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Abstract

We consider optimization problems involving convex risk functions. By em-
ploying techniques of convex analysis and optimization theory in vector spaces
of measurable functions we develop new representation theorems for risk mod-
els, and optimality and duality theory for problems involving risk functions.
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1 Introduction

Comparison of uncertain outcomes is central for decision theory. If the outcomes
have a probabilistic description, a wealth of concepts and techniques from the theory
of probability can be employed. We can mention here the expected utility theory,
stochastic ordering, and various mean–risk models. Our main objective is to con-
tribute to this direction of research, by exploiting relations between risk models and
optimization theory.

We assume that Ω is a certain space and that an uncertain outcome is represented
by a function X : Ω → R. To focus attention, from now on we assume that the
smaller the values of X, the better; for example X may represent an uncertain cost.
It will be obvious how to translate our results to other situations.

By a risk function we understand a function ρ which assigns to an uncertain
outcomeX a real value ρ(X). In order to make this concept precise and to obtain some
meaningful results, one has to define the space X of allowable uncertain outcomes and
to restrict the class of considered functions ρ(·). We assume that Ω is a measurable
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space equipped with σ-algebra F of subsets of Ω, and that X is a linear space of
F -measurable functions X : Ω→ R. Also, we consider risk functions which can take
values in the extended real line R = R ∪ {+∞} ∪ {−∞}.

Recently, Föllmer and Schied [6] have introduced several axioms of so-called convex
risk functions1. In our context, ρ : X → R is a (convex) risk function if it satisfies
the following conditions:

(A1) Convexity:

ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ) for all X, Y ∈ X and α ∈ [0, 1].

(A2) Monotonicity: If X, Y ∈ X and Y ≥ X, then ρ(Y ) ≥ ρ(X).

(A3) Translation Equivariance: If a ∈ R and X ∈ X , then ρ(X + a) = ρ(X) + a.

These conditions were inspired by the axioms of coherent risk measures of Artzner,
Delbaen, Eber and Heath [1], who postulated, in addition to (A1)–(A3), the positive
homogeneity of ρ(·).

A related research direction investigates mean–risk or mean–deviation models. In
these models the objective is a combination of a certain mean outcome (calculated
with respect to some fixed probability measure µ̄), and some dispersion or deviation
statistics, representing the uncertainty of the outcome. Most notable are here the
works on the mean-variance model by Markowitz [11, 12], but many efforts have
been made to use other deviation measures, like semideviation and deviations from
quantiles (Ogryczak and Ruszczyński [13, 14, 15]). Recently, Rockafellar, Uryasev and
Zabarankin [21] also developed an axiomatic approach to coherent risk measures. The
emphasis in that paper is more on a connection between risk and deviation measures
and is less on the monotonicity property (A2). Whenever appropriate we compare
their approach with the one presented in this paper.

In applications, uncertain outcomes usually result from actions, or decisions, un-
dertaken in some uncertain systems. Formally X = F (z), where z is an element of
some vector space Z, and F : Z → X . This creates the need to consider composite
risk functions , of the form ρ(F (z)), and associated optimization problems:

Min
z∈S

ρ(F (z)), (1.1)

where S is a convex subset of Z.
Our plan is to exploit general results of convex analysis in topological vector spaces

of measurable functions to derive properties of convex risk functions and of composite
risk functions. In section 2 we generalize some dual-representation theorems given
in [6] and [21]. Section 3 is devoted to the analysis of differentiability properties of

1Föllmer and Schied use the name ‘risk measure’, but we reserve the term ‘measure’ for its
classical meaning of a countably additive set function.
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risk functions. In particular, we obtain representation of subgradients and directional
derivatives of risk functions and composite risk functions. In section 4 we analyze risk
functions resulting from several classical mean–risk models. In section 5 we introduce
the notion of risk aversion for risk functions and we characterize it with the use of
the theoretical results of the first two sections. The optimization problem (1.1) is
discussed in section 6. We analyze the implications of properties of the risk function
ρ and of F on properties of problem (1.1) and its solutions. We also derive necessary
and sufficient conditions of optimality. In section 7 we introduce the concept of risk
value of perfect information, for problem (1.1), and discuss its properties. Finally,
in section 8 we develop a duality relation for optimization problems involving risk
functions and nonanticipativity constraints.

2 Conjugate Duality of Risk Functions

Let (Ω,F) be a measurable space and Y be the (linear) space of all signed finite
measures on (Ω,F). For µ ∈ Y we denote by |µ| the corresponding total variation
measure, i.e., |µ| = µ+ + µ− where µ = µ+ − µ− is the Jordan decomposition of µ.

Consider a linear space X of F -measurable functions X : Ω → R. We use the
cone

X+ := {X ∈ X : X(ω) ≥ 0, ∀ω ∈ Ω} (2.1)

to define the corresponding partial order on the space X . That is, the relation Y ≥ X
in condition (A2) means that Y (ω) ≥ X(ω) for all ω ∈ Ω. We associate with X a
linear space Y ⊂ Y such that

∫
Ω
|X| d|µ| < +∞ for every X ∈ X and µ ∈ Y , and

define the scalar product

〈µ,X〉 :=

∫
Ω

X(ω) dµ(ω). (2.2)

By Y+ we denote the set of nonnegative measures µ ∈ Y , and by P the set of
probability measures µ ∈ Y , i.e., µ ∈ P if µ ∈ Y+ and µ(Ω) = 1.

We also assume that the space X is sufficiently large so that the following condition
holds true:

(C) If µ 6∈ Y+, then there exists X ∈ X+ such that 〈µ,X〉 < 0.

The above condition ensures that the cone Y+ is dual to X+, i.e.,

Y+ =
{
µ ∈ Y : 〈µ,X〉 ≥ 0, ∀X ∈ X+

}
.

We have that a measure µ is not nonnegative if µ(A) < 0 for some A ∈ F . Therefore,
condition (C) holds, for example, if the space X contains all functions 1lA(·), A ∈ F ,
where 1lA(ω) = 1 for ω ∈ A and 1lA(ω) = 0 for ω 6∈ A. From now on we shall always
assume that the space X satisfies condition (C).
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Furthermore, we assume that X and Y are paired locally convex topological vector
spaces. That is, X and Y are equipped with respective topologies which make them
locally convex topological vector spaces and these topologies are compatible with the
scalar product (2.2), i.e., every linear continuous functional on X can be represented
in the form 〈µ, ·〉 for some µ ∈ Y , and every linear continuous functional on Y can be
represented in the form 〈·, X〉 for some X ∈ X . In particular, we can equip each space
X and Y with its weak topology induced by its paired space. This will make X and
Y paired locally convex topological vector spaces provided that for any X ∈ X \ {0}
there exists µ ∈ Y such that 〈µ,X〉 6= 0, and for any µ ∈ Y \ {0} there exists X ∈ X
such that 〈µ,X〉 6= 0.

A natural choice of X is the space of all bounded F -measurable functions X : Ω→
R. In that case we can take Y := Y. Another possible choice is X := Lp(Ω,F , µ̄)
for some positive measure µ̄ ∈ Y and p ∈ [1,+∞]. In that case we can take Y to be
the linear space of measures ν ∈ Y absolutely continuous with respect to µ̄ and with
density (Radon–Nikodym derivative) h = dν/dµ̄ belonging to the space Lq(Ω,F , µ̄),
where q ≥ 1 is such that 1/p+ 1/q = 1. In that case we identify Y with Lq(Ω,F , µ̄).
Note that an element h ∈ Lp(Ω,F , µ̄) is a class of functions which are equal each other
for almost every (a.e.) ω ∈ Ω with respect to the measure µ̄, and the corresponding
cone X+ is formed by nonnegative almost everywhere h ∈ Lp(Ω,F , µ̄). The space
X := Lp(Ω,F , µ̄) is a Banach space and, for p ∈ [1,+∞), Y := Lq(Ω,F , µ̄) is its dual
space of all continuous linear functionals on X . When dealing with Banach spaces it
is convenient to equip X and Y := X ∗ with the strong (norm) and weak∗ topologies,
respectively. If X is a reflexive Banach space, i.e., X ∗∗ = X , then X and X ∗, both
equipped with strong topologies, form paired spaces.

Having defined the spaces X and Y , we can return to the analysis of convex risk
functions. We shall assume that every risk function ρ is proper, i.e., ρ(X) > −∞ for
all X ∈ X and its domain dom(ρ) := {X ∈ X : ρ(X) < +∞} is nonempty.

The conjugate ρ∗ : Y → R of a risk function ρ is defined as

ρ∗(µ) := sup
X∈X

{
〈µ,X〉 − ρ(X)

}
, (2.3)

and the conjugate of ρ∗ as

ρ∗∗(X) := sup
µ∈Y

{
〈µ,X〉 − ρ∗(µ)

}
. (2.4)

By lsc(ρ) we denote the lower semicontinuous hull of ρ taken with respect to the
considered topology of X . The following is the basic duality result of convex analysis
(see, e.g., [17, Theorem 5] and [2, Theorem 4.4.2] for a proof).

Theorem 1 (Fenchel-Moreau) Suppose that the function ρ : X → R is convex
and proper. Then ρ∗∗ = lsc(ρ).
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It follows that if ρ is convex and proper, then the representation

ρ(X) = sup
µ∈Y

{
〈µ,X〉 − ρ∗(µ)

}
(2.5)

holds if ρ is lower semicontinuous. Conversely, if (2.5) holds for some function ρ∗(·),
then ρ is lower semicontinuous and convex. Note also that if ρ is proper, lower
semicontinuous and convex, then its conjugate function ρ∗ is proper. Let us also
remark that if X is a Banach space and Y := X ∗ is its dual (e.g., X = Lp(Ω,F , µ̄)
and Y = Lq(Ω,F , µ̄)) and ρ is convex, then ρ is lower semicontinuous in the weak
topology iff it is lower semicontinuous in the strong (norm) topology. If the set Ω is
finite, then the space X is finite dimensional. In that case ρ is continuous (and hence
lower semicontinuous) if it is real valued.

Theorem 2 If assumptions (A1)–(A3) hold true and the function ρ : X → R is lower
semicontinuous, then

ρ(X) = sup
µ∈P

{
〈µ,X〉 − ρ∗(µ)

}
, ∀X ∈ X . (2.6)

Conversely, if ρ can be represented in the form (2.6) for some function ρ∗ : Y → R,
then ρ is lower semicontinuous and assumptions (A1)–(A3) are satisfied.

Proof. Suppose that assumption (A2) holds true. It follows then that ρ∗(µ) = +∞
for any measure µ ∈ Y which is not nonnegative. Indeed, if µ 6∈ Y+, then we have
by condition (C) that 〈µ, X̄〉 < 0 for some X̄ ∈ X+. Take an X in the domain of ρ,
i.e., such that ρ(X) is finite, and consider Xt := X − tX̄. Then for t ≥ 0, we have by
assumption (A2) that X ≥ Xt, and hence ρ(X) ≥ ρ(Xt). Consequently

ρ∗(µ) ≥ sup
t∈R+

{
〈µ,Xt〉 − ρ(Xt)

}
≥ sup

t∈R+

{
〈µ,X〉 − t〈µ, X̄〉 − ρ(X)

}
= +∞.

Suppose that assumption (A3) holds. Then, for an X ∈ dom(ρ), we have

ρ∗(µ) ≥ sup
a∈R

{
〈µ,X + a〉 − ρ(X + a)

}
= sup

a∈R

{
aµ(Ω)− a+ 〈µ,X〉 − ρ(X)

}
.

It follows that ρ∗(µ) = +∞ for any µ ∈ Y such that µ(Ω) 6= 1. This shows that, under
the specified assumptions, it suffices to take the supremum in (2.4) with respect to
the set P ⊂ Y of probability measures, and hence (2.6) follows by the Fenchel-Moreau
theorem.

Conversely, suppose that representation (2.6) holds. Then ρ is given by the supre-
mum of a family of continuous affine functions, and hence is convex and lower semi-
continuous. Now if Y ≥ X, then 〈µ, Y 〉 − 〈µ,X〉 = 〈µ, Y − X〉 ≥ 0 for any µ ∈ P.
Consequently assumption (A2) follows from (2.6). Finally, we have that for any

5



µ ∈ P, 〈µ,X+a〉 = 〈µ,X〉+a, and hence it follows by (2.6) that ρ(X+a) = ρ(X)+a.

The above theorem generalizes the results of Föllmer and Schied [6, Theorems 5
and 6].

It is said that the function ρ is positively homogeneous if ρ(tX) = tρ(X) for any
t > 0 and X ∈ X . If ρ is convex and positively homogeneous, then its conjugate
ρ∗ is the indicator function of a closed convex set A ⊂ Y which is formed by such
µ ∈ Y that 〈µ,X〉 ≤ ρ(X) for all X ∈ X . Moreover, under assumptions (A2)–(A3),
it suffices to consider µ ∈ P, i.e.,

A = {µ ∈ P : 〈µ,X〉 ≤ ρ(X), ∀X ∈ X} . (2.7)

Therefore Theorem 2 implies the following result.

Corollary 1 Suppose that assumptions (A1)–(A3) hold and the function ρ is lower
semicontinuous and positively homogeneous. Then

ρ(X) = sup
µ∈A
〈µ,X〉, ∀X ∈ X , (2.8)

where the set A is defined in (2.7).

The set A is called the risk envelope in Rockafellar, Uryasev and Zabarankin [21],
where the above result has been developed in the space X := L2(Ω,F , µ̄).

3 Continuity and Differentiability Properties

of Risk Functions

In applications it is usually straightforward to verify assumptions (A1)–(A3). The
assumption of the lower semicontinuity of ρ is more delicate. Suppose that ρ is proper
and convex, and denote by int(dom ρ) the interior of the domain of ρ. We have that
if ρ is bounded from above on a neighborhood of some point X̄ ∈ X , then ρ is
continuous on int(dom ρ) (e.g., [7, p. 170, Theorem 1]). In order to verify continuity
properties of ρ it is technically advantageous to use the strong (rather than weak)
topology of X , if X is a Banach space. Therefore when dealing with a Banach space
X we equip it with its strong topology and use Y := X ∗.

A linear functional ` : X → R is called an algebraic subgradient of ρ at X̄ ∈ dom ρ
if

ρ(X) ≥ ρ(X̄) + `(X − X̄), ∀X ∈ X . (3.1)

Note that the algebraic subgradient functional ` is not required to be continuous.
If, moreover, ` ∈ Y , then we say that ` is a subgradient of ρ at X̄. The set of
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all subgradients ` ∈ Y , satisfying (3.1), is called the subdifferential of ρ at X̄, and
denoted ∂ρ(X̄). It is said that ρ is subdifferentiable at X̄ if ∂ρ(X̄) is nonempty.

Let us observe that ρ always possesses an algebraic subgradient at any point
X̄ ∈ int(dom ρ) (cf., [9, Lemma 1.1]). Indeed, consider the directional derivative
function δ(·) := ρ′(X̄, ·), where

ρ′(X̄,X) := lim
t↓0

ρ(X̄ + tX)− ρ(X̄)

t
.

The function δ(·) is positively homogeneous. By the convexity of ρ, it is convex
and satisfies for all X the inequality ρ(X) ≥ ρ(X̄) + δ(X − X̄). Moreover, if X̄ ∈
int(dom ρ), then δ(·) is finite valued. By the Hahn-Banach Theorem we have that
there exists a linear functional ` : X → R such that δ(·) ≥ `(·). It follows that `
satisfies (3.1).

We show now that the lower semicontinuity of ρ is implied by assumptions (A1)–
(A2), if X has the structure of a Banach lattice. Recall that X is a lattice (with
respect to the cone X+) if for any X1, X2 ∈ X the element X1 ∨X2, defined as[

X1 ∨X2

]
(ω) := max

{
X1(ω), X2(ω)

}
, ω ∈ Ω,

belongs to X . For every X ∈ X we can then define |X| ∈ X in a natural way, i.e.,
|X|(ω) = |X(ω)|, ω ∈ Ω. The space X is a Banach lattice if it is a Banach space
and |X1| ≤ |X2| implies ‖X1‖ ≤ ‖X2‖. For example, every space X := Lp(Ω,F , µ̄),
p ∈ [1,+∞], is a Banach lattice.

Proposition 1 Suppose that X is a Banach lattice and ρ : X → R satisfies assump-
tions (A1) and (A2). Then ρ(·) is continuous and subdifferentiable on the interior of
its domain.

Proof. Let X̄ ∈ int(dom ρ). By the above discussion, ρ possesses an algebraic sub-
gradient, denoted `, at X̄. It follows from the monotonicity of ρ(·) that ` is positive
in the sense that `(X) ≥ 0 for all X ∈ X+. Indeed, if `(Y ) < 0 for some Y ∈ X+,
then it follows from (3.1) that ρ(X̄ − Y ) > ρ(X̄), which contradicts (A2). Now by
[9, Theorem 0.12] we have that any positive linear functional on the Banach lattice
X is continuous. Consequently ` is continuous, and hence ` ∈ ∂ρ(X̄). It follows then
from (3.1) that ρ is lower semicontinuous at X̄. Since X̄ was an arbitrary point of
int(dom ρ), we obtain that ρ(·) is lower semicontinuous on the interior of its domain.
This, combined with the fact that X is a Banach space, implies the continuity of ρ(·)
on int(dom ρ) (see, e.g., [16, Theorem 3.3]).

We obtain that, under the assumptions of the above proposition, if ρ(X) is real
valued for all X ∈ X , then ρ(·) is continuous and subdifferentiable on X . Proposition
1 can be applied, for example, to every space X := Lp(Ω,F , µ̄) with p ∈ [1,+∞).
We also can apply this framework to the space X := L∞(Ω,F , µ̄) if we equip it
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with its strong topology. This, however, will require to pair X with its dual space
Y := L∞(Ω,F , µ̄)∗ which is larger than L1(Ω,F , µ̄).

Consider a point X̄ ∈ dom(ρ). It immediately follows from the definitions that

µ ∈ ∂ρ(X̄) iff ρ∗(µ) = 〈µ, X̄〉 − ρ(X̄). (3.2)

By applying this to the function ρ∗∗, instead of ρ, and using the identity ρ∗∗∗ = ρ∗,
which follows from the Fenchel-Moreau Theorem, we obtain that

∂ρ∗∗(X̄) = arg max
µ∈Y

{
〈µ, X̄〉 − ρ∗(µ)

}
(3.3)

(cf., [17, p.35]). We also have that if ρ is subdifferentiable at X̄, then ∂ρ∗∗(X̄) =
∂ρ(X̄). It follows that if ρ is subdifferentiable at X̄, then ∂ρ(X̄) is equal to the right
hand side of (3.3) and, moreover, if assumptions (A1)–(A3) hold, then

∂ρ(X̄) ⊂ P.

In particular, we obtain that under the assumptions of Corollary 1, the representation
(2.8) holds with the set A = ∂ρ(0), and

∂ρ(X̄) = arg max
µ∈A
〈µ, X̄〉. (3.4)

There is a duality relation between the subdifferential ∂ρ(X̄) and the directional
derivative function ρ′(X̄, ·). That is, if ρ is subdifferentiable at X̄ and ρ′(X̄, ·) is lower
semicontinuous at 0 ∈ X , then

ρ′(X̄,X) = sup
µ∈∂ρ(X̄)

〈µ,X〉, X ∈ X . (3.5)

In particular, if X is a Banach space and ρ is continuous at X̄, then (3.5) holds and
ρ is directionally differentiable at X̄ in the Hadamard sense, i.e.,

ρ′(X̄,X) = lim
X′→X
t↓0

ρ(X̄ + tX ′)− ρ(X̄)

t

(see, e.g., [4, section 2.2.1] for a discussion of Hadamard directional derivatives).
Hadamard directional differentiability implies continuity of the directional derivative
function ρ′(X̄, ·). Recall that ρ is said to be Gâteaux differentiable at X̄ if ρ′(X̄, ·) is
linear and continuous. Therefore, if X is a Banach space and ρ is continuous at X̄,
then ρ is Gâteaux (Hadamard) differentiable at X̄ iff ∂ρ(X̄) is a singleton.

In the subsequent analysis we shall deal with composite functions ψ : Z → R of
the form ψ(·) := ρ(F (·)). Here Z is a vector space and F : Z → X is a mapping. We
write f(z, ω), or fω(z), for

[
F (z)

]
(ω), and view f(z, ω) as a random function defined

on the measurable space (Ω,F). We say that the mapping F is convex if the function
f(·, ω) is convex for every ω ∈ Ω.
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Proposition 2 If the mapping F : Z → X is convex and ρ : X → R satisfies
assumptions (A1)–(A2), then the composite function ψ(·) := ρ(F (·)) is convex.

Proof. For any z1, z2 ∈ Z and α ∈ [0, 1], we have by convexity of F (·) and
monotonicity of ρ(·) that

ρ(F (αz1 + (1− α)z2)) ≤ ρ(αF (z1) + (1− α)F (z2)).

Hence convexity of ρ(·) implies that

ρ(F (αz1 + (1− α)z2)) ≤ αρ(F (z1)) + (1− t)ρ(F (z2)).

This proves the convexity of ρ(F (·)).

Let us discuss now differentiability properties of the composite function ψ(·) at a
point z̄ ∈ Z.

Proposition 3 Suppose that X is a Banach space, the mapping F is convex, the
function ρ is convex, finite valued and continuous at X̄ := F (z̄). Then the composite
function ψ is directionally differentiable at z̄, ψ′(z̄, z) is finite valued for every z ∈ Z
and

ψ′(z̄, z) = sup
µ∈∂ρ(X̄)

∫
Ω

f ′ω(z̄, z) dµ(ω). (3.6)

Proof. We have here that ρ is subdifferentiable and Hadamard directionally differ-
entiable at X̄ := F (z̄) and formula (3.5) holds. By the convexity of F , we also have
that F is directionally differentiable at z̄ with [F ′(z̄, z)](ω) = f ′ω(z̄, z). Because of the
Hadamard directional differentiability of ρ, we can apply the chain rule to conclude
that ψ(·) is directionally differentiable at z̄, ψ′(z̄, z) is finite valued and

ψ′(z̄, z) = ρ′(X̄, F ′(z̄, z)).

Together with (3.5), the above formula implies (3.6).

Corollary 2 Suppose that X and Z are Banach spaces, the mapping F is convex and
continuous at z̄, the function ρ satisfies assumptions (A1) and (A2), is continuous
at X̄ := F (z̄) and ∂ρ(X̄) = {µ̄} is a singleton. Then the composite function ψ is
Hadamard differentiable at z̄ if and only if f ′ω(z̄, ·) is linear for µ̄-almost every ω ∈ Ω.

Proof. By Proposition 3 we have here that

ψ′(z̄, z) =

∫
Ω

f ′ω(z̄, z) dµ̄(ω). (3.7)
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The function
∫

Ω
f ′ω(z̄, ·) dµ̄(ω) is real valued, convex and positively homogeneous. It

is linear iff f ′ω(z̄, ·) is linear for µ-almost every ω ∈ Ω. Therefore, ψ′(z̄, ·) is linear iff
f ′ω(z̄, ·) is linear for µ̄-almost every ω ∈ Ω. We also have that ψ is continuous at z̄,
and by Proposition 2, ψ is convex. It follows that if ψ′(z̄, ·) is linear, then ∂ψ(z̄) is a
singleton, and hence ψ is Hadamard differentiable at z̄.

It is also possible to write formula (3.6) in terms of the corresponding subdiffer-
entials. Suppose that Z is a separable locally convex topological vector space, Z∗ is
its dual space of all continuous linear functionals on Z, F : Z → X is convex, and
consider the integral function

ϕµ(z) :=

∫
Ω

fω(z) dµ(ω)

associated with measure µ ∈ P. Suppose, further, that functions fω(·), ω ∈ Ω, and
ϕµ(·) are continuous at a point z̄ ∈ Z. Then by Strassen’s theorem (in the general
form provided in [9, Theorem 1.1], see also [23, 5]) we have that

∂ϕµ(z̄) :=

∫
Ω

∂fω(z̄) dµ(ω). (3.8)

The integral in the right hand side of (3.8) is understood as the set of elements of Z∗
of the form

∫
Ω
z∗(ω) dµ(ω), where z∗(ω) ∈ ∂fω(z̄) ⊂ Z∗ for every ω ∈ Ω, and z∗(·) is

weakly∗ µ-integrable, that is, 〈z∗(·), v〉 is µ-integrable for every v ∈ Z.
We also have that ∂ψ(z̄) is equal to the subdifferential of the directional derivative

function ψ′(z̄, ·) at 0 ∈ Z. Therefore, if formula (3.6) holds, then

∂ψ(z̄) := conv
(⋃

µ∈∂ρ(X̄)

∫
Ω
∂fω(z̄) dµ(ω)

)
, (3.9)

where conv(S) denotes the closure (in the weak∗ topology) of the convex hull of the
set S ⊂ Z∗.

4 Examples of Risk Functions

In this section we investigate several examples of risk models which are discussed in
the literature.

Example 1 Let µ̄ be a probability measure on (Ω,F) and consider the space X :=
Lp(Ω,F , µ̄) for some p ∈ [1,+∞). Define

ρ(X) := 〈µ̄, X〉+ c ψp(X), (4.1)

where c ≥ 0 is a constant and

ψp(X) := ‖X − 〈µ̄, X〉‖p =

(∫
Ω

|X(ω)− 〈µ̄, X〉|p dµ̄(ω)

)1/p

. (4.2)
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Note that for p = 2 the function ρ(·) corresponds to the classical mean–variance
model of Markowitz [11], but with the standard deviation instead of the variance.

The functions ψp, ρ : X → R are convex, positively homogeneous and continuous
in the strong (norm) topology of Lp(Ω,F , µ̄). Consider the set

Mp := {ν ∈ Y : 〈ν,X〉 ≤ ψp(X), X ∈ X} , (4.3)

and ν ∈ Mp. For a set A ∈ F let A = A+ ∪ A− be the Jordan decomposition of
A with respect to ν, i.e., A+ ∩ A− = ∅ and |ν|(A) = ν(A+) − ν(A−). Let X(·) :=
1lA+(·)− 1lA−(·). Then |ν|(A) = 〈ν,X〉, and if µ̄(A) = 0, then ψp(X) = 0. It follows,
by the definition of the set Mp, that if µ̄(A) = 0, then |ν|(A) = 0, and hence ν is
absolutely continuous with respect to µ̄. Consider the Radon–Nikodym derivative
h = dν/dµ̄. It is natural then to embed the set Mp into the space of absolutely
continuous, with respect to µ̄, measures with density h ∈ Lq(Ω,F , µ̄). With some
abuse of the notation we take Y := Lq(Ω,F , µ̄) and write

Mp =

{
h ∈ Y :

∫
Ω

X(ω)h(ω) dµ̄(ω) ≤ ψp(X), X ∈ X
}
. (4.4)

We have that Mp is equal to the subdifferential ∂ψp(X) at X = 0. Also recall
that the subdifferantial of the norm ‖X‖p, at X = 0, is equal to the unit ball Bq :=
{h ∈ Y : ‖h‖q ≤ 1} in the dual space Lq(Ω,F , µ̄). Consider the (linear) operator
A(X) := X − 〈µ̄, X〉. By the Moreau-Rockafellar theorem we have that ∂ψp(0) =
A∗(Bq), where A∗ : Y → Y is the adjoint of the operator A. By a straightforward
calculation we have that A∗(h) = h−

∫
Ω
h dµ̄. Consequently,

Mp =
{
h−

∫
Ω
h dµ̄ : h ∈ Bq

}
. (4.5)

It follows that

ρ(X) = sup
µ∈Ap
〈µ,X〉, (4.6)

where the set Ap := 1 + cMp can be written in the form

Ap =
{
g ∈ Y : g = 1 + h−

∫
Ω
h dµ̄, ‖h‖q ≤ c

}
. (4.7)

Now if p = 1, then q = +∞, i.e., the corresponding norm ‖h‖q is given by the
essential maximum of |h(ω)|, ω ∈ Ω. In that case all functions g ∈ Ap are almost
everywhere nonnegative valued, and hence Ap is a set of probability measures, if
c ≤ 1/2. In fact, if the measure µ̄ is such that for every ε > 0 there exists A ∈ F such
that 0 < µ̄(A) < ε, then Ap is a set of probability measures if and only if c ≤ 1/2.
Indeed, it is clear that if ‖h‖q ≤ c, then

1 + h(ω)−
∫

Ω

h dµ̄ ≥ 1− |h(ω)| −
∫

Ω

|h| dµ̄ ≥ 1− 2c

11



for a.e. w ∈ Ω. Conversely, take

h(·) := c
[
−1lA(·) + 1lΩ\A(·)

]
.

Then ‖h‖q = c,
∫

Ω
h dµ̄ = c[1− 2µ̄(A)], and hence

inf
ω∈Ω

{
1 + h(ω)−

∫
Ω

h dµ̄

}
= 1− 2c+ 2cµ̄(A).

Consequently, if c > 1/2, then for A ∈ F such that µ̄(A) > 0 is small enough, the
right hand side of the above equation is negative.

For p > 1 the situation is different. Suppose for the moment that Ω is finite, say
Ω = {ω1, . . . , ωK} with respective (positive) probabilities p1, . . . , pK . In that case a
necessary condition for Ap to be a set of probability measures is that the following
inequality should hold

c ≤ min
1≤i≤K

[
p
−1/q
i − 1

]−1

. (4.8)

The right hand side of the above inequality is less than or equal to 1/(K1/q−1), with
the equality for p1 = · · · = pK = 1/K. Therefore, for large K the allowable values of c
(for which Ap is a set of probability measures) are very small. If the measure µ̄ is such
that the property: (i) “for every ε > 0 there exists A ∈ F such that 0 < µ̄(A) < ε”
holds, then for p > 1 the set Ap is not a set of probability measures, no matter what
the value of c > 0 is.

Remark 1 It might be worth mentioning that ψp(X) satisfies all axioms of a devi-
ation measure specified in [21]. Note, however, that for p > 1 (and, in particular,
for p = 2) the resulting mean-deviation model (4.1) may violate the monotonicity
property (A2). In fact, the mean-deviation model (4.1) violates the monotonicity
property for any c > 0 if the measure µ̄ satisfies the specified above property (i).

Example 2 Let, as in Example 1, µ̄ be a probability measure on (Ω,F) and X :=
Lp(Ω,F , µ̄) for some p ∈ [1,+∞). Consider now the function

ρ(X) := 〈µ̄, X〉+ c σp(X), (4.9)

where c ≥ 0 and

σp(X) :=
∥∥∥[X − 〈µ̄, X〉]

+

∥∥∥
p

=

(∫
Ω

[
X(ω)− 〈µ̄, X〉

]p
+
dµ̄(ω)

)1/p

(4.10)

is the upper semi-deviation of X of order p with p ≥ 1. Note that [a]p+ := ([a]+)p. The
risk function (4.2) represents the mean–semideviation models analyzed in [13, 14].

Again, the functions σp(·) and ρ(·) are a convex, positively homogeneous and
continuous in the strong topology of Lp(Ω,F , µ̄). Similarly to the analysis of Example
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1, we need to consider only measures which are absolutely continuous with respect to
µ̄, and can take Y := Lq(Ω,F , µ̄). Moreover, the subdifferential of ‖[X]+‖p, at X = 0,
is equal to {h ∈ Bq : h º 0}, where the notation h º 0 means that h(ω) ≥ 0 for µ̄-
almost every ω ∈ Ω. Consequently, in a way similar to the derivations of Example 1,
it can be shown that the representation (4.6), for the function ρ, holds with the set
Ap which can be written in the form

Ap :=
{
g ∈ Y : g = 1 + h−

∫
Ω
h dµ̄, ‖h‖q ≤ c, h º 0

}
. (4.11)

Since
∣∣∫

Ω
h dµ̄

∣∣ ≤ ‖h‖q for any h ∈ Lq(Ω,F , µ̄), we have here that Ap is a set of
probability measures if (and if µ̄ is not a trivial measure, only if) c ∈ [0, 1].

Since here ρ is convex, positively homogeneous and continuous, we have that for
any X ∈ X the subdifferential ∂ρ(X) is nonempty and is given by formula (3.4).
That is, ∂ρ(X) =

{
1 + h−

∫
Ω
h dµ̄ : h ∈ DX

}
, where

DX := arg maxh∈Y
{∫

Ω

(
X −

∫
Ω
X dµ̄

)
hdµ̄ : ‖h‖q ≤ c, h º 0

}
. (4.12)

The set DX can be described as follows. Consider the functions Y (·) := X(·)−
∫

Ω
X dµ̄

and Y+(·) := max {Y (·), 0} and the set AX := {ω ∈ Ω : Y (ω) > 0}. With Y+ ∈
Lp(Ω,F , µ̄) we associate a (dual) point h∗X ∈ Bq such that ‖Y+‖p = 〈Y+, h

∗
X〉. The

point h∗X is a maximizer of 〈Y+, h〉 over h ∈ Bq, and hence ‖h∗X‖ = 1 unless Y+ = 0.
If the function X(·) is constant, then Y (·) ≡ 0, and ∂ρ(X) = Ap. So suppose that
X(·) is not constant (this and similar subsequent statements should be understood, of
course, up to a set of µ̄-measure zero), and hence the set AX has a positive µ̄-measure.

Consider the case of 1 < p < +∞. In that case the dual point h∗X is unique,
h∗X º 0 and h∗X(ω) = 0 for all ω ∈ Ω \ AX . It follows that DX = {ch∗X}. We
obtain that DX is a singleton, and hence ρ is Hadamard differentiable at X, for every
nonconstant X ∈ X .

Suppose now that p = 1. Then Bq, with q = +∞, is formed by h ∈ Y such that
|h(ω)| ≤ 1 for µ̄-almost every ω ∈ Ω. In that case we have that if h ∈ DX , then
h(ω) = 0 for every ω ∈ Ω such that Y (ω) < 0. Also h∗X is a dual point of Y+ iff
h∗X(ω) = 1 for ω ∈ AX and |h∗X(ω)| ≤ 1 for ω ∈ Ω \ AX . We obtain that

DX =
{
h ∈ cBq : h(ω) = c if Y (ω) > 0, h(ω) = 0 if Y (ω) < 0

}
. (4.13)

It follows that DX is a singleton iff Y (ω) 6= 0 for µ̄-almost every ω ∈ Ω.

Example 3 Let µ̄ be a probability measure on (Ω,F) and consider spaces X :=
L1(Ω,F , µ̄) and Y := L∞(Ω,F , µ̄). For constants ε1 > 0 and ε2 > 0, consider the
function ρ(X) := 〈µ̄, X〉+ φ(X), where

φ(X) := inf
z∈R

∫
Ω

{ε1[z −X(ω)]+ + ε2[X(ω)− z]+} dµ̄(ω)

= inf
z∈R

∫ +∞

−∞
{ε1[z − x]+ + ε2[x− z]+} dG(x),

(4.14)
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and G(x) := µ̄({ω : X(ω) ≤ x}) is the cumulative distribution function of X(ω) with
respect to the probability measure µ̄. It can be noted that the infimum in the right
hand side of (4.14) is attained at any z̄ such that µ̄[X ≤ z̄] ≥ p and µ̄[X ≥ z̄] ≥ 1−p,
where

p :=
ε2

ε1 + ε2

= 1− ε1

ε1 + ε2

;

the point z̄ is called a p-quantile of the cdf G(x). Note also that

ε1[z −X]+ + ε2[X − z]+ = ε1

(
z + (1− p)−1[X − z]+ −X

)
.

Consequently

ρ(X) = (1− ε1)〈µ̄, X〉+ ε1CV@Rp[X], (4.15)

where

CV@Rp[X] := inf
z∈R

{
z +

1

1− p

∫ +∞

−∞
[x− z]+ dG(x)

}
. (4.16)

The quantity (4.16) was called the Conditional Value at Risk in Rockafellar and
Uryasev [20]. It is the financial counterpart of the function of the integrated chance
constraint introduced in Klein Haneveld [8]. Both are special cases of the classical
concept of the absolute Lorenz curve, evaluated at point p, [10, 15]. A risk envelope
representation of CV@R has been developed in [21] and [22].

We have that the function inside the integral in the right hand side of (4.14) is
convex jointly in X and z. It follows that the functions φ(X) and ρ(X) are convex.
It is also not difficult to see that φ(X + a) = φ(X), for any X ∈ X and a ∈ R,
and hence the assumption (A3) holds here, and that φ is positively homogeneous.
Similarly the assumptions (A1) and (A3) hold for the function CV@Rp[·] and it is
positively homogeneous. It is also not difficult to see that the function CV@Rp[·]
satisfies assumption (A2). It follows then by (4.15) that the function ρ(X) satisfies
assumption (A2) if ε1 ∈ (0, 1].

It is straightforward to verify that∫
Ω

{
ε1[z −X(ω)]+ + ε2[X(ω)− z]+

}
dµ̄(ω) = sup

h∈M
〈h,X − z〉,

where2

M :=
{
h ∈ Y : −ε1 ≤ h(ω) ≤ ε2, a.e. ω ∈ Ω

}
.

2Recall that Y := L∞(Ω,F , µ̄) and “a.e. ω ∈ Ω” means here that the corresponding property
holds for almost every ω ∈ Ω with respect to the measure µ̄.
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Consequently

φ(X) = inf
z∈R

sup
h∈M

{
〈h,X〉 − z

∫
Ω

h dµ̄

}
. (4.17)

Since the set of z ∈ R, which minimize the function in the right hand side of (4.17), is
nonempty and bounded, the “ inf ” and “ sup ” operators in (4.17) can be interchanged.
Hence

φ(X) = sup
{
〈h,X〉 : −ε1 ≤ h(w) ≤ ε2, a.e. ω ∈ Ω,

∫
Ω
h dµ̄ = 0

}
. (4.18)

It follows that

ρ(X) = sup
µ∈A
〈µ,X〉, (4.19)

where γ1 := 1− ε1 and γ2 := 1 + ε2, and

A :=
{
h ∈ Y : γ1 ≤ h(ω) ≤ γ2, a.e. ω ∈ Ω,

∫
Ω
h dµ̄ = 1

}
. (4.20)

Let us observe that the set A is a set of probability measures if ε1 ≤ 1. This shows
again that for ε1 ∈ (0, 1] and ε2 > 0, the function ρ is a risk function.

Similarly to the previous example, we have here that ρ is subdifferentiable at every
X ∈ X and

∂ρ(X) = arg max
h∈Y

{∫
Ω

Xhdµ̄ : γ1 ≤ h(ω) ≤ γ2, a.e. ω ∈ Ω,

∫
Ω

h dµ̄ = 1

}
. (4.21)

Moreover, ρ is Hadamard differentiable at X iff the ‘argmax’ set in the right hand
side of (4.21) is a singleton.

Let us consider the maximization problem in the right hand side of (4.21). We
can write it in the max-min form:

Maxγ1≤h(·)≤γ2 infλ∈R
{∫

Ω
(X − λ)h dµ̄+ λ

}
.

Since 0 < γ1 < γ2, by interchanging the ‘min’ and ‘max’ operators in the last problem,
we obtain that it is equivalent to

Min
λ∈R

{∫
Ω

max
[
γ1(X − λ), γ2(X − λ)

]
dµ̄+ λ

}
. (4.22)

Let λ̄ be an optimal solution of (4.22). Considering the left and right side derivatives,
at λ̄ , of the objective function in (4.22) we obtain that

1− γ1µ̄{X < λ̄} − γ2µ̄{X ≥ λ̄} ≤ 0 ≤ 1− γ1µ̄{X ≤ λ̄} − γ2µ̄{X > λ̄}.

This can be rewritten as follows:

ε1µ̄{X < λ̄} − ε2µ̄{X ≥ λ̄} ≤ 0 ≤ ε1µ̄{X ≤ λ̄} − ε2µ̄{X > λ̄}.

15



Recalling that p = ε2/(ε1 +ε2), we conclude that the set of optimal solutions of (4.22)
is the set of p-quantiles of the cdf G(·). Suppose for simplicity that the p-quantile λ̄
is defined uniquely. Then the ‘argmax’ set in (4.21) is given by such h(ω) that

h(ω) = γ2, if X(ω) > λ̄,
h(ω) = γ1, if X(ω) < λ̄,
h(ω) ∈ [γ1, γ2], if X(ω) = λ̄,
and

∫
Ω
hdµ̄ = 1.

(4.23)

It follows that the ‘argmax’ set in (4.21) is a singleton, and ρ is Hadamard differen-
tiable at X, iff the system (4.23) has a unique solution h. This is equivalent to the
following statement:

µ̄{X < λ̄} = p or µ̄{X > λ̄} = 1− p. (4.24)

If the quantile λ̄ is not unique then the set of p-quantiles has µ̄-measure zero, and
thus the differentiability condition (4.24) can be understood as holding for any (or
for all) p-quantiles. In summary, ρ is Hadamard differentiable at X iff condition
(4.24) holds for a p-quantile λ̄. Note that condition (4.24) always holds true if the
set {ω ∈ Ω : X(ω) = λ̄} has µ̄-measure zero, but may also hold when this set has a
positive µ̄-measure.

In particular, for ε1 = 1 we have that ρ(·) = CV@Rp[·]. Therefore CV@Rp[X] is
equal to the right hand side of (4.19) for

A :=
{
h ∈ Y : 0 ≤ h(ω) ≤ (1− p)−1, a.e. ω ∈ Ω,

∫
Ω
h dµ̄ = 1

}
. (4.25)

The dual representation and formulas for the setA and the subdifferential of CV@Rp[X]
were derived in [21, examples 12 and 20] in the space X := L2(Ω,F , µ̄).

5 Risk Averse Functions

Let µ̄ be a (reference) probability measure on (Ω,F), X be a linear space of µ̄-
integrable functions and Y ⊂ Y be a dual space of measures. Unless stated otherwise
we assume in this section that all expectations (conditional expectation) are taken
with respect to the reference measure µ̄. For a σ-algebra G ⊂ F consider the mapping

PG(·) := E [·|G] : X → X . (5.1)

Note that PG is a projection onto the subspace of X formed by G-measurable functions.
Note also that the conditional expectation E[X|G] is defined up to a set of µ̄-measure
zero. That is, any two versions of E[X|G](ω) are equal for almost every ω ∈ Ω. Unless
stated otherwise we assume in the subsequent analysis that a considered property
holds for every version of E[X|G].
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Definition 1 We say that a risk function ρ : X → R is risk averse (with respect to
µ̄) if for every σ-algebra G ⊂ F the following inequality holds

ρ(X) ≥ ρ(PG(X)) for all X ∈ X . (5.2)

With every risk function ρ : X → R is associated its conjugate function ρ∗ : Y →
R. We also say that ρ∗ is risk averse, if for every σ-algebra G ⊆ F the following
inequality holds

ρ∗(µ) ≥ ρ∗(P ∗G(µ)) for all µ ∈ Y . (5.3)

Here P ∗G : Y → Y denotes the adjoint of the operator PG. Recall that P ∗G is defined
by the equation 〈µ, PG(X)〉 = 〈P ∗G(µ), X〉 for all X ∈ X and µ ∈ Y . In particular, if
G = {∅,Ω}, then PG(·) = E[·] and hence P ∗G(µ) = aµµ̄, where aµ := µ(Ω).

Suppose for the moment that every measure µ ∈ Y is absolutely continuous with
respect to the reference measure µ̄, i.e., dµ = hdµ̄, and the corresponding density h(ω)
is µ̄-integrable. In that case we can identify Y with the corresponding linear space
of µ̄-integrable functions. Take, for example, X := Lp(Ω,F , µ̄) and Y := Lq(Ω,F , µ̄)
for some p ∈ [1,+∞) and 1/p+ 1/q = 1. Note then even so, ρ∗ is not a risk function
since it does not satisfy the monotonicity property, and ρ∗(h + a) = ρ∗(h) for h ∈ Y
and a ∈ R. We have that for X ∈ X and h ∈ Y ,

〈h, PG(X)〉 =

∫
Ω

PG(X)h dµ̄ = E
[
hPG(X)

]
= E

[
E[hPG(X)

∣∣G]
]

= E
[
PG(X)E[h

∣∣G]
]

= E
[
E[X

∣∣G]E[h
∣∣G]
]

= E
[
E[XE[h|G]

∣∣G]
]

= E[XE[h|G]
]

= 〈E[h|G], X〉.

It follows that P ∗G(·) = E[·|G].

Proposition 4 Let ρ be a risk function satisfying assumptions (A1)–(A3). Suppose
that ρ is lower semicontinuous. Then ρ is risk averse if and only if ρ∗ is risk averse.

Proof. Consider a σ-algebra G ⊂ F . Suppose that ρ∗ is risk averse. By Theorem 1
we have

ρ(PG(X)) = sup
µ∈Y

{
〈µ, PG(X)〉 − ρ∗(µ)

}
.

Since 〈µ, PG(X)〉 = 〈P ∗G(µ), X〉 and because of (5.3), it follows that

ρ(PG(X)) ≤ sup
µ∈Y

{
〈P ∗G(µ), X〉 − ρ∗(P ∗G(µ))

}
.

By making change of variables ν = P ∗G(µ), we obtain

ρ(PG(X)) ≤ sup
ν∈Y

{
〈ν,X〉 − ρ∗(ν)

}
= ρ(X).
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The converse implication can be proved similarly.

If the risk function ρ is positively homogeneous, then its conjugate function ρ∗ is
the indicator function of a set A ⊂ P , which can be written in form (2.7). In that
case we have that ρ∗, and hence ρ, is risk averse iff for every σ-algebra G ⊆ F the
following relation holds true:

P ∗G(A) ⊆ A. (5.4)

In particular, for G = {∅,Ω} and µ ∈ A we have that P ∗G(µ) = µ̄, and hence it follows
from (5.4) that µ̄ should be an element of A. Recall that if X := Lp(Ω,F , µ̄) and
Y := Lq(Ω,F , µ̄), then P ∗G(·) = E[·|G]. Therefore in that case, ρ∗ and ρ are risk averse
iff for any σ-algebra G ⊆ F the following holds

E[h|G] ∈ A, ∀h ∈ A. (5.5)

It follows that the function h(·) ≡ 1 must be an element of A.

Let us return to Example 2 and consider the function ρ defined in (4.9). We know
that this function can be represented as

ρ(X) = sup
g∈Ap
〈g,X〉,

with the set Ap given in (4.11). Consider an element g ∈ Ap. By (4.11) we have that
g = 1 + h − E[h] for some h ∈ Lq(Ω,F , µ̄) such that ‖h‖q ≤ c and h(ω) ≥ 0 for a.e.
ω ∈ Ω. Since E[h] = E

[
E[h|G]

]
, it follows that

P ∗G(g) = E[g|G] = 1 + E[h|G]− E
[
E[h|G]

]
.

Moreover, ‖E[h|G]‖q ≤ ‖h‖q and E[h|G](ω) ≥ 0 for a.e. ω ∈ Ω. Thus condition (5.5)
is satisfied, and hence ρ is risk averse. Similar considerations apply to Example 1.

Consider now the risk function ρ(·) := CV@Rp[·] : X → R discussed in Example
3. Here X := L1(Ω,F , µ̄) and p ∈ (0, 1). It immediately follows from the description
(4.25) of the corresponding set A that condition (5.5) is satisfied, and hence ρ is risk
averse. It follows then that the function ρ defined in (4.15) is also risk averse for any
ε1 ∈ [0, 1].

Using (A3) and setting G = {∅,Ω}, we obtain that a risk averse function ρ satisfies
the inequality ρ(X) ≥ 〈µ̄, X〉 for all X ∈ X . This property of risk aversion is related
to the classical Jensen’s inequality for the expected value of a convex function, but
it is not implied by the convexity of the risk function. For example, relation (5.4) is
not implied by the convexity of the set A.

18



6 Optimization of Risk Functions

Let Z be a vector space and consider a mapping F : Z → X . As in section 3, we
write f(z, ω), or fω(z), for

[
F (z)

]
(ω), and view f(z, ω) as a random function defined

on the measurable space (Ω,F). Consider the problem

Min
z∈S

{
ψ(z) := ρ(F (z))

}
, (6.1)

where S is a nonempty convex subset of Z and ρ : X → R is a risk function.
Suppose that the mapping F : Z → X is convex and the function ρ : X → R is

proper and lower semicontinuous, and that assumptions (A1)–(A3) are satisfied. By
Theorem 2 we can use representation (2.6) to write problem (6.1) in the form

Min
z∈S

sup
µ∈P

Ξ(z, µ), (6.2)

where the function Ξ : Z × Y → R is defined by

Ξ(z, µ) :=

∫
Ω

f(z, ω) dµ(ω)− ρ∗(µ). (6.3)

As we mentioned earlier, under the above assumptions, the function ρ∗(·) is also
proper. We have here that for every µ ∈ P, the function Ξ(·, µ) is convex and if,
moreover, µ is in the domain of ρ∗(·), then Ξ(·, µ) is real valued, and for every z ∈ S
the function Ξ(z, ·) is concave. Therefore, under various regularity conditions, the
“min” and “sup” operators in (6.2) can be interchanged. When Z = Rn, a sufficient
condition for such interchageability is that problem (6.1) has a nonempty and bounded
set of optimal solutions. We obtain the following result.

Proposition 5 Suppose that Z = Rn, the mapping F : Rn → X is convex and the
function ρ : X → R is proper, lower semicontinuous and assumptions (A1)–(A3) are
satisfied. Suppose, further, that problem (6.1) has a nonempty and bounded set of
optimal solutions. Then the optimal value of problem (6.1) is equal to the optimal
value of the problem

Max
µ∈P

inf
z∈S

{∫
Ω

f(z, ω) dµ(ω)− ρ∗(µ)

}
. (6.4)

If X is a Banach space and Y = X ∗, a similar statement can be obtained for a
general vector space Z.

Proposition 6 Suppose that X is a Banach space, Y = X ∗, the mapping F : Rn →
X is convex, the function ρ : X → R is proper, lower semicontinuous and assumptions
(A1)–(A3) are satisfied. Then the optimal value of problem (6.1) is equal to the
optimal value of problem (6.4). Moreover, problem (6.4) has an optimal solution.
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Proof. The set P is bounded and weakly∗ closed in X ∗. By Banach-Alaoglu theorem,
it is weakly∗ compact in X ∗. The function Ξ(z, ·) is concave and weakly∗ continuous,
and the function Ξ(·, µ) is convex. Our assertion then follows from the asymmetric
min-max theorem (see, e.g., [2, Theorem 6.2.7]).

Let Ξ(z, µ) be the function defined in (6.3). Suppose that the assumptions of
Proposition 5 or 6 hold true. Consider elements ẑ ∈ S and µ̂ ∈ P. Since the optimal
values of (6.1) and (6.4) are equal, we have that ẑ is an optimal solution of (6.1) and
µ̂ is an optimal solution of problem (6.4) iff (ẑ, µ̂) is a saddle point Ξ(z, µ). Note
that, since µ̂ is a probability measure, the integral

∫
Ω
f(z, ω) dµ̂(ω) can be written as

the expectation Eµ̂[F (z)].
It follows that if ẑ is an optimal solution of problem (6.1), then ẑ is an optimal

solution of the problem

Min
z∈S

{
Eµ̂[F (z)]− ρ∗(µ̂)

}
. (6.5)

That is, problem (6.1) is “almost” equivalent to the optimization problem (6.5) in the
sense that the set of optimal solutions of problem (6.5) contains the set of optimal
solutions of problem (6.1) and their optimal values are equal to each other. If, more-
over, ρ is positively homogeneous, then ρ∗ is the indicator function of a set A ⊂ P .
In that case problem (6.2) takes the form

Min
z∈S

sup
µ∈A

Eµ[F (z)], (6.6)

and ρ∗(µ̂) = 0 in problem (6.5).
If we cannot use Proposition 6, to ensure existence of an optimal solution of

problem (6.4), we need additional conditions.

Theorem 3 Let F : Z → X be convex. Suppose that a point ẑ ∈ S is an optimal
solution of problem (6.1) and ρ(·) is subdifferentiable at X̂ := F (ẑ). Then there exists
a measure µ̂ ∈ ∂ρ(X̂) such that that ẑ is an optimal solution of problem (6.5).

Proof. Since ρ is subdifferentiable at X̂, we have that ∂ρ∗∗(X̂) = ∂ρ(X̂), and
hence it follows by (3.3) that

∂ρ(X̂) = arg max
µ∈Y

{
〈µ, X̂〉 − ρ∗(µ)

}
. (6.7)

Of course, the maximum in (6.7) over µ ∈ Y can be replaced by the maximum over
µ ∈ dom(ρ∗) and we have that dom(ρ∗) ⊂ P. Therefore,

∂ρ(X̂) = arg max
µ∈P

Ξ(ẑ, µ).
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By the monotonicity of ρ(·), problem (6.1) is equivalent to the problem

min
(z,X)∈U

ρ(X) (6.8)

with

U :=
{

(z,X) ∈ Z × X : X ≥ F (z), z ∈ S
}
.

Since ẑ is an optimal solution of (6.1), the pair (ẑ, X̂) constitutes an optimal solution
of (6.8). By the convexity of F , the set U is convex. The optimality of (ẑ, X̂) and
the subdifferentiability of ρ(·) imply that there exists a subgradient µ̂ ∈ ∂ρ(X̂) such
that

〈µ̂, X − X̂〉 ≥ 0 for all (z,X) ∈ U.

In particular, setting X = F (z) we obtain that

〈µ̂, F (z)− F (ẑ)〉 ≥ 0 for all z ∈ S.

Thus ẑ is a solution of problem (6.5).

The condition of the subdifferentiability of ρ(·) at F (ẑ) has to be verified in each
application by special methods. For example, if ρ(·) is continuous at X̄ ∈ X , then it
is subdifferentiable at X̄. The risk functions in Examples 1, 2 and 3 are continuous,
and therefore they are subdifferentiable everywhere.

7 Value of Perfect Information

Let us consider, as in section 6, a mapping F : Z → X and a set S ⊂ Z. In order
to avoid technical difficulties, we assume in this section that Z = Rn. Moreover, we
assume that the space X is solid in the sense that for every two elements X1, X2 ∈ X
and every F -measurable function X satisfying X1(·) ≤ X(·) ≤ X2(·), the function X
is an element of X .

Let us define the operation “inf” on the family {F (z) : z ∈ S} of elements of X
as the pointwise infimum:[

inf
z∈S

F (z)
]
(ω) := inf

{
f(z, ω) : z ∈ S

}
, ω ∈ Ω.

Assume that there exists φ ∈ X such that f(z, ω) ≥ φ(ω) for all z ∈ S and all ω ∈ Ω.
Then for any z0 ∈ S we have that

φ(ω) ≤ inf
z∈S

f(z, ω) ≤ f(z0, ω), ω ∈ Ω.
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Moreover, the function infz∈S f(z, ω) depends measurably on ω (e.g., [19, Theorem
14.37]), and therefore infz∈S F (z) ∈ X .

By the monotonicity assumption (A2) we have that for any z ∈ S, the inequality

ρ(F (z)) ≥ ρ
(

inf
z∈S

F (z)
)

holds true. Consequently

inf
z∈S

ρ(F (z)) ≥ ρ
(

inf
z∈S

F (z)
)
.

The difference

RVPIρ := inf
z∈S

ρ(F (z))− ρ
(

inf
z∈S

F (z)
)

(7.1)

can be called the risk value of perfect information. Suppose that ρ(·) is lower semicon-
tinuous and positively homogeneous, and assumptions (A1)–(A3) are satisfied. Then
it follows from Theorem 2 that representation (2.8) of ρ holds true for some convex
set A ⊂ P , and hence we can write

RVPIρ = inf
z∈S

sup
µ∈A

Eµ[F (z)]− sup
µ∈A

Eµ
[

inf
z∈S

F (z)
]
. (7.2)

Moreover, under the assumptions of Proposition 5 or 6, we have that

inf
z∈S

sup
µ∈A

Eµ[F (z)] = sup
µ∈A

inf
z∈S
Eµ[F (z)].

Substituting this into (7.2) we obtain

RVPIρ = sup
µ∈A

inf
z∈S
Eµ[F (z)]− sup

µ∈A
Eµ
[

inf
z∈S

F (z)
]
.

Therefore RVPIρ can be estimated from below and above as follows

inf
µ∈A

EVPIµ ≤ RVPIρ ≤ sup
µ∈A

EVPIµ, (7.3)

where

EVPIµ := inf
z∈S
Eµ[F (z)]− Eµ

[
inf
z∈S

F (z)
]

(7.4)

is the expected value of perfect information with respect to the probability measure
µ.

It is said that a linear spaceM of F -measurable functions Z : Ω→ Rn is decom-
posable if for every Z ∈M and B ∈ F , and every bounded and F -measurable function
W : Ω→ Rn, the spaceM also contains the function V (·) := 1lΩ\B(·)Z(·)+1lB(·)W (·)
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(Rockafellar and Wets [19, p.676]). If M is a decomposable linear space of F -
measurable functions and g : Rn×Ω→ R is a random lower semicontinuous function3,
then for any probability measure µ on (Ω,F) the following interchangeability formula
holds ∫

Ω

inf
z∈Rn

g(z, ω) dµ(ω) = inf
Z∈M

∫
Ω

g(Z(ω), ω) dµ(ω) (7.5)

(Rockafellar and Wets [19, Theorem 14.60]). It is possible to extend this result to
risk functions as follows. With F : Rn → X and Z ∈ M we associate an element
FZ ∈ X defined as follows

FZ(ω) := [F (Z(ω))](ω) = f(Z(ω), ω).

Theorem 4 LetM be a decomposable space, ρ be a risk function, and let F : Rn → X
be such that the function f(z, ω) := [F (z)](ω) is random lower semicontinuous. Then

ρ
(

inf
z∈S

F (z)
)

= inf
Z∈MS

ρ(FZ), (7.6)

where MS :=
{
Z ∈M : Z(ω) ∈ S, ∀ω ∈ Ω

}
.

Proof. For any Z ∈MS we have that Z(ω) ∈ S, and hence the inequality[
inf
z∈S

F (z)

]
(ω) ≤ FZ(ω)

holds for all ω ∈ Ω. By the monotonicity of ρ this implies that

ρ
(

inf
z∈S

F (z)
)
≤ ρ(FZ),

and hence

ρ
(

inf
z∈S

F (z)
)
≤ inf

Z∈MS

ρ(FZ). (7.7)

The opposite of inequality (7.7) can be proved in the same way as in the proof of
Theorem 14.60 in [19].

8 Dualization of Nonanticipativity Constraints

Consider the framework of section 6 with Z = Rn and convex mapping F : Z → X .
We can write the optimization problem (6.1) in the following equivalent form

Min
Z∈MS , v∈Rn

ρ(FZ) subject to Z(ω) = v, ∀ω ∈ Ω. (8.1)

3Random lower semicontinuous functions are also called normal integrands (see Definition 14.27
in [19, p.676]).
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The constraints Z(ω) = v, ω ∈ Ω, in the above problem, represent the so-called
nonanticipativity constraints. The equivalence of (6.1) and (8.1) is evident. The
study of nonanticipativity as a constraint was initiated in [18]. We show in this
section that in the context of risk measures a corresponding duality relation can be
obtained as well.

Suppose that M := Lp(Ω,F , µ̄,Rn) and let M∗ := Lq(Ω,F , µ̄,Rn) be its dual
space, where µ̄ is a probability measure on (Ω,F) and p ∈ [1,+∞). Unless stated
otherwise, all expectations and probabilistic statements in this section are made with
respect to µ̄. With problem (8.1) is associated the Lagrangian

L(Z, v, λ) := ρ(FZ) + E
[
λT (Z − v)

]
, λ ∈M∗.

Let us note that infv∈Rn L(Z, v, λ) is equal to −∞ if E[λ] 6= 0, and to L(Z, 0, λ) if
E[λ] = 0. Therefore, the (Lagrangian) dual problem of problem (8.1) takes on the
form:

Max
λ∈M∗

{
inf

Z∈MS

L(Z, λ)

}
subject to E[λ] = 0, (8.2)

where

L(Z, λ) := L(Z, 0, λ) = ρ(FZ) + E
[
λTZ

]
. (8.3)

By the standard theory of Lagrangian duality we have that the optimal value of the
primal problem (8.1) is greater than or equal to the optimal value of the dual problem
(8.2). Moreover, under some standard regularity conditions, there is no duality gap
between problems (8.1) and (8.2), i.e., their optimal values are equal to each other
(see, e.g., [17],[4, section 2.5]). In particular, there is no duality gap between problems
(8.1) and (8.2) and Z̄ and λ̄ are optimal solutions of (8.1) and (8.2), respectively, iff
((Z̄, v̄), λ̄) is a saddle point of L(Z, v, λ) for some v̄ ∈ Rn. Noting that L(Z, v, λ)
is linear with respect to λ and to v, we obtain that ((Z̄, v̄), λ̄) is a saddle point of
L(Z, v, λ) iff the following conditions hold:

Z̄(ω) = v̄, a.e. ω ∈ Ω, and E[λ̄] = 0, (8.4)

Z̄ ∈ arg minZ∈MS
L(Z, λ̄). (8.5)

We assume in the remainder of this section that

inf
Z∈MS

sup
E[λ]=0

L(Z, λ) = sup
E[λ]=0

inf
Z∈MS

L(Z, λ), (8.6)

i.e., that there is no duality gap between problems (8.1) and (8.2). Suppose that ρ(·)
satisfies (A1)–(A3) and is lower semicontinuous. It follows then by Theorem 2 that

L(Z, λ) = sup
h∈P

{
E
[
hFZ + λTZ

]
− ρ∗(h)

}
, (8.7)
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with P denoting the set of densities h ∈M∗ of probability measures. Assuming that
the corresponding ‘min’ and ‘sup’ operations can be interchanged (as in Propositions
5 and 6) we obtain that

inf
Z∈MS

L(Z, λ) = inf
Z∈MS

sup
h∈P

{
E
[
hFZ + λTZ

]
− ρ∗(h)

}
= sup

h∈P

{
inf

Z∈MS

E
[
hFZ + λTZ

]
− ρ∗(h)

}
= sup

h∈P

{
E
(

inf
z∈S

[
h(ω)f(z, ω) + λT (ω)z

])
− ρ∗(h)

}
.

The last equation follows by the decomposability of M.
Therefore we obtain that, under the specified assumptions, the following duality

relation holds

inf
z∈S

ρ(F (z)) = sup
E[λ]=0
h∈P

D(λ, h), (8.8)

where the function

D(λ, h) := E
{

inf
z∈S

[
h(ω)f(z, ω) + λT (ω)z

]}
− ρ∗(h) (8.9)

can be interpreted as the dual function associated with the composite-risk optimiza-
tion problem (6.1). Recall that if the risk function ρ(·) is positively homogeneous,
then ρ∗(·) is the indicator function of the set A defined in (2.7). Note also that the
calculation of the dual function D(λ, h) decomposes into problems associated with
elementary events ω ∈ Ω:

Min
z∈S

{
h(ω)f(z, ω) + λT (ω)z

}
,

and then taking the corresponding integral of the obtained function. This creates a
potential for developing decomposition methods for optimizing risk functions.
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[13] W. Ogryczak and A. Ruszczyński, From stochastic dominance to mean–risk mod-
els: semideviations as risk measures, European Journal of Operational Research,
116 (1999), 33–50.
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