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Abstract

The aim of the thesis is to provide a wide range of statistical methods designed to test
parametric assumptions about the evolution of continuous time processes in financial
markets. The main focus is on the statistical methodology and the investigation of
the properties of the proposed methods when applied to finite samples. The latter
aspect is particularly important for empirical applications. All chapters include an
empirical analysis of financial data using the developed methods.
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Zusammenfassung

Das Ziel der Dissertation ist die Entwicklung statistischer Testverfahren zur Über-
prüfung parametrischer Modelle für die Dynamik zeitstetiger Prozesse und die An-
wendung der entwickelten Methoden auf Finanzmarktdaten. Besonderes Augenmerk
wird auf die statistische Methodik und die Untersuchung der Testeigenschaften in end-
lichen Stichproben gelegt, da diese in empirischen Untersuchungen von entscheidener
Bedeutung sind. Alle Kapitel der Dissertation umfassen eine empirische Analyse, in
der die vorgestellten Tests auf Finanzmarktdaten angewandt werden.
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Wolfgang Härdle who always supported the development of this work by a number
of fruitful discussions. Without his support this book would not exist in its present
form.

I also would like to thank my second advisor Dr. Helmut Herwartz for his valuable
comments on the topic.

Main parts of the book mirror the joint work with a number of coauthors. Par-
ticularly I would like to thank Peter Hall, Alexander Korostelev, Eckhard Platen,
Camillie Logeay, Song Xi Chen and Peter Schmidt.

I very much enjoyed the inspiring environment at the Institut für Statistik und
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x
def
= . . . x is defined as ...

R real numbers
R def

= R ∪ {∞,∞}
A> transpose of matrix A
X ∼ D the random variable X has distribution D
E[X] expected value of random variable X
Var(X) variance of random variable X
Std(X) standard deviation of random variable X
Cov(X, Y ) covariance of two random variables X and Y
U[a, b] uniform distribution on [a, b]
N(µ,Σ) normal distribution with expectation µ and covariance matrix Σ, a similar
notation is used if Σ is the correlation matrix
cdf denotes the cumulative distribution function
pdf denotes the probability density function
P[A] or P(A) probability of a set A
I indicator function
(F ◦G)(x)

def
= F{G(x)} for functions F and G

Ft is the information set generated by all information available at time t

For two sequences of real numbers αn and βn:
αn = O(βn) iff αn

βn
−→ constant, as n −→∞

αn = O(βn) iff αn

βn
−→ 0, as n −→∞

For two sequences of random variables An and Bn:
An = Op(Bn) iff ∀ε > 0 ∃M, ∃N such that P[|An/Bn| > M ] < ε, ∀n > N .
An = Op(Bn) iff ∀ε > 0 : limn→∞ P[|An/Bn| > ε] = 0.
For sequence of functions γn(x) and a sequence of random numbers δn:
γn(x) = Õp(δn) iff supx∈S |γ(x)| = Op(δn)
γn(x) = Õp(δn) iff supx∈S |γn(x)| = op(δn)

viii



Chapter 1

Introduction

Throughout this book we present statistical methods that test particular models for
financial data. The data that we consider are generated by interest rate or asset
price processes. The assets that we have in mind are stocks, exchange rates, index
processes or any other kind of a risky security.

The evolution of the prices of these assets takes place in a continuous state space
and in continuous time. If prices in financial markets do not vary continuously in
time, they move and can be observed very frequently. In particular, the introduction
of electronic trading systems, like XETRA, has rapidly increased the frequency of
price fixings. On top of that, continuous time models have proofed their usefulness
as approximations of reality and modern methods in mathematical finance rely on
this kind of models. We therefore concentrate here on statistical methods developed
for the quantitative analysis of financial data in continuous time.

Before we start with the presentation of the statistical methodology, we give a
brief introduction into the theory of mathematical finance to motivate the remainder
of the book.

To model the market that we consider here, we start with a spot interest rate pro-
cess {r(t), t ∈ [0, T ]} and an asset price process {P (t), t ∈ [0, T ]} defined on a proba-
bility space (Ω,F ,P, {F(t), t ∈ [0, T ]}) and adapted to the filtration {F(t), t ∈ [0, T ]}.
Heuristically speaking, the adaption of r and P on {F(t), t ∈ [0, T ]} means that the
current values r(t) and P (t) are known at time t. In addition to r and P , a savings
account P0(t) is given as the solution of the differential equation

dP0(t) = r(t)P0(t)dt (1.1)

with initial condition P (0) = 1. P0 can be interpreted as a bank deposit with an
instantaneous return process r. The discounted asset price is then P̃ (t) = P (t)/P0(t).

A trading strategy in such a financial market is a pair (a0(t), a1(t)) that represents
the investments in the two assets P0 and P and the corresponding portfolio process
V (t) is the current value of a portfolio according to the investments (a0(t), a1(t)),

1
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i.e. V (t) = a0(t)P0(t) + a1(t)P (t). We call a trading strategy self-financed if V (t) =
V (0) +

∫ t

0
a0(t)dP0(t) +

∫ t

0
a1(t)dP (t). This means, that the value of the portfolio at

time t is equal to the sum of the initial investment V (0) and the gains earned from
the investments up to time t.

A fundamental concept in the mathematical theory of financial markets is the no
arbitrage condition. We say that an arbitrage opportunity exists, if there exists a
self-financed trading strategy and a lower bound v such that for the corresponding
portfolio process holds, (i) V (T ) − V (0) ≥ 0, (ii) V (t) ≥ v for all t ∈ [0, T ] and (iii)
P[V (T ) − V (0) > 0] > 0. In this definition of arbitrage the second condition is of
particular importance, since it prevents double-or-quits strategies.

The fundamental theorem of asset pricing states that in an arbitrage free market
model exists a probability measure Q on (Ω,F) such that every discounted price
process P̃ is a martingale under Q and Q is equivalent to P, i.e. P and Q have
the same null sets. A consequence is, that the price process P need to be a semi-
martingale under the original measure P. Delbaen and Schachermayer (1994) proof
that a arbitrage opportunity exists, if a price process P is not semimartingale. An
important question in the quantitative analysis of financial data is therefore to check
the assumption, that an observed process is a semimartingale.

In Chapter 2 we capture this problem by introducing a test about the Hurst
coefficient H of a fractional Brownian motion (FBM). A FBM is an example for a
stochastic process that is not a semimartingale except in the case of a Hurst coefficient
H equal to 0.5, see Rogers (1997) for a formal proof. Hence a financial market model
with a price process P that is assumed to be a FBM withH 6= 0.5 implies an arbitrage
opportunity. Rogers (1997) also provides a direct construction of a trading strategy
that produces arbitrage in this situation.

More precisely we test in Chapter 2 a null hypothesis about the Hurst coefficient
of a smooth function of fractional Brownian Motion. Thus we do not restrict our
class of models to one particular process, but include other processes that have the
same fractal dimension as the FBM.

In addition to the presentation of estimation and testing procedure for the Hurst
coefficient we derive the asymptotic distribution of the test and show how this dis-
tribution can be approximated by a bootstrap procedure. The chapter also includes
an empirical analysis of German stocks.

In Chapter 3 we assume, that the considered market model is arbitrage free and
thus we restrict the statistical methodology to processes that are semimartingales
under the original probability measure P. Under this assumption we concentrate on
the particular case where P is a diffusion process that is given as the solution of the
stochastic differential equation

dP (t) = P (t)
{
µ{P (t)}dt+ σ{P (t)}dW (t)

}
(1.2)
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with an initial condition P (0) = p. {W (t), t ∈ [0, T ]} is a standard Brownian motion
under P adapted to {F(t), t ∈ [0, T ]}. A solution of (1.2) is given by

P (t) = eX(t)

with:

dX(t) =

(
µ{P (t)} − 1

2
σ2{P (t)}

)
dt+ σ{P (t)}dW (t) .

Furthermore we assume that the spot rate r solves the stochastic differential equation

dr(t) = mr{r(t)}dt+ σr{r(t)}dW0(t) (1.3)

where W0 is again a Brownian motion adapted to {F(t), t ∈ [0, T ]} and W and W0

are independent.
We define the risk premium as

η(t)
def
=
m{P (t)} − r(t)

σ{P (t)}

and for every t ∈ [0, T ] a probability measure Qt via the Radon-Nikodym density

dQt

dP
= exp

{∫ t

0

η(s)dW (s)− 1

2

∫ t

0

η2(s)ds

}
.

The equivalent martingale measure Q is then defined as a probability measure such
that Q(A) = Qt(A) for all A ∈ F(t) and for all t ∈ T . From Girsanov’s theorem,
Karatzas and Shreve (1991), we have that

WQ(t)
def
= W (t) +

∫ t

0

η(s)ds

is a Brownian motion with respect to the equivalent martingal measure Q. Since the
discounted asset price P̃ solves the SDE

dP̃ (t) = P̃ (t)σ{P̃ (t)}dWQ(t) (1.4)

it is, under Q, an integral with respect to a Brownian motion and thus a martingale.
We mention that the drift term m disappears from the definition of P̃ under the
martingale measure.

One of the most important applications in mathematical finance is the pricing of
contingent claims. In general, the price of any contingent claim that pays B at time T
is given by the expectation of the discounted payoff under the equivalent martingale
measure Q

H = EQ

[
exp

{∫ T

t

−r(t)dt
}
B
∣∣F(t)

]
(1.5)
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In the particular case of the well known European call option that pays {P (T )−
K}+ in time T the option price H = H{P (t), T−t,K} in time t can also be expressed
as the solution of the partial differential equation

0 = rP
∂H

∂P
− rH − ∂H

∂t
+

1

2
(Pσ)2∂

2H

∂P 2
(1.6)

with the boundary condition H{P, 0, K} = {p−K}+.
From (1.3)-(1.6) it follows, that the parameters of interest for option pricing are

the diffusion coefficients of P and r and the drift of r. The drift m of P influences the
density process dQt/dP, but under the martingale measure it disappears, and thus
it does not influence derivative prices. Since these prices are expected discounted
payoffs, the same argument does not hold for mr, the drift of the spot rate process.
For these reasons we propose in Chapter 3 methods that test parametric functional
forms of the coefficients of P and r separately as well as methods that test for the
whole dynamics of a diffusion process.

We divide the proposed statistical methods in Chapter 3 into two groups. The
first group consists of methods that are based on an approximation of the continuous
time process by a time series. This approximation gives the opportunity to apply
the statistical tools developed for time series analysis. However, it turns out, that
the potential of these methods is restricted when applied to diffusions. In particular
asymptotic results are based on the assumption that T goes to infinity. For the second
group of methods we directly apply properties of the continuous time diffusion. Since
we observe the process only at discrete time points, we have two kinds of asymptotics
here: (i) T tends to infinity and (ii) the time difference between two successive
observations goes to zero. The latter makes the statistics of diffusions different from
time series analysis, where fixed time intervals between successive observations are
considered.

In general, the tests introduced in Chapter 3 compare nonparametrically esti-
mated functions to parametric forms of these functions implied by the null hypoth-
esis. The functions that are tested depend on the particular null hypothesis. We
propose methods that compare the marginal density and the transition density of a
process and thus test about the whole dynamics of the process. As described above
the drift function does not influence the prices of derivatives and we therefore present
quantitative methods that compare the estimated diffusion coefficient directly to its
parametric form implied by the null hypothesis.

In the empirical study at the end of Chapter 3 we analyze the quantitative behav-
ior of a spot interest rate process, namely the 7-day Eurodollar rate, German stocks
and the German stock market index DAX. We find that, although the drift of r is
important in mathematical finance, tests that include a drift specification will fail,
since not enough data are available to produce reliable estimates for the drift term.
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We therefore concentrate on the estimation and testing of the diffusion coefficient
and find for all treated data, that the tested hypotheses are rejected.

The work is completed by a particular model of a stock market index that is
proposed in Chapter 4. The model we consider treats a stock market index as a
product of a smooth growth process and a normalized index. From a statistical point
of view there arises the problem of nonparametric estimation of the conditional mean
when the error terms are not independent and identically distributed, but are the
observations of a diffusion process. In particular we consider the case of an Ornstein
Uhlenbeck process.



Chapter 2

Semiparametric Bootstrap
Approach to Hypothesis Tests and
Confidence Intervals for the Hurst
Coefficient

A major application of rescaled adjusted range analysis (R–S analysis) is the study
of price fluctuations in financial markets. There, the value of the Hurst constant, H,
in a time series may be interpreted as an indicator of the irregularity of the price of a
commodity, currency or similar quantity. Interval estimation and hypothesis testing
for H are central to comparative quantitative analysis. In this chapter we propose a
new bootstrap, or Monte Carlo, approach to such problems. Traditional bootstrap
methods in this context are based on fitting a process chosen from a wide but rel-
atively conventional range of discrete time series models, including autoregressions,
moving averages, autoregressive moving averages and many more. By way of con-
trast we suggest simulation using a single type of continuous-time process, with its
fractal dimension. We provide theoretical justification for this method, and explore
its numerical properties and statistical performance by application to real data on
commodity prices and exchange rates.

2.1 Introduction

R–S analysis has its roots in early work of the British hydrologist H.E. Hurst, who
investigated dependence properties of phenomena such as levels of the River Nile. The
Hurst constantH, as the index of dependence is often called, always lies between 0 and
1, and equals 1

2
for processes that have independent increments. Particular interest

focuses on the hypothesis that H > 1
2
, indicating relatively long-range dependence.

6
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For example, Hurst observed that H = 0.91 in the case of Nile data, indicating a
strength of dependence that was well beyond what could be adequately explained
assuming independent increments.

Today, a principal application of R–S analysis is to the study of fluctuations in
financial markets, where the value of H is variously interpreted as an indicator of
range of dependence, of irregularity and of nervousness. (Adler (1981) coined the
word ‘erraticism’ to denote a quantitative measure of ‘nervousness’.) To elucidate
this point we note that the fractal dimension D of sample paths of a locally self-
similar or self-affine random process increases monotonically with the irregularity
of those paths; and that D = 2 −H, see e.g. Berry and Hannay (1978); Sayles and
Thomas (1978); Adler (1981), Chapter 8; Mandelbrot et al. (1984); Hall et al. (1996).
Therefore, a process with higher Hurst constant is more regular, or less erratic, or
less ‘nervous’ then one with a lower value. For example, a time series of commodity
prices that is characterised by a larger Hurst constant enjoys greater stability, over at
least short periods of time; and trade in that commodity might be said to be subject
to less nervousness. See for example Peters (1994).

As already mentioned in the introduction, the abscence of arbitrage is strongly
related to the Hurst constant. A particular process with a Hurst coefficient different
from 1/2 is the fractional Brownian motion (FBM) that is defined as a Gaussian
process ζ with

P(ζ0 = 0) = 1 E(ζt) = 0

and
E(ζs+t − ζs)

2 = |t|α

for all s and t, where α = 2H ∈ (0, 2). Equivalently, ζt is defined to be that Gaussian
process with zero mean and covariance

γ(s, t) ≡ Cov(ζs, ζt) = 1
2

(
|s|α + |t|α − |s− t|α

)
. (2.1)

See for example Beran (1994), p. 51ff and Peters (1994) p. 183ff. Rogers (1997) shows
that the FBM is not a semimartingale for H 6= 1/2. On a heuristic level we have
from (2.1) that ζt − ζs is of order |t− s|H which means that

2n∑
j=1

|ζj2−n − ζ(j−1)2−n|p ≈ (2n)1−pH .

It follows, that the order-p variation of ζ is infinite if p < H−1 and zero if p > H−1

which is consistent with the semimartingale property for H = 1/2 only. Note that in
this case the FBM coincites with the standard Brownian motion.

For the above reasons and since the no arbitrage condition is essential in math-
ematical finance, point and interval estimation of the Hurst constant can be basic
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to quantitative descriptions of market fluctuations. And testing for significant dif-
ferences between two Hurst constants, or between one constant and the value 1

2
, is

fundamental to comparative quantitative analysis of market ‘nervousness’. In this
chapter we suggest bootstrap, or Monte Carlo, methods for constructing confidence
intervals and hypothesis tests for Hurst indices.

Our methods are based on the estimator Ĥ of H derived from R–S analysis, and
involve simulating the sampled process using a time-adjusted version of fractional
Brownian motion. We argue that, since the ‘S’ part of R–S analysis corrects for
inhomogeneities in the data, it is unnecessary to reproduce them in the bootstrap
algorithm.

This approach differs fundamentally from more traditional methods currently used
for simulation, where the model is taken to be a relatively conventional discrete time
series such as an autoregression, or moving average, or autoregressive moving average.
See for example Peters (1994) Chapter 9. Instead, we suggest simulating a single
type of continuous stochastic process, where the degree of irregularity is determined
empirically through an estimator of H. We justify this approach through theoretical
analysis, and assess its numerical and statistical properties using applications to real
data on stock prices.

The idea of basing the bootstrap method on a continuous rather than a discrete
stochastic process has been suggested before, but in the very different context of
bootstrap methods for spatial samples of data on surface roughness, Davies and Hall
(1998). There, the ‘S’ part of R–S analysis is usually omitted, since the observed pro-
cess is generally scale-homogeneous. Such bootstrap methods are nonstandard, since
they conform to neither the parametric nor nonparametric bootstrap approaches.
They fall midway between the two, and might fairly be said to be semiparametric
bootstrap methods.

2.2 Methodology and Theory

2.2.1 R–S Analysis

We observe a stochastic process Xt at time points t ∈ I = {0, . . . , N}. Let n be an
integer that is small relative to N (asymptotically, as N/n → ∞), and let A denote
the integer part of N/n. Divide the ‘interval’ I into A consecutive ‘subintervals’,
each of length n and with overlapping endpoints. In every subinterval correct the
original datum Xt for location, using the mean slope of the process in the subinterval,
obtaining Xt − (t/n) (Xan − X(a−1)n) for all t with (a − 1)n ≤ t ≤ an and for all
a = 1, . . . , A. Over the a’th subinterval Ia = {(a − 1)n, (a − 1)n + 1, . . . , an}, for
1 ≤ a ≤ A, construct the smallest box (with sides parallel to the coordinate axes)
such that the box contains all the fluctuations of Xt − (t/n) (Xan − X(a−1)n) that
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occur within Ia. Then, the height of the box equals

Ra = max
(a−1)n≤t≤an

{
Xt −

t

n
(Xan −X(a−1)n)

}
− min

(a−1)n≤t≤an

{
Xt −

t

n
(Xan −X(a−1)n)

}
The construction of the boxes is illustrated in Figure 2.1.

X(t)-(t/n){X(an)-X((a-1)n)}

0 500 1000 1500 2000 2500
time t

7
7.

5
8

 

Figure 2.1: Illustration of the construction of the R part in the R/S analysis.

Let Sa denote the empirical standard error of the n variables Xt − Xt−1, for
(a− 1)n+ 1 ≤ t ≤ an. If the process X is stationary then Sa varies little with a; in
other cases, dividing Ra by Sa corrects for the main effects of scale inhomogeneity in
both spatial and temporal domains.

The total area of the boxes, corrected for scale, is proportional in n to

(R
S

)
n

:= A−1

A∑
a=1

Ra

Sa

. (2.2)

The slope Ĥ of the regression of log(R/S)n on log n, for k values of n, may be taken
as an estimator of the Hurst constant H describing long-range dependence of the
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process X. See for example Beran (1994), Chapter 1 and Peters (1994) Chapters 4–
6.

This R–S analysis, or ‘rescaled adjusted range’ analysis, dates from Hurst (1951).
If the process X is stationary then correction for scale is not strictly necessary, and we
may take each Sa to be the constant 1. In that case the R–S statistic Ĥ is a version
of the box-counting estimator that is widely used in physical science applications;
see for example Carter et al. (1988), Sullivan and Hunt (1988) and Hunt (1990).
The box-counting estimator is related to the capacity definition of fractal dimension
Barnsley (1988), p. 172ff, and the R–S estimator may be interpreted in the same way.
Statistical properties of the box-counting estimator have been discussed by Hall and
Wood (1993).

A more detailed analysis, exploiting dependence among the errors in the regression
of log(R/S)n on log n, may be undertaken in place of R–S analysis. See Kent and
Wood (1997) for a version of this approach in the case where scale correction is
unnecessary. However, as Kent and Wood show, the advantages of the approach tend
to be asymptotic in character, and sample sizes may need to be extremely large before
real improvements are obtained.

2.2.2 Approximating the Distribution of Ĥ

Depending on the value of H, and on the nature of the stochastic process X, the
asymptotic distribution of Ĥ (as N →∞, for fixed k) can be Normal or Rosenblatt;
the latter was introduced by Taqqu (1875), following work of Rosenblatt (1961).

(More concisely, in the Rosenblatt case the asymptotic distribution of Ĥ is that of
a finite linear form in correlated Rosenblatt-distributed random variables, but for
simplicity we shall refer to this as a Rosenblatt distribution.) Indeed, the asymptotic

distribution of Ĥ can be Rosenblatt for 3/4 < H < 1 and Normal for 0 < H ≤ 3/4;
see Section 2.2.4. The Rosenblatt distribution that is relevant here is particularly
complex, and its shape depends intimately on the unknown value of H. The distri-
bution has not been tabulated.

If the value of k is large, i.e. the number of values of n for the linear regression
is large then the Rosenblatt approximation becomes, by virtue of the central limit
theorem, similar to the Normal approximation. However, the asymptotic variance is
difficult to calculate. Moreover, it is known from work of Hall and Wood (1993) and
Constantine and Hall (1994) that, due to long-range dependence, statistical perfor-

mance of the estimator Ĥ generally deteriorates for large k, and in fact optimal mean
squared error properties are often achieved by keeping k fixed as N increases.

These considerations motivate Monte Carlo analysis, rather than more conven-
tional asymptotic methods, in the range 3/4 < H < 1. Even when H lies outside this
interval there is much to be said for taking a Monte Carlo approach, however. Monte
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Carlo simulation can be expected to capture many of the penultimate, second-order
effects that describe departure of the distribution of Ĥ from its asymptotic limit, so
that even if the limiting distribution were known, the Monte Carlo approach would
be expected to provide somewhat greater accuracy than the conventional asymptotic
approximation. The second-order effects arise from finiteness of N , and from the fact
that stochastic fluctuations of the scale correction in R–S analysis influence the true
distribution of Ĥ even though they do not affect the limit distribution.

A more familiar example of the same phenomenon is use of Student’s t distribution
to approximate the distribution of a Studentised ratio, even when the sampled distri-
bution is not exactly Normally distributed. The Student’s t approximation represents
a ‘penultimate’ form of the Normal ‘ultimate’ limiting distribution. Even for data
from a skew distribution the Student’s t approach generally captures finite-sample
properties better than the Normal approximation, despite the fact that it does not
capture all second-order departures from Normality.

We shall show in Section 2.2.4 that in many cases the limiting distribution of Ĥ
depends only on H and a temporal scale factor. The spatial scale of the process X,
and the process’s potential heteroscedasticity and non-Gaussianity, do not feature in
first-order asymptotic results. In large part this is a result of the ‘S’ component of
R–S analysis. Therefore, the limiting distribution of Ĥ is the same as it would be
if Xt were ζt, where ζ is an elementary self-similar Gaussian process. The Gaussian
process that we have in mind is the fractional Brownian motion, defined above.

We may simulate from a discrete approximation to ζt, say on the points tj = j/ν
for a large integer ν, by forming the (2pν + 1)× (2pν + 1) covariance matrix, M , of
which the (i, j)’th element is γ(ti, tj) for −pν ≤ i, j ≤ pν (p an integer); and then
using the spectral decomposition of M to generate Gaussian random (2pν+1)-vectors
with this covariance. Alternatively, methods of Davies and Harte (1987), or those of
Wood and Chan (1994) or of the many authors whose work is surveyed by Wood and
Chan, may be employed.

Denote the original data set {X1, . . . , XN} by X . Our bootstrap algorithm is

as follows. Compute the estimator Ĥ, and in the steps below, take α = 2Ĥ when
constructing the fractional Brownian motion ζ, conditional on X . Let X∗

t , for 0 ≤
t ≤ N , denote a realisation of the process ζ. Compute the corresponding value Ĥ∗

of Ĥ. Take the conditional distribution of Ĥ∗, given the data X , to be a Monte
Carlo approximation to the unconditional distribution of Ĥ; or alternatively, take
the conditional distribution of Ĥ∗− Ĥ to approximate the unconditional distribution
of Ĥ −H. These approaches give rise respectively to the two percentile methods
discussed in Section 2.2.3.

Some of the second-order properties that this approach does not capture may
be addressed by fitting a smooth estimate of scale to the process ζ. For example,
we might model the variance function σ(t)2 = Var(Xt), and thereby compute an
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estimator σ̂(·) of σ(·); and simulate from the process σ̂(t) |t|−α/2 ζt rather than from
ζt. In this case we should translate the time interval so as to avoid the origin.

2.2.3 Confidence Regions and Hypothesis Testing

Confidence intervals and hypothesis tests forH may be constructed using either of the
two standard bootstrap percentile methods. For example, a nominal 95% confidence
interval for H is given by (Ĥ(1), Ĥ(2)), where Ĥ(1) and Ĥ(2) are defined by either

P (Ĥ∗ ≤ Ĥ(1)|X ) = P (Ĥ∗ ≥ Ĥ(2)|X ) = 0.025 or P (Ĥ∗ − Ĥ ≤ Ĥ − Ĥ(2)|X ) =

P (Ĥ∗− Ĥ ≥ Ĥ− Ĥ(1)|X ) = 0.025. A test at the 5% level of the null hypothesis that

H = 1
2
, corresponding to X being a random walk, is to reject the null if (Ĥ(1), Ĥ(2))

does not contain the point 1
2
.

Given two independent samples from long-range dependent processes, leading to
respective estimators Ĥ1 and Ĥ2 of Hurst constants, we may generate independent
realisations from respective stochastic processes ζ(1) and ζ(2), and thereby compute a
bootstrap approximation to the distribution of Ĥ1 − Ĥ2 or of Ĥ1 − Ĥ2 − (H1 −H2).
As before, this may be used as the basis of percentile-bootstrap confidence intervals
and hypothesis tests for H1 −H2.

These techniques, being based on the percentile bootstrap, lack the pivotalness
that bootstrap methods for confidence procedures should ideally enjoy. However,
they have asymptotically correct levels, as N increases. Moreover, even when the
statistic Ĥ admits a Normal asymptotic distribution we lack a simple, computable
variance estimator with which to correct for scale. And when the limiting distribution
is Rosenblatt, rather than Normal, scale corrections are not sufficient to produce
pivotalness, since the shape of the Rosenblatt distribution depends on the unknown
Hurst constant through more than simply scale. For these reasons we argue that the
percentile-t bootstrap, often suggested in simpler problems as a pivotal method for
constructing confidence intervals and hypothesis tests with relatively accurate levels
(see for example Hall (1992), p. 14f; Efron and Tibshirani (1993), p. 158f; Shao and
Tu (1995), p. 94f; Davison and Hinkley (1997), p. 29f) is not appropriate in the
present setting.

Instead, level accuracy may be enhanced by using the double bootstrap (see for
example Hall (1992), p. 20ff; Efron and Tibshirani (1993), p. 263ff; Shao and Tu
(1995), p. 155ff; Davison and Hinkley (1997), p. 103ff). However, the accuracy typ-
ically achived by double-bootstrap procedures cannot be expected to generalize in
the present case, since our Gaussian model based on the fractional Brownian motion
does not necessarily reflect all second-order features of the distribution of the sam-
pled stochastic process X. It seems difficult to improve on this situation without
introducing relatively complex high-order models for X.
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2.2.4 Theoretical Properties

We will now formally prove the theoretical properties of Ĥ foreshadowed in 2.2.3.
Suppose the data Xt, t ∈ I, are generated as Xt = g(Yεt, t), where

(a) g is a smooth bivariate function,

(b) Y is a Gaussian process whose sample paths have fractal dimension D = 2−H,
and

(c) ε denotes a small positive constant.

The function g represents a possibly nonlinear transformation of Y , implying in par-
ticular that the observed processX is not necessarily Gaussian. Importantly, it allows
a wide range of different types of inhomogeneity. By taking ε small we ensure that
even if t1 is moderately distant from t2, Xt1 can be strongly correlated with Xt2 .
This confers long-range dependence on the observed process. There is no difficulty
in extending our results to the case where X is a function of a vector of Gaussian
processes, say Xt = g(Y

(1)
εt , . . . , Y

(k)
εt , t). Here the Hurst index that prevails equals 2

minus the fractal dimension of sample paths of the process Y (j) that has the rough-
est sample paths. It is also possible to incorporate a smooth, monotone, nonlinear
transformation of the time variable t. However, the simpler setting prescribed by
condition (a) conveys the important characteristics of these more complex models.

We claim that, under models of the type characterised by (a)–(c), Ĥ is consistent
for H and has an asymptotic distribution that is either Normal or of the type intro-
duced by Rosenblatt (1961). To formulate this assertion as a mathematical theorem
we first elaborate on (a)–(c) with the following assumptions:

(A) the derivatives
gj1j2(y, t) = (∂/∂y)j1 (∂/∂t)j2 g(y, t)

are bounded for each j1, j2 ≥ 0, and g10 does not vanish;

(B) the Gaussian process Y satisfies E(Yt) ≡ 0, and for constants c > 0, α = 2H ∈
(1

2
, 2) and β > min(1

2
, 2 − α), E(Ys+t − Ys)

2 = c|t|α + O(|t|α+β), uniformly in
s ∈ J = [0, 1], as t→ 0; and

(C) ε = 1/N → 0,

THEOREM 2.1 We define Ĥ by regression of log(R/S)n on log n, i.e.

log

(
R

S

)
n

= Ĥ log n+ C ,

for a fixed number, k, of values `1m, . . . , `km of n, where `1, . . . , `k are fixed and
m = m(ε) →∞ as ε→ 0, in such a manner that m−1 +mε = O(εa) for some a > 0.
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Define ξ = mε and

tξ =


ξ2(1−H) if 3/4 < H < 1(

ξ log ξ−1
)1/2

if H = 3/4
ξ1/2 if 0 < H < 3/4 ,

which converges to 0 as ε→ 0. Then, we claim that Ĥ−H may be expressed as tξZξ,
where Zξ has a proper limiting distribution as ε→ 0.

The regularity conditions may be relaxed in many circumstances. For example, the
restriction in (B) that α > 1

2
may be dropped if g(y, t) ≡ y, and also in some other

cases. The boundedness condition on derivatives of g may also be relaxed.
Crucially, the limiting distribution of Ĥ depends only on H and `1, . . . , `k; it does

not depend on g or on the scale constant, c, appearing in the first-order approximation
of the covariance. The main effects of scale and heteroscedasticity, entering through
g and c, have cancelled due to rescaling by the terms Sa in (2.2), see the proof of
Theorem 2.1. The limiting distribution is Normal when 0 < H ≤ 3/4, and a finite
linear combination of correlated Rosenblatt distributions when 3/4 < H < 1. Outline
proofs of all these assertions are given in the appendix.

The results are foreshadowed by those of Hall and Wood (1993) for box-counting

estimators, of which Ĥ may be regarded as a scale-corrected version. We do not give
the form of the limits, since it is complex (particularly in the Rosenblatt case), but it
is of the type discussed by Hall and Wood (1993), p. 252. The relationships between
statistical properties of a Gaussian process (e.g. Y ), and of a smooth function of that
process (e.g. X), have been addressed by Hall and Roy (1994).

The fact that the limiting distribution depends only on H and `1, . . . , `k justifies
the bootstrap methods suggested in Section 2.2.2. Specifically, since the bootstrap
algorithm preserves the way in which H and `1, . . . , `k contribute to the limiting
distribution, and since Ĥ → H at a rate that is polynomial in ξ (indeed, at rate
tξ), then the bootstrap produces confidence intervals and hypothesis tests that have
asymptotically correct coverage. The fractional Brownian motion ζ, used as the basis
for our simulations, is just one of many that could have been employed, satisfying
condition (B) above.

Note particularly that we keep k fixed as ε decreases. If our regularity conditions
were to allow k = k(ε) to diverge then the Rosenblatt limit would change to Normal,
but as discussed by Constantine and Hall (1994), this would generally be at the

expense of increased mean squared error of Ĥ.
PROOF of Theorem 2.1:
Put Zt = g(Yt, t) and let J = [0, 1]. From the Taylor formula we have for any integer
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B′

Zt1 =
B′∑

j1=0

B′∑
j2=0

1

j1!j2!
(Yt1 − Yt2)

j1 (t1 − t2)
j2 gj1j2(Yt2 , t2)

+Op

(
|t1 − t2|B

′)
+Op

(
|Yt1 − Yt2|B

′)
.

Given B > 0, we choose B′ so large that B′α > 2B. Then we get with assumption
(B), uniformly in t1, t2 ∈ J ,

Zt1 =
B′∑

j1=0

B′∑
j2=0

1

j1!j2!
(Yt1 − Yt2)

j1 (t1 − t2)
j2 gj1j2(Yt2 , t2) +Op

(
|t1 − t2|B

)
. (2.3)

This formula provides the opportunity to develop Taylor expansions of quantities
such as Ra/Sa. It turns out that only the first term in such expansions contributes
to asymptotic results. Nevertheless, higher-order Taylor-expansion terms should be
included since, prior to correction for their means and analysis of their size, they
are potential first-order contributors to limit theory for (R/S)n. In our work the
contributions of these high-order terms will be denoted by Q1, Q2, . . .. For the sake
of simplicity we ignore the mean correction in the definition of Sa.

Let T ⊆ J denote a set of n + 1 equally-spaced points t0 < . . . < tn within an
interval of width δ = nε, and write ST and UT for the empirical standard errors of
the ‘samples’ {Zti −Zti−1

, 1 ≤ i ≤ n} and {Yti −Yti−1
, 1 ≤ i ≤ n}, respectively. Then

by (2.3), for all η > 0,

S2
T = g10(Yt2 , t2)

2 U2
T +Q1 +Op

(
ε(α/2)+B−η

)
, (2.4)

RT
def
= max

t∈T
Zt −min

t∈T
Zt

= s |g10(Yt2 , t2)|
(
YTT − YT ′T

)
+Q2 +Op

(
δB
)
, (2.5)

where TT = argmaxt∈T Zt, T
′
T = argmint∈T Zt, and s denotes the sign of g10. Hence,

for all η > 0,

RT
ST

=
s

UT

(
YTT − YT ′T

)
+Q3 +Op

(
δα/2εB−(α/2)−η + δB ε−(α/2)−η

)
, (2.6)

where Q3 represents a series of ratios of terms, of the form V/UT , in Taylor expansions
(in this sense, each summand is like the first term on the right-hand side of (2.6)),
and the Op(·) remainder is of the stated order uniformly in T . Note particularly that
in forming the leading ratio in (2.6) the contribution g10(Yt2 , t2) has cancelled from
the leading terms in (2.4) and (2.5), and likewise the effect of the constant c (see
condition (B) in Section 2.2.4) may be seen to cancel. This results from the scaling
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aspect of R–S analysis, and explains why the process ζ from which we simulate when
applying the bootstrap does not need to reflect either the properties of g or the value
of c.

We deal with each ratio, V/W where W = UT , by expressing it as

V 2

W 2
=

(v + ∆V )2

w2

1

1 + ∆W

where ∆V = V − v, ∆W = (W 2 − w2)/w2, v = E(V ) and w2 = E(W 2). With the
power series expansion of (1 + x)−1/2 we get

V

W
= w−1(v + ∆V ) (1 + 1

2
∆W +

3

8
∆2

W + . . .) .

For purposes of exposition we shall confine attention to the three main terms in
such an expansion, i.e. to (v/w) + (∆V /w) + 1

2
v(∆W/w), in the case V = YTT − YT ′T

and W = UT . (Without loss of generality, s = 1.) Other terms may be treated
similarly, although the argument is lengthy.

Let ∆V a, ∆Wa, va and wa denote versions of ∆V , ∆W , v and w when T = Ia,
the latter defined in Section 2.2.1. Note that, by condition (B), wa = w0{1 +O(ξβ)}
uniformly in a, where w0 does not depend on a or n. Since β > min(1

2
, 2 − α) (see

condition (B)) then ξβ = O(tξ). Arguing thus it may be proved that A−1 times the
sum over 1 ≤ a ≤ A of va/wa equals Cδα/2(w0)−1{1 + O(tξ)}, where C > 0 is a
constant not depending on n.

Put u = A−1δ−α/2w0, and let Sξ(n) equal u times the sum over 1 ≤ a ≤ A of
the term ∆V a/wa. Methods of Hall and Wood (1993) may be used to show that the
variance of Sξ(n) is asymptotically equal to a constant multiple of t2ξ , and that for
the k values of n being considered, the variables Sξ(n)/tξ have a joint asymptotic
distribution which is k-variate Normal when 0 < H ≤ 3/4, and k-variate Rosenblatt
(Rosenblatt (1961); Taqqu (1875)) when 3/4 < H < 1.

By considering properties of the variogram estimator of fractal dimension, meth-
ods of Constantine and Hall (1994) may be employed to prove that u times the sum
over a of va∆Wa/wa equals Op(tξ). (Here it is critical that m diverge to infinity.) If
B is sufficiently large then u times the sum over a of the Op(·) remainder at (2.6)
also equals Op(tξ), and similar methods may be applied to terms represented by Q3

in the Taylor expansion. (The high-order contributions to bias of Ĥ include terms of
order ξα, but since we assumed α > 1

2
then this equals O(tξ).) Arguing thus we may

ultimately show that

(R/S)n = Cδα/2(w0)−1{1 + Sξ(n) + Op(tξ)} .
Hence, log(R/S)n equals a quantity which does not depend on n and which goes into
the intercept term in the regression, plus (α/2) log n + Sξ(n) + Op(tξ). The result
asserted in section 2.2.3 follows from this property. �
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2.3 Empirical Analysis

To justify statistical methods based on the semimartingal property of asset prices in
the following chapters, we test the null hypothesis H0 : H = 0.5 for a variety of asset
price processes. Thus, the aim of this section is to obtain an estimate Ĥ of the Hurst
coefficient H and to construct hypothesis tests and confidence intervals for H for the
logarithm of the price process of certain German stocks.

Denote the logarithm of the price process of a stock (or index) by {Xt : 0 ≤
t ≤ T}. To estimate the Hurst coefficient H we apply R–S analysis, as described
in Section 2.2.1, to N discrete observations {Xn : n = 1, . . . , N} of {Xt} at times
t1 ≤ t2 ≤ . . . ≤ tN ,

For the empirical study we used 6900 observations (N = 6900) of 24 German blue
chip stocks obtained form the Datastream/Primark’s database from 8th of January
1973 to the 18th of June 1999. The blue chips are included in the DAX, an index
comprising 30 German stocks. We analysed Datastream performance indices instead
of prices in order to avoid jumps in the respective time series due to dividend payments
or rights issues. The obtained Hurst coefficients are shown in Table 2.1. Figure 2.2
shows the R–S plot for the price process of the stock of Volkswagen. The R–S plot
also includes a line with slope 0.5, which correspond to Brownian motion. As one can

R/S statistic for Volkswagen
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Figure 2.2: R–S plot for VW, Ĥ = 0.606

see, the R–S line has a different slope then it would have if the underlying process
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corresponded to a Brownian Motion.
In the first step of our empirical analysis we tested whether the Hurst coefficient

of an asset was significantly different from 0.5 or not. A significant difference from
0.5 would indicate that Xt did not follow a Brownian Motion. In order to test the
null hypothesis that H = 0.5, against the alternative H 6= 0.5, i.e.

h0 : H = 0.5 h1 : H 6= 0.5 ,

we approximated the distribution of Ĥ −H conditional on the null hypothesis, and
calculated the p-values, P{|Ĥ − EĤ| > |Hobserved − EĤ| | h0}, of the estimated

Ĥ. For this approximation the bootstrap algorithm described in Section 2 was used.
For H = 0.5 the fractional Brownian Motion coincided with usual Brownian Motion,
which we simulated as a random walk. An estimate of the conditional density of
Ĥ∗ − Ĥ, computed from 400 simulated random walks of length 6900, is shown in
figure 2.3. Table 2.1 shows the p-values for the estimated Hurst coefficient of the
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Figure 2.3: Estimated density of Ĥ −H for 400 simulated Brownian Motions with length
6900. The vertical lines determine the 0.05, 0.95 quantiles.

stocks.
Our analysis suggests that the difference between the estimated Hurst index of

the prices of BMW, Daimler, Mannesmann, Preussag, Siemens and Volkswagen, and
the value the Hurst index would take if the stochastic process describing prices were
Brownian motion, is so great that it cannot be adequately explained by stochastic
fluctuations.
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We studied the assets for which the estimated Hurst coefficient H was significantly
different from 0.5. For our further analysis we assumed that the logarithm of the price
processes are self similar with stationary increments, i.e.

c−H(Xct)t∈R =d (Xt)t∈R for all c > 0 (2.7)

and for any k ≥ 1 and any time points t1, . . . , tk,

(X(t1), . . . , X(tk)) =d (X(t1 + c), . . . , X(tk + c)) for all c ∈ R (2.8)

Here, Y =d Z means that Y and Z have the same distribution. These assumptions
are often made in literature on financial market analysis. A well known model is the
Multifractal Model of Asset Returns (MMAR) introduced by Calvet et al. (1997).
In this model the logarithms of prices are assumed to follow a fractional Brownian
Motion, i.e.

X(t)−X(0) = BH(θ(t)) ,

where θ(t) is a multifractal process with continuous, non-decreasing paths and sta-
tionary increments.

Under assumptions 2.7 and 2.8 the autocorrelation function ρ(k) = E[{X(t) −
EX(t)} {X(t+ k)−EX(t+ k)}] of X(t) is approximately of the form ck2H−2. More
precisely, the following holds, Beran (1994):

ρ(k)

H(2H − 1)k2H−2
−→ 1 0 < H < 1, H 6= 1

2
, k −→∞.

This means that for Ĥ > 0.5, Xt has long memory. Stocks where long memory was
detected are displayed in bold face in table 2.1.

The second step of our analysis was construction of confidence intervals. For this
purpose we approximated the distribution of Ĥ − H by that of Ĥ∗ − Ĥ, where Ĥ∗

denotes the estimated value of the Hurst coefficient of simulated fractional Brownian
Motions with coefficient α̂ = 2Ĥ. That is, we computed the conditional (on X(t))

distribution of the bootstrap form of Ĥ∗ − Ĥ, as an approximation to the uncondi-
tional distribution of Ĥ −H. We applied the bootstrap method described in Section
2.2. To simulate fractional Brownian motion we used methods from Section 2.2.2
with p = 1 as well as the algorithm described in Beran (1994), p. 216. The latter
is based on the finite Fourier transform of the autocovariance function of fractional
Gaussian noise. Both methods lead to similar results.

The bootstrap densities for the different Hurst values of the assets which have
significantly larger Hurst coefficient than a Brownian Motion were approximately the
same except for the mean value. For this reason we calculated only the density of
Ĥ∗−Ĥ of the Volkswagen stock. It is shown in figure 2.4. The confidence intervals for
the other assets were obtained by correcting this density for the different estimated
Hurst coefficient. Table 2.2 shows the resulting confidence regions.
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Figure 2.4: Bootstrap density of Ĥ − H for the Volkswagen stock. The vertical lines
determine the 0.05, 0.95 quantiles.
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asset Ĥ p-value

Allianz 0.5642 0.6
BASF 0.5390 0.24
Bayer 0.5288 0.073
BMW 0.5851 0.05
Commerzbank 0.5536 0.88
Dt. Bank 0.5743 0.22
Daimler 0.5859 0.05
Degussa Hüls 0.5629 0.68
Dresdner Bank 0.5625 0.7
Hoechst 0.5420 0.37
HypoVereinsbank 0.5533 0.86
Karstadt 0.5552 0.95
Lufthansa 0.5584 0.89
Linde 0.5583 0.90
MAN 0.5605 0.79
Mannesmann 0.5856 0.05
Münchner Rück NA 0.5589 0.88
Preussag 0.5884 0.035
RWE 0.5398 0.29
Schering 0.5772 0.17
Siemens 0.6007 0
ThyssenKrupp 0.5794 0.13
Veba 0.5426 0.38
Volkswagen 0.6049 0

Table 2.1: Estimated Hurst coefficient of German stocks
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asset 0.9 confidence region 0.95 confidence region

BMW [0.475, 0.579] [0.466, 0.594]
Daimler [0.476, 0.581] [0.467, 0.596]
Mannesmann [0.476, 0.580] [0.467, 0.596]
Preussag [0.481, 0.585] [0.472, 0.601]
Siemens [0.506, 0.610] [0.497, 0.626]
Volkswagen [0.514, 0.619] [0.505, 0.634]

Table 2.2: Confidence regions for Hurst coefficients



Chapter 3

Testing Diffusion Models

We will now assume, that the observed processes are semimartingales and thus do not
contradict the no arbitrage condition, see Chapter 1. In particular we concentrate on
diffusion processes. These processes are Markovian semimartingales and have almost
surely continuous paths.

The chapter is organized as follows. We introduce the model and the available
observations in Section 3.1. The null hypotheses are given in Section 3.2. In Section
3.3 we introduce testing procedures that are based on a discrete approximation of
the continuous time process X by a time series. Section 3.4 captures nonparametric
estimation methods for the marginal density, the drift and the diffusion coefficient of
the continuous time model. Finally we introduce in Section 3.5 different tests about
the dynamics of X based on the proposed estimators.

3.1 Model and Observations

Formally, we assume that the log price process of an underlying or an interest rate
process is an one-dimensional diffusion {X(t), t ∈ [0, T ]} defined on a probability
space (Ω,F ,P, {Ft}t∈[0,T ]). X is given as a strong solution of the stochastic differential
equation

dX(t) = m{X(t)}dt+ σ{X(t)}dW (t) t > 0 (3.1)

where m and σ are smooth function, such that a unique strong solution of (3.1)
exists and {W (t), t ∈ [0, T ]} is a standard Brownian Motion adapted to the filtration
{Ft}t∈[0,T ]. Furthermore we assume that σ2 has continuous derivatives up to the
second order. Conditions for the existence and uniqueness of a solution of (3.1) are
given in Appendix A.1.

The dynamics of the process X are fully specified by the functional form of the
drift coefficient m and the diffusion coefficient σ. The aim of this chapter is to test
parametric models for both functions.

23
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We mention, that both coefficient functions, σ2 and m, are assumed to depend
only on the current state X(t) of X. When we discuss tests about a parametric
form of σ2 we will show, how these tests can be extended to the case, when σ also
depends on time t. Basically this extension is realized via a transformation of X.
However, for the drift function such a transformation does not exist. Other arbitrage
free models to capture the dynamics of financial time series have been proposed in the
literature. The basic concepts are stochastic volatility models and stochastic delay
equations. In the first kind of models, an additional random process, the volatility
process, influences the diffusion coefficient and/or the drift of X. This additional
source of randomness yields an incomplete market model, where option prices are no
longer unique. In the second approach, non Markovian semimartingales are used, i.e.
both functions, the drift m and the diffusion coefficient σ depend on the path history
of X, Hobson and Rogers (1998).

In order to make the proposed tests applicable to observed data, all tests and
estimation methods are based on discrete observations of X. Thus, we assume that
the diffusion process X is observed at equidistant time points

0, 1/n, . . . , ([Tn]− 1)/n, [Tn]/n

where [a] denotes the integer part of a. From this discretization scheme we see that
two kinds of asymptotics results coexist in the statistics of continuous time processes.
The first kind is based on n→∞. This means that the number of observations per
unit of time tends to infinity and due to the assumption of equidistant observations,
the time distance between two observations is shrinking to 0. The second kind of
asymptotics is T →∞, i.e. the time horizon, until which observations are available, is
tending to infinity. Heuristically speaking, n→∞ is used when we derive asymptotic
results about the diffusion coefficient σ2. The second kind of asymptotics, T → ∞
is used when we derive estimators or tests for the drift coefficient m or the marginal
density of X. The results of this chapter rely on one or on both kinds of asymptotics.
Thus we will specify the assumptions about T and n for every particular method.

Before we introduce statistical methods for X we give a few definitions.

DEFINITION 3.1 We call a stochastic process X stationary, if and only if, the dis-
tribution of (X(t1), . . . , X(tk) is the same as the distribution of (X(t1+s), . . . , X(tk +
s) for any s > 0, and t1 ≥ 0, . . . , tk ≥ 0 and any k = 1, 2, . . ..

DEFINITION 3.2 The process X given as the solution of (3.1) is α-mixing, if

α(u)
def
= sup

A∈Ft;B∈F∞t+u

|P(AB)− P(A)P(B)| → 0

for u→∞. Here F∞
t denotes the σ-algebra generated by {(Xu), u ≥ t}. We call the

process X geometrically α-mixing if

α(u) ≤ aρu
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for some a > 0 and ρ ∈ [0, 1).

For an introduction into α-mixing processes, see Bosq (1998) or Billingsley (1968).
Since all estimators and tests are restricted to the range where X is observed, we

introduce the definition of the local time of X up to time t ∈ [0, T ].

DEFINITION 3.3 For a diffusion X we define

• occupation measure νt: νt(B,ω)
def
=
∫ t

0
IB{X(u, ω)}du

• Local Time: Lt(., ω)
def
= dνt

dλ
for P− a.e. ω ∈ Ω where λ is the Lebesque measure

on R.

This definition is given in Bosq (1998). Heuristically speaking, the occupation mea-
sure νt(B) measures the time, that the process X spends in the set B up to time t
and the local time Lt(x) measures the time, that X spends in a neighborhood of x.

Using the local time we can now restrict the range on which we estimate param-
eters of X and test particular models. For this reason we use the notation

IX
def
= {x ∈ R | LT (x) > εL} (3.2)

for an arbitrary εL > 0. In the particular case of an ergodic process X, see Appendix
A.1, we have from the ergodic theorem that the marginal density f of X is given by

f(x) = lim
t→∞

1

t
Lt(x) (3.3)

Hence, may rewrite the above notation as

IX = {x ∈ R | f(x) > εf} (3.4)

where εf is a positive constant. For a stationary α-mixing process both expressions
of IX are asymptotically equivalent for T →∞. However, when we test the diffusion
coefficient we do not assume that X is stationary and thus we use (3.2) as the defi-
nition of IX . On a heuristic level we may think of IX as the set of all points x ∈ R
that the process X has visited up to time T . We will restrict all estimators and tests
on this set, since we are only interested in the behavior of m and σ at points, where
observations are available.
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3.2 Hypotheses

As already mentioned in the introduction, option prices and risk measures depend
on the particular dynamics of X. These dynamics are specified by a functional form
of the drift function m and the diffusion coefficient σ in (3.1). In mathematical
finance it is often assumed, that these functional forms are known up to a finite
dimensional parameter θ, i.e. m(x) = m(θ, x) and σ(x) = σ(θ, x) with a usually
unknown parameter θ.

It is the aim of this chapter to introduce goodness-of-fit tests, to verify the para-
metric models. Hence, we will test two null hypotheses.

Null hypothesis about the drift

H0(m) : ∃θ0 ∈ Θ : for every t ∈ [0, T ] :

m{X(t)} = m{θ0, X(t)} P-a.s. (3.5)

Null hypothesis about the squared diffusion coefficient

H0(σ
2) : ∃θ0 ∈ Θ : for every t ∈ [0, T ] :

σ2{X(t)} = σ2{θ0, X(t)} P-a.s. (3.6)

We mention, that the particular choice of the parameter θ is not part of the
null hypotheses. For instance, the null hypothesis about σ2 is true, if there is any
parameter, such that the deviation between the true diffusion coefficient and the
diffusion coefficient function as implied by the null hypothesis and the particular
choice of the parameter, can be explained by random fluctuations.

Since m and σ fully specify the dynamics of the Markovian process X, the two
hypotheses about the coefficients of X can be replaced by hypothesis about its transi-
tion density. Such an approach is outlined by Hong and Li (2002). However, in many
applications a particular form for the coefficients need to be tested and a closed form
for the transition density is not known. In addition, tests about the transition density
require estimation methods for the drift function or for the parameters of it. Since
these methods usually rely on the ergodic theorem, the class of possible models is
restricted to stationary processes.

3.3 Tests Based On A Discrete Time Approxima-

tion

In this section we develop tests that are based on a time series approximation of
X. The results are mainly based on the work of Härdle et al. (2001), Chen et al.
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(2001) and Chen et al. (2002). We start with a discrete time approximation X∆

of X and then introduce statistical estimation and testing procedures for X∆. The
proposed test statistics directly compare nonparametric estimates of the drift m and
the diffusion coefficient σ2 to their parametric forms as implied by the null hypotheses.
The first test is based on the L∞ norm, while the second test, the Empirical Likelihood
test, is equivalent to a studentized L2 distance between the nonparametric and the
parametric estimates of the drift.

3.3.1 Discrete Time Approximation

From Theorem 10.2.2., its proof and Remark 10.2.3. in Kloeden and Platen (1999)
we know, that under a few technical assumptions on the functions m and σ2, the
Euler approximation

X∆(t) = X∆(0) +

∫ t

0

m
{
X∆(tis)

}
ds +

∫ t

0

σ
{
X∆(tis)

}
dW (s) t ∈ [0, T ] (3.7)

with tis = max{ti , ti ≤ s} and ti = i/n for i = 0, . . . , [nT ], converges in a mean
square sense to X as ∆ = 1/n→ 0, i.e.,

lim
n→∞

E( sup
0≤t≤T

|X∆(t)−X(t)|2) = 0, T > 0. (3.8)

From now on, we assume that a discrete time approximation X∆ exists in the
form of (3.7) and that property (3.8) is satisfied. For the purposes of this section,
∆ = 1/n will always be considered small enough that one can substitute X by X∆ in
our interpretation of the observed data. The increments of the Euler approximation
(3.7) and so the observed data will have the form

X∆(ti+1)−X∆(ti) = m
{
X∆(ti)

}
∆ + σ

{
X∆(ti)

}{
W (ti+1)−W (ti)

}
(3.9)

for i = 0, 1, . . . [nT ]−1. The observations {X∆(ti)}, i = 0, 1, . . . [nT ]−1 form a time
series. As long as the step size ∆ is small enough the concrete choice of ∆ does not
matter since all the relevant information about the model is contained in the drift m
and diffusion coefficient σ.

For the following we introduce the notation

Xi
def
= X∆(ti) , X def

= (X0 . . . , X[nT ]−1) (3.10)

εi
def
= W (ti+1)−W (ti) , ε

def
= (ε0, . . . , ε[nT ]−1)

Yi
def
= Xi+1 −Xi = m

(
Xi

)
∆ + σ

(
Xi

)√
∆εi ,

Y def
= (Y0, . . . , Y[nT ]−1) (3.11)
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with independent standard Gaussian random variables

εi =
W (ti+1)−W (ti)√

∆
∼ N(0, 1).

The same discretization scheme is applied by Hoffmann (1999). He uses this method
to develop an adaptive nonparametric estimation procedure for σ2 using wavelets.

We remark, that we assume here that the observed data are not generated by the
continuous time model (3.1), but the discrete time process X∆ as given in (3.9). We
argue, that for statistical methods the difference between the two models is asymptot-
ically negligible and thus all empirical results for the discrete time model are also valid
for the corresponding continuous time process. In Section 3.4 we redefine Xi since
we will not apply a discrete time approximation there and interpret the observations
as realizations of the continuous time process X.

3.3.2 Estimation of the Drift and Diffusion Coefficient

We will now introduce methods to estimate the drift and diffusion coefficient of
X nonparametrically. For the applied methods it is necessary, that the following
condition is fulfilled, which we assume for the remainder of the section.

(DT1) X, as given by (3.1) is stationary and geometrically α-mixing, and thus X
is ergodic.

Genon-Catalot et al. (2000) show, that both {Xi, i = 0, . . . , [nt]} and {(Xi+1 −
Xi)

2, i = 0, . . . , [nt]− 1} are α-mixing if the continuous time process X is α-mixing,
see Definition 3.2.

Let K be a bounded probability density function with a compact support on
[−1, 1] that satisfies the moment conditions:

µ1(K)
def
=

∫
uK(u)du = 0, µ2(K)

def
=

∫
u2K(u)du <∞ . (3.12)

Let h be a positive smoothing bandwidth which will be used to smooth (X ,Y) given
in (3.10) and (3.11). In the following we use the notation

Kh(u)
def
=

1

h
K
(u
h

)
. (3.13)

The nonparametric estimator considered is the local linear estimator, Fan and
Gijbels (1996) and Härdle and Tsybakov (1997). To justify the use of this method,
the time series Xi has to be ergodic and to meet some technical conditions, see
Härdle and Tsybakov (1997). As mentioned above, the ergodicity of Xi follows from
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the ergodicity ofX, which we assume here. The square root process and the Ornstein-
Uhlenbeck process are examples, where the discrete time approximation (3.7) satisfies
the technical conditions. Mainly, these conditions are, that the marginal distribution
has a bounded, strictly positive density function and that the drift function and the
diffusion coefficient are twice continuously differentiable.

The local linear estimator of the drift m at x ∈ IX is obtained by

m̂h(x) =
1

∆
β̂0(x) (3.14)

with

β̂(x) =

(
β̂0(x)

β̂1(x)

)

= argminb0,b1

[nT ]−1∑
i=0

{
Yi − b0 − b1(Xi − x)

}2

Kh(x−Xi)

 .

The bandwidth h > 0 is chosen with respect to the Silvermans rule of thumb, see
Härdle (1990).

We apply for the squared diffusion function σ2(x) a two-step estimation. First we
compute from the above drift function estimator (3.14) the values m̂h{Xi}. In the
second step we use the squared diffusion function estimator

σ̂2
h(x) =

1

∆
δ̂0(x) (3.15)

with

δ̂(x) =

(
δ̂0(x)

δ̂1(x)

)

= argmin

(
[nT ]−1∑

i=0

{(
Yi −∆m̂h{Xi}

)2
−δ0 − δ1(Xi − x)

}2

Kh(x−Xi)

)
and bandwidth h > 0.

The asymptotic properties of local polynomial estimates are studied in Fan and
Gijbels (1996) and Härdle et al. (1999). Under some smoothness conditions with
bandwidth h = k0/n

1/5 for a constant k0 > 0, the results applied to our case provide
the following formulas on the asymptotic normality

n2/5 {m̂h(x)−m(x)} D→ N

(
k2

0

2
µ2(K) ∆m

′′
(x) ,

‖K‖2
2 ∆σ2(x)

k0f(x)

)
(3.16)
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n2/5
{
σ̂2

h(x)− σ2(x)
} D→ N

(
k2

0

2
µ2(K)

(
∆
(
σ2(x)

)′′
+ 2(∆m

′
(x))2

)
,

2∆2σ4(x)‖K‖2
2

k0f(x)

)
. (3.17)

Here µ2(K) is the second moment of the kernel K and

‖K‖2
def
=

(∫
[−1,1]

K2(x)dx

)1/2

is its L2 norm. Furthermore f(x) denotes the stationary density of X as given in
Section 3.3.1.

3.3.3 Testing the Parametric Model

We construct tests to compare the nonparametric estimates introduced in 3.3.2 for
m{.} and σ2{.} to parametric forms implied by the null hypotheses. The nonpara-
metric estimators we apply, are the local polynomial estimators in (3.14) and (3.15).
The Nadaraya-Watson estimator is not used here, but will be applied in 3.3.4 when
we incorporate the Empirical Likelihood methodology.

The tests in this section are based on pointwise confidence bands which we build
with the bootstrap method. The idea is to bootstrap the original discrete time series
and estimate each time the drift and squared diffusion coefficients nonparametrically
as described in Section 3.3.2. With these estimates one can then construct pointwise
confidence bands for the two functions.

We choose the bootstrap method because it leads to better coverage probabilities
than, for instance, a Gaussian approximation. In Neumann and Kreiss (1998) it
was shown for a time series similar to (3.7) that the coverage probability is of order
O([nt]−q) for some q > 0, where [nt] is the number of observations. A Gaussian
approximation, see Hall (1985), leads to a coverage probability of order O(1/ ln([nt])).

Since the residuals εi of the local linear regression

Yi = m(Xi) + εi

are not identically distributed, a naive resampling method will not mimic the true
distribution of εi, see Härdle and Mammen (1993). Instead of naive resampling they
suggest to apply a wild bootstrap procedure. For the wild bootstrap we calculate the
residuals

ε̂i
def
= Yi − m̂h(Xi)

and use one observations for each residual εi to estimate the conditional distribution
of Yi−m(Xi) given Xi. More precisely Härdle and Mammen (1993) define a two-point
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distribution F̂i with expectation zero and with second and third moments given by ε̂2
i

and ε̂3
i respectively. With this distribution we are now able to construct independent

replications ε∗ ∼ F̂i and use them to simulate new replications of the time series X∗
i .

The confidence bands for the nonparametric estimators are constructed in the
following way, Härdle et al. (2001)

1. Choose a bandwidth g, which is larger than the optimal h in order to have
oversmoothing. Estimate then nonparametrically m(.) and σ2(.) and obtain
the residual estimated errors:

ε̂i =
Yi −∆m̂g{Xi}√

∆σ̂g{Xi}
.

Since we make the assumption that the εi has zero-mean, we subtract the sample
mean of ε̂i.

2. Replicate N times the series of the (ε̂i) with wild bootstrap obtaining (ε∗,ni ) for
n = 1, . . . , N and build N new bootstrapped series (X∗,n):

X∗,n
1 = X1

X∗,n
i+1 −X∗,n

i = ∆m̂g(X
∗,n
i ) +

√
∆σ̂g(X

∗,n
i )ε∗,ni .

Estimate again m(z) and σ2(z) for each of the N bootstrapped series with
bandwidth h.

3. Build the statistics:

T ∗m = sup
z

|m̂∗,n
h (z)− m̂h(z)|
σ̂∗,nh (z)

and
T ∗σ = sup

z
|(σ̂2)∗,nh (z)− σ̂2

h(z)|

.

4. Form the (1− α) confidence bands CB

CB(m(.)) = [m̂h(z)− σ̂h(z)tm,1−α , m̂h(z) + σ̂h(z)tm,1−α]

and
CB(σ2(.)) =

[
σ̂2

h(z)− tσ,1−α , σ̂
2
h(z) + tσ,1−α

]
where tm,1−α and tσ,1−α denote the empirical 1 − α-quantile of T ∗m and T ∗σ ,
respectively.
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The asymptotic results for the (1 − α) confidence bands CB(m) and (CB(σ2)),
that is

P {m(z) ∈ CB(m)} → 1− α

and
P
{
σ2(z) ∈ CB(σ2)

}
→ 1− α

respectively, are proven in Franke et al. (1998).

3.3.4 Empirical Likelihood Tests

The second test in this section is about a parametric form of the driftm of the time se-
ries X given in (3.7). We apply here the Empirical Likelihood (EL) methodology since
it internally studentizes the test statistic and also captures features of its empirical dis-
tribution. In the context of goodness-of-fit tests for time series models, the EL concept
was first introduced by Chen et al. (2001) and was applied to a discrete time approx-
imation of a diffusion by Chen et al. (2002). We first give a short introduction into
the Empirical Likelihood concept for independent and identically distributed data
and then expand the results to the case of time series observations.

Introduction into Empirical Likelihood

Let us now as in Owen (1988) and Owen (1990) introduce the empirical likelihood
(EL) concept. For a detailed discussion of EL tests and confidence bands we refer to
Owen (2001). Suppose a sample (U1, . . . , UN) of independent identically distributed
random variables in R1 according to a probability law with unknown distribution
function F and unknown density f . For an observation (u1, . . . , uN) of (U1, . . . , UN)
the likelihood function is given by

L̄(f) =
N∏

i=1

f(ui) (3.18)

The empirical density calculated from the observations (u1, . . . , uN) is

fN(u)
def
=

1

N

N∑
i=1

I{ui = u} (3.19)

where I denotes the indicator function. It is easy to see that fN maximizes L̄(f) in
the class of all probability density functions.

The objective of the empirical likelihood concept is the construction of tests and
confidence intervals for a parameter θ = θ(F ) of the distribution of Ui. To keep
things simple we illustrate the empirical likelihood method for the expectation E[Ui].
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The null hypothesis is E[Ui] = θ. We can test this assumption based on the empirical
likelihood ratio

R(F )
def
=
L̄{f(θ)}
L̄(fN)

(3.20)

where f(θ) maximizes L̄(f) subject to∫
UidF = θ. (3.21)

On a heuristic level we can reject the null hypothesis “under the true distribution
F , U has expectation θ” if the ratio R(F ) is small relative to 1, i.e. the test rejects
if R(F ) < r for a certain level r ∈ (0, 1). More precisely, Owen (1990) proves the
following theorem.

THEOREM 3.1 Let (U1, . . . , UN) be independent and identically distributed one-
dimensional random variables with expectation θ and variance σ2. For a positive
r < 1 let

Cr,N =

{∫
UidF

∣∣∣ F � FN , R(F ) ≥ r

}
be the set of all possible expectations of U with respect to distributions F dominated
by FN (F � FN). Then it follows

lim
N→∞

P[θ ∈ Cr,N ] = P[χ2 ≤ −2 log r] (3.22)

where χ2 is a χ2-distributed random variable with one degree of freedom.

For the log EL ratio

LR def
= −2 log

{
max

{F |F�FN ,
∫

udF=θ}
R(F )

}
= −2 log

{
max

{F |F�FN ,
∫

udF=θ}

L̄{f(θ)}
L̄(fN)

}
follows directly from Theorem 3.1

lim
N→∞

P
[
LR ≤ r

∣∣∣ EUi = θ
]

= lim
N→∞

P
[

max
{F |F�FN ,

∫
udF=θ}

R(F ) ≥ −1

2
er
∣∣∣ EUi = θ

]
= lim

N→∞
P[θ ∈ C−(1/2) exp r,N ]

= P[χ2 ≤ r]

This result suggests therefore to use the log-EL ratio LR as the basic element of a
test about a parametric hypothesis for the drift function of a time series or a diffusion
process.
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Empirical Likelihood Test About The Drift

We will now expand the results in 3.3.4 to the nonparametric drift estimation of
the time series Xi, i = 0, . . . , [nT ] based on [nT ] observations up to time T . An
application of the EL methodology to the testing of the squared diffusion coefficient
is given in 3.5.3. In a time series context an EL test about a parametric model of the
drift of a time series is proposed by Chen et al. (2001) and in a diffusion context by
Chen et al. (2002). We will follow the results of Chen et al. (2001). For the sake of
simplicity we assume that IX = [0, 1]. The asymptotic results we are going to show
rely of the assumption that T tends to infinity, i.e. the length of the time interval
where observations are available is increasing. We do not make any assumptions
about n except, that n is large enough, such that the approximation of X by the
time series Xi, i = 0, . . . , [nT ]− 1 as introduced in 3.3.1 is valid. The nonparametric
estimator we apply here is the Nadaraya-Watson estimator

m̂(x) =

∑n
i=1 YiKh(x−Xi)∑n
i=1Kh(x−Xi)

. (3.23)

Let

m̃θ̂(x) =

∑
Kh(x−Xi)mθ̂(Xi)∑n

i=1Kh(x−Xi)

be the smoothed parametric model. The test statistic we are going to consider is
based on the difference between m̃θ̂ and m̂, rather than directly between m̂ and mθ̂,
in order to avoid the issue of bias associated with the nonparametric fit.

The local linear estimator, as given in 3.14, can be used to replace the Nadaraya-
Watson estimator in estimating m. The local linear estimator is known for its at-
tractive bias properties. However, as we compare m̂ with m̃θ̂ in formulating the
goodness-of-fit test, the possible bias associated with the NW estimator is not an
issue here. In addition, the NW estimator has a simpler analytic form. Extensions of
the results to the local linear estimator based test can be derived in a similar fashion,
although the proofs will be more involved.

Hypotheses about the drift

H0(m) : ∃θ0 ∈ Θ : for every t ∈ [0, T ] : m{X(t)} = m{θ0, X(t)} P-a.s.

H1(m) : ∀ θ ∈ Θ : for every t ∈ [0, T ] :

|m{X(t)} = m{θ,X(t)}| ≥ cT ∆T (X(t)) P-a.s.

∆T , the local shift in the alternative, is a sequence of bounded functions and cT
is the order of difference between H0 and H1. This choice of the alternative ensures
that the power of the proposed test depends on the number of observations n. In
particular we will assume, that cT tends to 0 with n → ∞. This means, that the
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tests can better distinguish between the null hypothesis and the alternative when the
number of observations is large, i.e. the power of the test depends on the number of
observations.

Before we start with the derivation of the test statistic for the goodness-of-fit test
for the drift m, we introduce the following set of assumptions in addition to (DT1).

(DT2) The kernel K is Lipschitz continuous in [−1, 1], that is |K(t1) − K(t2)| ≤
C||t1 − t2|| where || · || is the Euclidean norm, and h = O{T−1/5};

(DT3) f , m and σ2 have continuous derivatives up to the second order in S.

(DT4) θ̂ is a parametric estimator of θ within the family of the parametric model,
and

sup
x∈S

|mθ̂(x)−mθ(x)| = Op(T
−1/2).

(DT5) ∆T (x), the local shift in the alternative H1, is uniformly bounded with
respect to x and T , and cT = T−1/2h−1/4 which is the order of the difference
between H0 and H1.

(DT6) E{exp(a0|Y1 −m(X1)|)} < ∞ for some a0 > 0; The conditional density of
X given Y fX|Y ≤ A1 <∞, and the joint conditional density of (X1, Xl) given
(Y1, Yl) is bounded for all l > 1.

Assumptions (DT2) and (DT3) are standard in nonparametric curve estimation
and are satisfied for example for bandwidths selected by cross validation, whereas
(DT4) and (DT5) are common in nonparametric goodness-of-fit tests. It can be
seen from the proof of Lemma 3.1 and the proof of Theorem 3.4 that the geometric
α-mixing condition, assumption (DT1), can be weakened to α(u) ≤ Cu−s(d) where
s(d) > 2 and is a monotone function of d. It is technically convenient to assume
geometric the α-mixing.

We will now introduce the empirical likelihood concept for the testing problem
that we consider here. For an arbitrary x ∈ [0, 1] and any function µ we have

E

[
K

(
x−Xi

h

)
{Yi − µ(x)}

∣∣∣ E[Yi|Xi = x] = µ(x)

]
h→0−→ 0 . (3.24)

Using this relationship we apply the EL methodology as introduced above to develop
a test about µ(x) for an arbitrary x ∈ IX and then extend this test to global goodness-
of-fit test. . Let pi(x) be nonnegative numbers representing a density for

K

(
x−Xi

h

)
{Yi − µ(x)} i = 0, . . . , [nT ]− 1
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The empirical likelihood for µ(x) is

L{µ(x)} def
= max

[nT ]−1∏
i=0

pi(x) (3.25)

subject to

[nT ]−1∑
i=0

pi(x) = 1 and

[nT ]−1∑
i=0

pi(x)K

(
x−Xi

h

)
{Yi − µ(x)} = 0 . (3.26)

The second condition reflects (3.24).
Following Owen (2001), we find the maximum by introducing Lagrange multipliers

and maximizing the Lagrangian function

H(p, λ1, λ2) =

[nT ]−1∑
i=0

log pi(x) (3.27)

−λ1

[nT ]−1∑
i=0

pi(x)K

(
x−Xi

h

)
{Yi − µ(x)} − λ2


[nT ]−1∑

i=0

pi(x)− 1


where λ1 and λ2 depend on x. The first order conditions are the equations in (3.26)
and

∂H(p, λ1, λ2)

∂pi(x)
=

1

pi(x)
− λ1K

(
x−Xi

h

)
{Yi − µ(x)} − λ2 = 0

for all i = 0, . . . , [nT ]− 1. With the normalization λ2 = n and λ = λ1/λ2 we obtain
as a solution to (3.25) the optimal weights

pi(x) = n−1

[
1 + λ(x)K

(
x−Xi

h

)
{Yi − µ(x)}

]−1

(3.28)

where λ(x) is the root of

n∑
i=0

K
(

x−Xi

h

)
{Yi − µ(x)}

1 + λ(x)K
(

x−Xi

h

)
{Yi − µ(x)}

= 0. (3.29)

The maximum empirical likelihood is achieved at pi(x) = [nT ]−1 corresponding to the
nonparametric curve estimate µ(x) = m̂(x). For a parameter estimate θ̂ we get the
maximum empirical likelihood for the smoothed parametric model L{m̃θ̂(x)}. The
log-EL ratio is

`{m̃θ̂(x)}
def
= −2 log

L{m̃θ̂(x)}
L{m̂(x)}

= −2 log[L{m̃θ̂(x)}[nT ][nT ]].
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To study properties of the empirical likelihood based test statistic we need to
evaluate `{m̃θ̂(x)} at an arbitrary x first, which requires the following theorem on
λ(x) that was first proven in Chen et al. (2001).

THEOREM 3.2 Under the assumptions (DT1)-(DT6), we have for µ(x) = m̃θ̂(x):

sup
x∈IX

|λ(x)| = Op{([nT ]h)−1/2 log(nT )}.

To prepare the proof we introduce the notation

Ūj(x) = ([nT ]h)−1

[nT ]−1∑
i=0

[
K

(
x−Xi

h

)
{Yi − m̃θ̂(x)}

]j

(3.30)

for j = 1, 2, . . . and give the following three Lemmas proven in Chen et al. (2001),
see Appendix A.2.

LEMMA 3.1
sup
x∈IX

|Ū1(x)| = Op{([nT ]h)−1/2 log(nT )}

LEMMA 3.2

P{ inf
x∈IX

Ū2(x) ≥ d0} = 1 for a positive d0 > 0

LEMMA 3.3

max
1≤j≤n

sup
x∈IX

∣∣∣∣K (x−Xi

h

)
{Yi − m̃θ̂(x)}

∣∣∣∣ = Op{([nT ]h)1/2 log−1(nT )}

Using these Lemmas we will now proof Theorem 3.2.
PROOF of Theorem 3.2:
From the definition of H in (3.27) and from the deviation of pi(x) we have that pi(x)
is positive for all x and i. Following Owen (1990) and with the notation

εi(x)
def
= K

(
x−Xi

h

)
{Yi − m̃θ̂(x)}

we get from (3.29)

0 =

∣∣∣∣∣∣
[nT ]−1∑

i=0

εi(x)

1 + λ(x)εi(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
[nT ]−1∑

i=0

εi(x)− λ(x)

[nT ]−1∑
i=0

ε2
i (x)

1 + λ(x)εi(x)

∣∣∣∣∣∣ (3.31)

≥ |λ(x)|
[nT ]−1∑

i=0

εi(x)

1 + λ(x)εi(x)
−

∣∣∣∣∣∣
[nT ]−1∑

i=0

εi(x)

∣∣∣∣∣∣ . (3.32)
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From this inequality and the definition of Ūj(x) in (3.30) follows

0 ≥ |λ(x)|Ū2(x)

{
1 + |λ(x)| max

0≤i≤[nT ]−1
|εi(x)|

}−1

− |Ū1(x)| .

Taking the supremum over all x ∈ [0, 1] we have from Lemma 3.1

sup
x∈[0,1]

|λ(x)|Ū2(x)

{
1 + |λ(x)| max

1≤0≤[nT ]−1
|εi(x)|

}−1

= Op{([nT ]h)−1/2 log(nT )}

and the proof is completed by applying Lemma 3.2 and Lemma 3.3. �

An application of the power series expansion of 1/(1 − .) applied to (3.29) and
Theorem 3.2 yields

[nT ]−1∑
i=0

K

(
x−Xi

h

)
{Yi − m̃θ̂(x)}

[ ∞∑
j=0

{−λ(x)}jKj

(
x−Xi

h

)
{Yi − m̃θ̂(x)}

j

]
= 0.

Inverting the above expansion, we have

λ(x) = Ū−1
2 (x)Ū1(x) + Õp{([nT ]h)−1 log2(nT )}. (3.33)

From (3.28), Theorem 3.2 and the Taylor expansion of log(1 + .) we get

`{m̃θ̂(x)} = −2 log[L{m̃θ̂(x)}[nT ][nT ]]

= 2

[nT ]−1∑
i=0

log[1 + λ(x)K

(
x−Xi

h

)
{Yj − m̃θ̂(x)}]

= 2[nT ]hλ(x)Ū1 − [nT ]hλ2(x)Ū2 + Õp{([nT ]h)−1/2 log3([nT ])} .
(3.34)

Inserting (3.33) in (3.34) yields

`{m̃θ̂(x)} = [nT ]hŪ−1
2 (x)Ū2

1 (x) + Õp{([nT ]h)−1/2 log3([nT ])}. (3.35)

For any x ∈ [0, 1], let

v(x;h) = h

∫ 1

0

K2
h(x− y)dy and b(x;h) = h

∫ 1

0

Kh(x− y)dy

be the variance and the bias coefficient functions associated with the NW estimator,
respectively, see Wand and Jones (1995), Härdle et al. (2000). Let

SI,h = {x ∈ [0, 1]|min (|x− 1|, |x|) > h}.
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For h → 0, SI,h converges to the set of interior points in IX = [0, 1]. If x ∈ SI,h, we

have v(x;h)
def
=
∫
K2(x)dx and b(x;h) = 1. Define

V (x;h) =
v(x;h)σ2(x)

f(x)b2(x;h)
.

Clearly, V (x;h)/([nT ]h) is the asymptotic variance of m̂(x) when [nT ]h→∞, which
is one of the conditions we assumed, Wand and Jones (1995) p. 125.

From assumption (DT4) we have

Ū1(x) = [nT ]−1

[nT ]−1∑
i=0

Kh(x−Xi){Yi − m̃θ̂(x)}

= [nT ]−1

[nT ]−1∑
i=0

Kh(x−Xi){Yi −mθ(Xi)}+ Õp(n
−1/2)

= f̂(x){m̂(x)− m̃θ(x)}+ Õp([nT ]−1/2)

and with Theorem 2.2 in Bosq (1998)

Ū1(x) = f(x)b(x;h){m̂(x)− m̃θ(x)}+ Õp{[nT ]−1/2 + ([nT ]h)−1 log2([nT ])}.
(3.36)

for any x ∈ SI,h. (A.18) and (3.35) mean that

`{m̃θ̂(x)} = ([nT ]h)Ū−1
2 Ū2

1 + Õp{([nT ]h)−1/2 log3([nT ])}

= ([nT ]h)
f 2(x)b2(x;h)

f(x)v(x;h)σ2(x)
{m̂(x)− m̃θ(x)}2 + Õ{([nT ]h)−1h log2([nT ])}

= ([nT ]h)V −1(x;h){m̂(x)− m̃θ(x)}2 + Õ{([nT ]h)−1h log2([nT ])}
= Var(m̂(x))−1{m̂(x)− m̃θ(x)}2 + Õ{([nT ]h)−1h log2([nT ])} . (3.37)

Therefore, `{m̃θ̂(x)} is asymptotically equivalent to a studentized L2 distance between
m̃θ̂(x) and m̂(x). It is this property that leads us to use `{m̃θ̂(x)} as the basic building
block in the construction of a global test statistic for distinction between m̃θ̂ and m̂
in the next section. The use of the empirical likelihood as a distance measure and its
comparison with other distance measures have been discussed in Owen (1991) and
Baggerly (1998).

To extend the empirical likelihood ratio statistic to a global measure of goodness-
of-fit, we choose kT -equally spaced lattice points t1, t2, · · · , tkT

in IX = [0, 1] where
t1 = 0, tkT

= 1 and ti ≤ tj for 1 ≤ i < j ≤ kT . We let kT → ∞ and kT/T → 0
as T → ∞. This essentially divides [0, 1] into kT small nonoverlapping intervals of
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size (kT )−1. A simple choice is to let kT = [1/(2h)]. Then we have with assumption
(DT2), kT = C1T

1/5 → ∞ and kT/T = C2T
−4/5 → 0 as T → ∞. This choice as

justified later ensures asymptotic independence among `{m̃θ̂(tj)} at different points
tj. Bins of different size can be adopted to suit situations where there are areas of low
design density. This corresponds to the use of different bandwidth values in adaptive
kernel smoothing. The main results of this chapter are not affected by un-equal bins.
For the purpose of easy presentation, we consider bins of equal size.

As `{m̃θ̂(tj)} measures the goodness-of-fit at a fixed tj, an empirical likelihood
based statistic that measures the global goodness-of-fit is defined as

`n(m̃θ̂)
def
=

kT∑
j=1

`{m̃θ̂(tj)}.

The following theorem was first proven by Chen et al. (2001), see Appendix A.2,

THEOREM 3.3 Under the assumptions (DT1) - (DT6),

k−1
T `n(m̃θ̂) = ([nT ]h)

∫
{m̂(x)− m̃θ(x)}2

V (x)
dx+Op{k−1

T log2([nT ]) + h log2([nT ])}

(3.38)

where V (x)
def
= limh→0 V (x, h).

Härdle and Mammen (1993) proposed the L2 distance

Tn = nh1/2

∫
{m̂(x)− m̃θ̂(x)}

2π(x)dx

as a measure of goodness-of-fit where π(x) is a given weight function. Theorem
3.3 indicates that the leading term of k−1

T `n(m̃θ̂) is h1/2Tn with π(x) = V −1(x). The
differences between the two test statistics are (a) the empirical likelihood test statistic
automatically studentizes via its internal algorithm conducted at the background, so
that there is no need to explicitly estimate V (x); (b) the empirical likelihood statistic
also captures other features such as skewness and kurtosis exhibited in the data
without using the bootstrap resampling which involves more technical details when
data are dependent. If we choose kT = [1/(2h)] as prescribed, then the remainder
term in (3.38) becomes Op{h log2([nT ])}.

We will now discuss the asymptotic distribution of the test statistic `n(m̃θ̂). The
proof of Theorem 3.4 was given by Chen et al. (2001), see Appendix A.2.

THEOREM 3.4 Suppose assumptions (DT1) - (DT6), then

k−1
T `n(m̃θ̂)

L→
∫ 1

0

N 2(s)ds for T →∞
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where N is a Gaussian process on [0, 1], i.e. N (s) is normal for every s, with mean

E{N (s)} = h1/4∆T (s)/
√
V (s)

and covariance

Ω(s, t) = Cov{N (s),N (t)} =

√
f(s)σ2(s)

f(t)σ2(t)

W
(2)
0 (s, t)√

W
(2)
0 (s, s)W

(2)
0 (t, t)

where

W
(2)
0 (s, t) =

∫ 1

0

h−1K{(s− y)/h}K{(t− y)/h}dy. (3.39)

As K is a compact kernel on [−1, 1], when both s and t are in SI (the interior
part of [0, 1]), we get from (3.39) with u = (s− y)/h

W
(2)
0 (s, t) =

∫ s
h

s−1
h

K(u)K{u− (s− t)/h}du

=

∫ ∞

−∞
K(u)K{u− (s− t)/h}du

= K(2)

(
s− t

h

)
(3.40)

where K(2) is the convolution of K, i.e.

K(2)(x)
def
=

∫ ∞

−∞
K(x− u)K(u)du .

The compactness of K also means that W
(2)
0 (s, t) = 0 if |s − t| > 2h which implies

Ω(s, t) = 0 if |s− t| > 2h. Hence N (s) and N (t) are independent if |s− t| > 2h. As

f(s)σ2(s) = f(s)σ2(t) +O(h)

when |s− t| ≤ 2h, we get

Ω(s, t) =
W

(2)
0 (s, t)√

W
(2)
0 (s, s)W

(2)
0 (t, t)

+O(h), (3.41)

So, the leading order of the covariance function is free of σ2 and f , i.e. Ω(s, t) is
completely known.
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Let

N0(s) = N (s)− h1/4∆T (s)√
V (s)

. (3.42)

Then N0(s) is a normal process with zero mean and covariance Ω. The boundedness

of K implies W
(2)
0 being bounded, and hence

∫ 1

0
Ω(t, t)dt < ∞. We will now study

the expectation and variance of
∫ 1

0
N 2(s)ds. Let T = T1 + T2 + T3

def
=
∫ 1

0
N 2(s)ds

where

T1 =

∫ 1

0

N 2
0 (s)ds,

T2 = 2h1/4

∫ 1

0

V −1/2(s)∆T (s)N0(s)ds and

T3 = h1/2

∫ 1

0

V −1(s)∆2
T (s)ds.

Before studying the properties of T1 and T2 we proof the following lemma.

LEMMA 3.4 Let X, Y be standard normal random variables with covariance
Cov(X, Y ) = ρ, i.e. (

X

Y

)
∼ N

((
0

0

)
,

(
1 ρ
ρ 1

))
. (3.43)

Then we have:
Cov(X2, Y 2) = 2ρ2

PROOF :
Define Z ∼ N(0, 1) independent of X and X ′ def

= ρX +
√

1− ρ2Z. Then we get:(
X

X ′

)
∼ N

((
0

0

)
,

(
1 ρ
ρ 1

))
.

Cov(X2, Y 2) = Cov(X2, X ′2) = 2ρ2

�
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From some basic results on stochastic integrals, Lemma 3.4 and (3.41) it follows,

E(T1) =

∫ 1

0

Ω(s, s)ds = 1 and

Var(T1) = E[T 2
1 ]− 1 (3.44)

=

∫ 1

0

∫ 1

0

E
[
N2

0 (s)N2
0 (t)

]
dsdt− 1 (3.45)

= 2

∫ 1

0

∫ 1

0

Ω2(s, t)dsdt

= 2

∫ 1

0

∫ 1

0

{W (2)
0 (s, t)}2{W (2)

0 (s, s)W
(2)
0 (t, t)}−1dsdt {1 +O(h2)}

From (3.40) and the fact that the size of the region [0, 1] \ SI,h is O(h), we have∫ 1

0

∫ 1

0

{W (2)
0 (s, t)}2{W (2)

0 (s, s)W
(2)
0 (t, t)}−1dsdt

= {K(2)(0)}−2

∫ 1

0

∫ 1

0

[K(2){(s− t)/h}]2dsdt {1 + O(1)}

= hK(4)(0){K(2)(0)}−2 + O(h).

Therefore,
Var(T1) = 2hK(4)(0){K(2)(0)}−2 + O(h2).

It is obvious that E(T2) = 0 and

Var(T2) = 4h1/2

∫ ∫
V −1/2(s)∆T (s)Ω(s, t)V −1/2(t)∆T (t)dsdt.

As ∆T and V −1 are bounded in [0, 1], there exists a constant C1 such that

Var(T2) ≤ C1h
1/2

∫ ∫
Ω(s, t)dsdt.

Furthermore we know from the discussion above,∫ ∫
Ω(s, t)dsdt =

∫ ∫
W

(2)
0 (s, t)√

W
(2)
0 (s, s)W

(2)
0 (t, t)

dsdt+O(h)

=

∫ ∫ t+2h

t−2h

W
(2)
0 (s, t)

K(2)(0)
dsdt+O(h)

≤ 4
1

K(2)(0)
C ′

1h+ C ′′
1h
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with other constants C ′
1 and C ′′

1 , and thus, there exists a constant C2, such that

Var(T2) ≤ C2h
3
2 .

As T3 is non-random, we have

E(T ) = 1 + h1/2

∫ 1

0

V −1(s)∆2
T (s)ds and (3.46)

Var{T } = 2hK(4)(0){K(2)(0)}−2 + O(h) (3.47)

(3.46) and (3.47) together with Theorem 3.4 give the asymptotic expectation and
variance of the test statistic k−1

T `n(m̃θ̂).
We now turn our interest to the derivation of the asymptotic distribution of

k−1
T `n(m̃θ̂). We do this by discretizing

∫ 1

0
N 2(s)ds as (kT )−1

∑kT

j=1N 2(tj) where

{tj}kT
j=1 are the mid-points of the original bins in formulating `n(m̃θ̂). If we choose

kT = [(2h)−1] such that |tj+1 − tj| ≥ 2h for all j, then {N (tj)} are independent and
each N (tj) ∼ N(h1/4∆T (tj)/

√
V (tj), 1). This means that under the alternative H1

kT∑
j=1

N 2(tj) ∼ χ2
kT

(γkT
),

a non-central χ2 random variable with kT degrees of freedom and the non-central
component γkT

= h1/4{
∑kT

j=1 ∆2
T (tj)/V (tj)}1/2. Under H0,

kT∑
j=1

N 2(tj) ∼ χ2
kT

is χ2-distributed with kT degrees of freedom. This leads to a χ2 test with significance
level α which rejects H0 if `n(m̃θ̂) > χ2

kT ,α where χ2
kT ,α is the (1− α)-quantile of χ2

kT
.

The asymptotic power of the χ2 test is P{χ2
kT

(γkT
) > χ2

kT ,α}, which is sensitive to
alternative hypotheses differing from H0 in all directions.

We may also establish the asymptotic normality of (kT )−1
∑kT

i=0N 2(tj) by applying
the central limit theorem for a triangular array, which together with (3.46) and (3.47)
means that

k−1
T `n(m̃θ̂)

L→ N

(
1 + h1/2

∫
∆2

T (s)V −1(s)ds, 2hK(4)(0){K(2)(0)}−2

)
.

A test for H0 with an asymptotic significance level α is to reject H0 if

k−1
T `n(m̃θ̂) > 1 + zα{K(2)(0)}−1

√
2hK(4)(0) (3.48)
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where P(Z > zα) = α and Z ∼ N(0, 1). The asymptotic power of this test is

1− Φ

{
zα −

K(2)(0)
∫

∆2
T (s)V −1(s)ds√

2K(4)(0)

}
(3.49)

where Φ denotes the Gaussian distribution function.
We see from the above that the binning based on the bandwidth value h provides

a key role in the derivation of the asymptotic distributions. However, the binning
discretizes the null hypothesis and unavoidably leads to some loss of power as shown
in the simulation reported in the next section. From the point of view of retaining
power, we would like to have the size of the bins smaller than that prescribed by
the smoothing bandwidth in order to increase the resolution of the discretized null
hypothesis to the original H0. However, this will create dependence between the
empirical likelihood evaluated at neighbouring bins and make the above asymptotic
distributions invalid. One possibility is to evaluate the distribution of

∫ 1

0
N 2

0 (s)ds by
using the approach of Wood and Chan (1994) simulating the normal process N 2(s)
under H0. However, this is not our focus here and hence is not considered in this
chapter.

3.3.5 Fixed Sample Properties

We investigate the finite sample properties of the EL testing procedure in two simu-
lation studies. In our first simulation we consider the time series model

Yi = 2Yi−1/(1 + Y 2
i−1) + cT sin(Yi−1) + σ(Yi−1)ηi (3.50)

for i = 0, . . . , T where {ηi} are independent and identically distributed uniform ran-
dom variables in [−1, 1], ηi is independent of Xi = Yi−1 for each i, and σ(x) =
exp(−x2/4). Note that the mean and the variance functions are both bounded which
ensures the series is asymptotically stationary. To get rid of the impact of the initial
conditions, we pre-run the series 100 times with Y−100 = 0. Figure 3.1 shows typical
plots of (yi−1, yi) for cT = 0 and cT = 0.06. It appears from the figure, that there is
no obvious difference between the two drift functions. However, the EL test is able
two distinguish between the two cases (cT = 0 and cT = 0.06) as can be seen in
Figure 3.2.

For the simulation study the sample sizes considered for each trajectory are T =
500 and 1000 and cT , the degree of difference between H0 and H1, takes value of 0,
0.03 and 0.06. As the simulation shows that the two empirical likelihood tests have
very similar power performance, we will report the results for the test based on the
χ2 distribution only. To gauge the effect of the smoothing bandwidth h on the power,
ten levels of h are used for each simulated sample to formulate the test statistic.
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Figure 3.1: Scatterplots of the drift function of Y according to (3.50) with cT = 0.00
and cT = 0.06.

Figure 3.2 presents the power of the empirical likelihood test based on 5000 sim-
ulation with a nominal 5% level of significance. We notice that when cT = 0 the
simulated significance level of the test is very close to the nominal level for large
range of h values which is especially the case for the larger sample size T = 1000.
When cT increases, for each fixed h the power increases as the distance between the
null and the alternative hypotheses becomes larger. For each fixed cT , there is a
general trend of decreasing power when h increases. This is due to the discretization
of H0 by binning as discussed at the end of the previous section. We also notice
that the power curves for cT = 0.06 are a little erratic although they maintain the
same trend as in the case of cT = 0.03. This may be due to the fact that when the
difference between H0 and H1 is large, the difference between the nonparametric and
the parametric fits becomes larger and the test procedure becomes more sensitive to
the bandwidths.

In our second simulation study we consider an Ornstein-Uhlenbeck process X
fluctuating about 0 that satisfies the stochastic differential equation

dX(t) = m(a,X(t))dt+ σdW (t)

where W is a standard Brownian Motion and m(a, x) = ax under the null hypothesis.
The speed of adjustment parameter a has to be negative to ensure stationarity. To
apply the empirical likelihood test we construct the time series X and Y as in Section
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Figure 3.2: Power of the empirical likelihood test. The dotted lines indicate the 5%
level

3.3.1, i.e.

X∆
i = X∆(ti) , X∆ = (X∆

0 , . . . , X
∆
[nT ]−1)

εi = W (ti+1)−W (ti) , ε = (ε0, . . . , ε[nT ]−1)

Y ∆
i = X∆

i+1 −X∆
i = aX∆

i ∆ + σεi , Y ∆ = (Y ∆
0 , . . . , Y

∆
[nT ]−1) (3.51)

where we use again the notation X(t) to denote the continuous time process and the
subscript Xi to denote discrete time observations.

For a = −1 and σ = 0.5 we investigate the power of the test for nT = 3000
observations in a simulation study. The hypotheses for the test are chosen as in
3.3.4.

H0(m) : ∃a ∈ [−∞, 0) : for every t ∈ [0, T ] : m{X(t)} = aX(t) P-a.s.

against the alternative

H1(m) : ∀ a ∈ [−∞, 0) : for every t ∈ [0, T ] :

m{X(t)} = aX(t) + cT ∆T (X(t)) P-a.s.

with ∆T (x) = sin(πx). We simulate trajectories of five processes: cT = 0 (H0(m)),
cT = 0.5, 1, 1.5 and cT = 2. For each cT we simulate 1000 paths according to the
Milstein scheme

X(t+ δ) = X(t)+m(θ,X(t))δ+σ(θ,X(t))
√
δε(t)+

1

2
σ2(θ,X(t))δ{ε(t)2−1} (3.52)
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for δ > 0 and a sequence of independent standard normally distributed random
variables ε(t), see Kloeden and Platen (1999). We then apply to every simulated
path the EL test about the hypothesis H0(m).

To understand the influence of the two kinds of asymptotics we make two sim-
ulation studies with the same sample size nT = 3000, one with n = 50, i.e. for
nT = 3000 observations we have T = 60, and one with n = 250, i.e. T = 12.
This means, that in the first simulation (n = 50) the approximation of X by the
corresponding discrete time process X∆ with ∆ = 1/50 is not as good as the ap-
proximation of X in the second simulation with ∆ = 1/250. On the other hand
the time interval [0, T ] in which observations are available is much larger in the first
simulation than in the second. This means that the mixing of the time series X1/50

is stronger then the mixing of X1/250. This effect also appears in the autocorrelation
of X∆

i . It is well known, that the autocorrelation of an Ornstein-Uhlenbeck process
is Corr(X(t), X(t+ τ)) = exp{aτ}. Thus, the discrete process X∆

i has under the null
hypothesis an autocorrelation of Corr(X∆

i , X
∆
i+k) = exp{(a/n)k}, i.e. the autocorre-

lation for n = 250 is significantly higher than the autocorrelation for n = 50 when k
is fixed. The reason is, that we observe the original process X at different times. We
can think of X

1/50
i as a rescaled version of X

1/250
i , where rescaling is done in time,

for instance X
1/50
1 = X

1/250
5 . The same autocorrelation structure with a constant ∆

can be constructed by choosing a = −0.2 for the second process. Thus a change in
∆ corresponds to a change of a.

In the empirical analysis, ∆ is not given, and thus the question of choosing ∆ and
verifying the assumptions arises. In particular assumption (DT1), i.e. the assump-
tion, that X is stationary and α-mixing is critical in a fixed sample environment.
Even if (DT1) is satisfied, the time interval [0, T ] might be too small to rely on the
ergodic theorem. The reason could be, that ∆ is to small or that the parameters of
X generate strong dependencies between observations that are far away from each
other. In the empirical analysis of the spot rate (7-day Eurodollar rate) we come
again to this point.

The empirical rejection levels of the null hypothesis are shown in Figure 3.3 for
nominal levels α = 0.01 and α = 0.05. It appears from Figure 3.3 that the nominal
level of the EL test is better hold, when the approximation of the true continuous
time process by a time series is better, i.e. there are more observations n of X in one
unit of time.

The power of the test for different values of cT is also investigated. The result is
shown in Figure 3.4 and 3.5. The figures show, that the power of the test increases
with T . The reason is, that the intervals, in which the dependencies are strong are
shorter for smaller values of n and thus there are more observations that are “almost
independent”, i.e. have an autocorrelation close to 0. The figures also demonstrate,
that the test decision of the EL test strongly depends on the order of difference cT
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Figure 3.3: Empirical rejection level of the empirical likelihood test for the drift of
an Ornstein Uhlenbeck process. (∆ = 1/50 left figure, ∆ = 1/250 right figure)

between the H0 and H1. We also find, that the test depends on the chosen bandwidth
that is used to nonparametrically estimate the drift. But this dependency seems to
have a minor impact on the test decision.

3.4 Nonparametric Estimation of the Continuous

Time Model

We will now study nonparametric estimators for the marginal density, the drift func-
tion and the diffusion coefficient of the process X given as the solution of (3.1)
without approximating the true continuous time model by a discrete one. Therefore,
we change the meaning of Xi. In this section we denote by Xi the value of X at i/n,

i.e. Xi
def
= X(i/n) for i = 0, . . . , [nT ].

For the nonparametric estimator based on the discrete sample of X we apply
a Lipschitz continuous kernel with support on [−1, 1], that satisfies the moment
conditions in (3.12), i.e. K has finite first and second moments. As in Section
3.3 we use the notation Kh(u) = 1/hK(u/h).

3.4.1 Estimation of the marginal density

To identify the marginal density we assume that X as given by (3.1) is stationary
and α-mixing, see Definition 3.1 and 3.2. The estimator of the marginal density f(x)
at a state x of a diffusion process X is related to the local time of X as shown in
(3.3). Using this relationship, we will estimate the marginal density by estimating
the local time Lt(x) and than rescale it by time. This means, that we need two kinds
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Figure 3.4: Empirical rejection probabilities of EL test with n = 50 for nominal level
α = 0.01 and α = 0.05. The degree of difference between H0 and H1 are cT = 2 (red),
cT = 1.5 (yellow), cT = 1 (green), cT = 0.5 (blue), cT = 0 (black). The parameters
of the simulated Ornstein Uhlenbeck process are a = −1 and σ = 0.5.

of asymptotics in this section. To estimate the local time, we have to assume, that n
tends to infinity, i.e. that the time between two successive observations Xi and Xi+1

is vanishing. On the other hand, relation (3.3) is based on the ergodic theorem and
thus we assume, that T tends to infinity.

From the definition of L, Definition 3.3, it follows

Lt(x) = lim
h→0

∫ t

0

Kh(X(u)− x)du (3.53)

for every t ∈ [0, T ]. A nonparametric estimator L
(n)
T (x) of LT (x) based on the obser-

vations X0, . . . , X[Tn] is then given by an approximation of the integral in (3.53), i.e.

L
(n)
T (x)

def
=

1

n

[Tn]∑
i=0

Khn (Xi − x) (3.54)

where hn is a bandwidth satisfying the following assumption

(CT1) h = nα for some α with −1 < α < −1/3

Florens-Zmirou (1993) proves that L
(n)
T (x) converges in the L2 sense to LT (x), i.e.

if nh4
n −→ 0 then

E
[{
L

(n)
T (x)− LT (x)

}2
]
−→ 0. (3.55)
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Figure 3.5: Empirical rejection probabilities of EL test with n = 250 for nominal level
α = 0.01 and α = 0.05. The degree of difference between H0 and H1 are cT = 2 (red),
cT = 1.5 (yellow), cT = 1 (green), cT = 0.5 (blue), cT = 0 (black). The parameters
of the simulated Ornstein Uhlenbeck process are a = −1 and σ = 0.5.

Applying (3.3) we define a nonparametric density estimator f
(n)
T based on [nT ]

discrete observations of X up to time T by f
(n)
T

def
= (1/T )L

(n)
T . With (3.55) we have

an analog result for f
(n)
T , i.e.

E
[{
f

(n)
T (x)− f(x)

}2
]
−→ 0. (3.56)

3.4.2 Estimation of the diffusion coefficient

Local Time Estimator

In contrast to the previous paragraph about the estimation of the marginal density,
we do not need to assume that X is stationary or α-mixing for the nonparametric
estimation of σ2. The reason is, that the estimation of σ2 is based on the approxi-
mation of the local time of X. For the same reason, the results about the estimation
of σ2 are asymptotic results for n→∞, but not for T →∞.

In Definition 3.3 we have already defined the local time of a diffusion X. A
different definition of the semimartingale local time is given by Karatzas and Shreve
(1991). They define the semimartingale local time Λt(x) as a random field such that
for every Borel-measurable function k : R → [0,∞) the following equation holds
among others:∫ t

0

k{X(u, ω)}σ2(X(u, ω))du = 2

∫ ∞

−∞
k(a)Λt(a, ω)da (3.57)
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for P− a.e. ω ∈ Ω. The relationship between L and Λ is

σ2(x) =
2Λt(x)

Lt(x)
(3.58)

which follows immediately from equation (3.57).
Using equation (3.57) we get

2Λt(x) = lim
h→0

∫ t

0

Kh {X(u)− x} d〈X〉u

where 〈X〉t denotes the quadratic variation ofX up to time t. We define our estimator
of ΛT (x) by approximating the integral,

2Λ
(n)
T (x)

def
=

[Tn]−1∑
i=0

Khn (Xi − x) {Xi+1 −Xi}2 . (3.59)

Combining (3.54) and (3.59) yields a nonparametric estimator S
(n)
T (x) for σ2(x),

S
(n)
T (x) =

n
∑[Tn]−1

i=0 K
(

Xi−x
hn

)
{Xi+1 −Xi}2∑[Tn]

i=0 K
(

Xi−x
hn

) (3.60)

which was first given by Florens-Zmirou (1993).
To achieve a test statistic for a particular set of points x1, . . . , xk we will now

investigate the joint asymptotic distribution of S
(n)
t (x1), . . . , S

(n)
t (xk).

PROPOSITION 3.1 Given k points x1, . . . , xk ∈ IX and under the assumption
nh3

n −→ 0 the random vector

Z
(n)
T = (Z

(n)
T (x1), . . . , Z

(n)
T (xk))

> T ∈ (0,∞)

with

Z
(n)
T (xl) =

√
nhL

(n)
T (xl)

(
S

(n)
T (xl)

σ2(xl)
− 1

)
l = 1, . . . , k (3.61)

converges in distribution to a random vector Z where Z has a joint standard normal
distribution.

PROOF :
We proof the result only for T = 1. From Theorem 1 in Florens-Zmirou (1993) and
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Theorem 1 in Jiang and Knight (1997) we know that Z
(n)
1 (xl) converges in distribution

to Zl ∼ N(0, 1) for every l = 1, . . . , k. We introduce the notation

a = min{|xl1 − xl2|; l1, l2 = 1, . . . , k; l1 6= l2}
n0 = min{n|a > 2hn} . (3.62)

Following Florens-Zmirou (1993) we define

mi+1(xl)
def
=

√
n

hn

K

(
Xi − xl

hn

)[
{Xi+1 −Xi}2 − σ2(xl)

n

]

M
(n)
t (xl) =

[nt]−1∑
i=0

mi+1(xl) for t ∈ [0, 1]

and get

Z
(n)
1 (xl) =

M
(n)
1 (xl)

σ2(xl)

√
L

(n)
1 (xl)

.

From (3.55) we have that

Z̃n(xl)
def
=

M
(n)
1 (xl)

σ2(xl)
√
L1(xl)

.

also converges in distribution to a standard normal random variable.
For k arbitrary numbers ul we define

Cl
def
=

ul

σ2(xl)
√
Lt(xl)

and

Z̃(u)
n =

k∑
l=1

ulZ̃n(xl) =

[nt]−1∑
i=0

k∑
l=1

Clmi+1(xl)

Then we have from Lemma 2 in Florens-Zmirou (1993) for every n > n0 and with
the notation Ei,n[.] = E[.|Fi/n] that

[nt]−1∑
i=0

Ei,n

( k∑
l=1

Clmi+1(xl)

)2
 =

k∑
l=1

C2
l

[nt]−1∑
i=0

Ei,n[m2
i+1(xl)]

=
k∑

l=1

C2
l σ

4(xl)Lt(xl) =
k∑

l=1

u2
l
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and
[nt]−1∑
i=0

Ei,n

∣∣∣∣∣
k∑

l=1

Clmi+1(xl)

∣∣∣∣∣
3

≤
k∑

l=1

|Cl|3
[nt]−1∑
i=0

Ei,n|mi+1(xl)|3.

Applying proposition 5 in Florens-Zmirou (1993) we have that

Z̃(u)
n −→ Z̃(u)

in distribution, where Z̃(u) is normal distributed with zero expectation and variance∑k
l=1 u

2
l . Since L

(n)
t (xl) converges in the L2 sense to Lt(xl) the same follows for

k∑
l=1

ulZ
(n)
1 (xl) .

The convergence in distribution of Z
(n)
t to a joint normal distribution follows with

the Cramér-Wold device, Billingsley (1968). �

Other nonparametric estimators of the diffusion coefficient are proposed in the
literature. We introduce two methods here, but do not investigate their properties is
detail. For the test about a parametric form of σ2 we will apply the estimator S

(n)
T .

Tanaka-Meyer-Formula

The first estimator applies the Tanaka-Meyer formula

Λt(x) = (X(t)− x)− − (X(0)− x)− +

∫ t

0

I(−∞,x]{X(s)}dX(s) . (3.63)

Kutoyants (1998) proposes a discrete approximation of the integral in (3.63) to esti-
mate Λt(x). He used this estimator to get a nonparametric estimator of the density
of X. We remark that one could use also the Tanaka-Meyer formula for (X(t)− x)+

or the formula for |X(t)− x| without changing the results in principle.

Kolmogorov Forward Equation

We define the transition density f(x, t|y, s) of X as the Radon-Nikodyn derivative of
the transition law, i.e. f(x, t|y, s) is the unique function that solves

P[X(t) ∈ B|X(s) = y] =

∫
B

f(x, t|y, s)dx (3.64)

for all Borel sets B ∈ R.
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To get an estimator for σ2, Aı̈t-Sahalia (1996) applies the Kolmogorov forward
equation, Karlin and Taylor (1981), for ergodic diffusions

∂f{X(u), u|X(t), t}
∂s

=
1

2

∂2

∂X2(u)

[
σ2{X(u)}f{X(u), u|X(t), t}

]
− ∂

∂X(u)
[m{X(u)}f{X(u), u|X(t), t}]

(3.65)

with u = t+ s. By the Markov property of X the marginal density f is given by

f{X(t+ s)} =

∫ ∞

−∞
f{X(t+ s), t+ s|X(t), t}f{X(t)}dX(t) .

Since X is stationary it follows that f{X(t+ s)} = f{X(t)} and thus the derivative
of f{X(t + s)} with respect to s is equal to zero. Multiplying both sides of (3.65)
with f{X(t)} and integration with respect to X(t) yields the ordinary differential
equation

0 = − ∂

∂x
{m(x)f(x)}+

1

2

∂2

∂x2

{
σ2(x)f(x)

}
(3.66)

and integrating twice with respect to x yields

σ2(x) =
2

f(x)

∫ x

−∞
m(u)f(u)du .

Another way to derive the same estimator is to use the Tanaka-Meyer formula (3.63).
Taking the expectation on both sides of (3.63) gives

EΛt(x) = E[(X(t)− x)−]− E[(X(0)− x)−]

+E

[∫ t

0

I(−∞,x](X(s)){m(X(s))ds+ σ(X(s))dW (s)}
]

= t

∫ x

−∞
m(u)f(u)du .

Choosing Λ̂t(x)
def
= EΛt(x) and inserting it into (3.58) yields the same result as above.

Stanton (1997) proposes a nonparametric method that separately estimates the

drift m and the diffusion coefficient σ. S
(n)
t (x) coincides with one of the estimators

given there. As we are interested in a smooth estimator for σ2 and do not want to use
any information about the drift coefficient m, we will apply the estimator in (3.60).
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3.4.3 Estimation of the drift

Jiang and Knight (1997) apply the Kolmogorov forward equation (3.65) to develop a
nonparametric estimator for the drift m. Integrating (3.66) with respect to x yields
for the drift function

m(x) =
1

2f(x)

∂

∂x
{σ2(x)f(x)} =

1

2

{
∂

∂x
σ2(x) + σ2(x)

f ′(x)

f(x)

}
(3.67)

Using (3.67) we define a nonparametric estimator of m by replacing the diffusion
coefficient σ2, the marginal density f and its derivative f ′ by their nonparametric
estimators.

Estimators for σ2 and f are already given in the previous sections. From (3.54)

and the definition of f
(n)
T (x), a natural way to estimate the derivative of the marginal

density is

f̂ ′(x)
def
=

∂

∂x
f

(n)
T (x) =

1

nth2
n

[nt]∑
i=0

K ′
(
Xi − x

hn

)
,

Wand and Jones (1995).

Jiang and Knight (1997) show, that the estimator m
(n)
T (x) given by

m
(n)
T (x)

def
=

1

2

{
∂

∂x
S

(n)
T (x) + S

(n)
T (x)

f̂ ′(x)

f
(n)
T (x)

}
(3.68)

is pointwise consistent for m(x). Under additional technical assumptions, Jiang and

Knight (1997) show, that S
(n)
T is differentiable.

3.4.4 Fixed Sample Properties

To investigate the performance of the proposed estimators we apply them to simulated
diffusion processes.

The general stochastic differential equation, that the simulated process X follows
is

dX(t) = m{θ,X(t)}dt+ σ{θ,X(t)}dW (t) t > 0 (3.69)

where θ is a parameter vector. To get discrete observations of X we use a Milstein
scheme as in (3.52).

In the empirical analysis we test parametric models for the diffusion coefficient of
the spot rate and various stock price processes. For this reason we will investigate
the fixed sample properties of the nonparametric estimators applied to these models.
A summary of the investigated models is given in Table 3.1. The parameters are
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Name σ(x) θ3

constant (VC) θ3 0.013
square root (CIR) θ3

√
x 0.066

Chan, Karolyi, Longstaff, Sanders (CKLS) θ3x
1.5 1.2

Table 3.1: Diffusion coefficient models used in the simulation study

chosen accordingly to the estimated values in Ahn and Gao (1999). They estimated
the parameters of different models applied to the one month US treasury bill rate.
Note, that they did not estimate the parameters for all combinations of drift and
diffusion coefficients that we use here. However, the parameters in our simulation
study generate trajectories, that are positive and in the range of about 0.02 - 0.2 and
thus might be a good choice to simulate interest rate processes.

Ahn and Gao (1999) also estimate a model introduced by Duffie and Kan (1996),
where the diffusion coefficient is given by σ(x) =

√
θ3 + θ4x. Since this model is not

consistent for values of X(t) smaller than −θ3/θ4 we will not use it in our simulation
study.

To study the performance of the drift function estimator given in 3.4.3 and the
influence of the unknown drift m(x) on the estimates of σ2, we combine each of the
three diffusion coefficients with a drift function proposed by Ahn and Gao (1999),
i.e. we simulate paths from three diffusion models. The function is given in Table 3.2
along with the parameter values estimated by Ahn and Gao (1999). For the reason
of empirical relevance we use the given parameter values in our simulation.

Name m(x) θ1 θ2

Ahn-Gao model (AG) θ1(θ2 − x)x 3.4 0.08

Table 3.2: Ahn-Gao model used in the simulation study

For every model we simulate 1000 paths of length nT = 2500. To simulate the
trajectories we apply the Milstein scheme (3.52) with δ = 1/10. This means, that
we calculate 10 realizations per day but sample the data daily. Since the parameter
values given in Tables 3.1 and 3.2 are annual values, we choose n = 250 (250 trading
days per year), i.e. we have T = 10 years of observations.

We start with the diffusion coefficient estimation. The estimator we apply is the
local time estimator given in (3.60). The mean of the estimated functions is shown
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in Figure 3.6 along with the 90% empirical confidence bands (green) and the true
function (red). We find in the figures that the means of the estimates for the three
diffusion coefficient functions are close to the corresponding true functions and we
therefore conclude, that the estimators are unbiased in this situation.

In the first figure, constant σ2, we find, that the confidence bands are small for
states x of the process near 0.08. The reason is, that the level of mean reversion of
the first model is 0.08 and therefore realizations of the process close to 0.08 occur
more frequently than realizations in other regions of the state space. The middle and
lower plot show that the width of the confidence bands increases with the level of
X. The reason is that σ2 is increasing in x and the variance of the estimator S

(n)
T

depends on the level of the true function σ2 as it can be seen from Proposition 3.1.
With the knowledge about a nonparametric estimate of σ2 we are now able to

estimate the drift coefficient as in 3.4.3. The results for the Ahn-Gao drift function
estimated from the three models described above are shown in Figure 3.7. The plots
show the mean of the estimates (black), the true drift function (red) and the empirical
90% confidence band (green). As for the estimation of σ2 the mean of the estimated
drift is close to the true drift in all three models. However, it seems, that the estimator
under-estimates the drift for values of x larger than 0.08 (the level of mean-reversion)
and over-estimates the drift for x < 0.08.

Even if the bias of the drift estimator in this situation is negligible, 0 is contained in
all confidence bands. Heuristically this means, that a drift function that is constantly
0 seems to be very likely in the situation here. Since the used parameter values
correspond to estimated values by Ahn and Gao (1999) for an interest rate process,
we doubt that for these kind of processes one can significantly distinguish between a
zero drift and a mean reverting or quadratic drift. The reason is not only, that the
drift is close to zero, but that the confidence bands are quite large. In particular 0 is
included. The large confidence bands can be explained by the relative small sample
size T , i.e. the number of years (T = 10) in which we have observations is too small
to get a reliable drift estimate and to distinguish between a non zero and a zero drift.
The situation would change when we use different parameters. In particular, when
we increase the speed of adjustment parameter θ1, we increase the influence of the
drift on the instantaneous behavior of the process. In the empirical analysis we come
again to that point.

It also appears from Figure 3.7 that the diffusion coefficient does have an influence
on the preciseness of the drift estimation. In particular, diffusion coefficients, that
are increasing in x, like the square root and the CKLS model, produce non constant
confidence bands for the drift estimation. Heuristically speaking, the drift estimate
becomes more imprecise the larger the state of the process, and thus the larger the
diffusion coefficient function. The reason is, that the impact of the drift on the incre-
ments Xi+1 − Xi of the process becomes smaller when the diffusion coefficient gets
larger. The diffusion coefficient can be interpreted as the instantaneous variance of
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Figure 3.6: Nonparametric estimates of σ2 together with the empirical 90% confidence
band.
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these increments. And the larger this variance is, the more difficult is the estimation
of the instantaneous expectation m(x). This phenomena can be compared to a uni-
variate mean estimation, the higher the variance of the underlying random variable
the more imprecise is the mean estimator.

3.5 Testing the Continuous Time Model

We now introduce test statistics to test the hypothesis in Section 3.2. The considered
tests can be divided into two groups. The first group is based on the comparison of
a nonparametric density estimate and a parametric density estimate as implied by
the null hypotheses. The density that is used can be the marginal density as well as
the transition density. The tests in the second group directly compare nonparametric
estimates of the drift and/or the diffusion coefficient with their parametric forms
implied by the null hypothesis.

Another feature of the proposed tests is the norm, that is used to compare two
functions. We will use the L∞-norm (sup-norm) and the L2-norm. The use of the
L∞-norm has the advantage, that pointwise confidence intervals can be build around
the nonparametric estimate. On the other hand, test statistics based on the L2-norm
have a known asymptotic distribution, a χ2-distribution. We will here introduce tests,
based on both norms. We start with tests based on density comparison.

3.5.1 Tests based on density comparison

We introduce two tests based on the comparison of the marginal density and the
transition density respectively. Since both densities depend on the drift term m of
X, both tests require, that the diffusion X is stationary and α-mixing and that T
tends to infinity. On the other hand the densities are influenced by σ2 and thus we
also require that n tends to infinity.

Comparing The Marginal Densities

A test that compares the marginal density f of X as implied by the null hypothesis
with the nonparametric estimate of f was introduced by Aı̈t-Sahalia (1996). He
applied this test to the 7-days Eurodollar spot rate. However, the test is of general
interest when parametric models for diffusion processes are investigated.

For a diffusion process X that solves (3.1) it follows from the Kolmogorov forward
equation (3.65), that the marginal density f of X is given by

f(x) =
ξ

σ2(x)
exp{

∫ x

x0

2m(z)

σ2(z)
dz} (3.70)
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where x0 ∈ IX is an arbitrary number and ξ is a normalization constant to ensure,
that f(x) integrates to 1, Karlin and Taylor (1981). Using the mapping between
m, σ2 and f given by (3.70), we can test the null hypotheses H0(m) and H0(σ

2) by
testing a null hypothesis about f , i.e. we test the hypothesis

H0(f) : ∃θ0 ∈ Θ : for every t ∈ [0, T ] : f{X(t)} = f{θ0, X(t)} P-a.s.

against a purely nonparametric alternative.
A corresponding test statistic is then

1

k

k∑
l=1

(
f(θ̂, xl)− f

(n)
T (xl)

)2

f
(n)
T (xl)

where xl, l = 1, . . . , k are equidistant grid points in IX and θ̂ is a square root consistent
estimator for θ.

Aı̈t-Sahalia (1996) used a different test statistic, i.e.

M
def
= nbn min

θ∈Θ

1

n

n−1∑
i=0

(
f(θ,Xi)− f

(n)
T (Xi)

)2

where bn is the bandwidth used for the nonparametric estimation of f and nbn is a
normalizing constant. To calculate M̂ he first estimates θ by

θ̂ = argminθ∈Θ

1

n

n−1∑
i=0

(
f(θ,Xi)− f

(n)
T (Xi)

)2

and then inserts the estimator into the test statistic M , i.e.

M̂
def
= nbn

1

n

n−1∑
i=0

(
f(θ̂, Xi)− f

(n)
T (Xi)

)2

.

However, we can use any square root consistent estimator for θ without changing the
asymptotic properties of M̂ .

Aı̈t-Sahalia (1996) shows, that the asymptotic distribution of M̂ is normal, i.e.

b−1/2
n {M̂ − EM} −→d N(0, VM)

with

EM =

(∫ ∞

−∞
K2(x)dx

)(∫
IX

f 2(x)dx

)
VM =

(∫ ∞

−∞

{∫ ∞

−∞
K8u)K(u+ x)du

}2

dx

)(∫
IX

f 4(x)dx

)
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which can be estimated by

ÊM =

(∫ ∞

−∞
K2(x)dx

) [nt]∑
i=0

f
(n)
T (Xi)


V̂M =

(∫ ∞

−∞

{∫ ∞

−∞
K8u)K(u+ x)du

}2

dx

) [nt]∑
i=0

{
f

(n)
T (x)

}3

 .

Since the proposed test statistic M̂ is based on properties of the marginal density
of X, it cannot distinguish between processes with the same marginal distributions
but different dependency structures. Thus an unique identification of a pair of drift
and diffusion coefficients is not possible. To overcome this problem, Hong and Li
(2002) propose a test based on the comparison of the transition densities.

Comparing The Transition Densities

Since the process X given in (3.1) is a Markov process, all information about it’s
distribution is contained in it’s transition density as defined in (3.64) and the initial
distribution of X0. Thus, there is a unique mapping between a pair of drift and
diffusion coefficient {m,σ} and the corresponding transition density f(x, t|y, s). The
hypotheses in Section 3.2 can therefore be transformed into a single hypothesis about
the transition density.

H0(f) : ∃θ0 ∈ Θ : for every s, t ∈ [0, T ] :

f{X(t), t|X(s), s} = f{X(t), t|θ0, X(s), s} P-a.s.

(3.71)

where the alternative is again purely nonparametric.
A natural way to test a parametric model of the transition density is to com-

pare a parametrically estimated density with it’s nonparametric estimate. Since the
convergence rate of the nonparametric estimator is even slower than the rate for
the marginal density, Hong and Li (2002) suggest to apply the probability integral
transformation to get a transformed series of data

Zi
def
=

∫ Xi

−∞
f{x, i/n | θ,Xi−1, (i− 1)/n}dx

for i = 0, . . . , [nT ]−1 and Xi = X(i/n) as in 3.3.1. Under H0(f) there exist a θ such
that the series {Zi, i = 0, . . . , [nT ] − 1} is independent and identically distributed
U[0, 1], Rosenblatt (1952) and Diebold et al. (1998). The test proposed by Hong
and Li (2002) is based on the comparison of the two-dimensional density g(z1, z2)
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of (Zi, Zi+1) and the two-dimensional uniform density 1. The application of the
probability transformation in this situation has two major advantages. Under the
null hypothesis there is no dependency in the data and the two-dimensional density
as implied by H0(f) is a constant, which means that there is no asymptotic bias for
the nonparametric estimator under H0(f).

The bivariate density estimator applied to Z is

g
(n)
T (z1, z2)

def
= ([nT ]− j)−1

[nT ]−1∑
i=j

Khn(z1 − Ẑi)Khn(z2 − Ẑi−j)

where Ẑ is the transformed series implied by the null hypothesis and the parameter
estimator θ̂. We remark, that Hong and Li (2002) applied a different estimator in

order to reduce the boundary bias and the relatively large variance of g
(n)
T in the

boundary region. However, we do not apply any correction for the boundary bias in
all other tests proposed here. In order to make the tests comparable we do not apply
the bias correction for g

(n)
T as in Hong and Li (2002).

The test decision is based on L2 distance between g
(n)
T and 1, the joint density of

the bivariate U[0, 1] distribution, i.e.

M̂(j)
def
=

∫ 1

0

∫ 1

0

[g
(n)
T (z1, z2)− 1]2dz1dz2 .

We do not use any weighting function to weight the differences, since under H0(f)
the observations of Z are uniformly distributed over the integration range. The test
statistic is a centered and scaled version of M̂(j),

Q̂(j)
def
=
[
([nt]− j)hM̂(j)− Ah

]
/V 1/2

with

Ah
def
= (h−1 − 2)

∫ 1

−1

K2(u)du+ 2

∫ 1

0

∫ b

−1

k(u, b)dudb,

k(u, b)
def
=

1

k(u)

∫ b

−1

K(v)dv

V
def
= 2

[∫ 1

−1

{∫ 1

−1

K(u+ v)K(v)dv

}2
]2

.

Hong and Li (2002) show that Q̂(j) is under the null hypothesis asymptotically
standard normally distributed for all j and the the covariance between Q̂(i) and
Q̂(j) for i 6= j converges in probability to zero.
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3.5.2 Directly testing the diffusion coefficient

We now derive a direct test for the diffusion coefficient that does not incorporate any
assumptions about the drift. The proposed test compares a nonparametric estimate
of σ2 to the smoothed parametric function that is implied by the null hypothesis.
The nonparametric estimator we use, is S

(n)
T given in (3.60). Since this estimator is

asymptotically, for n→∞, independent of m, the test is asymptotically independent
of m too. Hence we do not have to estimate the drift or parameters of it and therefore
do not require that X is stationary or that T tends to infinity.

The hypotheses about the squared diffusion coefficient for the test are:

H0(σ
2) : ∃θ0 ∈ Θ : for every t ∈ [0, T ] : σ2{X(t)} = σ2{θ0, X(t)} P-a.s.

H1(σ
2) : ∀ θ ∈ Θ : for every t ∈ [0, T ] :

|σ2{X(t)} = σ2{θ,X(t)}| ≥ cn∆n(X(t)) P-a.s.

As for the EL test about the drift in Section 3.3.4 ∆n, the local shift in the alternative,
is a sequence of bounded functions and cn is the order of difference between H0 and
the alternative. The difference here is that both, ∆n and cn do not depend on T but
on n. With a similar argument as in Section 3.3.4 the construction of H1 ensures
that the power of the proposed test depends on the number of observations per unit
of time n but does not depend on T .

To formalize the test, we make the following assumptions about σ and θ.

(CT2) The following holds for σ2:

|σ2(θ, x)− σ2(θ0, x)| ≤ D(x)‖θ − θ0‖ ∀ x ∈ IX

where D(x) is a constant depending on x.

(CT3) θ̂ is a square root consistent parametric estimator of θ within the family of
the parametric model, i.e. ‖θ̂ − θ‖ = Op(n

−1/2).

It is well known that for fixed n and hn, S
(n)
T (x) is a biased estimator of σ2(x).

Thus we will not compare it directly with σ2(θ̂, x) but with its smoothed version

σ̃2(x)
def
=

∑[nt]
i=0Khn(Xi − x)σ2(Xi)∑[nt]

i=0Khn(Xi − x)
. (3.72)

We remark that Proposition 3.1 is also valid, if we replace σ2(x) in (3.61) by σ̃2(θ̂, x).
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For an arbitrary point x ∈ IX we introduce the test statistic

T
(n)
T (x) =

√
nhnL

(n)
T (xl)

(
S

(n)
T (x)

σ̃2(θ̂, x)
− 1

)
(3.73)

=

√
nhnL

(n)
T (xl)

(
S

(n)
T (x)

σ̃2(x)

σ̃2(x)

σ̃2(θ̂, x)
− 1

)

=

√
nhnL

(n)
T (xl)

(
S

(n)
T (x)

σ̃2(x)
− 1

)
+R

(n)
T (x)

From Proposition 3.1 we know that T
(n)
T (x) converges in distribution to Z+R, where

Z is standard normally distributed and R is the limit of

R
(n)
T (x) =

√
nhnL

(n)
T (x)

σ̃2(x)− σ̃2(θ̂, x)

σ̃2(θ̂, x)

S
(n)
T (x)

σ̃2(x)

for n→∞. Proposition 1 and 3 in Florens-Zmirou (1993) imply that

S
(n)
T (x)/σ̃2(x) converges to 1 in the L2 sense if nh4 � tends to 0. Under H0 assump-

tion (CT2) and (CT3) imply

σ̃2(x)− σ̃2(θ̂, x)

σ̃2(θ̂, x)
= Op

(
1√
n

)
and it follows with Proposition 1 in Florens-Zmirou (1993) that

R
(n)
T (x) =

√
LT (x)/TOp(

√
hn)
{
1 +Op(nh

4
n)
}

= Op(
√
hn).

To study the properties of the test statistic T
(n)
T (x) under the alternative H1, we

make the following assumption about cn and ∆n.

(CT4) ∆n(x) is bounded with respect to n and x. and cn = 1/
√
nhn.

With assumption (CT4) we have under the alternative

σ̃2(x)− σ̃2(θ̂, x)

σ̃2(θ̂, x)
−→ σ2(x)− σ2(θ̂, x)

σ2(θ̂, x)
−→ cn∆n(x)

σ2(θ0, x)

and thus R
(n)
T (x) = ∆n(x)/σ2(θ0, x)

To get a global goodness-of-fit test we choose k arbitrary points x1, . . . , xk ∈ IX
and built the test statistic

T
(n)
T =

k∑
l=1

{T (n)
T (xl)}2 . (3.74)
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We now study the asymptotic distribution of T
(n)
T under the null hypothesis.

PROPOSITION 3.2 If H0 holds and nh3
n tends to zero, we have for every k and

every set of points x1, . . . , xk ∈ IX with xi 6= xj for i 6= j that T
(n)
T converges in

distribution to a χ2-distributed random variable with k degrees of freedom.

PROOF :
With (3.62) we have for every n > n0 and for every i 6= j that

Cov{T (n)
T (xi), T

(n)
T (xj)} = 0

and from Proposition 3.1 it follows that T
(n)
T is asymptotically χ2-distributed with k

degrees of freedom. �

With a similar proof we obtain that T
(n)
T converges under the alternative to a non-

central χ2-distributed random variable with k degrees of freedom and non-centrality
parameter

∑k
l=1 ∆2

n(xl)/σ
4(θ0, xl).

We remark that the proposed test statistic is asymptotically equivalent to the L2

distance between S
(n)
T and σ̃2(θ̂, .). In a nonparametric regression context Härdle and

Mammen (1993) propose a L2 test statistic

THM
def
= nh

1
2
n

∫
{S(n)

T (x)− σ̃2(θ̂, x)}2π(x)dx

with a certain weight function π(x). For a fixed bandwidth hn and with kn = 1/(2hn),
xl = hn + 2hn(l − 1) for l = 1, . . . , kn we get that

1

kn

T
(n)
T =

1

kn

nhn

kn∑
l=1

L
(n)
T (xl)

σ̃4(θ̂, x)
{S(n)

T (xl)− σ̃2(θ̂, xl)}2

is the Riemann approximation of
√
hnTHM with the weight function π(x) = L

(n)
T (x)/

σ̃4(θ̂, x).

It appears in the simulation study in Section 3.5.5 that a test based on T
(n)
t is too

conservative for all considered models. The reason could be, that π(x) does not reflect

features of the empirical distribution of S
(n)
T (xl)− σ̃2(θ̂, xl). One way to improve the

test is to change the weighting function π(x).
Hoffmann (1999) applies another approach to estimate the diffusion coefficient,

that is based on time discretization. From Itô’s formula we get with an appropriate
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function µ depending on m and σ

{Xi+1 −Xi}2 =

∫ (i+1)/n

i/n

σ2{X(u)}du

+

∫ (i+1)/n

i/n

µ{X(u)}dW (u) +O(n−2)

≈ σ2(Xi)
1

n
+ µ(Xi)

√
1

n
wi (3.75)

where wi ∼ N(0, 1) for all i = 0, . . . , [Tn]−1. Hoffmann (1999) applied this approach
to develop an adaptive nonparametric estimation procedure for σ using wavelets.
Note, that a Nadaraya-Watson estimator for σ2(x) applied in (3.75) coincides with

S
(n)
T (x).

The approximation in (3.75) suggests to modify the test statistic in a way, that
captures the heteroscedasticity of the error terms µ(Xi)

√
1/nwi. For this reason we

will now propose a test statistic based on the empirical likelihood concept.

3.5.3 Empirical Likelihood Test About The Diffusion coeffi-
cient

The main advantage of Empirical Likelihood methods is their ability to studentize
internally and to correct test statistics and confidence intervals for empirical proper-
ties of the data. This is the reason, why we introduce a test about σ2 based on the
EL methodology. We follow the results in 3.3.4 to derive the test statistic.

For the sake of simplicity we study the test of σ based on the observations up to
time T = 1. The general case follows directly.

With the notation

η
(x)
i {s} def

= K

(
Xi − x

hn

)[
n {Xi+1 −Xi}2 − s(x)

]
i = 0, . . . , n− 1

for a positive function s with support IX , we get from the definition of S
(n)
1 (x) for

any x ∈ IX

S
(n)
1 (x)− σ̃2(θ̂, x) =

1

nhnL
(n)
1 (x)

n−1∑
i=0

η
(x)
i {σ̃2(θ̂, .)}

and might rewrite T
(n)
1 (x) in the following way

T
(n)
1 (x) =

1

σ̃2(θ̂, x)

√
L

(n)
1 (x)

√
n

hn

n−1∑
i=0

1

n
η

(x)
i {σ̃2(θ̂, .)} (3.76)
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The first part of (3.76) is a factor to standardize the variance of T
(n)
1 (x). The second

part is a mean over η
(x)
i {σ̃2(θ̂, .)} that gives equal weight 1/n to every i.

To introduce the EL concept we now replace T
(n)
1 (x) by a similar statistic which

gives different weights to each i.

T̃
(n)
1 (x) =

1

σ̃2(θ̂, x)

√
L

(n)
1 (x)

√
n

hn

n−1∑
i=0

piη
(x)
i {σ̃2(θ̂, .)} (3.77)

with
∑n−1

i=0 pi = 1. For a fixed point x we follow Chen et al. (2001) to derive an EL
test statistic.

The empirical likelihood L for s(x) is defined by

L{s(x)} def
= max

n−1∏
i=0

pi(x) (3.78)

subject to
n−1∑
i=0

pi(x) = 1 and
n−1∑
i=0

pi(x)η
(x)
i {s} = 0 . (3.79)

The second condition reflects, that under the null hypothesis E[η
(x)
i {σ̃2(θ̂, .)}] con-

verges to 0 for n → ∞ and hn → 0. The test is based on the EL ratio L{σ̃2(θ̂, x)}/
L{S(n)

1 (x)}, which should be close to 1 if the null hypothesis is true. To formalize
this idea and to derive a test statistic we study the properties of L{s(x)}.

As in Section 3.3.4, we find the maximum of L{s(x)} by introducing Lagrange
multipliers and maximizing the Lagrangian function

H(p, λ1, λ2) =
n−1∑
i=0

log pi(x)− λ1

n−1∑
i=0

pi(x)η
(x)
i {s} − λ2

{
n−1∑
i=0

pi(x)− 1

}
The first order conditions are the equations in (3.79) and

∂H(p, λ1, λ2)

∂pi(x)
=

1

pi(x)
− λ1η

(x)
i {s} − λ2 = 0

for all i = 0, . . . , n− 1. We obtain the optimal weights as in Section 3.3.4

pi(x) = n−1
[
1 + λ(x)η

(x)
i {s}

]−1

(3.80)

where λ(x) is the root of

n−1∑
i=0

η
(x)
i {s}

1 + λ(x)η
(x)
i {s}

= 0. (3.81)
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Again, the maximum empirical likelihood is achieved at pi(x) = n−1 corresponding

to s(x) = S
(n)
1 (x) and for a parameter estimate θ̂ we get the maximum empirical

likelihood for the smoothed parametric model L{σ̃2(θ̂, x)}. The log-EL ratio is

`{σ̃2(θ̂, x)} def
= −2 log

L{σ̃2(θ̂, x)}
L{S(n)

1 (x)}
= −2 log[L{σ̃2(θ̂, x)}nn].

As in the discrete time case for the EL test about the drift m, we have to show,
that the Lagrange multipliers λ(x) are tending to 0 uniformly in IX .

THEOREM 3.5 For s(x) = σ̃2(θ̂, x) and under the assumptions (CT1) - (CT4) we
have

sup
x∈IX

|λ(x)| = Op{(nhn)−1/2}.

For the following we redefine Ūj(x)

Ūj(x) =
1

nhn

n−1∑
i=0

[η
(x)
i {σ̃2(θ̂, .)}]j . (3.82)

PROOF :
With a similar argument as in the proof of Theorem 3.2 we can show

0 =

∣∣∣∣∣
n−1∑
i=0

η
(x)
i {σ̃2(θ̂, .)}

1 + λ(x)η
(x)
i {σ̃2(θ̂, .)}

∣∣∣∣∣
≥ |λ(x)|

n−1∑
i=0

[η
(x)
i {σ̃2(θ̂, .)}]2

1 + λ(x)η
(x)
i {σ̃2(θ̂, .)}

−

∣∣∣∣∣
n−1∑
i=0

η
(x)
i {σ̃2(θ̂, .)}

∣∣∣∣∣ . (3.83)

From this inequality and the definition of Ūj(x) in (3.82) follows

0 ≥ |λ(x)|Ū2(x)

{
1 + |λ(x)| max

1≤j≤n

∣∣∣η(x)
i {σ̃2(θ̂, .)}

∣∣∣}−1

− |Ū1(x)| . (3.84)

With the notation εi = n(Xi+1 −Xi)
2 − σ2(Xi) we split Ū1(x) into three parts

Ū1(x) = I1 + I2 + I3

I1 = L
(n)
T [σ̃2(θ, x)− σ̃2(θ̂, x)]

I2 = 1/n
n−1∑
i=0

Khn(x−Xi)εi

I3 = 1/ncn

n−1∑
i=0

Khn(x−Xi)∆n(Xi)
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Assumption (CT2) and (CT3) yield I1 = O(n−1/2) and assumption (CT4) yields
I3 = O(cn).

I2 = L
(n)
T (x){S(n)

T (x)− σ2(x)}+ L
(n)
T (x){σ2(x)− σ̃2(x)}

Since σ2 is assumed to be continuous and S
(n)
T is a consistent estimator for σ2 with

order nh4
n, see Florens-Zmirou (1993), I2 is of order Op(nh

4). Thus the leading term
is I3 and Ū1(x) is of order OP (1/

√
nhn).

We now show that there exists a constant such that

P[ inf
x∈IX

Ū2(x) > d0] = 1 . (3.85)

Similar to the decomposition of Ū1(x) it can be shown, that it is sufficient to show
that

P

[
inf

x∈IX

1/(nhn)
n−1∑
i=0

K2

(
Xi − x

hn

)
ε2

i > d0

]
= 1 .

1

nhn

n−1∑
i=0

K2

(
Xi − x

hn

)
ε2

i ≥ 1

nhn

n−1∑
i=0

I

{
K2

(
Xi − x

hn

)
> C1

}
×K2

(
Xi − x

hn

)
ε2

i

≥ nC1

n−1∑
i=0

(εi

n

)2

∼ nC1

n−1∑
i=0

µ2(Xi)w
2
i

≥ C2

n−1∑
i=0

w2
i

where we use an approximation similar to (3.75). wi are standard normal and µ is
given in (3.75).

To complete the proof of the theorem, it remains to show that

max
1≤j≤n

sup
x∈IX

∣∣∣η(x)
i {σ̃2(θ̂, .)}

∣∣∣ = Op{(nhn)1/2} . (3.86)

Let vi = supx∈IX
|η(x)

i {σ̃2(θ̂, .)}|. Since K, σ2 and ∆n are bounded in IX , we have
with a similar argument as above, that vi ≤ C1|εi|. From the Chebyshev inequality
follows

P
(
vi > (nhn)1/2

)
≤ P

(
|εi| ≥ C2(nhn)1/2

)
≤ C3E|εi|(nhn)−1/2
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With the approximation (3.75) we have that E|(1/n)εi| = OP (n−2) and thus

P
(
vi > (nhn)1/2

)
≤ C4(nhn)−1/21/n

Thus, we have with assumption (CT1) that
∑∞

n=1 P
(
vi > (nhn)1/2

)
<∞. According

to the Borel-Cantelli lemma, vi > (nhn)1/2 finitely often with probability 1. This
means that max1≤i≤n vi > (nhn)1/2 finitely often, which proofs (3.86).

To finish the proof of Theorem 3.5 we take the supremum over all x ∈ IX in (3.84)

sup
x∈IX

|λ(x)|Ū2(x)

{
1 + |λ(x)| max

1≤j≤n

∣∣∣η(x)
i {σ̃2(θ̂, .)}

∣∣∣}−1

= Op{(nhn)−1/2}

which completes the proof together with (3.85) and (3.86).
�

As in Section 3.3.4, we apply the power series expansion of 1/(1 − .) to (3.81).
Theorem 3.5 then yields

n−1∑
i=0

η
(x)
i {σ̃2(θ̂, .)})

[ ∞∑
j=0

(−λ(x))j(η
(x)
i {σ̃2(θ̂, .)})j

]
= 0. (3.87)

and we have from (3.82), Theorem 3.5 and (3.87)

λ(x) = Ū−1
2 (x)Ū1(x) + Õp{(nhn)−1}. (3.88)

From (3.80), Theorem 3.5 and the Taylor expansion of log(1 + .) we get in a similar
way as in (3.34)

`{σ̃2(θ̂, x)} = −2 log[L{σ̃2(θ̂, x)}nn]

= 2nhnλ(x)Ū1 − nhnλ
2(x)Ū2 + Õp{(nhn)−3/2} (3.89)

Inserting (3.88) in (3.89) yields

`{σ̃2(θ̂, x)} = nhnŪ
−1
2 (x)Ū2

1 (x) + Õp{(nhn)−3/2}

and with the definition of U1 and U2 we approximate `{σ̃2(θ̂, x)} by

`{σ̃2(θ̂, x)} ≈

(∑n−1
i=0 η

(x)
i {σ̃2(θ̂, .)}

)2

∑n
i=0(η

(x)
i {σ̃2(θ̂, .)})2

and for the general case T 6= 1 we have

`t{σ̃2(θ̂, x)} ≈

(∑[Tn]−1
i=0 η

(x)
i {σ̃2(θ̂, .)}

)2

∑[Tn]−1
i=0 (η

(x)
i {σ̃2(θ̂, .)})2

. (3.90)
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For k points x1, . . . , xk we define the global EL goodness-of-fit test statistic T (n)
1

as in Chen et al. (2001),

T (n)
1

def
=

k∑
l=1

`{σ̃2(θ̂, xl)}

and for T 6= 1

T (n)
T

def
=

k∑
l=1

`T{σ̃2(θ̂, xl)} . (3.91)

As in Chen et al. (2001) we can show, that the asymptotic distribution of T (n)
t

under the null hypothesis is again a χ2-distribution with k degrees of freedom and
that 1/kT (n)

t is asymptotically equivalent to a L2 distance between S
(n)
T and σ̃2(θ̂, x).

This means, that both test statistics, T
(n)
T and T (n)

T , are asymptotically equivalent.
However, the simulation study shows, that the ability of the EL test statistic to
internally use features of the empirical distribution of S

(n)
T − σ̃2(θ̂, x) results in a

smaller empirical level and thus produces more reliable results.

3.5.4 Testing Time-inhomogeneous Diffusion Coefficients

To extend the proposed methodology to time-inhomogeneous coefficients, we now
assume that the diffusion process X is given as the solution of

dX(t) = m{X(t), t}dt+ σ{X(t), t}dW (t) t > 0

and we replace our null hypothesis about σ2 by

H ′
0 : ∃θ0 ∈ Θ : for every t ∈ [0, T ] :

σ2{X(t), t} = σ2{θ0, X(t), t} P-a.s. .

Furthermore we replace assumption (CT2) by

(CT2’)

|σ2(θ, x, t)− σ2(θ0, x, t)| ≤ D(x, t)‖θ − θ0‖ ∀ x ∈ IX , ∀ t ∈ [0, T ]

where D(x, t) is a constant depending on x and t and the set IX is defined as in (3.2).

Applying Itô’s formula to g(x, t)
def
=
∫ x

0
1/σ(θ̂, z, t)dz, Karatzas and Shreve (1991),

we get for Y (t)
def
= g(X(t), t)

dY (t) = mY {X(t), t}dt+
σ(X(t), t)

σ(θ̂, X(t), t)
dW (t) t > 0
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where mY (x, t) is given by

mY (x, t) =
∂

∂t
g(x, t) +

∂

∂x
g(x, t)m(x, t) + 0.5

∂

∂x2
g(x, t)σ2(x, θ̂, s)

By replacing x by g−1(y) in the last equation, we get from the assumptions (CT2’)
and (CT3) under the null hypothesis a diffusion Y with constant diffusion coefficient
equal to 1 + Op(n

−1/2), for which 1 is a square root consistent estimator. Since
the proposed tests do not depend on the drift, and the diffusion coefficient of Y is
asymptotically independent of t, we are now in the situation described above.

3.5.5 Fixed Sample Properties

We investigate the finite sample properties of the two proposed tests about the diffu-
sion coefficient by simulating various models and applying the test to the simulated
data. We again simulate from the process given as the solution of (3.1). For the
simulation we apply the Milstein scheme (3.52).

For the reason of empirical relevance we will investigate the fixed sample properties
of the tests applied to the models that are used in the empirical analysis, compare
3.4.4 and Table 3.1.

In addition to the Ahn-Gao model, compare 3.4.4, we also apply a linear mean
reverting drift in our simulation here. The used parameter values again correspond
to the estimated values by Ahn and Gao (1999) for the one month US treasury bill
rate. A summary of the drift functions used in the simulation is given in Table 3.3.

Name m(x) θ1 θ2

Linear mean reverting model (LMR) θ1(θ2 − x) 0.13 0.08
Ahn-Gao model (AG) θ1(θ2 − x)x 3.4 0.08

Table 3.3: Drift functions used in the simulation study

We simulate from every combination of the given diffusion coefficient and drift
function, i.e. we simulate paths of 6 different processes. For every model we simulate
1000 paths of length nT = 1000, nT = 3000 and nT = 5000. For nT = 1000, 3000
we simulate 10 observations each day, but sample the process daily. For nT = 5000
we simulate 20 observations per day and sample the data daily. Since the parameter
values given in Tables 3.1 and 3.3 are annual values, we choose n = 250 (250 trading
days per year) and T = 4, 12, 20 years.
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Both test statistics T
(n)
T and T (n)

T depend on the choice of the degrees of freedom
k, on the bandwidth h and on the points x1, . . . , xk. For given degrees of freedom k
we choose

h = 1/(2k) and xl = h+ 2h(l − 1) (3.92)

for l = 1, . . . , k. This choice guarantees that the random variables T
(n)
T (xl) and

`{σ̃2(θ̂, xl)} are uncorrelated. The parameter estimates are obtained from the qua-
dratic variation.

For nT = 1000 the empirical levels of both tests T
(n)
T and T (n)

T are shown in Figure

3.8. The results indicate, that the empirical level of the EL test statistic T (n)
T is close

to the nominal level only for degrees of freedom between about 4 and 6 and the test
based on T

(n)
T is to liberal even for small degrees of freedom. This statement holds

independently of the model that is tested. The nonlinearity of the drift seems to have
almost no impact on the empirical level of the test.

Figure 3.9 shows the empirical level for the test about the CKLS diffusion coef-
ficient when the length of the simulated paths is 3000 (upper plot) and 5000 (lower
plot). For the simulation we used a nonlinear drift (the AG model). As we expected
the empirical level is closer to the nominal level when the sample size is increasing.
For the LMR drift and the other two diffusion functions we get similar pictures.

The simulations show, that the performance of the test strongly depends on the
choice of k, the degrees of freedom of the asymptotic χ2-distribution. If k is to
large, the approximation of T

(n)
T (x) and `T{σ̃2(θ̂, x)} by normally distributed random

variables fails and thus the test statistics T
(n)
T and T (n)

T are not χ2-distributed. In
addition we see from Figure 3.8 that the empirical level of the test increases with k.
The reason seems to be clear, the larger k the smaller is hn. It is a well known feature
of nonparametric estimators, that the variance of the estimator is decreasing in hn.
Thus a larger k, smaller hn, yields a larger variance of T

(n)
T (x) and `T{σ̃2(θ̂, xl)} and

thus a larger expectation of the test statistics. For the 6 simulated models we report
the estimated variance and mean of the test statistics in Table 3.4. It also appears
from Figure 3.8 and Table 3.4 that the internal studentization of the EL test statistics
reduces the variance of T (n)

T and thus the empirical level of the test is closer to the

nominal level than the empirical level of the T
(n)
T test.

On the other hand, the comparison of the parametric function σ̃2(θ̂, .) and S
(n)
T is

done only at k points. This means, that the smaller k the less function values are used
for the test decision. One way to solve this trade off, is to use overlapping intervals
for the calculation of the smoother. But in this approach we lose the asymptotic
independence of T

(n)
T (xl) and thus T

(n)
T is not asymptotically χ2-distributed. A similar

argument holds for T (n)
T .

One possible solution to solve the problem of small sample sizes and to make
the test more reliable in such situations is the use of a bootstrap approximation of
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Vasicek Square Root CKLS
k mean Var mean Var mean Var

EL test statistic T (n)
T

LMR 3 2.42 5.32 2.31 4.89 2.37 5.38
7 6.87 16.84 6.75 16.25 7.08 19.06
11 11.60 35.04 11.74 31.12 12.18 34.40

AG 3 2.43 5.49 2.34 5.11 2.25 4.88
7 6.89 16.51 6.91 16.66 6.85 17.18
11 11.81 34.30 12.05 37.71 11.93 34.31

test statistic T
(n)
T

LMR 3 2.82 7.54 2.61 6.75 2.82 7.44
11 12.70 41.56 12.26 37.10 12.42 37.98

AG 3 2.83 7.45 2.63 6.72 2.66 6.71
11 12.67 37.16 12.43 39.56 12.51 41.07

Table 3.4: Mean and variance of the two test statistics estimated from a sample of
1000 paths with length nT = 1000.

the asymptotic distribution. Using the bootstrap methodology we could construct
the test statistics from small overlapping intervals (xl − hn, xl + hn). One possible
bootstrap approach that could be applied in this situation is the local bootstrap
method introduced by Paparoditis and Politis (2000). It captures the dependency
structure of the data. However, the application of bootstrap is behind the scope of
this work.

To investigate the power of the EL test we simulate 1000 paths of the Vasicek
model with linear drift (nT = 1000) and test the three diffusion coefficient models
given in Table 3.1 with this data. The result is shown in Figure 3.10. It appears from
that figure, that the power of the test for the square root model is smaller than that
of the CKLS model. However, the difference of the empirical rejection level between
the (true) Vasicek model and the square root model is significant. This means that
the proposed test is able to distinguish these two models. An inclusion of the Ahn-
Gao drift does not change the result in principle. Since the test based on T

(n)
T does

not hold its nominal level, we will not use it in our empirical analysis and we do not
investigate it’s power.
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3.6 Empirical Analysis

We apply the estimation procedures and the Empirical Likelihood test about the
diffusion coefficient proposed in this Chapter to different data including interest rates
(7-day Eurodollar rate), asset prices and stock market index processes. We obtain
all data sets from Thomson Financial Datastream. All data are sampled daily.

3.6.1 The analysis of the 7-day Eurodollar rate

We start with the analysis of the 7-day Eurodollar rate. The data we use are daily
observations of the spot rate from 1975/01/02 to 2002/02/18. These are 7078 obser-
vations. The evolution of the process is shown in Figure 3.11.

To provide some intuition about the behavior of the Eurodollar spot rate, we start
with some descriptive statistics. Figure 3.12 shows the autocorrelation function of
the spot rate. It appears, that even after 500 trading days, the autocorrelation is
still about 0.5 and thus the mixing coefficient of this process seems to be very small.
As mentioned in the last chapter, the statistical methodology for the drift function
relies on the ergodic theorem. Heuristically speaking the ergodic theorem states, that
observations of a mixing process can be treated like independent observations, if the
dependency between these observations tends to zero as the time between them gets
larger.

In a next step we estimate the drift and diffusion coefficient. As mentioned above,
the estimation of the drift might be incorrect, due to the week mixing of the interest
rate. However, to provide a complete picture of the process we show in Figure 3.14
parametric and nonparametric estimates for both, the drift and the diffusion coeffi-
cient. To estimate the diffusion coefficient we apply the estimator in (3.60). For the
drift coefficient the Nadaraya-Watson estimator (3.23) as well as the estimator that
was introduced by Jiang and Knight (1997), see (3.68), are applied.

To test parametric hypothesis about the Eurodollar spot rate, we test models
about its diffusion coefficient only. The reason is again the large autocorrelation that
we observe in the data. All models in Table 3.1 are tested. The parameters estimated
from n = 250 trading days per year are given in Table 3.5 along with the values of the
EL test statistic. To remove the influences of economic crises or structural breaks in
the series we also investigate two subsamples. The first subsample is the period from
the beginning of 1983 to the end of the sample, 2002/02/18. We use this time interval
to remove the impact of the debt crisis of the developing countries in the beginning
of the eighties. The second subsample considered is the period from January 1988 up
to the end of the sample excluding the October 1987 crash.

As it can be seen, the EL test rejects all models, independently of the chosen
degrees of freedom of their asymptotic χ2-distribution. This result indicates, that the
deviations of the estimated parametric diffusion functions from the nonparametrically
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estimated one cannot be explained by random fluctuations. Since the drift is not used
in the construction of the test, an inclusion of a certain drift function will not change
the result. In particular we have seen in the simulation study, that the test is robust
at least against quadratic drift functions. This means, despite the drift function of
interest rate models is important for the valuation of continent claims, all spot rate
models that use one of the tested diffusion coefficients can be rejected. This result
coincides with the empirical findings by Hong and Li (2002).

value of T (n)
T θ̂

k 5 7 9 11

0.05 critical values 11.070 14.067 16.919 19.675
0.01 critical values 15.086 18.475 21.666 24.725

1975/01/02 – 2002/02/18
σ(θ, x) = θ 208.277 274.721 924.651 550.362 0.043
σ(θ, x) = θ

√
x 32.696 56.268 153.364 111.100 0.126

σ(θ, x) = θx1.5 71.004 260.461 192.945 195.044 1.779

1983/01/03 – 2002/02/18
σ(θ, x) = θ 428.088 494.119 577.438 854.375 0.037
σ(θ, x) = θ

√
x 69.048 109.827 150.644 243.480 0.119

σ(θ, x) = θx1.5 133.680 95.752 329.994 271.199 1.887

1988/01/01 – 2002/02/18
σ(θ, x) = θ 236.125 298.087 288.529 447.579 0.031
σ(θ, x) = θ

√
x 23.390 42.265 39.413 91.197 0.103

σ(θ, x) = θx1.5 25.349 40.783 98.820 125.468 1.849

Table 3.5: Values of the EL test statistic and estimated parameters for the 7-day
Eurodollar rate.

3.6.2 German Stock Prices

The EL test is also applied to the German stock market index DAX and to the German
stocks Allianz, Bayer, Deutsche Bank, RWE and VW. The data we use are daily
observations of the assets from 01.07.1991 to 19.02.2002. These are 2778 observations.
We apply the test not to the original data but to the log prices, X(t) = logP (t), where
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P (t) is the observed price of the asset at time t. The results of the EL test are given
in Table 3.6.

value of T (n)
T θ̂

k 3 7 11

0.05 critical values 7.815 14.067 19.675
DAX σ(θ, x) = θ 95.495 274.544 276.595 0.181

σ(θ, x) = θ
√
x 78.983 332.413 367.068 0.073

σ(θ, x) = θx1.5 33.779 239.898 253.275 0.009

Allianz σ(θ, x) = θ 71.274 260.952 266.548 0.259
σ(θ, x) = θ

√
x 59.163 335.127 336.712 0.126

σ(θ, x) = θx1.5 21.158 210.860 220.641 0.024

Bayer σ(θ, x) = θ 119.001 135.356 248.024 0.221
σ(θ, x) = θ

√
x 145.471 130.443 255.342 0.138

σ(θ, x) = θx1.5 18.203 55.027 117.207 0.041

Deutsche σ(θ, x) = θ 164.887 101.440 455.881 0.243
Bank σ(θ, x) = θ

√
x 232.280 105.342 569.002 0.145

σ(θ, x) = θx1.5 122.952 55.802 421.737 0.036

RWE σ(θ, x) = θ 120.130 172.589 289.700 0.229
σ(θ, x) = θ

√
x 113.045 187.370 314.577 0.136

σ(θ, x) = θx1.5 37.562 103.120 174.242 0.038

VW σ(θ, x) = θ 43.655 199.624 196.352 0.290
σ(θ, x) = θ

√
x 20.487 187.114 183.105 0.164

σ(θ, x) = θx1.5 3.817 117.371 137.169 0.047

Table 3.6: Values of the EL test statistic and estimated parameters for the DAX and
five German stocks.

As for the interest rate, all supposed models are rejected by the test, except the
CKLS model is not rejected for the VW stock price process when k = 3.

The empirical results indicate that affine diffusion processes might not be appro-
priate to model financial time series, like interest rates or stock prices. A number of
alternative models is proposed in the literature. Hobson and Rogers (1998) propose
a complete model, i.e. without an additional source of randomness. They model
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price processes as the solution of a stochastic delay differential equation, where the
diffusion and drift coefficients depend on the whole history of the process. Stochastic
volatility models, where the diffusion coefficient depends on an additional non ob-
servable volatility process are another way to capture the dynamics observed in the
market, Hofmann et al. (1992). As these models yield incomplete markets, derivative
prices are not unique.
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Figure 3.7: Nonparametric estimates of m together with the empirical 90% confidence
band.
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Figure 3.8: Empirical level of T
(n)
T and T (n)

T for different models and path length
nT = 1000. The left column displays the results for the linear mean reverting drift
and the right column corresponds to the Ahn-Gao drift. On the vertical axis the
empirical level is displayed and the horizontal axis shows the degrees of freedom (k).

The solid line is the level of T (n)
T , the dotted line is the level of T

(n)
T and the thin

vertical line is the nominal level 0.05.
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Figure 3.9: Empirical level of T
(n)
T and T (n)

T for the CKLS model with AG drift and
path lengths nT = 3000 (upper plot) and nT = 5000 (lower plot). On the vertical
axis the empirical level is displayed and the horizontal axis shows the degrees of
freedom (k). The solid line is the level of T (n)

T , the dotted line is the level of T
(n)
T and

the thin vertical line is the nominal level of 0.05.
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Figure 3.10: Empirical power of the EL test T (n)
T the upper line corresponds to the

CKLS model and the middle one to the square root model. The lower line represents
the empirical level of the Vasicek model. The paths are simulated from the Vasicek
model (nT = 1000, 1000 trajectories)
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Figure 3.11: The 7-day Eurodollar rate.
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Figure 3.12: The autocorrelation function of the Eurodollar spot rate up to τ = 500
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Figure 3.13: The marginal density of the Eurodollar spot rate.
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Figure 3.14: Parametric and nonparametric estimates of the diffusion (upper plot)
and the drift function(lower plot). The green function is the parametric estimate of
the Ahn-Gao model (Ahn-Gao drift, CKLS diffusion) and the red line corresponds to
the parametric estimate of Square root process (LMR drift, CIR diffusion). The blue
line in drift plot corresponds to the estimator in (3.23) and the black line is estimated
with (3.68).



Chapter 4

A Semiparametric Model For A
Stock Market Index

4.1 Introduction

We study here a case where a non-stationary diffusion process, an index, is observed.
To be able to apply methods that rely on ergodicity we express the observed process
as the product of an ergodic process and a smooth function of time. This smooth
function is interpreted as average growth of the index. Due to the unknown impact
of the average growth on the observed data, the ergodic part of our model is not
directly observable. The proposed methodology combines recently developed non-
parametric and parametric methods in order to estimate and probe the drift and
diffusion coefficients of the ergodic process.

To illustrate our methodology we concentrate here on the empirical analysis of a
particular stock market index, the S&P 500. The statistical analysis of stock prices,
exchange rates etc. is similar but not in the focus of this chapter. We concentrate
here on the case where an index is modeled by a scalar diffusion process.

The framework of Platen (2000) fully characterizes a financial market by the spec-
ification of the different denominations of the, so called, best benchmark portfolio.
The stock index and the index benchmarked stock prices can be interpreted as de-
nominations of the best benchmark portfolio. As a consequence, exchange prices
are ratios of corresponding denominations of the best benchmark portfolio. Further-
more, this portfolio represents the optimal growth portfolio, see Karatzas and Shreve
(1998). A well diversified market index, as the S&P 500, comes close to the optimal
growth portfolio. For this reason, the inference for the index is also the first step in
the statistical analysis of an exchange rate or stock price.

We assume that an appropriately normalized index process X = {X(t), t ≥ 0}
can be interpreted as an ergodic process. Based on this assumption we focus on

86
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the inference of this normalized process X instead of the index S = {S(t), t ≥ 0}
itself. This allows us to direct our attention towards the identification of the drift
and diffusion coefficient functions of an ergodic diffusion. In Figure 4.1 we plot the
S&P 500 index S with daily data from 1977 to 1997 together with an average index
S̄ = {S̄(t), t ≥ 0}. Such an average index S̄ can be obtained in different ways.
For instance, it could be exogenously given by a function of economic and financial
quantities, i.e. inflation rate, growth rate of the domestic product, interest rate,
etc.. It could also be derived by a kernel smoothing procedure, with an appropriate
bandwidth or filter length h. This is the choice which we will study in this chapter.

We construct the normalized index X by dividing the original index S by the
above described average index S̄, that is

X(t) =
S(t)

S̄(t)
(4.1)

for t ≥ 0. The resulting normalized index X, derived via a kernel smoother, is shown
in Figure 4.1. Its path resembles that of a stationary diffusion process. Note in the
middle of our plot the sudden decline caused by the 1987 crash, which we do not
remove from our sample.

We assume for the value of the index S(t) at time t a representation of the form

S(t) = S(0)Z(t) exp

{∫ t

0

η(s)ds

}
(4.2)

for t ≥ 0. Here η(t) is interpreted as the deterministic, time dependent growth rate
of the index at time t. Furthermore Z(t) denotes the value of a positive ergodic
diffusion process Z at time t, that means, Z solves the Itô stochastic differential
equation (SDE)

dZ(t) = m{Z(t)}dt+ σ{Z(t)}dW (t) (4.3)

for t ≥ 0. Here W = {W (t), t ≥ 0} denotes a standard Wiener process and m{.}
and σ{.} are the drift and diffusion coefficient functions. Due to the factor S(0) we
assume that Z is stable about 1, which models a mean reverting behavior. On the
other hand, Z(t) has to be positive for all t ≥ 0.

To make our parametric model specific we may choose for Z a square root process,
that is positive and stable about an equilibrium reference level. The square root
process is also known as the Cox-Ingersoll-Ross (CIR) process, see Cox et al. (1985).
The functional form (4.2) that models the index is a special case of the minimal
market model (MMM) proposed in Platen (2000).

Another parametric model arises if we choose

Z(t) = exp{U(t)} (4.4)
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Figure 4.1: S&P 500 index S, average index S̄ and normalized index X (lower plot).

with an Ornstein-Uhlenbeck process U = {U(t), t ≥ 0}. This leads us to the ex-
ponential of an Ornstein-Uhlenbeck process as index model. Such a model has been
used, for instance, in Föllmer and Schweizer (1993), Platen and Rebolledo (1996) and
Fleming and Sheu (1999).

To compute the average index S̄ in (4.1), we apply a kernel smoother to the
logarithm of S and then calculate S̄ as the exponential of this smoothed process.
This removes the average deterministic growth in (4.2). For the analysis of the
resulting normalized index we have to take into account that the residuals lnS− ln S̄
are corrupted by the smoother. This will be shown in detail later on. It means,
that the normalized index X is not a diffusion and in particular it does not equal
the diffusion Z. For this reason we cannot directly apply estimation methods for
discretely observed diffusions. From the statistical point of view we are faced with
a nonparametric regression model with error terms that are not independent and
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identically distributed but are the discrete observations of a diffusion process. The
analysis of these error terms and the clarification of their relationship to Z is a main
task in this chapter.

We remark, that the index process S is itself a diffusion. When Z is specified
according to (4.4) with an Ornstein-Uhlenbeck process U , Itô’s formula yields the
representation

dS(t) = {η(t)− β}S(t)dt+ γ exp

{∫ t

0

η(s)ds

}
dW (t) (4.5)

for t ≥ 0. The parameters β, γ and η cannot be easily separated in this representation.
For this reason, we develop a statistical methodology for models that are based on
the representation (4.2).

In Section 4.2.1 we introduce the parametric model for Z. The kernel smoothing
and the computation of X is described in Section 4.2.2. The choice of the kernel
and bandwidth and its influence on the average index is discussed in Section 4.2.3
together with the corresponding parameter estimation methods. In Section 4.2.4, a
parametric model is tested versus a purely nonparametric alternative. This test is
carried out by the bootstrap technique described in Section 3.3.3 and the Emprir-
ical Likelihood methodology of Section 3.3.4. In Section 4.3 and 4.4 we apply the
introduced methodology to S&P 500 data and also in a simulation study.

We remark that the proposed methodology applies directly to situations, where
normalized data can be modeled by an ergodic diffusion process. Emphasis is here
given to the case of an Ornstein-Uhlenbeck process, and results on the influence of
the kernel smoother are included for this case.

4.2 Statistical Methodology for a Normalized Dif-

fusion

4.2.1 Parametric Models

As discussed in the introduction, one can, in principle, use various parametric ergodic
diffusion models. Let us mention two examples. Both of them have mean reverting
drift coefficients. In the case where the squared diffusion coefficient has the form

σ2(z) = ν2z, z > 0, (4.6)

with a positive constant ν, we obtain in (4.2) a square root process Z. Here we
assume that Z satisfies the SDE

dZ(t) = {ψ − ϕZ(t)}dt+ ν
√
Z(t)dW (t) (4.7)
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for t ≥ 0 and with ψ > ν2/2, ϕ > 0. Note that a stationary and ergodic solution of
(4.7) exists with the expected value µ∞ = E[Z] = ψ/ϕ > 0. Since the ratio Z(t)/µ∞
is again a square root process and any constant term can be absorbed by S(0) in
(4.2), one can for simplicity assume that µ∞ = E[Z] = 1. This choice leads us to the
SDE

dZ(t) = ϕ{1− Z(t)}dt+ ν
√
Z(t)dW (t). (4.8)

for t ≥ 0.
We obtain a second example for an ergodic diffusion by defining Z as in (4.4),

where U denotes the well-known Ornstein-Uhlenbeck process with

dU(t) = −βU(t)dt+ γdW (t). (4.9)

for t ≥ 0. Since U fluctuates about its reference level 0 and is ergodic, Z as given in
(4.4) is an ergodic, positive diffusion process fluctuating about 1.

4.2.2 Kernel Smoothing

Denote by Kh a smoother with a kernel K and a bandwidth h. The smoothing
of any process is denoted by a convolution operator (∗). As mentioned before, the
normalized index X(t) in (4.1) can be defined by the exponential of the difference of

L(t) = ln{Z(t)} (4.10)

and its smoother (Kh ∗ L)(t), that is:

X(t) = exp
{

lnS(t)− (Kh ∗ lnS)(t)
}

= exp
{
L(t)− (Kh ∗ L)(t)

}
. (4.11)

Equation (4.11) holds if we neglect the difference between the accumulated determin-
istic growth rate

∫ t

0
η(s)ds in (4.2) and its smoother, this means:∫ t

0

η(s) ds−
(
Kh ∗

∫ ·

0

η(s) ds

)
(t) ≈ 0.

Here we arrive at a delicate point of our study. If we want to remove efficiently the
deterministic growth rate in (4.2), then the value h should be chosen relatively small.
Indeed, smaller values for h reduce the bias. On the other hand, the smaller the value
of h is chosen, the more X is corrupted by Kh ∗ L in (4.11).

The smoother Kh ∗ L is differentiable for differentiable kernels K and thus of
bounded variation. Due to the smoothing procedure Kh ∗ L involves also future
information about L. Thus X is not a diffusion process. For this reason, we cannot
treat lnX(t) in (4.11) as the logarithm of a square root process or as an Ornstein-
Uhlenbeck process. A more detailed analysis ofX has therefore to be performed. This
is the objective of the next section. However note, in the case when S̄ is obtained
exogenously and not by a smoothing procedure, X might still be a diffusion.
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4.2.3 Estimation of Parameters

In this section we assume that the only observations available are those of

lnX(t) = L(t)− (Kh ∗ L)(t) (4.12)

in (4.11) and that L is the Ornstein-Uhlenbeck process U given in (4.9). The esti-
mation problem that we now consider is that for the parameters β and γ in (4.9).
In principle the value of γ can be restored from the quadratic variation of either
Z(t) or L(t). For differentiable kernels Kh in (4.11), the process (Kh ∗ L)(t) is also
differentiable. For this reason it holds that

lim
∆t→0

n∑
i=1

{
lnX(i∆t)− lnX(i∆t−∆t)

}2 L2

=

∫ T

0

d < L >t (4.13)

for n = T/∆t. Here d < L >t denotes the differential of the quadratic variation of
the process L at time t. Empirical results confirm that the quadratic variation is not
sensitive to the choice of h. For more details on that see Table 4.1. The following
formula provides a stable estimate of γ2 in the form

γ̂2 = T−1

n∑
i=1

{
lnX(i∆t)− lnX(i∆t−∆t)

}2

≈ T−1

∫ T

0

d < L >t . (4.14)

To estimate the speed of adjustment parameter β in (4.9) we could use the well-
known form of the stationary variance of the Ornstein-Uhlenbeck process L. Along
with (4.14) this would result in a first estimator of β with

β̂1 = γ̂2/(2 Var [L]) . (4.15)

Unfortunately, the substitution of Var [L] by Var [lnX] makes β̂1 strongly dependent
on h. Indeed, the variance

Var [lnX] = Var [L−Kh ∗ L] (4.16)

increases as h grows, and only for very large values of h we can expect that Var [lnX] ≈
Var [L].

It is not just the variance of the random process lnX that changes with h. Also
its autocorrelation function depends on the bandwidth h. The correlation between
the values of the process lnX, distant by a constant time length τ > 0, diminishes
as h decreases. For this reason we propose a selection method for h based on the
simultaneous estimation of β from the variance and from the autocorrelation function
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of the process lnX. The idea is simple, if for each value of h there are two different
estimates of the same parameter β, then the best choice of h is considered to be that,
which brings these estimates as close as possible to each other.

The autocorrelation function ρ(L)(τ) of the Ornstein-Uhlenbeck process L equals

ρ(L)(τ) = e−βτ (4.17)

for τ > 0. Thus, β represents the absolute value of the slope of this function at zero.
Hence another estimate of β from the observations of L would be

β̂2 =
∣∣∂+

∂τ
ρ(L)(τ)

∣∣∣∣∣
τ=0

, (4.18)

where
∂+

∂τ
ρ(τ) = lim

s→0, s>0

ρ(τ + s)− ρ(τ)

s

for τ ≥ 0 denotes the right hand derivative of ρ with respect to τ .
Unfortunately, the estimator in (4.18) is not feasible since L is not observed. In

Appendix A.3 we show for the process lnX that its stationary variance is asymptot-
ically

Var [lnX] =
γ2

2β

(
1− cK

βh
+O(h−2)

)
as h→∞, (4.19)

where the constant cK depends on the kernel K. Furthermore, we prove in Appendix
A.3 for the autocorrelation function ρ

(ln X)
h (τ) of lnX the asymptotics

ρ
(ln X)
h (τ) = Corr

[
lnX(τ); lnX(0)

]
=

e−βτ − cK

βh
+O(τh−2)

1− cK

βh
+O(h−2)

, τ ≥ 0 (4.20)

as h→∞ with the same constant cK as in (4.19). In Appendix A.3 this constant is
calculated for the rectangle and the Epanechnikov kernels.

It follows from equation (4.19) that the first-order approximation of the stationary
variance of lnX is

Var [lnX] ≈
{

1− cK
βh

}
Var [L]. (4.21)

By (4.20), the slope of the autocorrelation of lnX at zero is asymptotically∣∣∂+

∂τ
ρ

(ln X)
h (τ)

∣∣∣∣∣
τ=0

≈ β

1− cK

βh

(4.22)

as h→∞. Thus this slope is steeper than that of ρL at τ = 0.
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The immediate consequence of (4.19) and (4.20) is that the formulas (4.15) and
(4.18) for β̂1 and β̂2, respectively, have to be modified if the process lnX rather than
L is observed. In Appendix A.3 we show that the correct modification is provided by
the expressions

β̂1(h) =
γ̂2

2Var [lnX]
− cK

h
(4.23)

and

β̂2(h) =
∣∣∂+

∂τ
ρ

(ln X)
h (τ)

∣∣∣∣∣
τ=0

− cK
h
, (4.24)

respectively. Finally, our method for the selection of h is based on the following
balance equation

β̂1(h) = β̂2(h) (4.25)

which equals both estimates.
After h is chosen, we need to restore the process L, which is needed in the re-

maining nonparametric and parametric analysis. From (4.11), proceeding formally,
one arrives at the following iterative formula:

L = lnX +Kh ∗ L = lnX +Kh ∗ (lnX +Kh ∗ L)

= . . .

= lnX +Kh ∗ lnX +Kh ∗Kh ∗ lnX + . . . . (4.26)

The justification for the restoration formula (4.26) comes from the fact that if one
neglects the boundary effects, the smoothing operator Kh is a contracting operator
in L2, as shown in Appendix A.3. In the practical application of (4.26), we rely
on the fact that the smoother of the original process L is close to the smoother of
L − Kh ∗ L. In practice, only one or two convolutions are meaningful. After the
restoration process is completed, the parameter β can be estimated directly from L
by (4.15).

We were able to establish in this chapter the above correction terms for the
Ornstein-Uhlenbeck process. One could, in principle, estimate parameters also under
the assumption that X itself is a square root process or another ergodic diffusion.
However, if the average index S̄ is calculated via a smoothing procedure, a similar
bandwidth selection method has to be developed. At that stage this is left for future
research.
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4.2.4 Testing the Parametric Model

We can now apply the methods introduced in Chapter 3 to test the parametric form
of the normalized index process. The first step is derivation of the null hypotheses
about the drift and diffusion coefficient of Z. To derive the null hypotheses in the
case when Z is the exponential of an Ornstein Uhlenbeck process, we apply Itô’s
formula to Z(t) = exp{U(t)}. Here U satisfies (4.9) and one obtains

dZ(t) = d(exp{U(t)})

= Z(t)

{
−β lnZ(t) +

1

2
γ2

}
dt+ γZ(t)dW (t) (4.27)

for t ≥ 0. The null hypotheses of the tests are therefore

H0(m) : m(z) = z

{
−β ln z +

1

2
γ2

}
and

H0(σ
2) : σ2(z) = γ2z2,

while the alternative is nonparametric.

4.3 Empirical Analysis of the S&P 500

We apply the methods introduced in Section 4.2 to daily observations of the S&P
500 index from 31.12.1976 to 31.12.1997 (5479 observations). The data are obtained
from Thomson Financial Datastream.

For the kernel smoothing of S we choose the Epanechnikov kernel. The constant
cK that appears in the correction terms in (4.23) and (4.24) are known for this
particular kernel, see Appendix A.3.

As already mentioned in Section 4.2.3 the estimates for the parameter γ calculated
from formula (4.14) are small relative to 1 and do not change significantly with h.
Table 4.1 shows the estimated values for different values of h. The variance of the
process X is also shown in that table. The small variance and the fact that X is
stable about 1 justifies to concentrate on the case of a geometric Ornstein-Uhlenbeck
process defined by (4.4) and (4.9).

The next step in our analysis is the choice of h. Due to the long range of ob-
servations we apply a flexible bandwidth to the data. This flexible bandwidth was
calculated by splitting the data in overlapping subintervals of different lengths and
calculating an optimal fixed bandwidth for every subinterval. The bandwidth is cho-
sen to be optimal with respect to the balance equation (4.25). To get a continuous
optimal bandwidth function hopt(t) we interpolate the resulting values. The function
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h 200 250 300 350 400

Var(X) 0.0018303 0.0023465 0.0029246 0.0035622 0.0042183
γ̂ 0.0090593 0.0090703 0.0090849 0.0090991 0.0091103

Table 4.1: Estimated values for γ and the estimated variance of X for different
bandwidths h.
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Figure 4.2: The optimal flexible bandwidth hopt(t).

t 7→ hopt(t) is shown in Figure 4.2. The final values for β are β̂1(hopt) = 0.010352

and β̂2(hopt) = 0.0089721 and the ratio is β̂1(hopt)/β̂1(hopt) = 1.1538. For fixed band-
widths in the range of hopt this ratio is given in Table 4.2. All these ratios are larger
than those for hopt which justifies the use of the flexible bandwidth. The estimated
value for γ is γ̂(hopt) = 0.0091033.

Now we are in the position to restore the path of the process Z and to estimate
the parameters. We get the following estimates from the restored path

β̂1 = 0.01003, β̂2 = 0.0093294,

β̂1/β̂2 = 1.0751, γ̂ = 0.0092454.

To finish the empirical analysis we apply the test procedure described in Section
3.5 for the hypotheses in Section 4.2.4. Figure 4.3 shows the nonparametric estimates
of the drift and squared diffusion coefficient of the restored process Z together with
the 90% confidence bands. The almost straight lines show the parametric estimates
with respect to the estimated values of the restored process Z. The vertical lines
enclose the interval where 99% of the observed data reside.
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h 200 225 250 275 300

β̂1(h) 0.017913 0.01569 0.013826 0.012197 0.010776

β̂2(h) 0.01328 0.012098 0.011092 0.0098626 0.0086047

β̂1(h)/β̂2(h) 1.3489 1.2969 1.2465 1.2367 1.2523

Table 4.2: Estimated values for β for different fixed bandwidths h.
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Figure 4.3: Nonparametric and parametric estimates of the drift m(.) and squared
diffusion coefficient σ2(.) with 90% confidence bands.

Both parametric functions are surely inside the confidence bands. Thus the null
hypothesis of the geometric Ornstein–Uhlenbeck process cannot be rejected.

4.4 Simulation Study

We perform now a simulation study by applying the estimation methods introduced in
Section 4.2.3 to simulated trajectories of the Ornstein-Uhlenbeck process U . The drift
and diffusion parameters β and γ in (4.9) are estimated directly from the observations
of U as well as from the residual of a kernel smoothing procedure.

It is well known that the transition probability of an Ornstein-Uhlenbeck process
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is normal with conditional mean

E[Ut+∆|Ut = u] = ue−β∆

and conditional variance

Var(Ut+∆|Ut = u) =
γ2

−2β

(
e−2β∆ − 1

)
.

Using this Gaussian transition probability we simulate 100 paths of the process U
with time step size ∆ = 1. The true parameters are set to β = 0.01 and γ = 0.01,
which correspond approximately to the empirical estimates for the S&P 500 index in
Section 4.3.

For the analysis of the directly observed process U we apply three estimators for
the speed of adjustment parameter β. Besides β̂1 and β̂2 introduced in (4.15) and
(4.18), we use also the estimator

β̂3 = − 1

∆
ln

∑n
i=1 Ui−1Ui∑n

i=1 U
2
i−1

, (4.28)

which is based on martingal estimating functions and was proposed in Bibby and
Sørensen (1995). It is easy to see, that β̂3 is related to the autocorrelation function of
U . For details about this estimator and the theory of martingal estimating functions
we refer to Bibby and Sørensen (1995) and the references therein. The diffusion
coefficient is estimated via the slope of the quadratic variation, similarly as in (4.14).

The first row of Table 4.3 shows the means of the corresponding estimated values.
In the second row the variance of the estimates are shown. We emphasize that the
results are based on a directly observed simulated diffusion.

β̂1 β̂2 β̂3 γ β̂1/β̂2 opt h

0.01070 0.01018 0.01028 0.00996
4.589e-06 3.695e-06 4.541e-06 1.059e-08

0.00964 0.00967 0.00996 0.99435 295.0
7.161e-06 6.258e-06 1.067e-08 0.00248

Table 4.3: Estimated parameters.

Furthermore, we simulate the logarithm of the index in (4.2) lnS as the sum of
a linear function and U . In a second step we calculate lnX as in (4.11) with the
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Epanechnikov kernel, see Appendix A.3. We then estimate from the simulated data
the parameters β and γ of U by the methods in (4.23), (4.24) and (4.14). This
gives us an idea about the fixed sample behavior of these estimation methods when
the residuals of a kernel smoothing procedure are observed instead of those of an
Ornstein-Uhlenbeck process itself.

The estimated values calculated from the simulated trajectories of lnX are shown
in the third and fourth row of Tables 4.3. The results clearly demonstrate that the
correction terms in (4.23) and (4.24) are necessary to obtain reasonable estimates.
In the situation considered here, the correction terms equal each other and have
approximately the value ck/h ≈ 0.0061, see Appendix A.3. Since the correction
terms for β̂3 are not considered, we do not report them in Table 4.3.

The table also shows the mean and the variance of the ratio β̂1/β̂2 used to select
the bandwidth h, see (4.25). The mean of the selected bandwidth h, which brings
this ratio as close as possible to one, is given in the last column.

The second part of the simulation study treats the bootstrap procedure. We
apply the bootstrap methodology as introduced in Section 3.3.3 to a simulated path
of an Ornstein-Uhlenbeck process U following the dynamics in (4.9) with parameters
β = 0.01, γ = 0.01 and ∆ = 1. The values of the parameters are reasonable with
respect to the empirical results for the S&P 500. The number of observations is
5000 and the number of the bootstrapped series for the confidence bands is 160.
The two plots in Figure 4.4 show the nonparametric estimators for the drift and
squared diffusion coefficient together with their 90% confidence bands constructed by
the bootstrap procedure. The plots also show the true parametric functions for the
drift and diffusion coefficient. The dotted vertical lines are the empirical 0.005 and
0.995 quantiles of the stationary distribution of exp(U). If we only consider the range
between these quantities, i.e. the range where 99% of the data reside, then both of
the parametric functions remain inside the confidence bands. This means, the null
hypotheses H0(m) and H0(σ

2) as in Section 4.2.4 cannot be rejected for data in this
range.
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Figure 4.4: Nonparametric estimates for the drift and squared diffusion coefficients of
a simulated geometric Ornstein-Uhlenbeck process, confidence bands and true func-
tions.
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Appendix A

Appendix

A.1 One-dimensional Diffusions

To ensure the existence of a solution of (3.1) we make the following assumptions

(X1) For all θ ∈ Θ we assume, that their exists an interval (l, r) with l, r ∈ R ∪
{−∞;∞}, l < r such that m(.), σ(.),m(θ, .), σ(θ, .) ∈ C1((l, r),R) and ∃K > 0
such that:

m2(θ, v) + σ2(θ, v) ≤ K(1 + v2)

m2(v) + σ2(v) ≤ K(1 + v2)

and
∀v ∈ (l, r) : σ(θ, v) > 0 σ(, v) > 0

From this assumptions follows, that the martingale problem MP(m,σ2) has a
unique solution and thus a unique solution of (3.1) exists, Karatzas and Shreve
(1991) and Durrett (1991).

(X2) For the scale function ϕ(x) of σ2
t

ϕ(x)
def
=

∫ x

c

exp

{
−2

∫ v

c

m(u)

σ2(u)
du

}
dv, x ∈ R

holds for l and r in (X1):

ϕ(l+) = −∞, ϕ(r−) = ∞

It follows, that the solution of (3.1) is recurrent and for the exit time S of X
form (l, r)

S
def
= inf {t ≥ 0 : X(t) /∈ (l, r)}

holds P [S = ∞] = 1, Theorem 5.5.29 (Feller’s Test for Explosion) and Propo-
sition 5.5.22 in Karatzas and Shreve (1991).
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(X3) For l and r holds

M
def
=

∫ r

l

1

σ2(x)ϕ′(x)
dx <∞

This conditions ensures, that X is stationary with marginal density

f(x) =
1

M

1

σ2ϕ′(x)
∀ x ∈ (l, r)

if the distribution of the initial variable X(0) has density f , Pollak and Sieg-
mund (1985) and Karatzas and Shreve (1991). The ergodic theorem for diffu-
sions, Rogers and Williams (1987), ensures the ergodic property of X.

We will now give three examples of diffusion processes, that we use in the simu-
lation studies and the empirical analysis.
Example A.1 Ornstein-Uhlenbeck-Process:

dX(t) = θ1(θ2 −X(t))dt+ θ3dW (t)

If X(0) has a normal distribution with expectation θ2 and variance θ2
3/(2θ1) than X

is stationary and l = −∞ and r0∞.
Example A.2 Square root process:

Cox et al. (1985) introduce the square root process as a model for interest rates.
We call a diffusion X square root process, if X solves the SDE

dX(t) = θ1{θ2 −X(t)}dt+ θ3

√
X(t)dW (t) . (A.1)

X is stationary and positive if 2θ1θ2/θ
2
3 − 1 is positive.

Example A.3 Ahn-Gao model:
The Ahn-Gao process was introduced by Ahn and Gao (1999) to model interest rate
processes. The diffusion coefficient is the Chan et al. (1992) (CKLS) coefficient but
the drift term is not linear. We call a diffusion X an Ahn-Gao process, if X solves
the following differential equation:

dX(t) = θ1{θ2 −X(t)}X(t)dt+ θ3X(t)1.5dW (t) . (A.2)

Ahn and Gao (1999) proof, that under the condition that θ1, θ2 and θ3 are positive, a
stationary strictly positive solution of (A.2) exists. They also provide a closed form
for the marginal density, the transition density and the conditional and unconditional
moments.
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A.2 Proofs of Theorems and Lemmas of EL sec-

tion

We give all proofs as in Chen et al. (2001) for time series.
PROOF of Lemma 3.1:
Define εi = Yi −m(Xi) and write Ū1(x) = I1(x) + I2(x) + I3(x) where

I1 = [nT ]−1

[nT ]−1∑
i=0

Kh(x−Xi){mθ(Xi)− m̃θ̂(x)} = f̂(x){m̃θ(x)− m̃θ̂(x)},

I2 = [nT ]−1
∑[nT ]−1

i=0 Kh(x−Xi)εi and I3 = [nT ]−1cn
∑[nT ]−1

i=0 Kh(x−Xi)∆n(Xi). As

sup
x∈S

|[nT ]−1

[nT ]−1∑
i=0

Kh(x−Xi)− f(x)| a.s.→ 0

as shown in Bosq (1998)p.49, condition (DT5) implies,

sup
x∈S

|I1(x)| = Op([nT ]−1/2) and sup
x∈S

|I3(x)| = Op(cn). (A.3)

Let Mn = b0 log(n) for some positive constant b0. Split I2(x) into two parts:

I+
2 (x) = n−1

[nT ]−1∑
i=0

Kh(x−Xi)εiI(|εi| ≥Mn)

and

I−2 (x) = n−1

[nT ]−1∑
i=0

Kh(x−Xi)εiI(|εi| < Mn).

As supx∈S |I+
2 (x)| ≤ C([nT ]h)−1

∑[nT ]−1
i=0 |εi|I(|εi| ≥Mn) for some C > 0, the Cauchy-

Schwartz inequality implies that

E

[
sup
x∈S

|I+
2 (x)− E{I+

2 (x)}|
]
≤ 2C([nT ]h)−1

[nT ]−1∑
i=0

{E(|εi|2)P(|εi| ≥Mn)}1/2.

From the Chebyshev inequality and condition (DT6), for a positive constant η0,

P

[
M−1

n ([nT ]h)1/2 sup
x∈S

|I+
2 (x)− E{I+

2 (x)}| ≥ η0)

]
≤ 2Cη−1

0 n1/2h−d/2M−1
n exp{−1

2
a0b0 log(n)}.
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By properly choosing b0, the right hand sight converges to zero as n → ∞. This
means that

sup
x∈S

|I+
2 (x)− E{I+

2 (x)}| = Op{([nT ]h)−1/2 log(n)}. (A.4)

Let φi(x) = K(x−Xi

h
)εiI(|εi| < Mn), Zi(x) = φi(x) − E{φi(x)}. Clearly, at each

fixed x, {Zi(x)} has zero mean, is bounded by b = C1Mn and geometrical the α-
mixing. Put η = (h/n)1/2Mnη0. From Theorem 1.3 of Bosq (1998),

P
[
|I−2 (x)− E{I−2 (x)}| > ([nT ]h)−1/2Mnη0

]
= P

(
|
∑

Zi(x)| > nη
)

≤ 4 exp[−η2q/{8v2(q)}] + 22(1 + 4C1Mn/η)
1/2qα{[n/(2q)]} (A.5)

where q = η0M
2
n

√
nh−d/2, p = n/q, v2(q) = 2

p2σ
2(q) + bη

2
and

σ2(q) = max
0≤j≤2q−1

E{β1(p)Z[jp]+1(x) +

p∑
i=2

Z[jp]+i(x) + β2(p)Z[jp]+1(x)}2.

In the last equation β1(p) = [jp] + 1 − jp and β2(p) = (j + 1)p − [(j + 1)p]. By the
stationarity of {(Xi, Yi)},

σ2(q) ≤ (p+ 2)E{Z2
1(x)}+ J (A.6)

where

J = 2p

p∑
l=1

(1− l − 1

p
)|Cov{Z1(x), Zl+1(x)}|+ 2|Cov{Z1(x), Zp+1(x)}|.

Condition (DT6) implies that E(|ε|δ) < ∞ for some δ > 2. Using the Davydov’s
lemma,

|Cov{Z1(x), Zl+1(x)}| ≤ 2δ(δ − 2)−1{E|K(
x−Xi

h
)εi|δ}2/δα1−2/δ(l)

≤ Chα1−2/δ(l). (A.7)

Following the approach used in Fan and Gijbels (1996), we let dn →∞ be a sequence
of integers such that dnh→ 0 and split J as

J1 = 2p
dn−1∑
l=1

(
1− l − 1

p

) ∣∣Cov{Z1(x), Zl+1(x)}
∣∣ and

J2 = 2p

p∑
l=dn

(
1− l − 1

p

) ∣∣Cov{Z1(x), Zl+1(x)}
∣∣

+2|Cov{Z1(x), Zp+1(x)}|. (A.8)
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As Cov{Z1(x), Zl+1(x)}| ≤ Var{Z1(x)} ≤ C, J1 ≤ Cpdn = O(ph). From (A.7) and
condition (DT1), we have J2 = O(ph) as well. These imply that

J = J1 + J2 = O(ph) (A.9)

and hence σ2(q) ≤ Cph. The particular forms of q, b and η mean that v2(q) ≤ Cqh/n
and

exp[−η2q/{8v2(q)}] ≤ exp
(
−C1M

2
nη

2
0

)
. (A.10)

The geometric the α-mixing condition implies:

(1 + 4Chd/η)1/2qα{n/(2q)} ≤ C2([nT ]h−d)−3/4M2
nρ

1
2
η0M

−2
n ([nT ]h)1/2

. (A.11)

Combining (A.10), (A.11) with (A.5) and noticing that both (A.10) and (A.11) are
free of x, we have

sup
x∈S

P[|I−2 (x)− E{I−2 (x)}| ≥ ([nT ]h)−1/2 log(n)η0] (A.12)

≤ exp
(
−C1b

2
0 log2(n)η2

0

)
+ C2h

−3d/4n3/4M2
nρ

1
2
η0b

−2
0 log−2(n)([nT ]h)1/2

.

Let {Bk}vn
k=1 be a set of equal volume disjoint hypercubes with centers {sk}vn

k=1

such that S =
⋃vn

k=1Bk, vn = [nt0 ] for some t0 > 0 and supx∈Bk
||x − sk|| ≤ cv−1

n .

Based on this partition of S, and let I−?
2 (x) = I

(
2x)− E{I−2 (x)}

sup
x∈S

|I−2 (x)− E{I−2 (x)}| ≤ max
k=1,...,vn

|I−?
2 (sk)|+ sup

x∈S
|I−?

2 (x)− I−?
2 (sk(x))|

where k(x) being the index of the hypercube containing x. Note that

P{ max
k=1,...,vn

|I−?
2 (sk)| ≥ ([nT ]h)−1/2η0Mn} ≤ nt0 sup

x∈S
P{|I−2 (x)− E{I−1

2 (x)}|

≥ ([nT ]h)−1/2Mnη0},

By properly choosing b0, (A.12) implies that

max
k=1,...,vn

|I−?
2 (sk)| = Op{([nT ]h)−1/2 log(n)}. (A.13)

As K is Lipschitz continuous,

sup
x∈S

|I−?
2 (x)− I−?

2 (sk(x))| ≤ Ch−1n−t0

n−1

[nT ]−1∑
i=0

|εi|+ E|εi|

 .

Note that n−1
∑
|εi|

w.s.→ E|εi|, and E|εi| ≤ C. We get with probability one

sup
x∈S

|I−?
2 (x)− I−?

2 (sk(x))| ≤ Ch−1n−t0 .
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By choosing t0 > 3/{2(d+ 1)}, we have

P{sup
x∈S

|I−?
2 (x)− I−?

2 (sk(x))| ≥ ([nT ]h)−1/2 log(n)η0} → 0,

which means that

sup
x∈S

|I−?
2 (x)− I−?

2 (sk(x))| = Op{([nT ]h)−1/2 log(n)}. (A.14)

Clearly, (A.4), (A.13) and (A.14) complete the proof. �

PROOF of Lemma 3.2:
We need to do a few things before proving the lemma. Similar to the derivation of
Lemma 3.1 and the proof of Theorem 2.2 of Bosq (1998), it can be shown that for
any smooth function g in Rd

sup
x∈S

|n−1h

[nT ]−1∑
i=0

K2
h(x−Xi)g(Xi)− f(x)v(x;h)g(x)|

= Op{([nT ]h)−1/2 log(n) + h}, (A.15)

sup
x∈S

|n−1h

[nT ]−1∑
i=0

K2
h(x−Xi)ε

2
i − f(x)v(x;h)σ2(x)|

= Op{([nT ]h)−1/2 log(n) + h} (A.16)

and

sup
x∈S

|n−1h

[nT ]−1∑
i=0

K2
h(x−Xi)εi| = Op{([nT ]h)−1/2 log(n)} (A.17)

where the h-order terms in the remainders are due to the bias associated with the
kernel estimator. Note that

Ū2(x) = n−1h

[nT ]−1∑
i=0

K2
h(x−Xi){mθ(Xi)− m̃θ̂(x) + εi + cn∆n(Xi)}2 =

6∑
l=1

Jl(x)
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where, from (A.15) to (A.17),

J1(x) = n−1h

[nT ]−1∑
i=0

K2
h(x−Xi){mθ(Xi)− m̃θ̂(x)}

2 = Õp{n−1/2 + h}

J2(x) = n−1h

[nT ]−1∑
i=0

K2
h(x−Xi)ε

2
i → f(x)v(x;h)σ2(x) + Õp{([nT ]h)−1/2 log(n) + h}

J3(x) = n−1hc2n

[nT ]−1∑
i=0

K2
h(x−Xi)∆

2
n(Xi) = Õp(c

2
n)

J4(x) = 2n−1hcn

[nT ]−1∑
i=0

K2
h(x−Xi){mθ(Xi)− m̃θ̂(x)}∆(Xi) = Õp{cn(n−1 + h)}

J5(x) = 2n−1h

[nT ]−1∑
i=0

K2
h(x−Xi){mθ(Xi)− m̃θ̂(x)}εi = õp(n

−1/2)

J6(x) = 2n−1hcn

[nT ]−1∑
i=0

K2
h(x−Xi)εi∆n(Xi) = Õp{cn([nT ]h)−1/2 log(n)}.

In summary of the above results, we have

sup
x∈S

|Ū2(x)− f(x)v(x;h)σ2(x)| = Op(h). (A.18)

As f(x)v(x;h)σ2(x) is uniformly bounded below,

inf
x∈S

f(x)v(x;h)σ2(x) ≥ d0 for some d0 > 0. (A.19)

Since

inf
x∈S

|U2(x)| ≥ − sup
x∈S

|U2(x)− f(x)v(x;h)σ2(x)|+ inf
x∈S

|f(x)v(x;h)σ2(x)|,

The proof is completed by (A.18) and (A.19). �

PROOF of Lemma 3.3:
Let wi = supx∈S |K

(
x−Xi

h

)
{Yi − m̃θ̂(x)}|. As K, m and ∆n are bounded in S,

wi ≤ C1|εi|+ C2. From the Chebyshev inequality and Condition (DT6)

P
(
wi > ([nT ]h)1/2{log(n)}−1

)
≤ P

(
|εi| ≥ C3([nT ]h)1/2{log(n)}−1

)
≤ C4 exp{−C5([nT ]h)1/2 log−1(n)}

Thus,
∑∞

n=1 P
(
wi > ([nT ]h)1/2{log(n)}−1

)
< ∞. According to the Borel-Cantelli

lemma, wi > ([nT ]h)1/2{log(n)}−1 finitely often with probability 1. This means
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that Zn = max1≤i≤nwi > ([nT ]h)1/2{log(n)}−1 finitely often, which completes the
proof. �

PROOF of Theorem 3.3:
From (3.36) and (A.18)

Ū−1
2 Ū2

1 =

[
n−1

[nT ]−1∑
i=0

Wh(x−Xi){εi + cn∆n(Xi)}
]2

+Õp{([nT ]h)−1h log2(n)} (A.20)

where Wh(x − Xi) = Kh(x − Xi)/{f(x)v(x;h)σ2(x)}1/2. Note that ([nT ]h1)1/2cn =
O(h1/4). Let

A = k−1
T ([nT ]h)

kT∑
j=1

∫
Bj

[
n−1

[nT ]−1∑
i=0

Wh(tj −Xi){εi + cn∆n(Xi)}]2

−[n−1

[nT ]−1∑
i=0

Wh(t−Xi){εi + cn∆n(Xi)}]2
]
dt

= k−1
T

kT∑
j=1

∫
Bj

T1j(t)T2j(t)dt (A.21)

where for t ∈ Bj

T1j(t) = n−1/2

[nT ]−1∑
i=0

{Wh(tj −Xi)−Wh(t−Xi)}{εi + cn∆n(Xi)},

T2j(t) = n−1/2

[nT ]−1∑
i=0

{Wh(tj −Xi) +Wh(t−Xi)}{εi + cn∆n(Xi)}.

Let Mn = b0 log(n) for a positive constant b0 and ωi = εi + cn∆n(Xi). Define

T+
1j(t) = ([nT ]h−d)−1/2

[nT ]−1∑
i=0

{Wh(tj −Xi)−Wh(t−Xi)}ωiI (|ωi| > Mn) ,

T−1j(t) = ([nT ]h−d)−1/2

[nT ]−1∑
i=0

{Wh(tj −Xi)−Wh(t−Xi)}ωiI (|ωi| ≤Mn) .

Similar definitions apply for T+
2j(t) and T−2j(t). It may be shown similar to the deriva-

tion of (A.4) that for l = 1 and 2

max
j=1,...,kT

sup
t∈Bj

|T+
1j(t)− E{T+

1j(t)}| = Op{([nT ]h)−1/2 log(n)}. (A.22)
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Let φi(t) = h{Wh(tj − Xi) − Wh(t − Xi)}ωiI (|ωi| < Mn) and Zi(t) = φi(t) −
E{φi(t)}. Then, for un →∞ (the exact order of un will be decided later)

P{|T−1j(t)− E{T−1j(t)} > u−1
n η0} = P{|

[nT ]−1∑
i=0

Zi(t)| > nη}

where η = (h/n)1/2u−1
n η0. Note that |Zi(t)| ≤ CMnk

−1
T h−1. Let b = CMnk

−1
T h−1

and q = n1/2Mnη0u
−1
n h−1. Similar to the derivation of (A.12) and employing again

Theorem 1.3 of Bosq (1998), we have

P{|
[nT ]−1∑

i=0

Zi(t)| > nη} ≤ 4 exp{− η2q

8v2(q)
}+ 22(1 + b/η)1/2qα ([n/(2q)])

where v2(q) ≤ Cqh(nkT )−1. The upper bound for v2(q) can be obtained using the
same approach in deriving a similar bound for the same name quantity as given
between (A.5) and (A.9). By choosing un = b1k

1/2
T log−1(n) for some positive b1,

exp{− η2q

8v2(q)
} ≤ exp

(
−CkTη0

u2
n

)
= exp{−Cb1η0 log(n)}

and

(1 + b/η)1/2qα ([n/(2q)]) ≤ Cn3/4M3/2
n u−1/2

n h−3/2−d/4k−1/2
n ρM−1

n η−1
0 n1/2unh.

As the right hand sides of the above two inequalities are free of t, we have

sup
t∈Bj

P[|T−1j(t)− E{T−1j(t)}| ≥ b1k
−1/2
n log(n)η0]

≤ exp{−Cb1η0 log(n)}
+Cn3/4M3/2

n u−1/2
n h−3/2−d/4k−1/2

n ρM−1
n η−1

0 n1/2unh. (A.23)

Let {Bjl}
vj

l=1 be a partition of Bj of equal size hypercubes Bjl where vj be an integer
tending to ∞ as n → ∞. Employing similar derivations to those in deriving (A.13)
and (A.14) and utilizing (A.23), it can be shown that

sup
t∈[tj ,tj+1]

|T−1j(t)− E{T−1j(t)}| = Op{k−1/2
n log(n)}. (A.24)

A similar derivation will show that

sup
t∈[tj ,tj+1]

|T−2j(t)− E{T−2j(t)| = Op{k−1/2
n log(n)}. (A.25)
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From (A.22), (A.24) and (A.25) we have for l = 1 and 2

sup
t∈[tj ,tj+1]

|Tlj(t)| = Op{([nT ]h)−1/2 log(n) + k−1/2
n log(n)}. (A.26)

These together with (A.21) complete the proof. �

PROOF of Theorem 3.4:

We first derive the mean and the covariance of m̂(x) − m̃θ(x). We use Õ() and
õ() to denote quantities which are O() and O() uniformly with respect to x ∈ S. It
is noted that

E{m̂(x)− m̃θ(x)}

= E

[
n−1

∑[nT ]−1
i=0 Wh(x−Xi){εi + cn∆n(Xi)}

b(x;h)f(x)
{1 +

f̂(x)− b(x;h)f(x)

b(x;h)f(x)
+ . . . }

]
= cn∆n(x){1 + Õ(h)}

When x is in the interior of S, the above Õ(h) term will be Õ(h2). This means that

E

[
([nT ]h)1/2V −1/2(x){m̂(x)− m̃θ(x)}

]
= ([nT ]h)1/2cn∆n(x)V −1/2(x){1 + õ(1)}.

(A.27)
Let ωi = εi + cn∆n(Xi). Then,

V 1/2(s;h)V 1/2(t;h) Cov{m̂(s)− m̃θ(s), m̂(t)− m̃θ(t)}

= Cov{n−1

[nT ]−1∑
i=0

Wh(s−Xi)ωi, n
−1

[nT ]−1∑
i=0

Wh(t−Xi)ωi}{1 + õ(1)}

=

[
n−1 Cov{Wh(s−X1)ω1,Wh(t−X1)ω1}

+n−1

n∑
l=2

(1− l/n) Cov{Wh(s−X1)ω1,Wh(s−Xl)ωl}
]
{1 + õ(1)}

Standard derivations show

Cov{Wh(s−X1)ω1,Wh(t−X1)ω1} = h−d

√
f(s)σ2(s)

f(t)σ2(t)

W
(2)
0 (s, t)√

W
(2)
0 (s, s)W

(2)
0 (t, t)

+ õ(h−d),

where W
(2)
0 is defined in (3.39) and W

(2)
0 (t, t) = v(t;h). Using the same arguments

which establish (A.9) in the proof of Lemma 3.1 , we can show that

n∑
l=2

(1− l/n) Cov{Wh(s−X1)ω1,Wh(s−Xl)ωl} = õ(h−d).
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Thus,

([nT ]h) Cov

[
{m̂(s)− m̃θ̂(s)}√

V (s)
,
{m̂(t)− m̃θ̂(t)}√

V (t)

]

=

√
f(s)σ2(s)

f(t)σ2(t)

W
(2)
0 (s, t)√

W
(2)
0 (s, s)W

(2)
0 (t, t)

{1 + õ(1)}. (A.28)

Next we want to show that for k distinct t1, t2, · · · , tk ∈ [0, 1]d,

([nT ]h)1/2

(
{m̂(t1)− m̃θ(t1)}

V (t1)
, · · · , {m̂(tk)− k̃θ(tk)}

V (tk)

)
L→ Nk(µk,Ωk). (A.29)

Here Nk(µk,Ωk) is a k-dimensional normal distribution with mean vector

µk = ([nT ]h)1/2cn
(
∆n(t1)f

1/2(t1)V
−1/2(t1), · · · ,∆n(tk)f

1/2(tk)V
−1/2(tk)

)T
and covariance matrix Ωk = (ωij)k×k, where

ωij =

√
f(ti)σ2(ti)

f(tj)σ2(tj)

W
(2)
0 (ti, tj)√

W
(2)
0 (ti, ti)W

(2)
0 (tj, tj)

.

From Theorem 3.4 of Bosq (1998), V −1/2(ti){m̂(ti) − m̃θ(ti)} is asymptotically
normally distributed at each ti. Then (A.29) is obtained by applying the Cramér-
Wold device.

From Theorem 1.5.4 of van der Vaart and Wellner (1996), we only need to show
that ([nT ]h)1/2m̂()/V −1/2() is asymptotically tight in C([0, 1]d). To simplify the pre-
sentation, we only prove the case for d = 1.

From Theorem 8.1 and Theorem 12.3 of Billingsley (1968), we need only to show
that

([nT ]h)1/2V −1/2(0){m̂(0)− m̃θ̂(0)} is tight and (A.30)

P{([nT ]h)1/2|V −1/2(t1){m̂(t1)− m̃θ(t1)} − V −1/2(t2){m̂(t2)− m̃θ(t2)}| > η}
≤ C(t1 − t2)

α/ηγ
0 , (A.31)

for any η0 > 0, some γ > 0 and α > 1.
As V −1/2(0){m̂(0)− m̃θ̂(0)} has finite mean and variance, (A.30) is readily estab-
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lished from the Markov inequality. Note that

([nT ]h)1/2

[
V −1/2(t1){m̂(t1)− m̃θ(t1)} − V −1/2(t2){m̂(t2)− m̃θ(t2)}

]
= ([nT ]h)1/2n−1

[nT ]−1∑
i=0

{Wh(t1 −Xi)−Wh(t2 −Xi)}{εi + cn∆(xi)}+ Op(1)

= ([nT ]h)1/2n−1

[nT ]−1∑
i=0

{Wh(t1 −Xi)−Wh(t2 −Xi)}εi + Op(1)

So, it is sufficient to prove for any η > 0,

P{h|
[nT ]−1∑

i=0

Zi| >
√
nhη0} ≤ C(t1 − t2)

α/ηγ
0 . (A.32)

where Zi = h{Wh(t1 − Xi) −W0h(t2 − Xi)}εi. Split Zi into Zi1 = ZiI(|εi| < Mn)
and Zi2 = ZiI(|εi| > Mn) where Mn is a larger number slowly tending to ∞. Clearly,
|Zi1| ≤ b =: C|t1 − t2|Mn/h. Using again Theorem 1.3 of Bosq (1998),

P{|
[nT ]−1∑

i=0

Zi1| > 1
2
([nT ]h)1/2η0} = P

(
|
∑[nT ]−1

i=0 Zi1| > nη
)

≤ 4 exp{− η2q

8v2(q)
}+ C(b/η)1/2qα{[n/(2q)]}

where q = n1/2h−3/2Mnη and v2(q) = Cqh|t1 − t2|/n. Thus,

exp{− η2q

8v2(q)
} ≤ exp

(
−Cη2

0|t1 − t2|−1
)
≤ C|t1 − t2|2η−2

0

and condition (DT1) implies that (b/η)1/2qα{[n/(2q)]} → 0. Therefore,

P{|
[nT ]−1∑

i=0

Zi1| > 1
2
([nT ]h)1/2η0} ≤ C|t1 − t2|2η−2

0 . (A.33)

Standard techniques, similar to those used in studying the properties of I+
2 in the

proof of Lemma 2, show that as n→∞

P{|
[nT ]−1∑

i=0

Zi2| > 1
2
([nT ]h)1/2η0} → 0.

This and (A.33) prove (A.32), and complete the proof for the tightness.
�
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A.3 Estimation of Parameters of a Normalized In-

dex

Let U(t) be the Ornstein-Uhlenbeck process satisfying (4.9). Introduce the autoco-
variance of the process U −Kh ∗ U as

Cov(τ) = Cov[(U −Kh ∗ U)(τ); (U −Kh ∗ U)(0)], 0 < τ << h.

Let

ρh(τ) =
Cov(τ)

Cov(0)

be the autocorrelation function of U −Kh ∗ U .
Proposition 1. (i) If K(u) is the rectangle kernel, i.e., K(u) = (1/2) I(|u| ≤ 1),

then as h→∞ we have that

Cov(τ) =
γ2

2β

(
e−βτ − 1

βh
− 1

2 βh
(τ/h) +O(h−2)

)
. (A.34)

(ii) If K(u) = (3/4)(1− u2) I(|u| ≤ 1) is the Epanechnikov kernel, then

Cov(τ) =
γ2

2β

(
e−βτ − 1.8

βh
− 1.5

βh
(τ/h)2 +O(h−2)

)
. (A.35)

Proposition 2. Under the assumptions of Proposition 1, up to the terms of the
magnitude O(h−2), the following equation holds for β:

∂+

∂τ
ρh(τ)

∣∣∣
τ=0

= − β

1− cK/(βh)
.

The solution of this equation is approximately

β̂2 =
∣∣∂+

∂τ
ρh(τ)

∣∣∣∣∣
τ=0

− cK
h

+O(h−2)

where cK = 1 if K is the rectangle kernel, and cK = 1.8 if K is the Epanechnikov
kernel.
PROOF of Proposition 1.:
(i) Integrate the both sides of (4.9) with the rectangle kernel. The integration results
in

− 1

2βh

{
U(t+ h)− U(t− h)

}
= (Kh ∗ U)(t)− γ

2βh

{
W (t+ h)−W (t− h)

}
,
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or

(Kh ∗ U)(t) =
γ

2βh

(
W (t+ h)−W (t− h)

)
− 1

2βh

(
U(t+ h)− U(t− h)

)
. (A.36)

The autocovariance function equals

Cov(τ) = E[U(τ)U(0)]− E[U(τ) (Kh ∗ U)(0)]

−E[U(0) (Kh ∗ U)(τ)] + E[(Kh ∗ U)(τ) (Kh ∗ U)(0)]. (A.37)

The first term in the latter formula is E[U(τ)U(0)] = {γ2/(2β)}e−βτ . With the help
of (A.36) and the explicit representation

U(t) =

∫ t

−∞
exp{−β(t− s)} γ dW (s),

one finds by direct calculation that each of the negative terms on the right-hand side
of (A.37) contributes

− γ2

(2β2 h)
+O(h−2),

while the covariance of Kh ∗ U adds up to

γ2(2h− τ)

(2βh)2
+O(h−2).

Combining these results, we arrive at (A.34).
(ii) Integrating (4.9), we find as in (A.36) that

(Kh ∗ U)(t) = − 3

2βh3

∫ t+h

t−h

(s− t)U(s)ds+
γ

β
(Kh ∗W )(t). (A.38)

It is straightforward to verify that the variance of the first term on the right-hand side
of (A.38) has the magnitude O(h−2) for h large. This term is negligible as compared
to the second one. As in part (i), we obtain

Cov(τ) =
γ2

2β
e−βτ − 2

(
3γ2

4β2h
+O(h−2)

)
+
γ2

β2
E
[
(Kh ∗W )(τ) (Kh ∗W )(0)

]
=

γ2

2β
e−βτ − 3γ2

2β2h
+
γ2

β2

(
3

5
− 3

4

(τ
h

)2
)

+O(h−2). (A.39)

This proves (A.35). �
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PROOF of Proposition 2.:
The slope of the autocorrelation at zero follows from (A.34) and (A.35). Let

A =
∣∣∂+

∂τ
ρh(τ)

∣∣∣∣∣
τ=0

,

then for β̂2 the quadratic equation β̂2
2 h − β̂2 hA + cKA = 0 holds with root β̂2 =

A− cK/h+O(h−2). �

Proposition 3. Let C0 be a space of continuous function with finite support. De-
fine K as the rectangle or Epanechnikov kernel. Then the operator Kh is a contracting
operator on the space L2

⋂
C0 with the L2-norm.

PROOF of Proposition 3.:
The Fourier transformation for the rectangle kernel is K̃(z) = (sin z)/z, and for the
Epanechnikov kernel is K̃(z) = 3(sin z− z cos z)/z3 with unique maximum value 1 at
z = 0. Thus, for the n-th iterative convolution, ‖Kn‖2 → 0 as n→∞. This confirms
the result. �
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Lehrstuhl Prof. W. Härdle
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