
™
M
!
1
4
*
o
£
11
II
II
£
;
o

supply = reputation = utility
INl = 78, no, rounds = 188,

v = [1,2,3,41, H = [1]1, E = [8,0], oYy o+
0™avg, CRL, initial reputation (8,8} pity} -
1.2
1 b
a.8
*
o{vy, pi{yy 8.6 -
+ +
8.4 -
+
a.2 r
8l

=-8.2 - \

Figure 9.5: QCRt with scarce and abundant resources.

248

o{y}), pii¥}, ¥ {nornalized to [8,11}

0y}, pid¥}, ¥ {nornalized to [B,11}

supply = reputation = utility
INl = 78, no. rounds = 188,
¥ =1[1,2,3]1, H = I[3], E = [8.0],
CRT™1, t_i = 8, initial reputation {8,8)

oy ——
pif{¥)} ——
L

CRT™1%, t_i

supply = reputation - utility
INl = 78, no. rounds = 1688,
¥ = [1,2,3]1, H = [3], E = [8.8],
1, initial reputation {@8,8}

oy ——
pifvy —»—
¥

=

1.5

w

3.5

Figure 9.6:

QCRT

with globally constant reputation threshold.

249

o{¥}, pi{¥}, ¥V {nornalized to [8,11}

supply - reputation - utility
INI = 78, no, rounds = 188,
v = [1,2,3]1, H = [31, E = [@8.8]1,

ofvy +
CRT™1, t_i = 0*v{wv_i}, initial reputation {8,8} pitvy =
1.2
1r x 3
8.8
o{v}, pif{v) 8.6 - % * ®
6.4
8.2 -
el
-a.2
=3 - —
round X =
L i T) rd 27T F 3.9
v
supply - reputation - utility
INl = 78, no. rounds = 168,
v = [1,2,31, H = [3]1, E = [8.8],
CRT™1, t_i = 0*v{v_i}, initial reputation {@,8}
1.2 T T T T T
oYy ——
pify¥) ——
Vo
1t s .
8.8 4
8.6 i
0.4 | .
8.2 4
el i
-8.2 i I i I I
a.5 1 1.5 2 2.5 3 3.5
v

Figure 9.7: Q°FT with threshold t; = v;.

250

supply = reputation = utility
INl = 78, no. rounds = 188,

v = [1,2,31, H = [3], o)
E = [@.0,1.8,1,0,1.8,1.08,1.08,1.08,1.8,1,8,1.08,1.8]1, pilv)
0™avg, CRL, initial reputation {8,8),
CautiouslyEvil
1.2
1 b
8.8 | ?‘%&
o{v}, pi{y) 8.6
8.4
8.2
sl +
-8.2 | \
=2 ___
round =
+J T 1T rd 2.0 G F.9
v
supply - reputation - utility
INl = 78, no, rounds = 188,
v = [1,2,3]1, W = [3], (IT413]
E=1I[0,0,1,0,1,0,1.,0,1,0,1,0,1,0,1,08,1,0,1,8,1,8]1, pity}
0”avg, CRL, initial reputation {8,808},
CautiouslyEvil
1.2
1r E x
8.8 '
* H]
0{v}, pifvy 0.6 [o, ®
+
8.4
%
a.2
+
of H *
i $ o,
-8.2 - *
x]
-a, —__
E qﬁ? —
i. L i T 1.7 ey 2.0 3 5.5
v

Figure 9.8: Hostile nodes (CL).

251

supply = reputation = utility
INl = 78, no, rounds = 188,
v = [1,2,3]1, H = [3]1, E = [B.08,1.08,1.8],
0”avg, CRL, initial reputation {8,8),

CautiouslyEvil
1.2
1r x »® ;
0.8 *
»
o{vy, pifv} 0.6 - ® 1 ®
0.4 H
8.2
* ox
ar %
L * +
a.2 " x)
-8, - N g : : =,
E %ﬁ] —
i. [} i) T =5 4 2T F 3.5
v
supply - reputation - utility
INl = 78, no, rounds = 188,
y =[1,2,31, H=1I[31, E = [B,0,0,0,1,8]1,
0™avg, CRL, initial reputation {@8,8},
CautiouslyEvil
1.2
1F M !
6.8 - -
x
0{¥), pi{y} ©.6 ® !
8.4 - b *
L +
a.2
x ko
ar o E » ¥
-a.2 -
x ®
-a, __._
E qﬁ? —
1. 5Py} T 1.3 ey 2.0 3 3.5
Y

)
pity)

ofvy o+
pityy =

Figure 9.9: Fewer hostile nodes (CL).

252

Chapter 10

Conclusions

P2P applications, despite all their appeal and advantages, are inherently
unhealthy environments. Anonymity is often a requirement, or a least a
desirable side-effect, and not only has each node its own agenda potentially
conflicting with that of other nodes, but worse, some of these agendas are
purely destructive and targeted at causing damage to the application and its
users.

To reduce the damage that can be caused to nodes when they are treated
badly by others, they need to have accurate information on other nodes’
identities, previous behavior, and agenda. This information is called reputa-
tion and trust information. It needs to be shared, since for every single node
gathering sufficient experience is prohibitively expensive, and one needs to
make sure that the shared information is correct in the presence of all those
untrusted nodes that should be exposed in this information. For sharing it,
a reputation scheme is needed.

Reputation schemes make use of robust, efficient, distributed data struc-
tures and algorithms and advanced cryptographic primitives to reduce noise.
We have established a state-of-the-art common ground on which reputation
schemes can start. We have then developed a model that has security charac-
teristics unusually strong for current P2P applications, but that can be justi-
fied on this common ground. Finally, we have presented an implementation
of a simple reputation scheme in this model and explore its characteritics.

In Chapter 7, we have formally introduced the concept of trust and rep-
utation and motivated the relevance of this topic not only to P2P networks
but to a much wider class of social systems. We have given a classification of
P2P applications and one of adversarial node types, have explained the or-
thogonal and complementary nature of monetary incentives and reputation,
and introduced the relevant game theoretic concepts to assess the impact
and relevance of our work.

253

254

In Chapter 8, we have established a list of building blocks for construct-
ing secure P2P networks, recycling and extending the cryptography from
Chapter 2.3. Since most work on reputation schemes is based on existing
P2P applications, which are in turn usually based on ad hoc network designs
with inadequate cryptographic protection, this list should be of high value
for future research.

We have started with an explanation of the identity problem, a classi-
fication of identity attacks, and a treatment of the three most important
countermeasures. SybilGuard is a recent graph theoretical algorithm that
finds clouds of adversarial robot nodes by the fact that they (claim to) have
high traffic volumes among themselves, but the network as a whole has low
traffic volumes into the cloud. Less recent and more controverial, hash cash
and other proofs of work impose a job on a node that it can carry out to
boost its reputation without the need of other nodes to risk interacting with
it. Finally, there is a cryptographic signature scheme that makes identities
irreplacable. Signatures are most reliable, but also hard to decentralize. We
have developed a number of formerly unpublished variants that increase the
domain of applicability and harden the original scheme against some risks
such as theft of pseudonymous identities.

More important to our task is the construction of deletion-proof dis-
tributed data structures. It is easy to hand over a large document to a
storage server and keep the hash, and if the storage server is unable to re-
turn the document, or returns an altered version of it, this can always be
detected (with high probability) by comparing the hash of the retrieved doc-
ument with the stored one. If the documents are as small as hashes, but
there is a large number of them, it is possible that the server may get away
unnoticed with dropping some of the documents. In storing a large number
of transaction reports, we always face this problem when adversarial nodes
are trusted with storing reputation on themselves or on colluding nodes.
Hash trees are a class of data structures that help protect against this sort
of attack, and we have listed a less well-known variant that is particularly
powerful and suitable for the task at hand.

We have concluded Chapter 8 with the description of three example rep-
utation schemes: CAN feedback, BitTorrent, and EigenTrust. In Chapter 9,
we have developed a new and more generic application model and a corre-
sponding reputation scheme, and used our generic P2P reputation simulator
esim to implement it and understand its characteristics.

We have designed our model with the purpose to help grasping the core
idea of a wide variety of different papers on the subject in a concise way.
It has a number of unusual aspects that make it not both challenging and
potentially instructive to do this.

255

1. Highly generic. We do not make any assumptions on the underlying
data structure, and thus our model applies to most of the data struc-
tures for which manually crafted incentive systems have been proposed,
and hopefully also to future ones.

2. Utilizing cryptographic state of the art. Unlike in most current P2P
applications, we use advanced building blocks from cryptography and
other fields of computer science to motivate the modelled behavior of
the nodes. For instance, our nodes have a persistent identity that can-
not be changed even by adversaries (see Section 8.1). Without this
restriction, it is very hard to say anything about system performance
in the presence of adversaries, because a single player can imperson-
ate arbitrarily many nodes. These cryptographic techniques are chosed
carefully according to the requirement that the network be decentral-
ized.

3. Beyond monetary incentives. Unlike in most of the economics litera-
ture, we are not restricting ourselves to monetary incentives. Neither
the cost of responding to requests nor the benefit of charging for de-
livered resources are considered in our model. Nodes are invariant to
whether they can provide a resource or not. Micropayments and mon-
etary infrastructures in general have many drawbacks that may render
their deployment unattractive for many P2P applications (see Section
7.4). Hence, we feel it is important to focus on reputation as an alter-
native class of incentives for cooperation. On the other hand, extending
our model to monetary or hybrid incentive schemes is quite straight-
forward. Any insights gained on reputation systems should be valuable
for those schemes as well.

4. Beyond equilibria and perfect solutions. Most previous work we are
aware of has taken the approach of making inconvenient assumptions
on both the distributed data structures the network is based on and the
incentives involved, and then attempting to find cooperative equilibria
(either in simulations or with rigorous game theoretical proofs). We
have chosen this rigorous approach in Part I of our thesis to address
a different problem, but in this part we have argued that a different
approach is needed. We have built what-if machines that allowed us to
describe a concrete system and a concrete adversary, and then assess
the impact of the adversary on the performance of the system. Using
our model we can decide to live with adversaries if they are unavoidable,
and still find optimal parameters for a given application. The history of

256

P2P applications gives us reason to hope that this will make a situation
that is already productive for a large user bases more so.

5. Beyond linearity. In economics, one can find linear models for many
fundamental truths. These have the advantage that their behavior over
time is easy to predict and calculate, but this is also their weakness:
Complex dynamic systems behave in ways that make it impossible for
easy-to-handle models to adequately describe their behavior. We have
abandoned the ambition to provide analytic proofs for our findings.
We claim that a model should be simple enough to be understood by
simulation, which is a far higher bound than analysis.

To conclude Part II of this thesis, we have demonstrated how esim can be
used to visualize and quantify effects of reputation systems on P2P networks,
but we also have established a number of properties of our model (and thus,
hopefully, on a number of real-life P2P networks as well). For a start, it has
become clear that CRL yields more accurate reputation than CRT: If every
node only gives to those nodes that it deems honest and highly cooperative,
fewer resources are contributed. On the other hand, CRL, while performing
better in terms of contribution rates, is not as targeted in punishing defectors
with resource deprivation, and thus induces weaker incentives to contribute.

This dilemma demonstrates that a choice between different distribution
strategies which does not matter for a single node may make a big difference
for the overall system performance. In our setting, CRL may be better if we
expect too many free riders, because even lying only helps to an extent and
even selfish players have an incentive to supply values, and CRT (or, more
likely, a combination of CRL and CRT) may be better if we expect a high
fraction of honest players, because then even small changes in reputation
values can be taken seriously by the nodes reading them.

More liars make p(V,Q(V')) blur and p(E,Q(F)) sharpen. This is unfor-
tunate, but had to be expected, and our intension was not to weed out all
adversarial behavior, but rather to determine its impact.

On the bright side, our experiments have shown that a smaller number of
liars does not only have a smaller negative impact on system performance,
but also makes lying less effective for the individual node. If one accepts
the evolutionary interpretation of the prisoner’s dilemma that systems may
start off with good individuals, but then deteriorate if defectors are given an
advantage, then this is an important result. It sets the threshold that nodes
need to pass in our model to turn into defectors high in a young system, and
this in turn should make it easy to keep a system young.

We have also examined sparse graphs in the hope of finding an optimal

257

density level that would help design and calibrate backbone network struc-
tures. The simulations show that our reputation scheme suffers in network
areas with few connections. This suggests that medium and large networks
may benefit from assuming super-node structures in which arbitrary nodes
act as hubs, and thus the network is composed of many small networks that
are better connected, instead of a large, sparse one.

There is one problem that has become appearent during our research that
we have not explicitly mentioned yet. In our model (at least if CRL plays
a role in the distribution strategy), nodes can get bad reputation for two
reasons: (a) from malicious or lazy defection, and (b) from resource exhaus-
tion or network problems. This has distorted our results considerably and
should be the next thing to work on. Is there a way to distinguish deliberate
defection from resource exhaustion? Which techniques for circumvention of
hot spots are most suitable for our system? If this will reduce the noise levels
in the simulation output as expected, will new trends be visible that we have
missed here?

258

Bibliography

[AC96]

[ACF+77]

[ADS03]

[AF6]

[AF02]

[AH00]

[AK97]

Abadi, Martin; Cardelli, Luca: A Theory of Objects. Mono-
graphs in Computer Science. Springer, 1996. ISBN: 0-387-94775-
2.

Adler, Roy; Coppersmith, Don; Feistel, Hort; Grossman, Edna;
Konheim, Alan; Matyas, Mike; Meyer, Carl; Notz, Bill; Smith,
Lynn; Tuchman, Walter; Tuckerman, Bryant: Data Encryption
Standard. FIPS-46, National Bureau of Standards, U.S. Depart-
ment of Commerce, Washington D.C., January 1977.

Acquisti, Alessandro; Dingledine, Roger; Syverson, Paul F.: On
the Economics of Anonymity. In: Financial Cryptography, 7th
International Conference, FC 2003, Guadeloupe, pp. 84-102.
2003.

Abe, Masayuki; Fujisaki, Eiichiro: How to Date Blind Signa-
tures. In: Advances in Cryptology ASITACRYPT, pp. 244-251.
1996.

Asonov, Dimitri; Freytag, Johann Christoph: Almost Opti-
mal Privacy Information Retrieval. In 2nd Workshop on Pri-
vacy Enhancing Technologies (PET2002), 2002. URL http:
//citeseer.ist.psu.edu/636156.html.

Adar, Eytan; Huberman, Bernardo A.: Free Riding on Gnutella.
First Monday, October 2000, http://www.firstmonday.dk/
issues/issueb_10/adar/index.html, 2000.

Anderson, Ross; Kuhn, Markus: Low Cost Attacks on Tam-
per Resistant Devices. In: Security Protocol Workshop,
April 1997. http://www.cl.cam.ac.uk/ftp/users/rjald/
tamper2.ps.gz.

259

http://citeseer.ist.psu.edu/636156.html
http://citeseer.ist.psu.edu/636156.html
http://www.firstmonday.dk/issues/issue5_10/adar/index.html
http://www.firstmonday.dk/issues/issue5_10/adar/index.html
http://www.cl.cam.ac.uk/ftp/users/rja14/tamper2.ps.gz
http://www.cl.cam.ac.uk/ftp/users/rja14/tamper2.ps.gz

260

[ALNST7]

[AS85]

[ASO00]

[Aso03]

[Avi03]

[Axe84]

[Bac02]

[Bar84]

[BAS03]

[Bau04]

[BBO3]

Ahituv, Niv; Lapid, Yeheskel; Neumann, Seev: Processing
Encrypted Data. In: CACM, volume 30(9):pp. 777-780,
1987. URL http://www.informatik.uni-trier.de/~ley/db/
journals/cacm/cacm30.html#AhituvLN87.

Abelson, Harold; Sussman, Gerald Jay: Structure and Interpre-
tation of Computer Programs. MIT Press, 1985. ISBN: 0-262-
51087-1.

Agrawal, Rakesh; Srikant, Ramakrishnan: Privacy-Preserving
Data Mining. 1In: Proc. of the ACM SIGMOD Conference
on Management of Data, pp. 439-450. ACM Press, May 2000.
ISBN 1-581-13218-2. URL http://www.almaden.ibm.com/cs/
people/srikant/papers/sigmod00.pdf.

Asonov, Dmitri: Querying Databases Privately. Ph.D. thesis,
Humboldt University Berlin, 2003.

Aviram, Amitai: The Paradox of Spontaneous Formation of Pri-
vate Legal Systems. Technical report, Univeristy of Chicago law
school, July 2003.

Axelrod, Robert: The FEvolution of Cooperation. New York:
Basic Books, 1984. ISBN 0-465-02121-2.

Back, Adam: Hash Cash — Amortizable Pubicly Auditable
Cost Functions. http://www.cypherspace.org/hashcash/,
August 2002.

Barendregt, Henk: The Lambda Calculus, its Syntax and Se-
mantics. North-Holland, 1984. ISBN: 0-444-86748-1.

Buragohain, Chiranjeeb; Agrawal, Divyakant; Suri, Subhash:
A Game Theoretic Framework for Incentives in P2P Systems.
Preprint on http://arxiv.org/abs/cs.GT/0310039, 2003.

Bauer, Matthias: Proofs of Zero Knowledge. peer-reviewed pre-
print #cs.CR/0406058, arXiv.org, 2004. URL http://arxiv.
org/abs/cs.CR/0406058.

Buchmann, Erik; Bohm, Klemens: Reputation-Sensitive Mes-
sage Passing in Content-Addressable Networks. Preprint 12,
Otto-von-Guericke University Magdeburg, 2003. URL
http://wwwiti.cs.uni-magdeburg.de/iti_dke/forschung/
buchmannO3reputation.pdf.

http://www.informatik.uni-trier.de/~ley/db/journals/cacm/cacm30.html#AhituvLN87
http://www.informatik.uni-trier.de/~ley/db/journals/cacm/cacm30.html#AhituvLN87
http://www.almaden.ibm.com/cs/people/srikant/papers/sigmod00.pdf
http://www.almaden.ibm.com/cs/people/srikant/papers/sigmod00.pdf
http://www.cypherspace.org/hashcash/
http://arxiv.org/abs/cs.GT/0310039
arXiv.org
http://arxiv.org/abs/cs.CR/0406058
http://arxiv.org/abs/cs.CR/0406058
http://wwwiti.cs.uni-magdeburg.de/iti_dke/forschung/buchmann03reputation.pdf
http://wwwiti.cs.uni-magdeburg.de/iti_dke/forschung/buchmann03reputation.pdf

[BBSS2]

[BBSS6]

[BBvdWO6]

[BCOP04]

[BDK*01]

[Ben05]

[Ber92]

[BF03]

[BFHO3]

[BGO2]

261

Blum, Lenore; Blum, Manuel; Shub, Michael: Comparison of
two pseudo-random number generators. Advances in Cryptol-
ogy: Proceedings of Crypto 82, 1982.

Blum, Lenore; Blum, Manuel; Shub, Michael: A Simple Unpre-
dictable Pseudo-Random Number Generator. SIAM Journal on
Computing, Vol. 15, May 1986.

Buchmann, Erik; Bohm, Klemens; von der Weth, Christian: To-
wards truthful feedback in p2p data structures. In: On the Move
to Meaningful Internet Systems 2006: CooplS, DOA, GADA,
and ODBASE, OTM Confederated International Conferences,
Part I, pp. 498-515. 2006.

Boneh, Dan; Crescenzo, Giovanni Di; Ostrovsky, Rafail; Per-
siano, Giuseppe: Public Key Encryption with Keyword Search.
In: in Proceedings of Furocrypt 2004, LNCS 3027, pp. 506-522.
2004.

Badger, Lee; D’Anna, Larry; Kilpatrick, Doug; Matt, Brian;
Reisse, Andrew; Vleck, Tom Van: Self-Protecting Mobile Agents
Obfuscation. Technical Report #01-036, NAI Labs, November
2001. URL http://opensource.nailabs.com/jbet/papers/
obfeval.pdf.

Benantar, Messaoud: Access Control Systems: Security, Iden-
tity Management and Trust Models, 1st edition. Springer, De-
cember 9 2005. ISBN 0387004459.

Berson, Thomas A.: Differential Cryptanalysis Mod 232 with
Applications to MD5. In: Proceedings of Eurocrypt 2001, volume
658 of LNCS, pp. 71-80. 1992.

Boyens, Claus; Fischmann, Matthias: Profiting from Untrusted
Parties in Web-based Applications. In: Proceedings of the
4th International Conference on Electronic Commerce and Web
Technologies (EC-Web’03). LNCS, Springer Verlag, 2003.

Berman, Fran; Fox, Geoffrey; Hey, Anthony J.G., editors: Grid
Computing: Making The Global Infrastructure a Reality. Wiley,
2003. ISBN: 0470853190.

Boyens, Claus; Glnther, Oliver: Trust is not Enough: Pri-
vacy and Security in ASP and Web Service Environments. In:

http://opensource.nailabs.com/jbet/papers/obfeval.pdf
http://opensource.nailabs.com/jbet/papers/obfeval.pdf

262

[BGI*01]

[BKO05)

[BKNO2]

[BKO02

[Ble9s]

[Blo70]

[Buc06]

[BYS7]

[CAS89]

ADBIS ’02: Proceedings of the 6th East Furopean Conference
on Advances in Databases and Information Systems, pp. 8-22.
Springer-Verlag, London, UK, 2002.

Barak, Boaz; Goldreich, Oded; Impagliazzo, Rusell; Rudich,
Steven; Sahai, Amit; Vadhan, Salil; Yang, Ke: On the
(Im)possibility of Obfuscating Programs. In: Lecture Notes
in Computer Science, volume 2139, 2001. URL http://
citeseer.nj.nec.com/barakOlimpossibility.html,http:
//www.math.ias.edu/~boaz/Papers/obf_informal.html.

Bazzi, Rida A.; Konjevod, Goran: On the Establishment of
Distinct Identities in Overlay Networks. In: PODC, pp. 312—
320. 2005.

Bellare, Mihir; Kohno, Tadayoshi; Namprempre, Chanathip:
Authenticated Encryption in SSH: Provably Fixing the SSH Bi-
nary Packet Protocol, 2002.

Bolton, Gary E.; Katok, Elena; Ockenfels, Axel: Bridging the
Trust Gap in Electronic Markets. Discussion Paper, 2002.

Bleichenbacher, Daniel: Chosen Ciphertext Attacks against
Protocols Based on RSA Encryption Standard PKCS #1. In:
Advances in Cyptology — CRYPTO’ 98, pp. 1-12. Springer-
Verlag, Berlin, 1998. URL http://www.bell-labs.com/user/
bleichen/bib.html.

Bloom, Burton H.: Space/Time Trade-Offs in Hash Coding with
Allowable Errors. Communications of the ACM, Vol. 13(7), pp.
492-496, 1970.

Buchmann, Erik: Erkennung und Vermeidung von unkoopera-
tivem Verhalten in Peer-to-Peer-Datenstrukturen. Ph.D. thesis,
Otto-von-Guericke University Magdeburg, Juny 2006.

Brickell, Ernest F.; Yacobi, Yacov: On Privacy Homomorphisms

(Extended Abstract). In: FUROCRYPT, pp. 117-125. 1987.

Chaum, David; Antwerpen, Hans Van: Undeniable Signatures.
In: Advances in Cryptology CRYPTO’89, LNCS 435, pp. 212—
216. 1989.

http://citeseer.nj.nec.com/barak01impossibility.html, http://www.math.ias.edu/~boaz/Papers/obf_informal.html
http://citeseer.nj.nec.com/barak01impossibility.html, http://www.math.ias.edu/~boaz/Papers/obf_informal.html
http://citeseer.nj.nec.com/barak01impossibility.html, http://www.math.ias.edu/~boaz/Papers/obf_informal.html
http://www.bell-labs.com/user/bleichen/bib.html
http://www.bell-labs.com/user/bleichen/bib.html

[CB74]

[CFO5]

[CGKO06]

[CGKS95]

[Cha81]

[Cha82]

[Cha85]

[Cha91]

[Cha92]

[CKN06]

263

Chamberlin, Donald D.; Boyce, Raymond F.: SEQUEL: A
structured English query language, 1974.

Cheng, Alice; Friedman, Eric: Sybilproof Reputation Mecha-
nisms. In: P2PECON ’05: Proceeding of the 2005 ACM SIG-
COMM workshop on FEconomics of peer-to-peer systems, pp.
128-132. ACM Press, New York, NY, USA, 2005. ISBN 1-
59593-026-4. doi:http://doi.acm.org/10.1145/1080192.1080202.

Curtmola, Reza; Garay, Juan; Kamara, Seny; Ostrovsky, Rafail:
Searchable Symmetric Encryption: Improved Definitions and
Efficient Constructions. In: CCS’06: Proceedings of the 15th
ACM conference on Computer and communications security, pp.
79-88. ACM Press, New York, NY, USA, 2006. ISBN 1-59593-
518-5. doi:http://doi.acm.org/10.1145/1180405.1180417.

Chor, Benny; Goldreich, Oded; Kushilevitz, Eyal; Sudan,
Madhu: Private Information Retrieval. 1In: IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 41—
50. 1995. URL http://citeseer.ist.psu.edu/article/
chor95private.html.

Chaum, David: Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms. In: Communications of the ACM,
volume 24(2):pp. 84-88, 1981.

Chaum, David: Blind Signatures for Untraceable Payments. In:
Advances in Cryptology CRYPTO, pp. 199-203. 1982.

Chaum, David: Security Without Identification: Transaction
Systems to Make Big Brother Obsolete. In: Communications of
the ACM, volume 28(10):pp. 1030-1044, 1985.

Chaum, David: Numbers Can Be a Better Form of Cash than
Paper. In: Computer Security and Industrial Cryptography -
State of the Art and FEvolution, pp. 174-178. 1991.

Chaum, David: Achieving Electronic Privacy. In: Sci-
entific American, August 1992. An online version is
available from http://www.chaum.com/articles/Achieving_
Electronic_Privacy.htm.

Cheon, Jung Hee; Kim, Woo-Hwan; Nam, Hyun Soo: Known-
plaintext cryptanalysis of the Domingo-Ferrer algebraic privacy

http://citeseer.ist.psu.edu/article/chor95private.html
http://citeseer.ist.psu.edu/article/chor95private.html
http://www.chaum.com/articles/Achieving_Electronic_Privacy.htm
http://www.chaum.com/articles/Achieving_Electronic_Privacy.htm

264

[CLRSO1]

[CMO5]

[Cod70]

[Coh03]

[CRR02]

[CSO8]

[CTO02]

[CTL98a]

homomorphism scheme. In: Inf. Process. Lett., volume 97(3):pp.
118-123, 2006.

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford: Introduction to Algorithms, Second FEdition.
MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7.

Chang, Yan-Cheng; Mitzenmacher, Michael: Privacy Preserv-
ing Keyword Searches on Remote Encrypted Data. In: Inter-
national Conference on Applied Cryptography and Network Se-
curity (ACNS), LNCS, volume 3. 2005.

Codd, Edgar F.: A relational model of data for large shared data
banks. Communications of the ACM, Vol. 13(6), pp. 377-387,
1970.

Cohen, Bram: Incentives Build Robustness in BitTorrent. pub-
lished on http://www.bittorrent.org/, May 2003.

Chari, Suresh; Rabin, Tal; Rivest, Ronald: An Efficient Signa-
ture Scheme for Route Aggregation. Draft, 2002. URL {http:
//citeseer.ist.psu.edu/chariO2efficient.html},{http:
//theory.lcs.mit.edu/~rivest/publications.html}.

Cramer, Ronald; Shoup, Victor: A Practical Public Key Cryp-
tosystem Provably Secure against Adaptive Chosen Ciphertext
Attack. Advances in Cryptology — CRYPTO’98: 18th Annual
International Cryptology Conference, 1998. URL http://
www.springerlink.com/app/home/contribution.asp?wasp=
92udc9wgxg3dunplxgndméreferrer=parent&backto=issue, 2,
35; journal, 1100,1213;1linkingpublicationresults, 1, 1.

Collberg, Christian S.; Thomborson, Clark D.: Watermarking,
Tamper-Proofing, and Obfuscation — Tools for Software Pro-
tection. In: IEEE Trans. Software Eng, volume 28(8):pp. 735—
746, 2002.

Collberg, Christian S.; Thomborson, Clark D.; Low, Dou-
glas: Breaking Abstractions and Unstructuring Data Struc-
tures. In: ICCL, pp. 28-38. 1998. URL http://computer.
org/proceedings/iccl/8454/84540028abs . htm.

http://www.bittorrent.org/
{http://citeseer.ist.psu.edu/chari02efficient.html}, {http://theory.lcs.mit.edu/~rivest/publications.html}
{http://citeseer.ist.psu.edu/chari02efficient.html}, {http://theory.lcs.mit.edu/~rivest/publications.html}
{http://citeseer.ist.psu.edu/chari02efficient.html}, {http://theory.lcs.mit.edu/~rivest/publications.html}
http://www.springerlink.com/app/home/contribution.asp?wasp=92udc9wgxg3unplxgndm&referrer=parent&backto=issue,2,35;journal,1100,1213;linkingpublicationresults,1,1
http://www.springerlink.com/app/home/contribution.asp?wasp=92udc9wgxg3unplxgndm&referrer=parent&backto=issue,2,35;journal,1100,1213;linkingpublicationresults,1,1
http://www.springerlink.com/app/home/contribution.asp?wasp=92udc9wgxg3unplxgndm&referrer=parent&backto=issue,2,35;journal,1100,1213;linkingpublicationresults,1,1
http://www.springerlink.com/app/home/contribution.asp?wasp=92udc9wgxg3unplxgndm&referrer=parent&backto=issue,2,35;journal,1100,1213;linkingpublicationresults,1,1
http://computer.org/proceedings/iccl/8454/84540028abs.htm
http://computer.org/proceedings/iccl/8454/84540028abs.htm

[CTLOSb]

[CZLO7]

[DA99)

[DA0O]

[DAVJI*03]

[DF96]

IDF02]

[DFHJ98]

265

Collberg, Christian S.; Thomborson, Clark D.; Low, Douglas:
Manufacturing Cheap, Resilient, and Stealthy Opaque Con-
structs. In: POPL, pp. 184-196. 1998. URL http://doi.acm.
org/10.1145/268946.268962.

Chen, Xiaofeng; Zhang, Fangguo; Liu, Shengli: ID-based Re-
strictive Partially Blind Signatures and Applications. In: Jour-
nal of Systems and Software, volume 80(2):pp. 164-171, 2007.
ISSN 0164-1212. doi:http://dx.doi.org/10.1016/].jss.2006.02.
046.

Dierks, Tim; Allen, Christopher: The TLS Protocol, Version
1.0. RFC 2246, IETF, Network Working Group, http://www.
ietf.org/rfc/rfc2246.txt, January 1999.

Du, Wenliang; Atallah, Mikhail J.: Protocols for Secure
Remote Database Access with Approximate Matching. In:
Proc. of the First Workshop on Security and Privacy in E-
Commerce. November 2000. URL http://citeseer.ist.psu.
edu/dulOOprotocols.html/.

Damiani, Ernesto; di Vimercati, S. De Capitani; Jajodia, Sushil;
Paraboschi, Stefano; Samarati, Pierangela: Balancing confi-
dentiality and efficiency in untrusted relational DBMSs. In:
CCS’03: Proceedings of the 10th ACM conference on Com-
puter and communications security, pp. 93-102. ACM Press,
New York, NY, USA, 2003. ISBN 1-58113-738-9. doi:http:
//doi.acm.org/10.1145/948109.948124.

Domingo-Ferrer, Josep: A new privacy homomorphism and
applications. In: Information Processing Letters, vol-
ume 60(5):pp. 277-282, 1996. URL http://citeseer.ist.
psu.edu/ferrer96new.html.

Domingo-Ferrer, Josep: A provably secure additive and mul-
tiplicative privacy homomorphism. In: Proceedings of the 5th
Information Security Conference, pp. 471-483. 2002.

Domingo-Ferrer, Josep; Herrera-Joancomarti, Jordi: A Pri-
vacy Homomorphism Allowing Field Operations on En-
crypted Data, 1998. URL http://citeseer.nj.nec.com/
domingo-ferrer98privacy.html.

http://doi.acm.org/10.1145/268946.268962
http://doi.acm.org/10.1145/268946.268962
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt
http://citeseer.ist.psu.edu/du00protocols.html/
http://citeseer.ist.psu.edu/du00protocols.html/
http://citeseer.ist.psu.edu/ferrer96new.html
http://citeseer.ist.psu.edu/ferrer96new.html
http://citeseer.nj.nec.com/domingo-ferrer98privacy.html
http://citeseer.nj.nec.com/domingo-ferrer98privacy.html

266

[DLP*01]

[DMR*03]

[DMS04]

[Dob96]

[Dou02]

[DR02

[EAHT06]

[EFGO6]

[EFGO7]

[EFHO04]

Dyer, Joan G.; Lindemann, Mark; Perez, Ronald; Sailer, Reiner;
van Doorn, Leendert; Smith, Sean W.; Weingart, Steve: Build-
ing the IBM 4758 Secure Coprocessor. In: Computer, vol-
ume 34(10):pp. 57-66, 2001. ISSN 0018-9162. doi:http://dx.
doi.org/10.1109/2.955100.

D’Anna, Larry; Matt, Brian; Reisse, Andrew; Vleck, Tom Van;
Schwab, Steve; LeBlanc, Patrick: Self-Protecting Mobile Agents
Obfuscation Report. Technical Report #03-015, NAI Labs, June
2003. URL http://opensource.nailabs.com/jbet/papers/
obfreport.pdf.

Dingledine, Roger; Mathewson, Nick; Syverson, Paul F.: Tor:
The Second-Generation Onion Router. In: USENIX Security
Symposium, pp. 303-320. 2004.

Dobbertin, Hans: The Status of MD5 After a Recent Attack.
CryptoBytes Vol. 2 No. 2, RSA Laboratories, 1996.

Douceur, John R.: The Sybil Attack. In: IPTPS, pp. 251-260.
2002.

Daemen, Joan; Rijmen, Vincent: The Design of Rijndael: AES
- The Advanced Encryption Standard. Springer, 2002. ISBN
3-540-42580-2.

Esponda, Fernando; Ackley, Elena S.; Helman, Paul; Jia,
Haixia; Forrest, Stephanie: Protecting Data Privacy through
Hard-to-Reverse Negative Databases. In the Proceedings of the
9th Information Security Conference, September 2006, http:
//crypto.stanford.edu/portia/papers/HardNDB.pdf, 2006.

Evdokimov, Sergei; Fischmann, Matthias; Giinther, Oliver:
Provable Security for Outsourcing Database Operations. In:
Proceedings of the 22nd International Conference on Data En-
gineering (ICDE’06). IEEE Press, 2006.

Evdokimov, Sergei; Fischmann, Matthias; Giinther, Oliver:
Provable Security for Outsourcing Database Operations. In:
(to be submitted), 2007.

Esponda, Fernando; Forrest, Stephanie; Helman, Paul: Enhanc-
ing privacy through negative representations of data. Technical
report, University of New Mexico, 2004.

http://opensource.nailabs.com/jbet/papers/obfreport.pdf
http://opensource.nailabs.com/jbet/papers/obfreport.pdf
http://crypto.stanford.edu/portia/papers/HardNDB.pdf
http://crypto.stanford.edu/portia/papers/HardNDB.pdf

[EGS03]

[EH96]

[ES06]

[ESMO03]

[Esp05]

[FGO3]

[FGS05]

[Fis06]

267

Evfimievski, Alexandre; Gehrke, Johannes; Srikant, Ramakr-
ishnan: Limiting Privacy Breaches in Privacy Preserving Data
Mining. In: PODS ’03: Proceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pp. 211-222. ACM Press, New York, NY,
USA, 2003. ISBN 1-58113-670-6. doi:http://doi.acm.org/10.
1145/773153.773174.

English, Erin; Hamilton, Scott: Network security under siege:
The timing attack. In: Computer, volume 29(3):pp. 95-97,
1996. ISSN 0018-9162. doi:http://doi.ieeecomputersociety.org/
10.1109/2.485898.

Ewert, Ulf Christian; Selzer, Stephan: Bridging the Gap: The
Hanseatic Merchants’ Variable Strategies in Heterogeneous Mer-
cantile Environments. In: XIVith International Economic His-
tory Congress, Helsinki, Session 110: Tools of Trade in Late
Medieval Commercial Cities. August 2006.

Endorf, Carl; Schultz, Gene; Mellander, Jim: Intrusion Detec-
tion and Prevention. McGraw-Hill Osborne Media, December
2003. ISBN 0072229543.

Esponda, Fernando: Negative Representations of Information.
Ph.D. thesis, University of New Mexico, 2005.

Fischmann, Matthias; Giinther, Oliver: Privacy Tradeoffs in
Database Service Architectures. In: Proceedings of the 1st In-
ternational Workshop on Business driven security (BIZSEC’03).
2003.

Fabian, Benjamin; Giuinther, Oliver; Spiekermann, Sarah: Secu-
rity Analysis of the Object Name Service. In: Proceedings of
the 1st Workshop on Security, Privacy and Trust in Pervasive
and Ubiquitous Computing (SecPerU 2005), in conj. with IEEE
ICPS 2005, Santorini, pp. 71-76. 2005.

Fischmann, Matthias: Modelling Reputation-Based Resource
Pooling in P2P Systems. In: Proceedings of the 1st International
Conference on Scalable Information Systems (INFOSCALE’06).
IEEE Press, 2006.

268

[FK98]

[FLSCO4]

[FRO1]

[FZ00]

[Gam85)|

(GFO3]

[GJT9]

[GMWO94]

[Goh03]

Foster, lan; Kesselman, Carl, editors: The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publishers,
1998. ISBN: 1558604758.

Feldman, Michal; Lai, Kevin; Stoica, Ion; Chuang, John: Ro-
bust Incentive Techniques for Peer-To-Peer Networks. In: ACM
Conference on FElectronic Commerce, pp. 102-111. 2004. URL
http://citeseer.ist.psu.edu/feldmanO4robust.html/.

Friedman, Eric J.; Resnick, Paul: The Social Cost of Cheap
Pseudonyms. Journal of Economics and Management Strat-
egy 10(2): 173-199., 2001. URL http://www.si.umich.edu/
~presnick/papers/identifiers/.

Fletcher, Jeffrey A.; Zwick, Martin: Simpson’s Paradox Can
Emerge from the N-Player Prisoner’s Dilemma. In: Proceed-
ings of The WorldCongress of the Systems Sciences and ISSS
2000, Toronto, Canada: International Society for the Systems
Sciences. 2000. URL http://www.sysc.pdx.edu/download/
papers/isss_fl zw.html.

Gamal, Taher El: A Public Key Cryptosystem and a Signa-
ture Scheme based on Discrete Logarithms. In: Proceedings of
CRYPTO 84 on Advances in Cryptology, pp. 10-18. Springer-
Verlag New York, Inc., 1985. ISBN 0-387-15658-5.

Greco, Gian Maria; Floridi, Luciano: The Tragedy of the Dig-
ital Commons. TEG Research Report 14.10.03, http://web.
comlab.ox.ac.uk/oucl/research/areas/ieg, 2003.

Garey, Michael; Johnson, David S.: Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. Series of Books
in the Mathematical Sciences. W. H. Freeman, 1979. ISBN: 978-
0716710455.

Greif, Avner; Milgrom, Paul;, Weingast, Barry R.: Coordina-
tion, Commitment, and Enforcement: The Case of the Merchant
Guild. In: Journal of Political Economy, volume 102(4):pp.
745-776, August 1994. Available at http://ideas.repec.org/
a/ucp/jpolec/v102y1994i4p745-76.html.

Goh, Eu-Jin: Building Secure Indexes for Searching Efficiently
on Encrypted Compressed Data. Cryptology ePrint Archive:

http://citeseer.ist.psu.edu/feldman04robust.html/
http://www.si.umich.edu/~presnick/papers/identifiers/
http://www.si.umich.edu/~presnick/papers/identifiers/
http://www.sysc.pdx.edu/download/papers/isss_fl_zw.html
http://www.sysc.pdx.edu/download/papers/isss_fl_zw.html
http://web.comlab.ox.ac.uk/oucl/research/areas/ieg
http://web.comlab.ox.ac.uk/oucl/research/areas/ieg
http://ideas.repec.org/a/ucp/jpolec/v102y1994i4p745-76.html
http://ideas.repec.org/a/ucp/jpolec/v102y1994i4p745-76.html

[Gol01]

[Gol04]

[H4j03]

[HalO1]

[Har68]

[HILMO02]

[HRL97]

[HUOO]

[IEPN04]

[JFO3]

269

Report 2003/216. http://eprint.iacr.org/2003/216/, 2003.
URL citeseer.ist.psu.edu/goh03secure.html.

Goldreich, Oded: Foundations of Cryptography — Volume [
Basic Tools. Cambridge University Press, 2001. ISBN:
0-521-79172-3, http://www.wisdom.weizmann.ac.il/~oded/
foc-voll.html.

Goldreich, Oded: Foundations of Cryptography — Volume II Ba-
sic Applications. Cambridge University Press, 2004. ISBN:
0-521-83084-2, http://www.wisdom.weizmann.ac.il/~oded/
foc-vol2.html.

Hajek, Alan: Interpretations of Probability. Stanford Encyclo-
pedia of Philosophy, http://plato.stanford.edu/entries/
probability-interpret/, 2003.

Halevi, Shai: An Observation Regarding Jutla’s Modes of Op-
eration. IBM Watson technical report, 2001.

Hardin, Garrett: The Tragedy of the Commons, 1968.

Hacigimiig, Hakan; Iyer, Bala; Li, Chen; Mehrotra, Sharad:
Executing SQL over Encrypted Data in the Database-Service-
Provider Model. In: Proceedings of the 2§th SIGMOD Confer-
ence on the Management of Data. ACM, 2002.

Harry R. Lewis, Christos H. Papadimitriou: FElements of the
Theory of Computation. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1997. ISBN: 0132624788.

Hopcroft, John E.; Ullman, Jeffery D.: Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley,
November 2000. http://www-db.stanford.edu/~ullman/
ialc.html.

Ilie, Traffic Dragos; Erman, David; Popescu, Adrian; Nilsson,
Arne A.: Measurement and Analysis of Gnutella Signaling.
IPSI, 2004.

Jurca, Radu; Faltings, Boi: Enforcing Truthful Strategies in
Incentive Compatible Reputation Mechanisms. In: Internet and
Network Economics, volume 3828 of Lecture Notes in Computer
Science, pp. 268 — 277. Springer Verlag, 2005.

http://eprint.iacr.org/2003/216/
citeseer.ist.psu.edu/goh03secure.html
http://www.wisdom.weizmann.ac.il/~oded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/~oded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
http://plato.stanford.edu/entries/probability-interpret/
http://plato.stanford.edu/entries/probability-interpret/
http://www-db.stanford.edu/~ullman/ialc.html
http://www-db.stanford.edu/~ullman/ialc.html

270

[TMS05]

[IMSWO02]

[Jut00]

[KC04]

[KDZ06]

[KJJ99]

[KMO4]

[KO97]

[Kob94]

[Koc96]

[Kol33)]

[Koz03]

Jia, Haixia; Moore, Cristopher; Strain, Doug: Generating Hard
Satisfiable Formulas by Hiding Solutions Deceptively, 2005.

Johnson, Robert; Molnar, David; Song, Dawn Xiaodong; Wag-
ner, David: Homomorphic Signature Schemes. In: CT-RSA,
pp. 244-262. 2002. URL http://citeseer.ist.psu.edu/
johnsonO2homomorphic.html.

Jutla, Charanjit S.: Encryption Modes with Almost Free Mes-
sage Integrity. in Proceedings of Eurocrypt 2001, LNCS,
Springer Verlag, 2000. Earlier version in Cryptology ePrint
Archive, Report 2000/039, http://eprint.iacr.org/.

Kantarcioglu, Murat; Clifton, Chris: Security Issues in Query-
ing Encrypted Data. Purdue CS technical report, March 2004.

Kurt D. Zeilenga, Ed.: Lightweight Directory Access Protocol
(LDAP): Technical Specification Road Map, June 2006. RFC
4510, IETF, Network Working Group, http://www.ietf.org/
rfc/rfc4510.txt.

Kocher, Paul C.; Jaffe, Joshua; Jun, Benjamin: Differential
Power Analysis. In: CRYPTO 1999, LNCS, pp. 388-397. 1999.

Koblitz, Neal; Menezes, Alfred J.: Another Look at "Provable
Security", 2004.

Kushilevitz, Eyal; Ostrovsky, Rafail: Replication Is Not
Needed: Single Database, Computationally-Private Information
Retrieval. In: Proceedings of Thirty-Eighth Annual IEEE Sym-
posium on the Foundations of Computer Science (FOCS-97).
1997.

Koblitz, Neal: A Course in Number Theory and Cryptography.
Springer Verlag, September 1994. ISBN 0387942939.

Kocher, Paul C.: Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In: CRYPTO 1996,
LNCS, pp. 104-113. Springer Berlin / Heidelberg, 1996.

Kolmogorov, Andrei Nikolajevich: Grundbegriffe der
Wahrscheinlichkeitrechnung. Springer, Berlin, 1933.

Koziol, Jack: Intrusion Detection with Snort. Sams, May 2003.
ISBN 157870281X.

http://citeseer.ist.psu.edu/johnson02homomorphic.html
http://citeseer.ist.psu.edu/johnson02homomorphic.html
http://eprint.iacr.org/
http://www.ietf.org/rfc/rfc4510.txt
http://www.ietf.org/rfc/rfc4510.txt

[KRT03]

[KSGMO3]

[KYO1]

[LAAAOG]

[LAFHOA]

[LBO5]

[LCOA]

[LRSW00]

271

Kangasharju, Jussi; Ross, Keith W.; Turner, David A.: Secure
and Resilient Peer-to-Peer E-Mail: Design and Implementation.
In: IEEFE International Conference on Peer-to-Peer Computing.
2003.

Kamvar, Sepandar D.; Schlosser, Mario T.; Garcia-Molina,
Hector: The EigenTrust Algorithm for Reputation Manage-
ment in P2P Networks. In: WWW?03: Proceedings of the
12th international conference on World Wide Web, pp. 640
651. ACM Press, New York, NY, USA, 2003. ISBN 1-58113-
680-3. doi:http://doi.acm.org/10.1145/775152.775242. http:
//www.stanford.edu/~sdkamvar/papers/eigentrust.pdf.

Kiayias, Aggelos; Yung, Moti: Secure Games with Polynomial
Expressions. In: LNCS, volume 2076, 2001. URL http://
citeseer.ist.psu.edu/kiayiasOlsecure.html.

Lam, V. T.; Antonatos, Spyros; Akritidis, Periklis; Anagnos-
takis, Kostas G.: Puppetnets: Misusing Web Browsers as a Dis-
tributed Attack Infrastructure. In: ACM Conference on Com-
puter and Communications Security, pp. 221-234. 2006.

Lee, Hyungjick; Alves-Foss, Jim; Harrison, Scott: The Use of
Encrypted Functions for Mobile Agent Security. Proceedings of
the 37th Hawaii International Conference on System Sciences,
2004.

Li, Maozhen; Baker, Mark: The Grid: Core Technologies
(Paperback). Wiley, 2005. ISBN: 0470094176, http://

coregridtechnologies.org/.

Laurie, Ben; Clayton, Richard: "Proof-of-Work" Proves Not to
Work. http://www.hashcash.org/papers/proof-work.pdf,
May 2004.

Lysyanskaya, Anna; Rivest, Ronald L.; Sahai, Amit; Wolf,
Stefan: Pseudonym Systems. In: Selected Areas in
Cryptography: 6th Annual International Workshop, SAC’99,
Kingston, Ontario, Canada, August 1999., LNCS, pp. 184-199.
Springer, 2000. URL http://theory.lcs.mit.edu/~rivest/
publications.html.

http://www.stanford.edu/~sdkamvar/papers/eigentrust.pdf
http://www.stanford.edu/~sdkamvar/papers/eigentrust.pdf
http://citeseer.ist.psu.edu/kiayias01secure.html
http://citeseer.ist.psu.edu/kiayias01secure.html
http://coregridtechnologies.org/
http://coregridtechnologies.org/
http://www.hashcash.org/papers/proof-work.pdf
http://theory.lcs.mit.edu/~rivest/publications.html
http://theory.lcs.mit.edu/~rivest/publications.html

272

[LSTO5]

[Mac03]

IMB02]

[McL99]

[Mea04]

[Mer80]

[MHPDO5]

[MHS*01]

[Miq04]

Loser, Alexander; Staab, Steffen; Tempich, Christoph: Seman-
tic Methods for P2P Query Routing. In: Multiagent Sys-
tem Technologies, Third German Conference, MATES 2005,
Koblenz, LNCS, pp. 15-26. Springer, 2005.

MacKay, David J. C.: Information Theory, Inference, and
Learning Algorithms. ~ Cambridge University Press, 2003.
ISBN: 9780521642989, URL http://www.inference.phy.cam.
ac.uk/mackay/itila/.

Maitland, Greg; Boyd, Colin: A Provably Secure Restrictive
Partially Blind Signature Scheme. In: Public Key Cryptography,
pp- 99-114. 2002. URL citeseer.ist.psu.edu/665591.html.

McLaughlin, Michael P.: A Compendium of Common
Probability Distributions. Appendix A of the Regress+
User Manual. http://www.causascientia.org/software/
Regress_plus.html, 1999.

Mealling, Michael: EPCglobal Object Naming Service
(ONS) 1.0, 2004. http://www.epcglobalinc.org/standards/
Object_Naming Service_ONS_Standard Version_1.0.pdf.

Merkle, Ralph C.: Protocols For Public Key Cryptosystems,
April 1980.

Mislove, Alan; Haeberlen, Andreas; Post, Ansley; Druschel, Pe-
ter: ePOST. In: Peer-to-Peer Systems and Applications, pp.
171-192. 2005.

Minar, Nelson; Hedlund, Marc; Shirky, Clay; O’Reilly, Tim;
Bricklin, Dan; Anderson, David; Miller, Jeremie; Langley,
Adam; Kan, Gene; Brown, Alan; Waldman, Marc; Cranor, Lor-
rie Faith; Rubin, Aviel; Dingledine, Roger; Freedman, Michael;
Molnar, David; Dornfest, Rael; Brickley, Dan; Hong, Theodore;
Lethin, Richard; Udell, Jon; Asthagiri, Nimisha; Tuvell, Walter;
Wiley, Brandon; (ed.), Andy Oram: Peer-to-Peer: Harnessing
the Power of Disruptive Technologies. O’Reilly, February 2001.
http://www.oreilly.com/catalog/peertopeer/.

Miquel, Jordi Palau: Collaboration Analysis in Recommender
Systems using Social Networks. To be presented to the
Eighth International Workshop on Cooperative Information

http://www.inference.phy.cam.ac.uk/mackay/itila/
http://www.inference.phy.cam.ac.uk/mackay/itila/
citeseer.ist.psu.edu/665591.html
http://www.causascientia.org/software/Regress_plus.html
http://www.causascientia.org/software/Regress_plus.html
http://www.epcglobalinc.org/standards/Object_Naming_Service_ONS_Standard_Version_1.0.pdf
http://www.epcglobalinc.org/standards/Object_Naming_Service_ONS_Standard_Version_1.0.pdf
http://www.oreilly.com/catalog/peertopeer/

IMMO2]

[Moc87a]

[Moc87b]

IMR02]

[MRKO3]

[MS83]

[MvOVO01]

[NBW06]

[Nel99)

[Neus5|

273

Agents (CIA’04), 2004. http://eia.udg.es/~mmontane/
palauaamasO04.pdf.

Maymounkov, Petar; Mazieres, David: Kademlia: A Peer-to-
peer Information System Based on the XOR Metric. In: Ist
International Workshop on Peer-to-peer Systems, 2002.

Mockapetris, Paul: Domain Names — Concepts and Facilities,

November 1987. RFC 1034, IETF, Network Working Group,
http://www.ietf.org/rfc/rfc1034.txt.

Mockapetris, Paul: Domain Names — Implementation and
Specification, November 1987. RFC 1035, IETF, Network Work-
ing Group, http://www.ietf.org/rfc/rfc1035.txt.

Micali, Silvio; Rivest, Ronald L.: Transitive Signature Schemes.
In: Proceedings of the Cryptographer’s Track at the RSA Confer-
ence 2002, pp. 236-243. Springer Verlag CT-RSA, LNCS 2271,
2002.

Micali, Silvio; Rabin, Michael O.; Kilian, Joe: Zero-Knowledge
Sets. In: J4th Symposium on Foundations of Computer Science
(FOCS 2003), pp. 80-91. IEEE Computer Society, 2003.

Myerson, Roger B.; Satterthwaite, Mark A.: Efficient Mecha-
nisms for Bilateral Trading. In: Journal of Economic Theory,
volume 29(2):pp. 265-281, April 1983.

Menezes, Alfred J.; van Oorschot, Paul C.; Vanstone, Scott A.:
Handbook of Applied Cryptography. CRC Press, 2001. ISBN:
0-8493-8523-7, URL http://www.cacr.math.uwaterloo.ca/
hac/about/order.html.

Newman, Mark; Barabasi, Albert-Laszlo; Watts, Duncan J.:
The Structure and Dynamics of Networks. Princeton Univer-
sity Press, 2006. First chapter available from http://press.
princeton.edu/titles/8114 .html.

Nelson, Randal: Relational Algebra. http://anon.
cs.rochester.edu/u/www/u/nelson/courses/csc_173/
relations/algebra.html, 1999.

Neumann, Peter G.: The Risks Digest. http://catless.ncl.
ac.uk/risks, forum on risks to the public in computers and
related systems, since 1985.

http://eia.udg.es/~mmontane/palauaamas04.pdf
http://eia.udg.es/~mmontane/palauaamas04.pdf
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.cacr.math.uwaterloo.ca/hac/about/order.html
http://www.cacr.math.uwaterloo.ca/hac/about/order.html
http://press.princeton.edu/titles/8114.html
http://press.princeton.edu/titles/8114.html
http://anon.cs.rochester.edu/u/www/u/nelson/courses/csc_173/relations
http://anon.cs.rochester.edu/u/www/u/nelson/courses/csc_173/relations
http://anon.cs.rochester.edu/u/www/u/nelson/courses/csc_173/relations
/algebra.html
http://catless.ncl.ac.uk/risks
http://catless.ncl.ac.uk/risks

274

[New03]

[NNH99]

[NPOO]

INPO1]

(0d103]

[Ogi00]

[0GS07]

[ORY4]

[Pos82]

[QS04]

Newman, Mark E. J.: The Structure and Function of Com-
plex Networks. In: SIAM Review, volume 45:pp. 167-256,
2003. URL http://www.citebase.org/abstract?id=oai:
arXiv.org:cond-mat/0303516.

Nielson, Flemming; Nielson, Hanne R.; Hankin, Chris L.:
Principles of Program Analysis. Springer-Verlag, 1999.
ISBN: 3540654100, URL http://www.libri.de/shop/action/
productDetails?artild=1402188.

Naor, Moni; Pinkas, Beny: Distributed Oblivious Transfer. In:
Advances in Cryptology — Asiacrypt “00, volume 1976 of LNCS,
pp- 200-219. Springer-Verlag, December 2000.

Naor, Moni; Pinkas, Benny: Efficient Oblivious Transfer Pro-
tocols. In: Proceedings of SODA 2001 (SIAM Symposium on
Discrete Algorithms), Washington DC. January 2001.

Odlyzko, Andrew M.: The Case Against Micropayments. In: Fi-

nancial Cryptography: 7th International Conference, FC 2003,
LNCS 2742, pp. 77-83. 2003.

Ogilvie, Sheilagh: Social Capital, Social Networks, and History.
Cambridge University memo, http://www.econ.cam.ac.uk/
faculty/ogilvie/social-capital-and-history.pdf, June
2000.

Oberholzer-Gee, Felix; Strumpf, Koleman: The Effect of File
Sharing on Record Sales: An Empirical Analysis. In: Journal
of Political Economy, volume 115(1):pp. 1-42, February 2007.

Osborne, Martin J.; Rubinstein, Ariel: A Course in Game The-
ory. MIT Press, 1994. ISBN 0-262-65040-1. http://mitpress.
mit.edu/catalog/item/default.asp?ttype=2&tid=5073.

Postel, Jonathan B.: Simple Mail Transfer Protocol (SMTP).
RFC 821, IETF, Network Working Group, http://www.ietf.
org/rfc/rfc821.txt, August 1982.

Qiu, Dongyu; Srikant, Rayadurgam: Modeling and Perfor-
mance Analysis of Bittorrent-like Peer-To-Peer Networks. In:
Proceedings of ACM SIGCOMM. August 2004. URL http:
//citeseer.ist.psu.edu/qiu04modeling.html.

http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0303516
http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0303516
http://www.libri.de/shop/action/productDetails?artiId=1402188
http://www.libri.de/shop/action/productDetails?artiId=1402188
http://www.econ.cam.ac.uk/faculty/ogilvie/social-capital-and-history.pdf
http://www.econ.cam.ac.uk/faculty/ogilvie/social-capital-and-history.pdf
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=5073
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=5073
http://www.ietf.org/rfc/rfc821.txt
http://www.ietf.org/rfc/rfc821.txt
http://citeseer.ist.psu.edu/qiu04modeling.html
http://citeseer.ist.psu.edu/qiu04modeling.html

[RADT7S]

[RDO1]

[REO03]

[RFH*01]

[RFI02]

[rHO6]

[Riv92]

[rJO1]

275

Rivest, Ron L.; Adleman, Leonard; Dertouzos, Michael L.: On
Data Banks and Privacy Homomorphisms. In: DeMillo, R.;
Dobkin, D.; Jones, A.; Lipton, R., editors, Foundations of Se-
cure Computation. Academic Press, 1978.

Rowstron, Antony; Druschel, Peter: Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-to-peer
systems. In: [IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), Heidelberg, Germany,
pp- 329-350, 2001.

R. Elmasri, S. Navathe: Fundamentals of Database Systems. 4th
edition. Addison-Wesley, 2003. ISBN: 0321204484.

Ratnasamy, Sylvia; Francis, Paul; Handley, Mark; Karp,
Richard; Schenker, Scott: A Scalable Content-Addressable
Network. In: SIGCOMM ’01: Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, pp. 161-172. ACM
Press, 2001. ISBN 1-58113-411-8. doi:http://doi.acm.org/10.
1145/383059.383072. URL http://citeseer.ist.psu.edu/
ratnasamyOlscalable.html.

Ripeanu, Matei; Foster, lan; lamnitchi, Adriana: Mapping the
Gnutella Network: Properties of Large-Scale Peer-to-Peer Sys-
tems and Implications for System Design. IEEE Internet Com-
puting, 6(1), February 2002. http://people.cs.uchicago.
edu/~matei/papers/ic.pdf, 2002.

3rd, Donald E. Eastlake; Hansen, Tony: US Secure Hash
Algorithms (SHA and HMAC-SHA), July 2006. RFC 4634,
IETF, Network Working Group, http://www.ietf.org/rfc/
rfcd634.txt.

Rivest, Ron: The MD5 Message-Digest Algorithm, April 1992.
RFC 1321, IETF, Network Working Group, http://www.ietf.
org/rfc/rfc1321.txt.

3rd, Donald E. Eastlake; Jones, Paul E.: US Secure Hash Al-
gorithm 1 (SHA1). RFC 3174, IETF, Network Working Group,
http://www.ietf.org/rfc/rfc3174.txt, September 2001.

http://citeseer.ist.psu.edu/ratnasamy01scalable.html
http://citeseer.ist.psu.edu/ratnasamy01scalable.html
http://people.cs.uchicago.edu/~matei/papers/ic.pdf
http://people.cs.uchicago.edu/~matei/papers/ic.pdf
http://www.ietf.org/rfc/rfc4634.txt
http://www.ietf.org/rfc/rfc4634.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc3174.txt

276

[RKCG02]

[Rob66]

[Roe99|

[Rog00]

[Ros86]

[RSAT7]

[Sch96]

[SE05]

[Shad8|

[Shad9|

[Sho98|

Rogers, Eric; Keeler, Ken; Cohen, David X.; Groening, Matt:
Futurama: Anthology of Interest. 20th Century Fox, production
code 2ACV16, 2002.

Roberts, Lawrence G.: Towards a Cooperative Network of
Time-Shared Computers. Technical report, MIT, Lincoln Labo-
ratory, Lexington, Massachusetts, October 1966. http://www.
packet.cc/files/toward-coop-net.html.

Roesch, Martin: Snort - Lightweight Intrusion Detection for
Networks. In: Proceedings of the 15th USENIX Systems Ad-
ministration Conference LISA’99. USENIX, 1999. http://www.

usenix.org/event/lisa99/roesch.html.

Rogaway, Phil: OCB Mode: Parallelizable Authenticated En-
cryption. NIST workshop on modes of operation, http://csrc.
nist.gov/encryption/modes/workshop1/, October 2000.

Rose, Carol: The Comedy of the Commons: Custom, Com-
merce, and Inherently Public Property. In: The Univer-
sity of Chicago Law Review, volume 53(3):pp. 711-781, 1986.
Do0i:10.2307,/1599583.

Rivest, Ron L.; Shamir, Adi; Adleman, Leonard M.: A Method
for Obtaining Digital Signatures and Public-Key Cryptosys-
tems. Technical Report MIT/LCS/TM-82, 1977. URL http:
//sherry.ifi.unizh.ch/rivest78method.html.

Schneier, Bruce: Applied Cryptography, 2nd FEdition. John Wi-
ley & Sons, 1996. ISBN: 0-471-59756-2.

Steinmetz, Ralf; (Eds), Klaus Wehrle: Peer-to-Peer Systems
and Applications. Lecture Notes in Computer Science, Volume
3485, September 2005. ISBN 3-540-29192-X.

Shannon, Claude E.: A Mathematical Theory of Communica-
tion. Bell System Technical Journal, Vol. 27, pp. 379-423, 623—
656, Eprint, 1948.

Shannon, Claude E.. Communication Theory of Secrecy Sys-
tems. Bell System Technical Journal 28 (4): 6566715., 1949.

Shoup, Victor: Why Chosen Ciphertext Security Matters. Re-
search Report RZ 3076 (#93122), IBM Research, 1998. URL
http://citeseer.ifi.unizh.ch/547052.html.

http://www.packet.cc/files/toward-coop-net.html
http://www.packet.cc/files/toward-coop-net.html
http://www.usenix.org/event/lisa99/roesch.html
http://www.usenix.org/event/lisa99/roesch.html
http://csrc.nist.gov/encryption/modes/workshop1/
http://csrc.nist.gov/encryption/modes/workshop1/
http://sherry.ifi.unizh.ch/rivest78method.html
http://sherry.ifi.unizh.ch/rivest78method.html
http://citeseer.ifi.unizh.ch/547052.html

[Sim51]

[SM95]

[SMK™*01]

[SMPDO5]

SS01]

[Sta03]

[Sti05)

[Str04]

[SW05)]

[SWPOO]

277

Simpson, Edward H.: The Interpretation of Interaction in Con-
tingency Tables. In: Journal of the Royal Statistical Society,
Ser. B 13, pp. 238241, 1951.

Shardanand, Upendra; Maes, Patti: Social Information Fil-
tering: Algorithms for Automating “Word of Mouth”. In:
Proceedings of ACM CHI’95 Conference on Human Factors
in Computing Systems, volume 1, pp. 210-217. 1995. URL
http://citeseer.ist.psu.edu/shardanand95social.html.

Stoica, Ion; Morris, Robert; Karger, David; Kaashoek,
M. Frans; Balakrishnan, Hari: Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In: Proceedings of the
ACM SIGCOMM ’01 Conference. San Diego, California, August
2001.

Sandler, Daniel; Mislove, Alan; Post, Ansley; Druschel, Peter:
FeedTree: Sharing Web Micronews with Peer-to-Peer Event No-
tification. In: International Conference on Peer-to-Peer Systems

IPTPS 05, pp. 141-151. 2005.

Smith, Sean W.; Safford, David: Practical Server Privacy
with Secure Co-Processors. In: IBM Systems Journal, vol-
ume 40(3):pp. 683-695, 2001.

Stallings, William: Cryptography and Network Security, 3rd edi-
tion. Prentice Hall, 2003. ISBN: 0-13-111502-2.

Stinson, Douglas: Cryptography Theory and Practice. CRC
Press, 2005.

Streb, Jochen: Die politische Glaubwiirdigkeit von Regierungen
im institutionellen Wandel. Warum auslédndische Fiirsten das
Eigentum der Fernhandelskaufleute der Hanse schiitzten. In:
Jahrbuch fir Wirtschaftsgeschichte, volume 1:p. 141156, 2004.

Song, Dawn Xiaodong; Wagner, David: personal correspon-
dence, 2005.

Song, Dawn Xiaodong; Wagner, David; Perrig, Adrian: Practi-
cal Techniques for Searches on Encrypted Data. In: IEEE Sym-
posium on Security and Privacy. 2000. URL http://citeseer.
nj.nec.com/songO0practical.html.

http://citeseer.ist.psu.edu/shardanand95social.html
http://citeseer.nj.nec.com/song00practical.html
http://citeseer.nj.nec.com/song00practical.html

278

[Thra1]

[Tur50]

[VABLO4]

[Vai06]

[Var01]

[vNMO7]

[Vol02]

[Wag03]

[Was03]

[Wro02]

[WYY05a]

Thrupp, Sylvia L.: Social Control in the Medieval Town. In:
The Journal of Economic History, volume 1, Supplement: The
Tasks of Economic History:pp. 39-52, December 1941. Available
from http://www.jstor.org.

Turing, Alan M.: Computing Machinery and Intelligence. In:
Mind, volume 59, 236:pp. 433—460, 1950.

von Ahn, Luis; Blum, Manuel; Langford, John: Telling Humans
and Computers Apart Automatically. In: Communications of
the ACM, volume 47(2):pp. 56-60, 2004. ISSN 0001-0782. doi:
\url{http://doi.acm.org/10.1145/966389.966390 }.

Vaillant, Noel: Probability Tutorials. http://www.
probability.net/, 2006.

Varadhan, S. R. Srinivasa: Probability Theory. American Math-
ematical Society, Courant Lecture Notes, 2001. ISBN: 0-8218-
2852-5.

von Neumann, John; Morgenstern, Oskar: Theory of Games
and Economic Behavior (60th-Anniversary Edition). Prince-
ton University Press, 2007. ISBN: 978-0-691-13061-3, http:
//press.princeton.edu/titles/7802.html.

Volchan, Sérgio B.: What is a Random Sequence? The Mathe-
matical Association of America Monthly, Vol. 109, 2002.

Wagner, David: Cryptanalysis of an Algebraic Privacy Ho-
momorphism. In: Proceedings of the 6th Information Secu-
rity Conference. 2003. URL http://citeseer.ist.psu.edu/
wagnerO3cryptanalysis.html.

Washington, Lawrence: FElliptic Curves: Number Theory and
Cryptography. Chapman & Hall/CRC, 2003. ISBN 1-58488-
365-0.

Wroblewski, Gregory: General Method of Program Code Obfus-
cation. Ph.D. thesis, Wroclaw University of Technology, Insti-
tute of Engineering Cybernetics, 2002. URL http://citeseer.
ist.psu.edu/wroblewskiO2general .html.

Wang, Xiaoyun; Yu, Hongbo; Yin, Yiqun Lisa: Efficient Col-
lision Search Attacks on SHA-0. In: CRYPTO 2005, LNCS,
volume 3621, 2005.

http://www.jstor.org
http://www.probability.net/
http://www.probability.net/
http://press.princeton.edu/titles/7802.html
http://press.princeton.edu/titles/7802.html
http://citeseer.ist.psu.edu/wagner03cryptanalysis.html
http://citeseer.ist.psu.edu/wagner03cryptanalysis.html
http://citeseer.ist.psu.edu/wroblewski02general.html
http://citeseer.ist.psu.edu/wroblewski02general.html

[WYYO5b]

[XT06]

[YKGFO6]

[ZHS'04]

[Zim95]

ZS05]

279

Wang, Xiaoyun; Yu, Hongbo; Yin, Yiqun Lisa: Finding Colli-
sions in the Full SHA-1. In: CRYPTO 2005, LNCS, volume
3621, 2005.

Xiao, Xiaokui; Tao, Yufei: Anatomy: Simple and Effective Pri-
vacy Preservation. In: VLDB, pp. 139-150. 2006.

Yu, Haifeng; Kaminsky, Michael; Gibbons, Phillip B.; Flaxman,
Abraham: SybilGuard: Defending Against Sybil Attacks via
Social Networks. In: Proceedings of the SIGCOMM Conference
on Communication. ACM, 2006.

Zhao, Ben Y.; Huang, Ling; Stribling, Jeremy; Rhea, Sean C.;
Joseph, Anthony D.; Kubiatowicz, John D.: Tapestry: A Re-
silient Global-Scale Overlay for Service Deployment. In: I[EEFE
Journal on Selected Areas in Communications, volume 22(1),
2004. http://pdos.csail.mit.edu/~strib/docs/tapestry/
tapestry_jsac03.pdf.

Zimmermann, Philip: PGP Source Code and Internals. MIT
Press, 1995. ISBN 0-262-24039-4.

Zahn, Thomas; Schiller, Jochen: MADPastry: A DHT Sub-
strate for Practicably Sized MANETs. In: Proc. of 5th

Workshop on Applications and Services in Wireless Networks
(ASWN2005). Paris, France, June 2005.

http://pdos.csail.mit.edu/~strib/docs/tapestry/tapestry_jsac03.pdf
http://pdos.csail.mit.edu/~strib/docs/tapestry/tapestry_jsac03.pdf

280

Acknowledgements

I thank my advisor Oliver Giinther, who not only gave insightful direc-
tions, arranged my funding, and sponsored me during my application to
the graduate school, but also supported my work with great enthusiasm
and inexhaustible patience; Bettina Berendt for her interest in my research
and invaluable feedback to earlier drafts of this thesis; and the professors
of the Graduate School of Distributed Information Systems, especially Jo-
hann Christoph Freytag and Hans-Joachim Lenz, for their time spent in long
discussions and for their valuable feedback.

I thank the members of the Humboldt University Institute of Information
Systems, especially Sergei Evdokimov, Seda Giirses, and Benjamin Fabian,
Anett Kralisch, and Claus Boyens, who greatly inspired and advanced my
research in countless cooperations.

Further I feel greatful to my graduate school fellow students; the partic-
ipants and organizers of the Dagstuhl seminar on algorithms for sensor and
ad hoc networks in 2005; the students in the seminar on economics in P2P
networks held by Oliver Giinther and me in 2003; and Helger Lipmaa, El-
mar Wolfstetter, Klemens Bohm, Matthias Bauer, Markus Leypold, as well
as many unnamed others for their interest in and impact on my academic
life (both those aspects that have made it into this thesis and more or less
unrelated ones).

Also, I want to thank the Deutsche Forschungsgesellschaft and the Wirt-
schaftswissenschaftliche Gesellschaft at Humboldt University for generous
research grants, and the Institute of Information Systems for a position as a
research assistant.

Most important if somewhat self-evident, I want to thank my parents,
my family, and my friends, all those people who choose to be in my life and
make it fun and interesting.

281

282

Selbstandigkeitserklarung
(declaration of originality)

Hiermit erklére ich, dass ich iiber den tiblichen wissenschaftlichen Austausch
mit Kollegen, der in meinen Verotffentlichungen und in dieser Arbeit doku-
mentiert ist sowie die Betreuung durch Prof. Oliver Giinther hinaus bei der
Verfassung dieser Arbeit keine Hilfe von dritten in Anspruch genommen
habe. Als Hilfsmittel fiir meine Forschung habe ich ausschliefSlich die zitierten
Quellen, die tiblichen Recherchewerkzeuge, um diese Quellen zu finden, sowie
die in der Arbeit beschriebene Hard- und Software verwendet. Frithere Be-
gutachtungen der hier vorliegenden Arbeit haben nicht stattgefunden.

Ich bezeuge, dass meine Angaben tber die bei der Abfassung meiner
Dissertation benutzten Hilfsmittel, iber die mir zuteil gewordene Hilfe sowie
iiber frithere Begutachtungen meiner Dissertation in jeder Hinsicht der Wahr-
heit entsprechen.

Berlin, den 31. Juli 2008

Matthias Fischmann

283

	Two Approaches to Information Security
	I Homomorphic Encryption of Databases
	Introduction
	Problem Statement
	Database Foundations
	Relational Algebra
	SQL
	Object-Oriented Databases

	Cryptographic Foundations
	Probability Theory
	Algorithms, Complexity Theory, and Oracles
	Encryption Schemes
	Security Definitions
	Other Cryptographic Building Blocks
	Homomorphic Cryptography

	Related Work
	Homomorphic Encryption Schemes
	ATE: Homomorphic Encryption in Databases
	Field Arithmetics
	Full-Text Search
	Homomorphic Signatures

	Homomorphic Security Definitions
	Small and Finite Operand Domains
	Full-Text Search
	Relational Algebra

	Code Obfuscation
	Proposed Solutions
	Impossibility Results

	Private Information Retrieval
	Secure Co-Processors
	Data Mining and Privacy
	Negative Databases
	Privacy-Preserving Data Mining

	Adversary Models and Analysis
	Heuristic Security: Analysis of ATE
	Order Revelation through Range Queries
	Small Attribute Domain Size
	On the Impact of Aggregation
	Noise

	Partial Security: Analysis of Full-Text Search
	The Problem
	Partial Security
	A Note on Multi-Message Security

	The ``Good Server Going Bad'' Model
	Definitions
	Cryptographic Schemes
	Discussion

	Private Information Retrieval, revisited
	A Note on Data Integrity

	Security and Performance Bounds
	Strong Security Definitions
	Relational Algebra, Code Obfuscation
	Circuits
	Turing Machines
	Reduction Proofs

	Open Problems
	Performance
	Covert Channels and Advanced Cryptanalysis

	Conclusions

	II Trust and Reputation in P2P Networks
	Introduction
	Concepts and Outline
	Application Scenarios
	The Adversary
	Monetary Incentives vs. Reputation
	Game Theory

	Building Blocks and Related Work
	Identity
	Forms of Identity Abuse
	Blind Signatures and Trusted Third Parties
	Hash Cash and Enforcing Exclusivity
	Graph-Theoretical Approaches

	Routing
	Flooding Strategies
	Distributed Hash Tables
	Discussion

	Deletion-Proof Data Structures
	Reputation
	CAN with Feedback
	BitTorrent
	EigenTrust

	Inverse Sybil Attacks

	Modelling Reputation Schemes
	The Model
	Reputation
	Hostile Peers
	Distribution Strategies

	Motivation
	Routing and Identity
	The Reputation Matrix
	Is There a Prisoner's Dilemma?

	Simulation Results
	Idealized reputation functions O(V), O(rnd)
	Distribution strategies: CRL vs. CRT
	Hostile nodes
	Sparse networks
	Figures

	Conclusions

